WO2012108305A1 - Epoxy acrylate, acrylic curable composition, cured product and manufacturing processes therefor - Google Patents
Epoxy acrylate, acrylic curable composition, cured product and manufacturing processes therefor Download PDFInfo
- Publication number
- WO2012108305A1 WO2012108305A1 PCT/JP2012/052205 JP2012052205W WO2012108305A1 WO 2012108305 A1 WO2012108305 A1 WO 2012108305A1 JP 2012052205 W JP2012052205 W JP 2012052205W WO 2012108305 A1 WO2012108305 A1 WO 2012108305A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- epoxy acrylate
- acrylate
- meth
- acrylic
- general formula
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
- C07C67/24—Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran
- C07C67/26—Preparation of carboxylic acid esters by reacting carboxylic acids or derivatives thereof with a carbon-to-oxygen ether bond, e.g. acetal, tetrahydrofuran with an oxirane ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/14—Polycondensates modified by chemical after-treatment
- C08G59/1433—Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds
- C08G59/1438—Polycondensates modified by chemical after-treatment with organic low-molecular-weight compounds containing oxygen
- C08G59/1455—Monocarboxylic acids, anhydrides, halides, or low-molecular-weight esters thereof
- C08G59/1461—Unsaturated monoacids
- C08G59/1466—Acrylic or methacrylic acids
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/12—Systems containing only non-condensed rings with a six-membered ring
- C07C2601/14—The ring being saturated
Definitions
- the present invention relates to a novel epoxy acrylate, an acrylic curable composition, a cured product, and a production method thereof excellent in heat resistance, fluidity, toughness, photosensitivity, chemical resistance, hardness, transparency, and weather resistance. is there.
- This epoxy acrylate has high heat resistance, toughness, chemical resistance, hardness, transparency, weather resistance, etc. by polymerizing itself or copolymerizing with compounds having various unsaturated bonds.
- a molecular material can be given, and it can be used for various applications such as paints, laminates and adhesives.
- a photo-curable resin composition or a thermosetting resin composition a solder resist resin, an electroless plating resist resin, a hard coat material, a UV curable paint, a glass substitute material, or even a liquid crystal color It is also suitably used as a protective film for filters and the like.
- Epoxy acrylate resins obtained by reaction of epoxy compounds with acrylic acid are widely used as various functional polymer materials such as photosensitive materials and crosslinking agents. Since this resin has a hydroxyl group in the molecule, it is excellent in solvent solubility, heat resistance and the like (Non-Patent Document 1).
- epoxy acrylate derived from epoxyethylbenzene is an aromatic compound, it is considered that transparency and weather resistance are insufficient for application to the field of optical components.
- the object of the present invention is excellent in heat resistance, low thermal expansion, transparency, and weather resistance, and is a resin for solder resist or resin for electroless plating resist, hard coat material, UV curable paint, glass substitute material, liquid crystal It is to provide an epoxy acrylate, an acrylic composition and a cured product useful for a color filter and the like. In particular, it is to provide an acrylic resin composition and a cured product useful as an optical material.
- the present invention relates to an epoxy acrylate represented by the following general formula (1).
- X represents a hydrogen atom or a methyl group.
- Z represents a C1-C6 alkyl group, all of which may be the same or different.
- N represents a number from 2 to 3.
- a represents a number from 0 to 4. Indicates the number.
- this invention relates to the epoxy acrylate which contains the epoxy acrylate represented by the said General formula (1) as a main component, and contains the epoxy acrylate represented by the following General formula (2) as a subcomponent.
- A is an ester bond-containing group represented by Formula (3)
- B is an ester bond-containing group represented by Formula (3) or Formula (4).
- b represents an integer of 1 to 2.
- Z, X, and a have the same meaning as in general formula (1).
- the present invention also relates to an acrylic curable composition comprising the above epoxy acrylate and a polymerization initiator. Moreover, this invention relates to the acrylic resin hardened
- the present invention also relates to a method for producing the above epoxy acrylate, characterized by reacting the epoxycyclohexane compound represented by the general formula (5) with acrylic acid or methacrylic acid.
- the present invention is an acrylic curable composition or an acrylic resin cured product, wherein the acrylic curable composition or the acrylic resin cured product is for an optical material.
- the epoxy acrylate of the present invention is represented by the above general formula (1).
- X represents a hydrogen atom or a methyl group.
- Z represents a C1-C6 alkyl group, and all may be the same or different.
- n represents an integer of 2 to 3.
- a represents an integer of 0 to 4. However, n + a does not exceed 6.
- the epoxy acrylate represented by the general formula (1) is obtained by reacting the epoxycyclohexane compound represented by the general formula (5) with an unsaturated carboxylic acid (meaning including acrylic acid, methacrylic acid, or both). It can be produced by acrylated. Therefore, the kind of Z comes from the structure of the epoxycyclohexane compound used as a raw material.
- Z is a C1 to C6 alkyl group, and a is an integer of 0 to 4, preferably 0 to 1, from the viewpoint of the availability of the epoxycyclohexane compound and the properties of the resulting epoxy acrylate.
- the epoxycyclohexane compound represented by the general formula (5) can have a structure in which two epoxyethyl groups are substituted on the cyclohexane skeleton (disubstituted product) or a structure in which three epoxyethyl groups are substituted (trisubstituted product).
- the isomers of the di-substituted product include 1,2-di-substituted product (o-isomer), 1,3-di-substituted product (m-isomer) and 1,4-di-substituted product (p-isomer).
- Tri-substituted isomers include 1,2,3-tri-substituted, 1,2,4-tri-substituted, and 1,3,5-tri-substituted.
- an epoxycyclohexane compound used in the production method of the present invention a mixture of these isomers (may be a di-substituted product, a tri-substituted product or a mixture of a di-substituted product and a tri-substituted product).
- those having a high content of m-isomer and p-isomer are preferable from the viewpoint of both heat resistance and low viscosity, and are 90% by weight or more, preferably 95% by weight or more.
- those containing the body are preferably used.
- a tri-substituted product is preferable, and a 1,2,4-tri-substituted product is particularly preferable.
- the epoxy acrylate of the present invention can be produced by reacting an epoxycyclohexane compound with an unsaturated carboxylic acid.
- the epoxy group of the epoxycyclohexane compound is ring-opened to form an ester bond with the unsaturated carboxylic acid.
- This ring-opening occurs from both ⁇ -position and ⁇ -position, but the epoxy acrylate ( ⁇ -adduct) of the above general formula (1) opened at the ⁇ -position is a main component, and the above-described general formula opened at the ⁇ -position.
- the epoxy acrylate ( ⁇ adduct) of (2) is a subcomponent. There are two types of epoxy acrylates of general formula (2).
- both A and B in the general formula (2) are ester bond-containing groups ( ⁇ adducts) represented by the formula (3), and A in the general formula (2) is the formula (3).
- a part or all of B is an ester bond-containing group ( ⁇ adduct) represented by the formula (4).
- the former is called a full ⁇ adduct, the latter is called a half ⁇ adduct, and both are collectively called a ⁇ adduct.
- the production rate of the total ⁇ -adduct is sufficiently lower than that of the half- ⁇ -adduct.
- both A and B in General formula (2) are ester bond containing groups ((alpha) adduct) represented by Formula (3), it becomes the same as General formula (1).
- the production ratio of ⁇ -adduct and ⁇ -adduct is usually 100 / 0.01 to 100/70, preferably 100 / 0.1 to 100/50 in molar ratio. Therefore, in the above production method, an epoxy acrylate containing both the ⁇ -adduct and ⁇ -adduct of the present invention is usually obtained.
- an epoxy acrylate composition When distinguishing an epoxy acrylate containing both an ⁇ -adduct and a ⁇ -adduct from an epoxy acrylate comprising only the epoxy acrylate of the general formula (1), the former is called an epoxy acrylate composition, and the latter is a general formula (1). This is called epoxy acrylate. Especially when it is not necessary to distinguish, both are called epoxy acrylate.
- the epoxy acrylate of the general formula (1) can be separated from the epoxy acrylate composition by a known method.
- a main component means containing 60% or more, preferably 70% or more, and a subcomponent may contain 40% or less, preferably 30% or less.
- an epoxy acrylate containing the epoxy acrylate represented by the general formulas (1) and (2) is obtained. Since these epoxy acrylates are all cyclohexane ring compounds, there are chair-type and ship-type isomers, and since there are cis, trans isomers, or optical isomers, the main component and subcomponents are: A mixture containing these isomers may also be used. Since the epoxy acrylates represented by the general formulas (1) and (2) obtained by the above production method are both epoxy acrylates, the epoxy acrylates represented by the general formulas (1) and (2) are included. Even if it is a composition, it is also called epoxy acrylate.
- the epoxy acrylate of the present invention can be produced by reacting an epoxycyclohexane compound and an unsaturated carboxylic acid at 50 to 200 ° C. for 1 to 50 hours in the presence of a catalyst and a polymerization inhibitor as necessary.
- the raw material charge ratio of the epoxycyclohexane compound and the unsaturated carboxylic acid is preferably a reaction ratio of 100/5 to 5/100, preferably 100/10 to 10/100, as the molar ratio of the epoxycyclohexane compound and the unsaturated carboxylic acid. .
- Examples of the catalyst that can be used in this case include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, tertiary amines such as triethylamine and benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, imidazole, and the like.
- Compounds, phosphines such as triphenylphosphine, and phosphonium salts such as tetra-n-butylphosphonium tetraphenylborate. These catalysts may be used alone or in combination of two or more.
- the amount of the catalyst used varies depending on the catalyst used, but is preferably 0.01 to 100 mol, more preferably 0.1 to 80 mol, based on 100 mol of the epoxycyclohexane compound.
- polymerization inhibitors may be used as polymerization inhibitors for vinyl compounds.
- amines such as phenothiazine, methoxyphenothiazine, hindered amine, phenol, methoxyphenol, hydroquinone, t- Phenols such as butylcatechol, butylhydroxytoluene, cresol and the like can be mentioned, and phenols are preferable.
- phenols are preferable.
- These polymerization inhibitors may be used alone or in combination of two or more.
- the amount of the polymerization inhibitor used varies depending on the catalyst used, but is preferably 0.001 to 10 mol, more preferably 0.01 to 1 mol, per 100 mol of the epoxycyclohexane compound.
- an organic solvent may be used as necessary.
- the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as MIBK and MEK, and the like.
- the amount of the solvent used is usually 50 to 5000 parts by weight, preferably 100 to 2000 parts by weight, based on 100 parts by weight of the total weight of the epoxycyclohexane compound and the unsaturated carboxylic acid.
- air or oxygen may be introduced as necessary. From the viewpoint of controlling the reaction, air is preferably introduced.
- the epoxy acrylate obtained by the reaction is a mixture containing the epoxy acrylate of the general formula (1) as a main component and an isomer such as the epoxy acrylate of the general formula (2) as a minor component, or a mixture having a different n number. Will be.
- these mixtures are used as resin raw materials, they can be used as they are as epoxy acrylates.
- it can be purified or separated by recrystallization or the like.
- epoxycyclohexane compound a vinylcyclohexyl compound epoxidized with a peroxide can be used. Since epichlorohydrin is not used, the resulting compound has a low chlorine content.
- peroxide a peracid, hydrogen peroxide, or an organic peroxide obtained by a usual method can be used.
- the acrylic curable composition of the present invention includes the epoxy acrylate of the general formula (1) or the epoxy acrylate composition containing the epoxy acrylate as a main component and a polymerization initiator.
- the polymerization initiator may be a known polymerization initiator as a polymerization initiator for a vinyl compound, and is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam or by applying a radical polymerization initiator.
- a photopolymerization initiator When curing by ultraviolet irradiation, a photopolymerization initiator is added. Although it does not specifically limit as a photoinitiator, The normal photoinitiator of the type which generate
- Benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin-iso-propyl ether, ⁇ -methylbenzoin, ⁇ -hydroxyisobuty
- Examples include benzophenones, acetophenone, 9,10-anthraquinone, 1-chloroanthraquinone, anthraquinones such as 2-chloroanthraquinone, and sulfur-containing compounds such as diphenyl disulfide and tetramethylthiuram disulfide.
- photopolymerization initiators are used alone or in admixture of two or more, and the blending amount is recommended to be about 0.1 to 10% by weight with respect to the total amount of polymerizable compounds.
- a photosensitizer may be added in order to accelerate the photopolymerization reaction by the photopolymerization initiator.
- the photosensitizer is not particularly limited. Specifically, tertiary amines such as triethylamine and triethanolamine, alkylphosphines such as triphenylphosphine, thioethers such as thiodiglycol, and the like.
- the blending amount thereof is about 0.01 to 5% by weight with respect to the total amount of the polymerizable compound (referring to the above-mentioned epoxy acrylate or epoxy acrylate composition and other polymerizable monomer added if necessary). Recommended.
- the ultraviolet light source a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like is used.
- a general-purpose electron beam generator may usually irradiate an electron beam with a dose of about 1 to 20 megarads.
- the radical polymerization initiator used for radical polymerization of the acrylic curable composition according to the present invention is not particularly limited, and specific examples thereof include benzoyl peroxide, diisopropyl peroxycarbonate, lauroyl peroxide, and the like. Azo compounds such as peroxide and azobisisobutyronitrile are exemplified, and these polymerization initiators may be used alone or in combination of two or more. As the polymerization initiator, it is preferable to use one for thermosetting and one for photocuring depending on the application.
- the amount of these polymerization initiators used varies depending on the polymerization inhibitor used, but is preferably 0.001 to 5 parts by weight, more preferably 0.01 to 1 part by weight based on the total amount of the polymerizable compounds. is there. However, since this mixing ratio varies greatly depending on the type of curing agent used, it is necessary to appropriately determine the optimum conditions.
- the acrylic curable composition of the present invention may contain other polymerizable monomers by heat or light as necessary. Can be added. However, it is preferable that the polymerizable component contains a total of 50 wt% or more of the epoxy acrylate of the general formula (1) or the epoxy acrylate composition containing the same as the main component.
- the other polymerizable monomer may be a known heat or light polymerizable monomer, and various acrylate compounds exemplified below may be used alone or in combination of two or more, and used together as a curable component.
- Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, butyl (meth) acrylate, iso-butyl (meth) acrylate, n-hexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Examples include acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, and 2,3-dibromopropyl (meth) acryl
- Bifunctional (meth) acrylates include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate.
- tri- to tetrafunctional (meth) acrylates examples include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate.
- Acrylic polymerizable oligomers include epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, polybutadiene oligomer (meth) acrylate, polyamide-type (meth) acryl oligomer, melamine (meth) acrylate, cyclopentadiene Examples include oligomeric (meth) acrylates and silicone oligomer (meth) acrylates.
- acrylate monomers for example, vinyl compounds such as styrene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl ether, acrolein, ⁇ -olefins such as ethylene and butadiene, etc. Can be used in combination as appropriate.
- heat or light polymerizable monomers may be used alone or in combination of two or more.
- the polymerizable monomer by heat or light it is preferable to use either a thermally polymerizable monomer or a photopolymerizable monomer depending on the application.
- fillers such as fillers, fibers, coupling agents, flame retardants, mold release agents, and foaming agents can be added to the acrylic curable composition of the present invention as necessary.
- the filler include polyethylene powder, polypropylene powder, quartz, silica, silicate, calcium carbonate, magnesium carbonate, gypsum, bentonite, fluorite, titanium dioxide, carbon black, graphite, iron oxide, aluminum powder, iron
- fibers such as powder, talc, mica, kaolin clay, and the like include cellulose fiber, glass fiber, carbon fiber, and aramid fiber.
- the coupling agent include a silane coupling agent and a titanium coupling agent.
- Examples of the flame retardant include brominated bisphenol A, antimony trioxide, and phosphorus compounds.
- the mold release agent include stearates, silicones, waxes and the like.
- Examples of the blowing agent include CFC, dichloroethane, butane, pentane, dinitropentamethylenetetramine, p-toluenesulfonyl hydrazide, or CFC, dichloroethane, butane, pentane and the like.
- Vinyl chloride-vinylidene chloride copolymer and styrene- (meth) examples thereof include expandable thermoplastic resin particles filled in an acrylic ester copolymer shell.
- the acrylic curable composition of the present invention can be easily made into a cured acrylic resin by a method similar to a conventionally known method.
- the epoxy acrylate or epoxy acrylate composition of the present invention, a polymerization initiator, if necessary, a polymerizable monomer by heat or light and other additives are made uniform by using an extruder, a kneader, a roll or the like, if necessary.
- a polymerization initiator if necessary, a polymerizable monomer by heat or light and other additives are made uniform by using an extruder, a kneader, a roll or the like, if necessary.
- To obtain an acrylic resin composition melted and then molded using a casting or transfer molding machine, and further heated to 80 to 200 ° C. to obtain a cured product. Can do.
- a prepreg obtained by dissolving the acrylic curable composition of the present invention in a solvent, impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and drying by heating is hot-pressed. It can be molded to obtain a cured product.
- the epoxy acrylate or epoxy acrylate composition of the present invention, a polymerization initiator and other additives are heated and stirred until uniform, impregnated into a glass cloth, heated and semi-dried, and the solvent is removed.
- a glass cloth laminate can be produced by heating and pressing at a temperature of 80 to 200 ° C. for 1 hour or more. *
- the dilution solvent that can be used in this case include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methyl cellosolve, and the like, and the amount used is based on the total weight of the acrylic curable composition and the dilution solvent. It is 10 to 70% by weight, preferably 15 to 65% by weight.
- the cured acrylic resin of the present invention can be used in a wide range of fields such as optical resins. Specifically, it is also suitably used as a protective film for solder resist resins or electroless plating resist resins, hard coat materials, UV curable paints, glass substitute materials, and liquid crystal color filters. In particular, it is excellent as an optical material such as a lens, a prism, a color filter, or a protective film thereof.
- Example 1 A 300 ml glass three-necked flask equipped with a condenser, a thermometer, and an air blowing tube was charged with 10.51 g (50 mmol) of 1,2,4-triepoxyethylcyclohexane, 18.01 g (250 mmol) of acrylic acid, and benzyltriethylammonium chloride. 0.23 g (1 mmol), 0.055 g (0.25 mmol) of dibutylhydroxytoluene and 100 ml of toluene were added, and the mixture was heated and stirred at 80 ° C. while introducing air, and reacted for 24 hours.
- Comparative Example 1 In a 500 ml glass three-necked flask equipped with a cooling tube, a thermometer, and an air blowing tube, 50.00 g (416 mmol) of styrene oxide, 29.98 g (416 mmol) of acrylic acid, 1.09 g (4.16 mmol) of triphenylphosphine, 4-Tertiary butyl catechol (0.346 g, 2.08 mmol) and toluene (100 ml) were added, and the mixture was heated and stirred at 60 ° C. while introducing air, and reacted for 24 hours. After the reaction, the mixture was cooled to room temperature and washed with 100 ml of distilled water three times.
- the toluene layer was separated and the toluene was distilled off, followed by purification with a silica gel column using ethyl acetate + chloroform (2: 8) as a developing solution.
- a colorless and transparent liquid epoxy acrylate benzene (54.37 g, yield 68%) was obtained.
- Example 2 100 parts by weight of the triepoxy acrylate cyclohexane obtained in Example 1 and 5 parts by weight of Irgacure 184 [manufactured by Ciba Specialty Chemicals Co., Ltd .; trade name] as a polymerization initiator were kneaded to prepare a composition. . It is coated on a glass plate or an aluminum pan, covered with a release PET film, and cured by irradiating it with ultraviolet rays so that the energy dose becomes 600 mJ / cm 2 using a high-pressure mercury lamp, and a film-like cured product is obtained. It was. Next, the obtained cured product was used as a sample, and the pencil hardness, glass transition point, and thermal expansion coefficient ( ⁇ 1) were analyzed by the following method. The results are shown in Table 1.
- the coating film cured to 10 to 20 ⁇ m on the glass plate was measured under a load of 1 kg based on JISK5600, and indicated by the hardness of the hardest pencil without scratches.
- Total light transmittance Tt
- Tt Total light transmittance
- Comparative Example 2 A film-like cured product was obtained from the epoxy acrylate benzene obtained in Comparative Example 1 under the same conditions as in Experimental Example 2. Next, the pencil hardness, glass transition point, and thermal expansion coefficient ( ⁇ 1) of the obtained cured product were analyzed under the same conditions as in Example 2. The results are shown in Table 1.
- the epoxy acrylate of the present invention is superior in heat resistance, low thermal expansion, high refractive index, transparency, and weather resistance as compared with conventional epoxy acrylate, and is a resin for solder resist or resin for electroless plating resist, hard coat Epoxy acrylates, acrylic compositions and cured products useful for optical resins such as materials, UV curable paints, glass substitute materials, and liquid crystal color filters can be provided.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Emergency Medicine (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Epoxy Resins (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Provided are: an epoxy acrylate which exhibits excellent heat resistance and low thermal expansion and is useful for solder resist resins, electroless plating resist resins, hard coat materials, UV-curable coating materials, substitute materials for glass, color filters for liquid crystal displays, and so on; an acrylic composition; and a cured product. The epoxy acrylate is represented by general formula (1) [wherein Z is C1-6 alkyl; a is a number of 0 to 4; and n is an integer of 2 to 3]. The epoxy acrylate can be obtained by reacting an epoxycyclohexane compound with acrylic acid or methacrylic acid.
Description
本発明は、耐熱性、流動性、靭性、感光性、耐薬品性、硬度、透明性、耐候性に優れた新規なエポキシアクリレート、アクリル系硬化性組成物、硬化物及びその製造法に関するものである。このエポキシアクリレートは、それ自体を重合させるか、又は、各種の不飽和結合を有する化合物と共重合させることにより、耐熱性、靭性、耐薬品性、硬度、透明性、耐候性等に優れた高分子材料を与えることができ、塗料、積層板、接着剤等各種用途に使用できる。また、光硬化性樹脂組成物又は熱硬化性樹脂組成物とすることにより、ソルダーレジスト用樹脂又は、無電解メッキレジスト用樹脂、ハードコート材料、UV硬化塗料、ガラス代替材料、さらには液晶のカラーフィルター等の保護膜としても好適に使用される。
The present invention relates to a novel epoxy acrylate, an acrylic curable composition, a cured product, and a production method thereof excellent in heat resistance, fluidity, toughness, photosensitivity, chemical resistance, hardness, transparency, and weather resistance. is there. This epoxy acrylate has high heat resistance, toughness, chemical resistance, hardness, transparency, weather resistance, etc. by polymerizing itself or copolymerizing with compounds having various unsaturated bonds. A molecular material can be given, and it can be used for various applications such as paints, laminates and adhesives. In addition, by using a photo-curable resin composition or a thermosetting resin composition, a solder resist resin, an electroless plating resist resin, a hard coat material, a UV curable paint, a glass substitute material, or even a liquid crystal color It is also suitably used as a protective film for filters and the like.
主にエポキシ化合物とアクリル酸との反応により得られるエポキシアクリレート樹脂は、感光材料、架橋剤等、各種機能性高分子材料として幅広く使用されている。この樹脂は分子中に水酸基を有するため、溶剤溶解性、耐熱性等に優れる(非特許文献1)。特に、ベンゼンにエポキシ基が直接結合したエポキシフェニル化合物であるエポキシエチルベンゼン由来のエポキシアクリレートである2-ヒドロキシ-2-フェニルエチルアクリレートを硬化した樹脂では、一般的なグリジジルエーテル基を有するエポキシアクリレート樹脂と比較して、柔軟なオキシメチレン部位を持たないため、硬化物の分子運動が抑制されることにより優れた耐熱性、低熱膨張性が期待される。さらに、各種の不飽和結合を有する化合物との共重合(特許文献1)や、イソシアネート等水酸基と反応可能な化合物との架橋(特許文献2)により耐熱性、耐湿性、耐薬品性等に優れた高分子材料を与える。
Epoxy acrylate resins obtained by reaction of epoxy compounds with acrylic acid are widely used as various functional polymer materials such as photosensitive materials and crosslinking agents. Since this resin has a hydroxyl group in the molecule, it is excellent in solvent solubility, heat resistance and the like (Non-Patent Document 1). In particular, in a resin obtained by curing 2-hydroxy-2-phenylethyl acrylate, which is an epoxy acrylate derived from epoxyethylbenzene, which is an epoxyphenyl compound in which an epoxy group is directly bonded to benzene, an epoxy acrylate resin having a general glycidyl ether group Compared with the above, since it does not have a flexible oxymethylene moiety, excellent heat resistance and low thermal expansion are expected by suppressing the molecular motion of the cured product. Furthermore, it is excellent in heat resistance, moisture resistance, chemical resistance, etc. by copolymerization with compounds having various unsaturated bonds (Patent Document 1) and crosslinking with a compound capable of reacting with a hydroxyl group such as isocyanate (Patent Document 2). Give a high polymer material.
しかしながら、エポキシエチルベンゼン由来のエポキシアクリレートに関する唯一の開示例である2-ヒドロキシ-2-フェニルエチルアクリレートの役割は、専ら反応希釈剤や架橋剤であり、樹脂の物性向上を目的としたエポキシアクリレート自体の改良については着目されていなかった。
However, the role of 2-hydroxy-2-phenylethyl acrylate, which is the only disclosed example of epoxy acrylate derived from epoxyethylbenzene, is exclusively a reaction diluent and a cross-linking agent, and the role of epoxy acrylate itself for the purpose of improving the physical properties of the resin. There was no focus on improvement.
さらに、エポキシエチルベンゼン由来のエポキシアクリレートについては、芳香族化合物であるため、光学部品分野へ適用するためには、透明性、耐候性が不十分であると考えられる。
Furthermore, since epoxy acrylate derived from epoxyethylbenzene is an aromatic compound, it is considered that transparency and weather resistance are insufficient for application to the field of optical components.
従って、本発明の目的は、耐熱性、低熱膨張性、透明性、耐候性に優れ、ソルダーレジスト用樹脂又は、無電解メッキレジスト用樹脂、ハードコート材料、UV硬化塗料、ガラス代替材料、液晶のカラーフィルター等に有用なエポキシアクリレート、アクリル系組成物及び硬化物を提供することである。特に、光学材料として有用なアクリル樹脂組成物及び硬化物を提供することである。
Therefore, the object of the present invention is excellent in heat resistance, low thermal expansion, transparency, and weather resistance, and is a resin for solder resist or resin for electroless plating resist, hard coat material, UV curable paint, glass substitute material, liquid crystal It is to provide an epoxy acrylate, an acrylic composition and a cured product useful for a color filter and the like. In particular, it is to provide an acrylic resin composition and a cured product useful as an optical material.
本発明者等は、上述した従来技術における実状に鑑みて、耐熱性、低熱膨張性、高屈折率、透明性、耐候性に優れ、ソルダーレジスト用樹脂又は、無電解メッキレジスト用樹脂、ハードコート材料、UV硬化塗料、ガラス代替材料、液晶のカラーフィルター等に有用なアクリル樹脂を得るべく鋭意研究した結果、エポキシアクリレートとして、エポキシシクロヘキサン化合物と不飽和カルボン酸とを反応させて得られるエポキシアクリレートを用いることにより、上記の課題が解決することを見出し、本発明を完成するに至った。
In light of the actual situation in the prior art described above, the present inventors have excellent heat resistance, low thermal expansion, high refractive index, transparency, weather resistance, solder resist resin or electroless plating resist resin, hard coat As a result of earnest research to obtain acrylic resins useful for materials, UV curable paints, glass substitute materials, liquid crystal color filters, etc., epoxy acrylate obtained by reacting an epoxy cyclohexane compound with an unsaturated carboxylic acid is used as an epoxy acrylate. By using it, it has been found that the above problems can be solved, and the present invention has been completed.
すなわち、本発明は、下記一般式(1)で表されるエポキシアクリレートに関する。
(但し、Xは水素原子又はメチル基を表す。ZはC1~C6のアルキル基を表し、全てが同一でも異なっていてもよい。nは2~3の数を示す。aは0~4の数を示す。) That is, the present invention relates to an epoxy acrylate represented by the following general formula (1).
(However, X represents a hydrogen atom or a methyl group. Z represents a C1-C6 alkyl group, all of which may be the same or different. N represents a number from 2 to 3. a represents a number from 0 to 4. Indicates the number.)
(但し、Xは水素原子又はメチル基を表す。ZはC1~C6のアルキル基を表し、全てが同一でも異なっていてもよい。nは2~3の数を示す。aは0~4の数を示す。) That is, the present invention relates to an epoxy acrylate represented by the following general formula (1).
(However, X represents a hydrogen atom or a methyl group. Z represents a C1-C6 alkyl group, all of which may be the same or different. N represents a number from 2 to 3. a represents a number from 0 to 4. Indicates the number.)
また、本発明は、上記一般式(1)で表されるエポキシアクリレートを主成分として含み、下記一般式(2)で表わされるエポキシアクリレートを副成分として含むエポキシアクリレートに関する。
Moreover, this invention relates to the epoxy acrylate which contains the epoxy acrylate represented by the said General formula (1) as a main component, and contains the epoxy acrylate represented by the following General formula (2) as a subcomponent.
Moreover, this invention relates to the epoxy acrylate which contains the epoxy acrylate represented by the said General formula (1) as a main component, and contains the epoxy acrylate represented by the following General formula (2) as a subcomponent.
但し、Aは式(3)で表されるエステル結合含有基であり、Bは式(3)又は式(4)で表されるエステル結合含有基である。bは1~2の整数を示す。Z、X、aは一般式(1)と同じ意味である。
However, A is an ester bond-containing group represented by Formula (3), and B is an ester bond-containing group represented by Formula (3) or Formula (4). b represents an integer of 1 to 2. Z, X, and a have the same meaning as in general formula (1).
また、本発明は、上記エポキシアクリレートと、重合開始剤を含有することを特徴とするアクリル系硬化性組成物に関する。また、本発明は、このアクリル系硬化性組成物を成形硬化させてなることを特徴とするアクリル樹脂硬化物に関する。
The present invention also relates to an acrylic curable composition comprising the above epoxy acrylate and a polymerization initiator. Moreover, this invention relates to the acrylic resin hardened | cured material characterized by shape-hardening this acrylic curable composition.
また、本発明は、一般式(5)で表されるエポキシシクロヘキサン化合物とアクリル酸又はメタクリル酸とを反応させることを特徴とする上記エポキシアクリレートの製造方法に関する。
The present invention also relates to a method for producing the above epoxy acrylate, characterized by reacting the epoxycyclohexane compound represented by the general formula (5) with acrylic acid or methacrylic acid.
(但し、Z、a及びnは、一般式(1)と同じ意味を有する。)
(However, Z, a and n have the same meaning as in general formula (1).)
また、本発明は上記アクリル系硬化性組成物又はアクリル樹脂硬化物が、光学材料用であることを特徴とするアクリル系硬化性組成物又はアクリル樹脂硬化物である。
Further, the present invention is an acrylic curable composition or an acrylic resin cured product, wherein the acrylic curable composition or the acrylic resin cured product is for an optical material.
まず、本発明のエポキシアクリレートについて説明する。
First, the epoxy acrylate of the present invention will be described.
本発明のエポキシアクリレートは、上記一般式(1)で表される。ここで、Xは水素原子又はメチル基を表す。ZはC1~C6のアルキル基を表し、全てが同一でも異なっていてもよい。nは2~3の整数を示す。aは0~4の整数を示す。但し、n+aは6を超えることはない。
The epoxy acrylate of the present invention is represented by the above general formula (1). Here, X represents a hydrogen atom or a methyl group. Z represents a C1-C6 alkyl group, and all may be the same or different. n represents an integer of 2 to 3. a represents an integer of 0 to 4. However, n + a does not exceed 6.
上記一般式(1)で表されるエポキシアクリレートは上記一般式(5)で表されるエポキシシクロヘキサン化合物と不飽和カルボン酸(アクリル酸、メタアクリル酸、又は両者を含む意味である)を反応させアクリレート化を行うことで製造することができる。従って、Zの種類は、原料として使用されるエポキシシクロヘキサン化合物の構造に由来することになる。エポキシシクロヘキサン化合物の入手の容易さや得られるエポキシアクリレートの特性の点から、ZはC1~C6のアルキル基であり、aは0~4、好ましくは0~1の整数である。
The epoxy acrylate represented by the general formula (1) is obtained by reacting the epoxycyclohexane compound represented by the general formula (5) with an unsaturated carboxylic acid (meaning including acrylic acid, methacrylic acid, or both). It can be produced by acrylated. Therefore, the kind of Z comes from the structure of the epoxycyclohexane compound used as a raw material. Z is a C1 to C6 alkyl group, and a is an integer of 0 to 4, preferably 0 to 1, from the viewpoint of the availability of the epoxycyclohexane compound and the properties of the resulting epoxy acrylate.
上記一般式(5)で表されるエポキシシクロヘキサン化合物は、シクロヘキサン骨格にエポキシエチル基が2個置換された構造(ジ置換体)又は3個置換された構造(トリ置換体)を取り得る。ジ置換体の異性体としては、1,2-ジ置換体(o-体)、1,3-ジ置換体(m-体)及び1,4-ジ置換体(p-体)があり、トリ置換体の異性体としては、1,2,3-トリ置換体、1,2,4-トリ置換体、1,3,5-トリ置換体がある。本発明の製造方法で使用するエポキシシクロヘキサン化合物としては、これら異性体の混合物(ジ置換体同士、トリ置換体同士又はジ置換体とトリ置換体の混合物であっても良い。)が、ジ置換体同士の混合物の場合は、m-体及びp-体の含有率が高いものが耐熱性及び低粘度性両立の観点で好ましく、90重量%以上、好ましくは95重量%以上m-体及びp-体を含有するものが好適に使用される。また、アクリル樹脂硬化物の耐熱性の点から、トリ置換体が好ましく、1,2,4-トリ置換体が特に好ましい。
The epoxycyclohexane compound represented by the general formula (5) can have a structure in which two epoxyethyl groups are substituted on the cyclohexane skeleton (disubstituted product) or a structure in which three epoxyethyl groups are substituted (trisubstituted product). The isomers of the di-substituted product include 1,2-di-substituted product (o-isomer), 1,3-di-substituted product (m-isomer) and 1,4-di-substituted product (p-isomer). Tri-substituted isomers include 1,2,3-tri-substituted, 1,2,4-tri-substituted, and 1,3,5-tri-substituted. As an epoxycyclohexane compound used in the production method of the present invention, a mixture of these isomers (may be a di-substituted product, a tri-substituted product or a mixture of a di-substituted product and a tri-substituted product). In the case of a mixture of isomers, those having a high content of m-isomer and p-isomer are preferable from the viewpoint of both heat resistance and low viscosity, and are 90% by weight or more, preferably 95% by weight or more. -Those containing the body are preferably used. Further, from the viewpoint of heat resistance of the cured acrylic resin, a tri-substituted product is preferable, and a 1,2,4-tri-substituted product is particularly preferable.
本発明のエポキシアクリレートは、エポキシシクロヘキサン化合物と不飽和カルボン酸を反応させることで製造することができる。この反応では、エポキシシクロヘキサン化合物のエポキシ基が開環して不飽和カルボン酸とエステル結合を生じて結合する。この開環はα位とβ位のいずれからでも起こるが、α位で開環した上記一般式(1)のエポキシアクリレート(α付加体)が主成分となり、β位で開環した上記一般式(2)のエポキシアクリレート(β付加体)が副成分となる。一般式(2)のエポキシアクリレートには2種類がある。すなわち、一般式(2)中のA及びBの両方が式(3)で表されるエステル結合含有基(β付加体)である場合と、一般式(2)中のAが式(3)で表されるエステル結合含有基(β付加体)で、Bの一部又は全てが式(4)で表されるエステル結合含有基(α付加体)である場合がある。前者を全β付加体といい、後者を半β付加体といい、両者をまとめてβ付加体という。全β付加体の生成割合は、半β付加体のそれより十分に低い。なお、一般式(2)中のA及びBの両方が式(3)で表されるエステル結合含有基(α付加体)である場合は、一般式(1)と同じとなる。
The epoxy acrylate of the present invention can be produced by reacting an epoxycyclohexane compound with an unsaturated carboxylic acid. In this reaction, the epoxy group of the epoxycyclohexane compound is ring-opened to form an ester bond with the unsaturated carboxylic acid. This ring-opening occurs from both α-position and β-position, but the epoxy acrylate (α-adduct) of the above general formula (1) opened at the α-position is a main component, and the above-described general formula opened at the β-position. The epoxy acrylate (β adduct) of (2) is a subcomponent. There are two types of epoxy acrylates of general formula (2). That is, both A and B in the general formula (2) are ester bond-containing groups (β adducts) represented by the formula (3), and A in the general formula (2) is the formula (3). In some cases, a part or all of B is an ester bond-containing group (α adduct) represented by the formula (4). The former is called a full β adduct, the latter is called a half β adduct, and both are collectively called a β adduct. The production rate of the total β-adduct is sufficiently lower than that of the half-β-adduct. In addition, when both A and B in General formula (2) are ester bond containing groups ((alpha) adduct) represented by Formula (3), it becomes the same as General formula (1).
上記の製造方法では、通常α付加体とβ付加体の生成割合は、モル比で100/0.01~100/70であり、好ましくは100/0.1~100/50である。したがって、上記の製造方法では、通常本発明のα付加体とβ付加体の両者を含むエポキシアクリレートが得られる。α付加体とβ付加体の両者を含むエポキシアクリレートを、一般式(1)のエポキシアクリレートのみからなるエポキシアクリレートと区別する場合は、前者をエポキシアクリレート組成物といい、後者を一般式(1)のエポキシアクリレートという。特に、区別する必要がない場合は、両者をエポキシアクリレートという。
エポキシアクリレート組成物から一般式(1)のエポキシアクリレートの分離は公知の方法に分離することができる。なお、主成分として含みとは、60%以上、好ましくは70%以上含むことをいい、副成分は、40%以下、好ましくは30%以下含むことがよい。 In the above production method, the production ratio of α-adduct and β-adduct is usually 100 / 0.01 to 100/70, preferably 100 / 0.1 to 100/50 in molar ratio. Therefore, in the above production method, an epoxy acrylate containing both the α-adduct and β-adduct of the present invention is usually obtained. When distinguishing an epoxy acrylate containing both an α-adduct and a β-adduct from an epoxy acrylate comprising only the epoxy acrylate of the general formula (1), the former is called an epoxy acrylate composition, and the latter is a general formula (1). This is called epoxy acrylate. Especially when it is not necessary to distinguish, both are called epoxy acrylate.
The epoxy acrylate of the general formula (1) can be separated from the epoxy acrylate composition by a known method. In addition, including as a main component means containing 60% or more, preferably 70% or more, and a subcomponent may contain 40% or less, preferably 30% or less.
エポキシアクリレート組成物から一般式(1)のエポキシアクリレートの分離は公知の方法に分離することができる。なお、主成分として含みとは、60%以上、好ましくは70%以上含むことをいい、副成分は、40%以下、好ましくは30%以下含むことがよい。 In the above production method, the production ratio of α-adduct and β-adduct is usually 100 / 0.01 to 100/70, preferably 100 / 0.1 to 100/50 in molar ratio. Therefore, in the above production method, an epoxy acrylate containing both the α-adduct and β-adduct of the present invention is usually obtained. When distinguishing an epoxy acrylate containing both an α-adduct and a β-adduct from an epoxy acrylate comprising only the epoxy acrylate of the general formula (1), the former is called an epoxy acrylate composition, and the latter is a general formula (1). This is called epoxy acrylate. Especially when it is not necessary to distinguish, both are called epoxy acrylate.
The epoxy acrylate of the general formula (1) can be separated from the epoxy acrylate composition by a known method. In addition, including as a main component means containing 60% or more, preferably 70% or more, and a subcomponent may contain 40% or less, preferably 30% or less.
上記の製造方法では、一般式(1)及び(2)で表されるエポキシアクリレートを含むエポキシアクリレートが得られる。これらのエポキシアクリレートは、いずれもがシクロヘキサン環化合物であることから、椅子型、船型の異性体があり、また、シス、トランス異性体、又は光学異性体があるので、主成分及び副成分は、これらの異性体を含む混合物であってもよい。上記の製造方法で得られる、一般式(1)及び(2)で表されるエポキシアクリレートは、いずれもエポキシアクリレートであるので、一般式(1)及び(2)で表されるエポキシアクリレートを含む組成物であっても、エポキシアクリレートともいう。
In the above production method, an epoxy acrylate containing the epoxy acrylate represented by the general formulas (1) and (2) is obtained. Since these epoxy acrylates are all cyclohexane ring compounds, there are chair-type and ship-type isomers, and since there are cis, trans isomers, or optical isomers, the main component and subcomponents are: A mixture containing these isomers may also be used. Since the epoxy acrylates represented by the general formulas (1) and (2) obtained by the above production method are both epoxy acrylates, the epoxy acrylates represented by the general formulas (1) and (2) are included. Even if it is a composition, it is also called epoxy acrylate.
本発明のエポキシアクリレートは、エポキシシクロヘキサン化合物と不飽和カルボン酸とを必要に応じて触媒、重合禁止剤の存在下、50~200℃で1~50時間反応することで製造することができる。
The epoxy acrylate of the present invention can be produced by reacting an epoxycyclohexane compound and an unsaturated carboxylic acid at 50 to 200 ° C. for 1 to 50 hours in the presence of a catalyst and a polymerization inhibitor as necessary.
エポキシシクロヘキサン化合物と不飽和カルボン酸の原料仕込み割合は、エポキシシクロヘキサン化合物と不飽和カルボン酸のモル比で100/5~5/100、好ましくは、100/10~10/100となる反応割合が好ましい。
The raw material charge ratio of the epoxycyclohexane compound and the unsaturated carboxylic acid is preferably a reaction ratio of 100/5 to 5/100, preferably 100/10 to 10/100, as the molar ratio of the epoxycyclohexane compound and the unsaturated carboxylic acid. .
この際に使用できる触媒としては、例えば水酸化ナトリウム、水酸化カリウム等のアルカリ金属水酸化物、トリエチルアミン、ベンジルジメチルアミン等の第三級アミン、テトラメチルアンモニウムクロライド等の第4級アンモニウム塩、イミダゾール化合物、トリフェニルホスフィン等のホスフィン類、テトラ-n-ブチルホスホニウムテトラフェニルボレート等のホスホニウム塩等が挙げられる。これらの触媒は単独でも2種以上の併用でもよい。触媒使用量としては、用いる触媒により異なるが、エポキシシクロヘキサン化合物の100モルに対して、0.01~100モルであることが好ましく、さらに好ましくは0.1~80モルである。
Examples of the catalyst that can be used in this case include alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, tertiary amines such as triethylamine and benzyldimethylamine, quaternary ammonium salts such as tetramethylammonium chloride, imidazole, and the like. Compounds, phosphines such as triphenylphosphine, and phosphonium salts such as tetra-n-butylphosphonium tetraphenylborate. These catalysts may be used alone or in combination of two or more. The amount of the catalyst used varies depending on the catalyst used, but is preferably 0.01 to 100 mol, more preferably 0.1 to 80 mol, based on 100 mol of the epoxycyclohexane compound.
反応を行うに際に使用できる重合禁止剤としては、ビニル化合物の重合禁止剤として公知の重合禁止剤で良く、例えばフェノチアジン、メトキシフェノチアジン、ヒンダードアミン等のアミン類、フェノール、メトキシフェノール、ヒドロキノン、t-ブチルカテコール、ブチルヒドロキシトルエン、クレゾール等のフェノール類等が挙げられるが、好ましくはフェノール類である。これらの重合禁止剤は単独でも2種以上の併用でもよい。重合禁止剤使用量としては、用いる触媒により異なるが、エポキシシクロヘキサン化合物の100モルに対して、0.001~10モルであることが好ましく、さらに好ましくは0.01~1モルである。
As the polymerization inhibitor that can be used in carrying out the reaction, known polymerization inhibitors may be used as polymerization inhibitors for vinyl compounds. For example, amines such as phenothiazine, methoxyphenothiazine, hindered amine, phenol, methoxyphenol, hydroquinone, t- Phenols such as butylcatechol, butylhydroxytoluene, cresol and the like can be mentioned, and phenols are preferable. These polymerization inhibitors may be used alone or in combination of two or more. The amount of the polymerization inhibitor used varies depending on the catalyst used, but is preferably 0.001 to 10 mol, more preferably 0.01 to 1 mol, per 100 mol of the epoxycyclohexane compound.
反応を行うに際しては、必要に応じて有機溶媒を用いてもよい。有機溶媒としては、例えばトルエン、キシレン等の芳香族炭化水素系溶媒、MIBK、MEK等のケトン系溶媒等が挙げられる。溶媒の使用量としては、エポキシシクロヘキサン化合物及び不飽和カルボン酸の合計重量100重量部に対して通常50~5000重量部、好ましくは100~2000重量部である。
In carrying out the reaction, an organic solvent may be used as necessary. Examples of the organic solvent include aromatic hydrocarbon solvents such as toluene and xylene, ketone solvents such as MIBK and MEK, and the like. The amount of the solvent used is usually 50 to 5000 parts by weight, preferably 100 to 2000 parts by weight, based on 100 parts by weight of the total weight of the epoxycyclohexane compound and the unsaturated carboxylic acid.
反応を行うに際しては、必要に応じて空気又は酸素を導入してもよい。反応の制御の点から、好ましくは空気を導入するとよい。
When performing the reaction, air or oxygen may be introduced as necessary. From the viewpoint of controlling the reaction, air is preferably introduced.
反応で得られたエポキシアクリレートは、一般式(1)のエポキシアクリレートを主成分とし、一般式(2)のエポキシアクリレートのような異性体を副成分とする混合物、又はn数の異なる混合物が得られることになる。これらの混合物は、樹脂原料として使用する場合は、エポキシアクリレートとしてそのまま使用することができる。有機薬品等の原料とする場合は、再結晶等により精製又は分離することもできる。
The epoxy acrylate obtained by the reaction is a mixture containing the epoxy acrylate of the general formula (1) as a main component and an isomer such as the epoxy acrylate of the general formula (2) as a minor component, or a mixture having a different n number. Will be. When these mixtures are used as resin raw materials, they can be used as they are as epoxy acrylates. When used as a raw material for organic chemicals, it can be purified or separated by recrystallization or the like.
エポキシシクロヘキサン化合物は、ビニルシクロヘキシル化合物を過酸化物によりエポキシ化したものを使用できる。エピクロロヒドリンを用いないため、得られる化合物は、塩素含有量が少ない。過酸化物としては、通常の方法により得られる過酸、過酸化水素、又は有機過酸化物を使用することができる。
As the epoxycyclohexane compound, a vinylcyclohexyl compound epoxidized with a peroxide can be used. Since epichlorohydrin is not used, the resulting compound has a low chlorine content. As the peroxide, a peracid, hydrogen peroxide, or an organic peroxide obtained by a usual method can be used.
本発明のアクリル系硬化性組成物は、上記一般式(1)のエポキシアクリレート又はこれを主成分とする上記エポキシアクリレート組成物と、重合開始剤を含む。
The acrylic curable composition of the present invention includes the epoxy acrylate of the general formula (1) or the epoxy acrylate composition containing the epoxy acrylate as a main component and a polymerization initiator.
重合開始剤としては、ビニル化合物の重合開始剤として公知の重合開始剤で良く、紫外線、電子線等の活性エネルギー線の照射又はラジカル重合開始剤を適用することにより硬化する。
The polymerization initiator may be a known polymerization initiator as a polymerization initiator for a vinyl compound, and is cured by irradiation with an active energy ray such as an ultraviolet ray or an electron beam or by applying a radical polymerization initiator.
紫外線照射による硬化に際しては、光重合開始剤を添加する。光重合開始剤としては、特に限定されるものではないが、紫外線の照射により励起されてラジカルを発生するタイプの通常の光重合開始剤が挙げられ、具体的には、適当な開始剤として、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾイン-iso-プロピルエーテル、α-メチルベンゾイン等のベンゾイン類、α-ヒドロキシイソブチルフェノン、ベンゾフェノン、p-メチルベンゾフェノン、p-クロロベンゾフェノン、p-ジエチルアミノベンゾフェノン等のベンゾフェノン類、アセトフェノン、9,10-アントラキノン、1-クロロアントラキノン、2-クロロアントラキノン等のアントラキノン類、ジフェニルジスルフィド、テトラメチルチウラムジスルフィド等の含イオウ化合物類等が例示される。
When curing by ultraviolet irradiation, a photopolymerization initiator is added. Although it does not specifically limit as a photoinitiator, The normal photoinitiator of the type which generate | occur | produces a radical by being excited by ultraviolet irradiation is mentioned, Specifically, as a suitable initiator, Benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin-iso-propyl ether, α-methylbenzoin, α-hydroxyisobutylphenone, benzophenone, p-methylbenzophenone, p-chlorobenzophenone, p-diethylaminobenzophenone, etc. Examples include benzophenones, acetophenone, 9,10-anthraquinone, 1-chloroanthraquinone, anthraquinones such as 2-chloroanthraquinone, and sulfur-containing compounds such as diphenyl disulfide and tetramethylthiuram disulfide.
これらの光重合開始剤は、単独で又は2種以上混合して使用され、その配合量としては、重合性化合物の合計量に対して0.1~10重量%程度が推奨される。
These photopolymerization initiators are used alone or in admixture of two or more, and the blending amount is recommended to be about 0.1 to 10% by weight with respect to the total amount of polymerizable compounds.
また、光重合開始剤による光重合反応を促進するために、光増感剤を添加してもよい。
Further, a photosensitizer may be added in order to accelerate the photopolymerization reaction by the photopolymerization initiator.
この光増感剤は、特に限定されるものではなく、具体的には、トリエチルアミン、トリエタノールアミン等の3級アミン類、トリフェニルホスフィン等のアルキルホスフィン類、チオジクリコール等のチオエーテル類等が例示され、その配合量としては、重合性化合物(上記エポキシアクリレート又はエポキシアクリレート組成物と、必要により加えられる他の重合性モノマーをいう)の合計量に対して0.01~5重量%程度が推奨される。
The photosensitizer is not particularly limited. Specifically, tertiary amines such as triethylamine and triethanolamine, alkylphosphines such as triphenylphosphine, thioethers such as thiodiglycol, and the like. The blending amount thereof is about 0.01 to 5% by weight with respect to the total amount of the polymerizable compound (referring to the above-mentioned epoxy acrylate or epoxy acrylate composition and other polymerizable monomer added if necessary). Recommended.
紫外線の光源としては、ケミカルランプ、低圧水銀灯、高圧水銀灯、キセノンランプ、メタルハライドランプ等が用いられる。
As the ultraviolet light source, a chemical lamp, a low-pressure mercury lamp, a high-pressure mercury lamp, a xenon lamp, a metal halide lamp, or the like is used.
電子線により硬化する場合には、光重合開始剤や光増感剤を用いる必要はなく、汎用の電子線発生装置により、通常、1~20メガラッド程度の線量の電子線を照射すればよい。
When curing with an electron beam, it is not necessary to use a photopolymerization initiator or a photosensitizer, and a general-purpose electron beam generator may usually irradiate an electron beam with a dose of about 1 to 20 megarads.
本発明に係るアクリル系硬化性組成物をラジカル重合するに際して用いられるラジカル重合開始剤は、特に限定されるものではなく、具体的には、過酸化ベンゾイル、ジイソプロピルパーオキシカーボネート、過酸化ラウロイル等の過酸化物、アゾビスイソブチロニトリル等のアゾ化合物が例示され、これらの重合開始剤は単独でも2種以上の併用でもよい。重合開始剤は、熱硬化用のものと光硬化用のものを用途に応じて使い分けることが好ましい。
The radical polymerization initiator used for radical polymerization of the acrylic curable composition according to the present invention is not particularly limited, and specific examples thereof include benzoyl peroxide, diisopropyl peroxycarbonate, lauroyl peroxide, and the like. Azo compounds such as peroxide and azobisisobutyronitrile are exemplified, and these polymerization initiators may be used alone or in combination of two or more. As the polymerization initiator, it is preferable to use one for thermosetting and one for photocuring depending on the application.
これら重合開始剤の使用量は、用いる重合禁止剤により異なるが、重合性化合物の合計量に対して0.001~5重量部であることが好ましく、さらに好ましくは0.01~1重量部である。但し、この混合比は使用する硬化剤の種類により大きく変化するので最適条件を適宜決定することが必要である。
The amount of these polymerization initiators used varies depending on the polymerization inhibitor used, but is preferably 0.001 to 5 parts by weight, more preferably 0.01 to 1 part by weight based on the total amount of the polymerizable compounds. is there. However, since this mixing ratio varies greatly depending on the type of curing agent used, it is necessary to appropriately determine the optimum conditions.
本発明のアクリル系硬化性組成物には、必要に応じて一般式(1)のエポキシアクリレート又はこれを主成分とする上記エポキシアクリレート組成物の他に、熱又は光による他の重合性モノマーを添加することができる。しかし、重合性成分中には、上記一般式(1)のエポキシアクリレート又はこれを主成分とする上記エポキシアクリレート組成物を合計で50wt%以上含むことがよい。他の重合性モノマーとしては、公知の熱又は光による重合性モノマーで良く、以下に例示する各種のアクリレート系化合物を単独で又は2種以上混合し、硬化性成分として併用することができる。
In addition to the epoxy acrylate of the general formula (1) or the above-mentioned epoxy acrylate composition containing this as a main component, the acrylic curable composition of the present invention may contain other polymerizable monomers by heat or light as necessary. Can be added. However, it is preferable that the polymerizable component contains a total of 50 wt% or more of the epoxy acrylate of the general formula (1) or the epoxy acrylate composition containing the same as the main component. The other polymerizable monomer may be a known heat or light polymerizable monomer, and various acrylate compounds exemplified below may be used alone or in combination of two or more, and used together as a curable component.
単官能性(メタ)アクリレートとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、iso-ブチル(メタ)アクリレート、n-ヘキシル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、ジメチルアミノエチル(メタ)アクリレート、ジエチルアミノエチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、2,3-ジブロムプロピル(メタ)アクリレート等が例示される。
Monofunctional (meth) acrylates include methyl (meth) acrylate, ethyl (meth) acrylate, n-propyl (meth) acrylate, butyl (meth) acrylate, iso-butyl (meth) acrylate, n-hexyl (meth) Acrylate, 2-ethylhexyl (meth) acrylate, decyl (meth) acrylate, lauryl (meth) acrylate, stearyl (meth) acrylate, cyclohexyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) Examples include acrylate, dimethylaminoethyl (meth) acrylate, diethylaminoethyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, and 2,3-dibromopropyl (meth) acrylate. It is.
二官能性(メタ)アクリレートとしては、エチレングリコールジ(メタ)アクリレート、ジエチレングリコールジ(メタ)アクリレート、トリエチレングリコールジ(メタ)アクリレート、テトラエチレングリコールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、プロピレングリコールジ(メタ)アクリレート、ジプロピレングリコールジ(メタ)アクリレート、トリプロピレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、プロパンジオールジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、1,3-ブチレングリコールジ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,5-ペンタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ビス(オキシメチル)トリシクロ[5.2.2.02,5 ]デカンジ(メタ)アクリレート、シクロヘキサンジオールジ(メタ)アクリレート、ビス[(メタ)アクリロキシメチル]シクロヘキサン、トリメチロールプロパンとピバルアルデヒドとのアセタールのジアクリレート、ヒドロキシピバリン酸ネオペンチルグリコールエステルジアクリレート、ビスフェノールA-ジ(メタ)アクリレート、ビスフェノールAのアルキレンオキシド付加物のジ(メタ)アクリレート等が例示される。
Bifunctional (meth) acrylates include ethylene glycol di (meth) acrylate, diethylene glycol di (meth) acrylate, triethylene glycol di (meth) acrylate, tetraethylene glycol di (meth) acrylate, and polyethylene glycol di (meth) acrylate. , Propylene glycol di (meth) acrylate, dipropylene glycol di (meth) acrylate, tripropylene glycol di (meth) acrylate, polypropylene glycol di (meth) acrylate, propanediol di (meth) acrylate, glycerin di (meth) acrylate, 1,3-butylene glycol di (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,5-pentanediol di (meth) acrylate 1,6-hexanediol di (meth) acrylate, neopentyl glycol di (meth) acrylate, bis (oxymethyl) tricyclo [5.2.2.02,5] decane di (meth) acrylate, cyclohexanediol di (meth) ) Acrylate, bis [(meth) acryloxymethyl] cyclohexane, acetal diacrylate of trimethylolpropane and pivalaldehyde, neopentyl glycol ester diacrylate of hydroxypivalic acid, bisphenol A-di (meth) acrylate, bisphenol A Examples thereof include di (meth) acrylates of alkylene oxide adducts.
三乃至四官能性(メタ)アクリレートとしては、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート等が例示される。
Examples of tri- to tetrafunctional (meth) acrylates include trimethylolpropane tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol penta (meth) acrylate, and dipentaerythritol hexa (meth) acrylate. The
アクリル系重合性オリゴマーとしては、エポキシ(メタ)アクリレート、ウレタン(メタ)アクリレート、ポリエステル(メタ)アクリレート、ポリブタジエンオリゴマーの(メタ)アクリレート、ポリアミド型(メタ)アクリルオリゴマー、メラミン(メタ)アクリレート、シクロペンタジエンオリゴマーの(メタ)アクリレート、シリコーンオリゴマーの(メタ)アクリレート等が例示される。
Acrylic polymerizable oligomers include epoxy (meth) acrylate, urethane (meth) acrylate, polyester (meth) acrylate, polybutadiene oligomer (meth) acrylate, polyamide-type (meth) acryl oligomer, melamine (meth) acrylate, cyclopentadiene Examples include oligomeric (meth) acrylates and silicone oligomer (meth) acrylates.
また、上記のアクリレート系モノマーに加えて、他の重合性モノマー、例えば、スチレン、酢酸ビニル、塩化ビニル、塩化ビニリデン、アクリロニトリル、ビニルエーテル、アクロレイン等のビニル系化合物、エチレン、ブタジエン等のα-オレフィン等を適宜併用することができる。これらの熱又は光による重合性モノマーは単独でも2種以上の併用でもよい。熱又は光による重合性モノマーは、熱重合性モノマーと光重合性モノマーを用途に応じて使い分けることが好ましい。
In addition to the above acrylate monomers, other polymerizable monomers, for example, vinyl compounds such as styrene, vinyl acetate, vinyl chloride, vinylidene chloride, acrylonitrile, vinyl ether, acrolein, α-olefins such as ethylene and butadiene, etc. Can be used in combination as appropriate. These heat or light polymerizable monomers may be used alone or in combination of two or more. As the polymerizable monomer by heat or light, it is preferable to use either a thermally polymerizable monomer or a photopolymerizable monomer depending on the application.
本発明のアクリル系硬化性組成物には、必要に応じて充填剤、繊維、カップリング剤、難燃剤、離型剤、発泡剤等のその他の成分を添加することができる。この際の充填剤としては、例えばポリエチレン粉末、ポリプロピレン粉末、石英、シリカ、珪酸塩、炭酸カルシウム、炭酸マグネシウム、石膏、ベントナイト、蛍石、二酸化チタン、カーボンブラック、黒鉛、酸化鉄、アルミニウム粉末、鉄粉、タルク、マイカ、カオリンクレー等が、繊維としては、例えばセルロース繊維、ガラス繊維、炭素繊維、アラミド繊維等が挙げられる。カップリング剤としては、例えばシランカップリング剤、チタンカップリング剤等が挙げられる。難燃剤としては、例えば臭素化ビスフェノールA、三酸化アンチモン、燐系化合物等が挙げられる。離型剤としては、例えばステアリン酸塩、シリコーン、ワックス等が挙げられる。発泡剤としては、例えばフロン、ジクロロエタン、ブタン、ペンタン、ジニトロペンタメチレンテトラミン、パラトルエンスルホニルヒドラジッド、あるいは、フロン、ジクロロエタン、ブタン、ペンタン等が塩化ビニル-塩化ビニリデン共重合体やスチレン-(メタ)アクリル酸エステル共重合体の殻内に充填されている膨張性熱可塑性樹脂粒子等が挙げられる。
Other components such as fillers, fibers, coupling agents, flame retardants, mold release agents, and foaming agents can be added to the acrylic curable composition of the present invention as necessary. Examples of the filler include polyethylene powder, polypropylene powder, quartz, silica, silicate, calcium carbonate, magnesium carbonate, gypsum, bentonite, fluorite, titanium dioxide, carbon black, graphite, iron oxide, aluminum powder, iron Examples of fibers such as powder, talc, mica, kaolin clay, and the like include cellulose fiber, glass fiber, carbon fiber, and aramid fiber. Examples of the coupling agent include a silane coupling agent and a titanium coupling agent. Examples of the flame retardant include brominated bisphenol A, antimony trioxide, and phosphorus compounds. Examples of the mold release agent include stearates, silicones, waxes and the like. Examples of the blowing agent include CFC, dichloroethane, butane, pentane, dinitropentamethylenetetramine, p-toluenesulfonyl hydrazide, or CFC, dichloroethane, butane, pentane and the like. Vinyl chloride-vinylidene chloride copolymer and styrene- (meth) Examples thereof include expandable thermoplastic resin particles filled in an acrylic ester copolymer shell. *
本発明のアクリル系硬化性組成物は従来知られている方法と同様の方法で容易にアクリル樹脂硬化物とすることができる。例えば本発明のエポキシアクリレート又はエポキシアクリレート組成物、重合開始剤、必要により熱又は光による重合性モノマー及びその他の添加剤とを、必要に応じて押出機,ニーダ,ロール等を用いて均一になるまで充分に混合してアクリル樹脂組成物を得て、そのアクリル樹脂組成物を溶融後注型あるいはトランスファー成形機などを用いて成形し、さらに80~200℃に加熱することにより硬化物を得ることができる。
The acrylic curable composition of the present invention can be easily made into a cured acrylic resin by a method similar to a conventionally known method. For example, the epoxy acrylate or epoxy acrylate composition of the present invention, a polymerization initiator, if necessary, a polymerizable monomer by heat or light and other additives are made uniform by using an extruder, a kneader, a roll or the like, if necessary. To obtain an acrylic resin composition, melted and then molded using a casting or transfer molding machine, and further heated to 80 to 200 ° C. to obtain a cured product. Can do.
また、本発明のアクリル系硬化性組成物を溶剤に溶解させ、ガラス繊維,カーボン繊維,ポリエステル繊維,ポリアミド繊維,アルミナ繊維,紙などの基材に含浸させ加熱乾燥して得たプリプレグを熱プレス成形して硬化物を得ることなどもできる。例えば本発明のエポキシアクリレート又はエポキシアクリレート組成物、重合開始剤及びその他の添加剤などを均一になるまで加熱、撹拌し、これをガラスクロスに含浸させ加熱半乾燥して溶剤分を飛ばしたプリプレグを、必要枚数重ねて80~200℃で1時間以上加熱プレスすることによりガラスクロス積層板を作製することができる。
In addition, a prepreg obtained by dissolving the acrylic curable composition of the present invention in a solvent, impregnating a base material such as glass fiber, carbon fiber, polyester fiber, polyamide fiber, alumina fiber, paper, etc., and drying by heating is hot-pressed. It can be molded to obtain a cured product. For example, the epoxy acrylate or epoxy acrylate composition of the present invention, a polymerization initiator and other additives are heated and stirred until uniform, impregnated into a glass cloth, heated and semi-dried, and the solvent is removed. A glass cloth laminate can be produced by heating and pressing at a temperature of 80 to 200 ° C. for 1 hour or more. *
この際用いうる希釈用溶剤の具体例としては、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、メチルセロソルブ等が好ましく、その使用量は、アクリル系硬化性組成物と該希釈用溶剤の合計重量に対し、10~70重量%、好ましくは、15~65重量%である。
Specific examples of the dilution solvent that can be used in this case include toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, methyl cellosolve, and the like, and the amount used is based on the total weight of the acrylic curable composition and the dilution solvent. It is 10 to 70% by weight, preferably 15 to 65% by weight.
こうして得られる硬化物は高い耐熱性、靭性、耐薬品性及び硬度を有しているため、本発明のアクリル樹脂硬化物は、光学樹脂等広範な分野で用いることができる。具体的にはソルダーレジスト用樹脂又は、無電解メッキレジスト用樹脂、ハードコート材料、UV硬化塗料、ガラス代替材料、さらには液晶のカラーフィルター等の保護膜としても好適に使用される。特に、レンズ、プリズム、カラーフィルター、又はこれらの保護膜等の光学材料として優れる。
Since the cured product thus obtained has high heat resistance, toughness, chemical resistance and hardness, the cured acrylic resin of the present invention can be used in a wide range of fields such as optical resins. Specifically, it is also suitably used as a protective film for solder resist resins or electroless plating resist resins, hard coat materials, UV curable paints, glass substitute materials, and liquid crystal color filters. In particular, it is excellent as an optical material such as a lens, a prism, a color filter, or a protective film thereof.
次に本発明の特徴を更に明確にするため実施例を挙げて具体的に説明する。なお、文中の「部」、「%」は全て重量基準を示すものである。
Next, in order to further clarify the characteristics of the present invention, an example will be given and described in detail. In the text, “part” and “%” all indicate weight standards. *
実施例1
冷却管、温度計、空気吹き込み管を取り付けた300mlのガラス製三口フラスコに、1,2,4-トリエポキシエチルシクロヘキサン10.51g(50mmol)、アクリル酸 18.01g(250mmol)、ベンジルトリエチルアンモニウムクロリド0.23g(1mmol)、ジブチルヒドロキシトルエン0.055g(0.25mmol)、トルエン100mlを入れ、空気を装入しながら、80℃で加熱攪拌し、24時間反応させた。反応後、室温まで冷却し、蒸留水100mlで3回洗浄した。トルエン層を分離し、トルエン留去後、酢酸エチル+ヘキサン(4:6)を展開液としたシリカゲルカラムにより精製した。無色透明で粘稠液体のトリエポキシアクリレートシクロヘキサン13.00g(収率61%)を得た。このトリエポキシアクリレートシクロヘキサンは一般式(1)において、aが0であり、XがHであり、nが3であるエポキシアクリレートを主成分とすることがGC分析で確認された。このトリエポキシアクリレートシクロヘキサンの1H-NMRスペクトルを図1に示す。 Example 1
A 300 ml glass three-necked flask equipped with a condenser, a thermometer, and an air blowing tube was charged with 10.51 g (50 mmol) of 1,2,4-triepoxyethylcyclohexane, 18.01 g (250 mmol) of acrylic acid, and benzyltriethylammonium chloride. 0.23 g (1 mmol), 0.055 g (0.25 mmol) of dibutylhydroxytoluene and 100 ml of toluene were added, and the mixture was heated and stirred at 80 ° C. while introducing air, and reacted for 24 hours. After the reaction, the mixture was cooled to room temperature and washed with 100 ml of distilled water three times. The toluene layer was separated and the toluene was distilled off, followed by purification with a silica gel column using ethyl acetate + hexane (4: 6) as a developing solution. A colorless transparent viscous liquid triepoxy acrylate cyclohexane (13.00 g, yield 61%) was obtained. It was confirmed by GC analysis that this triepoxy acrylate cyclohexane was mainly composed of an epoxy acrylate having a of 0, X of H, and n of 3 in the general formula (1). The 1 H-NMR spectrum of this triepoxyacrylate cyclohexane is shown in FIG.
冷却管、温度計、空気吹き込み管を取り付けた300mlのガラス製三口フラスコに、1,2,4-トリエポキシエチルシクロヘキサン10.51g(50mmol)、アクリル酸 18.01g(250mmol)、ベンジルトリエチルアンモニウムクロリド0.23g(1mmol)、ジブチルヒドロキシトルエン0.055g(0.25mmol)、トルエン100mlを入れ、空気を装入しながら、80℃で加熱攪拌し、24時間反応させた。反応後、室温まで冷却し、蒸留水100mlで3回洗浄した。トルエン層を分離し、トルエン留去後、酢酸エチル+ヘキサン(4:6)を展開液としたシリカゲルカラムにより精製した。無色透明で粘稠液体のトリエポキシアクリレートシクロヘキサン13.00g(収率61%)を得た。このトリエポキシアクリレートシクロヘキサンは一般式(1)において、aが0であり、XがHであり、nが3であるエポキシアクリレートを主成分とすることがGC分析で確認された。このトリエポキシアクリレートシクロヘキサンの1H-NMRスペクトルを図1に示す。 Example 1
A 300 ml glass three-necked flask equipped with a condenser, a thermometer, and an air blowing tube was charged with 10.51 g (50 mmol) of 1,2,4-triepoxyethylcyclohexane, 18.01 g (250 mmol) of acrylic acid, and benzyltriethylammonium chloride. 0.23 g (1 mmol), 0.055 g (0.25 mmol) of dibutylhydroxytoluene and 100 ml of toluene were added, and the mixture was heated and stirred at 80 ° C. while introducing air, and reacted for 24 hours. After the reaction, the mixture was cooled to room temperature and washed with 100 ml of distilled water three times. The toluene layer was separated and the toluene was distilled off, followed by purification with a silica gel column using ethyl acetate + hexane (4: 6) as a developing solution. A colorless transparent viscous liquid triepoxy acrylate cyclohexane (13.00 g, yield 61%) was obtained. It was confirmed by GC analysis that this triepoxy acrylate cyclohexane was mainly composed of an epoxy acrylate having a of 0, X of H, and n of 3 in the general formula (1). The 1 H-NMR spectrum of this triepoxyacrylate cyclohexane is shown in FIG.
比較例1
冷却管、温度計、空気吹き込み管を取り付けた500mlのガラス製三口フラスコに、スチレンオキサイド50.00g(416mmol)、アクリル酸29.98g(416mmol)、トリフェニルホスフィン1.09g(4.16mmol)、4-ターシャリー・ブチルカテコール0.346g(2.08mmol)、トルエン100mlを入れ、空気を装入しながら、60℃で加熱攪拌し、24時間反応させた。反応後、室温まで冷却し、蒸留水100mlで3回洗浄した。トルエン層を分離し、トルエン留去後、酢酸エチル+クロロホルム(2:8)を展開液としたシリカゲルカラムにより精製した。無色透明な液体のエポキシアクリレートベンゼン54.37g(収率68%)を得た。 Comparative Example 1
In a 500 ml glass three-necked flask equipped with a cooling tube, a thermometer, and an air blowing tube, 50.00 g (416 mmol) of styrene oxide, 29.98 g (416 mmol) of acrylic acid, 1.09 g (4.16 mmol) of triphenylphosphine, 4-Tertiary butyl catechol (0.346 g, 2.08 mmol) and toluene (100 ml) were added, and the mixture was heated and stirred at 60 ° C. while introducing air, and reacted for 24 hours. After the reaction, the mixture was cooled to room temperature and washed with 100 ml of distilled water three times. The toluene layer was separated and the toluene was distilled off, followed by purification with a silica gel column using ethyl acetate + chloroform (2: 8) as a developing solution. A colorless and transparent liquid epoxy acrylate benzene (54.37 g, yield 68%) was obtained.
冷却管、温度計、空気吹き込み管を取り付けた500mlのガラス製三口フラスコに、スチレンオキサイド50.00g(416mmol)、アクリル酸29.98g(416mmol)、トリフェニルホスフィン1.09g(4.16mmol)、4-ターシャリー・ブチルカテコール0.346g(2.08mmol)、トルエン100mlを入れ、空気を装入しながら、60℃で加熱攪拌し、24時間反応させた。反応後、室温まで冷却し、蒸留水100mlで3回洗浄した。トルエン層を分離し、トルエン留去後、酢酸エチル+クロロホルム(2:8)を展開液としたシリカゲルカラムにより精製した。無色透明な液体のエポキシアクリレートベンゼン54.37g(収率68%)を得た。 Comparative Example 1
In a 500 ml glass three-necked flask equipped with a cooling tube, a thermometer, and an air blowing tube, 50.00 g (416 mmol) of styrene oxide, 29.98 g (416 mmol) of acrylic acid, 1.09 g (4.16 mmol) of triphenylphosphine, 4-Tertiary butyl catechol (0.346 g, 2.08 mmol) and toluene (100 ml) were added, and the mixture was heated and stirred at 60 ° C. while introducing air, and reacted for 24 hours. After the reaction, the mixture was cooled to room temperature and washed with 100 ml of distilled water three times. The toluene layer was separated and the toluene was distilled off, followed by purification with a silica gel column using ethyl acetate + chloroform (2: 8) as a developing solution. A colorless and transparent liquid epoxy acrylate benzene (54.37 g, yield 68%) was obtained.
実施例2
実施例1で得たトリエポキシアクリレートシクロヘキサンの100重量部と、重合開始剤であるイルガキュア184[チバスペシャリティーケミカルズ株式会社製;商品名]5重量部とを、混練して、組成物を調製した。それをガラス板またはアルミ皿上に塗布し、離型PETフィルムを被せ、高圧水銀灯を用いエネルギー線量が600mJ/cm2となるように紫外線照射することにより、硬化させ、膜状の硬化物を得た。
次に、得られた硬化物を試料とし、その鉛筆硬度、ガラス転移点、および熱膨張係数(α1)の分析を、下記の方法により行った。その結果を表1に示した。 Example 2
100 parts by weight of the triepoxy acrylate cyclohexane obtained in Example 1 and 5 parts by weight of Irgacure 184 [manufactured by Ciba Specialty Chemicals Co., Ltd .; trade name] as a polymerization initiator were kneaded to prepare a composition. . It is coated on a glass plate or an aluminum pan, covered with a release PET film, and cured by irradiating it with ultraviolet rays so that the energy dose becomes 600 mJ / cm 2 using a high-pressure mercury lamp, and a film-like cured product is obtained. It was.
Next, the obtained cured product was used as a sample, and the pencil hardness, glass transition point, and thermal expansion coefficient (α1) were analyzed by the following method. The results are shown in Table 1.
実施例1で得たトリエポキシアクリレートシクロヘキサンの100重量部と、重合開始剤であるイルガキュア184[チバスペシャリティーケミカルズ株式会社製;商品名]5重量部とを、混練して、組成物を調製した。それをガラス板またはアルミ皿上に塗布し、離型PETフィルムを被せ、高圧水銀灯を用いエネルギー線量が600mJ/cm2となるように紫外線照射することにより、硬化させ、膜状の硬化物を得た。
次に、得られた硬化物を試料とし、その鉛筆硬度、ガラス転移点、および熱膨張係数(α1)の分析を、下記の方法により行った。その結果を表1に示した。 Example 2
100 parts by weight of the triepoxy acrylate cyclohexane obtained in Example 1 and 5 parts by weight of Irgacure 184 [manufactured by Ciba Specialty Chemicals Co., Ltd .; trade name] as a polymerization initiator were kneaded to prepare a composition. . It is coated on a glass plate or an aluminum pan, covered with a release PET film, and cured by irradiating it with ultraviolet rays so that the energy dose becomes 600 mJ / cm 2 using a high-pressure mercury lamp, and a film-like cured product is obtained. It was.
Next, the obtained cured product was used as a sample, and the pencil hardness, glass transition point, and thermal expansion coefficient (α1) were analyzed by the following method. The results are shown in Table 1.
(鉛筆硬度)
ガラス板上に10~20μmになるように硬化させた塗膜について、JISK5600に基づき加重1kgで測定を行い、傷の入らない最も硬い鉛筆の硬度で示した。 (Pencil hardness)
The coating film cured to 10 to 20 μm on the glass plate was measured under a load of 1 kg based on JISK5600, and indicated by the hardness of the hardest pencil without scratches.
ガラス板上に10~20μmになるように硬化させた塗膜について、JISK5600に基づき加重1kgで測定を行い、傷の入らない最も硬い鉛筆の硬度で示した。 (Pencil hardness)
The coating film cured to 10 to 20 μm on the glass plate was measured under a load of 1 kg based on JISK5600, and indicated by the hardness of the hardest pencil without scratches.
(ガラス転移点;Tg、熱膨張係数;α1)
試料を長さ20mm、幅5mm、厚さ0.1mmに調整したものについて、エスアイアイ・ナノテクノロジー株式会社製 熱機械的分析装置(TMA/SS)により、窒素雰囲気下、昇温速度7℃/分の条件で求めた。 (Glass transition point; Tg, thermal expansion coefficient; α1)
A sample adjusted to a length of 20 mm, a width of 5 mm, and a thickness of 0.1 mm was measured with a thermomechanical analyzer (TMA / SS) manufactured by SII NanoTechnology Co., Ltd. under a nitrogen atmosphere in a temperature rising rate of 7 ° C Calculated under the condition of minutes.
試料を長さ20mm、幅5mm、厚さ0.1mmに調整したものについて、エスアイアイ・ナノテクノロジー株式会社製 熱機械的分析装置(TMA/SS)により、窒素雰囲気下、昇温速度7℃/分の条件で求めた。 (Glass transition point; Tg, thermal expansion coefficient; α1)
A sample adjusted to a length of 20 mm, a width of 5 mm, and a thickness of 0.1 mm was measured with a thermomechanical analyzer (TMA / SS) manufactured by SII NanoTechnology Co., Ltd. under a nitrogen atmosphere in a temperature rising rate of 7 ° C Calculated under the condition of minutes.
(YI値)
厚み50μmのフィルムを試料とし、JIS K7373に準拠して評価した。 (YI value)
A film having a thickness of 50 μm was used as a sample and evaluated according to JIS K7373.
厚み50μmのフィルムを試料とし、JIS K7373に準拠して評価した。 (YI value)
A film having a thickness of 50 μm was used as a sample and evaluated according to JIS K7373.
(全光線透過率;Tt)
厚み50μmのフィルムを試料とし、JIS K7361-1に準拠して評価した。 (Total light transmittance; Tt)
A film having a thickness of 50 μm was used as a sample and evaluated according to JIS K7361-1.
厚み50μmのフィルムを試料とし、JIS K7361-1に準拠して評価した。 (Total light transmittance; Tt)
A film having a thickness of 50 μm was used as a sample and evaluated according to JIS K7361-1.
比較例2
比較例1で得たエポキシアクリレートベンゼンを実験例2と同様の条件で膜状の硬化物を得た。
次に、得られた硬化物の鉛筆硬度、ガラス転移点、および熱膨張係数(α1)の分析を実施例2と同様の条件で行った。その結果を表1に示した。 Comparative Example 2
A film-like cured product was obtained from the epoxy acrylate benzene obtained in Comparative Example 1 under the same conditions as in Experimental Example 2.
Next, the pencil hardness, glass transition point, and thermal expansion coefficient (α1) of the obtained cured product were analyzed under the same conditions as in Example 2. The results are shown in Table 1.
比較例1で得たエポキシアクリレートベンゼンを実験例2と同様の条件で膜状の硬化物を得た。
次に、得られた硬化物の鉛筆硬度、ガラス転移点、および熱膨張係数(α1)の分析を実施例2と同様の条件で行った。その結果を表1に示した。 Comparative Example 2
A film-like cured product was obtained from the epoxy acrylate benzene obtained in Comparative Example 1 under the same conditions as in Experimental Example 2.
Next, the pencil hardness, glass transition point, and thermal expansion coefficient (α1) of the obtained cured product were analyzed under the same conditions as in Example 2. The results are shown in Table 1.
本発明のエポキシアクリレートは、従来のエポキシアクリレートと比較して、耐熱性、低熱膨張性、高屈折率、透明性、耐候性に優れ、ソルダーレジスト用樹脂又は、無電解メッキレジスト用樹脂、ハードコート材料、UV硬化塗料、ガラス代替材料、液晶のカラーフィルター等の光学樹脂に有用なエポキシアクリレート、アクリル系組成物及び硬化物を与えることができる。
The epoxy acrylate of the present invention is superior in heat resistance, low thermal expansion, high refractive index, transparency, and weather resistance as compared with conventional epoxy acrylate, and is a resin for solder resist or resin for electroless plating resist, hard coat Epoxy acrylates, acrylic compositions and cured products useful for optical resins such as materials, UV curable paints, glass substitute materials, and liquid crystal color filters can be provided.
Claims (9)
- 下記一般式(1)で表されるエポキシアクリレート。
(但し、Xは水素原子又はメチル基を表す。ZはC1~C6のアルキル基を表し、全てが同一でも異なっていてもよい。nは2~3の整数を示し、aは0~4の整数を示す。) Epoxy acrylate represented by the following general formula (1).
(However, X represents a hydrogen atom or a methyl group. Z represents a C1-C6 alkyl group, all may be the same or different. N represents an integer of 2 to 3, and a represents an integer of 0 to 4. Indicates an integer.) - 一般式(1)で表されるエポキシアクリレートと、下記一般式(2)で表わされるエポキシアクリレートを副成分として含む請求項1に記載のエポキシアクリレート。
(但し、ZはC1~C6のアルキル基を表し、全てが同一でも異なっていてもよい。Aは式(3)で表されるエステル結合含有基であり、Bは式(3)又は式(4)で表されるエステル結合含有基である。Xは水素原子又はメチル基を表す。aは0~4の整数を示し、bは1~2の整数を示す。) The epoxy acrylate according to claim 1, comprising an epoxy acrylate represented by the general formula (1) and an epoxy acrylate represented by the following general formula (2) as subcomponents.
(However, Z represents a C1-C6 alkyl group, all of which may be the same or different. A is an ester bond-containing group represented by the formula (3), and B is a group represented by the formula (3) or the formula ( 4) An ester bond-containing group represented by 4), wherein X represents a hydrogen atom or a methyl group, a represents an integer of 0 to 4, and b represents an integer of 1 to 2. - 請求項1に記載のエポキシアクリレートと重合開始剤を含有することを特徴とするアクリル系硬化性組成物。 An acrylic curable composition comprising the epoxy acrylate according to claim 1 and a polymerization initiator. *
- 請求項2に記載のエポキシアクリレートと重合開始剤を含有することを特徴とするアクリル系硬化性組成物。 An acrylic curable composition comprising the epoxy acrylate according to claim 2 and a polymerization initiator. *
- 請求項3又は4に記載のアクリル系硬化性組成物を成形硬化させてなることを特徴とするアクリル樹脂硬化物。 A cured acrylic resin obtained by molding and curing the acrylic curable composition according to claim 3 or 4.
- 下記一般式(5)で表されるエポキシシクロヘキサン化合物とアクリル酸又はメタクリル酸とを反応させることを特徴とする請求項1に記載のエポキシアクリレートの製造方法。
(但し、ZはC1~C6のアルキル基を表し、全てが同一でも異なっていてもよい。aは0~4の数を示す。nは2~3の数を示す。) The method for producing an epoxy acrylate according to claim 1, wherein an epoxycyclohexane compound represented by the following general formula (5) is reacted with acrylic acid or methacrylic acid.
(Wherein Z represents a C1-C6 alkyl group, all of which may be the same or different. A represents a number from 0 to 4, and n represents a number from 2 to 3.) - 下記一般式(5)で表されるエポキシシクロヘキサン化合物とアクリル酸又はメタクリル酸とを反応させることを特徴とする請求項2に記載のエポキシアクリレート製造方法。
(但し、ZはC1~C6のアルキル基を表し、全てが同一でも異なっていてもよい。aは0~4の数を示す。nは2~3の数を示す。) The epoxy acrylate production method according to claim 2, wherein an epoxycyclohexane compound represented by the following general formula (5) is reacted with acrylic acid or methacrylic acid.
(Wherein Z represents a C1-C6 alkyl group, all of which may be the same or different. A represents a number from 0 to 4, and n represents a number from 2 to 3.) - アクリル系硬化性組成物が光学材料用であることを特徴とする請求項3又は4に記載のアクリル系硬化性組成物。 The acrylic curable composition according to claim 3 or 4, wherein the acrylic curable composition is for an optical material.
- 請求項5に記載のアクリル樹脂硬化物が光学材料用であることを特徴とするアクリル樹脂硬化物。 A cured acrylic resin according to claim 5, wherein the cured acrylic resin is for an optical material.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012556834A JP5758923B2 (en) | 2011-02-10 | 2012-02-01 | Epoxy acrylate, acrylic curable composition, cured product and method for producing the same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011-026955 | 2011-02-10 | ||
JP2011026955 | 2011-02-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012108305A1 true WO2012108305A1 (en) | 2012-08-16 |
Family
ID=46638521
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2012/052205 WO2012108305A1 (en) | 2011-02-10 | 2012-02-01 | Epoxy acrylate, acrylic curable composition, cured product and manufacturing processes therefor |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5758923B2 (en) |
TW (1) | TWI507392B (en) |
WO (1) | WO2012108305A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB930431A (en) * | 1960-10-03 | 1963-07-03 | Rhone Poulenc Sa | Epoxide derivatives of trivinylcyclohexane |
US3251861A (en) * | 1966-05-17 | Di- and triepoxtoe derivatives of trivinylcyclohexane | ||
WO2011114935A1 (en) * | 2010-03-18 | 2011-09-22 | 新日鐵化学株式会社 | Epoxy resin composition and cured substance |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62119551A (en) * | 1985-11-20 | 1987-05-30 | Hitachi Chem Co Ltd | Electrostatic charge image developing toner |
EP1205498A1 (en) * | 2000-11-13 | 2002-05-15 | Nippon Shokubai Co., Ltd. | (Meth)acrylate ester-based resin composition |
-
2012
- 2012-02-01 JP JP2012556834A patent/JP5758923B2/en not_active Expired - Fee Related
- 2012-02-01 WO PCT/JP2012/052205 patent/WO2012108305A1/en active Application Filing
- 2012-02-09 TW TW101104200A patent/TWI507392B/en not_active IP Right Cessation
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3251861A (en) * | 1966-05-17 | Di- and triepoxtoe derivatives of trivinylcyclohexane | ||
GB930431A (en) * | 1960-10-03 | 1963-07-03 | Rhone Poulenc Sa | Epoxide derivatives of trivinylcyclohexane |
WO2011114935A1 (en) * | 2010-03-18 | 2011-09-22 | 新日鐵化学株式会社 | Epoxy resin composition and cured substance |
Also Published As
Publication number | Publication date |
---|---|
JP5758923B2 (en) | 2015-08-05 |
JPWO2012108305A1 (en) | 2014-07-03 |
TW201245141A (en) | 2012-11-16 |
TWI507392B (en) | 2015-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2013011893A1 (en) | (meth)acrylate compound, radical-polymerizable composition, cured product and plastic lens | |
WO2010113600A1 (en) | (meth)acrylate ester derivative | |
JP6470620B2 (en) | (Meth) acrylate compound having fluorene skeleton and method for producing the same | |
JPH09272707A (en) | Actinic-radiation-curing (meth)acrylate composition | |
JP6265424B2 (en) | (Meth) acrylate compound and resin composition | |
JP5719831B2 (en) | Epoxy acrylate, acrylic composition, cured product and method for producing the same | |
EP1251118B1 (en) | Unsaturated monocarboxylic ester compound, process for producing the same, and composition curable with actinic energy ray | |
JP5620858B2 (en) | Epoxy acrylate, acrylic composition, cured product and method for producing the same | |
JP2017186513A (en) | Epoxy (meth)acrylate and curable composition thereof | |
JP5758923B2 (en) | Epoxy acrylate, acrylic curable composition, cured product and method for producing the same | |
JP2011225488A (en) | (meth)acrylic acid ester, resin composition, and its cured product | |
JP2009051972A (en) | Curable resin composition and cured product | |
JP4253977B2 (en) | Active energy ray-curable composition | |
JP6346739B2 (en) | Acrylate compound, acrylic resin composition and cured product thereof, and optical material | |
JP5925021B2 (en) | Method for producing cyclic ether group-containing (meth) acrylate | |
JP2014198763A (en) | Acrylate compound, acrylic resin composition and acrylic resin cured product | |
JP6187846B1 (en) | Active energy ray-curable composition and plastic lens | |
JP2004231704A (en) | Curable composition | |
JP4409995B2 (en) | Energy ray curable resin composition | |
JP4563053B2 (en) | Poly (meth) acrylate resin, method for producing the same, and curable resin composition | |
JP5516177B2 (en) | Method for producing urethane (meth) acrylate | |
JP2008308420A (en) | Carboxylic acid ester compound having alicyclic epoxy group and vinyl ether group, and method for producing the ester compound | |
JP2013209572A (en) | Acrylic resin composition and cured product thereof | |
JP5669687B2 (en) | Fluorine-containing (meth) acrylate compound | |
JP2023113363A (en) | Epoxy (meth)acrylate compound and cured product |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12745270 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2012556834 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12745270 Country of ref document: EP Kind code of ref document: A1 |