WO2012108300A1 - Silica-based chiral nanostructures and processes for producing same - Google Patents

Silica-based chiral nanostructures and processes for producing same Download PDF

Info

Publication number
WO2012108300A1
WO2012108300A1 PCT/JP2012/052088 JP2012052088W WO2012108300A1 WO 2012108300 A1 WO2012108300 A1 WO 2012108300A1 JP 2012052088 W JP2012052088 W JP 2012052088W WO 2012108300 A1 WO2012108300 A1 WO 2012108300A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica
chiral
nanostructure
tartaric acid
crystal
Prior art date
Application number
PCT/JP2012/052088
Other languages
French (fr)
Japanese (ja)
Inventor
金 仁華
裕之 松木囿
Original Assignee
一般財団法人川村理化学研究所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 一般財団法人川村理化学研究所 filed Critical 一般財団法人川村理化学研究所
Priority to JP2012525559A priority Critical patent/JP5060670B2/en
Publication of WO2012108300A1 publication Critical patent/WO2012108300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/092Polycarboxylic acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C59/00Compounds having carboxyl groups bound to acyclic carbon atoms and containing any of the groups OH, O—metal, —CHO, keto, ether, groups, groups, or groups
    • C07C59/235Saturated compounds containing more than one carboxyl group
    • C07C59/245Saturated compounds containing more than one carboxyl group containing hydroxy or O-metal groups
    • C07C59/255Tartaric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/34Silicon-containing compounds
    • C08K3/36Silica

Definitions

  • the present invention relates to a silica-based chiral nanostructure in which chirality is imparted to silica, which is derived from a chiral crystal composed of a polymer having a linear polyethyleneimine chain and optically active tartaric acid, and a method for producing the same.
  • Chiral molecules are substances that must be in the fields of medicine, liquid crystals, optical materials, and electronic materials.
  • the chirality of organic substances is derived from having an asymmetric central element (for example, carbon, phosphorus, sulfur, etc.), an asymmetric axis, an asymmetric surface, etc. in the molecular structure.
  • the structure also forms a positive or negative cotton helical structure.
  • an asymmetric structure is usually included in the structural unit of the polymer molecule, thereby expressing various functions of the chiral polymer.
  • a quasi-chiral polymer complex consisting of a molecular complex of a chiral molecule and an achiral polymer has many advantages such as simplicity of manufacturing method, high degree of freedom in material structure control, and diversity in functional expression. There is a lot of research in Japan. On the other hand, unlike the chirality of organic substances at the molecular level, research and development of chiral minerals by adding chirality cavities or spirals in inorganic materials have attracted much attention.
  • a gel having a spiral fiber as a basic structure is formed with a chiral organic compound in an organic solvent, and then mixed with alkoxysilane, an amine as a catalyst, and a small amount of water for hydrolysis of silane, to form a spiral.
  • chiral silica is formed (see, for example, Patent Document 1). This method uses the fact that water is not a medium and a chiral organic compound forms a fibrous gel in an organic solvent, and the alkoxysilane hydrolyzed by the catalytic action of the added amine compound in the organic solvent.
  • Silica sol is deposited on the surface of the spiral fiber.
  • a hydrogel composed of four carboxylic acid-containing amphiphilic chiral aliphatic compounds formed in water is used as a template, and contains alkoxysilane and amino groups. It has been reported that a hybrid-type chiral silica nanowire is formed by mixing a silane coupling agent at a certain ratio and reacting at room temperature for 5 to 10 days (see, for example, Non-Patent Document 1). It is disclosed that when an organic compound inside the silica is extracted, a helical chiral silica nanotube is obtained, but the chirality exists on the hollow inner wall, and no chirality appears in the outer wall of the nanotube.
  • an anionic chiral surfactant having an amino acid residue is mixed with a cationic silane coupling agent having an amino group and a tetraalkoxysilane of silica source
  • a chiral mesoporous silica with a helix form is obtained by reacting in an acidic medium (see, for example, Non-Patent Document 2).
  • a chiral anionic surfactant and a cationic silane coupling agent assemble to form a chiral micelle, and the cationic silane coupling agent on the surface layer of the micelle undergoes hydrolytic condensation. .
  • This method is similar to the above chiral micelle method, but instead of using a chiral surfactant, a chiral micelle is formed by the interaction of an achiral anionic surfactant and a chiral amino compound, which is used as a template, under acidic conditions. It has been reported that a complex of helix chiral silica and an organic substance is obtained by causing hydrolysis and condensation reaction of alkoxysilane (see, for example, Non-Patent Document 3). By removing the organic component in the composite, a silica nanotube having a helix and an inner diameter of several tens of nanometers can be obtained.
  • micellar reaction field consisting of ordinary achiral surfactants is formed in an acidic aqueous medium. It has been reported that a mesoporous silica having a helix structure can be obtained by mixing a alkoxysilane and inducing a seed structure and then adding a solution having the seed structure to an acidic aqueous solution (see, for example, Non-Patent Document 4). ). This suggests that the helix structure itself has nothing to do with chirality.
  • chiral mesoporous silica in chiral mesoporous silica, the helix itself is not chiral, but a chiral structure is imparted to the mesopore.
  • the chiral mesoporous silica using the above-described chiral micelle as a template requires a strong acidic medium in the sol-gel reaction of alkoxysilane at the synthesis stage, and requires aging at a temperature around 90 ° C.
  • the production of chiral micelles requires the synthesis of chiral surfactants or chiral ionic molecules. Supplying these chiral sources is not possible in existing industries.
  • the cavity wall is composed of a hard inorganic material, and thus it is considered to be a semi-permanent chiral substance that is strong in heat resistance and durability.
  • the structural thermal stability of ordinary mesoporous silica is insufficient, it is highly possible that the chiral thermal stability of chiral mesoporous silica cannot be expected.
  • many research reports on chiral mesoporous silica are disclosed, but there is no report discussing the thermal stability of chirality, and little is known about the maintenance of chiral structure by high-temperature firing.
  • silica synthesis with chirality is not based on biomimetic silification techniques such as room temperature, neutrality, and high speed, and the reaction process is not environmentally friendly, such as in acidic or basic conditions under sol-gel reaction conditions. There were no drawbacks.
  • Biosilica When thinking of silica as a material and device, it is necessary to understand biosilica that inhabits the natural world. Biosilica is classified into diatoms and sponges, which are unicellular organisms whose cell walls are constructed of silica with a very complex pattern and elaborate structure. In the silica, polypeptides and proteins are complexed to form a nano-level hybrid structure. In fact, in this hybrid structure formation, the polypeptide or protein functions as a template as well as a catalyst that condenses silicic acid and grows it on silica.
  • biosilica that is, the silica wall
  • the silica internal structure is more or less accompanied by chirality.
  • this has never been proved, and there is no example of artificially designing and synthesizing chiral silica using this principle.
  • natural biosilica is produced in units of gigatons per year.
  • silicic acid is converted to silica under mild conditions such as room temperature, normal pressure, and neutrality.
  • the present inventors have already paid attention to the crystallization of linear polyethyleneimine as part of the manufacturing that learns from biosilica, and constructed a complex hierarchical silica by using the fibrous crystals and their crystals in the reaction field. It has developed.
  • the crystal obtained by these methods is a crystal of linear polyethyleneimine alone, and the crystal is ethyleneimine in the polymer, that is, two molecules of water are bonded to one monomer unit. It was characterized by.
  • the problem to be solved by the present invention is to use a basic principle of biosilica formation in room temperature, normal pressure, neutral aqueous medium, that is, an organic structure having chirality as a catalyst and a template.
  • the object is to provide a silane-modified silica-based chiral nanostructure and a method for producing them.
  • organic matrix is often a basic polyamine, which effectively precipitates silica under mild conditions of normal temperature, normal pressure, and neutrality in cooperation with acidic molecules such as phosphate residues.
  • a linear polyethyleneimine is formed by an acid-base interaction between a base of a polymer having a linear polyethyleneimine skeleton and a chiral organic acid, not a crystal formed by an interaction between a polymer having a linear polyethyleneimine skeleton and a water molecule.
  • a crystalline structure composed of a chiral supramolecular complex derived by incorporating the chiral molecule into a polymer having a skeleton is constructed, and the chiral crystalline structure is subjected to a hydrolytic condensation reaction of alkoxysilane (ie, By using it as a catalyst and template for a sol-gel reaction)
  • alkoxysilane ie, By using it as a catalyst and template for a sol-gel reaction
  • the present invention comprises (1) mixing an aqueous solution of a polymer (A) having a linear polyethyleneimine skeleton with an aqueous solution of optically active tartaric acid (B) to obtain an acid-base complex chiral crystal (X).
  • a sol-gel reaction of silica source (Y ′) is carried out in the presence of the chiral crystal (X) obtained in the step (1), and the chiral structure of the chiral crystal (X) is transferred.
  • a process for coating the chiral crystal (X) with silica (Y), and a method for producing a silica-based chiral nanostructure and its structure [hereinafter referred to as silica-based chiral nanostructure ( ⁇ )] ] To provide.
  • the present invention provides (3) the step of eluting the optically active tartaric acid (B) with an acidic or basic aqueous solution after the step (2), or (3 ′) the complex obtained in the step (2).
  • a method for producing a silica-based chiral nanostructure having a chiral spatial structure in a silica structure characterized by having a step of firing and removing organic components, and the structure [hereinafter, a structure obtained by elution Is referred to as a silica-based chiral nanostructure ( ⁇ ), and a structure obtained by firing is referred to as a silica-based chiral nanostructure ( ⁇ )].
  • the present invention provides an organosilane-modified silica-based chiral nanostructure, wherein an O—Si—C bond is introduced into the silica of the silica-based chiral nanostructure ( ⁇ to ⁇ ) obtained above.
  • a method and structure are provided.
  • the chiral structure of the present invention is characterized by imparting chirality to silica nanostructures such as nanofibers and nanosheets.
  • silica has a —O—Si—O—Si—O— structure that repeats in chemical bonds and spreads three-dimensionally. Usually, this bond has no chirality, but the —O—Si—O—Si—O— linkage of silica formed in the presence of a chiral template has an asymmetric stereochemistry of the chiral template molecule and molecular assembly. Spatial structure is carved. As a result, the walls composed of silica bonds that support the asymmetric spatial structure are also chiral.
  • the chiral structure of the present invention is a catalyst for asymmetric organic synthesis in the production of liquid crystalline, pharmacological, physiologically active, antimicrobial, and antiviral substances for industrial, pharmaceutical, and agricultural chemicals, and for organic racemic resolution.
  • a wide range of applications such as asymmetric adsorbents, optical sensors related to polarization dimming, and security materials are possible.
  • FIG. 2 is an XRD chart of a chiral crystal obtained in Example 1.
  • FIG. 2 is a CD spectrum of the chiral crystal (a) obtained in Example 1 and the raw material D-tartaric acid (b).
  • 3 is a solid-state 29 Si-NMR spectrum of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 1.
  • 3 is a solid state 13 C-NMR spectrum of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 1.
  • 2 is a CD spectrum of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 1.
  • 2 is a SEM photograph image of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 1.
  • 2 is a TEM photograph image of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 1.
  • 2 is an XRD chart of a chiral crystal obtained in Example 2.
  • 2 is a CD spectrum of the chiral crystal obtained in Example 2.
  • 3 is a solid-state 29 Si-NMR spectrum of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 2.
  • 3 is a solid state 13 C-NMR spectrum of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 1.
  • 3 is a CD spectrum of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 2.
  • 3 is a SEM photograph image of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 2.
  • 3 is a TEM photograph image of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 2.
  • 4 is a TEM photograph image of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 3.
  • 3 is a CD spectrum of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 3.
  • FIG. 3 is a CD spectrum of silica-based chiral nanostructure ( ⁇ -1) after adsorption of porphyrin in Example 3.
  • FIG. 4 is a TEM photograph image of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 4.
  • 4 is a CD spectrum of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 4.
  • FIG. 4 is a CD spectrum of silica-based chiral nanostructure ( ⁇ -2) after adsorption of porphyrin in Example 4.
  • FIG. 6 is a CD spectrum of the nanostructure after modification with organosilane in Example 5. It is CD spectrum of the nanostructure after the organosilane modification in Example 6.
  • 6 is an XRD chart of a chiral crystal obtained in Example 7.
  • 7 is a CD chart of the chiral crystal obtained in Example 7.
  • FIG. 4 is a CD spectrum of the silica-based chiral nanostructure ( ⁇ -3) obtained in Example 7.
  • 4 is a SEM photograph image of the silica-based chiral nanostructure ( ⁇ -3) obtained in Example 7.
  • 3 is an XRD chart of a crystal obtained in Comparative Example 1.
  • 3 is a solid-state 29 Si-NMR spectrum of a silica-based nanostructure obtained in Comparative Example 1.
  • 3 is a solid state 13 C-NMR spectrum of the silica-based nanostructure obtained in Comparative Example 1.
  • 2 is a CD spectrum of the silica-based nanostructure obtained in Comparative Example 1.
  • 2 is a CD spectrum of a nanostructure after adsorption of porphyrin in Comparative Example 1.
  • 3 is a SEM photograph image of the silica-based nanostructure obtained in Comparative Example 1.
  • 4 is an FT-IR spectrum of a silica-based chiral nanostructure ( ⁇ -1) before and after the tartaric acid elution step in Example 8.
  • the present inventors have already used a crystalline aggregate in which a polymer having a linear polyethyleneimine skeleton grows in an aqueous medium in a self-organizing manner as a reaction field, and hydrolyzes alkoxysilane on the surface of the aggregate in a solution.
  • a silica-based nanostructure having a complex shape (powder) having nanofibers, nanosheets, and the like as basic units by decomposing condensation and precipitating silica, and a method for producing the same have been provided (Japanese Patent Laid-Open No. 2005-264421) JP, 2005-336440, JP 2006-063097, JP 2007-051056, Chem. Commun., 2005, 1399-1401, Langmuir 2005, 21, 3136-3145, Adv. 2006, 16, 2205-2212, CrystEngCo m, see, for example, 2009,11,2695-2700).
  • non-evaporable chiral compound can be incorporated into the crystal in place of water molecules in the crystallization of linear polyethyleneimine or a polymer having the same, a chiral crystalline structure with excellent stability can be obtained. It is thought that.
  • non-evaporable and optically active (chiral) L or D-tartaric acid is an acid-base complex while being bonded to a polymer having a linear polyethyleneimine skeleton in the same manner as a water molecule.
  • the present invention has been completed.
  • the polymer (A) having a linear polyethyleneimine skeleton used in the present invention may be a linear, star-like, or comb-like homopolymer, or a copolymer having other repeating units. good.
  • the molar ratio of the linear polyethyleneimine skeleton in the polymer (A) is preferably 20% or more from the viewpoint that stable crystals can be formed.
  • the repeating unit of the polyethyleneimine skeleton It is more preferable that the number is 10 or more.
  • the polymer (A) having a linear polyethyleneimine skeleton As the polymer (A) having a linear polyethyleneimine skeleton, the higher the ability to form a crystalline aggregate, the more preferable. Therefore, it is preferable that the molecular weight corresponding to the linear polyethyleneimine skeleton portion is in the range of 500 to 1,000,000, whether it is a homopolymer or a copolymer.
  • the polymer (A) having a linear polyethyleneimine skeleton can be obtained from a commercially available product or a synthesis method already disclosed by the present inventors (see the above-mentioned patent documents and non-patent documents).
  • Optically active tartaric acid As tartaric acid, commercially available D-tartaric acid and L-tartaric acid can be used alone, or a non-equal mixture of D-form and L-form (mixture of excess enantiomer) can be used. By selecting these optical isomers of tartaric acid, it is possible to control the structure of the resulting chiral crystal which is an acid-base complex of polymer / tartaric acid.
  • the acid-base complex composed of the polymer and tartaric acid is a white powder.
  • the powder is a particle having a particle size of 1 to 80 ⁇ m, and can be a particle having a particle size of 10 to 50 ⁇ m.
  • the particles do not need to be perfect spheres, and may be elliptical or may have a shape in which a part of a plurality of spheres overlap.
  • the particle diameter in the case of an ellipse refers to the longest part. When a plurality of spheres overlap, the longest part of each sphere is referred to as a particle diameter for convenience.
  • the internal structure of the polymer / tartaric acid acid-base complex particles can be changed depending on the type of tartaric acid used. That is, when D-tartaric acid or L-tartaric acid is used alone, a sheet-like nanostructure (nanosheet) of 1 to 50 nm is used as a basic skeleton, and this is a complex intertwined aggregate (see drawings). .
  • the acid-base complex composed of polymer / tartaric acid absorbs a large amount of heat from a temperature of 100 ° C. or higher and does not exhibit a melting point in a single heating scanning range (up to 150 ° C. or lower) in DSC. And That is, although it is a crystal, dehydration occurs between carboxylic acid of tartaric acid and imine, and amidation proceeds.
  • the crystal is characterized by showing a similar diffraction pattern regardless of the type of L-form or D-form of tartaric acid in XRD measurement.
  • the chiral crystal (X) comprising an acid-base complex can be obtained through the following steps.
  • (III) (I liquid) and (II liquid) are mixed to form an acid-base complex of polymer (A) and optically active tartaric acid (B),
  • (IV) A step of precipitating a chiral crystal composed of an acid-base type complex by lowering the temperature of the mixed hot water solution containing the acid-base type complex obtained in (III).
  • the polymer (A) having a linear polyethyleneimine skeleton any of those described above can be used. By adding the polymer (A) powder to distilled water and heating it to 80 ° C. or higher, the polymer is obtained. A hot aqueous solution (solution I) is prepared. At this time, the concentration of the polymer (A) is preferably in the range of 0.5 to 8% by mass.
  • tartaric acid (B) powder having optical activity is added to distilled water and heated in the range of 80 to 100 ° C. to prepare a hot aqueous solution of tartaric acid (Part II).
  • the concentration of tartaric acid (B) is preferably in the range of 1 to 15% by mass.
  • the cooling method is not particularly limited, and may be a method of natural cooling in an air atmosphere or cooling by mixing with ice water to lower the temperature to room temperature or below. In this process, white powder is deposited. This powder is a chiral crystal (X) having chirality.
  • the number of moles of ethyleneimine units (number of moles of amine functional group) in (liquid I) and the carboxylic acid functional group in (liquid II) is 1: 1, and when it is not equimolar, the excess range of any functional group is preferably within 10 mol%.
  • the liquid mixture may be left standing in the natural cooling process, or precipitation can be promoted by applying stirring or vibration.
  • precipitation of the chiral crystal (X) can be promoted by a method such as stirring.
  • the obtained white precipitate may be isolated as it is, or after washing with distilled water and drying at room temperature. Further, after washing with distilled water, it can be washed with an organic solvent such as ethanol, isopropanol, acetone, and dried.
  • an organic solvent such as ethanol, isopropanol, acetone
  • the chiral crystal (X) obtained as described above is a solid circular dichroism spectrum (hereinafter referred to as a CD spectrum), and both can cause a negative cotton effect or a positive cotton effect of polarized light.
  • the structure of the chiral crystal (X) contains amino groups and carboxylic acid residues at high density. These two types of functional groups function as catalysts for the hydrolysis of alkoxysilanes and their condensation reactions. That is, the simultaneous presence of an amino group and a carboxylic acid residue is an effective catalyst for promoting the hydrolytic condensation reaction (sol-gel reaction) of silicate. Therefore, by mixing the chiral crystal (X) with the silica source (Y ′), the sol-gel reaction on the surface of the crystal (X) proceeds, and the chiral crystal (X) and the silica (Y) are separated. A composite silica-based chiral nanostructure ( ⁇ ) can be obtained.
  • the chiral crystal (X) itself is used as a catalyst, it is considered that a chiral structure is induced in the skeleton of silica (Y) to be formed. That is, the chiral information in the chiral crystal (X) is transferred to the silica (Y) structure on which the chiral information is deposited, and chirality appears in the silica (Y) structure itself. That is, the chiral nanostructure according to the present invention is characterized in that not only the chirality is maintained in the internal organic component but also the silica (Y) catalyzed thereby is imparted with a chiral structure.
  • silica-based chiral nanostructure ( ⁇ ) in the present invention basically, a constant concentration of the chiral crystal (X) is dispersed in water, and a silica source (Y ′) solution is mixed therewith, and the mixture May be stirred for a certain time at room temperature.
  • the dispersion concentration in water of the chiral crystal (X) can be set to 0.5 to 15 wt%.
  • Silica source (Y ′) is prepared as a liquid or an alcohol solution and mixed with chiral crystal (X).
  • any alkoxysilane can be suitably used.
  • the concentration of the alkoxysilane is adjusted in proportion to the concentration of the chiral crystal (X). When the concentration is low, the concentration of the alkoxysilane is also reduced. When the concentration is high, the concentration of the alkoxysilane is decreased. It is desirable to increase.
  • the amount of silica source (Y ′) used can be 2 to 50 times the number of moles of the amine of the polymer (A) in terms of silicon.
  • alkoxysilane compounds examples include tetraalkoxysilanes, alkyltrialkoxysilanes, and dialkyl dialkoxysilanes.
  • tetraalkoxysilanes examples include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and tetra-t-butoxysilane.
  • Examples of the silica source (Y ′) include condensates such as tetramethoxysilane tetramer silane (trade name MS-51 manufactured by Colcoat Co., Ltd.), tetraethoxysilane tetramer silane condensate. (Product name ES-51 manufactured by Colcoat Co., Ltd.) can be preferably used.
  • tetraalkoxysilane and oligomers thereof are preferably used alone, but if necessary, other alkoxysilanes such as trialkoxysilane and dialkoxysilane are mixed and used. You can also.
  • alkoxysilanes include, for example, methyltrimethoxylane, methyltriethoxylane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxylane, n-propyltriethoxylane, iso-propyltrimethoxysilane , Iso-propyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Triethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptotriethoxysilane, 3,3,3-trifluoro Prop
  • the silica-based chiral nanostructure ( ⁇ ) can contain 30 to 60 wt% of organic components as its composition.
  • the organic component is combined with silica and embedded in the silica component.
  • the silica-based chiral nanostructure ( ⁇ ) is composed mainly of three components of a polymer (A) having a linear polyethyleneimine skeleton, an optically active tartaric acid (B), and silica (Y).
  • a polymer (A) having a linear polyethyleneimine skeleton an optically active tartaric acid (B)
  • silica (Y) silica
  • the silica-based chiral nanostructure ( ⁇ ) containing the polymer (A) having a linear polyethyleneimine skeleton and silica (Y) as main components can be obtained by washing out (eluting) the body ( ⁇ ).
  • the main component is a component other than impurities derived from the raw material, or a component that has not been sufficiently removed by elution or firing and has undergone modification or the like, unless the third component is intentionally used. Even if it enters, it means that it does not contain other ingredients.
  • a basic aqueous solution, an alcohol solvent and an acidic aqueous solution can be used.
  • the tartaric acid (B) component is converted into a silica-based chiral nanostructure (by immersing the silica-based chiral nanostructure ( ⁇ ) in the above solution or solvent and leaving it at room temperature, or heating the mixture. It can be easily obtained by extracting from ⁇ ) and recovering the remaining solid component by filtration, centrifugation or the like.
  • an aqueous solution of a basic organic compound such as ammonia, triethylamine, diethylamine, ethylamine, ethylenediamine, or pyridine can be used as the basic aqueous solution.
  • concentration of these aqueous solutions may be 0.1 to 1 mol / L, and the actual amount used is suitable if it is excessive relative to the amount of tartaric acid (B) contained in the silica-based chiral nanostructure ( ⁇ ). However, in terms of the number of moles, it is desirable that the amount is 1.5 to 10 times equivalent.
  • the time for immersing the silica-based chiral nanostructure ( ⁇ ) in the basic aqueous solution can be adjusted as appropriate within a range of 1 to 10 hours, but after immersing once, removing the supernatant and further immersing it twice or three times. By soaking, tartaric acid (B) can be completely removed.
  • Methanol, ethanol, ethylene glycol or the like can be used as the alcohol solvent. In that case, it is also suitable to mix an organic amine compound.
  • an aqueous solution of an inorganic acid such as an aqueous hydrochloric acid solution, an aqueous nitric acid solution, an aqueous sulfuric acid solution, or an aqueous phosphoric acid solution
  • the acid concentration is preferably in the range of 0.1 to 5.0 mol / L.
  • the polymer (A) having a linear polyethyleneimine skeleton easily dissolves in water when protonated with an inorganic acidic compound, but is insoluble when the pH value of the aqueous solution is 1 or less. Therefore, in order to prevent the polymer (A) component from flowing out, it is desirable to use a highly concentrated acidic aqueous solution.
  • the polymer (A) remains in the resulting silica-based chiral nanostructure ( ⁇ ), and the silica (Y) and the polymer (A) are combined.
  • the complex also exhibits chirality.
  • the content of the polymer (A) having a linear polyethyleneimine skeleton is in the range of 5 to 30 wt%.
  • Silica-based chiral nanostructure ( ⁇ ) composed mainly of polymer (A) from which tartaric acid (B) component is removed and silica (Y) has a polarization rotation of positive cotton or negative cotton in the solid CD spectrum. Indicates. The direction of this deflection rotation is the same as that of the silica-based chiral nanostructure ( ⁇ ) before the tartaric acid (B) component is eluted, and the chirality is maintained by the elution, that is, the chirality in the structure ( ⁇ ) is maintained. It has a special spatial structure.
  • the electric furnace firing temperature range can be set to 250 ° C. or higher and 1000 ° C. or lower.
  • the heating temperature is desirably 400 ° C. or higher.
  • the heating and baking temperature decomposes and removes organic components, and at the same time, may cause a chemical bond change in the resulting silica-based chiral nanostructure ( ⁇ ), so the surface area decreases with an increase in the baking temperature. Therefore, in order to obtain a high specific surface area, it is desirable to set appropriately according to the specific surface area requirement range by generally raising the firing temperature.
  • the heating and baking time may be approximately 1 to 4 hours, and it is desirable to shorten the time for high-temperature baking.
  • the shape of the silica-based chiral nanostructure ( ⁇ ) obtained after heating and baking there is no change in the shape of the silica-based chiral nanostructure ( ⁇ ) obtained after heating and baking, and the shape of the silica-based chiral nanostructure ( ⁇ ) such as nanofibers, nanoribbons, and nanosheets is maintained.
  • the specific surface area of the silica-based chiral nanostructure ( ⁇ ) after firing is in the range of 400 to 700 m 2 / g, and exhibits a negative cotton or positive cotton effect of polarization in the solid CD spectrum. That is, the silica-based chiral nanostructure ( ⁇ ) has a chiral spatial structure.
  • the removal of the organic component from the silica-based chiral nanostructure ( ⁇ ) can be performed by an acidic solution cleaning method other than heating and baking. That is, in order to selectively remove tartaric acid (B), a basic aqueous solution or a high concentration acidic aqueous solution is required as described above. To remove tartaric acid (B) and polymer (A) simultaneously, The organic component can be completely removed by repeatedly using a method of heating and washing in an acidic aqueous solution having a pH value of 3 to 5 at a temperature of 90 ° C. or lower.
  • the silica-based chiral nanostructure ( ⁇ to ⁇ ) of the present invention is an aggregate of nanostructures such as nanofibers, nanoribbons, and nanosheets, and has a thickness or thickness in the range of 10 to 100 nm, and is long.
  • the thickness is in the range of 200 nm to 10 ⁇ m
  • the appearance of the aggregate is close to a spherical body
  • the size thereof is in the range of 1 to 20 ⁇ m.
  • the silica-based chiral nanostructure ( ⁇ to ⁇ ) of the present invention exhibits a positive cotton effect or a negative cotton effect because of a difference in light absorption with respect to left and right circularly polarized light in the CD spectrum.
  • the silica-based chiral nanostructure ( ⁇ to ⁇ ) can rotate left polarized light or right polarized light in a certain direction.
  • the positive cotton effect or the negative cotton effect in the solid CD spectrum is determined by the optical activity of the tartaric acid (B) used as a raw material for synthesizing the silica-based chiral nanostructure ( ⁇ to ⁇ ).
  • silica (Y) of the silica-based chiral nanostructure ( ⁇ to ⁇ ) obtained above is basically represented by SiO 2 .
  • an O—Si—C bonding component is introduced into the silica (Y), and an organosilane-modified silica-based chiral nanostructure can be obtained.
  • silane coupling agent examples include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, and iso-propyl.
  • Trimethoxysilane iso-propyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycol Sidoxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltomethoxysilane, 3-mercaptotriethoxysilane, 3, , 3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane,
  • the silane coupling agent For contact with the silane coupling agent, the silane coupling agent is dissolved in a solvent such as chloroform, methylene chloride, cyclohexanone, xylene, toluene, ethanol, methanol, and the silica-based chiral nanostructure ( ⁇ ⁇ A method of dispersing the powder of ⁇ ) and stirring the mixture for a certain time is preferable.
  • a solvent such as chloroform, methylene chloride, cyclohexanone, xylene, toluene, ethanol, methanol, and the silica-based chiral nanostructure ( ⁇ ⁇
  • a solvent such as chloroform, methylene chloride, cyclohexanone, xylene, toluene, ethanol, methanol, and the silica-based chiral nanostructure ( ⁇ ⁇ A method of dispersing the powder of ⁇ ) and stirring the mixture for a certain time is preferable.
  • the concentration of the silane coupling agent is preferably 1 to 5% by mass, and more preferably 1 to 5% by mass with an aqueous ethanol solution of ammonia.
  • the volume ratio upon mixing is preferably 5 to 10 times the amount of the aqueous ammonia solution relative to the silane coupling agent solution.
  • the residue of the silane coupling agent can be easily introduced into silica (Y).
  • the obtained powder is filtered or centrifuged, and the solid content is washed with a solvent such as ethanol, methanol, acetone, toluene, chloroform, hexane, cyclohexane, etc., and dried at room temperature.
  • a solvent such as ethanol, methanol, acetone, toluene, chloroform, hexane, cyclohexane, etc.
  • the solid CD spectra of the structures modified with these organosilanes show a positive or negative cotton effect of polarization, and are in the same direction as the silica-based chiral nanostructure before contact.
  • the silica-based chiral nanostructure ( ⁇ to ⁇ ) of the present invention and the structure modified with organosilane can be combined with various organic compounds to form silica.
  • the surface of (Y) can also be modified.
  • organic compound that can be used various constituents ranging from high polymers to low molecules, for example, polar, nonpolar, cationic, and anionic organic compounds can be suitably used. These organic compounds may be pigments or luminescent materials.
  • an organometallic complex compound or an organometallic compound can be physically adsorbed on the silica-based chiral nanostructure ( ⁇ to ⁇ ) of the present invention and a structure obtained by modifying this with a organosilane.
  • the organic compound containing these metals is suitable even if it has a catalytic function. After they are adsorbed, the cotton effect in the solid CD spectrum can still be maintained, and in the absorption wavelength range of the adsorbed compound, the direction of the positive and negative cotton effect is basically unchanged.
  • Circular dichroism was measured using a J-720 (manufactured by JASCO Corporation) equipped with a CD integrating sphere device (DRCD-466 powder CD measurement unit). A sample for CD measurement was prepared by mixing with potassium chloride.
  • Synthesis Example 1 [Synthesis of linear polyethyleneimine (LPEI)] 30 g of commercially available polyethyloxazoline (average molecular weight 50,000, average polymerization degree about 500, manufactured by Aldrich) was dissolved in 150 mL of 5M aqueous hydrochloric acid. The solution was heated to 90 ° C. in an oil bath and stirred at that temperature for 10 hours. Acetone 500 mL was added to the reaction solution to completely precipitate the polymer, which was filtered and washed with methanol three times to obtain white polyethyleneimine powder.
  • LPEI linear polyethyleneimine
  • LPEI linear polyethyleneimine
  • the obtained powder is a chiral crystal of an acid-base complex composed of the polymer LPEI and D-tartaric acid, and has a new structure composed of chiral tartaric acid and achiral LPEI. I understand that.
  • the solid CD spectrum of this solid is shown in FIG. A negative cotton effect having a peak top of about 220 nm ultraviolet absorption was exhibited. This is the same as the negative direction of the ellipticity of the LPEI / D-Tart chiral crystal before precipitating the silica. Since the complex of chiral LPEI / D-Tart crystal and silica derived thereby both strongly absorbs left-handed circularly polarized light, they are considered to retain left-handed chirality inside. From the above, it was confirmed that the composite with silica thus obtained was the silica-based chiral nanostructure ( ⁇ -1) ⁇ SiO 2 / LPEI / D-Tart> of the present invention.
  • the solid was an assembly of nanofibers (FIG. 6). Moreover, from the TEM photograph (FIG. 7), the thickness of the nanofiber which is the basic unit of this aggregate was about 25 nm.
  • Example 2 [Silica-based chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart>] in which a chiral crystal composed of L-tartaric acid and LPEI is combined with silica
  • chiral crystal LPEI / L-Tart and silica were prepared in the same manner as in Example 1 except that L-tartaric acid (L-Tart, manufactured by Tokyo Chemical Industry Co., Ltd.) powder was used instead of D-tartaric acid.
  • a chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart> was prepared.
  • FIG. 8 shows an XRD chart of the chiral crystal LPEI / L-Tart. Since the diffraction pattern is the same as that of the chiral crystal LPEI / D-Tart in Example 1, it can be confirmed that the crystal has the same crystal structure.
  • FIG. 9 is a solid CD spectrum of the chiral crystal LPEI / L-Tart. Due to the presence of L-tartaric acid, a positive cotton effect opposite to that in Example 1 was confirmed.
  • FIG. 10 is a solid-state 29 Si-NMR spectrum of a silica-based chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart> formed by complexing with silica.
  • the peaks of Q 4 and Q 3 derived from the silica bond structure remarkably appear, and it can be confirmed that the structure has a silica structure.
  • FIG. 11 is a solid state 13 C-NMR spectrum of silica-based chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart>.
  • the methylene carbon derived from the LPEI skeleton, the hydroxymethine carbon derived from the tartaric acid structure, and the carbonyl carbon were confirmed.
  • FIG. 12 is a solid CD spectrum of silica-based chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart>.
  • the waveform of this spectrum showed a positive cotton effect that was just a mirror image of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 1.
  • the silica-based chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart> produced using L-tartaric acid as a chiral source retains right-handed chirality. It is clear that L-tartaric acid and D-tartaric acid have transferred their respective chirality characteristics to silica.
  • FIG. 13 and 14 show SEM and TEM photographs of the silica-based chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart>.
  • the structure was an aggregate of flower-like fibres, and the thickness of the nanofiber as the basic unit was around 25 nm.
  • Example 3 [Silica-based chiral nanostructure ( ⁇ -1) obtained by heating and removing organic components in silica-based chiral nanostructure ( ⁇ -1)] 250 mg of the silica-based chiral nanostructure ( ⁇ -1) ⁇ SiO 2 / LPEI / D-Tart> prepared in Example 1 was placed in a ceramic crucible and heated to 600 ° C. in an electric furnace, and the temperature And left for 3 hours. From the TEM observation of the silica-based chiral nanostructure ( ⁇ -1) thus obtained, the nanofibre structure was confirmed (FIG. 15).
  • the specific surface area (BET) of the silica-based chiral nanostructure ( ⁇ -1) was 665 m 2 / g, of which the surface area derived from ⁇ pore was 553 m 2 / g, and the area derived from a simple outer surface was 112 m 2 / g.
  • the porphyrin dye was adsorbed to this silica-based chiral nanostructure ( ⁇ -1), the solid CD spectrum of the powder was measured, and the negative cotton effect in the range of the Soret band absorption wavelength (around 400 nm) of porphyrin was measured.
  • the achiral porphyrin dye does not show any waveform in the CD spectrum, but it is adsorbed in the spatial structure of the chiral silica-based chiral nanostructure ( ⁇ -1), so that the porphyrin has an asymmetric structure.
  • a behaving induced CD appeared. It was strongly suggested that a chiral silica structure and an achiral organic compound form a new asymmetric structure.
  • Example 4 [Silica-based chiral nanostructure ( ⁇ -2) obtained by heating and removing organic components in silica-based chiral nanostructure ( ⁇ -2)] 250 mg of the silica-based chiral nanostructure ( ⁇ -2) ⁇ SiO 2 / LPEI / L-Tart> prepared in Example 2 was placed in a ceramic crucible and heated at 600 ° C. in an electric furnace at that temperature. Left for 3 hours. From the TEM observation of the silica-based chiral nanostructure ( ⁇ -2) thus obtained, a nanofibrar structure was confirmed (FIG. 18).
  • the specific surface area (BET) of the silica-based chiral nanostructure ( ⁇ -2) was 653 m 2 / g, of which the surface area derived from ⁇ pore was 549 m 2 / g, and the area derived from a simple outer surface was 104 m. 2 / g.
  • Example 5 [Organic Silane Modified Silica-Based Chiral Nanostructure-1] 200 mg of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 3 above was mixed with a toluene solution (200 mg) of phenyltrimethoxysilane (1.0 mmol) and refluxed for 6 hours in a nitrogen atmosphere to obtain organosilane-modified silica. The system chiral nanostructure-1 was obtained. From the results of TG-TDA analysis, it was found that the amount of phenyl group introduced was 0.67 mmol / g.
  • Example 6 [Organic Silane Modified Silica-Based Chiral Nanostructure-2] 200 mg of the silica-based chiral nanostructure ( ⁇ -2) obtained in Example 4 above was mixed with a toluene solution (200 mg) of phenyltrimethoxysilane (1.0 mmol) and refluxed in a nitrogen atmosphere for 6 hours to obtain organosilane-modified silica. The system chiral nanostructure-2 was obtained. From the results of TG-TDA analysis, it was found that the amount of phenyl group introduced was 0.64 mmol / g.
  • Example 7 [Silica-based chiral nanostructure in excess of enantiomer ( ⁇ -3) ⁇ SiO 2 / LPEI / ee-Tart>] 158 mg of the LPEI powder obtained in Synthesis Example 1 was added to 3 g of distilled water and heated to about 95 ° C. to prepare an aqueous solution in which LPEI was completely dissolved. On the other hand, a mixed powder of D-tartaric acid (120 mg) and L-tartaric acid (30 mg) was dissolved in 3.0 g of distilled water, and the solution was added to a hot aqueous solution of LPEI. The mixture solution (95 ° C.) was naturally cooled to room temperature (25 ° C.) and crystallized. The precipitate was washed and collected by centrifugation, and dried in the air for 3 days to obtain a powder composed of LPEI and D, L-tartaric acid (ee).
  • FIG. 32 shows an SEM photograph of the structure.
  • Example 8 [Silica-based chiral nanostructure ( ⁇ -1) obtained by removing tartaric acid from ⁇ SiO 2 / LPEI / D-Tart>] 500 mg of the silica-based chiral nanostructure ( ⁇ -1) obtained in Example 1 was added to 20 mL of 1% NH 3 aqueous solution, allowed to stand at room temperature for 30 min, and collected by centrifugation. This operation was performed 4 times, and finally washed twice with distilled water and once with 2-propanol. Drying under reduced pressure at 40 ° C. gave 266 mg of white powder. As a result of FT-IR spectrum measurement of the obtained powder (FIG. 33), the vibration of tartaric acid derived from COOH (FIG.
  • Example 9 [Silica-based chiral nanostructure ( ⁇ -2) obtained by removing tartaric acid from ⁇ SiO 2 / LPEI / L-Tart>]
  • a silica-based chiral nanostructure ( ⁇ -2) was obtained in the same manner as in Example 8 except that the silica-based chiral nanostructure ( ⁇ -2) obtained using L-tartaric acid as tartaric acid was used.
  • copper ions were coordinated to LPEI in the same manner as in Example 8, it was measured with a solid CD spectrum. From the result of FIG. 34b, a strong positive cotton effect appeared in the copper complex absorption wavelength range (strong absorption around 250 nm).
  • Comparative Example 2 [Silica-based nanostructure obtained by removing tartaric acid from ⁇ SiO 2 / LPEI / ( ⁇ ) -Tart>] Tartaric acid was removed in the same manner as in Example 8 using the silica-based nanostructure ⁇ SiO 2 / LPEI / ( ⁇ ) -Tart> obtained in Comparative Example 1. Furthermore, after coordinating copper ions to this in the same manner as in Example 8, it was measured by a solid CD spectrum. From the result of FIG. 34c, there was no change in the ellipticity waveform in the copper complex absorption wavelength range (strong absorption around 250 nm). This is a completely different result from Examples 8 and 9.
  • Example 10 [Silica-Based Chiral Nanostructure ( ⁇ -1) ⁇ Silica-Based Chiral Nanostructure ( ⁇ -3) Obtained from High-Temperature Firing of ⁇ SiO 2 / LPEI / D-Tart>]]
  • a silica-based chiral nanostructure ( ⁇ -1) was prepared by the method of Example 1, 250 mg of the powder was placed in a ceramic crucible, heated to 900 ° C. in an electric furnace, and 2 ° C. at that temperature. Left for hours.
  • the silica-based chiral nanostructure ( ⁇ -3) thus obtained had a specific surface area (BET) of 402 m 2 / g, of which the ⁇ -pore-derived surface area was 317 m 2 / g, derived from a simple outer surface.
  • the area of was 86 m 2 / g.
  • the surface area tended to decrease. That is, it is considered that the internal space of silica was reduced at a high temperature of 900 ° C.
  • the structure powder is mixed with a chloroform solution of 2-methyl-1,4-naphthoquinone to adsorb 2-methyl-1,4-naphthoquinone to a silica-based chiral nanostructure ( ⁇ -3), and then the solid powder CD spectra were measured (FIGS. 35a and 35b).
  • the solid CD spectrum of 2-methyl-1,4-naphthoquinone powder was also measured (FIG. 35c). Even after baking at 900 ° C., after the adsorption of the 2-methyl-1,4-naphthoquinone molecule, the same induced CD spectrum appears remarkably even when the measurement sample cell fixing angle is 0 or 90 °, and the ultraviolet of quinone appears.

Abstract

Silica-based chiral nanostructures each comprising or obtained from a silica/organic-substance composite having chirality are provided, the nanostructures being obtained through a step in which an aqueous solution of a polymer having a linear polyethyleneimine skeleton is mixed with an aqueous solution of an optically active tartaric acid to obtain chiral crystals of an acid-base complex and a step in which a silica source is subjected, in the presence of the chiral crystals obtained in that step, to a sol-gel reaction to coat the chiral crystals with silica to which the chiral structure of the chiral crystals has been transferred. The structures are silica-based chiral nanostructures which are stable even to high-temperature burning. The structures can be converted to organic-silane-modified silica-based chiral nanostructures by bonding an organic silane to the silica.

Description

シリカ系キラルナノ構造体及びその製造方法Silica-based chiral nanostructure and method for producing the same
 本発明は、直鎖状ポリエチレンイミン鎖を有するポリマーと光学活性酒石酸とからなるキラル結晶体により誘導されてなる、シリカにキラリティが付与されたシリカ系キラルナノ構造体及びその製造方法に関するものである。 The present invention relates to a silica-based chiral nanostructure in which chirality is imparted to silica, which is derived from a chiral crystal composed of a polymer having a linear polyethyleneimine chain and optically active tartaric acid, and a method for producing the same.
 有機系物質におけるキラリティは低分子から高分子まで幅広く存在し、生命体はキラリティ分子の存在を前提に、生命を営むようになっている。キラル分子は、医薬、液晶、光学材料、電子材料分野ではなくてはならない物質である。一般に、有機物質のキラリティは、その分子構造中に、不斉中心元素(例えば、炭素、リン、硫黄など)、不斉軸、不斉面などを有することに由来し、それらの分子の高次構造に正のコットンまたは負のコットンのらせん構造も形成する。キラルポリマーの場合、通常はポリマー分子の構造ユニットに不斉構造が含まれ、それにより、キラルポリマーの種々の機能が発現される。これとは別に、ポリマー分子そのものには不斉構造がなくても、ポリマーと相互作用できる不斉構造の低分子をアキラルなポリマーと物理的に結合させることにより、ポリマーの構造中にキラル空間が誘起され、キラル情報を具えた機能材料に変換される。キラル分子とアキラルポリマーの分子錯体からなる準キラルポリマー錯体は、製法の簡便さ、材料構造制御での高い自由度、機能性発現での多様性など、多くの利点を有するので、超分子的視点での研究が盛んに行なわれている。一方、有機物質の分子レベルでのキラリティと違って、無機材料におけるキラリティ空洞または螺旋を付与することによるキラルなミネラルの研究開発も多くの注目を集めている。 ∙ Chirality in organic materials exists widely from low molecules to macromolecules, and life forms are supposed to operate on the premise of the existence of chirality molecules. Chiral molecules are substances that must be in the fields of medicine, liquid crystals, optical materials, and electronic materials. In general, the chirality of organic substances is derived from having an asymmetric central element (for example, carbon, phosphorus, sulfur, etc.), an asymmetric axis, an asymmetric surface, etc. in the molecular structure. The structure also forms a positive or negative cotton helical structure. In the case of a chiral polymer, an asymmetric structure is usually included in the structural unit of the polymer molecule, thereby expressing various functions of the chiral polymer. Aside from this, even if the polymer molecule itself does not have an asymmetric structure, a chiral molecule that can interact with the polymer is physically bonded to the achiral polymer, thereby creating a chiral space in the polymer structure. Induced and converted into functional material with chiral information. A quasi-chiral polymer complex consisting of a molecular complex of a chiral molecule and an achiral polymer has many advantages such as simplicity of manufacturing method, high degree of freedom in material structure control, and diversity in functional expression. There is a lot of research in Japan. On the other hand, unlike the chirality of organic substances at the molecular level, research and development of chiral minerals by adding chirality cavities or spirals in inorganic materials have attracted much attention.
 例えば、有機溶剤中でキラルな有機化合物により螺旋状繊維を基本構造とするゲルを形成し、それにアルコキシシラン、触媒としてのアミン、シランの加水分解ための少量の水を混合することで、螺旋状キラルなシリカが形成することが報告されている(例えば、特許文献1参照)。この方法では、水が媒体ではなく、キラルな有機化合物が有機溶剤中で繊維状ゲルを形成することを利用し、その有機溶剤中、添加したアミン化合物の触媒作用で加水分解されたアルコキシシランのシリカゾルが、螺旋状繊維表面にて析出することを特徴とする。 For example, a gel having a spiral fiber as a basic structure is formed with a chiral organic compound in an organic solvent, and then mixed with alkoxysilane, an amine as a catalyst, and a small amount of water for hydrolysis of silane, to form a spiral. It has been reported that chiral silica is formed (see, for example, Patent Document 1). This method uses the fact that water is not a medium and a chiral organic compound forms a fibrous gel in an organic solvent, and the alkoxysilane hydrolyzed by the catalytic action of the added amine compound in the organic solvent. Silica sol is deposited on the surface of the spiral fiber.
 有機溶剤中でのキラルな有機化合物の繊維状ゲル形成と違って、水中で形成する4個のカルボン酸含有両親媒性キラル脂肪族化合物からなるヒドロゲルをテンプレートとして用い、それにアルコキシシラン及びアミノ基含有シランカップリング剤を一定割合で混合し、室温にて5~10日間反応することで、ハイブリッド型のキラルなシリカナノワイヤを形成することが報告されている(例えば、非特許文献1参照)。このシリカ内部の有機化合物を抽出させると螺旋状のキラルなシリカナノチューブが得られるが、キラリティは中空の内壁に存在し、ナノチューブ外壁中にはキラリティが発現しないことが開示されている。 Unlike the formation of a fibrous gel of a chiral organic compound in an organic solvent, a hydrogel composed of four carboxylic acid-containing amphiphilic chiral aliphatic compounds formed in water is used as a template, and contains alkoxysilane and amino groups. It has been reported that a hybrid-type chiral silica nanowire is formed by mixing a silane coupling agent at a certain ratio and reacting at room temperature for 5 to 10 days (see, for example, Non-Patent Document 1). It is disclosed that when an organic compound inside the silica is extracted, a helical chiral silica nanotube is obtained, but the chirality exists on the hollow inner wall, and no chirality appears in the outer wall of the nanotube.
 上記のキラルなゲル状繊維表面でのシリカ析出と異なり、アミノ酸残基を有するアニオン性のキラルな界面活性剤にアミノ基を有するカチオン性シランカップリング剤、シリカソースのテトラアルコキシシランを混合し、酸性媒体中で反応させることで、ヘリックス形態を伴うキラルなメソポーラスシリカを得ることが報告されている(例えば、非特許文献2参照)。この反応では、キラルなアニオン性界面活性剤とカチオン性のシランカップリング剤が集合し、キラルなミセルを形成するが、そのミセルの表面層でのカチオン性シランカップリング剤は加水分解的縮合する。その後、そのミセルのヘキサゴナル的集合体に沿って、各ミセル表面層外部ではアルコキシシランの加水分解と縮合反応が進行し、結果的にはキラルミセルにより誘導されたキラルシリカが形成し、キラル界面活性剤とキラルシリカからなる複合体を得ることになる。詳細理由は不明だが、これで得るキラルシリカはヘリックス形態である。これを加熱焼成し、内部の有機成分を除去すると2~4nmの空径のチャンネルを有するヘリックス形状のメソポーラスシリカになる。 Unlike silica precipitation on the surface of the above chiral gel fiber, an anionic chiral surfactant having an amino acid residue is mixed with a cationic silane coupling agent having an amino group and a tetraalkoxysilane of silica source, It has been reported that chiral mesoporous silica with a helix form is obtained by reacting in an acidic medium (see, for example, Non-Patent Document 2). In this reaction, a chiral anionic surfactant and a cationic silane coupling agent assemble to form a chiral micelle, and the cationic silane coupling agent on the surface layer of the micelle undergoes hydrolytic condensation. . Then, along the hexagonal aggregate of the micelles, hydrolysis and condensation reaction of alkoxysilane proceeds outside each micelle surface layer, resulting in the formation of chiral silica induced by chiral micelles, A composite composed of chiral silica is obtained. The reason for the details is unknown, but the chiral silica obtained in this way is in a helix form. When this is heated and baked to remove the organic components inside, it becomes a helix-shaped mesoporous silica having a channel with an air diameter of 2 to 4 nm.
 上記キラルミセル法と類似した方法であるが、キラルな界面活性剤を用いる替わりに、アキラルなアニオン界面活性剤とキラルなアミノ化合物との相互作用によるキラルミセルを形成させ、それをテンプレートとして用い、酸性条件にてアルコキシシランの加水分解と縮合反応を引き起こすことにより、ヘリックスのキラルシリカと有機物との複合体を得ることが報告されている(例えば、非特許文献3参照)。この複合体中の有機成分を除去することで、ヘリックスであり、かつ内径が数10nmのシリカナノチューブが得られる。 This method is similar to the above chiral micelle method, but instead of using a chiral surfactant, a chiral micelle is formed by the interaction of an achiral anionic surfactant and a chiral amino compound, which is used as a template, under acidic conditions. It has been reported that a complex of helix chiral silica and an organic substance is obtained by causing hydrolysis and condensation reaction of alkoxysilane (see, for example, Non-Patent Document 3). By removing the organic component in the composite, a silica nanotube having a helix and an inner diameter of several tens of nanometers can be obtained.
 これらのキラルなミセルをテンプレートとすることとは反対に、キラルな化合物が一切使われないにも関わらず、酸性の水性媒体中に、通常のアキラルな界面活性剤からなるミセル反応場にし、それにアルコキシシランを混合して種構造を誘導した後、その種構造を有する溶液を酸性水溶液中に加えることで、ヘリックス構造のメソポーラスシリカが得られることが報告されている(例えば、非特許文献4参照)。このことは、へリックス構造そのものはキラリティとは関係ないことを示唆する。言い換えれば、キラルなメソポーラスシリカでは、へリックスそのものがキラリティであるというより、メソポアーにキラルな構造が付与されたということである。上記のようなキラルなミセルをテンプレートとするキラルメソポーラスシリカは、その合成段階のアルコキシシランのゾルゲル反応では、強い酸性媒体が必要であり、また90℃前後温度での熟成が必要となる。さらに、キラルなミセルの作製には、キラルな界面活性剤またはキラルなイオン性分子の合成が要求される。これらのキラルソースを供給することは既存産業では不可能である。産業的に広く用いられているキラル分子を用い、産業的に製造販売されている既存のアキラル分子と相互作用させ、キラル超分子錯体の誘導、さらには、それをテンプレートとしたキラルなミネラル、シリカなどを構築例は未だにない。 Contrary to using these chiral micelles as templates, in spite of the fact that no chiral compounds are used, a micellar reaction field consisting of ordinary achiral surfactants is formed in an acidic aqueous medium. It has been reported that a mesoporous silica having a helix structure can be obtained by mixing a alkoxysilane and inducing a seed structure and then adding a solution having the seed structure to an acidic aqueous solution (see, for example, Non-Patent Document 4). ). This suggests that the helix structure itself has nothing to do with chirality. In other words, in chiral mesoporous silica, the helix itself is not chiral, but a chiral structure is imparted to the mesopore. The chiral mesoporous silica using the above-described chiral micelle as a template requires a strong acidic medium in the sol-gel reaction of alkoxysilane at the synthesis stage, and requires aging at a temperature around 90 ° C. Furthermore, the production of chiral micelles requires the synthesis of chiral surfactants or chiral ionic molecules. Supplying these chiral sources is not possible in existing industries. Using chiral molecules that are widely used in industry, interacting with existing achiral molecules that are manufactured and sold industrially to induce chiral supramolecular complexes, as well as chiral minerals that use them as a template, silica There are still no examples of construction.
 一般的に、ミネラル空洞にキラリティが付与される場合、その空洞の壁は硬い無機質で構成されているので、耐熱性、耐久性に強く、半永久的なキラルな物質であると考えられる。しかしながら、通常のメソポーラスシリカの構造上の熱安定性が不十分であることを考えると、キラルなメソポーラスシリカのキラリティの熱安定性も期待できなくなる可能性が高い。現在多くのキラルメソポーラスシリカの研究報告が開示されているが、キラリティの熱安定性に論じた報告はなく、高温焼成によるキラル構造の維持については、ほとんど知見がない。 In general, when chirality is imparted to a mineral cavity, the cavity wall is composed of a hard inorganic material, and thus it is considered to be a semi-permanent chiral substance that is strong in heat resistance and durability. However, considering that the structural thermal stability of ordinary mesoporous silica is insufficient, it is highly possible that the chiral thermal stability of chiral mesoporous silica cannot be expected. At present, many research reports on chiral mesoporous silica are disclosed, but there is no report discussing the thermal stability of chirality, and little is known about the maintenance of chiral structure by high-temperature firing.
 また、キラリティを有するシリカ合成では、室温、中性、高速といったバイオミメティックシリシフィケーション手法によるものはなく、ゾルゲル反応の条件では、酸性または塩基性条件で行なうなど、その反応プロセスは環境対応的ではない欠点があった。 In addition, silica synthesis with chirality is not based on biomimetic silification techniques such as room temperature, neutrality, and high speed, and the reaction process is not environmentally friendly, such as in acidic or basic conditions under sol-gel reaction conditions. There were no drawbacks.
 シリカを材料及びデバイスとして考える場合、自然界に広く生息しているバイオシリカを理解する必要がある。バイオシリカは、珪藻類及びスポンジ類に分類されるが、それらは単細胞生物で、その細胞壁は極めて複雑なパターンと精巧な構造を有するシリカで構築されている。そのシリカ中には、ポリペプチド、タンパク質が複合されて、ナノレベルのハイブリッド構造を形成している。実際、このハイブリッド構造形成において、ポリペプチドまたはタンパク質は、ケイ酸を縮合し、それをシリカに成長させる触媒であると同時に、テンプレートとしても機能する。というのは、バイオシリカの細胞壁、即ちシリカ壁は、キラルなポリペプチド、キラルなタンパク質により誘導され、そのシリカ内部構造には、多かれ少なかれ、キラリティが伴うと推測できる。しかし、これは証明されたこともなく、また、この原理を利用した人工的にキラルシリカを設計・合成した例もない。ちなみに、自然界のバイオシリカは年間ギガトン単位で生成されるが、その生成過程では、常温・常圧・中性といった温和な条件下でケイ酸をシリカに変換する。 When thinking of silica as a material and device, it is necessary to understand biosilica that inhabits the natural world. Biosilica is classified into diatoms and sponges, which are unicellular organisms whose cell walls are constructed of silica with a very complex pattern and elaborate structure. In the silica, polypeptides and proteins are complexed to form a nano-level hybrid structure. In fact, in this hybrid structure formation, the polypeptide or protein functions as a template as well as a catalyst that condenses silicic acid and grows it on silica. This is because the cell wall of biosilica, that is, the silica wall, is derived from a chiral polypeptide or chiral protein, and it can be inferred that the silica internal structure is more or less accompanied by chirality. However, this has never been proved, and there is no example of artificially designing and synthesizing chiral silica using this principle. By the way, natural biosilica is produced in units of gigatons per year. In the process of production, silicic acid is converted to silica under mild conditions such as room temperature, normal pressure, and neutrality.
 近年、バイオシリカに啓発された研究は数多く報告されている。そこでの多くは、室温、常圧、中性といった条件で、有機ポリアミン、塩基性ポリペプチド類を用いたシリカナノ粒子またはシリカナノプレートなどの合成及び機構の検討に集中されている。しかしながら、その温和な条件を生かした、キラルシリカ合成を目的にした報告例はない。 In recent years, many studies enlightened by biosilica have been reported. Many of them are concentrated on the synthesis and study of the mechanism of silica nanoparticles or silica nanoplates using organic polyamines and basic polypeptides under conditions such as room temperature, atmospheric pressure, and neutrality. However, there are no reports on the synthesis of chiral silica that makes use of the mild conditions.
 本発明者らは、バイオシリカに学ぶ物づくりの一環として、すでに直鎖状ポリエチレンイミンの結晶化に着目し、それの繊維状結晶及びその結晶体を反応場に用いることによる複雑階層シリカ構築を展開して来た。しかし、これらの方法から得られる結晶体は、あくまでも、直鎖状ポリエチレンイミン単独の結晶であり、その結晶体は該ポリマー中のエチレンイミン、即ち1つのモノマーユニットに2分子の水が結合したことを特徴とするものであった。 The present inventors have already paid attention to the crystallization of linear polyethyleneimine as part of the manufacturing that learns from biosilica, and constructed a complex hierarchical silica by using the fibrous crystals and their crystals in the reaction field. It has developed. However, the crystal obtained by these methods is a crystal of linear polyethyleneimine alone, and the crystal is ethyleneimine in the polymer, that is, two molecules of water are bonded to one monomer unit. It was characterized by.
特開2001-253705号公報JP 2001-253705 A
 上記実情を鑑み、本発明が解決しようとする課題は、室温、常圧、中性の水性媒体中、バイオシリカ形成の基本原理、即ち、キラリティを有する有機構造体を触媒とテンプレートにし、そのテンプレートにより自発的に誘導されるゾルゲル反応を利用することによるキラリティを有するシリカ/有機物複合のシリカ系キラルナノ構造体、高温焼成にも安定なシリカ系キラルナノ構造体、シリカに有機シランが結合されてなる有機シラン修飾シリカ系キラルナノ構造体とそれらの製造方法を提供することにある。 In view of the above situation, the problem to be solved by the present invention is to use a basic principle of biosilica formation in room temperature, normal pressure, neutral aqueous medium, that is, an organic structure having chirality as a catalyst and a template. Silica / organic composite silica-based chiral nanostructures with chirality by utilizing the sol-gel reaction spontaneously induced by silica, silica-based chiral nanostructures that are stable even at high temperature firing, and organic silanes bonded to silica The object is to provide a silane-modified silica-based chiral nanostructure and a method for producing them.
 バイオシリカから学ぶシリカ構築において、有機マトリックスの存在はシリカ構造制御の前提条件である。その有機マトリックスは塩基性ポリアミンであることが多く、それらは、リン酸残基などの酸性分子との協調により、常温、常圧、中性の温和な条件下、シリカを効果的に析出させる。 In the silica construction learned from biosilica, the presence of organic matrix is a prerequisite for silica structure control. The organic matrix is often a basic polyamine, which effectively precipitates silica under mild conditions of normal temperature, normal pressure, and neutrality in cooperation with acidic molecules such as phosphate residues.
 本発明者は、前記課題を解決するために鋭意検討を重ねた結果、直鎖状ポリエチレンイミン骨格を有するアキラルなポリマーに対して、非蒸発性のキラルな有機酸を組み合わせることにより、従来の直鎖状ポリエチレンイミン骨格を有するポリマーと水分子との相互作用による結晶体ではなく、直鎖状ポリエチレンイミン骨格を有するポリマーの塩基とキラルな有機酸との酸塩基相互作用によって、直鎖状ポリエチレンイミン骨格を有するポリマー中に当該キラル分子が取り込まれることで誘導されるキラルな超分子錯体からなる結晶性構造体を構築し、そのキラル結晶性構造体をアルコキシシランの加水分解的縮合反応(即ち、ゾルゲル反応)の触媒及びテンプレートとして用いることにより、室温、中性の温和な条件下、キラリティを有するシリカ/有機物が複合されたナノ構造体、焼成高温にも安定なキラリティを有するシリカ系ナノ構造体が得られることを見出し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the present inventor has combined a non-evaporable chiral organic acid with an achiral polymer having a linear polyethyleneimine skeleton. A linear polyethyleneimine is formed by an acid-base interaction between a base of a polymer having a linear polyethyleneimine skeleton and a chiral organic acid, not a crystal formed by an interaction between a polymer having a linear polyethyleneimine skeleton and a water molecule. A crystalline structure composed of a chiral supramolecular complex derived by incorporating the chiral molecule into a polymer having a skeleton is constructed, and the chiral crystalline structure is subjected to a hydrolytic condensation reaction of alkoxysilane (ie, By using it as a catalyst and template for a sol-gel reaction) Nanostructures silica / organic substance complexed to, it found that silica-based nanostructures are obtained having stable chirality in firing a high temperature, and completed the present invention.
 即ち、本発明は、(1)直鎖状ポリエチレンイミン骨格を有するポリマー(A)の水溶液と、光学活性酒石酸(B)の水溶液とを混合し、酸塩基型錯体のキラル結晶体(X)を得る工程、(2)前記工程(1)で得られたキラル結晶体(X)の存在下で、シリカソース(Y’)のゾルゲル反応を行い、キラル結晶体(X)のキラル構造が転写されたシリカ(Y)で当該キラル結晶体(X)を被覆する工程、を有することを特徴とするシリカ系キラルナノ構造体の製造方法とその構造体〔以下、シリカ系キラルナノ構造体(α)と称する〕提供するものである。 That is, the present invention comprises (1) mixing an aqueous solution of a polymer (A) having a linear polyethyleneimine skeleton with an aqueous solution of optically active tartaric acid (B) to obtain an acid-base complex chiral crystal (X). (2) A sol-gel reaction of silica source (Y ′) is carried out in the presence of the chiral crystal (X) obtained in the step (1), and the chiral structure of the chiral crystal (X) is transferred. A process for coating the chiral crystal (X) with silica (Y), and a method for producing a silica-based chiral nanostructure and its structure [hereinafter referred to as silica-based chiral nanostructure (α)] ] To provide.
 更に本発明は、前記工程(2)の後に、(3)光学活性酒石酸(B)を酸性または塩基性水溶液で溶出する工程、又は(3’)前記工程(2)で得られた複合体を焼成し、有機成分を除去する工程、を有することを特徴とするシリカ構造体中にキラルな空間構造を有するシリカ系キラルナノ構造体の製造方法とその構造体〔以下、溶出して得られる構造体をシリカ系キラルナノ構造体(β)、焼成により得られる構造体をシリカ系キラルナノ構造体(γ)と称する〕を提供するものである。 Furthermore, the present invention provides (3) the step of eluting the optically active tartaric acid (B) with an acidic or basic aqueous solution after the step (2), or (3 ′) the complex obtained in the step (2). A method for producing a silica-based chiral nanostructure having a chiral spatial structure in a silica structure characterized by having a step of firing and removing organic components, and the structure [hereinafter, a structure obtained by elution Is referred to as a silica-based chiral nanostructure (β), and a structure obtained by firing is referred to as a silica-based chiral nanostructure (γ)].
 更に又本発明は、前記で得られたシリカ系キラルナノ構造体(α~γ)のシリカにO-Si-C結合が導入されてなることを特徴とする有機シラン修飾シリカ系キラルナノ構造体の製造方法とその構造体を提供するものである。 Furthermore, the present invention provides an organosilane-modified silica-based chiral nanostructure, wherein an O—Si—C bond is introduced into the silica of the silica-based chiral nanostructure (α to γ) obtained above. A method and structure are provided.
 本発明のキラル構造体は、シリカのナノ構造体、例えば、ナノファイバー、ナノシート中にキラリティを付与することを基本特徴とする。シリカはSiOとして示されるように、化学結合には-O-Si-O-Si-O-構造が繰り返し、三次元的に広がる。通常、この結合にはキラリティはないが、キラルなテンプレートの存在下で形成するシリカの-O-Si-O-Si-O-結合には、キラルのテンプレートの分子及び分子集合体の不斉立体空間構造が刻み込まれる。その結果、不斉立体空間構造を支えるシリカ結合からなる壁はキラリティでもある。従って、キラルな壁が気体と接する際の気体/固体界面、液体と接する際の液体/固体界面では、様々な不斉情報のやりとりが可能となる。当然ながら、そのキラルな壁に有機物を複合、または有機残基を結合させることにより、キラルな壁周辺の極性制御、親水化、疎水化、種々の官能基、または機能性分子ユニット、金属錯体などの配置ができる。さらに、キラルな壁(空洞)周辺に、金属ナノ粒子、金属酸化物を複合することも可能である。また、本発明のキラル構造体の製法は極めて簡便で、大スケールで合成ができる。従って、本発明のキラル構造体は、産業・医薬・農薬用の液晶性、薬理性、生理活性、抗微生物性、抗ウイルス性物質の製造における不斉有機合成の触媒、有機ラセミ体分割用の不斉吸着剤、偏光調光と関連する光センサー、セキュリティー材料など幅広い用途が可能である。 The chiral structure of the present invention is characterized by imparting chirality to silica nanostructures such as nanofibers and nanosheets. As indicated by SiO 2 , silica has a —O—Si—O—Si—O— structure that repeats in chemical bonds and spreads three-dimensionally. Usually, this bond has no chirality, but the —O—Si—O—Si—O— linkage of silica formed in the presence of a chiral template has an asymmetric stereochemistry of the chiral template molecule and molecular assembly. Spatial structure is carved. As a result, the walls composed of silica bonds that support the asymmetric spatial structure are also chiral. Therefore, various asymmetric information can be exchanged at the gas / solid interface when the chiral wall is in contact with the gas and at the liquid / solid interface when in contact with the liquid. Naturally, by combining organic substances or bonding organic residues to the chiral wall, polarity control around the chiral wall, hydrophilization, hydrophobization, various functional groups, functional molecular units, metal complexes, etc. Can be arranged. Furthermore, it is also possible to combine metal nanoparticles and metal oxides around the chiral wall (cavity). Moreover, the process for producing the chiral structure of the present invention is very simple and can be synthesized on a large scale. Accordingly, the chiral structure of the present invention is a catalyst for asymmetric organic synthesis in the production of liquid crystalline, pharmacological, physiologically active, antimicrobial, and antiviral substances for industrial, pharmaceutical, and agricultural chemicals, and for organic racemic resolution. A wide range of applications such as asymmetric adsorbents, optical sensors related to polarization dimming, and security materials are possible.
実施例1で得られたキラル結晶体のXRDチャートである。2 is an XRD chart of a chiral crystal obtained in Example 1. FIG. 実施例1で得られたキラル結晶体(a)及び原料のD-酒石酸(b)のCDスペクトルである。2 is a CD spectrum of the chiral crystal (a) obtained in Example 1 and the raw material D-tartaric acid (b). 実施例1で得られたシリカ系キラルナノ構造体(α-1)の固体29Si-NMRスペクトルである。3 is a solid-state 29 Si-NMR spectrum of the silica-based chiral nanostructure (α-1) obtained in Example 1. 実施例1で得られたシリカ系キラルナノ構造体(α-1)の固体13C-NMRスペクトルである。3 is a solid state 13 C-NMR spectrum of the silica-based chiral nanostructure (α-1) obtained in Example 1. 実施例1で得られたシリカ系キラルナノ構造体(α-1)のCDスペクトルである。2 is a CD spectrum of the silica-based chiral nanostructure (α-1) obtained in Example 1. 実施例1で得られたシリカ系キラルナノ構造体(α-1)のSEM写真像である。2 is a SEM photograph image of the silica-based chiral nanostructure (α-1) obtained in Example 1. 実施例1で得られたシリカ系キラルナノ構造体(α-1)のTEM写真像である。2 is a TEM photograph image of the silica-based chiral nanostructure (α-1) obtained in Example 1. 実施例2で得られたキラル結晶体のXRDチャートである。2 is an XRD chart of a chiral crystal obtained in Example 2. 実施例2で得られたキラル結晶体のCDスペクトルである。2 is a CD spectrum of the chiral crystal obtained in Example 2. 実施例2で得られたシリカ系キラルナノ構造体(α-2)の固体29Si-NMRスペクトルである。3 is a solid-state 29 Si-NMR spectrum of the silica-based chiral nanostructure (α-2) obtained in Example 2. 実施例1で得られたシリカ系キラルナノ構造体(α-2)の固体13C-NMRスペクトルである。3 is a solid state 13 C-NMR spectrum of the silica-based chiral nanostructure (α-2) obtained in Example 1. 実施例2で得られたシリカ系キラルナノ構造体(α-2)のCDスペクトルである。3 is a CD spectrum of the silica-based chiral nanostructure (α-2) obtained in Example 2. 実施例2で得られたシリカ系キラルナノ構造体(α-2)のSEM写真像である。3 is a SEM photograph image of the silica-based chiral nanostructure (α-2) obtained in Example 2. 実施例2で得られたシリカ系キラルナノ構造体(α-2)のTEM写真像である。3 is a TEM photograph image of the silica-based chiral nanostructure (α-2) obtained in Example 2. 実施例3で得られたシリカ系キラルナノ構造体(γ-1)のTEM写真像である。4 is a TEM photograph image of the silica-based chiral nanostructure (γ-1) obtained in Example 3. 実施例3で得られたシリカ系キラルナノ構造体(γ-1)のCDスペクトルである。3 is a CD spectrum of the silica-based chiral nanostructure (γ-1) obtained in Example 3. 実施例3における、ポリフィリン吸着後のシリカ系キラルナノ構造体(γ-1)のCDスペクトルである。FIG. 3 is a CD spectrum of silica-based chiral nanostructure (γ-1) after adsorption of porphyrin in Example 3. FIG. 実施例4で得られたシリカ系キラルナノ構造体(γ-2)のTEM写真像である。4 is a TEM photograph image of the silica-based chiral nanostructure (γ-2) obtained in Example 4. 実施例4で得られたシリカ系キラルナノ構造体(γ-2)のCDスペクトルである。4 is a CD spectrum of the silica-based chiral nanostructure (γ-2) obtained in Example 4. 実施例4における、ポリフィリン吸着後のシリカ系キラルナノ構造体(γ-2)のCDスペクトルである。FIG. 4 is a CD spectrum of silica-based chiral nanostructure (γ-2) after adsorption of porphyrin in Example 4. FIG. 実施例5における、有機シラン修飾後のナノ構造体のCDスペクトルである。6 is a CD spectrum of the nanostructure after modification with organosilane in Example 5. 実施例6における、有機シラン修飾後のナノ構造体のCDスペクトルである。It is CD spectrum of the nanostructure after the organosilane modification in Example 6. 実施例7で得られたキラル結晶体のXRDチャートである。6 is an XRD chart of a chiral crystal obtained in Example 7. 実施例7で得られたキラル結晶体のCDチャートである。7 is a CD chart of the chiral crystal obtained in Example 7. FIG. 実施例7で得られたシリカ系キラルナノ構造体(α-3)のCDスペクトルである。4 is a CD spectrum of the silica-based chiral nanostructure (α-3) obtained in Example 7. 実施例7で得られたシリカ系キラルナノ構造体(α-3)のSEM写真像である。4 is a SEM photograph image of the silica-based chiral nanostructure (α-3) obtained in Example 7. 比較例1で得られた結晶体のXRDチャートである。3 is an XRD chart of a crystal obtained in Comparative Example 1. 比較例1で得られたシリカ系ナノ構造体の固体29Si-NMRスペクトルである。3 is a solid-state 29 Si-NMR spectrum of a silica-based nanostructure obtained in Comparative Example 1. 比較例1で得られたシリカ系ナノ構造体の固体13C-NMRスペクトルである。3 is a solid state 13 C-NMR spectrum of the silica-based nanostructure obtained in Comparative Example 1. 比較例1で得られたシリカ系ナノ構造体のCDスペクトルである。2 is a CD spectrum of the silica-based nanostructure obtained in Comparative Example 1. 比較例1における、ポリフィリン吸着後のナノ構造体のCDスペクトルである。2 is a CD spectrum of a nanostructure after adsorption of porphyrin in Comparative Example 1. 比較例1で得られたシリカ系ナノ構造体のSEM写真像である。3 is a SEM photograph image of the silica-based nanostructure obtained in Comparative Example 1. 実施例8における酒石酸溶出工程前後のシリカ系キラルナノ構造体(β-1)のFT-IRスペクトルである。(a):溶出工程前、(b):溶出工程後4 is an FT-IR spectrum of a silica-based chiral nanostructure (β-1) before and after the tartaric acid elution step in Example 8. (A): Before the elution process, (b): After the elution process 実施例8のシリカ系キラルナノ構造体(β-1)、実施例9のシリカ系キラルナノ構造体(β-2)及び比較例2のシリカ系ナノ構造体にそれぞれ銅イオンを吸着させた後のCDスペクトルである。(a)実施例8、(b)実施例9、(c)比較例2。CD after adsorbing copper ions to the silica-based chiral nanostructure (β-1) of Example 8, the silica-based chiral nanostructure (β-2) of Example 9 and the silica-based nanostructure of Comparative Example 2 respectively. It is a spectrum. (A) Example 8, (b) Example 9, (c) Comparative Example 2. 実施例10のシリカ系キラルナノ構造体に2-メチル-1,4-ナフトキノンを吸着した後の固体CDスペクトルである。(a)測定用サンプルセル固定角度が0°、(b)測定用サンプルセル固定角度を90°回転、(c)比較の2-メチル-1,4-ナフトキノン粉末とKCl混合サンプル。3 is a solid CD spectrum after adsorbing 2-methyl-1,4-naphthoquinone on the silica-based chiral nanostructure of Example 10. FIG. (A) Measurement sample cell fixing angle is 0 °, (b) Measurement sample cell fixing angle is rotated by 90 °, (c) Comparative 2-methyl-1,4-naphthoquinone powder and KCl mixed sample.
 本発明者らは既に、直鎖状ポリエチレンイミン骨格を有するポリマーが水性媒体中で自己組織化的に成長する結晶性会合体を反応場にし、溶液中でその会合体表面にてアルコキシシランを加水分解的に縮合させ、シリカを析出させることで、ナノファイバー、ナノシートなどを基本ユニットにした複雑形状のシリカ系ナノ構造体(粉体)及びそれらの製法を提供した(特開2005-264421号公報、特開2005-336440号公報、特開2006-063097号公報、特開2007-051056号公報、Chem.Commun.、2005、1399-1401、Langmuir 2005、21、3136-3145、Adv.Funct.Mater.2006、16、2205-2212、CrystEngComm、2009、11、2695-2700等参照)。 The present inventors have already used a crystalline aggregate in which a polymer having a linear polyethyleneimine skeleton grows in an aqueous medium in a self-organizing manner as a reaction field, and hydrolyzes alkoxysilane on the surface of the aggregate in a solution. A silica-based nanostructure having a complex shape (powder) having nanofibers, nanosheets, and the like as basic units by decomposing condensation and precipitating silica, and a method for producing the same have been provided (Japanese Patent Laid-Open No. 2005-264421) JP, 2005-336440, JP 2006-063097, JP 2007-051056, Chem. Commun., 2005, 1399-1401, Langmuir 2005, 21, 3136-3145, Adv. 2006, 16, 2205-2212, CrystEngCo m, see, for example, 2009,11,2695-2700).
 これらの技術の場合、直鎖状ポリエチレンイミン骨格を有するポリマーを熱水中溶解させ、その溶液を室温までに冷やすことで、ポリマー結晶体が析出することを利用するものである。その結晶体は、必ず一個のエチレンイミンユニットに二個の水分子が結合した組成で構成される。後は、この結晶体をシリカソースと単に室温混合するだけで、特種形状を伴うシリカを迅速に析出させることができる。このプロセスは極めて単純かつ高効率であるが、当然キラリティを発現するものではない。 These techniques utilize the fact that polymer crystals are precipitated by dissolving a polymer having a linear polyethyleneimine skeleton in hot water and cooling the solution to room temperature. The crystal always has a composition in which two water molecules are bonded to one ethyleneimine unit. Thereafter, the silica with a special shape can be rapidly precipitated by simply mixing the crystal with a silica source at room temperature. This process is extremely simple and highly efficient, but naturally does not exhibit chirality.
 直鎖状ポリエチレンイミンや、これを有するポリマーの結晶化において、水分子の替わりに非蒸発性でキラルな化合物を該結晶中に取り入れることができれば、安定性に優れるキラル結晶性の構造物が得られると考えられる。本発明では、非蒸発性でありかつ光学活性(キラル)であるLまたはD-酒石酸が水分子と同様に直鎖状ポリエチレンイミン骨格を有するポリマーと結合しながら酸塩基型錯体であるキラル結晶体に成長することを見出したことにより、本発明が完成したものである。 If a non-evaporable chiral compound can be incorporated into the crystal in place of water molecules in the crystallization of linear polyethyleneimine or a polymer having the same, a chiral crystalline structure with excellent stability can be obtained. It is thought that. In the present invention, non-evaporable and optically active (chiral) L or D-tartaric acid is an acid-base complex while being bonded to a polymer having a linear polyethyleneimine skeleton in the same manner as a water molecule. Thus, the present invention has been completed.
 [直鎖状ポリエチレンイミン骨格を有するポリマー(A)]
 本発明で用いる直鎖状ポリエチレンイミン骨格を有するポリマー(A)としては、線状、星状、櫛状構造の単独重合体であっても、他の繰り返し単位を有する共重合体であっても良い。共重合体の場合には、該ポリマー(A)中の直鎖状ポリエチレンイミン骨格のモル比が20%以上であることが、安定な結晶を形成できる点から好ましく、該ポリエチレンイミン骨格の繰り返し単位数が10以上である、ブロック共重合体であることがより好ましい。
[Polymer having linear polyethyleneimine skeleton (A)]
The polymer (A) having a linear polyethyleneimine skeleton used in the present invention may be a linear, star-like, or comb-like homopolymer, or a copolymer having other repeating units. good. In the case of a copolymer, the molar ratio of the linear polyethyleneimine skeleton in the polymer (A) is preferably 20% or more from the viewpoint that stable crystals can be formed. The repeating unit of the polyethyleneimine skeleton It is more preferable that the number is 10 or more.
 前記直鎖状ポリエチレンイミン骨格を有するポリマー(A)としては、結晶性会合体形成能が高いほど好ましい。従って、単独重合体であっても共重合体であっても、直鎖状ポリエチレンイミン骨格部分に相当する分子量が500~1,000,000の範囲であることが好ましい。これら直鎖状ポリエチレンイミン骨格を有するポリマー(A)は市販品または本発明者らがすでに開示した合成法(前記の特許文献や非特許文献を参照。)により得ることができる。 As the polymer (A) having a linear polyethyleneimine skeleton, the higher the ability to form a crystalline aggregate, the more preferable. Therefore, it is preferable that the molecular weight corresponding to the linear polyethyleneimine skeleton portion is in the range of 500 to 1,000,000, whether it is a homopolymer or a copolymer. The polymer (A) having a linear polyethyleneimine skeleton can be obtained from a commercially available product or a synthesis method already disclosed by the present inventors (see the above-mentioned patent documents and non-patent documents).
 [光学活性酒石酸(B)]
 酒石酸は市販されている、D-酒石酸、L-酒石酸を単独で、又は、D-体とL-体との非等量混合物(エナンチオマー過剰の混合物)を用いることができる。これら酒石酸の光学異性体を選択することにより、得られるポリマー/酒石酸の酸塩基型錯体であるキラル結晶体の構造を制御することが可能である。
[Optically active tartaric acid (B)]
As tartaric acid, commercially available D-tartaric acid and L-tartaric acid can be used alone, or a non-equal mixture of D-form and L-form (mixture of excess enantiomer) can be used. By selecting these optical isomers of tartaric acid, it is possible to control the structure of the resulting chiral crystal which is an acid-base complex of polymer / tartaric acid.
 [ポリマー/酒石酸の酸塩基型錯体であるキラル結晶体(X)]
 前記ポリマーと酒石酸とからなる酸塩基型錯体は白色粉末である。その粉末は1~80μmの粒子径を有する粒子であり、特に10~50μmの粒子径を有する粒子とすることが可能である。このとき、粒子は完全な球体であることを必要とせず、楕円形であっても、又複数の球体の一部が重なり合った形状であって良い。楕円形のときの粒子径はもっとも長い部分を言うものであり、複数の球体が重なり合った場合には、それぞれの球体の最も長い部分を便宜上粒子径という。
[Chiral crystal (X) which is an acid-base complex of polymer / tartaric acid]
The acid-base complex composed of the polymer and tartaric acid is a white powder. The powder is a particle having a particle size of 1 to 80 μm, and can be a particle having a particle size of 10 to 50 μm. At this time, the particles do not need to be perfect spheres, and may be elliptical or may have a shape in which a part of a plurality of spheres overlap. The particle diameter in the case of an ellipse refers to the longest part. When a plurality of spheres overlap, the longest part of each sphere is referred to as a particle diameter for convenience.
 ポリマー/酒石酸の酸塩基型錯体の粒子の内部構造は、用いる酒石酸の種類により変化させることが可能である。即ち、D-酒石酸又はL-酒石酸を単独で用いる場合には、1~50nmのシート状のナノ構造体(ナノシート)を基本骨格とし、これが複雑に絡み合った集合体となっている(図面参照)。 The internal structure of the polymer / tartaric acid acid-base complex particles can be changed depending on the type of tartaric acid used. That is, when D-tartaric acid or L-tartaric acid is used alone, a sheet-like nanostructure (nanosheet) of 1 to 50 nm is used as a basic skeleton, and this is a complex intertwined aggregate (see drawings). .
 D-酒石酸とL-酒石酸とを非等量比の割合で混合した酒石酸(エナンチオマー過剰状態)を用いると、粒状結晶を形成し、その一つの粒が1~50nmの厚さを有するシートが一定の間隔(5~30nm)で重なってできた多重の積層構造であることを特徴とする。 When tartaric acid (enantiomeric excess state) in which D-tartaric acid and L-tartaric acid are mixed at a non-equal ratio is used, granular crystals are formed, and a sheet of which one grain has a thickness of 1 to 50 nm is constant. It is characterized in that it has a multi-layered structure formed by overlapping at intervals of 5 to 30 nm.
 いずれの場合においても、ポリマー/酒石酸からなる酸塩基型錯体は、DSCでの一回加熱走査範囲(150℃以下まで)において、100℃以上の温度から大きく吸熱し、融点を示さないことを特徴とする。即ち、結晶体でありながら、酒石酸のカルボン酸とイミンとの間での脱水を起こし、アミド化が進行している。 In any case, the acid-base complex composed of polymer / tartaric acid absorbs a large amount of heat from a temperature of 100 ° C. or higher and does not exhibit a melting point in a single heating scanning range (up to 150 ° C. or lower) in DSC. And That is, although it is a crystal, dehydration occurs between carboxylic acid of tartaric acid and imine, and amidation proceeds.
 又、何れの酒石酸を用いても、その結晶体は、XRD測定において酒石酸のL体またはD体の種類に関わらず、同様な回折パターンを示すことを特徴とする。 In addition, regardless of the tartaric acid used, the crystal is characterized by showing a similar diffraction pattern regardless of the type of L-form or D-form of tartaric acid in XRD measurement.
 [酸塩基型錯体からなるキラル結晶体(X)の単離]
 酸塩基型錯体からなるキラル結晶体(X)は、下記の工程を経由して得ることができる。
(I)直鎖状ポリエチレンイミン骨格を有するポリマー(A)を熱水中に溶解させた(I液)を調製する工程、
(II)光学活性酒石酸(B)を熱水中に溶解させた(II液)を調製する工程、
(III)(I液)と(II液)とを混合し、ポリマー(A)と光学活性酒石酸(B)との酸塩基型錯体を形成させる工程、
(IV)(III)で得られた酸塩基型錯体を含む混合熱水液を降温させることにより、酸塩基型錯体からなるキラル結晶体を析出させる工程。
[Isolation of chiral crystal (X) comprising acid-base complex]
The chiral crystal (X) comprising an acid-base complex can be obtained through the following steps.
(I) a step of preparing (Liquid I) in which a polymer (A) having a linear polyethyleneimine skeleton is dissolved in hot water;
(II) a step of preparing (II solution) in which optically active tartaric acid (B) is dissolved in hot water;
(III) (I liquid) and (II liquid) are mixed to form an acid-base complex of polymer (A) and optically active tartaric acid (B),
(IV) A step of precipitating a chiral crystal composed of an acid-base type complex by lowering the temperature of the mixed hot water solution containing the acid-base type complex obtained in (III).
 直鎖状ポリエチレンイミン骨格を有するポリマー(A)としては、前述のものを何れも用いることができ、ポリマー(A)の粉末を蒸留水に加え、それを80℃以上まで加熱することによって、ポリマーの熱水溶液(I液)を調製する。このとき、ポリマー(A)の濃度としては、0.5~8質量%の範囲であることが好ましい。 As the polymer (A) having a linear polyethyleneimine skeleton, any of those described above can be used. By adding the polymer (A) powder to distilled water and heating it to 80 ° C. or higher, the polymer is obtained. A hot aqueous solution (solution I) is prepared. At this time, the concentration of the polymer (A) is preferably in the range of 0.5 to 8% by mass.
 一方、光学活性を有する酒石酸(B)の粉末を蒸留水に加え、それを80~100℃の範囲で加熱し、酒石酸の熱水溶液(II液)を調製する。このとき、酒石酸(B)の濃度としては1~15質量%の範囲であることが好ましい。 On the other hand, tartaric acid (B) powder having optical activity is added to distilled water and heated in the range of 80 to 100 ° C. to prepare a hot aqueous solution of tartaric acid (Part II). At this time, the concentration of tartaric acid (B) is preferably in the range of 1 to 15% by mass.
 上記で得られた、(I液)と(II液)とを混合し、80~100℃の温度範囲から冷却する。このとき冷却方法については特に限定されるものではなく、空気雰囲気下で自然冷却、または氷水に混合による冷却などにし、室温又は室温以下まで下げる方法で良い。この過程で、白い粉末が析出してくる。この粉末がキラリティを有するキラル結晶体(X)である。 (I liquid) and (II liquid) obtained above are mixed and cooled from a temperature range of 80 to 100 ° C. At this time, the cooling method is not particularly limited, and may be a method of natural cooling in an air atmosphere or cooling by mixing with ice water to lower the temperature to room temperature or below. In this process, white powder is deposited. This powder is a chiral crystal (X) having chirality.
 熱水溶液である(I液)と(II液)とを混合する際、(I液)中のエチレンイミンユニットのモル数(アミン官能基のモル数)と(II液)中のカルボン酸官能基のモル数との比が1:1であることが最も好ましく、等モルではない場合ではいずれかの官能基の過剰範囲として10モル%以内にすることが好ましい。 When mixing (I liquid) and (II liquid) which are hot aqueous solutions, the number of moles of ethyleneimine units (number of moles of amine functional group) in (liquid I) and the carboxylic acid functional group in (liquid II) It is most preferable that the ratio with respect to the number of moles is 1: 1, and when it is not equimolar, the excess range of any functional group is preferably within 10 mol%.
 また、自然冷却過程において混合液は静置したままでも良く、又は攪拌や振動を与えることによって析出を促進させることもできる。さらに、熱水溶液中に、氷水を加えて冷却させる際には、攪拌などの方法で、キラル結晶体(X)の析出を促進させることもできる。 In addition, the liquid mixture may be left standing in the natural cooling process, or precipitation can be promoted by applying stirring or vibration. Furthermore, when ice water is added to the hot aqueous solution and cooled, precipitation of the chiral crystal (X) can be promoted by a method such as stirring.
 得られた白色の析出物は、そのまま単離しても、また蒸留水で洗浄した後、室温下で乾燥させて単離しても良い。更に蒸留水での洗浄後、引き続きエタノール、イソプロパノール、アセトンなどの有機溶剤で洗浄し、乾燥させることもできる。 The obtained white precipitate may be isolated as it is, or after washing with distilled water and drying at room temperature. Further, after washing with distilled water, it can be washed with an organic solvent such as ethanol, isopropanol, acetone, and dried.
 上述のようにして得られるキラル結晶体(X)は、固体円二色性スペクトル(以下CDスペクトルと称す。)で、いずれも偏光の負のコットン効果または正のコットン効果を引き起こすことができる。 The chiral crystal (X) obtained as described above is a solid circular dichroism spectrum (hereinafter referred to as a CD spectrum), and both can cause a negative cotton effect or a positive cotton effect of polarized light.
[キラル結晶体(X)とシリカ(Y)とからなるシリカ系キラルナノ構造体]
 上記のキラル結晶体(X)の構成には、アミノ基とカルボン酸残基とが高密度に含まれている。この2種類の官能基は、アルコキシシランの加水分解及びそれらの縮合反応の触媒として機能する。即ち、アミノ基とカルボン酸残基の同時存在は、シリケートの加水分解的縮合反応(ゾルゲル反応)を促進させる有効な触媒である。従って、前記キラル結晶体(X)をシリカソース(Y’)と混合することで、その結晶体(X)表面でのゾルゲル反応が進行し、キラル結晶体(X)とシリカ(Y)とが複合したシリカ系キラルナノ構造体(α)を得ることができる。
[Silica-based chiral nanostructure consisting of chiral crystal (X) and silica (Y)]
The structure of the chiral crystal (X) contains amino groups and carboxylic acid residues at high density. These two types of functional groups function as catalysts for the hydrolysis of alkoxysilanes and their condensation reactions. That is, the simultaneous presence of an amino group and a carboxylic acid residue is an effective catalyst for promoting the hydrolytic condensation reaction (sol-gel reaction) of silicate. Therefore, by mixing the chiral crystal (X) with the silica source (Y ′), the sol-gel reaction on the surface of the crystal (X) proceeds, and the chiral crystal (X) and the silica (Y) are separated. A composite silica-based chiral nanostructure (α) can be obtained.
 上記のゾルゲル反応において、キラル結晶体(X)そのものを触媒とするため、形成するシリカ(Y)の骨格にはキラルな構造が誘導されると考えられる。即ち、キラル結晶体(X)中のキラル情報が析出するシリカ(Y)の構造に転写され、シリカ(Y)構造そのものに、キラリティが発現する。即ち、本発明でのキラルナノ構造体は、内部の有機成分にキラリティが保持されるだけではなく、それにより触媒されたシリカ(Y)にもキラル構造が付与されることに特徴を有する。 In the above sol-gel reaction, since the chiral crystal (X) itself is used as a catalyst, it is considered that a chiral structure is induced in the skeleton of silica (Y) to be formed. That is, the chiral information in the chiral crystal (X) is transferred to the silica (Y) structure on which the chiral information is deposited, and chirality appears in the silica (Y) structure itself. That is, the chiral nanostructure according to the present invention is characterized in that not only the chirality is maintained in the internal organic component but also the silica (Y) catalyzed thereby is imparted with a chiral structure.
 本発明でのシリカ系キラルナノ構造体(α)を得る方法としては、基本的に、一定濃度のキラル結晶体(X)を水中分散し、それにシリカソース(Y’)液を混合し、その混合物を室温にて一定時間攪拌すればよい。 In order to obtain the silica-based chiral nanostructure (α) in the present invention, basically, a constant concentration of the chiral crystal (X) is dispersed in water, and a silica source (Y ′) solution is mixed therewith, and the mixture May be stirred for a certain time at room temperature.
 キラル結晶体(X)の水中分散濃度は、0.5~15wt%に設定することができる。また、シリカソース(Y’)は液体そのまま、またはアルコール溶液に調製し、キラル結晶体(X)と混合する。 The dispersion concentration in water of the chiral crystal (X) can be set to 0.5 to 15 wt%. Silica source (Y ′) is prepared as a liquid or an alcohol solution and mixed with chiral crystal (X).
 シリカソース(Y’)としては、アルコキシシラン類であれば好適に用いることができる。アルコキシシランの濃度は、キラル結晶体(X)の濃度と比例的に調整し、当該濃度が低い場合にはアルコキシシラン類の濃度も低くし、濃度が高い場合には、アルコキシシラン類の濃度を高めることが望ましい。概ね、シリカソース(Y’)の使用量はケイ素換算でポリマー(A)のアミンのモル数に対し、2~50倍モル数にすることができる。 As the silica source (Y ′), any alkoxysilane can be suitably used. The concentration of the alkoxysilane is adjusted in proportion to the concentration of the chiral crystal (X). When the concentration is low, the concentration of the alkoxysilane is also reduced. When the concentration is high, the concentration of the alkoxysilane is decreased. It is desirable to increase. In general, the amount of silica source (Y ′) used can be 2 to 50 times the number of moles of the amine of the polymer (A) in terms of silicon.
 アルコキシシラン類化合物として、テトラアルコキシシラン類、アルキルトリアルコキシシラン類、ジアルキルジアルコキシシラン類などが挙げられる。 Examples of the alkoxysilane compounds include tetraalkoxysilanes, alkyltrialkoxysilanes, and dialkyl dialkoxysilanes.
 テトラアルコキシシラン類としては、例えば、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシラン、テトラ-t-ブトキシシランなどが挙げられる。 Examples of tetraalkoxysilanes include tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, and tetra-t-butoxysilane.
 シリカソース(Y’)としては、特にテトラメトキシシランの4~5量体である縮合物(コルコート株式会社製の商品名MS-51等)、テトラエトキシシランの4~5量体である縮合物(コルコート株式会社製の商品名ES-51等)などを好適に用いることができる。 Examples of the silica source (Y ′) include condensates such as tetramethoxysilane tetramer silane (trade name MS-51 manufactured by Colcoat Co., Ltd.), tetraethoxysilane tetramer silane condensate. (Product name ES-51 manufactured by Colcoat Co., Ltd.) can be preferably used.
 上記のシリカソース(Y’)としては、テトラアルコキシシラン及びそれのオリゴマーを単独使用することが好ましいが、必要により、それにトリアルコキシシラン、ジアルコキシシラン等のその他のアルコキシシラン類を混合して用いることもできる。 As the silica source (Y ′), tetraalkoxysilane and oligomers thereof are preferably used alone, but if necessary, other alkoxysilanes such as trialkoxysilane and dialkoxysilane are mixed and used. You can also.
 その他のアルコキシシラン類としては、例えば、メチルトリメトキシラン、メチルトリエトキシラン、エチルトリメトキシラン、エチルトリエトキシシラン、n-プロピルトリメトキシラン、n-プロピルトリエトキシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシラン、3-メルカプトプロピルトリメトキシシラン、3-メルカプトトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3-メタクリルオキシプロピルトリメトキシシラン、3-メタクリルオキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシラン、p-クロロメチルフェニルトリメトキシラン、p-クロロメチルフェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシランなどが挙げられる。 Other alkoxysilanes include, for example, methyltrimethoxylane, methyltriethoxylane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxylane, n-propyltriethoxylane, iso-propyltrimethoxysilane , Iso-propyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyl Triethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltrimethoxysilane, 3-mercaptotriethoxysilane, 3,3,3-trifluoro Propyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxylane, p-chloro Examples thereof include methylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, and diethyldiethoxysilane.
 又、シリカ系キラルナノ構造体(α)は、その組成として、有機成分が30~60wt%含むことができる。その有機成分はシリカと複合化され、シリカ成分に包埋された状態であることを特徴とする。 Further, the silica-based chiral nanostructure (α) can contain 30 to 60 wt% of organic components as its composition. The organic component is combined with silica and embedded in the silica component.
 [光学活性酒石酸(B)が除去されたシリカ系キラルナノ構造体(β)]
 上記のシリカ系キラルナノ構造体(α)は、直鎖状ポリエチレンイミン骨格を有するポリマー(A)、光学活性酒石酸(B)、シリカ(Y)の三つの成分を主成分として構成されるが、その構造体中では、ポリマー(A)とシリカ(Y)との間は、強く物理結合しているため、そのポリマー(A)を内部に残したまま、光学活性酒石酸(B)成分だけを当該構造体(α)から洗い落とし(溶出させ)、直鎖状ポリエチレンイミン骨格を有するポリマー(A)とシリカ(Y)とを主成分とするシリカ系キラルナノ構造体(β)を得ることができる。尚、本発明において主成分とするとは、意図的に第三成分を用いない限りにおいて、原料に由来する不純物以外の成分、若しくは溶出や焼成によって充分に除去できずに変性等が起きた成分が入ることがあっても、その他の成分を含まないことを言うものである。
[Silica-based chiral nanostructure (β) from which optically active tartaric acid (B) has been removed]
The silica-based chiral nanostructure (α) is composed mainly of three components of a polymer (A) having a linear polyethyleneimine skeleton, an optically active tartaric acid (B), and silica (Y). In the structure, since the polymer (A) and the silica (Y) are strongly physically bonded, only the optically active tartaric acid (B) component is included in the structure while the polymer (A) remains inside. The silica-based chiral nanostructure (β) containing the polymer (A) having a linear polyethyleneimine skeleton and silica (Y) as main components can be obtained by washing out (eluting) the body (α). In the present invention, the main component is a component other than impurities derived from the raw material, or a component that has not been sufficiently removed by elution or firing and has undergone modification or the like, unless the third component is intentionally used. Even if it enters, it means that it does not contain other ingredients.
 光学活性酒石酸(B)の選択的除去には、塩基性水溶液、アルコール類溶剤及び酸性水溶液を用いることができる。具体的には、シリカ系キラルナノ構造体(α)を上記の溶液や溶剤中に浸漬して室温放置したり、その混合物を加熱したりすることで酒石酸(B)成分をシリカ系キラルナノ構造体(α)から抽出し、残った固体成分を濾過、遠心分離などにより回収することで容易に得ることができる。 For the selective removal of the optically active tartaric acid (B), a basic aqueous solution, an alcohol solvent and an acidic aqueous solution can be used. Specifically, the tartaric acid (B) component is converted into a silica-based chiral nanostructure (by immersing the silica-based chiral nanostructure (α) in the above solution or solvent and leaving it at room temperature, or heating the mixture. It can be easily obtained by extracting from α) and recovering the remaining solid component by filtration, centrifugation or the like.
 上記塩基性水溶液としては、例えば、アンモニア、トリエチルアミン、ジエチルアミン、エチルアミン、エチレンジアミン、ピリジンなどの塩基性有機化合物の水溶液を用いることができる。これらの水溶液の濃度は0.1~1mol/Lであればよく、実際の使用量としては、シリカ系キラルナノ構造体(α)中に含まれる酒石酸(B)量に対して過剰であれば好適であるが、モル数的では1.5~10倍等量であることが望ましい。シリカ系キラルナノ構造体(α)を塩基性水溶液中に浸漬する時間は1~10時間の範囲で適宜調整できるが、一回浸漬後、上澄みを除去し、さらに浸漬するなど、2~3回繰り返し浸漬することで、酒石酸(B)を完全に除去することができる。 As the basic aqueous solution, for example, an aqueous solution of a basic organic compound such as ammonia, triethylamine, diethylamine, ethylamine, ethylenediamine, or pyridine can be used. The concentration of these aqueous solutions may be 0.1 to 1 mol / L, and the actual amount used is suitable if it is excessive relative to the amount of tartaric acid (B) contained in the silica-based chiral nanostructure (α). However, in terms of the number of moles, it is desirable that the amount is 1.5 to 10 times equivalent. The time for immersing the silica-based chiral nanostructure (α) in the basic aqueous solution can be adjusted as appropriate within a range of 1 to 10 hours, but after immersing once, removing the supernatant and further immersing it twice or three times. By soaking, tartaric acid (B) can be completely removed.
 上記アルコール類溶剤として、メタノール、エタノール、エチレングリコールなどを用いることができる。その際、有機アミン類化合物を混合するのも好適である。 Methanol, ethanol, ethylene glycol or the like can be used as the alcohol solvent. In that case, it is also suitable to mix an organic amine compound.
 上記酸性水溶液として、塩酸水溶液、硝酸水溶液、硫酸水溶液、リン酸水溶液などの無機酸の水溶液を用いることができる。この場合、酸の濃度は0.1~5.0mol/L範囲であれば好適である。直鎖状ポリエチレンイミン骨格を有するポリマー(A)は無機酸性化合物によりプロトン化されると水中に溶けやすくなるが、水溶液のpH値が1以下のところでは不溶性である。従って、ポリマー(A)成分の流出を防ぐためには、高濃度の酸性水溶液を用いることが望ましい。 As the acidic aqueous solution, an aqueous solution of an inorganic acid such as an aqueous hydrochloric acid solution, an aqueous nitric acid solution, an aqueous sulfuric acid solution, or an aqueous phosphoric acid solution can be used. In this case, the acid concentration is preferably in the range of 0.1 to 5.0 mol / L. The polymer (A) having a linear polyethyleneimine skeleton easily dissolves in water when protonated with an inorganic acidic compound, but is insoluble when the pH value of the aqueous solution is 1 or less. Therefore, in order to prevent the polymer (A) component from flowing out, it is desirable to use a highly concentrated acidic aqueous solution.
 酒石酸(B)成分が除去された後、得られるシリカ系キラルナノ構造体(β)中にはポリマー(A)は残存し、シリカ(Y)とポリマー(A)とが複合されているが、この複合体もキラリティを示す。 After the tartaric acid (B) component is removed, the polymer (A) remains in the resulting silica-based chiral nanostructure (β), and the silica (Y) and the polymer (A) are combined. The complex also exhibits chirality.
 このシリカ系キラルナノ構造体(β)中の、直鎖状ポリエチレンイミン骨格を有するポリマー(A)の含有率(即ち構造体中の有機成分)は5~30wt%の範囲である。 In this silica-based chiral nanostructure (β), the content of the polymer (A) having a linear polyethyleneimine skeleton (that is, the organic component in the structure) is in the range of 5 to 30 wt%.
 酒石酸(B)成分が除去されたポリマー(A)とシリカ(Y)とを主成分とするシリカ系キラルナノ構造体(β)は、固体CDスペクトルにて、正のコットンまたは負のコットンの偏光回転を示す。この偏向回転の方向は、酒石酸(B)成分を溶出させる前のシリカ系キラルナノ構造体(α)と同じであり、溶出によってもキラリティが維持される、即ち、当該構造体(β)中にキラルな空間構造を有するものである。 Silica-based chiral nanostructure (β) composed mainly of polymer (A) from which tartaric acid (B) component is removed and silica (Y) has a polarization rotation of positive cotton or negative cotton in the solid CD spectrum. Indicates. The direction of this deflection rotation is the same as that of the silica-based chiral nanostructure (α) before the tartaric acid (B) component is eluted, and the chirality is maintained by the elution, that is, the chirality in the structure (β) is maintained. It has a special spatial structure.
 [酒石酸(B)とポリマー(A)とが除去されてなるシリカ系キラルナノ構造体(γ)]
 前述のシリカ系キラルナノ構造体(α)中の有機成分である酒石酸(B)とポリマー(A)は、当該構造体(α)を空気中で加熱焼成することで分解除去される。これにより、シリカ(Y)成分を主成分とするシリカ系キラルナノ構造体(γ)を得ることができる。
[Silica-based chiral nanostructure (γ) obtained by removing tartaric acid (B) and polymer (A)]
Tartaric acid (B) and polymer (A), which are organic components in the silica-based chiral nanostructure (α), are decomposed and removed by heating and firing the structure (α) in air. Thereby, the silica-type chiral nanostructure ((gamma)) which has a silica (Y) component as a main component can be obtained.
 有機成分の加熱除去には、特別な条件設定は必要なく、電気炉中有機成分が分解される温度範囲にて一定時間焼成することで十分である。 ¡No special conditions are required for heating and removing the organic component, and it is sufficient to fire for a certain time in the temperature range where the organic component is decomposed in the electric furnace.
 例えば、電気炉焼成温度範囲としては、250℃以上1000℃以下に設定することができる。有機成分を効率的に除去することを考えた場合、加熱温度は400℃以上であることが望ましい。 For example, the electric furnace firing temperature range can be set to 250 ° C. or higher and 1000 ° C. or lower. In view of efficiently removing the organic components, the heating temperature is desirably 400 ° C. or higher.
 加熱焼成温度は、有機成分を分解除去すると同時に、得られるシリカ系キラルナノ構造体(γ)の化学結合変化を起こすこともあるので、表面積は焼成温度の増大により低下する。従って、高い比表面積を得るためには、焼成温度を一概に上げることより、比表面積要求範囲と合わせて、適宜設定することが望ましい。 The heating and baking temperature decomposes and removes organic components, and at the same time, may cause a chemical bond change in the resulting silica-based chiral nanostructure (γ), so the surface area decreases with an increase in the baking temperature. Therefore, in order to obtain a high specific surface area, it is desirable to set appropriately according to the specific surface area requirement range by generally raising the firing temperature.
 加熱焼成時間は概ね1~4時間であればよく、高温焼成では時間を短くすることが望ましい。 The heating and baking time may be approximately 1 to 4 hours, and it is desirable to shorten the time for high-temperature baking.
 加熱焼成後に得られるシリカ系キラルナノ構造体(γ)の形状には変化はなく、ナノファイバー、ナノリボン、ナノシート等のシリカ系キラルナノ構造体(α)の形状を維持する。焼成後のシリカ系キラルナノ構造体(γ)の比表面積は400~700m/gの範囲であり、また、固体CDスペクトルにおいて、偏光の負のコットンまたは正のコットン効果を示す。即ち、シリカ系キラルナノ構造体(γ)中にキラルな空間構造を有するものである。 There is no change in the shape of the silica-based chiral nanostructure (γ) obtained after heating and baking, and the shape of the silica-based chiral nanostructure (α) such as nanofibers, nanoribbons, and nanosheets is maintained. The specific surface area of the silica-based chiral nanostructure (γ) after firing is in the range of 400 to 700 m 2 / g, and exhibits a negative cotton or positive cotton effect of polarization in the solid CD spectrum. That is, the silica-based chiral nanostructure (γ) has a chiral spatial structure.
 又、シリカ系キラルナノ構造体(α)からの有機成分の除去には、加熱焼成以外、酸性溶液洗浄法でも可能である。即ち、酒石酸(B)を選択的に除去するには、前述のように塩基性水溶液または高濃度の酸性水溶液が要求されるが、酒石酸(B)とポリマー(A)とを同時に除去するには、pH値が3~5の範囲の酸性水溶液中、90℃以下の温度にて加熱洗浄する方式を繰返し用いることで、有機成分を完全に除去することもできる。 In addition, the removal of the organic component from the silica-based chiral nanostructure (α) can be performed by an acidic solution cleaning method other than heating and baking. That is, in order to selectively remove tartaric acid (B), a basic aqueous solution or a high concentration acidic aqueous solution is required as described above. To remove tartaric acid (B) and polymer (A) simultaneously, The organic component can be completely removed by repeatedly using a method of heating and washing in an acidic aqueous solution having a pH value of 3 to 5 at a temperature of 90 ° C. or lower.
 本発明のシリカ系キラルナノ構造体(α~γ)は、ナノファイバー、ナノリボン、ナノシート等のナノ構造体の集合体であるが、それらの太さまたは厚さが10~100nmの範囲であり、長さは200nm~10μmの範囲であり、その集合体の外観は球状体に近く、それの大きさは1~20μmの範囲であることを特徴とする。 The silica-based chiral nanostructure (α to γ) of the present invention is an aggregate of nanostructures such as nanofibers, nanoribbons, and nanosheets, and has a thickness or thickness in the range of 10 to 100 nm, and is long. The thickness is in the range of 200 nm to 10 μm, the appearance of the aggregate is close to a spherical body, and the size thereof is in the range of 1 to 20 μm.
 又、本発明のシリカ系キラルナノ構造体(α~γ)は、CDスペクトルにて、左右円偏光に対しての光吸収の差が起こるので、正のコットン効果、または負のコットン効果を示す。言い換えれば、シリカ系キラルナノ構造体(α~γ)は、左偏光または右偏光を一定方向に回転することができる。固体CDスペクトルにおける正のコットン効果または負のコットン効果は、シリカ系キラルナノ構造体(α~γ)を合成する際に用いた原料の酒石酸(B)の光学活性により決まるが、この二つの光学異性体が等量以外の一定比率で混合された場合(即ち、エナンチオマー過剰の場合)は、左円偏光または右円偏光の吸収度合いの変化が起こるので、コットン効果の正負方向を逆転させることも可能である。 Further, the silica-based chiral nanostructure (α to γ) of the present invention exhibits a positive cotton effect or a negative cotton effect because of a difference in light absorption with respect to left and right circularly polarized light in the CD spectrum. In other words, the silica-based chiral nanostructure (α to γ) can rotate left polarized light or right polarized light in a certain direction. The positive cotton effect or the negative cotton effect in the solid CD spectrum is determined by the optical activity of the tartaric acid (B) used as a raw material for synthesizing the silica-based chiral nanostructure (α to γ). When the body is mixed at a constant ratio other than equal amounts (ie, enantiomeric excess), the change in the degree of absorption of left circularly polarized light or right circularly polarized light occurs, so the positive and negative directions of the Cotton effect can be reversed. It is.
 [有機シラン修飾シリカ系キラルナノ構造体]
 前述で得られるシリカ系キラルナノ構造体(α~γ)のシリカ(Y)の化学構造は基本的にSiOに代表される。これら構造体とシランカップリング剤とを接触させると、当該シリカ(Y)にO-Si-C結合成分が導入され、有機シラン修飾シリカ系キラルナノ構造体を得ることができる。
[Organosilane-modified silica-based chiral nanostructure]
The chemical structure of silica (Y) of the silica-based chiral nanostructure (α to γ) obtained above is basically represented by SiO 2 . When these structures are brought into contact with a silane coupling agent, an O—Si—C bonding component is introduced into the silica (Y), and an organosilane-modified silica-based chiral nanostructure can be obtained.
 ここで用いることができるシランカップリング剤としては、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、n-プロピルトリメトキシシラン、n-プロピルトリエトキシシラン、iso-プロピルトリメトキシシラン、iso-プロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-クロロプロピルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-メルカプトプロピルトメトキシシラン、3-メルカプトトリエトキシシラン、3,3,3-トリフルオロプロピルトリメトキシシラン、3,3,3-トリフルオロプロピルトリエトキシシラン、3-メタクリルオキシプロピルトリメトキシシラン、3-メタクリルオキシプロピルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン、p-クロロメチルフェニルトリメトキシシラン、p-クロロメチルフェニルトリエトキシシラン、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ヘキシルトリメトキシシラン、デシルトリメトキシシラン、ドデシルトリメトキシシラン、トリデカフルオロ-1,1,2,2-テトラヒドロオクチルトリクロロシランなどが挙げられる。 Examples of the silane coupling agent that can be used here include methyltrimethoxysilane, methyltriethoxysilane, ethyltrimethoxysilane, ethyltriethoxysilane, n-propyltrimethoxysilane, n-propyltriethoxysilane, and iso-propyl. Trimethoxysilane, iso-propyltriethoxysilane, 3-chloropropyltrimethoxysilane, 3-chloropropyltriethoxysilane, vinyltrimethoxysilane, vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycol Sidoxypropyltriethoxysilane, 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 3-mercaptopropyltomethoxysilane, 3-mercaptotriethoxysilane, 3, , 3-trifluoropropyltrimethoxysilane, 3,3,3-trifluoropropyltriethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropyltriethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane , P-chloromethylphenyltrimethoxysilane, p-chloromethylphenyltriethoxysilane, dimethyldimethoxysilane, dimethyldiethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, hexyltrimethoxysilane, decyltrimethoxysilane, dodecyltrimethoxy Examples thereof include silane and tridecafluoro-1,1,2,2-tetrahydrooctyltrichlorosilane.
 上記シランカップリング剤との接触には、当該シランカップリング剤をクロロホルム、塩化メチレン、シクロヘキサノン、キシレン、トルエン、エタノール、メタノールなどの溶剤中に溶解し、その溶液にシリカ系キラルナノ構造体(α~γ)の粉末を分散し、その混合物を一定時間攪拌する方法が好ましい。 For contact with the silane coupling agent, the silane coupling agent is dissolved in a solvent such as chloroform, methylene chloride, cyclohexanone, xylene, toluene, ethanol, methanol, and the silica-based chiral nanostructure (α˜ A method of dispersing the powder of γ) and stirring the mixture for a certain time is preferable.
 上記シランカップリング剤の濃度は1~5質量%であれば好適に用いることができ、特に1~5質量%アンモニア水のエタノール溶液と混合して用いることがより好ましい。混合する際の体積比としては、シランカップリング剤の溶液に対し、アンモニア水エタノール溶液は5~10倍量であれば好適である。 The concentration of the silane coupling agent is preferably 1 to 5% by mass, and more preferably 1 to 5% by mass with an aqueous ethanol solution of ammonia. The volume ratio upon mixing is preferably 5 to 10 times the amount of the aqueous ammonia solution relative to the silane coupling agent solution.
 上記混合物を2時間以上攪拌すれば、シランカップリング剤の残基を容易にシリカ(Y)に導入することができる。一定時間攪拌混合を行なった後、得られた粉体を濾過または遠心分離して、固形分を、エタノール、メタノール、アセトン、トルエン、クロロホルム、ヘキサン、シクロヘキサンなどの溶剤で洗浄し、それを常温乾燥させることで有機シラン修飾シリカ系キラルナノ構造体を得ることができる。 When the mixture is stirred for 2 hours or more, the residue of the silane coupling agent can be easily introduced into silica (Y). After stirring and mixing for a certain period of time, the obtained powder is filtered or centrifuged, and the solid content is washed with a solvent such as ethanol, methanol, acetone, toluene, chloroform, hexane, cyclohexane, etc., and dried at room temperature. By doing so, an organosilane-modified silica-based chiral nanostructure can be obtained.
 これらの有機シランで修飾された構造体の固体CDスペクトルでは、偏光の正または負のコットン効果を示し、接触前のシリカ系キラルナノ構造体と同様の方向である。 The solid CD spectra of the structures modified with these organosilanes show a positive or negative cotton effect of polarization, and are in the same direction as the silica-based chiral nanostructure before contact.
 又、本発明のシリカ系キラルナノ構造体(α~γ)及びこれを有機シランで修飾した構造体には、有機シランを導入することとは別に、種々の有機化合物を物理結合することで、シリカ(Y)の表面を修飾することもできる。用いることができる有機化合物としては、高分子から低分子の様々な構成成分、例えば、極性、非極性、カチオン性、アニオン性の有機化合物を好適に用いることができる。これらの有機化合物は色素類または発光性を有するものであってもよい。 In addition to the introduction of organosilane, the silica-based chiral nanostructure (α to γ) of the present invention and the structure modified with organosilane can be combined with various organic compounds to form silica. The surface of (Y) can also be modified. As the organic compound that can be used, various constituents ranging from high polymers to low molecules, for example, polar, nonpolar, cationic, and anionic organic compounds can be suitably used. These organic compounds may be pigments or luminescent materials.
 また、本発明のシリカ系キラルナノ構造体(α~γ)及びこれを有機シランで修飾した構造体には、有機金属錯体化合物または有機金属化合物を物理吸着させることもできる。これらの金属を含む有機化合物は触媒機能を有するものであっても好適である。これらが吸着された後、固体CDスペクトルでのコットン効果は依然維持できるし、吸着された化合物の吸収波長範囲で、正負のコットン効果の向きには基本的には変わりがない。 In addition, an organometallic complex compound or an organometallic compound can be physically adsorbed on the silica-based chiral nanostructure (α to γ) of the present invention and a structure obtained by modifying this with a organosilane. The organic compound containing these metals is suitable even if it has a catalytic function. After they are adsorbed, the cotton effect in the solid CD spectrum can still be maintained, and in the absorption wavelength range of the adsorbed compound, the direction of the positive and negative cotton effect is basically unchanged.
 以下、実施例および応用例によって本発明をさらに具体的に説明するが、本発明はこれらに限定されるものではない。特に断らない限り、「%」は「質量%」を表す。 Hereinafter, the present invention will be described more specifically with reference to examples and application examples, but the present invention is not limited to these examples. Unless otherwise specified, “%” represents “mass%”.
[X線回折法による分析]
 単離乾燥した試料を測定試料用ホルダーにのせ、それを理学社製広角X線回折装置「Rint-Ultma」にセットし、Cu/Kα線、40kV/30mA、スキャンスピード1.0°/分、走査範囲10~70°の条件で測定を行った。
[Analysis by X-ray diffraction method]
Place the isolated and dried sample on the measurement sample holder, set it on a wide-angle X-ray diffractometer “Rint-Ultma” manufactured by Rigaku Corporation, Cu / Kα ray, 40 kV / 30 mA, scan speed 1.0 ° / min, Measurements were made under conditions of a scanning range of 10 to 70 °.
[示差走査熱量分析]
 単離乾燥した試料を測定パッチにより秤量し、それをSIIナノ技術示差走査熱量分析測定装置(TG-TDA6300)にセットし、昇温速度を10℃/分として、20℃から800℃の温度範囲にて測定を行った。
[Differential scanning calorimetry]
The isolated and dried sample is weighed with a measurement patch, set in a SII nano-technological differential scanning calorimetry measurement device (TG-TDA6300), and the temperature rise rate is 10 ° C / min. Measurements were made at
[走査電子顕微鏡による形状分析]
 単離乾燥した試料をガラススライドに載せ、それをキーエンス社製表面観察装置VE-7800にて観察した。
[Shape analysis by scanning electron microscope]
The isolated and dried sample was placed on a glass slide and observed with a surface observation device VE-7800 manufactured by Keyence Corporation.
[透過型電子顕微鏡による形状分析]
 単離乾燥した試料を炭素蒸着された銅グリッドに乗せ、それを(株)トプコン、ノーランインスツルメント社製EM-002B、VOYAGER M3055高分解能電子顕微鏡にて観察した。
[Shape analysis by transmission electron microscope]
The isolated and dried sample was placed on a carbon-deposited copper grid and observed with a Topcon Co., Ltd., EM-002B, Nolan Instruments Co., Ltd., VOYAGER M3055 high-resolution electron microscope.
[ガス吸着脱着の等温線測定による比表面積分析]
 試料を300℃で3時間以上減圧乾燥させた後、TriStar3000(Micromeritics社製)を用いて比表面積を測定した。マイクロ細孔面積と外部表面積はt-plot法により算出した。
[Specific surface area analysis by isotherm measurement of gas adsorption / desorption]
The sample was dried under reduced pressure at 300 ° C. for 3 hours or more, and then the specific surface area was measured using TriStar 3000 (manufactured by Micromeritics). The micropore area and the external surface area were calculated by the t-plot method.
[固体CDスペクトルによるキラリティ解析]
 円二色性の測定はCD用積分球装置(DRCD-466粉体CD測定ユニット)を取り付けたJ-720(日本分光製)を用いて行った。CD測定用試料は、塩化カリウムと混合分散により調製した。
[Chirality analysis by solid CD spectrum]
Circular dichroism was measured using a J-720 (manufactured by JASCO Corporation) equipped with a CD integrating sphere device (DRCD-466 powder CD measurement unit). A sample for CD measurement was prepared by mixing with potassium chloride.
 合成例1[直鎖状ポリエチレンイミン(LPEI)の合成]
 市販のポリエチルオキサゾリン(平均分子量50,000、平均重合度約500、Aldrich社製)30gを、5Mの塩酸水溶液150mLに溶解させた。その溶液をオイルバスにて90℃に加熱し、その温度で10時間攪拌した。反応液にアセトン500mLを加え、ポリマーを完全に沈殿させ、それを濾過し、メタノールで3回洗浄し、白色のポリエチレンイミンの粉末を得た。得られた粉末をH-NMR(重水)にて同定したところ、ポリエチルオキサゾリンの側鎖エチル基に由来したピーク1.2ppm(CH)と2.3ppm(CH)が完全に消失していることが確認された。即ち、ポリエチルオキサゾリンが完全に加水分解され、ポリエチレンイミンに変換されたことが示された。
Synthesis Example 1 [Synthesis of linear polyethyleneimine (LPEI)]
30 g of commercially available polyethyloxazoline (average molecular weight 50,000, average polymerization degree about 500, manufactured by Aldrich) was dissolved in 150 mL of 5M aqueous hydrochloric acid. The solution was heated to 90 ° C. in an oil bath and stirred at that temperature for 10 hours. Acetone 500 mL was added to the reaction solution to completely precipitate the polymer, which was filtered and washed with methanol three times to obtain white polyethyleneimine powder. When the obtained powder was identified by 1 H-NMR (heavy water), peaks 1.2 ppm (CH 3 ) and 2.3 ppm (CH 2 ) derived from the side chain ethyl group of polyethyloxazoline completely disappeared. It was confirmed that That is, it was shown that polyethyloxazoline was completely hydrolyzed and converted to polyethyleneimine.
 その粉末を50mLの蒸留水に溶解し、攪拌しながら、その溶液に15%のアンモニア水500mLを滴下した。その混合液を一晩放置した後、沈殿したポリマー結晶を濾過し、その結晶を冷水で3回洗浄した。洗浄後の結晶粉末をデシケータ中で室温乾燥し、直鎖状のポリエチレンイミン(LPEI)を得た。収量は22g(結晶水含有)であった。ポリオキサゾリンの加水分解により得られるポリエチレンイミンは、側鎖だけが反応し、主鎖には変化がない。従って、LPEIの重合度は加水分解前の約500と同様である。 The powder was dissolved in 50 mL of distilled water, and 500 mL of 15% ammonia water was added dropwise to the solution while stirring. The mixture was allowed to stand overnight, the precipitated polymer crystals were filtered, and the crystals were washed 3 times with cold water. The washed crystal powder was dried in a desiccator at room temperature to obtain linear polyethyleneimine (LPEI). The yield was 22 g (containing crystal water). In polyethyleneimine obtained by hydrolysis of polyoxazoline, only the side chain reacts and the main chain does not change. Therefore, the degree of polymerization of LPEI is similar to about 500 before hydrolysis.
 実施例1
[D-酒石酸とLPEIからなるキラル結晶体とシリカとが複合したシリカ系キラルナノ構造体(α-1)<SiO/LPEI/D-Tart>]
 合成例1で得たLPEI粉末316mg(4mmolのエチレンイミン[EI]ユニット)を4gの蒸留水中に加え、それを約95℃まで加熱し、LPEIが完全に溶解した水溶液([EI]=1000mM)を調製した。一方、D-酒石酸(D-Tart、東京化成工業株式会社製)粉末300mg(2.0mmol)を4.0gの蒸留水に溶解し、その溶液をLPEIの熱水溶液中に加えた。この混合物溶液(95℃)を室温(25℃)まで自然冷却し、沈殿物を得た。得られた沈殿物を遠心分離にて分離し、蒸留水で洗浄、回収して大気中で3日間乾燥して粉末を得た。収量は477mgであった。
Example 1
[Silica-based chiral nanostructure (α-1) <SiO 2 / LPEI / D-Tart>) in which a chiral crystal composed of D-tartaric acid and LPEI is combined with silica
316 mg of LPEI powder obtained in Synthesis Example 1 (4 mmol of ethyleneimine [EI] unit) was added to 4 g of distilled water and heated to about 95 ° C. to completely dissolve LPEI ([EI] = 1000 mM). Was prepared. On the other hand, 300 mg (2.0 mmol) of D-tartaric acid (D-Tart, manufactured by Tokyo Chemical Industry Co., Ltd.) powder was dissolved in 4.0 g of distilled water, and the solution was added to a hot aqueous solution of LPEI. The mixture solution (95 ° C.) was naturally cooled to room temperature (25 ° C.) to obtain a precipitate. The obtained precipitate was separated by centrifugation, washed and recovered with distilled water, and dried in the air for 3 days to obtain a powder. Yield was 477 mg.
 得られた粉末のXRD測定から、この粉末は結晶体であることが判明した(図1)。また固体CDスペクトル測定から、この粉末は210~240nmの波長範囲で負のコットン効果を示すことがわかった(図2a)。同様な波長範囲で、原料として用いたD-酒石酸の粉末単独では正反対の正のコットン効果を示した(図2b)。これらの結果から、得られた粉末はポリマーLPEIとD-酒石酸とからなる酸塩基型錯体のキラル結晶体であって、キラルな酒石酸とアキラルなLPEIで構成された新しい構造のキラル結晶体であることがわかる。 From the XRD measurement of the obtained powder, it was found that this powder was a crystal (FIG. 1). From the solid CD spectrum measurement, it was found that this powder showed a negative cotton effect in the wavelength range of 210 to 240 nm (FIG. 2a). In the same wavelength range, the D-tartaric acid powder used alone as a raw material showed the opposite positive cotton effect (FIG. 2b). From these results, the obtained powder is a chiral crystal of an acid-base complex composed of the polymer LPEI and D-tartaric acid, and has a new structure composed of chiral tartaric acid and achiral LPEI. I understand that.
 上記で得られたキラル結晶体である粉末200mgを水とテトラメトキシシラン(TMOS)混合液(水/TMOS=20mL/3mL)中に分散し、それを室温(25℃)にて1時間攪拌した。得られた沈殿物を遠心分離にて分離し、蒸留水で洗浄して、白い固体を回収した。収量は405mgであった。 200 mg of the powder as the chiral crystal obtained above was dispersed in a mixed solution of water and tetramethoxysilane (TMOS) (water / TMOS = 20 mL / 3 mL) and stirred at room temperature (25 ° C.) for 1 hour. . The resulting precipitate was separated by centrifugation and washed with distilled water to recover a white solid. Yield was 405 mg.
 得られた固体の固体29Si-NMR測定結果から、固体中にはシリカを構成する基本結合Si-Oが含まれることが確認できた(図3)。特に、-100ppmから-120ppmの範囲で、Si(OSi)を示すQシグナルとHOSi(OSi)を示すQ結合が主要結合であることが示唆された。 From the solid 29 Si-NMR measurement result of the obtained solid, it was confirmed that the solid contained basic bonded Si—O constituting silica (FIG. 3). Particularly, it was suggested that the Q 4 signal indicating Si (OSi) 4 and the Q 3 bond indicating HOSi (OSi) 3 are main bonds in the range of −100 ppm to −120 ppm.
 また、得られた固体の固体13C-NMR測定から、該固体中には、LPEI由来のメチレン炭素CHNのピーク(44ppm)、酒石酸由来のヒドロキシ炭素HC-OHのピーク(73ppm)、酒石酸のカルボニル基炭素C=Oのピーク(180ppm)を確認した(図4)。これは、該固体中には、シリカ構造以外に、LPEIの化学構造と酒石酸の化学構造が共存していることを強く示唆する。 Further, from the solid 13 C-NMR measurement of the obtained solid, in the solid, the peak of methylene carbon CH 2 N derived from LPEI (44 ppm), the peak of hydroxycarbon HC—OH derived from tartaric acid (73 ppm), tartaric acid The carbonyl group carbon C = O peak (180 ppm) was confirmed (FIG. 4). This strongly suggests that, in addition to the silica structure, the chemical structure of LPEI and the chemical structure of tartaric acid coexist in the solid.
 この固体の固体CDスペクトルを図5に示した。約220nmの紫外線吸収をピークトップとする負のコットン効果を示した。これはシリカを析出させる前のLPEI/D-Tartキラル結晶体の楕円率の負の向きと同様である。キラルなLPEI/D-Tart結晶体とそれにより誘導されたシリカとの複合体が共に左円偏光を強く吸収することから、これらは左巻きのキラリティを内部に保持していると考えられる。以上により、ここで得られたシリカとの複合体は本発明のシリカ系キラルナノ構造体(α-1)<SiO/LPEI/D-Tart>であることが確認できた。 The solid CD spectrum of this solid is shown in FIG. A negative cotton effect having a peak top of about 220 nm ultraviolet absorption was exhibited. This is the same as the negative direction of the ellipticity of the LPEI / D-Tart chiral crystal before precipitating the silica. Since the complex of chiral LPEI / D-Tart crystal and silica derived thereby both strongly absorbs left-handed circularly polarized light, they are considered to retain left-handed chirality inside. From the above, it was confirmed that the composite with silica thus obtained was the silica-based chiral nanostructure (α-1) <SiO 2 / LPEI / D-Tart> of the present invention.
 得られた固体のSEM写真では、該固体はナノファイバーの集合体であることが確認できた(図6)。また、それのTEM写真(図7)から、この集合体の基本ユニットであるナノファイバーの太さは25nm前後であった。 In the SEM photograph of the obtained solid, it was confirmed that the solid was an assembly of nanofibers (FIG. 6). Moreover, from the TEM photograph (FIG. 7), the thickness of the nanofiber which is the basic unit of this aggregate was about 25 nm.
 実施例2
[L-酒石酸とLPEIからなるキラル結晶体とシリカとが複合したシリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>]
 実施例1において、D-酒石酸の代わりにL-酒石酸(L-Tart、東京化成工業株式会社製)粉末を用いる以外は、実施例1と同様な方法でキラル結晶体LPEI/L-Tart及びシリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>を作製した。
Example 2
[Silica-based chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart>] in which a chiral crystal composed of L-tartaric acid and LPEI is combined with silica
In Example 1, chiral crystal LPEI / L-Tart and silica were prepared in the same manner as in Example 1 except that L-tartaric acid (L-Tart, manufactured by Tokyo Chemical Industry Co., Ltd.) powder was used instead of D-tartaric acid. A chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart> was prepared.
 図8ではキラル結晶体LPEI/L-TartのXRDチャートを示した。実施例1におけるキラル結晶体LPEI/D-Tartと同様な回折パターンであることから、同様な結晶構造を有することが確認できる。 FIG. 8 shows an XRD chart of the chiral crystal LPEI / L-Tart. Since the diffraction pattern is the same as that of the chiral crystal LPEI / D-Tart in Example 1, it can be confirmed that the crystal has the same crystal structure.
 図9はキラル結晶体LPEI/L-Tartの固体CDスペクトルである。L-酒石酸の存在により、実施例1と正反対の正のコットン効果が確認できた。 FIG. 9 is a solid CD spectrum of the chiral crystal LPEI / L-Tart. Due to the presence of L-tartaric acid, a positive cotton effect opposite to that in Example 1 was confirmed.
 図10はシリカと複合化してなるシリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>の固体29Si-NMRのスペクトルである。シリカの結合構造由来のQとQのピークが顕著に現れ、構造体は確かにシリカ構造を有することが確認できる。 FIG. 10 is a solid-state 29 Si-NMR spectrum of a silica-based chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart> formed by complexing with silica. The peaks of Q 4 and Q 3 derived from the silica bond structure remarkably appear, and it can be confirmed that the structure has a silica structure.
 図11はシリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>の固体13C-NMRスペクトルである。LPEI骨格由来のメチレン炭素、酒石酸構造由来のヒドロキシメチン炭素とカルボニル炭素が確認できた。 FIG. 11 is a solid state 13 C-NMR spectrum of silica-based chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart>. The methylene carbon derived from the LPEI skeleton, the hydroxymethine carbon derived from the tartaric acid structure, and the carbonyl carbon were confirmed.
 図12はシリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>の固体CDスペクトルである。このスペクトルの波形は実施例1で得られたシリカ系キラルナノ構造体(α-1)とちょうど鏡像関係の正のコットン効果を示した。即ち、L-酒石酸をキラルソースとして作製したシリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>には右巻きキラリティを内部に保持していることになる。L-酒石酸とD-酒石酸がそれぞれのキラリティ特徴をシリカに転写したことは明らかである。 FIG. 12 is a solid CD spectrum of silica-based chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart>. The waveform of this spectrum showed a positive cotton effect that was just a mirror image of the silica-based chiral nanostructure (α-1) obtained in Example 1. In other words, the silica-based chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart> produced using L-tartaric acid as a chiral source retains right-handed chirality. It is clear that L-tartaric acid and D-tartaric acid have transferred their respective chirality characteristics to silica.
 図13と14では、シリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>のSEMとTEM写真を示した。該構造体は花状のフィイバーの集合体であり、その基本ユニットであるナノファイバーの太さは25nm前後であった。 13 and 14 show SEM and TEM photographs of the silica-based chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart>. The structure was an aggregate of flower-like fibres, and the thickness of the nanofiber as the basic unit was around 25 nm.
 実施例3
[シリカ系キラルナノ構造体(α-1)中の有機成分を加熱除去してなるシリカ系キラルナノ構造体(γ-1)]
 実施例1で作製したシリカ系キラルナノ構造体(α-1)<SiO/LPEI/D-Tart>250mgをセラミックス製の坩堝中に入れ、それを電気炉にて600℃まで加熱し、その温度で3時間放置した。これで得たシリカ系キラルナノ構造体(γ-1)のTEM観察から、ナノフィイバー構造が確認できた(図15)。シリカ系キラルナノ構造体(γ-1)の比表面積(BET)は665m/gであったが、その内、μポアー由来の表面積は553m/gであり、単純外表面由来の面積は112m/gであった。
Example 3
[Silica-based chiral nanostructure (γ-1) obtained by heating and removing organic components in silica-based chiral nanostructure (α-1)]
250 mg of the silica-based chiral nanostructure (α-1) <SiO 2 / LPEI / D-Tart> prepared in Example 1 was placed in a ceramic crucible and heated to 600 ° C. in an electric furnace, and the temperature And left for 3 hours. From the TEM observation of the silica-based chiral nanostructure (γ-1) thus obtained, the nanofibre structure was confirmed (FIG. 15). The specific surface area (BET) of the silica-based chiral nanostructure (γ-1) was 665 m 2 / g, of which the surface area derived from μ pore was 553 m 2 / g, and the area derived from a simple outer surface was 112 m 2 / g.
 シリカ系キラルナノ構造体(γ-1)の固体CDスペクトル(図16)からシリカ構造O-Si-O由来の吸収波長範囲での負のコットン効果が確認された。このことは、シリカ系キラルナノ構造体(γ-1)には左円偏光を選択的に吸収するキラルな空間構造がしっかり刻み込まれたことを示唆する。 From the solid CD spectrum of the silica-based chiral nanostructure (γ-1) (FIG. 16), a negative cotton effect in the absorption wavelength range derived from the silica structure O—Si—O was confirmed. This suggests that the chiral spatial structure that selectively absorbs left-handed circularly polarized light is firmly engraved in the silica-based chiral nanostructure (γ-1).
 さらに、このシリカ系キラルナノ構造体(γ-1)にポルフィリン色素を吸着させた後、その粉末の固体CDスペクトルを測定したところ、ポルフィリンのSoret帯吸収波長(400nm前後)範囲での負のコットン効果が確認された(図17)。即ち、アキラルなポルフィリン色素はCDスペクトルでは全く波形を示さないが、それがキラルなシリカ系キラルナノ構造体(γ-1)の空間構造中に吸着されたことで、ポルフィリンが不斉構造を有する如く振る舞う誘起CDが現れたのである。キラルなシリカ構造体とアキラルな有機化合物が新たな不斉構造を形成することが強く示唆された。 Furthermore, after the porphyrin dye was adsorbed to this silica-based chiral nanostructure (γ-1), the solid CD spectrum of the powder was measured, and the negative cotton effect in the range of the Soret band absorption wavelength (around 400 nm) of porphyrin was measured. Was confirmed (FIG. 17). That is, the achiral porphyrin dye does not show any waveform in the CD spectrum, but it is adsorbed in the spatial structure of the chiral silica-based chiral nanostructure (γ-1), so that the porphyrin has an asymmetric structure. A behaving induced CD appeared. It was strongly suggested that a chiral silica structure and an achiral organic compound form a new asymmetric structure.
 実施例4
[シリカ系キラルナノ構造体(α-2)中の有機成分を加熱除去してなるシリカ系キラルナノ構造体(γ-2)]
 実施例2で作製したシリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>250mgをセラミックス製の坩堝中に入れ、それを電気炉にて600℃加熱し、その温度で3時間放置した。これで得たシリカ系キラルナノ構造体(γ-2)のTEM観察から、ナノフィイバー構造が確認できた(図18)。シリカ系キラルナノ構造体(γ-2)の比表面積(BET)は653m/gであったが、その内、μポアー由来の表面積は549m/gであり、単純外表面由来の面積は104m/gであった。
Example 4
[Silica-based chiral nanostructure (γ-2) obtained by heating and removing organic components in silica-based chiral nanostructure (α-2)]
250 mg of the silica-based chiral nanostructure (α-2) <SiO 2 / LPEI / L-Tart> prepared in Example 2 was placed in a ceramic crucible and heated at 600 ° C. in an electric furnace at that temperature. Left for 3 hours. From the TEM observation of the silica-based chiral nanostructure (γ-2) thus obtained, a nanofibrar structure was confirmed (FIG. 18). The specific surface area (BET) of the silica-based chiral nanostructure (γ-2) was 653 m 2 / g, of which the surface area derived from μ pore was 549 m 2 / g, and the area derived from a simple outer surface was 104 m. 2 / g.
 焼成で得たシリカ系キラルナノ構造体(γ-2)の固体CDスペクトルでは、正のコットン効果が現れ、それは実施例3の結果とちょうど鏡像関係であった(図19)。 In the solid CD spectrum of the silica-based chiral nanostructure (γ-2) obtained by calcination, a positive cotton effect appeared, which was exactly a mirror image relationship with the result of Example 3 (FIG. 19).
 さらに、このシリカ系キラルナノ構造体(γ-2)にポルフィリン色素を吸着させた後、その粉末の固体CDスペクトルを測定したところ、ポルフィリンのSoret帯吸収波長(400nm前後)範囲での正のコットン効果が確認された(図20)。これは実施例3の結果鏡像関係であった。即ち、アキラルなポルフィリン色素がキラルなシリカ構造体の空間構造中に吸着されたことで、ポルフィリンが不斉構造を有する如く振る舞う誘起CDが現れたのである。キラルシリカとアキラルな有機化合物が新たな不斉構造を形成することが強く示唆された。 Furthermore, after the porphyrin dye was adsorbed to this silica-based chiral nanostructure (γ-2), the solid CD spectrum of the powder was measured, and the positive cotton effect in the range of the Soret band absorption wavelength (around 400 nm) of porphyrin was measured. Was confirmed (FIG. 20). This was a mirror image relationship as a result of Example 3. That is, an achiral porphyrin dye is adsorbed in the spatial structure of a chiral silica structure, and an induced CD appears in which the porphyrin behaves like an asymmetric structure. It was strongly suggested that chiral silica and achiral organic compounds form a new asymmetric structure.
 実施例5
[有機シラン修飾シリカ系キラルナノ構造体-1]
 上記実施例3で得たシリカ系キラルナノ構造体(γ-1)200mgをフェニルトリメトキシシラン(1.0mmol)のトルエン溶液(200mg)と混合し、窒素雰囲気下6時間還流し、有機シラン修飾シリカ系キラルナノ構造体-1を得た。TG-TDA分析結果から、フェニル基の導入量は0.67mmol/gであることがわかった。この粉体の固体CDスペクトル測定結果、芳香族環のC=C結合の紫外線吸収波長範囲(190-230nm)において、負のコットン効果が確認された(図21)。これは、フェニル基がキラル空間構造を構成するシリカ壁面に結合されたことを示唆する
Example 5
[Organic Silane Modified Silica-Based Chiral Nanostructure-1]
200 mg of the silica-based chiral nanostructure (γ-1) obtained in Example 3 above was mixed with a toluene solution (200 mg) of phenyltrimethoxysilane (1.0 mmol) and refluxed for 6 hours in a nitrogen atmosphere to obtain organosilane-modified silica. The system chiral nanostructure-1 was obtained. From the results of TG-TDA analysis, it was found that the amount of phenyl group introduced was 0.67 mmol / g. As a result of measuring the solid CD spectrum of this powder, a negative cotton effect was confirmed in the ultraviolet absorption wavelength range (190-230 nm) of the C═C bond of the aromatic ring (FIG. 21). This suggests that the phenyl group is bound to the silica wall that constitutes the chiral spatial structure.
 実施例6
[有機シラン修飾シリカ系キラルナノ構造体-2]
 上記実施例4で得たシリカ系キラルナノ構造体(γ-2)200mgをフェニルトリメトキシシラン(1.0mmol)のトルエン溶液(200mg)と混合し、窒素雰囲気下6時間還流し、有機シラン修飾シリカ系キラルナノ構造体-2を得た。TG-TDA分析結果から、フェニル基の導入量は0.64mmol/gであることがわかった。この粉体の固体CDスペクトル測定結果、芳香族環のC=C結合の紫外線吸収波長範囲(190-230nm)において、正のコットン効果が確認された(図22)。これは、フェニル基がキラル空間構造を構成するシリカ壁面に結合されたことを示唆する。
Example 6
[Organic Silane Modified Silica-Based Chiral Nanostructure-2]
200 mg of the silica-based chiral nanostructure (γ-2) obtained in Example 4 above was mixed with a toluene solution (200 mg) of phenyltrimethoxysilane (1.0 mmol) and refluxed in a nitrogen atmosphere for 6 hours to obtain organosilane-modified silica. The system chiral nanostructure-2 was obtained. From the results of TG-TDA analysis, it was found that the amount of phenyl group introduced was 0.64 mmol / g. As a result of measuring the solid CD spectrum of this powder, a positive cotton effect was confirmed in the ultraviolet absorption wavelength range (190-230 nm) of the C═C bond of the aromatic ring (FIG. 22). This suggests that the phenyl group was bonded to the silica wall constituting the chiral spatial structure.
 実施例7
[エナンチオマー過剰状態でのシリカ系キラルナノ構造体(α-3)<SiO/LPEI/ee-Tart>]
 合成例1で得たLPEI粉末158mgを3gの蒸留水中に加え、それを約95℃まで加熱し、LPEIが完全に溶解した水溶液を調製した。一方、D-酒石酸(120mg)とL-酒石酸(30mg)混合粉末を3.0gの蒸留水中溶解し、その溶液をLPEIの熱水溶液中に加えた。この混合物溶液(95℃)を室温(25℃)まで自然冷却し、結晶化させた。沈殿物を遠心分離にて洗浄、回収し、大気中で3日間乾燥させ、LPEIとD,L-酒石酸(ee)とからなる粉末を得た。
Example 7
[Silica-based chiral nanostructure in excess of enantiomer (α-3) <SiO 2 / LPEI / ee-Tart>]
158 mg of the LPEI powder obtained in Synthesis Example 1 was added to 3 g of distilled water and heated to about 95 ° C. to prepare an aqueous solution in which LPEI was completely dissolved. On the other hand, a mixed powder of D-tartaric acid (120 mg) and L-tartaric acid (30 mg) was dissolved in 3.0 g of distilled water, and the solution was added to a hot aqueous solution of LPEI. The mixture solution (95 ° C.) was naturally cooled to room temperature (25 ° C.) and crystallized. The precipitate was washed and collected by centrifugation, and dried in the air for 3 days to obtain a powder composed of LPEI and D, L-tartaric acid (ee).
 この粉末のXRD測定から、この複合体は結晶体であることが確認できた(図23)。また、固体CDスペクトル測定(図24)から、この結晶性粉末は210~240nmの波長範囲で負のコットン効果を示すことがわかり、キラル結晶体であることが確認できた。 From the XRD measurement of this powder, it was confirmed that this complex was a crystal (FIG. 23). From the solid CD spectrum measurement (FIG. 24), it was found that this crystalline powder exhibited a negative cotton effect in the wavelength range of 210 to 240 nm, confirming that it was a chiral crystal.
 このキラル結晶体200mgを水とテトラメトキシシラン(TMOS)混合液(水/TMOS=20mL/3mL)中に分散し、それを室温にて1時間攪拌した。固形物を遠心分離機にて分離、蒸留水で洗浄して、白い固体を回収した。収量は396mgであった。 200 mg of this chiral crystal was dispersed in a mixed solution of water and tetramethoxysilane (TMOS) (water / TMOS = 20 mL / 3 mL) and stirred at room temperature for 1 hour. The solid was separated with a centrifuge and washed with distilled water to recover a white solid. The yield was 396 mg.
 この固体の固体CDスペクトル結果を図25に示した。約220nmの紫外線吸収をピークトップとする負のコットン効果を示した。これはシリカと複合化する前のキラル結晶体LPEI/D体過剰L-Tartの楕円率の負の向きと同様であった。D体がL体より過剰状態でもキラル構造をシリカの空間構造中に刻み込むことができ、シリカ系キラルナノ構造体(α-3)であることが確認できた。 The solid CD spectrum result of this solid is shown in FIG. A negative cotton effect having a peak top of about 220 nm ultraviolet absorption was exhibited. This was the same as the negative orientation of the ellipticity of the chiral crystal LPEI / D excess L-Tart before complexing with silica. Even when the D form is in excess of the L form, the chiral structure can be engraved into the spatial structure of silica, confirming that it is a silica-based chiral nanostructure (α-3).
 得られたシリカ系キラルナノ構造体(α-3)のSEM写真では、該構造体はナノファイバーの集合体であることを確認した(図26)。 In the SEM photograph of the obtained silica-based chiral nanostructure (α-3), it was confirmed that the structure was an assembly of nanofibers (FIG. 26).
 比較例1
[ラセミ酒石酸とLPEIからなる酸塩基錯体型結晶体とシリカとが複合してなるシリカ系ナノ構造体<SiO/LPEI/(±)-Tart>]
 合成例1で得たLPEI粉末316mg(4mmolのエチレンイミン[EI]ユニット)を4gの蒸留水中に加え、それを約95℃まで加熱し、LPEIが完全に溶解した水溶液([EI]=1000mM)を調製した。一方、D-酒石酸(150mg)とL-酒石酸(150mg)混合粉末(合計モル数2.0mmol)を4.0gの蒸留水中溶解し、そのラセミ体溶液をLPEIの熱水溶液中に加えた。この混合物溶液(95℃)を室温(25℃)まで自然冷却し、結晶化させた。沈殿物を遠心分離にて洗浄、回収し、大気中で3日間乾燥させ、粉末を得た。収量は472mgであった。
Comparative Example 1
[Silica-based nanostructure <SiO 2 / LPEI / (±) -Tart> formed by combining an acid-base complex crystal composed of racemic tartaric acid and LPEI and silica]
316 mg of LPEI powder obtained in Synthesis Example 1 (4 mmol of ethyleneimine [EI] unit) was added to 4 g of distilled water and heated to about 95 ° C. to completely dissolve LPEI ([EI] = 1000 mM). Was prepared. On the other hand, a mixed powder of D-tartaric acid (150 mg) and L-tartaric acid (150 mg) (total number of moles: 2.0 mmol) was dissolved in 4.0 g of distilled water, and the racemic solution was added to a hot aqueous solution of LPEI. The mixture solution (95 ° C.) was naturally cooled to room temperature (25 ° C.) and crystallized. The precipitate was washed and collected by centrifugation, and dried in the air for 3 days to obtain a powder. The yield was 472 mg.
 この粉末のXRD測定から、結晶体であることが確認できた(図27)。しかしながら、この結晶体の固体CDスペクトル測定では、楕円率変化はなく、キラルの波形が現れないことが明らかとなった。 From the XRD measurement of this powder, it was confirmed that it was a crystal (FIG. 27). However, solid CD spectrum measurement of this crystal revealed that there was no change in ellipticity and no chiral waveform appeared.
 この結晶体200mgを水とテトラメトキシシラン(TMOS)混合液(水/TMOS =20mL/3mL)中に分散し、それを室温にて1時間攪拌した。固形物を遠心分離機にて分離、洗浄し、白い固体を回収した。収量は402mgであった。 200 mg of this crystal was dispersed in a mixed solution of water and tetramethoxysilane (TMOS) (water / TMOS = 20 mL / 3 mL) and stirred at room temperature for 1 hour. The solid was separated and washed with a centrifuge, and a white solid was recovered. The yield was 402 mg.
 この固体の29Si-NMRと13C-NMRのスペクトルをそれぞれ図28と図29に示した。これらの結果から、この複合体は、シリカ、LPEI、酒石酸の3成分で構成されたことが確認できた。しかしながら、該固体の固体CDスペクトル(図30)では、波形変化は全くなく、キラリティを示さなかった。さらに、該固体にポルフィリン色素を吸着させた後、それの固体CDスペクトルを測定したが、ポルフィリン吸収波長範囲でも楕円率の波形変化は全く現れなかった(図31)。即ち、ラセミ体酒石酸を用いて作製したシリカ系ナノ構造体<SiO/LPEI/(±)-Tart>中には、個別の不斉空間構造が形成する可能性はあるかも知れないが、全体構造では、光学活性を示す構造体にはならないことが明らかとなった。図32では、該構造体のSEM写真を示した。 The 29 Si-NMR and 13 C-NMR spectra of this solid are shown in FIGS. 28 and 29, respectively. From these results, it was confirmed that this composite was composed of three components of silica, LPEI, and tartaric acid. However, in the solid CD spectrum of the solid (FIG. 30), there was no waveform change and no chirality. Furthermore, after the porphyrin dye was adsorbed to the solid, the solid CD spectrum was measured, but no change in the ellipticity waveform appeared even in the porphyrin absorption wavelength range (FIG. 31). That is, in the silica-based nanostructure <SiO 2 / LPEI / (±) -Tart> prepared using racemic tartaric acid, there may be a possibility that individual asymmetric spatial structures may be formed. It was revealed that the structure does not become a structure showing optical activity. FIG. 32 shows an SEM photograph of the structure.
 実施例8
[シリカ系キラルナノ構造体(α-1)<SiO/LPEI/D-Tart>中の酒石酸を除去してなるシリカ系キラルナノ構造体(β-1)]
 実施例1で得られたシリカ系キラルナノ構造体(α-1)500mgを1%NH水溶液20mLに加え、室温で30min静置させ、遠心分離により回収した。この操作を4回行い、最終的に蒸留水で2回、2-プロパノールで1回洗浄した。40℃で減圧乾燥を行い、白色粉末266mgを得た。得られた粉末のFT-IRスペクトル測定の結果(図33)、酒石酸のCOOH(図33a)由来の振動が消失(図33b)しており、本発明のシリカ系キラルナノ構造体(β-1)であることを確認した。この構造体(β-1)と硝酸銅水溶液を混合してLPEIに銅イオンを配位結合させた後、それを固体CDスペクトルにて測定した。図34aの結果から、銅錯体吸収波長(250nm前後の強い吸収)範囲で強い負のコットン効果が現れた。
Example 8
[Silica-based chiral nanostructure (α-1) obtained by removing tartaric acid from <SiO 2 / LPEI / D-Tart>]
500 mg of the silica-based chiral nanostructure (α-1) obtained in Example 1 was added to 20 mL of 1% NH 3 aqueous solution, allowed to stand at room temperature for 30 min, and collected by centrifugation. This operation was performed 4 times, and finally washed twice with distilled water and once with 2-propanol. Drying under reduced pressure at 40 ° C. gave 266 mg of white powder. As a result of FT-IR spectrum measurement of the obtained powder (FIG. 33), the vibration of tartaric acid derived from COOH (FIG. 33a) disappeared (FIG. 33b), and the silica-based chiral nanostructure (β-1) of the present invention It was confirmed that. This structure (β-1) and an aqueous copper nitrate solution were mixed to coordinate a copper ion to LPEI, and then measured by a solid CD spectrum. From the result of FIG. 34a, a strong negative cotton effect appeared in the copper complex absorption wavelength range (strong absorption around 250 nm).
 実施例9
[シリカ系キラルナノ構造体(α-2)<SiO/LPEI/L-Tart>中の酒石酸を除去してなるシリカ系キラルナノ構造体(β-2)]
 酒石酸としてL-酒石酸を用いて得られたシリカ系キラルナノ構造体(α-2)を用いる以外は実施例8と同様な方法により、シリカ系キラルナノ構造体(β-2)を得た。これに実施例8と同様にしてLPEIに銅イオンを配位結合させた後、それを固体CDスペクトルにて測定した。図34bの結果から、銅錯体吸収波長(250nm前後の強い吸収)範囲で強い正のコットン効果が現れた。
Example 9
[Silica-based chiral nanostructure (α-2) obtained by removing tartaric acid from <SiO 2 / LPEI / L-Tart>]
A silica-based chiral nanostructure (β-2) was obtained in the same manner as in Example 8 except that the silica-based chiral nanostructure (α-2) obtained using L-tartaric acid as tartaric acid was used. After copper ions were coordinated to LPEI in the same manner as in Example 8, it was measured with a solid CD spectrum. From the result of FIG. 34b, a strong positive cotton effect appeared in the copper complex absorption wavelength range (strong absorption around 250 nm).
 比較例2
[シリカ系ナノ構造体<SiO/LPEI/(±)-Tart>中の酒石酸を除去してなるシリカ系ナノ構造体]
 比較例1で得られたシリカ系ナノ構造体<SiO/LPEI/(±)-Tart>を用いて実施例8と同様な方法で酒石酸を除去した。更にこれに実施例8と同様にして銅イオンを配位結合させた後、それを固体CDスペクトルにて測定した。図34cの結果から、銅錯体吸収波長(250nm前後の強い吸収)範囲で楕円率の波形変化はなかった。これは実施例8と9と全くことなる結果である。
Comparative Example 2
[Silica-based nanostructure obtained by removing tartaric acid from <SiO 2 / LPEI / (±) -Tart>]
Tartaric acid was removed in the same manner as in Example 8 using the silica-based nanostructure <SiO 2 / LPEI / (±) -Tart> obtained in Comparative Example 1. Furthermore, after coordinating copper ions to this in the same manner as in Example 8, it was measured by a solid CD spectrum. From the result of FIG. 34c, there was no change in the ellipticity waveform in the copper complex absorption wavelength range (strong absorption around 250 nm). This is a completely different result from Examples 8 and 9.
 実施例10
[シリカ系キラルナノ構造体(α-1)<SiO/LPEI/D-Tart>の高温焼成から得られるシリカ系キラルナノ構造体(γ-3)]
 実施例1の方法で、シリカ系キラルナノ構造体(α-1)を調製し、その粉体250mgをセラミックス製の坩堝中に入れ、それを電気炉にて900℃まで加熱し、その温度で2時間放置した。これで得たシリカ系キラルナノ構造体(γ-3)の比表面積(BET)は402m/gであったが、その内、μポアー由来の表面積は317m/gであり、単純外表面由来の面積は86m/gであった。これは実施例3の600℃焼成に比べて、表面積は低下傾向であった。即ち、900℃の高温ではシリカの内部空間が縮小したと考えられる。
Example 10
[Silica-Based Chiral Nanostructure (α-1) <Silica-Based Chiral Nanostructure (γ-3) Obtained from High-Temperature Firing of <SiO 2 / LPEI / D-Tart>]]
A silica-based chiral nanostructure (α-1) was prepared by the method of Example 1, 250 mg of the powder was placed in a ceramic crucible, heated to 900 ° C. in an electric furnace, and 2 ° C. at that temperature. Left for hours. The silica-based chiral nanostructure (γ-3) thus obtained had a specific surface area (BET) of 402 m 2 / g, of which the μ-pore-derived surface area was 317 m 2 / g, derived from a simple outer surface. The area of was 86 m 2 / g. Compared with the baking at 600 ° C. in Example 3, the surface area tended to decrease. That is, it is considered that the internal space of silica was reduced at a high temperature of 900 ° C.
 該構造体粉末を2-メチル-1,4-ナフトキノンのクロロホルム溶液と混合し、シリカ系キラルナノ構造体(γ-3)に2-メチル-1,4-ナフトキノンを吸着させた後、それの固体CDスペクトルを測定した(図35a、図35b)。比較に、2-メチル-1,4-ナフトキノン粉末の固体CDスペクトルも測定した(図35c)。900℃焼成後にもかかわらず、2-メチル-1,4-ナフトキノン分子の吸着後、測定用サンプルセル固定角度を0または90°にしても、同様な誘起CDスペクトルが顕著に現れ、キノンの紫外吸収波長範囲で、負のコットン効果であることが明らかとなった。キラルシリカなしには、2-メチル-1,4-ナフトキノンだけではCD波形変化は全くなかった。これらの結果は、該シリカ系キラルナノ構造体(γ-3)は極めて高い耐熱性を有することを強く示唆する。 The structure powder is mixed with a chloroform solution of 2-methyl-1,4-naphthoquinone to adsorb 2-methyl-1,4-naphthoquinone to a silica-based chiral nanostructure (γ-3), and then the solid powder CD spectra were measured (FIGS. 35a and 35b). For comparison, the solid CD spectrum of 2-methyl-1,4-naphthoquinone powder was also measured (FIG. 35c). Even after baking at 900 ° C., after the adsorption of the 2-methyl-1,4-naphthoquinone molecule, the same induced CD spectrum appears remarkably even when the measurement sample cell fixing angle is 0 or 90 °, and the ultraviolet of quinone appears. It became clear that it was a negative cotton effect in the absorption wavelength range. Without chiral silica, there was no CD waveform change with 2-methyl-1,4-naphthoquinone alone. These results strongly suggest that the silica-based chiral nanostructure (γ-3) has extremely high heat resistance.

Claims (9)

  1. (1)直鎖状ポリエチレンイミン骨格を有するポリマー(A)の水溶液と、光学活性酒石酸(B)の水溶液とを混合し、酸塩基型錯体のキラル結晶体(X)を得る工程、
    (2)前記工程(1)で得られたキラル結晶体(X)の存在下で、シリカソース(Y’)のゾルゲル反応を行い、キラル結晶体(X)のキラル構造が転写されたシリカ(Y)で当該キラル結晶体(X)を被覆する工程、
    を有することを特徴とするシリカ系キラルナノ構造体の製造方法。
    (1) A step of mixing an aqueous solution of a polymer (A) having a linear polyethyleneimine skeleton with an aqueous solution of optically active tartaric acid (B) to obtain an acid-base complex chiral crystal (X),
    (2) In the presence of the chiral crystal (X) obtained in the step (1), a silica source (Y ′) is subjected to a sol-gel reaction to transfer the chiral structure of the chiral crystal (X) (silica) Coating the chiral crystal (X) with Y),
    A method for producing a silica-based chiral nanostructure, comprising:
  2. (1)直鎖状ポリエチレンイミン骨格を有するポリマー(A)の水溶液と、光学活性酒石酸(B)の水溶液とを混合し、酸塩基型錯体のキラル結晶体(X)を得る工程、
    (2)前記工程(1)で得られたキラル結晶体(X)の存在下で、シリカソース(Y’)のゾルゲル反応を行い、キラル結晶体(X)のキラル構造が転写されたシリカ(Y)で当該キラル結晶体(X)を被覆する工程、
    (3)光学活性酒石酸(B)を酸性または塩基性水溶液で溶出する工程、
    を有することを特徴とする直鎖状ポリエチレンイミン骨格を有するポリマー(A)とシリカ(Y)とを含有し、キラルな空間構造を有することを特徴とするシリカ系キラルナノ構造体の製造方法。
    (1) A step of mixing an aqueous solution of a polymer (A) having a linear polyethyleneimine skeleton with an aqueous solution of optically active tartaric acid (B) to obtain an acid-base complex chiral crystal (X),
    (2) In the presence of the chiral crystal (X) obtained in the step (1), a silica source (Y ′) is subjected to a sol-gel reaction to transfer the chiral structure of the chiral crystal (X) (silica) Coating the chiral crystal (X) with Y),
    (3) a step of eluting the optically active tartaric acid (B) with an acidic or basic aqueous solution;
    A method for producing a silica-based chiral nanostructure comprising a polymer (A) having a linear polyethyleneimine skeleton and silica (Y) having a chiral spatial structure.
  3. (1)直鎖状ポリエチレンイミン骨格を有するポリマー(A)の水溶液と、光学活性酒石酸(B)の水溶液とを混合し、酸塩基型錯体のキラル結晶体(X)を得る工程、
    (2)前記工程(1)で得られたキラル結晶体(X)の存在下で、シリカソース(Y’)のゾルゲル反応を行い、キラル結晶体(X)のキラル構造が転写されたシリカ(Y)で当該キラル結晶体(X)を被覆する工程、
    (3’)前記工程(2)で得られた複合体を焼成し、有機成分を除去する工程、
    を有することを特徴とする、シリカ骨格中にキラルな空間構造を有することを特徴とするシリカ系キラルナノ構造体の製造方法。
    (1) A step of mixing an aqueous solution of a polymer (A) having a linear polyethyleneimine skeleton with an aqueous solution of optically active tartaric acid (B) to obtain an acid-base complex chiral crystal (X),
    (2) In the presence of the chiral crystal (X) obtained in the step (1), a silica source (Y ′) is subjected to a sol-gel reaction to transfer the chiral structure of the chiral crystal (X) (silica) Coating the chiral crystal (X) with Y),
    (3 ′) a step of firing the composite obtained in the step (2) to remove organic components;
    A method for producing a silica-based chiral nanostructure, characterized by having a chiral spatial structure in a silica skeleton.
  4. 請求項1~3の何れか1項記載の製造方法で得られるシリカ系キラルナノ構造体に、更に、
    (4)シランカップリング剤と接触させる工程、
    を有する、シリカ(Y)にO-Si-C結合が導入されてなることを特徴とする有機シラン修飾シリカ系キラルナノ構造体の製造方法。
    The silica-based chiral nanostructure obtained by the production method according to any one of claims 1 to 3,
    (4) a step of contacting with a silane coupling agent;
    A process for producing an organosilane-modified silica-based chiral nanostructure, wherein an O—Si—C bond is introduced into silica (Y) having
  5. 前記工程(1)における、直鎖状ポリエチレンイミン骨格を有するポリマー(A)中のアミン官能基と、光学活性酒石酸(B)中のカルボン酸官能基とのモル比が1:1となるように用いる請求項1~4の何れか1項記載のシリカ系キラルナノ構造体の製造方法。 In the step (1), the molar ratio of the amine functional group in the polymer (A) having a linear polyethyleneimine skeleton to the carboxylic acid functional group in the optically active tartaric acid (B) is 1: 1. The method for producing a silica-based chiral nanostructure according to any one of claims 1 to 4, which is used.
  6. 前記光化学活性酒石酸(B)がD-酒石酸、L-酒石酸又はエナンチオマー過剰な酒石酸である請求項1~5の何れか1項記載のシリカ系キラルナノ構造体の製造方法。 The method for producing a silica-based chiral nanostructure according to any one of claims 1 to 5, wherein the photochemically active tartaric acid (B) is D-tartaric acid, L-tartaric acid, or enantiomerically excess tartaric acid.
  7. 前記シリカ系キラルナノ構造体の形状が、ナノファイバー又はナノシートの集合体である請求項1~6の何れか1項記載のシリカ系キラルナノ構造体の製造方法。 The method for producing a silica-based chiral nanostructure according to any one of claims 1 to 6, wherein the shape of the silica-based chiral nanostructure is an aggregate of nanofibers or nanosheets.
  8. 請求項1~7の何れか1項記載の製造方法で得られることを特徴とするシリカ系キラルナノ構造体。 A silica-based chiral nanostructure obtained by the production method according to any one of claims 1 to 7.
  9. 固体円二色性スペクトルにて、正または負のコットン効果を有するものである請求項8記載のシリカ系キラルナノ構造体。 The silica-based chiral nanostructure according to claim 8, which has a positive or negative cotton effect in a solid circular dichroism spectrum.
PCT/JP2012/052088 2011-02-09 2012-01-31 Silica-based chiral nanostructures and processes for producing same WO2012108300A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012525559A JP5060670B2 (en) 2011-02-09 2012-01-31 Silica-based chiral nanostructure and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011025990 2011-02-09
JP2011-025990 2011-11-10

Publications (1)

Publication Number Publication Date
WO2012108300A1 true WO2012108300A1 (en) 2012-08-16

Family

ID=46638516

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052088 WO2012108300A1 (en) 2011-02-09 2012-01-31 Silica-based chiral nanostructures and processes for producing same

Country Status (2)

Country Link
JP (1) JP5060670B2 (en)
WO (1) WO2012108300A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084436A (en) * 2012-10-25 2014-05-12 Univ Kanagawa Chiral supramolecular crystal and solid catalyst composed of the same, as well as method for producing chiral supramolecular crystal
JP2016037405A (en) * 2014-08-05 2016-03-22 学校法人神奈川大学 Method for manufacturing chiral metal compound structure and metal compound structure
JP2016079057A (en) * 2014-10-15 2016-05-16 学校法人神奈川大学 Chiral solid metal and chiral solid composite body, and methods for producing them
JP2018177964A (en) * 2017-04-12 2018-11-15 学校法人神奈川大学 Manufacturing method of chiral polymer, manufacturing method of chiral carbon material, and chiral polymer
CN115124045A (en) * 2022-06-28 2022-09-30 辽宁方诺生物科技有限公司 Chiral mesoporous silica xerogel carrier material and preparation method thereof
CN115960532A (en) * 2023-03-01 2023-04-14 东华大学 Preparation method of graphene anti-cutting coating
JP7370533B2 (en) 2019-04-26 2023-10-30 学校法人神奈川大学 Method for producing chiral polymer and chiral polymer
JP7391328B2 (en) 2020-01-06 2023-12-05 学校法人神奈川大学 Method for producing chiral metal oxide structures, and block copolymers, chiral complexes, and chiral metal oxide complexes suitable therefor
CN115124045B (en) * 2022-06-28 2024-04-19 辽宁方诺生物科技有限公司 Chiral mesoporous silica xerogel carrier material and preparation method thereof

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11039621B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US9622483B2 (en) 2014-02-19 2017-04-18 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same
US11039620B2 (en) 2014-02-19 2021-06-22 Corning Incorporated Antimicrobial glass compositions, glasses and polymeric articles incorporating the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253705A (en) * 2000-03-13 2001-09-18 Japan Science & Technology Corp Organic/inorganic composite body having spiral structure having controlled spiral direction, metal oxide and manufacturing method thereof
JP2006199523A (en) * 2005-01-19 2006-08-03 Kawamura Inst Of Chem Res Silica nanotube associated body and its producing method
JP2006306711A (en) * 2005-04-01 2006-11-09 Kawamura Inst Of Chem Res Monodisperse silica microparticle containing polyamine and process for producing the same
JP2011225694A (en) * 2010-04-19 2011-11-10 Dic Corp Water-in-oil type emulsion using super hydrophobic powder as dispersant and method for producing the same
JP2012017233A (en) * 2010-07-09 2012-01-26 Kawamura Institute Of Chemical Research Method for producing silica nanotube associated product

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001253705A (en) * 2000-03-13 2001-09-18 Japan Science & Technology Corp Organic/inorganic composite body having spiral structure having controlled spiral direction, metal oxide and manufacturing method thereof
JP2006199523A (en) * 2005-01-19 2006-08-03 Kawamura Inst Of Chem Res Silica nanotube associated body and its producing method
JP2006306711A (en) * 2005-04-01 2006-11-09 Kawamura Inst Of Chem Res Monodisperse silica microparticle containing polyamine and process for producing the same
JP2011225694A (en) * 2010-04-19 2011-11-10 Dic Corp Water-in-oil type emulsion using super hydrophobic powder as dispersant and method for producing the same
JP2012017233A (en) * 2010-07-09 2012-01-26 Kawamura Institute Of Chemical Research Method for producing silica nanotube associated product

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014084436A (en) * 2012-10-25 2014-05-12 Univ Kanagawa Chiral supramolecular crystal and solid catalyst composed of the same, as well as method for producing chiral supramolecular crystal
JP2016037405A (en) * 2014-08-05 2016-03-22 学校法人神奈川大学 Method for manufacturing chiral metal compound structure and metal compound structure
JP2016079057A (en) * 2014-10-15 2016-05-16 学校法人神奈川大学 Chiral solid metal and chiral solid composite body, and methods for producing them
JP2018177964A (en) * 2017-04-12 2018-11-15 学校法人神奈川大学 Manufacturing method of chiral polymer, manufacturing method of chiral carbon material, and chiral polymer
JP7370533B2 (en) 2019-04-26 2023-10-30 学校法人神奈川大学 Method for producing chiral polymer and chiral polymer
JP7391328B2 (en) 2020-01-06 2023-12-05 学校法人神奈川大学 Method for producing chiral metal oxide structures, and block copolymers, chiral complexes, and chiral metal oxide complexes suitable therefor
CN115124045A (en) * 2022-06-28 2022-09-30 辽宁方诺生物科技有限公司 Chiral mesoporous silica xerogel carrier material and preparation method thereof
CN115124045B (en) * 2022-06-28 2024-04-19 辽宁方诺生物科技有限公司 Chiral mesoporous silica xerogel carrier material and preparation method thereof
CN115960532A (en) * 2023-03-01 2023-04-14 东华大学 Preparation method of graphene anti-cutting coating
CN115960532B (en) * 2023-03-01 2024-03-12 东华大学 Preparation method of graphene anti-cutting coating

Also Published As

Publication number Publication date
JP5060670B2 (en) 2012-10-31
JPWO2012108300A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP5060670B2 (en) Silica-based chiral nanostructure and method for producing the same
JP4936208B2 (en) Core-shell type spherical silica mesoporous material and method for producing core-shell type spherical silica mesoporous material
JP4296307B2 (en) Method for producing spherical silica-based mesoporous material
JP4714931B2 (en) Method for producing amorphous aluminum silicate, amorphous aluminum silicate obtained by the method, and adsorbent using the same
JP5501128B2 (en) Method for producing silica nanotube aggregate
JP5499442B2 (en) Metal oxide encapsulated mesoporous silica capsule
JP2004143026A (en) Spherical silica porous particle, and production method therefor
US20160002438A1 (en) Core-shell nanoparticles and method for manufacturing the same
JP4818265B2 (en) Manufacturing method of substrate-molecular sieve membrane complex using ultrasonic wave and manufacturing apparatus used for manufacturing the same
JP5987514B2 (en) Two-phase co-continuous silica structure and method for producing the same
KR101335492B1 (en) Silica nanofiber/nanocrystalline metal oxide composite and method for producing same
JP6004272B2 (en) Chiral metal oxide structure and method for producing the same
WO2014058014A1 (en) Organic-inorganic hybrid silica nanoparticle and production method thereof
JP4488191B2 (en) Method for producing spherical silica-based mesoporous material
KR102656777B1 (en) Method for producing layered silicate and its application in production of silica nanosheets, etc.
JP5141948B2 (en) Spherical silica-based mesoporous material having a bimodal pore structure and method for producing the same
JP2014034496A (en) Silica-base nanosheet, aggregate of the same, and production methods of the same
Xia et al. Manipulation of the phase structure of vinyl-functionalized phenylene bridging periodic mesoporous organosilica
JP5665689B2 (en) Method for producing layered silicate compound
JP6338280B2 (en) Chiral solid metals and solid composites and methods for their production
JP2014024711A (en) Smectite-coated silica particles and method for manufacturing the same
Chernev et al. Silica hybrid nanocomposites
JP6399583B2 (en) Method for producing circularly polarized light emitting material, and circularly polarized light emitting material
JP2012051759A (en) Method of manufacturing layer silicate compound
Matsukizono et al. Bent silica nanosheets directed from crystalline templates controlled by proton donors

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2012525559

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12745194

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12745194

Country of ref document: EP

Kind code of ref document: A1