WO2012106987A1 - 一种促进异构网络干扰协调方法及设备 - Google Patents

一种促进异构网络干扰协调方法及设备 Download PDF

Info

Publication number
WO2012106987A1
WO2012106987A1 PCT/CN2012/070868 CN2012070868W WO2012106987A1 WO 2012106987 A1 WO2012106987 A1 WO 2012106987A1 CN 2012070868 W CN2012070868 W CN 2012070868W WO 2012106987 A1 WO2012106987 A1 WO 2012106987A1
Authority
WO
WIPO (PCT)
Prior art keywords
lpn
macro cell
location information
spatial location
coverage
Prior art date
Application number
PCT/CN2012/070868
Other languages
English (en)
French (fr)
Inventor
张永平
夏亮
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012106987A1 publication Critical patent/WO2012106987A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W64/00Locating users or terminals or network equipment for network management purposes, e.g. mobility management
    • H04W64/003Locating users or terminals or network equipment for network management purposes, e.g. mobility management locating network equipment
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • H04W84/045Public Land Mobile systems, e.g. cellular systems using private Base Stations, e.g. femto Base Stations, home Node B
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to the field of communications technologies, and in particular, to a method and device for facilitating heterogeneous network interference coordination. Background technique
  • Heterogeneous network technology is introduced in LTE-A.
  • Heterogeneous network refers to low power nodes (LPN, Low Power)
  • the Node is placed in the coverage area of the macro base station to form a heterogeneous system of different node types covered. Since the geographical distance between the access point and the served user equipment (UE) is reduced, the system throughput and the overall efficiency of the network can be effectively improved.
  • the coverage of the macro base station is separated from the original single cell by several LPNs, and the same frequency band is multiplexed several times. The system can obtain huge cell splitting gain, but the coverage of the LPN is completely covered by the macro base station. In this context, a large number of edge users will appear. How to solve the interference of the macro cell to the LPN cell becomes the most important consideration of the current LTE-A heterogeneous network technology.
  • the methods for solving macro cell interference to LPN cells in the prior art are mainly divided into two categories: time domain and frequency domain.
  • the time domain method is that the macro cell configures subframes at certain locations to approximate blank subframes (ABS,
  • the macro cell will not send data.
  • the interference of the microcell in the corresponding position on the subframe will be very small, and the subframe at the corresponding position serves as the interference coordination subframe.
  • the micro cell will be able to serve its UE at the cell edge on these interference coordinated subframes.
  • the frequency domain approach is very similar to the time domain approach.
  • the macro cell does not transmit data in certain frequency bands of its system bandwidth.
  • the microcell receives very little interference in the corresponding frequency band, and the frequency band acts as an interference coordination frequency band.
  • a microcell can be a UE at the cell edge in these interference coordinated frequency bands Provide services.
  • the macro cell in order to avoid strong interference to the micro cell, the macro cell needs to transmit data on some time domain or frequency domain resources. In other words, some resources of the macro cell are unavailable, which may be Affects the performance of macro cells, especially in the performance of data channels.
  • Another method for preventing strong interference of a macro cell to a micro cell in the prior art is to enable the macro cell corresponding to the micro cell and the macro base station corresponding to the macro cell to use different spatial location information (such as PMI) for scheduled transmission.
  • PMI spatial location information
  • Embodiments of the present invention provide a method and device for facilitating heterogeneous network interference coordination, so as to enable the macro base station and the LPN to use different spatial location information to reduce strong interference between each other.
  • the technical solution is as follows:
  • a method for facilitating heterogeneous network interference coordination including:
  • the low power node LPN obtains spatial location information of the LPN within the coverage of at least one macro cell
  • the LPN notifies the at least one macro cell of the spatial location information of the LPN within the coverage of the at least one macro cell according to the identifier of the at least one macro cell.
  • the adjusted channel state information CSI Obtaining, by the macro cell, the adjusted channel state information CSI, where the spatial location information of the adjusted CS I is different from the spatial location information of the LPN in the coverage of the macro cell;
  • the macro cell performs scheduling transmission according to the adjusted CSI.
  • a low power node LPN comprising:
  • a spatial location information acquiring module configured to acquire spatial location information of the LPN within a coverage of at least one macro cell;
  • a notification module configured to notify the at least one macro cell of the spatial location information acquired by the spatial location information acquiring module according to the identifier of the at least one macro cell.
  • a macro cell base station in another aspect, includes:
  • a spatial location information receiving module configured to receive, from the low power node LPN, spatial location information of the LPN within the coverage of the macro cell;
  • a channel state information acquiring module configured to acquire the adjusted channel state information CS I, where the spatial location information of the adjusted CS I is different from the spatial location information of the LPN in the coverage of the macro cell;
  • a scheduling transmitting module configured to perform scheduling transmission according to the adjusted CS I obtained by the channel state information acquiring module.
  • an LPN has the capability of acquiring spatial location information, and can transmit the acquired acquired spatial location information to a neighbor macro cell.
  • the base station can receive spatial location information from the LPN, and perform interference coordination according to the spatial location information, so that the macro base station and the LPN use different spatial location information to reduce strong interference between each other, so there is no need to leave a blank time frequency.
  • the resource can effectively reduce the strong interference of the macro cell in the heterogeneous network to the micro cell in its coverage, and at the same time can not affect the utilization rate of the macro cell time-frequency resource.
  • the embodiment of the invention further provides a method for facilitating interference coordination of heterogeneous networks, including:
  • the low power node LPN in the coverage of the macro cell receives the spatial location information scheduled by the macro cell sent by the macro cell in a future period of time;
  • the UE located in the center of the LPN coverage area is preferentially scheduled.
  • An embodiment of the present invention further provides a low power node LPN, where the LPN includes:
  • a spatial location information receiving module configured to receive spatial location information scheduled by the macro cell and sent by the macro cell in a future period of time
  • a spatial location information measurement module configured to measure a spatial position of the LPN within a coverage of a macro cell Set information
  • a user equipment scheduling module configured to: when the spatial location information of the LPN in the macro cell coverage measured by the spatial location information measurement module is the same as the spatial location information received by the spatial location information receiving module, The UEs located at the center of the LPN coverage are preferentially scheduled.
  • the LPN in the embodiment of the present invention preferentially schedules the UE in the center of the LPN coverage range when the spatial location information scheduled by the macro base station is overlapped with the spatial location information of the macro base station, because the UE in the center of the LPN coverage area receives the macro base.
  • Station interference is smaller, and prioritizing it is beneficial to reduce the impact of interference.
  • FIG. 1 is a schematic flowchart of a heterogeneous network interference coordination method based on space division according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic flowchart of a heterogeneous network interference coordination method based on space division according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic flowchart of a heterogeneous network interference coordination method based on space division according to Embodiment 3 of the present invention
  • FIG. 4 is a logic structural block diagram of an LPN for facilitating heterogeneous network interference coordination according to Embodiment 4 of the present invention
  • FIG. 5 is a schematic structural diagram of a macro-cell base station for facilitating heterogeneous network interference coordination according to Embodiment 5 of the present invention
  • FIG. 6 is a block diagram showing a logical structure of a UE for facilitating heterogeneous network interference coordination according to Embodiment 6 of the present invention
  • FIG. 7 is a logic structural block diagram of another LPN for facilitating heterogeneous network interference coordination according to Embodiment 7 of the present invention. detailed description
  • Embodiment 1 of the present invention provides a flow of a heterogeneous network interference coordination method based on space division, as shown in FIG. 1 , which includes the following steps:
  • Step 101 The LPN determines whether the current time is in the spatial position information measurement time. If not, the prior art operation is performed, and step 101 is performed again; if yes, step 102 is performed.
  • the determining may be triggered according to a measurement period preset by the system. It should be emphasized that the measurement period of the spatial location information here may be longer-term, for example, in minutes, hours or days.
  • the spatial location information may be a precoding matrix indication (PMI, Precoding Matr ix
  • Step 102 The LPN obtains spatial location information within the coverage of the N macro cells in which it is located. There are many specific ways to get spatial location information, here are a few examples:
  • the method for obtaining spatial location information of the LPN within the coverage of the macro cell is as follows:
  • the LPN selects the UE with the largest reference signal received power (RSRP, Reference S igna l Received Power) from all the UEs served by the LPN, and configures the PMI of the N neighboring macro cells with the strongest interference by the high layer signaling configuration; Said N is a preset natural number;
  • the UE will measure the N PMIs and their corresponding macro cell identifiers (Cel l_ID) to the LPN;
  • the LPN uses the N PMIs reported by the UE and their corresponding neighbor macro cells as their spatial location information in the N macro cells.
  • the LPN configures all UEs served by the high-level signaling to measure the PMI of the N most interfered neighbor macro cells; the N is a pre-configured natural number;
  • the UE sends the measured N PMIs and their corresponding Cel l_IDs to the LPN;
  • the LPN first finds the N number of Cel l_IDs that have the most occurrences, and the macro cells corresponding to the N Ce 11_IDs as the N neighboring macro cells with the strongest interference; and then reports the result.
  • the number of PMI reports corresponding to each strong interfering cell is sorted, and the PMI with the highest number of reports is selected as the spatial location information of the LPN in the strong interfering cell.
  • the method for obtaining the spatial location information of the LPN within the coverage of the macro cell is as follows:
  • the LPN selects the UE with the largest reference signal received power (RSRP) from all the UEs it serves, and configures it to measure the best PMI of the N most interfered neighbor macro cells at each possible RI value through higher layer signaling.
  • RSRP reference signal received power
  • the N is a preset natural number
  • the UE reports the RI and PMI of each of the N interfering macro cells and the corresponding macro cell identifier (cel l - ID) to the LPN;
  • the LPN uses these groups of RIs and PMIs and their corresponding macro cell identifiers as their spatial location information within the N macro cells.
  • the LPN configures all UEs served by the high-level signaling to measure the best PMI of the N most interfered neighbor macro cells at each possible RI value;
  • the UE reports the measured group RI and PMI of the N interfering macro cells and the corresponding macro cell identifier Cel l _ ID to the service LPN;
  • the LPN first finds the N macro cell identifiers with the highest number of occurrences from all the reported results, and uses the macro cell corresponding to the N macro cell identifiers as the N neighboring macro cells with the strongest interference; then each of the reported results is strong.
  • the number of PMI reports in each RI corresponding to the interfering cell is sorted, and the PMI with the highest number of reports is combined with the corresponding RI as the spatial location information of the LPN in the strong interfering cell.
  • Step 103 The LPN notifies the determined N spatial location information to the corresponding neighbor macro cell according to the corresponding Cel l_ID.
  • the notification method can be carried out through a backhaul link, or Use other possible ways.
  • the backhaul line can be wired or wireless.
  • Step 104 The neighbor macro cell receives the spatial location information of the LPN in its coverage, and broadcasts all or part of the spatial location information (PMI (or PMI and RI)) in the cell.
  • PMI spatial location information
  • Step 105 The UE served by the neighbor macro cell receives spatial location information (PMI or RI) in the broadcast message, and when performing channel state estimation, the PMI (or PMI and RI) in the received spatial location information is The candidate PMI (or PMI and RI) is removed, and the estimated channel state information (CSI, Channel State Inf or mat ion) is fed back to the neighbor macro cell.
  • PMI or RI spatial location information
  • CSI Channel State Inf or mat ion
  • Step 106 The neighbor macro cell receives the CSI fed back by the UE, and performs scheduling transmission according to the CSI.
  • FIG. 2 a flow of a heterogeneous network interference coordination method based on space division is shown in FIG. 2, which includes the following steps:
  • Step 201 The LPN first determines whether the current time is at the time of measuring the spatial position information. If not, the prior art operation is performed, and step 201 is performed again; if yes, step 202 is performed.
  • Step 202 The LPN obtains spatial location information within the coverage of the N macro cells in which it is located.
  • Step 203 The LPN notifies the determined N spatial location information to the corresponding neighbor macro cell by using the backhaul link according to the corresponding Cell_ID.
  • Step 204 The neighbor macro cell receives the spatial location information of the LPN in the coverage area.
  • Step 205 The UE served by the neighbor macro cell performs the best measurement and feedback according to the prior art.
  • Step 206 After receiving the CSI fed back by the UE, the neighboring macro cell adjusts the channel state information as follows: if the channel state information includes spatial location information that is the same as the spatial location information of the received LPN, The UE selects another spatial location information, and recalculates a corresponding channel quality indicator (CQI, Channel Quality Indicator); if the channel state information does not include the same spatial location information as the received spatial location information of the LPN, Do the processing.
  • CQI Channel Quality Indicator
  • the method of reselecting another spatial information may be more than one.
  • the CQI fed back to the macro cell by the UE is estimated based on the selected spatial location information (PMI) to obtain the SINR.
  • PMI selected spatial location information
  • the CQI needs to be recalculated, and according to the recalculated As a result, an appropriate modulation coding rate is selected.
  • Step 207 The neighbor macro cell performs scheduling transmission by using the adjusted CSI.
  • the solutions of the first embodiment and the second embodiment are both LPN measurement spatial location information, and the spatial location information is transmitted to the neighbor macro cell, and the neighbor macro cell performs interference coordination.
  • the spatial location information is measured by the neighboring macro cell, and the spatial location information is transmitted to the neighbor LPN, and the interference coordination is performed by the LPN.
  • Embodiment 3 of the present invention proposes a flow chart of a heterogeneous network interference coordination method based on space division.
  • Step 301 The macro cell determines, according to the channel state information fed back by the UE that it serves, the spatial location information (PMI (or PMI and RI)) scheduled in each subframe for a future period of time.
  • PMI or PMI and RI
  • H ⁇ There are 10 UEs in the cell, and 4 PMIs (spatial information) are fed back. At this time, the macro cell will use the 4 PMIs to transmit in sequence in the future.
  • the future period of time may be several tens of milliseconds.
  • Step 302 The macro cell notifies the neighboring LPN in the corresponding coverage area by using the backhaul link.
  • Step 303 The neighbor LPN receives the spatial location information.
  • Step 304 When the spatial location information measured by the neighboring LPN is the same as the spatial location information scheduled by the current moment of the received macro cell, indicating that the macro cell generates strong interference to the LPN, the priority scheduling is performed on the LPN coverage.
  • Central UE For the UE at the edge of the LPN, scheduling may not be performed.
  • the LPN coverage center may be set by a person skilled in the art according to actual needs, and may be an area where the quality of the LPN service to the UE is higher than a certain threshold, or an area where the spatial distance LPN is within a certain range.
  • the UE at the center of the LPN coverage and the UE at the edge of the LPN coverage may be relative to each other if one UE1 is closer to the LPN than the UE2, or the signal quality of the UE1 (such as RSRP) Better than UE2, UE1 can be scheduled preferentially without scheduling UE2.
  • the signal quality of the UE1 such as RSRP
  • the LPN 400 includes:
  • the spatial location information obtaining module 401 is configured to obtain spatial location information of the LPN in the coverage of the at least one macro cell.
  • the notification module 402 is configured to notify the at least one macro cell of the spatial location information acquired by the spatial location information acquiring module according to the identifier of the at least one macro cell.
  • the LPN further includes:
  • the determining module 403 is configured to determine whether the current time is in the spatial position information measuring time, and if so, enable the spatial position information acquiring module 401.
  • the spatial location information is specifically divided into two categories.
  • the first type the spatial location information is a precoding matrix indicating PMI
  • the second type the spatial location information is PMI and RI.
  • the interior of the spatial location information acquisition module 401 can be divided into a configuration unit, a receiving unit, and a spatial location information setting unit.
  • the specific functions of the three units are also different depending on the type of spatial location information.
  • the spatial location information obtaining module may include: a first configuration unit, configured to select, from a total of the UEs served by the LPN, a UE with a reference signal receiving power RSRP maximum, and Configuring it to measure the PMI of the N most neighboring neighbor macro cells;
  • a first receiving unit configured to receive N PMIs of >3 ⁇ 4 on the UE with the largest RSRP and corresponding neighbor macro cell identifiers;
  • the first spatial location information setting unit is configured to use the N PMIs and the corresponding neighbor macro cell identifiers received by the first receiving unit as spatial location information of the LPN in the N macro cells.
  • the spatial location information acquiring module includes:
  • a second configuration unit configured to, by using high layer signaling, configure all UEs of the LPN service to measure PMIs of N most neighboring neighbor macro cells; a second receiving unit, configured to receive a PMI reported by the UE and a corresponding macro cell identifier, where the second spatial location information setting unit is configured to find the N with the most occurrences among all the reported results received by the second receiving unit
  • the macro cell identifiers, the macro cells corresponding to the N macro cell identifiers are used as the N strong neighboring neighbor macro cells, and the number of PMI reports corresponding to each strong interfering neighbor macro cell in the reported result is sorted, and the number of reported reports is selected.
  • the most PMI is used as the spatial location information of the LPN in the strong interfering cell.
  • the spatial location information acquisition module includes:
  • a third configuration unit configured to select, from among all the UEs served by the LPN, the UE with the largest RSRP, and configure, by using the high layer signaling, the most neighboring macro cell with the strongest interference, the most Good PMI ;
  • a third receiving unit configured to receive each group of RIs and PMIs of the N interfering macro cells reported by the UE, and corresponding macro cell identifiers thereof;
  • a third spatial location information setting unit configured to use each group of RIs and PMIs received by the third receiving unit and their corresponding macro cell identifiers as their spatial location information in the N macro cells.
  • the spatial location information acquiring module includes:
  • a fourth configuration unit configured to, by using high layer signaling, configure all UEs of the LPN service to measure an optimal PMI of each of the N most interfered neighbor macro cells at each possible RI value;
  • a fourth receiving unit configured to receive each group of RIs and PMIs of the interfering macro cell reported by the UE and corresponding macro cell identifiers thereof;
  • a fourth spatial location information setting unit configured to find, by using the results of all the reports received by the fourth receiving unit, the N macro cell identifiers that have the highest number of occurrences, and the macro cell corresponding to the N macro cell identifiers as the strongest interference N neighboring macro cells sort the number of 4 P on each PMI corresponding to each RI in the reported result, and select the PMI with the largest number of the top 4 and the corresponding RI as the LPN in the strong Interfere with spatial location information within the cell.
  • the notification module notifies the at least one macro cell of the spatial location information of the LPN within the coverage of the at least one macro cell by using a backhaul link.
  • a fifth embodiment of the present invention provides a macro cell base station for facilitating heterogeneous network interference coordination. As shown in FIG. 5, the macro cell base station 500 includes:
  • the spatial location information receiving module 501 is configured to receive, from the low power node LPN, spatial location information of the LPN within the coverage of the macro and the area;
  • the channel state information obtaining module 502 is configured to obtain the adjusted channel state information CS I, where the spatial location information of the adjusted CS I is different from the spatial location information of the LPN in the coverage of the macro cell;
  • the scheduling transmitting module 503 is configured to perform scheduling transmission according to the adjusted CS I obtained by the channel state information acquiring module 502.
  • the channel state information obtaining module 502 includes:
  • the receiving unit 504 is configured to receive channel state information fed back by the UE.
  • the adjusting unit 505 is configured to: adjust channel state information received by the receiving unit to: if the channel state information includes spatial location information that is the same as the spatial location information of the received LPN, reselect another A spatial location information, and recalculating the corresponding channel quality indication; if the channel state information does not include the same spatial location information as the received spatial location information of the LPN, no processing is performed.
  • a sixth embodiment of the present invention provides a UE for facilitating heterogeneous network interference coordination.
  • the UE 600 includes:
  • the broadcast receiving module 601 is configured to receive the spatial location information in the macro cell broadcast message, and the channel estimation module 602 is configured to: when the channel state estimation is performed, the spatial location information received by the broadcast receiving module 601 from the candidate Removed from the spatial location information;
  • the channel state information sending module 603 is configured to feed back channel state information obtained by the channel estimation module to the macro cell.
  • the seventh embodiment of the present invention provides another LPN for facilitating heterogeneous network interference coordination.
  • the LPN 700 includes:
  • the spatial location information receiving module 701 is configured to receive the macro that is sent by the macro cell through the backhaul link. Spatial location information scheduled by the district for a period of time in the future;
  • the spatial location information measuring module 702 is configured to measure spatial location information of the LPN in a coverage of the macro cell.
  • the user equipment scheduling module 703 is configured to: when the spatial location information measurement module 702 measures the spatial location information of the LPN in the coverage of the macro cell, and the spatial location information received by the spatial location information receiving module 701 At the same time, the priority scheduling is located at the center of the LPN coverage area.
  • the present invention can be implemented by means of software plus necessary general hardware, and of course, can also be through hardware, but in many cases the former is a better implementation. .
  • the technical solution of the present invention which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a readable storage medium, such as a floppy disk of a computer.
  • a hard disk or optical disk or the like includes instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Abstract

本发明提供了一种促进异构网络干扰协调方法,包括如下步骤:低功率节点LPN获取该LPN在至少一个宏小区覆盖范围内的空间位置信息;LPN根据所述至少一个宏小区的标识,将该LPN在所述至少一个宏小区覆盖范围内的空间位置信息通知所述至少一个宏小区。本发明还公开了其他的促进异构网络干扰协调方法,以及促进异构网络干扰协调的装置。本发明方案能够促使宏基站与LPN使用不同的空间位置信息来降低彼此之间的强干扰。

Description

一种促进异构网络干扰协调方法及设备
本申请要求于 2011 年 2 月 12 日提交中国专利局、 申请号为 201110037007.7、 发明名称为"一种促进异构网络干扰协调方法及设备"的中国 专利申请的优先权, 其全部内容通过引用结合在本申请中。
技术领域
本发明涉及通信技术领域,尤其涉及一种促进异构网络干扰协调方法及设 备。 背景技术
LTE-A 中引入了异构网技术。 异构网是指低功率节点 (LPN , Low Power
Node )被布放在宏基站覆盖区域内, 形成同覆盖的不同节点类型的异构系统。 由于接入点与被服务的用户设备 ( UE )之间的地理距离被缩小了, 能够有效的 提升系统吞吐量和网络整体效率。宏基站覆盖范围由原来单个小区, 由于布放 若干 LPN而分裂成若干微小区, 同一频段被复用若干次, 系统能够获得巨大的 小区分裂增益,但是由于 LPN的覆盖范围完全处于宏基站的覆盖范围内, 由此 会出现大量的边缘用户, 如何解决宏小区对 LPN 小区的干扰成为目前 LTE-A 异构网技术最主要考虑的问题。
现有技术中解决宏小区对 LPN 小区干扰的方法主要分为时域和频域两大 类。
时域的方法是宏小区将某些位置上的子帧配置成近似空白子帧 (ABS ,
Almos t Blank Subf rame ), 在这些近似空白子帧上, 宏小区将不发送数据。 这 样,微小区在对应位置上的子帧受到的干扰将会非常小, 所述对应位置上的子 帧作为干扰协调子帧。微小区将能够在这些干扰协调的子帧上为其处于小区边 缘的 UE提供服务。
频域的方法与时域的方法非常类似。宏小区在其系统带宽中的某些频段上 不发射数据, 这样, 微小区在对应的频段上受到的干扰非常小, 所述频段作为 干扰协调频段。 微小区能够在这些干扰协调的频段上为其处于小区边缘的 UE 提供服务。
由此可见, 现有技术中, 宏小区为了避免对微小区的强干扰, 需要在一些 时域或频域资源上不发射数据, 换句话说, 宏小区有部分资源是不可用的, 这 会影响宏小区的性能, 尤其是在数据信道的性能。
现有技术中的另外一种防止宏小区对微小区的强干扰的方法是让微小区 对应的 LPN与宏小区对应的宏基站使用不同的空间位置信息(如 PMI )来进行 调度发射。但是如何保证宏基站与 LPN使用不同的 PMI以减少干扰就成为一个 问题。
发明内容
本发明实施例提供了一种促进异构网络干扰协调方法及设备,以促使宏基 站与 LPN使用不同的空间位置信息来降低彼此之间的强干扰。所述技术方案如 下:
一方面, 提供一种促进异构网络干扰协调方法, 包括:
低功率节点 LPN获取该 LPN在至少一个宏小区覆盖范围内的空间位置信 息;
LPN根据所述至少一个宏小区的标识, 将该 LPN在所述至少一个宏小区覆 盖范围内的空间位置信息通知所述至少一个宏小区。
另一方面, 提供另一种促进异构网络干扰协调方法, 包括:
宏小区从低功率节点 LPN接收该 LPN在所述宏小区覆盖范围内的空间位置 信息;
所述宏小区获取调整后的信道状态信息 CSI , 所述调整后的 CS I的空间位 置信息与所述 LPN在所述宏小区覆盖范围内的空间位置信息不同;
所述宏小区根据所述调整后的 CSI做调度发射。
另一方面, 提供一种低功率节点 LPN, 所述 LPN包括:
空间位置信息获取模块,用于获取该 LPN在至少一个宏小区覆盖范围内的 空间位置信息; 通知模块, 用于根据所述至少一个宏小区的标识,将所述空间位置信息获 取模块所获取的空间位置信息通知所述至少一个宏小区。
另一方面, 提供一种宏小区基站, 所述宏小区基站包括:
空间位置信息接收模块,用于从低功率节点 LPN接收该 LPN在所述宏小区 覆盖范围内的空间位置信息;
信道状态信息获取模块, 用于获取调整后的信道状态信息 CS I , 所述调整 后的 CS I的空间位置信息与所述 LPN在所述宏小区覆盖范围内的空间位置信息 不同;
调度发射模块, 用于根据所述信道状态信息获取模块所获取的调整后的 CS I做调度发射。
从以上技术方案可以看出,本发明实施例提出的一种 LPN具有获取空间位 置信息能力, 并能将所获取的获取空间位置信息传输给邻居宏小区; 本发明实 施例提出的一种宏小区基站则可以接收来自 LPN的空间位置信息,并根据所述 空间位置信息进行干扰协调,促使宏基站与 LPN使用不同的空间位置信息来降 低彼此之间的强干扰, 因此无需留出空白的时频资源, 因此能够有效的降低异 构网络中宏小区对其覆盖范围内的微小区的强干扰,同时又能不影响宏小区时 频资源的利用率。
本发明实施例还提供一种促进异构网络干扰协调方法, 包括:
宏小区覆盖范围内的低功率节点 LPN接收所述宏小区发送的该宏小区在 未来一段时间内所调度的空间位置信息;
当所述 LPN测得的该 LPN在宏小区覆盖范围内的空间位置信息与接收到的 所述空间位置信息相同时, 则优先调度位于所述 LPN覆盖范围中心的 UE。
本发明实施例还提供一种低功率节点 LPN , 所述 LPN包括:
空间位置信息接收模块,用于接收宏小区发送的该宏小区在未来一段时间 内所调度的空间位置信息;
空间位置信息测量模块,用于测量所述 LPN在宏小区覆盖范围内的空间位 置信息;
用户设备调度模块,用于当所述空间位置信息测量模块测得的该 LPN在宏 小区覆盖范围内的空间位置信息与所述空间位置信息接收模块接收到的所述 空间位置信息相同时, 则优先调度位于所述 LPN覆盖范围中心的 UE。
通过以上技术方案可以看出,本发明实施例的 LPN在宏基站调度的空间位 置信息与自身空间位置信息重复时, 优先调度所述 LPN覆盖范围中心的 UE , 由于 LPN覆盖范围中心的 UE受到宏基站干扰更小, 对其做优先调度有利于降 低干扰带来的影响。
附图说明
图 1 为本发明实施例一提出一种基于空分的异构网络干扰协调方法的流 程示意图;
图 2 为本发明实施例二提出一种基于空分的异构网络干扰协调方法的流 程示意图;
图 3 为本发明实施例三提出一种基于空分的异构网络干扰协调方法的流 程示意图;
图 4为本发明实施例四提出的一种促进异构网络干扰协调的 LPN的逻辑结 构框图;
图 5 为本发明实施例五提出一种促进异构网络干扰协调的宏小区基站的 逻辑结构框图;
图 6为本发明实施例六提出一种促进异构网络干扰协调的 UE的逻辑结构 框图;
图 7为本发明实施例七提出另一种促进异构网络干扰协调的 LPN的逻辑结 构框图。 具体实施方式
为便于对发明内容部分的理解,下面结合附图对本发明的几种可能的具体 实施方式做详细的介绍, 需要说明的是, 以下所列举的只是几种可能的具体实 施例, 而不是全部的实施例, 本领域技术人员可以根据所述实施例得到其它的 具体实施方式,一些类似的变化或等同替换,都应涵盖在本发明的保护范围之 内。 因此, 本发明的保护范围应所述以权利要求的保护范围为准。
本发明实施例一提出一种基于空分的异构网络干扰协调方法的流程如图 1所示, 包括如下步骤:
步骤 101 : LPN判断当前时刻是否处于空间位置信息测量时刻, 若不是, 则进行现有技术操作, 并再次执行步骤 101 ; 若是, 执行步骤 102。
所述判断可以是根据系统预设的测量周期进行触发。 需要强调的是, 这里 的空间位置信息的测量周期可以是较长期的, 例如以分、 小时或天为单位。
所述空间位置信息可以是预编码矩阵指示 (PMI , Precoding Matr ix
Indi cator )或者同时包含 PMI和秩指示 (RI , Rank Indicator )0
步骤 102: LPN获取其所在的 N个宏小区覆盖范围内的空间位置信息。 获取空间位置信息的具体方法有很多, 以下举几个示例:
若空间位置信息为 PMI时,获得 LPN在宏小区覆盖范围内的空间位置信息 的方法如下:
方法一:
LPN从自身所服务的全体 UE中选择参考信号接收功率( RSRP, Reference S igna l Rece ived Power ) 最大的那个 UE, 通过高层信令配置其测量 N个干扰 最强的邻居宏小区的 PMI ; 所述 N为预先设置的自然数;
该 UE将测量得到 N个 PMI及其对应的宏小区标识( Cel l _ ID )上才艮给 LPN;
LPN将该 UE上报的 N个 PMI及其对应的邻居宏小区作为其在这 N个宏小 区内的空间位置信息。
方法二:
LPN通过高层信令配置其服务的所有 UE测量 N个干扰最强的邻居宏小区 的 PMI ; 所述 N为预先配置的自然数;
UE将测量得到的 N个 PMI及其对应的 Cel l _ ID上4艮给该 LPN; LPN首先对所有上报的结果中, 找到出现次数最多的 N个 Cel l _ ID, 将所 述 N个 Ce 11 _ ID对应的宏小区作为干扰最强的 N个邻居宏小区;然后将上报结 果中每个强干扰小区所对应的 PMI上报数量进行排序,选择上报数量最多的那 个 PMI作为该 LPN在该强干扰小区内的空间位置信息。
若空间位置信息同时包括 RI和 PMI时, 获得 LPN在宏小区覆盖范围内的 空间位置信息的方法如下:
方法一:
LPN从自身所服务的全体 UE 中选择参考信号接收功率 (RSRP )最大的那 个 UE, 通过高层信令配置其测量 N个干扰最强的邻居宏小区在每个可能的 RI 值下的最佳 PMI ; 所述 N为预先设置的自然数;
该 UE将测量得到 N个干扰宏小区的各组 RI和 PMI及其对应的宏小区标识 ( Cel l - ID )上报给 LPN;
LPN将这些上>¾的各组 RI和 PMI及其对应的宏小区标识作为其在这 N个 宏小区内的空间位置信息。
方法二:
LPN通过高层信令配置其服务的所有 UE测量 N个干扰最强的邻居宏小区 在每个可能的 RI值下的最佳 PMI ;
UE将测量得到的 N个干扰宏小区的各组 RI和 PMI及其对应的宏小区标识 Cel l _ ID上报给服务 LPN;
LPN首先从所有上报的结果中找到出现次数最多的 N个宏小区标识, 将所 述 N个宏小区标识对应的宏小区作为干扰最强的 N个邻居宏小区;然后将上报 结果中每个强干扰小区所对应每种 RI下的 PMI上报数量进行排序, 选择上报 数量最多的那个 PMI与对应的 RI组合作为该 LPN在该强干扰小区内的空间位 置信息。
步骤 103: LPN将确定的 N个空间位置信息根据对应的 Cel l _ ID通知对应 的邻居宏小区。 通知方式可以是通过回程线路(backhaul )链路进行, 也可以 采用其他可能的方式。 所述回程线路可以是有线或者无线。
步骤 104: 邻居宏小区接收到其覆盖范围内的 LPN的空间位置信息, 将所 有或部分空间位置信息 (PMI (或者 PMI和 RI ))在小区内广播。
步骤 105: 邻居宏小区服务的 UE接收广播消息中的空间位置信息 (PMI 或者还包含 RI ), 在进行信道状态估计的时候, 将接收到的空间位置信息中的 PMI (或者 PMI和 RI )从备选的 PMI (或者 PMI和 RI ) 中去掉, 将估计得到的 信道状态信息 (CSI, Channel State Inf ormat ion )反馈给所述邻居宏小区。
步骤 106:所述邻居宏小区接收 UE反馈的 CSI,并根据该 CSI做调度发射。 本发明实施例而提出一种基于空分的异构网络干扰协调方法的流程如图 2所示, 包括如下步骤:
步骤 201: LPN首先判断当前时刻是否处于空间位置信息测量时刻。 若不 是, 则进行现有技术操作, 并再次执行步骤 201; 若是, 执行步骤 202。
步骤 202: LPN获取其所在的 N个宏小区覆盖范围内的空间位置信息。 步骤 203: LPN 将确定的 N 个空间位置信息根据对应的 Cell_ID 通过 backhaul链路通知对应的邻居宏小区;
步骤 204: 邻居宏小区接收到其覆盖范围内的 LPN的空间位置信息; 步骤 205: 邻居宏小区所服务的 UE按照现有技术进行测量和反馈最佳的
CSI;
步骤 206: 邻居宏小区接收到 UE反馈的 CSI后, 对所述信道状态信息进 行如下调整:若所述信道状态信息中包含与所接收的 LPN的空间位置信息相同 的空间位置信息, 则重新为 UE选择另一个空间位置信息, 并重新计算相应的 信道质量指示 (CQI, Channel Quality Indicator ); 若所述信道状态信息中 不包含与所接收的 LPN的空间位置信息相同的空间位置信息, 则不做处理。
所述重新选择另一个空间信息的方法可以有^艮多,以下举一个最筒单的示 例: 若空间位置信息包含 RI和 ΡΜΙ, 则 RI不变, 将选择另一个 ΡΜΙ, 这个 ΡΜΙ 与 UE反馈的 ΡΜΙ最为接近, 这里所谓的最为接近是指 ΡΜΙ所对应的辐射方向 角最为接近。
UE反馈给宏小区的 CQI 是基于其选择的空间位置信息 (PMI )估计得到 SINR,这时由于宏小区采用另一个 PMI来做发射,所以,需要对 CQI进行重算, 并根据重算后的结果, 选择合适的调制编码速率。
步骤 207: 所述邻居宏小区采用调整后的 CSI进行调度发射。
以上实施例一和实施例二的方案均是 LPN测量空间位置信息,并将该空间 位置信息传递到邻居宏小区, 由邻居宏小区进行干扰协调。 实际上也可以反过 来, 由邻居宏小区测量空间位置信息, 并将该空间位置信息传递给邻居 LPN, 由 LPN进行干扰协调, 这就是本发明实施例三提出的方案。
本发明实施例三提出一种基于空分的异构网络干扰协调方法的流程如图
3所示, 包括如下步骤:
步骤 301 : 宏小区根据其所服务的 UE反馈的信道状态信息确定其未来一 段时间内, 每个子帧上所调度的空间位置信息 (PMI (或者 PMI和 RI ) )。
例如: H殳本小区共有 10个 UE, 反馈上来 4种 PMI (空间信息), 这时宏 小区就在未来一段时间内,按顺序循环的采用这 4个 PMI来发射。所述未来一 段时间可以是几十毫秒。
步骤 302: 宏小区将该空间位置信息通过 backhaul链路通知对应覆盖范 围内的邻居 LPN;
步骤 303: 邻居 LPN接收该空间位置信息。
步骤 304: 当所述邻居 LPN测得的空间位置信息与接收到的宏小区当前时 刻所调度的空间位置信息相同时,表示宏小区会对该 LPN产生强干扰, 则优先 调度那些位于 LPN覆盖范围中心的 UE。 而对于 LPN边缘的 UE, 可以不做调度。 所述 LPN覆盖范围中心可以由本领域技术人员根据实际需求设定, 其可以是 LPN对 UE服务的质量高于一定门限的区域, 也可以是空间上距离 LPN在一定 范围内的区域。 LPN覆盖范围中心的 UE和 LPN覆盖范围边缘的 UE可以时相对 的概念,如果一个 UE1比 UE2距离 LPN近,或者所述 UE1的信号质量(如 RSRP ) 好于 UE2 , 则 UE1可以被优先调度, 而不对 UE2做调度。
本发明实施例四提出的一种促进异构网络干扰协调的 LPN, 如图 4所示, 所述 LPN400包括:
空间位置信息获取模块 401 , 用于获取该 LPN在至少一个宏小区覆盖范围 内的空间位置信息;
通知模块 402 , 用于根据所述至少一个宏小区的标识, 将所述空间位置信 息获取模块所获取的空间位置信息通知所述至少一个宏小区。
较佳地, 所述 LPN进一步包括:
判断模块 403 ,用于判断当前时刻是否处于空间位置信息测量时刻,若是, 则使能所述空间位置信息获取模块 401。
所述空间位置信息具体分为两类, 第一类, 空间位置信息为预编码矩阵指 示 PMI ; 第二类, 空间位置信息为 PMI和 RI。
所述空间位置信息获取模块 401的内部可以分为配置单元、接收单元和空 间位置信息设置单元。根据空间位置信息类型的不同, 所述三个单元的具体功 能也有所不同。
对于第一类空间位置信息, 所述空间位置信息获取模块可以包括: 第一配置单元, 用于从所述 LPN所服务的全体 UE中选择参考信号接收功 率 RSRP最大的那个 UE, 通过高层信令配置其测量 N个干扰最强的邻居宏小区 的 PMI ;
第一接收单元,用于接收所述 RSRP最大的 UE上 >¾的 N个 PMI及其对应的 邻居宏小区标识;
第一空间位置信息设置单元, 用于将所述第一接收单元接收的 N 个 PMI 及其对应的邻居宏小区标识作为 LPN在这 N个宏小区内的空间位置信息。
或者, 所述空间位置信息获取模块包括:
第二配置单元, 用于通过高层信令配置所述 LPN服务的所有 UE测量 N个 干扰最强的邻居宏小区的 PMI ; 第二接收单元, 用于接收 UE上报的 PMI及其对应的宏小区标识; 第二空间位置信息设置单元,用于在所述第二接收单元接收的所有上报的 结果中找到出现次数最多的 N个宏小区标识,将所述 N个宏小区标识对应的宏 小区作为 N个强干扰邻居宏小区;并将上报结果中每个强干扰邻居宏小区所对 应的 PMI上报数量进行排序,选择上报数量最多的那个 PMI作为该 LPN在该强 干扰小区内的空间位置信息。
对于第二类空间位置信息, 所述空间位置信息获取模块包括:
第三配置单元,用于从所述 LPN所服务的全体 UE中选择 RSRP最大的那个 UE, 通过高层信令配置其测量 N个干扰最强的邻居宏小区在每个可能的 RI值 下的最佳 PMI ;
第三接收单元, 用于接收所述 UE上报的 N个干扰宏小区的各组 RI和 PMI 及其对应的宏小区标识;
第三空间位置信息设置单元, 用于将第三接收单元接收的各组 RI和 PMI 及其对应的宏小区标识作为其在这 N个宏小区内的空间位置信息。
或者, 所述空间位置信息获取模块包括:
第四配置单元, 用于通过高层信令配置所述 LPN服务的所有 UE测量 N个 干扰最强的邻居宏小区在每个可能的 RI值下的最佳 PMI ;
第四接收单元,用于接收 UE上报的干扰宏小区的各组 RI和 PMI及其对应 的宏小区标识;
第四空间位置信息设置单元,用于对第四接收单元接收的所有上报的结果 中找到出现次数最多的 N个宏小区标识,将所述 N个宏小区标识对应的宏小区 作为干扰最强的 N 个邻居宏小区, 将上报结果中每个强干扰小区所对应每种 RI下的 PMI上 4艮数量进行排序, 选择上 4艮数量最多的那个 PMI与对应的 RI组 合作为该 LPN在该强干扰小区内的空间位置信息。
较佳地,所述通知模块通过回程链路将将该 LPN在所述至少一个宏小区覆 盖范围内的空间位置信息通知所述至少一个宏小区。 本发明实施例五提出一种促进异构网络干扰协调的宏小区基站, 如图 5 所示, 所述宏小区基站 500包括:
空间位置信息接收模块 501 , 用于从低功率节点 LPN接收该 LPN在所述宏 、区覆盖范围内的空间位置信息;
信道状态信息获取模块 502 , 用于获取调整后的信道状态信息 CS I , 所述 调整后的 CS I的空间位置信息与所述 LPN在所述宏小区覆盖范围内的空间位置 信息不同;
调度发射模块 503 , 用于根据所述信道状态信息获取模块 502所获取的调 整后的 CS I做调度发射。
较佳地, 所述信道状态信息获取模块 502包括:
接收单元 504 , 用于接收 UE反馈的信道状态信息;
调整单元 505 , 用于对所述接收单元所接收的信道状态信息进行如下调 整:若所述信道状态信息中包含与所接收的 LPN的空间位置信息相同的空间位 置信息, 则重新为 UE选择另一个空间位置信息, 并重新计算相应的信道质量 指示;若所述信道状态信息中不包含与所接收的 LPN的空间位置信息相同的空 间位置信息, 则不做处理。
本发明实施例六提出一种促进异构网络干扰协调的 UE , 如图 6所示, 所 述 UE600包括:
广播接收模块 601 , 用于接收宏小区广播消息中的空间位置信息; 信道估计模块 602 , 用于在进行信道状态估计的时候, 将所述广播接收模 块 601接收到的空间位置信息从备选的空间位置信息中去掉;
信道状态信息发送模块 603 , 用于将所述信道估计模块所得到的信道状态 信息反馈给所述宏小区。
本发明实施例七提出另一种促进异构网络干扰协调的 LPN, 如图 7所示, 所述 LPN700包括:
空间位置信息接收模块 701 , 用于接收宏小区通过回程链路发送的该宏小 区在未来一段时间内所调度的空间位置信息;
空间位置信息测量模块 702 , 用于测量所述 LPN在宏小区覆盖范围内的空 间位置信息;
用户设备调度模块 703 , 用于当所述空间位置信息测量模块 702测得的该 LPN在宏小区覆盖范围内的空间位置信息与所述空间位置信息接收模块 701接 收到的所述空间位置信息相同时, 则优先调度位于所述 LPN覆盖范围中心的
UE。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到本发 明可借助软件加必需的通用硬件的方式来实现, 当然也可以通过硬件,但很多 情况下前者是更佳的实施方式。基于这样的理解, 本发明的技术方案本质上或 者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软 件产品存储在可读取的存储介质中, 如计算机的软盘, 硬盘或光盘等, 包括若 干指令用以使得一台计算机设备(可以是个人计算机, 服务器, 或者网络设备 等)执行本发明各个实施例所述的方法。
以上所述仅为本发明的较佳实施例而已, 并不用以限制本发明, 凡在本发 明的精神和原则之内, 所做的任何修改、 等同替换、 改进等, 均应包含在本发 明保护的范围之内。

Claims

权 利 要 求
1、 一种促进异构网络干扰协调方法, 其特征在于, 包括:
低功率节点 LPN获取该 LPN在至少一个宏小区覆盖范围内的空间位置信 息;
LPN ^据所述至少一个宏小区的标识, 将该 LPN在所述至少一个宏小区 覆盖范围内的空间位置信息通知所述至少一个宏小区。
2、 根据权利要求 1所述的方法, 其特征在于, 所述 LPN获取该 LPN在 至少一个宏小区覆盖范围内的空间位置信息之前, 进一步包括:
LPN 判断当前时刻是否处于空间位置信息测量时刻, 若是, 则执行所述 LPN获取该 LPN在至少一个宏小区覆盖范围内的空间位置信息的步骤。
3、 根据权利要求 1所述的方法, 其特征在于, 所述空间位置信息为预编 码矩阵指示 PMI。
4、 根据权利要求 3所述的方法, 其特征在于, 所述 LPN获取该 LPN在 至少一个宏小区覆盖范围内的空间位置信息包括:
LPN从自身所服务的多个 UE中选择参考信号接收功率 RSRP最大的那个
UE, 通过高层信令配置所选 UE测量 N个邻居宏小区的 PMI, N为自然数; LPN接收所述所选 UE上报的 N个 PMI及其对应的宏小区标识;
LPN将所述所选 UE上报的 N个 PMI及其对应的邻居宏小区标识作为所 述 LPN在这 N个宏小区内的空间位置信息;
或者
LPN通过高层信令配置其服务的多个 UE测量 N个邻居宏小区的 PMI; LPN接收所述多个 UE上报的 PMI及其对应的宏小区标识; LPN在上报的结果中找到出现次数最多的 N个宏小区标识, 将所述 N个 宏小区标识对应的宏小区作为 N个强干扰邻居宏小区;
LPN将上报结果中每个强干扰邻居宏小区所对应的 PMI上报数量进行排 序, 选择上报数量最多的那个 PMI作为该 LPN在该强干扰小区内的空间位置 信息。
5、 根据权利要求 1所述的方法, 其特征在于, 所述空间位置信息为 PMI 和秩指示 RI。
6、 根据权利要求 5所述的方法, 其特征在于, 所述 LPN获取该 LPN在 至少一个宏小区覆盖范围内的空间位置信息包括:
LPN从自身所服务的多个 UE中选择 RSRP最大的那个 UE, 通过高层信 令配置所选 UE测量 N个邻居宏小区在每个可能的 RI值下的最佳 PMI, N为 自然数;
LPN接收所述所选 UE上报的 N个干扰宏小区的各组 RI和 PMI及其对应 的宏小区标识;
LPN将这些上报的各组 RI和 PMI及其对应的宏小区标识作为其在这 N 个宏小区内的空间位置信息;
或者
LPN通过高层信令配置其服务的多个 UE测量 N个邻居宏小区在每个可 能的 RI值下的最佳 PMI;
LPN接收所述多个 UE上报的干扰宏小区的各组 RI和 PMI及其对应的宏 小区标识;
LPN在上报的结果中找到出现次数最多的 N个宏小区标识, 将所述 N个 宏小区标识对应的宏小区作为所述 N个邻居宏小区;
LPN将上报结果中每个强干扰小区所对应每种 RI下的 PMI上报数量进行 排序, 选择上报数量最多的那个 PMI与对应的 RI组合作为该 LPN在该强干 扰小区内的空间位置信息。
7、 根据权利要求 1至 6任一项所述的方法, 其特征在于, 所述将该 LPN 在所述至少一个宏小区覆盖范围内的空间位置信息通知所述至少一个宏小区 为: 通过回程链路将该 LPN在所述至少一个宏小区覆盖范围内的空间位置信 息通知所述至少一个宏小区。
8、 一种促进异构网络干扰协调方法, 其特征在于, 包括:
宏小区从低功率节点 LPN接收该 LPN在所述宏小区覆盖范围内的空间位 置信息;
所述宏小区获取调整后的信道状态信息 CSI, 所述调整后的 CSI的空间位 置信息与所述 LPN在所述宏小区覆盖范围内的空间位置信息不同;
所述宏小区根据所述调整后的 CSI做调度发射。
9、 根据权利要求 8所述的方法, 其特征在于, 所述宏小区获取调整后 的 CSI包括:
宏小区接收 UE反馈的信道状态信息;
对所述信道状态信息进行如下调整:若所述信道状态信息中包含与所接收 的 LPN在所述宏小区覆盖范围内的空间位置信息相同的空间位置信息, 则重 新为 UE选择另一个空间位置信息, 并重新计算相应的信道质量指示。
10、 根据权利要求 8所述的方法, 其特征在于, 所述宏小区获取调整后 的 CSI包括: 宏小区从 UE处获取所述调整后的 CSI。
11、 一种促进异构网络干扰协调方法, 其特征在于, 包括:
宏小区覆盖范围内的低功率节点 LPN接收所述宏小区发送的该宏小区在 未来一段时间内所调度的空间位置信息;
当所述 LPN测得的该 LPN在宏小区覆盖范围内的空间位置信息与接收到 的所述空间位置信息相同时, 则优先调度位于所述 LPN覆盖范围中心的 UE。
12、 根据权利要求 11所述的方法, 其特征在于, 所述 LPN接收所述宏小 区发送的该宏小区在未来一段时间内所调度的空间位置信息包括: 所述 LPN 通过回程链路接收所述宏小区发送的该宏小区在未来一段时间内所调度的空 间位置信息。
13、 一种低功率节点 LPN, 其特征在于, 所述 LPN包括:
空间位置信息获取模块, 用于获取该 LPN在至少一个宏小区覆盖范围内 的空间位置信息;
通知模块, 用于根据所述至少一个宏小区的标识, 将所述空间位置信息获 取模块所获取的空间位置信息通知所述至少一个宏小区。
14、 根据权利要求 13所述的 LPN, 其特征在于, 所述 LPN进一步包括: 判断模块, 用于判断当前时刻是否处于空间位置信息测量时刻, 若是, 则 使能所述空间位置信息获取模块。
15、 根据权利要求 13或 14所述的 LPN, 其特征在于, 所述通知模块通 过回程链路将将该 LPN在所述至少一个宏小区覆盖范围内的空间位置信息通 知所述至少一个宏小区。
16、 一种宏小区基站, 其特征在于, 所述宏小区基站包括: 空间位置信息接收模块, 用于从低功率节点 LPN接收该 LPN在所述宏小 区覆盖范围内的空间位置信息;
信道状态信息获取模块, 用于获取调整后的信道状态信息 CSI, 所述调整 后的 CSI的空间位置信息与所述 LPN在所述宏小区覆盖范围内的空间位置信 息不同;
调度发射模块, 用于根据所述信道状态信息获取模块所获取的调整后的 CSI做调度发射。
17、 根据权利要求 16所述的宏小区基站, 其特征在于, 所述信道状态 信息获取模块包括:
接收单元, 用于接收 UE反馈的信道状态信息;
调整单元, 用于对所述接收单元所接收的信道状态信息进行如下调整: 若 所述信道状态信息中包含与所接收的 LPN在所述宏小区覆盖范围内的空间位 置信息相同的空间位置信息, 则重新为 UE选择另一个空间位置信息, 并重新 计算相应的信道质量指示。
18、 一种低功率节点 LPN, 其特征在于, 所述 LPN包括:
空间位置信息接收模块,用于接收宏小区发送的该宏小区在未来一段时间 内所调度的空间位置信息;
空间位置信息测量模块, 用于测量所述 LPN在宏小区覆盖范围内的空间 位置信息;
用户设备调度模块, 用于当所述空间位置信息测量模块测得的该 LPN在 宏小区覆盖范围内的空间位置信息与所述空间位置信息接收模块接收到的所 述空间位置信息相同时, 则优先调度位于所述 LPN覆盖范围中心的 UE。
PCT/CN2012/070868 2011-02-12 2012-02-03 一种促进异构网络干扰协调方法及设备 WO2012106987A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110037007.7A CN102638805B (zh) 2011-02-12 2011-02-12 一种促进异构网络干扰协调方法及设备
CN201110037007.7 2011-02-12

Publications (1)

Publication Number Publication Date
WO2012106987A1 true WO2012106987A1 (zh) 2012-08-16

Family

ID=46622995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070868 WO2012106987A1 (zh) 2011-02-12 2012-02-03 一种促进异构网络干扰协调方法及设备

Country Status (2)

Country Link
CN (1) CN102638805B (zh)
WO (1) WO2012106987A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271152B2 (en) 2013-03-11 2016-02-23 Hitachi, Ltd. Heterogeneous cellular network

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103974238B (zh) 2013-01-25 2018-09-28 中兴通讯股份有限公司 一种在异构网络中实现安全检测的方法、装置和系统
CN104349486B (zh) * 2013-08-08 2019-05-03 华为技术有限公司 基于干扰消除的协同调度方法、装置和系统
CN105391511B (zh) * 2015-11-26 2017-11-28 北京邮电大学 消除异构网络层间干扰的方法及装置
CN108024377B (zh) * 2016-11-04 2022-10-18 中兴通讯股份有限公司 一种空间信息的处理方法及装置
CN112020092B (zh) * 2019-05-31 2022-05-24 华为技术有限公司 一种信道信息获取方法及装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527936A (zh) * 2008-03-04 2009-09-09 中兴通讯股份有限公司 分层异构无线接入网系统及分层异构无线接入网实现方法
US20100216485A1 (en) * 2009-02-24 2010-08-26 Eden Rock Communications, Llc Systems and methods for usage-based output power level adjustments for self-optimizing radio access nodes
CN101925069A (zh) * 2009-06-15 2010-12-22 株式会社Ntt都科摩 无线蜂窝网络中的干扰抑制方法和装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101527936A (zh) * 2008-03-04 2009-09-09 中兴通讯股份有限公司 分层异构无线接入网系统及分层异构无线接入网实现方法
US20100216485A1 (en) * 2009-02-24 2010-08-26 Eden Rock Communications, Llc Systems and methods for usage-based output power level adjustments for self-optimizing radio access nodes
CN101925069A (zh) * 2009-06-15 2010-12-22 株式会社Ntt都科摩 无线蜂窝网络中的干扰抑制方法和装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9271152B2 (en) 2013-03-11 2016-02-23 Hitachi, Ltd. Heterogeneous cellular network

Also Published As

Publication number Publication date
CN102638805A (zh) 2012-08-15
CN102638805B (zh) 2016-10-05

Similar Documents

Publication Publication Date Title
JP7340648B2 (ja) 車両間通信のためのロケーションおよびリッスンビフォアスケジュールベースのリソース割振り
TWI749027B (zh) 設備到設備通訊系統中基於優先順序的資源選擇
TWI796465B (zh) 用於干擾管理的增強型rrm/csi 量測
KR102487992B1 (ko) 링크 품질 기반 릴레이 선택을 위한 시스템들, 방법들, 및 디바이스들
JP6661646B2 (ja) Ptm(ポイントツーマルチポイント)送信の送信モードのサポートおよびpdcchブラインド復号に対する影響
JP6982082B2 (ja) Bss間サウンディングのための方法およびシステム
CN105322990B (zh) 通过协作通信在基站收发信台之间提供反馈的方法和设备
JP6174110B2 (ja) 移動通信システム、通信装置、及びd2d端末
TW201714461A (zh) 針對v2x應用的資源配置延遲的最小化
TW201236396A (en) Providing mobile-guided downlink interference management
WO2013107389A1 (zh) 测量方法,csi-rs资源共享方法和装置
TW201717674A (zh) 用於窄頻上行鏈路單音調傳輸的系統和方法
JP2020503803A (ja) 通信方法、ネットワークデバイス、および端末デバイス
TW201806409A (zh) 用於增強型授權輔助存取的週期性和非週期性csi報告程序
WO2013168561A1 (ja) 無線通信システム、無線基地局装置、ユーザ端末および通信制御方法
WO2014110816A1 (zh) 测量方法、小区测量方法、装置及通信节点
TW201018280A (en) Candidate set management in a heterogeneous network
TW201806403A (zh) 用於共存的技術的偵測
WO2012106987A1 (zh) 一种促进异构网络干扰协调方法及设备
KR20120126033A (ko) 이동통신시스템에서의 효율적인 단말기의 이동상태 추정 방법 및 그 장치
WO2017035797A1 (zh) 一种测量方法及装置
JPWO2013111887A1 (ja) 通信制御方法、ユーザ端末、及び装置
WO2012174920A1 (zh) 发送信息和判断是否接收mbms的方法、系统和设备
WO2013116977A1 (zh) 确定下行协作多点测量集合的方法及其装置
US20140119319A1 (en) Apparatus and Method for Reactive Inter-Cell Interference Coordination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12744210

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12744210

Country of ref document: EP

Kind code of ref document: A1