WO2012105692A1 - Objective lens, method for manufacturing objective lens, and mold - Google Patents

Objective lens, method for manufacturing objective lens, and mold Download PDF

Info

Publication number
WO2012105692A1
WO2012105692A1 PCT/JP2012/052519 JP2012052519W WO2012105692A1 WO 2012105692 A1 WO2012105692 A1 WO 2012105692A1 JP 2012052519 W JP2012052519 W JP 2012052519W WO 2012105692 A1 WO2012105692 A1 WO 2012105692A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical
objective lens
lens
flange
mold
Prior art date
Application number
PCT/JP2012/052519
Other languages
French (fr)
Japanese (ja)
Inventor
清水勉
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to JP2012555974A priority Critical patent/JP5716754B2/en
Publication of WO2012105692A1 publication Critical patent/WO2012105692A1/en

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1372Lenses
    • G11B7/1374Objective lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C45/00Injection moulding, i.e. forcing the required volume of moulding material through a nozzle into a closed mould; Apparatus therefor
    • B29C45/17Component parts, details or accessories; Auxiliary operations
    • B29C45/26Moulds
    • B29C45/27Sprue channels ; Runner channels or runner nozzles
    • B29C45/2701Details not specific to hot or cold runner channels
    • B29C45/2708Gates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00317Production of lenses with markings or patterns
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/12Heads, e.g. forming of the optical beam spot or modulation of the optical beam
    • G11B7/135Means for guiding the beam from the source to the record carrier or from the record carrier to the detector
    • G11B7/1353Diffractive elements, e.g. holograms or gratings

Definitions

  • the present invention relates to an objective lens having a fine shape on an optical surface, in particular, an objective lens incorporated in a notebook computer, a manufacturing method thereof, and a molding die used in the manufacturing method.
  • a gate portion that is an inlet through which molten resin flows into a mold space corresponding to the objective lens is disposed on the outer periphery of the flange portion of the objective lens (see, for example, Patent Document 1). ). This is because the gate portion is separated from the optical surface so that molding distortion or the like of the gate portion does not affect the optical surface of the objective lens.
  • the molten resin that has flowed in from the gate portion provided on the outer periphery of the flange portion passes through the neck portion connecting the optical surface of the lens and the flange portion from the gate portion having a relatively small cross-sectional area, and has a relatively wide cross-sectional area. It flows into the mold space corresponding to the optical function part of the lens, and the optical surface is transferred by filling this mold space.
  • the objective lens as disclosed in Patent Document 1 is a small one that is incorporated into, for example, a notebook computer and is compatible with a plurality of types of discs
  • the transfer accuracy of the lens is particularly problematic.
  • the neck portion has a high degree of necking, and the amount of molten resin flowing into the mold space corresponding to the optical function portion is limited.
  • the molten resin passes through the gate portion, the molten resin that comes in contact with the mold surface such as the gate wall surface is cooled by the mold to increase the viscosity, and only the central portion of the gate portion serves as a passage to form the molten resin. It will flow into the mold space. Therefore, the greater the degree of constriction of the neck portion, the more the amount of molten resin flowing in is limited.When the amount is significantly limited, the amount of molten resin flowing into the optical function portion is insufficient, and the mold is in an unfilled state. Transfer to fine diffractive shape is incomplete.
  • An object of the present invention is to provide an objective lens in which a fine shape or the like is transferred with high accuracy while suppressing restriction of the amount of molten resin flowing into a mold space corresponding to the optical function portion of the lens.
  • Another object of the present invention is to provide an objective lens manufacturing method for manufacturing the objective lens and a molding die used in the manufacturing method.
  • an objective lens according to the present invention has an optical function part having a fine shape on an optical surface and a flange part provided around the optical function part, and is provided on the outer peripheral edge of the flange part.
  • An objective lens that is injection-molded by a resin introduced into the mold space from the gate portion and is used for reading and / or writing information on BD, DVD, and CD, and the optical function portion includes a first optical surface and A second optical surface having a smaller curvature than the first optical surface, a neck portion between the optical function portion and the flange portion, and a lens outer diameter in a direction perpendicular to the lens optical axis as G (mm
  • the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm)
  • the minimum thickness of the neck portion in the direction parallel to the lens optical axis is T (mm).
  • the objective lens with a lens outer diameter G satisfying G ⁇ 4.05 (mm) is a relatively small lens, and the smaller the lens outer diameter G, the smaller the cross-sectional area of the neck portion.
  • the objective lens satisfying the thickness t on the lens axis and the minimum thickness T of the neck portion of t / T> 4.0 has a relatively large thickness deviation ratio and the amount of molten resin flowing in is limited. The challenge becomes bigger.
  • the elements satisfy the conditional expressions (1) to (3), so that the objective lens has a fine shape transferred with high accuracy.
  • the gate depth D to 0.5T or more
  • setting the gate width W to 1.5T or more
  • setting the gate cross-sectional area (D ⁇ W) to 1.5T 2 or more.
  • the gate width W is set to 3T or less, it is possible to suppress the cut margin of the flange portion when finishing the gate cut, and to avoid adverse effects on the optical surface. Further, by reducing the gate depth D to 1.33 T or less, a resin that deteriorates optical performance caused by a turbulent flow caused by the flow of the molten resin hitting the convex step portion of the neck portion in the vicinity of the neck portion of the optical surface. Can be suppressed.
  • the flange portion has a first flange surface on the first optical surface side and a second flange surface on the second optical surface side, and the second flange.
  • the surface is disposed lower than the vertex of the second optical surface.
  • the ratio of the thickness of the flange portion to the minimum thickness T of the neck portion becomes relatively small, and when the objective lens is molded, the molten resin flowing from the gate portion is suppressed from flowing excessively at the neck portion. This can prevent the deterioration of the optical performance in the vicinity of the neck portions of the first and second optical surfaces.
  • the outer periphery of the second optical surface is formed inside the outer periphery of the first optical surface.
  • the molten resin flows into the first optical surface side earlier than the second optical surface side, and the molten resin can easily flow to the first optical surface side.
  • the neck portion has a first end surface on the first optical surface side and a second end surface on the second optical surface side, and connects the first flange surface and the first end surface. At least one of the surfaces connecting the second flange surface and the second end surface is inclined with respect to the lens optical axis. In this case, the surface connecting the flange surface and the end surface becomes gentle, and the molten resin can smoothly flow into the neck portion.
  • At least one of the first end surface and the second end surface has a mirror surface.
  • the end surface is a mirror surface, the molten resin can flow smoothly when the objective lens is molded.
  • one of the first flange surface and the second flange surface is arranged to be recessed from either the corresponding first end surface or second end surface on the neck portion side.
  • the convex step portion of the neck portion that hinders the flow of the molten resin is eliminated during the molding of the objective lens, so the flow of the molten resin becomes a turbulent flow. It flows smoothly. Therefore, it is possible to suppress the deterioration of the optical performance in the vicinity of the neck portion of the first and second optical surfaces.
  • the flange portion has a step shape that changes the thickness in the direction parallel to the lens optical axis on at least one of the first flange surface and the second flange surface.
  • the inclined portion that is the boundary between the flange surface and the end surface becomes gentle, and the molten resin can smoothly flow into the neck portion.
  • the second end face has a convex mark for mold identification.
  • the objective lens since the objective lens has the above configuration, a mark that is difficult to be transferred with a small-diameter lens can be transferred with high accuracy.
  • a convex mark for mold identification is provided on the second flange surface.
  • the objective lens since the objective lens has the above configuration, a mark that is difficult to be transferred with a small-diameter lens can be transferred with high accuracy.
  • the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm) and the focal length of a light beam having a wavelength of 500 nm or less is f (mm), 0.8 ⁇ t / f ⁇ 2.0.
  • t / f is 1.0 ⁇ t / f ⁇ 1.8, which enables transfer with higher accuracy.
  • an objective lens manufacturing method includes an optical function unit having a fine shape on an optical surface and a flange unit provided around the optical function unit.
  • a method of manufacturing an objective lens that is injection-molded by a resin introduced into a mold space from a gate portion provided at a peripheral edge, and is used for recording and / or reproducing information on BD, DVD, and CD.
  • an objective lens having a fine shape transferred with high accuracy can be manufactured by satisfying the conditional expressions (1) to (3). That is, when the objective lens is molded, it is possible to prevent optical performance deterioration due to unfilling due to insufficient injection pressure or excessive pressure. Further, it is possible to suppress the cutting margin of the flange portion at the time of finishing gate cutting, and to avoid adverse effects on the optical surface. Moreover, the flow orientation of the resin which degrades the optical performance caused by the turbulent flow caused by the flow of the molten resin hitting the convex portion of the neck portion in the vicinity of the neck portion of the optical surface can be suppressed.
  • a molding die according to the present invention has an optical function part having a fine shape on an optical surface, and a flange part provided around the optical function part, on the outer periphery of the flange part.
  • a molding die for molding an objective lens that is injection-molded by a resin introduced into a mold space from a provided gate and is used for reading and / or writing information on BD, DVD, and CD.
  • a first mold having a first transfer surface forming a first optical surface of the lens and a first molding surface forming a first flange surface extending around the first optical surface;
  • a second gold having a second transfer surface forming a second optical surface having a smaller curvature than the optical surface, and a second molding surface forming a second flange surface extending around the second optical surface.
  • an objective lens between the first transfer surface and the first molding surface.
  • a third molding surface that forms a neck portion of the objective lens a fourth molding surface that forms a neck portion of the objective lens between the second transfer surface and the second molding surface,
  • the dimension of the mold space formed by the mold and the second mold is such that the lens outer diameter in the direction perpendicular to the lens optical axis is G (mm), and the optical function unit has a dimension in the direction parallel to the lens optical axis.
  • the mold space has a shape obtained by inverting the contour of the objective lens.
  • the molding die can be a molding die capable of molding an objective lens having a fine shape transferred with high accuracy. That is, when the objective lens is molded, it is possible to prevent optical performance deterioration due to unfilling due to insufficient injection pressure or excessive pressure. Further, it is possible to suppress the cutting margin of the flange portion at the time of finishing gate cutting, and to avoid adverse effects on the optical surface. Moreover, the flow orientation of the resin which degrades the optical performance caused by the turbulent flow caused by the flow of the molten resin hitting the convex portion of the neck portion in the vicinity of the neck portion of the optical surface can be suppressed.
  • the second molding surface is from a die-matching surface of the first die and the second die rather than the apex of the second transfer surface. It is formed in a shallow position.
  • the outer periphery of the second transfer surface is formed inside the outer periphery of the first transfer surface.
  • At least one of the surface connecting the first molding surface and the third molding surface and the surface connecting the second molding surface and the fourth molding surface is a lens optical axis. It is inclined with respect to.
  • one of the first molding surface and the second molding surface is disposed so as to be recessed from either the third molding surface or the fourth molding surface.
  • a transfer surface that forms a step shape that changes the thickness in a direction parallel to the lens optical axis is provided on at least one of the first molding surface and the second molding surface.
  • the fourth molding surface has a concave transfer surface for transferring a convex mark for mold identification.
  • the second molding surface has a concave transfer surface for transferring a convex mark for identifying a mold.
  • FIG. 1A is a partial side sectional view of the objective lens according to the first embodiment
  • FIG. 1B is a plan view of the second optical surface side of FIG. 1A
  • FIG. 1B is a partial side cross-sectional view illustrating a molding die for forming the objective lens of FIG. 1A. It is a figure explaining the flow path space for resin supply, and the type
  • FIG. 4A is a partial side sectional view of the objective lens of the second embodiment, and FIG. 4B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 4A.
  • FIG. 5A is a partial side cross-sectional view of the objective lens of the third embodiment, and FIG.
  • FIG. 5B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 5A.
  • FIG. 6A is a partial side cross-sectional view of the objective lens of the fourth embodiment, and FIG. 6B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 6A.
  • FIG. 7A is a partial side cross-sectional view of the objective lens of the fifth embodiment, and FIG. 7B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 7A.
  • An objective lens 10 shown in FIGS. 1A and 1B is made of plastic and has a circular optical function part 11 having an optical function, an annular flange part 12 provided radially outward from the outer edge of the optical function part 11, and an optical An annular neck portion 13 is provided between the functional portion 11 and the flange portion 12.
  • FIG. 1A since the objective lens 10 has a symmetrical shape around the lens optical axis OA, only half of the objective lens 10 is shown and the remaining illustration is omitted.
  • This objective lens 10 is an objective lens with NA of 0.75 or more.
  • the objective lens 10 is, for example, a single-wave objective lens of a three-wavelength compatible type.
  • the objective lens 10 can read or write optical information corresponding to the BD (Blu-Ray Disc) standard with a wavelength of 405 nm and NA of 0.85, and also has a DVD (Digital Versatile Disc) and optical information corresponding to the CD (Compact Disc) standard with a wavelength of 780 nm and NA of 0.53 can be read or written.
  • BD Blu-Ray Disc
  • CD Compact Disc
  • the optical function unit 11 of the objective lens 10 has a convex first optical surface OS1 having a relatively large curvature on the front side, and a convex second optical surface OS2 having a smaller curvature than the first optical surface OS1 on the back side.
  • the first optical surface OS1 is arranged closer to the laser light source for writing (recording) or reading (reproducing) when the objective lens 10 is operated by being incorporated in an optical pickup device such as a notebook personal computer.
  • the second optical surface OS2 is disposed to face a BD or the like that is an optical information recording medium when the objective lens 10 is incorporated in an optical pickup device and operated.
  • the first optical surface OS1 is provided with a fine structure or fine shape FS that is a diffractive structure.
  • the fine shape FS is formed in a concentric annular zone, and the outermost periphery thereof reaches a position near the outer edge of the optical function unit 11.
  • the second optical surface OS2 is a mirror surface having no diffractive structure.
  • the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction.
  • a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront.
  • the diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis.
  • the objective lens provided with the diffractive structure is a single aspherical lens
  • the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be.
  • the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
  • the diffractive structure has a plurality of concentric annular zones around the optical axis.
  • the diffractive structure can have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shape including the optical axis is a blaze structure, a staircase structure, or a staircase structure and a blaze structure. There is a structure in which is superimposed.
  • the flange portion 12 includes an annular protruding portion 14 provided on the radially outer side of the neck portion 13.
  • the protruding portion 14 is a portion that is relatively thicker than the neck portion 13.
  • the protruding portion 14 protrudes from the neck portion 13 toward the laser light source, that is, the first optical surface OS1, and also protrudes toward the optical information recording medium, that is, the second optical surface OS2.
  • the protruding portion 14 has, on the first optical surface OS1 side, a first flange surface 12a perpendicular to the lens optical axis OA and an inner diameter surface 14a facing the fine shape FS (first optical surface OS1) of the optical function unit 11.
  • the inner diameter surface 14a is a surface that connects the first flange surface 12a and a first end surface EP1 of the neck portion 13 described later
  • the inner diameter surface 14b is the second flange surface 12b and the second end surface EP2 of the neck portion 13. It is a surface to connect.
  • the inner diameter surface 14a extends with an inclination with respect to the lens optical axis OA and has a tapered shape spreading on the laser light source side
  • the inner diameter surface 14b extends with an inclination with respect to the lens optical axis OA. It has a tapered shape that widens on the information recording medium side.
  • the outer diameter surface 14c extends in parallel to the lens optical axis OA and has a cylindrical shape.
  • the first and second flange surfaces 12a and 12b are flat surfaces extending perpendicular to the lens optical axis OA.
  • the first flange surface 12a is disposed lower than the vertex Q1 of the first optical surface OS1
  • the second flange surface 12b is disposed lower than the vertex Q2 of the second optical surface OS2. That is, the first optical surface OS1 protrudes closer to the laser light source than the first flange surface 12a, and the second optical surface OS2 protrudes closer to the information recording medium than the second flange surface 12b.
  • the neck part 13 is a thinner part than the optical function part 11 and the flange part 12.
  • a ring-shaped first end surface EP1 is formed on the laser light source side of the neck portion 13, that is, the first optical surface OS1, and a ring-shaped second end surface EP1 is formed on the optical information recording medium side, that is, the second optical surface OS2.
  • An end face EP2 is formed.
  • the first and second end surfaces EP1, EP2 are mirror surfaces.
  • the boundary between the second optical surface OS2 and the second end surface EP2 (the outer periphery of the second optical surface OS2) is inward of the boundary between the first optical surface OS1 and the first end surface EP1 (the outer periphery of the first optical surface OS1). Is formed.
  • the outer diameter of the second optical surface OS2 is smaller than the outer diameter of the first optical surface OS1.
  • the first end surface EP1 or the second end surface EP2 has a region formed of a flat surface that regularly reflects collimated light, for example, and is used when the objective lens 10 is aligned.
  • the lens outer diameter in the direction perpendicular to the lens optical axis OA is G (mm) (see FIG. 1B), and the thickness on the lens axis in the direction parallel to the lens optical axis OA is t (mm) (FIG. 1)), and G ⁇ 4.05 (mm) and t / mm when the minimum thickness of the neck in the direction parallel to the lens optical axis OA is T (mm) (see FIG. 1A).
  • the gate width in the direction perpendicular to the lens optical axis OA is W (mm) (see FIG.
  • the lens axis thickness t is the thickness of the thickest portion of the optical function unit 11 that is parallel to the lens optical axis OA.
  • the objective lens 10 has a thickness on the lens axis in a direction parallel to the lens optical axis OA as t (mm), and a focal length of the objective lens 10 in a light beam having a wavelength of 500 nm or less as f (mm). 0.8 ⁇ t / f ⁇ 2.0, preferably 1.0 ⁇ t / f ⁇ 1.8.
  • the objective lens 10 in which t / f satisfies the above range has a relatively large lens axis thickness t in a direction parallel to the lens optical axis OA.
  • the illustrated mold 40 includes a movable mold 41 as a first mold and a fixed mold 42 as a second mold.
  • the movable mold 41 is driven by the mold opening / closing drive device 51 and can move forward and backward in the AB direction, and can be opened / closed with the fixed mold 42.
  • a mold space for injection molding can be formed as will be described in detail below by clamping the molds 41 and 42 together with the parting surfaces PS1 and PS2.
  • the mold space CV corresponds to the shape of the objective lens 10 shown in FIG. 1A and the like.
  • the flow path space FC is a space corresponding to the runner portion RP and the like of the molded product before the objective lens 10 is separated, and the gate portion GS is a space corresponding to the gate portion GP of the molded product.
  • the gate portion GP is completely removed by finishing.
  • the mold space CV includes a main body space CV1, a flange space CV2, and a neck space CV3.
  • the main body space CV1 is defined by the first and second transfer surfaces S1, S2, and the flange space CV2 is the third, fourth, fifth, sixth, and seventh transfer surfaces S3, S4, S5, S6, S7.
  • the neck space CV3 is defined by the eighth and ninth transfer surfaces S8 and S9.
  • the pair of opposing first and second transfer surfaces S1 and S2 facing the main body space CV1 form the first and second optical surfaces OS1 and OS2 of the optical function unit 11 in the center of the objective lens 10, respectively. This corresponds to the end faces of core dies 64a and 74a described later.
  • the outer periphery of the second transfer surface S2 is formed inside the outer periphery of the first transfer surface S1.
  • the first transfer surface S1 is deeper and has a larger curvature than the second transfer surface S2. Further, a mold surface portion S11 corresponding to the fine shape FS of the objective lens 10 is provided on the first transfer surface S1.
  • a pair of opposing third and fourth transfer surfaces S3 and S4 facing the flange space CV2 are first and second for forming the first and second flange surfaces 12a and 12b of the flange portion 12 of the objective lens 10, respectively. 2 corresponding to the end surfaces of the outer peripheral molds 64b and 74b described later.
  • the fifth and sixth transfer surfaces facing the flange space CV2 are for forming the inner diameter surfaces 14a and 14b of the flange portion 12, respectively, and correspond to the end surfaces of the outer peripheral molds 64b and 74b.
  • the fifth and sixth transfer surfaces S5 and S6 are formed to be inclined with respect to the lens optical axis OA of the objective lens 10.
  • the seventh transfer surface S7 facing the flange space CV2 is for forming the outer diameter surface 14c of the objective lens 10, and corresponds to the end surfaces of the outer peripheral molds 64b and 74b.
  • the fourth transfer surface S4 is formed at a position shallower from the parting surface than the vertex Q3 of the second transfer surface S2.
  • a pair of opposed eighth and ninth transfer surfaces S8, S9 facing the neck space CV3 are the third and fourth for forming the first and second end surfaces EP1, EP2 of the neck portion 13 of the objective lens 10, respectively. And corresponds to the end surfaces of the outer peripheral molds 64b and 74b.
  • the eighth and ninth transfer surfaces S8, S9 are flat surfaces so that the first and second end surfaces EP1, EP2 of the neck portion 13 are mirror surfaces.
  • the movable mold 41 on the movable side includes a mold plate 61 that forms the parting surface PS ⁇ b> 1, a receiving plate 62 that supports the mold plate 61 from behind, and an attachment plate that supports the receiving plate 62 from behind.
  • a core mold 64a as a mold insert that forms the mold space CV (particularly the main body space CV1) shown in FIG. 3, and a peripheral part that forms the mold space CV (particularly the flange space CV2 and the neck space CV3).
  • an outer peripheral mold 64b is an outer peripheral mold 64b.
  • the movable mold 41 has a protruding pin 65 that protrudes and releases the runner portion RP of the molded product before separating the objective lens 10, a movable rod 67a that pushes the core mold 64a from the back, and the protruding pin 65 behind.
  • a movable rod 67b that pushes from the front and a movable member 67 that moves the movable rods 67a and 67b back and forth.
  • the core mold 64a is driven by the advancing movable rod 67a to advance toward the fixed mold 42, and automatically retracts and returns to the original position as the movable rod 67a retracts.
  • the ejecting pin 65 is driven by the moving movable rod 67b to move forward to the fixed mold 42 side, and automatically retracts and returns to the original position as the movable rod 67b moves backward.
  • the advancing / retracting member 68 is driven by the advancing / retreating drive device 52 and moves forward and backward in the AB direction at an appropriate timing and amount.
  • a mold plate 61 that is a mold part on the mold surface side includes a runner recess 61b that forms the runner portion RP shown in FIGS. 1A and 1B, a gate recess 61c that forms the gate portion GP, and an outer peripheral mold. 64b and the protruding pin 65 are provided with through holes 61e and 61f provided for insertion.
  • the fixed mold 42 on the fixed side forms a mold plate 71 that forms the parting surface PS2, a mounting plate 72 that supports the mold plate 71 from behind, and a mold space CV (particularly a main body space CV1) shown in FIG.
  • a core die 74a as a mold insert and an outer peripheral die 74b as a peripheral part forming a die space CV (particularly, a flange space CV2 and a neck space CV3) are provided.
  • a mold plate 71 which is a mold part on the mold surface side includes a runner recess 71b for forming the runner part RP shown in FIGS. 1A and 1B, a gate surface 71c for forming the gate part GP, and an outer peripheral mold. And a through hole 71e provided for inserting 74b.
  • the mold space CV has a shape obtained by inverting the contour of the objective lens 10, and the dimensions of the mold space CV correspond to the dimensions of the objective lens 10 described above. That is, in the main body space CV1 corresponding to the optical function unit 11, the lens outer diameter in the direction perpendicular to the lens optical axis OA is G (mm) (see FIG. 1B), and the lens axis on the lens axis in the direction parallel to the lens optical axis OA.
  • the molten resin passes through the gate portion GS in the molding of the objective lens 10
  • the molten resin that comes into contact with the mold surface such as the wall surface of the gate portion GS is the first and second gold. Cooled by the molds 41 and 42, the viscosity increases. Therefore, the molten resin substantially flows only through the central portion of the gate portion GS and flows into the mold space CV.
  • the gate depth D is increased to 0.5T or more and the gate width W is set to 1.5T or more so as to satisfy the conditional expressions (1) to (3).
  • the mold space CV can be fully filled without requiring a high injection pressure. Thereby, it is possible to prevent optical performance deterioration due to unfilling due to insufficient injection pressure and excessive pressure.
  • the gate width W is set to 3T or less, it is possible to suppress the cutting margin of the flange portion 12 when finishing gate cutting, and to avoid adverse effects on the first and second optical surfaces OS1 and OS2.
  • the gate depth D is set to 1.33 T or less, the turbulence caused by the flow of the molten resin hits the inclined surfaces of the inner diameter surfaces 14 a and 14 b of the protruding portion 14 provided on the radially outer side of the neck portion 13. It is possible to suppress the flow orientation of the resin that deteriorates the optical performance of the first and second optical surfaces OS1 and OS2 caused by the flow.
  • the objective lens 10 for a small pickup device such as a notebook personal computer has G ⁇ 4.05 (mm) and t / T> with respect to the lens outer diameter G, the lens axis thickness t, and the minimum thickness T of the neck portion. 4.0.
  • the cross-sectional area of the neck portion 13 is relatively small, and it is necessary to prevent the molten resin from flowing in the neck portion 13.
  • the dimensions of the mold space CV and the flow path space FC (the dimensions of the objective lens 10) satisfy the conditional expressions (1) to (3), the flow of the molten resin in the neck portion 13 is not extremely hindered, and high accuracy is achieved.
  • the lens outer diameter G is preferably 1.45 (mm) ⁇ G ⁇ 4.05 (mm).
  • the uneven thickness ratio t / T is preferably 9.0> t / T> 4.0. By making t / T smaller than 9.0, the uneven thickness ratio does not become too large, so that it is possible to prevent the flow rate of the molten resin from being extremely limited.
  • the gate depth D is smaller than 0.5T
  • the gate width W is smaller than 1.5T
  • the gate cross-sectional area D ⁇ W is smaller than 1.5T 2
  • the central portion of the gate portion GS The cross-sectional area of the molten resin cannot fill the mold space CV, that is, the area cannot sufficiently transfer the first and second transfer surfaces S1 and S2.
  • a large injection pressure for allowing the molten resin to pass through the gate portion GS is required.
  • the gate width W is wider than 3T, the gate width W becomes too large with respect to the flange width F, which is the distance from the outer diameter of the optical function portion 11 of the molded objective lens 10 to the outer diameter of the flange portion 12. .
  • the cutting margin of the flange portion 12 increases at the time of gate cut (D cut), the cut surface approaches the first and second optical surfaces OS1 and OS2, and the adverse effects of stress strain generated at the time of gate cut are adversely affected by the first and second optical surfaces.
  • Surfaces OS1 and OS2 will receive.
  • the gate depth D is deeper than 1.33T, the molten resin flowing smoothly from the gate portion GS is excessively flowed into the mold space CV at the convex step portion of the neck space CV3 that hinders the flow of the molten resin. To be suppressed.
  • the movable mold 41 and the fixed mold 42 are appropriately heated by a mold temperature controller (not shown). Thereby, the temperature of the mold part that forms the mold space CV in both molds 41 and 42 is set to a temperature state suitable for molding.
  • the mold opening / closing drive device 51 is operated, the movable mold 41 is advanced to the fixed mold 42 side to be in the mold closed state, and the closing operation of the mold opening / closing drive device 51 is further continued, whereby the movable mold 41 is moved.
  • the mold is clamped to clamp the fixed mold 42 with a necessary pressure.
  • the molten resin is injected into the mold space CV between the clamped movable mold 41 and the fixed mold 42 with a necessary pressure through the gate portion GS or the like. Let the injection to inject. After the molten resin is introduced into the mold space CV, the molten resin in the mold space CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and waits for completion of molding.
  • the mold opening / closing drive device 51 is operated to retract the movable mold 41 and perform mold opening to separate the movable mold 41 from the fixed mold 42. As a result, the objective lens 10, which is a molded product, is released from the fixed mold 42 while being held by the movable mold 41.
  • the advancing / retreating drive device 52 is operated, and the objective lens 10 is projected by the core mold 64a and the ejection pin 65 via the movable rods 67a and 67b.
  • the objective lens 10 is urged by the movable rod 67a or the like and pushed out toward the fixed mold 42, and the objective lens 10 is released from the movable mold 41.
  • the objective lens 10 released from both molds 41 and 42 is carried out of the molding apparatus by gripping a sprue portion extending from the runner portion RP of the objective lens 10. Further, the objective lens 10 after being carried out is subjected to external processing such as removal of the gate portion GP to be a product for shipment.
  • the molded objective lens 10 is obtained by satisfying the conditional expressions (1) to (3) described above when the elements for molding the objective lens 10 satisfy the conditional expressions (1) to (3). It has a fine shape transferred with high precision. That is, when the objective lens 10 is molded, it is possible to prevent unfilling due to insufficient injection pressure and optical performance deterioration due to excessive pressure. Further, it is possible to suppress the cutting margin of the flange portion 12 at the time of finishing gate cutting, and to avoid adverse effects on the first and second optical surfaces OS1 and OS2.
  • an objective lens having a small diameter and a fine shape as used in, for example, a notebook personal computer can be transferred with high accuracy and have good optical characteristics.
  • Light utilization efficiency is defined as the ratio of the amount of light of the spot light that passes through the objective lens and is collected with respect to the amount of light incident on the optical surface of the objective lens that is the target optical lens.
  • the light utilization efficiency is obtained by using, for example, a measuring device similar to a microscope, and without using an objective lens as a test lens, that is, using a light amount value L1 in a state without a test lens as a reference as an eyepiece. It is measured by measuring with a power meter arranged at the corresponding position, and then measuring the light quantity value L2 in the same manner with the lens to be tested, and calculating from both measurement results as L2 ⁇ L1 ⁇ 100 [%].
  • “Wavefront aberration” is based on “spherical aberration”, “coma aberration”, and “astigmatism” among objective lenses that are optical lenses to be measured using an interferometer. Aberration is adopted.
  • BD light (wavelength 405 nm), DVD light (wavelength 660 nm), and CD light (wavelength 785 nm) are used for both light utilization efficiency and wavefront aberration.
  • Table 1 shows the test results of the above test regarding the relationship between the external dimensions of the objective lens and the optical performance.
  • “ ⁇ ” indicates that the optical performance is good
  • “ ⁇ ” indicates that the objective lens is distorted by the gate cut
  • “XX” indicates that the molten resin is disturbed. It indicates that the optical performance has deteriorated due to the flow
  • xxx indicates that a transfer failure has occurred on the optical surface.
  • means that “light utilization efficiency” satisfies the required standard range of light utilization efficiency, and a specific example of the numerical value is BD light (wavelength 405 nm). Satisfying 87% ⁇ 5%, DVD light (wavelength 660 nm) 75% ⁇ 5%, and CD light (wavelength 785 nm) 61% ⁇ 5%, and “spherical aberration” as measured by an interferometer, It means that “coma” and “astigmatism” satisfy the required standard range.
  • X means that at least “coma” is a value out of the standard.
  • XX means that at least “astigmatism” is a value deviating from the standard.
  • XXX means that at least “light utilization efficiency” is a value out of the standard. Note that there may be a plurality of “x”, “xxx”, and “xxx”.
  • the objective lens 10 has the following dimensions: the lens outer diameter G is 4.00 (mm), the gate width W is 0.80 (mm), the gate depth D is 0.44 (mm), and the thickness on the lens axis. t was 2.0 (mm), and the minimum thickness T of the neck was 0.475 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0.
  • the objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
  • the objective lens 10 has a lens outer diameter G of 4.00 (mm), a gate width W of 1.1 (mm), a gate depth D of 0.38 (mm), and a thickness on the lens axis.
  • t was 2.0 (mm)
  • the minimum thickness T of the neck was 0.475 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0.
  • the objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
  • the objective lens 10 has a lens outer diameter G of 4.00 (mm), a gate width W of 0.66 (mm), a gate depth D of 0.50 (mm), and a thickness on the lens axis.
  • t was 2.0 (mm)
  • the minimum thickness T of the neck was 0.42 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0.
  • the objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
  • the objective lens 10 has a lens outer diameter G of 4.00 (mm), a gate width W of 0.75 (mm), a gate depth D of 0.48 (mm), and a thickness on the lens axis.
  • t was 2.0 (mm)
  • the minimum thickness T of the neck was 0.38 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0.
  • the objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
  • the objective lens according to the second embodiment is a modification of the objective lens according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
  • the first flange surface 12 a is disposed so as to be recessed from the first end surface EP ⁇ b> 1 of the neck portion 13. That is, the protruding portion 214 of the flange portion 212 has a shape in which only the optical information recording medium side, that is, the second optical surface OS2 side protrudes.
  • the inner diameter surface 214a has a tapered shape that narrows on the laser light source side.
  • the molding die 40 for molding the objective lens 210 corresponds to the dimensions of the objective lens 210.
  • the fifth transfer surface S5 is formed so as to be inclined with respect to the lens optical axis OA corresponding to the inner diameter surface 214a of the flange portion 212.
  • the convex portion of the neck portion 13 that obstructs the flow of the molten resin is eliminated in the neck portion 13 on the first optical surface OS1 side where the first flange surface 12a is recessed.
  • turbulent flow due to inhibition of the flow of the molten resin does not occur, and the objective lens 210 flows smoothly. Therefore, it is possible to suppress the deterioration of the optical performance in the vicinity of the neck portion 13 of the first and second optical surfaces OS1, OS2.
  • the objective lens according to the third embodiment is a modification of the objective lens according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
  • the flange portion 312 of the present embodiment has a step shape 315 that changes the thickness in the direction parallel to the lens optical axis OA on the second flange surface 12b side.
  • the step shape 315 is formed in two steps on the inner diameter surface 14 b of the flange portion 312. Specifically, a first step 315a is formed on the inner side of the second flange surface 12b, that is, on the optical function unit 11 side, and a second step 315b is disposed on the outer side of the second flange surface 12b adjacent to the first step 315a. Is formed.
  • the first step portion 315a is provided at a position far from the information recording medium side
  • the second step portion 315b is provided at a position closer to the information recording medium side than the first step portion 315a. That is, the step shape 315 has a staircase shape in which the flange thickness increases toward the outside of the flange portion 12.
  • a surface 315c connecting the first step portion 315a and the second step portion 315b is a tapered surface extending toward the information recording medium side.
  • a surface 315d adjacent to the inside of the first step portion 315b is a tapered surface extending toward the information recording medium side.
  • the molding die 40 for molding the objective lens 310 corresponds to the dimensions of the objective lens 310.
  • the sixth transfer surface S6 is formed with a step-shaped transfer surface ST1 corresponding to the step shape 315 of the flange portion 312.
  • the stepped shape 315 that is an inclined portion that is the boundary between the second flange surface 12b and the second end surface EP2 becomes gentle, and the molten resin is more smoothly formed when the objective lens 310 is molded. Can flow into the neck portion 13.
  • a step shape 315 may be provided on the first flange surface 12a side.
  • the objective lens according to the fourth embodiment will be described below.
  • the objective lens according to the fourth embodiment is a modification of the objective lens according to the first embodiment, and parts not specifically described are the same as those according to the first embodiment.
  • the neck portion 13 of the present embodiment has a convex mark M for mold identification on the second end face EP2.
  • the mark M is substantially hemispherical, and is arranged near the boundary between the neck portion 13 and the optical function portion 11 on the information recording medium side.
  • the mark M can also be transferred with high accuracy.
  • the place where the mark M is disposed is not limited to the second end surface EP2, and may be disposed on the second flange surface 12b.
  • the molding die 40 for molding the objective lens 410 corresponds to the dimensions of the objective lens 410.
  • the ninth transfer surface S9 is formed with a concave transfer surface PT corresponding to the mark M of the neck portion 13.
  • the objective lens according to the fifth embodiment will be described below. Note that the objective lens of the fifth embodiment is a modification of the objective lens of the second embodiment, and parts not specifically described are the same as those of the second embodiment.
  • the first flange surface 12a has a step shape 515 that changes the thickness parallel to the lens optical axis OA.
  • the step shape 515 is formed in two steps on the inner diameter surface 14 a of the flange portion 512. Specifically, a first step 515a is formed on the inner side of the first flange surface 12a, that is, on the optical function unit 11 side, and a second step 515b is disposed on the outer side of the first flange surface 12a adjacent to the first step 515a. Is formed.
  • the first step portion 515a is provided at a position closer to the laser light source side, and the second step portion 515b is provided at a position farther from the laser light source side than the first step portion 515a. That is, the step shape 515 has a stepped shape in which the flange thickness decreases toward the outside of the flange portion 12.
  • a surface 515c that connects the first step portion 515a and the second step portion 515b is a tapered surface that narrows toward the laser light source side.
  • a surface 515d adjacent to the outside of the second step portion 515b is a surface in a direction parallel to the lens optical axis OA.
  • a step shape 515 may be provided on the second flange surface 12b.
  • the molding die 40 for molding the objective lens 510 corresponds to the dimensions of the objective lens 510.
  • a step-shaped transfer surface ST2 corresponding to the step shape 515 of the flange portion 512 is formed on the fifth transfer surface S5.
  • the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible.
  • the shape of the mold space CV provided in the injection mold constituted by the fixed mold 42 and the movable mold 41 satisfies the conditional expressions (1) to (3)
  • Various shapes can be used. That is, the shape of the mold space CV formed by the core molds 64a and 74a is merely an example, and can be appropriately changed according to the purpose of the objective lens 10 and other optical elements.
  • the first optical surface OS1 of the objective lens 10 may be molded with the fixed mold 42, and the second optical surface OS2 having a smaller curvature than the first optical surface OS1 may be molded with the movable mold 41. it can.
  • the fine shape FS formed in the optical function unit 11 of the objective lens 10 is not limited to the illustrated one, and various diffractive structures and the like according to applications can be used.
  • the second flange surface 12b is arranged lower than the vertex Q2 of the second optical surface OS2, but if the molten resin flow at the neck portion 13 is not hindered, The second flange surface 12b may be disposed higher than the vertex Q2 of the second optical surface OS2. That is, the second flange surface 12b may protrude beyond the second optical surface OS2.
  • the outer periphery of the second optical surface OS2 is formed inside the outer periphery of the first optical surface OS1, but the outer periphery of the second optical surface OS2 is the same as the outer periphery of the first optical surface OS1. They may be formed at substantially the same position on the vertical line. Moreover, you may form outside the outer periphery of 1st optical surface OS1.
  • 1st and 2nd end surface EP1, EP2 of the neck part 13 had a mirror surface, it does not need to be a mirror surface. Moreover, it is good also considering either one of 1st and 2nd end surface EP1, EP2 as a mirror surface.

Abstract

The purpose of the present invention is to provide an objective lens wherein a fine pattern or the like is transferred with high precision but the amount of molten resin poured into a mold space corresponding to the optically functional part of the lens is constrained. The elements involved in the process of molding the objective lens (10) satisfy conditions (1) to (3), resulting in the molded objective lens (10) having a fine pattern transferred with high precision. That is, when the objective lens (10) is molded, incomplete filling due to insufficient injection pressure and optical-performance degradation due to excessive pressure are prevented. Also, in a gate-cut step at the end of the manufacturing process, the cutting margin for a flange part (12) is minimized, thereby avoiding adverse effects on first and second optical surfaces (OS1 and OS2). Alignment near neck parts (13) of said first and second optical surfaces (OS1 and OS2) is also controlled.

Description

対物レンズ及び対物レンズの製造方法並びに成形金型Objective lens, objective lens manufacturing method, and molding die
 本発明は、光学面に微細形状を有する対物レンズ、特にノートパソコンに組み込まれる対物レンズ及びその製造方法並びに当該製造方法に用いられる成形金型に関する。 The present invention relates to an objective lens having a fine shape on an optical surface, in particular, an objective lens incorporated in a notebook computer, a manufacturing method thereof, and a molding die used in the manufacturing method.
 射出成形によって成形させる対物レンズにおいては、一般的に、溶融樹脂が対物レンズに対応する型空間に流れ込む入口であるゲート部が対物レンズのフランジ部外周に配置されている(例えば、特許文献1参照)。これは、ゲート部の成形歪等が対物レンズの光学面に影響しないように、ゲート部を光学面から離すためである。フランジ部外周に設けられたゲート部から流れ込んだ溶融樹脂は、断面積の比較的狭いゲート部からレンズの光学面とフランジ部とをつなぐくびれたネック部を通過して、断面積の比較的広いレンズの光学機能部に対応する型空間に流れ込み、この型空間を充填することで光学面が転写される。 In an objective lens formed by injection molding, generally, a gate portion that is an inlet through which molten resin flows into a mold space corresponding to the objective lens is disposed on the outer periphery of the flange portion of the objective lens (see, for example, Patent Document 1). ). This is because the gate portion is separated from the optical surface so that molding distortion or the like of the gate portion does not affect the optical surface of the objective lens. The molten resin that has flowed in from the gate portion provided on the outer periphery of the flange portion passes through the neck portion connecting the optical surface of the lens and the flange portion from the gate portion having a relatively small cross-sectional area, and has a relatively wide cross-sectional area. It flows into the mold space corresponding to the optical function part of the lens, and the optical surface is transferred by filling this mold space.
 しかしながら、特許文献1のような対物レンズを、例えばノートパソコンに組み込むような小型のものとする場合であって複数種のディスクに対して互換性を持たせる場合、特にレンズの転写精度が問題となる。すなわち、このような対物レンズは複数種のディスクに対して互換性を持たせるため、小径ながら微細形状を有するものとなり、微細形状への転写が不完全となる問題がある。これは、上記のように小径で微細形状を有するレンズでは、ネック部のくびれ度合いが大きくなり、光学機能部に対応する型空間への溶融樹脂の流れ込み量が制限されるためである。また、溶融樹脂がゲート部を通過する際に、ゲート壁面等の型面と接触した溶融樹脂は、金型に冷却されて粘度が増し、ゲート部の中心部のみが通路となって溶融樹脂が型空間に流入することとなる。そのため、ネック部のくびれ度合いが大きくなるほど、溶融樹脂の流れ込み量が制限され、大幅に制限されると、光学機能部への溶融樹脂の流れ込み量が不足し、金型内が未充填状態となり、微細回折形状への転写が不完全になる。 However, when the objective lens as disclosed in Patent Document 1 is a small one that is incorporated into, for example, a notebook computer and is compatible with a plurality of types of discs, the transfer accuracy of the lens is particularly problematic. Become. That is, since such an objective lens is compatible with a plurality of types of disks, it has a fine shape with a small diameter, and there is a problem that transfer to the fine shape is incomplete. This is because, in the lens having a small diameter and a fine shape as described above, the neck portion has a high degree of necking, and the amount of molten resin flowing into the mold space corresponding to the optical function portion is limited. In addition, when the molten resin passes through the gate portion, the molten resin that comes in contact with the mold surface such as the gate wall surface is cooled by the mold to increase the viscosity, and only the central portion of the gate portion serves as a passage to form the molten resin. It will flow into the mold space. Therefore, the greater the degree of constriction of the neck portion, the more the amount of molten resin flowing in is limited.When the amount is significantly limited, the amount of molten resin flowing into the optical function portion is insufficient, and the mold is in an unfilled state. Transfer to fine diffractive shape is incomplete.
特開2008-213397号公報JP 2008-213397 A
 本発明は、レンズの光学機能部に対応する型空間への溶融樹脂の流れ込み量の制限を抑制しつつ、高精度で微細形状等を転写した対物レンズを提供することを目的とする。 An object of the present invention is to provide an objective lens in which a fine shape or the like is transferred with high accuracy while suppressing restriction of the amount of molten resin flowing into a mold space corresponding to the optical function portion of the lens.
 また、本発明は、上記対物レンズを製造するための対物レンズの製造方法及び当該製造方法に用いられる成形金型を提供することを目的とする。 Another object of the present invention is to provide an objective lens manufacturing method for manufacturing the objective lens and a molding die used in the manufacturing method.
 上記目的を達成するため、本発明に係る対物レンズは、光学面に微細形状を設けた光学機能部と、光学機能部の周囲に設けられるフランジ部とを有し、フランジ部の外周縁に設けられたゲート部から型空間内に導入された樹脂によって射出成形され、BD、DVD、及びCDの情報読み取り及び/又は書き込みに用いられる対物レンズであって、光学機能部は、第1光学面と、第1光学面よりも曲率の小さい第2光学面とを有し、光学機能部とフランジ部との間にネック部を有し、レンズ光軸に垂直な方向のレンズ外径をG(mm)とし、光学機能部において、レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、ネック部において、レンズ光軸に平行な方向のネック部の最小厚みをT(mm)とした場合に、G≦4.05(mm)、かつくびれ度合いを示す偏肉比t/Tが4.0より大きくなっており、ゲート部において、レンズ光軸に垂直な方向のゲート幅をW(mm)とし、レンズ光軸に平行な方向のゲート深さをD(mm)としたときに、以下の条件式(1)~(3)を満たす。
 0.5T≦D≦1.33T  (1)
 1.5T≦W≦3T     (2)
 D・W≧1.5T     (3)
In order to achieve the above object, an objective lens according to the present invention has an optical function part having a fine shape on an optical surface and a flange part provided around the optical function part, and is provided on the outer peripheral edge of the flange part. An objective lens that is injection-molded by a resin introduced into the mold space from the gate portion and is used for reading and / or writing information on BD, DVD, and CD, and the optical function portion includes a first optical surface and A second optical surface having a smaller curvature than the first optical surface, a neck portion between the optical function portion and the flange portion, and a lens outer diameter in a direction perpendicular to the lens optical axis as G (mm In the optical function portion, the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm), and in the neck portion, the minimum thickness of the neck portion in the direction parallel to the lens optical axis is T (mm). When G ≦ 4.05 (mm), The thickness deviation ratio t / T indicating the degree of squeezing is greater than 4.0. In the gate portion, the gate width in the direction perpendicular to the lens optical axis is W (mm), and the thickness in the direction parallel to the lens optical axis is When the gate depth is D (mm), the following conditional expressions (1) to (3) are satisfied.
0.5T ≦ D ≦ 1.33T (1)
1.5T ≦ W ≦ 3T (2)
D · W ≧ 1.5T 2 (3)
 レンズ外径GがG≦4.05(mm)を満たす対物レンズは、比較的小径のレンズであり、レンズ外径Gの値が小さいほどネック部の断面積が小さくなる。また、レンズ軸上厚t及びネック部の最小厚みTがt/T>4.0を満たす対物レンズは、偏肉比が比較的大きく、溶融樹脂の流れ込み量が制限されるため、転写性に関する課題が大きくなる。 The objective lens with a lens outer diameter G satisfying G ≦ 4.05 (mm) is a relatively small lens, and the smaller the lens outer diameter G, the smaller the cross-sectional area of the neck portion. In addition, the objective lens satisfying the thickness t on the lens axis and the minimum thickness T of the neck portion of t / T> 4.0 has a relatively large thickness deviation ratio and the amount of molten resin flowing in is limited. The challenge becomes bigger.
 そのような課題が大きな対物レンズにおいても、対物レンズの成形に際しての要素が上記条件式(1)~(3)を満たすことにより、高精度に転写された微細形状を有するものとなる。具体的には、ゲート深さDを0.5T以上に深くし、かつゲート幅Wを1.5T以上とし、ゲート断面積(D・W)を1.5T以上となるようにすることで、対物レンズの成形の際に、ゲート部の中心部における溶融樹脂の通過する横断面積が、溶融樹脂をゲート部において通過させる際に過大な射出圧力を必要とせずに金型内を満充填することができる程度の大きさとなる。そのため、射出圧力不足による未充填や過大な圧力による光学性能劣化を防止することができる。また、ゲート幅Wを3T以下にすることで、仕上げのゲートカットに際してフランジ部のカット代を抑制し、光学面への悪影響を回避することができる。また、ゲート深さDを1.33T以下にすることで、光学面のネック部近傍でネック部の凸段部に溶融樹脂の流れが当たることで生じる乱流が引き起こす、光学性能を劣化させる樹脂の流動配向を抑制することができる。 Even in an objective lens having such a large problem, when the objective lens is molded, the elements satisfy the conditional expressions (1) to (3), so that the objective lens has a fine shape transferred with high accuracy. Specifically, by increasing the gate depth D to 0.5T or more, setting the gate width W to 1.5T or more, and setting the gate cross-sectional area (D · W) to 1.5T 2 or more. When the objective lens is molded, the cross-sectional area through which the molten resin passes at the center of the gate portion fills the mold without excessive injection pressure when the molten resin passes through the gate portion. It will be large enough to be able to. Therefore, it is possible to prevent optical performance deterioration due to unfilling due to insufficient injection pressure and excessive pressure. In addition, by setting the gate width W to 3T or less, it is possible to suppress the cut margin of the flange portion when finishing the gate cut, and to avoid adverse effects on the optical surface. Further, by reducing the gate depth D to 1.33 T or less, a resin that deteriorates optical performance caused by a turbulent flow caused by the flow of the molten resin hitting the convex step portion of the neck portion in the vicinity of the neck portion of the optical surface. Can be suppressed.
 本発明の具体的な態様又は側面では、上記対物レンズにおいて、フランジ部は、第1光学面側に第1フランジ面と、第2光学面側に第2フランジ面とを有し、第2フランジ面は、第2光学面の頂点よりも低く配置される。この場合、ネック部の最小厚みTに対するフランジ部の厚みの比が比較的小さくなり、対物レンズの成形の際に、ゲート部から流れてきた溶融樹脂がネック部で過剰に流入抑制されることを防止でき、第1及び第2光学面のネック部近傍の光学性能の劣化を抑制することができる。 In a specific aspect or aspect of the present invention, in the objective lens, the flange portion has a first flange surface on the first optical surface side and a second flange surface on the second optical surface side, and the second flange. The surface is disposed lower than the vertex of the second optical surface. In this case, the ratio of the thickness of the flange portion to the minimum thickness T of the neck portion becomes relatively small, and when the objective lens is molded, the molten resin flowing from the gate portion is suppressed from flowing excessively at the neck portion. This can prevent the deterioration of the optical performance in the vicinity of the neck portions of the first and second optical surfaces.
 本発明の別の態様では、第2光学面の外周は、第1光学面の外周よりも内側に形成されている。この場合、対物レンズの成形の際に、溶融樹脂が第2光学面側よりも第1光学面側に早く流入するようになり、溶融樹脂が第1光学面側に流れやすくすることができる。 In another aspect of the present invention, the outer periphery of the second optical surface is formed inside the outer periphery of the first optical surface. In this case, when the objective lens is molded, the molten resin flows into the first optical surface side earlier than the second optical surface side, and the molten resin can easily flow to the first optical surface side.
 本発明のさらに別の態様では、ネック部は、第1光学面側に第1端面と、第2光学面側に第2端面とを有し、第1フランジ面と第1端面とをつなぐ面及び第2フランジ面と第2端面とをつなぐ面の少なくともいずれか一方は、レンズ光軸に対して傾斜している。この場合、フランジ面と端面とをつなぐ面が緩やかとなり、溶融樹脂がスムーズ(円滑)にネック部に流れ込むことができる。 In still another aspect of the present invention, the neck portion has a first end surface on the first optical surface side and a second end surface on the second optical surface side, and connects the first flange surface and the first end surface. At least one of the surfaces connecting the second flange surface and the second end surface is inclined with respect to the lens optical axis. In this case, the surface connecting the flange surface and the end surface becomes gentle, and the molten resin can smoothly flow into the neck portion.
 本発明のさらに別の態様では、第1端面及び第2端面の少なくともいずれか一方は、鏡面を有する。この場合、端面が鏡面であるため、対物レンズの成形の際に、溶融樹脂がスムーズに流れ込むことができる。 In still another aspect of the present invention, at least one of the first end surface and the second end surface has a mirror surface. In this case, since the end surface is a mirror surface, the molten resin can flow smoothly when the objective lens is molded.
 本発明のさらに別の態様では、第1フランジ面及び第2フランジ面のいずれか一方は、ネック部側において、対応する第1端面及び第2端面のいずれか一方よりも凹んで配置される。この場合、フランジ面が凹んでいる光学面側のネック部では、対物レンズの成形の際に、溶融樹脂の流れを阻害するネック部の凸段部が無くなるため、溶融樹脂の流れは乱流にならず、スムーズに流れ込む。そのため、第1及び第2光学面のネック部近傍の光学性能の劣化を抑制することができる。 In yet another aspect of the present invention, one of the first flange surface and the second flange surface is arranged to be recessed from either the corresponding first end surface or second end surface on the neck portion side. In this case, in the neck portion on the optical surface side where the flange surface is recessed, the convex step portion of the neck portion that hinders the flow of the molten resin is eliminated during the molding of the objective lens, so the flow of the molten resin becomes a turbulent flow. It flows smoothly. Therefore, it is possible to suppress the deterioration of the optical performance in the vicinity of the neck portion of the first and second optical surfaces.
 本発明のさらに別の態様では、フランジ部は、第1フランジ面及び第2フランジ面の少なくともいずれか一方側において、レンズ光軸に平行な方向の厚みを変化させる段差形状を有する。この場合、フランジ面と端面との境界である傾斜部分が緩やかとなり、溶融樹脂がスムーズにネック部に流れ込むことができる。 In yet another aspect of the present invention, the flange portion has a step shape that changes the thickness in the direction parallel to the lens optical axis on at least one of the first flange surface and the second flange surface. In this case, the inclined portion that is the boundary between the flange surface and the end surface becomes gentle, and the molten resin can smoothly flow into the neck portion.
 本発明のさらに別の態様では、第2端面に金型識別用の凸形状のマークを有する。この場合、対物レンズが上記構成を有することにより、小径のレンズでは転写されにくいマークも高精度に転写することができる。 In yet another aspect of the present invention, the second end face has a convex mark for mold identification. In this case, since the objective lens has the above configuration, a mark that is difficult to be transferred with a small-diameter lens can be transferred with high accuracy.
 本発明のさらに別の態様では、第2フランジ面に金型識別用の凸形状のマークを有する。この場合、対物レンズが上記構成を有することにより、小径のレンズでは転写されにくいマークも高精度に転写することができる。 In yet another aspect of the present invention, a convex mark for mold identification is provided on the second flange surface. In this case, since the objective lens has the above configuration, a mark that is difficult to be transferred with a small-diameter lens can be transferred with high accuracy.
 本発明のさらに別の態様では、レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、500nm以下の波長の光束における焦点距離をf(mm)としたときに、0.8≦t/f≦2.0である。このように、対物レンズのレンズ光軸に平行な方向のレンズ軸上厚tが比較的大きなレンズの場合、微細回折形状への転写がより難しくなるが、対物レンズが上記構成を有することにより、高精度に転写することができる。なお、t/fは、1.0≦t/f≦1.8であることがより好ましく、これにより、さらに高精度に転写することができる。 In yet another aspect of the present invention, when the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm) and the focal length of a light beam having a wavelength of 500 nm or less is f (mm), 0.8 ≦ t / f ≦ 2.0. Thus, in the case of a lens having a relatively large lens axis thickness t in a direction parallel to the lens optical axis of the objective lens, transfer to a fine diffractive shape becomes more difficult, but the objective lens has the above configuration, Transfer with high accuracy. It is more preferable that t / f is 1.0 ≦ t / f ≦ 1.8, which enables transfer with higher accuracy.
 上記課題を解決するため、本発明に係る対物レンズの製造方法は、光学面に微細形状を設けた光学機能部と、光学機能部の周囲に設けられるフランジ部とを有し、フランジ部の外周縁に設けられたゲート部から型空間内に導入された樹脂によって射出成形され、BD、DVD、及びCDの情報の記録及び/又は再生に用いられる対物レンズの製造方法であって、対物レンズの第1光学面を成形する第1の金型と、対物レンズの第2光学面を成形する第2の金型とによって形成される型空間に溶融樹脂を射出して対物レンズを成形する工程と、第1の金型と第2の金型とを相対的に離間させて型開きすることにより、型空間から対物レンズを取り出す工程と、を備え、対物レンズは、光学機能部とフランジ部との間にネック部を有し、レンズ光軸に垂直な方向のレンズ外径をG(mm)とし、光学機能部において、レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、ネック部において、レンズ光軸に平行な方向のネック部の最小厚みをT(mm)とした場合に、G≦4.05(mm)、かつくびれ度合いを示す偏肉比t/Tが4.0より大きくなっており、ゲート部において、レンズ光軸に垂直な方向のゲート幅をW(mm)とし、レンズ光軸に平行な方向のゲート深さをD(mm)としたときに、以下の条件式(1)~(3)を満たす。
 0.5T≦D≦1.33T  (1)
 1.5T≦W≦3T     (2)
 D・W≧1.5T     (3)
In order to solve the above-described problems, an objective lens manufacturing method according to the present invention includes an optical function unit having a fine shape on an optical surface and a flange unit provided around the optical function unit. A method of manufacturing an objective lens that is injection-molded by a resin introduced into a mold space from a gate portion provided at a peripheral edge, and is used for recording and / or reproducing information on BD, DVD, and CD. Injecting molten resin into a mold space formed by a first mold for forming the first optical surface and a second mold for forming the second optical surface of the objective lens, and molding the objective lens; Removing the objective lens from the mold space by opening the first mold and the second mold relatively apart from each other, and the objective lens includes an optical function section and a flange section. Has a neck between the lens light The lens outer diameter in a direction perpendicular to the lens is G (mm), the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm) in the optical function unit, and the direction in the neck portion is parallel to the lens optical axis. When the minimum thickness of the neck portion is T (mm), G ≦ 4.05 (mm), the uneven thickness ratio t / T indicating the degree of necking is larger than 4.0, and in the gate portion, When the gate width in the direction perpendicular to the lens optical axis is W (mm) and the gate depth in the direction parallel to the lens optical axis is D (mm), the following conditional expressions (1) to (3) are satisfied: Fulfill.
0.5T ≦ D ≦ 1.33T (1)
1.5T ≦ W ≦ 3T (2)
D · W ≧ 1.5T 2 (3)
 上記対物レンズの製造方法では、上記条件式(1)~(3)を満たすことにより、高精度に転写された微細形状を有する対物レンズを製造することができる。つまり、対物レンズの成形の際に、射出圧力不足による未充填や過大な圧力による光学性能劣化を防止することができる。また、仕上げのゲートカットに際してフランジ部のカット代を抑制し、光学面への悪影響を回避することができる。また、光学面のネック部近傍でネック部の凸段部に溶融樹脂の流れが当たることで生じる乱流が引き起こす、光学性能を劣化させる樹脂の流動配向を抑制することができる。 In the objective lens manufacturing method, an objective lens having a fine shape transferred with high accuracy can be manufactured by satisfying the conditional expressions (1) to (3). That is, when the objective lens is molded, it is possible to prevent optical performance deterioration due to unfilling due to insufficient injection pressure or excessive pressure. Further, it is possible to suppress the cutting margin of the flange portion at the time of finishing gate cutting, and to avoid adverse effects on the optical surface. Moreover, the flow orientation of the resin which degrades the optical performance caused by the turbulent flow caused by the flow of the molten resin hitting the convex portion of the neck portion in the vicinity of the neck portion of the optical surface can be suppressed.
 上記課題を解決するため、本発明に係る成形金型は、光学面に微細形状を設けた光学機能部と、光学機能部の周囲に設けられるフランジ部とを有し、フランジ部の外周縁に設けられたゲート部から型空間内に導入された樹脂によって射出成形され、BD、DVD、及びCDの情報読み取り及び/又は書き込みに用いられる対物レンズを成形するための成形金型であって、対物レンズの第1光学面を形成する第1の転写面と、第1光学面の周囲に延在する第1フランジ面を形成する第1の成形面とを有する第1の金型と、第1光学面よりも曲率が小さい第2光学面を形成する第2の転写面と、第2光学面の周囲に延在する第2フランジ面を形成する第2の成形面とを有する第2の金型と、を備え、第1の転写面と第1の成形面との間に対物レンズのネック部を形成する第3の成形面を有し、第2の転写面と第2の成形面との間に対物レンズのネック部を形成する第4の成形面を有し、第1の金型と第2の金型とによって形成される型空間の寸法が、レンズ光軸に垂直な方向のレンズ外径をG(mm)とし、光学機能部において、レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、ネック部において、レンズ光軸に平行な方向のネック部の最小厚みをT(mm)とした場合に、G≦4.05(mm)、かつくびれ度合いを示す偏肉比t/Tが4.0より大きくなっており、ゲート部において、レンズ光軸に垂直な方向のゲート幅をW(mm)とし、レンズ光軸に平行な方向のゲート深さをD(mm)としたときに、以下の条件式(1)~(3)を満たす。ここで、型空間は、対物レンズの輪郭を反転した形状となっている。
 0.5T≦D≦1.33T  (1)
 1.5T≦W≦3T     (2)
 D・W≧1.5T     (3)
In order to solve the above-described problems, a molding die according to the present invention has an optical function part having a fine shape on an optical surface, and a flange part provided around the optical function part, on the outer periphery of the flange part. A molding die for molding an objective lens that is injection-molded by a resin introduced into a mold space from a provided gate and is used for reading and / or writing information on BD, DVD, and CD. A first mold having a first transfer surface forming a first optical surface of the lens and a first molding surface forming a first flange surface extending around the first optical surface; A second gold having a second transfer surface forming a second optical surface having a smaller curvature than the optical surface, and a second molding surface forming a second flange surface extending around the second optical surface. And an objective lens between the first transfer surface and the first molding surface. A third molding surface that forms a neck portion of the objective lens, a fourth molding surface that forms a neck portion of the objective lens between the second transfer surface and the second molding surface, The dimension of the mold space formed by the mold and the second mold is such that the lens outer diameter in the direction perpendicular to the lens optical axis is G (mm), and the optical function unit has a dimension in the direction parallel to the lens optical axis. When the thickness on the lens axis is t (mm) and the minimum thickness of the neck in the direction parallel to the optical axis of the lens is T (mm), G ≦ 4.05 (mm), the degree of necking Is a thickness ratio t / T greater than 4.0, and in the gate portion, the gate width in the direction perpendicular to the lens optical axis is W (mm), and the gate depth in the direction parallel to the lens optical axis is When D is D (mm), the following conditional expressions (1) to (3) are satisfied. Here, the mold space has a shape obtained by inverting the contour of the objective lens.
0.5T ≦ D ≦ 1.33T (1)
1.5T ≦ W ≦ 3T (2)
D · W ≧ 1.5T 2 (3)
 上記成形金型では、上記条件式(1)~(3)を満たすことにより、高精度に転写された微細形状を有する対物レンズを成形可能な成形金型とすることができる。つまり、対物レンズの成形の際に、射出圧力不足による未充填や過大な圧力による光学性能劣化を防止することができる。また、仕上げのゲートカットに際してフランジ部のカット代を抑制し、光学面への悪影響を回避することができる。また、光学面のネック部近傍でネック部の凸段部に溶融樹脂の流れが当たることで生じる乱流が引き起こす、光学性能を劣化させる樹脂の流動配向を抑制することができる。 By satisfying the conditional expressions (1) to (3), the molding die can be a molding die capable of molding an objective lens having a fine shape transferred with high accuracy. That is, when the objective lens is molded, it is possible to prevent optical performance deterioration due to unfilling due to insufficient injection pressure or excessive pressure. Further, it is possible to suppress the cutting margin of the flange portion at the time of finishing gate cutting, and to avoid adverse effects on the optical surface. Moreover, the flow orientation of the resin which degrades the optical performance caused by the turbulent flow caused by the flow of the molten resin hitting the convex portion of the neck portion in the vicinity of the neck portion of the optical surface can be suppressed.
 本発明の具体的な態様又は側面では、上記成形金型において、第2の成形面は、第2の転写面の頂点よりも第1の金型と第2の金型との型合わせ面から浅い位置に形成されている。 In a specific aspect or side surface of the present invention, in the molding die, the second molding surface is from a die-matching surface of the first die and the second die rather than the apex of the second transfer surface. It is formed in a shallow position.
 本発明の別の態様では、第2の転写面の外周は、第1の転写面の外周よりも内側に形成されている。 In another aspect of the present invention, the outer periphery of the second transfer surface is formed inside the outer periphery of the first transfer surface.
 本発明のさらに別の態様では、第1の成形面と第3の成形面とをつなぐ面及び第2の成形面と第4の成形面とをつなぐ面の少なくともいずれか一方は、レンズ光軸に対して傾斜している。 In still another aspect of the present invention, at least one of the surface connecting the first molding surface and the third molding surface and the surface connecting the second molding surface and the fourth molding surface is a lens optical axis. It is inclined with respect to.
 本発明のさらに別の態様では、第1の成形面及び第2の成形面のいずれか一方は、第3の成形面及び第4の成形面のいずれか一方よりも凹んで配置される。 In yet another aspect of the present invention, one of the first molding surface and the second molding surface is disposed so as to be recessed from either the third molding surface or the fourth molding surface.
 本発明のさらに別の態様では、第1の成形面及び第2の成形面の少なくともいずれか一方側において、レンズ光軸に平行な方向の厚みを変化させる段差形状を形成する転写面を有する。 In still another aspect of the present invention, a transfer surface that forms a step shape that changes the thickness in a direction parallel to the lens optical axis is provided on at least one of the first molding surface and the second molding surface.
 本発明のさらに別の態様では、第4の成形面に金型識別用の凸形状のマークを転写する凹転写面を有する。 In still another aspect of the present invention, the fourth molding surface has a concave transfer surface for transferring a convex mark for mold identification.
 本発明のさらに別の態様では、第2の成形面に金型識別用の凸形状のマークを転写する凹転写面を有する。 In yet another aspect of the present invention, the second molding surface has a concave transfer surface for transferring a convex mark for identifying a mold.
図1Aは、第1実施形態の対物レンズの部分側方断面図であり、図1Bは、図1Aの第2光学面側の平面図である。FIG. 1A is a partial side sectional view of the objective lens according to the first embodiment, and FIG. 1B is a plan view of the second optical surface side of FIG. 1A. 図1Aの対物レンズを形成するための成形金型を説明する部分側方断面図である。FIG. 1B is a partial side cross-sectional view illustrating a molding die for forming the objective lens of FIG. 1A. 樹脂供給用の流路空間や対物レンズ成形用の型空間を説明する図である。It is a figure explaining the flow path space for resin supply, and the type | mold space for objective lens shaping | molding. 図4Aは、第2実施形態の対物レンズの部分側方断面図であり、図4Bは、図4Aの対物レンズを形成するための成形金型を説明する部分拡大図である。FIG. 4A is a partial side sectional view of the objective lens of the second embodiment, and FIG. 4B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 4A. 図5Aは、第3実施形態の対物レンズの部分側方断面図であり、図5Bは、図5Aの対物レンズを形成するための成形金型を説明する部分拡大図である。FIG. 5A is a partial side cross-sectional view of the objective lens of the third embodiment, and FIG. 5B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 5A. 図6Aは、第4実施形態の対物レンズの部分側方断面図であり、図6Bは、図6Aの対物レンズを形成するための成形金型を説明する部分拡大図である。FIG. 6A is a partial side cross-sectional view of the objective lens of the fourth embodiment, and FIG. 6B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 6A. 図7Aは、第5実施形態の対物レンズの部分側方断面図であり、図7Bは、図7Aの対物レンズを形成するための成形金型を説明する部分拡大図である。FIG. 7A is a partial side cross-sectional view of the objective lens of the fifth embodiment, and FIG. 7B is a partially enlarged view for explaining a molding die for forming the objective lens of FIG. 7A.
〔第1実施形態〕
 以下、図面を参照しつつ、本発明に係る対物レンズ及び対物レンズの製造方法について説明する。
 図1A及び1Bに示す対物レンズ10は、プラスチック製で、光学的機能を有する円形の光学機能部11と、光学機能部11の外縁から半径方向外側に設けられた環状のフランジ部12と、光学機能部11とフランジ部12との間に環状のネック部13とを備える。図1Aにおいて、対物レンズ10はレンズ光軸OAのまわりに対称な形状を有しているので、半分だけ図示しており残りの図示を省略している。この対物レンズ10は、NA0.75以上の対物レンズである。具体的には、対物レンズ10は、例えば3波長互換タイプの単玉対物レンズであるものとする。この場合、対物レンズ10は、例えば波長405nmでNA0.85のBD(Blu-Ray Disc)の規格に対応した光情報の読み取り又は書き込みを可能とするほか、波長655nmでNA0.65のDVD(Digital Versatile Disc)と、波長780nmでNA0.53のCD(Compact Disc)の規格に対応した光情報の読み取り又は書き込みを可能とする。
[First Embodiment]
Hereinafter, an objective lens and a method for manufacturing the objective lens according to the present invention will be described with reference to the drawings.
An objective lens 10 shown in FIGS. 1A and 1B is made of plastic and has a circular optical function part 11 having an optical function, an annular flange part 12 provided radially outward from the outer edge of the optical function part 11, and an optical An annular neck portion 13 is provided between the functional portion 11 and the flange portion 12. In FIG. 1A, since the objective lens 10 has a symmetrical shape around the lens optical axis OA, only half of the objective lens 10 is shown and the remaining illustration is omitted. This objective lens 10 is an objective lens with NA of 0.75 or more. Specifically, the objective lens 10 is, for example, a single-wave objective lens of a three-wavelength compatible type. In this case, for example, the objective lens 10 can read or write optical information corresponding to the BD (Blu-Ray Disc) standard with a wavelength of 405 nm and NA of 0.85, and also has a DVD (Digital Versatile Disc) and optical information corresponding to the CD (Compact Disc) standard with a wavelength of 780 nm and NA of 0.53 can be read or written.
 対物レンズ10のうち光学機能部11は、表側に曲率の比較的大きな凸の第1光学面OS1を有し、裏側に第1光学面OS1よりも曲率の小さな凸の第2光学面OS2を有する。このうち、第1光学面OS1は、対物レンズ10をノートパソコン等の光ピックアップ装置に組み込んで動作させる際に、書き込み(記録)又は読み取り(再生)用のレーザ光源により近い側に配置される。また、第2光学面OS2は、対物レンズ10を光ピックアップ装置に組み込んで動作させる際に、光情報記録媒体であるBD等に対向して配置される。なお、第1光学面OS1には、回折構造である微細構造又は微細形状FSが設けられている。この微細形状FSは、同心の輪帯状に形成されており、その最外周は、光学機能部11の外縁に近い位置に達している。一方、第2光学面OS2は、回折構造等を有しない鏡面となっている。 The optical function unit 11 of the objective lens 10 has a convex first optical surface OS1 having a relatively large curvature on the front side, and a convex second optical surface OS2 having a smaller curvature than the first optical surface OS1 on the back side. . Among these, the first optical surface OS1 is arranged closer to the laser light source for writing (recording) or reading (reproducing) when the objective lens 10 is operated by being incorporated in an optical pickup device such as a notebook personal computer. Further, the second optical surface OS2 is disposed to face a BD or the like that is an optical information recording medium when the objective lens 10 is incorporated in an optical pickup device and operated. The first optical surface OS1 is provided with a fine structure or fine shape FS that is a diffractive structure. The fine shape FS is formed in a concentric annular zone, and the outermost periphery thereof reaches a position near the outer edge of the optical function unit 11. On the other hand, the second optical surface OS2 is a mirror surface having no diffractive structure.
 なお、本明細書でいう回折構造とは、段差を有し、回折によって光束を収束あるいは発散させる作用を持たせる構造の総称である。例えば、単位形状が光軸を中心として複数並ぶことによって構成されており、それぞれの単位形状に光束が入射し、透過した光の波面が、隣り合う輪帯毎にズレを起こし、その結果、新たな波面を形成することによって光を収束あるいは発散させるような構造を含むものである。回折構造は、好ましくは段差を複数有し、段差は光軸垂直方向に周期的な間隔をもって配置されていてもよいし、光軸垂直方向に非周期的な間隔をもって配置されていてもよい。また、回折構造を設けた対物レンズが単玉非球面レンズの場合、光軸からの高さによって光束の対物レンズへの入射角が異なるため、回折構造の段差量は各輪帯毎に若干異なることとなる。例えば、対物レンズが単玉非球面の凸レンズである場合、同じ回折次数の回折光を発生させる回折構造であっても、一般的に光軸から離れる程、段差量が大きくなる傾向となる。 In addition, the diffractive structure referred to in this specification is a general term for structures that have a step and have a function of converging or diverging a light beam by diffraction. For example, a plurality of unit shapes are arranged around the optical axis, and a light beam is incident on each unit shape, and the wavefront of the transmitted light is shifted between adjacent annular zones, resulting in new It includes a structure that converges or diverges light by forming a simple wavefront. The diffractive structure preferably has a plurality of steps, and the steps may be arranged with a periodic interval in the direction perpendicular to the optical axis, or may be arranged with a non-periodic interval in the direction perpendicular to the optical axis. In addition, when the objective lens provided with the diffractive structure is a single aspherical lens, the incident angle of the light beam to the objective lens differs depending on the height from the optical axis, so the step amount of the diffractive structure is slightly different for each annular zone. It will be. For example, when the objective lens is a single aspherical convex lens, even if it is a diffractive structure that generates diffracted light of the same diffraction order, generally, the distance from the optical axis tends to increase.
 ところで、回折構造は、光軸を中心とする同心円状の複数の輪帯を有することが好ましい。また、回折構造は、一般に、様々な断面形状(光軸を含む面での断面形状)をとり得、光軸を含む断面形状がブレーズ型構造、階段型構造、あるいは、階段構造とブレーズ型構造を重畳させた構造等がある。 By the way, it is preferable that the diffractive structure has a plurality of concentric annular zones around the optical axis. In general, the diffractive structure can have various cross-sectional shapes (cross-sectional shapes on the plane including the optical axis), and the cross-sectional shape including the optical axis is a blaze structure, a staircase structure, or a staircase structure and a blaze structure. There is a structure in which is superimposed.
 フランジ部12は、ネック部13の半径方向外側に設けられた環状の突起部分14を備える。突起部分14は、ネック部13よりも比較的肉厚の部分である。突起部分14は、ネック部13よりもレーザ光源側すなわち第1光学面OS1側に突起し、光情報記録媒体側すなわち第2光学面OS2側にも突起している。突起部分14は、第1光学面OS1側において、レンズ光軸OAに垂直な第1フランジ面12aと、光学機能部11の微細形状FS(第1光学面OS1)に対向する内径面14aとを有し、第2光学面OS2側において、レンズ光軸OAに垂直な第2フランジ面12bと、光学機能部11の第2光学面OS2に対向する内径面14bとを有し、第1及び第2フランジ面12a,12bを挟んで内径面14a,14bの反対側に配置される外径面14cを有する。つまり、内径面14aは、第1フランジ面12aと後述するネック部13の第1端面EP1とをつなぐ面であり、内径面14bは、第2フランジ面12bとネック部13の第2端面EP2とをつなぐ面となっている。内径面14aは、レンズ光軸OAに対して傾斜して延びており、レーザ光源側で広がるテーパ形状を有し、内径面14bは、レンズ光軸OAに対して傾斜して延びており、光情報記録媒体側で広がるテーパ形状を有する。外径面14cは、レンズ光軸OAに対して平行に延びており、筒形状を有する。第1及び第2フランジ面12a,12bは、レンズ光軸OAに垂直に延びる平坦な面となっている。第1フランジ面12aは、第1光学面OS1の頂点Q1よりも低く配置されており、第2フランジ面12bは、第2光学面OS2の頂点Q2よりも低く配置されている。つまり、第1光学面OS1は、第1フランジ面12aよりもレーザ光源側に突出しており、第2光学面OS2は、第2フランジ面12bよりも情報記録媒体側に突出している。 The flange portion 12 includes an annular protruding portion 14 provided on the radially outer side of the neck portion 13. The protruding portion 14 is a portion that is relatively thicker than the neck portion 13. The protruding portion 14 protrudes from the neck portion 13 toward the laser light source, that is, the first optical surface OS1, and also protrudes toward the optical information recording medium, that is, the second optical surface OS2. The protruding portion 14 has, on the first optical surface OS1 side, a first flange surface 12a perpendicular to the lens optical axis OA and an inner diameter surface 14a facing the fine shape FS (first optical surface OS1) of the optical function unit 11. And has a second flange surface 12b perpendicular to the lens optical axis OA and an inner diameter surface 14b facing the second optical surface OS2 of the optical function unit 11 on the second optical surface OS2 side. 2 It has the outer-diameter surface 14c arrange | positioned on the opposite side of inner- diameter surface 14a, 14b on both sides of 12 flange surface 12a, 12b. That is, the inner diameter surface 14a is a surface that connects the first flange surface 12a and a first end surface EP1 of the neck portion 13 described later, and the inner diameter surface 14b is the second flange surface 12b and the second end surface EP2 of the neck portion 13. It is a surface to connect. The inner diameter surface 14a extends with an inclination with respect to the lens optical axis OA and has a tapered shape spreading on the laser light source side, and the inner diameter surface 14b extends with an inclination with respect to the lens optical axis OA. It has a tapered shape that widens on the information recording medium side. The outer diameter surface 14c extends in parallel to the lens optical axis OA and has a cylindrical shape. The first and second flange surfaces 12a and 12b are flat surfaces extending perpendicular to the lens optical axis OA. The first flange surface 12a is disposed lower than the vertex Q1 of the first optical surface OS1, and the second flange surface 12b is disposed lower than the vertex Q2 of the second optical surface OS2. That is, the first optical surface OS1 protrudes closer to the laser light source than the first flange surface 12a, and the second optical surface OS2 protrudes closer to the information recording medium than the second flange surface 12b.
 ネック部13は、光学機能部11及びフランジ部12よりも肉薄の部分である。ネック部13のレーザ光源側すなわち第1光学面OS1側には、輪帯状の第1端面EP1が形成されており、光情報記録媒体側すなわち第2光学面OS2側には、輪帯状の第2端面EP2が形成されている。第1及び第2端面EP1,EP2は、鏡面となっている。第2光学面OS2と第2端面EP2との境界(第2光学面OS2の外周)は、第1光学面OS1と第1端面EP1との境界(第1光学面OS1の外周)よりも内側に形成されている。つまり、第2光学面OS2の外径が第1光学面OS1の外径よりも小さくなっている。これにより、対物レンズ10の成形の際に、溶融樹脂が第1光学面OS1側に第2光学面OS2側よりも早く流入するようになる。なお、第1端面EP1又は第2端面EP2は、例えばコリメート光を正反射する平坦面からなる領域を有しており、対物レンズ10をアライメントする際に利用される。 The neck part 13 is a thinner part than the optical function part 11 and the flange part 12. A ring-shaped first end surface EP1 is formed on the laser light source side of the neck portion 13, that is, the first optical surface OS1, and a ring-shaped second end surface EP1 is formed on the optical information recording medium side, that is, the second optical surface OS2. An end face EP2 is formed. The first and second end surfaces EP1, EP2 are mirror surfaces. The boundary between the second optical surface OS2 and the second end surface EP2 (the outer periphery of the second optical surface OS2) is inward of the boundary between the first optical surface OS1 and the first end surface EP1 (the outer periphery of the first optical surface OS1). Is formed. That is, the outer diameter of the second optical surface OS2 is smaller than the outer diameter of the first optical surface OS1. Thereby, when the objective lens 10 is molded, the molten resin flows into the first optical surface OS1 side earlier than the second optical surface OS2 side. The first end surface EP1 or the second end surface EP2 has a region formed of a flat surface that regularly reflects collimated light, for example, and is used when the objective lens 10 is aligned.
 以下、対物レンズ10の寸法について説明する。光学機能部11において、レンズ光軸OAに垂直な方向のレンズ外径をG(mm)(図1B参照)とし、レンズ光軸OAに平行な方向のレンズ軸上厚をt(mm)(図1A参照)とし、ネック部において、レンズ光軸OAに平行な方向のネック部の最小厚みをT(mm)(図1A参照)とした場合に、G≦4.05(mm)、かつt/T>4.0となっており、ゲート部GPにおいて、レンズ光軸OAに垂直な方向のゲート幅をW(mm)(図1B参照)とし、レンズ光軸OAに平行な方向のゲート深さをD(mm)(図1A参照)としたときに、以下の条件式(1)~(3)を満たす。なお、レンズ軸上厚tは、レンズ光軸OAに平行かつ光学機能部11で最も厚い部分の厚さである。
 0.5T≦D≦1.33T  (1)
 1.5T≦W≦3T     (2)
 D・W≧1.5T     (3)
Hereinafter, the dimensions of the objective lens 10 will be described. In the optical function unit 11, the lens outer diameter in the direction perpendicular to the lens optical axis OA is G (mm) (see FIG. 1B), and the thickness on the lens axis in the direction parallel to the lens optical axis OA is t (mm) (FIG. 1)), and G ≦ 4.05 (mm) and t / mm when the minimum thickness of the neck in the direction parallel to the lens optical axis OA is T (mm) (see FIG. 1A). T> 4.0, and in the gate portion GP, the gate width in the direction perpendicular to the lens optical axis OA is W (mm) (see FIG. 1B), and the gate depth is parallel to the lens optical axis OA. Is D (mm) (see FIG. 1A), the following conditional expressions (1) to (3) are satisfied. The lens axis thickness t is the thickness of the thickest portion of the optical function unit 11 that is parallel to the lens optical axis OA.
0.5T ≦ D ≦ 1.33T (1)
1.5T ≦ W ≦ 3T (2)
D · W ≧ 1.5T 2 (3)
 また、対物レンズ10は、レンズ光軸OAに平行な方向のレンズ軸上厚をt(mm)とし、500nm以下の波長の光束における対物レンズ10の焦点距離をf(mm)としたときに、0.8≦t/f≦2.0、好ましくは1.0≦t/f≦1.8となっている。t/fが上記範囲を満たす対物レンズ10は、レンズ光軸OAに平行な方向のレンズ軸上厚tが比較的大きくなる。 The objective lens 10 has a thickness on the lens axis in a direction parallel to the lens optical axis OA as t (mm), and a focal length of the objective lens 10 in a light beam having a wavelength of 500 nm or less as f (mm). 0.8 ≦ t / f ≦ 2.0, preferably 1.0 ≦ t / f ≦ 1.8. The objective lens 10 in which t / f satisfies the above range has a relatively large lens axis thickness t in a direction parallel to the lens optical axis OA.
 以下、図2等を参照して、図1A,1Bに示す対物レンズ10を製造するための成形金型について説明する。図示の成形金型40は、第1金型としての可動金型41と、第2金型としての固定金型42とを備える。可動金型41は、型開閉駆動装置51に駆動されてAB方向に進退移動可能になっており、固定金型42との間で開閉動作が可能になっている。両金型41,42をパーティング面PS1,PS2で型合わせして型締めすることにより、以下に詳述するように、射出成形用の型空間を形成することができる。 Hereinafter, a mold for manufacturing the objective lens 10 shown in FIGS. 1A and 1B will be described with reference to FIG. 2 and the like. The illustrated mold 40 includes a movable mold 41 as a first mold and a fixed mold 42 as a second mold. The movable mold 41 is driven by the mold opening / closing drive device 51 and can move forward and backward in the AB direction, and can be opened / closed with the fixed mold 42. A mold space for injection molding can be formed as will be described in detail below by clamping the molds 41 and 42 together with the parting surfaces PS1 and PS2.
 図3に示すように、可動金型41と固定金型42との型締めにより、対物レンズ10を成形するための型空間CVと、この型空間CVに樹脂を供給するための流路空間FCとが形成される。このうち、型空間CVは、図1A等に示す対物レンズ10の形状に対応するものとなっている。また、流路空間FCは、対物レンズ10を分離する前の成形品のランナ部RP等に対応する空間であり、ゲート部分GSは、かかる成形品のゲート部GPに対応する空間である。なお、図1A等に示す対物レンズ10では、仕上げ加工によってゲート部GPが完全に除去されている。 As shown in FIG. 3, by clamping the movable mold 41 and the fixed mold 42, a mold space CV for molding the objective lens 10 and a flow path space FC for supplying resin to the mold space CV. And are formed. Among these, the mold space CV corresponds to the shape of the objective lens 10 shown in FIG. 1A and the like. The flow path space FC is a space corresponding to the runner portion RP and the like of the molded product before the objective lens 10 is separated, and the gate portion GS is a space corresponding to the gate portion GP of the molded product. In the objective lens 10 shown in FIG. 1A and the like, the gate portion GP is completely removed by finishing.
 型空間CVは、本体空間CV1とフランジ空間CV2とネック空間CV3とを備える。本体空間CV1は、第1及び第2転写面S1,S2で画定され、フランジ空間CV2は、第3、第4、第5、第6、及び第7転写面S3,S4,S5,S6,S7で画定され、ネック空間CV3は、第8及び第9転写面S8,S9で画定される。ここで、本体空間CV1に臨む一対の対向する第1及び第2転写面S1,S2は、対物レンズ10のうち中央部の光学機能部11の第1及び第2光学面OS1,OS2をそれぞれ形成するためのもので、後述するコア型64a,74aの端面に対応している。第2転写面S2の外周は、第1転写面S1の外周よりも内側に形成されている。第1転写面S1は、第2転写面S2よりも深く曲率が大きくなっている。また、第1転写面S1には、対物レンズ10の微細形状FSに対応する型面部分S11が設けられている。 The mold space CV includes a main body space CV1, a flange space CV2, and a neck space CV3. The main body space CV1 is defined by the first and second transfer surfaces S1, S2, and the flange space CV2 is the third, fourth, fifth, sixth, and seventh transfer surfaces S3, S4, S5, S6, S7. The neck space CV3 is defined by the eighth and ninth transfer surfaces S8 and S9. Here, the pair of opposing first and second transfer surfaces S1 and S2 facing the main body space CV1 form the first and second optical surfaces OS1 and OS2 of the optical function unit 11 in the center of the objective lens 10, respectively. This corresponds to the end faces of core dies 64a and 74a described later. The outer periphery of the second transfer surface S2 is formed inside the outer periphery of the first transfer surface S1. The first transfer surface S1 is deeper and has a larger curvature than the second transfer surface S2. Further, a mold surface portion S11 corresponding to the fine shape FS of the objective lens 10 is provided on the first transfer surface S1.
 フランジ空間CV2に臨む一対の対向する第3及び第4転写面S3,S4は、対物レンズ10のうちフランジ部12の第1及び第2フランジ面12a,12bをそれぞれ形成するための第1及び第2の成形面であり、後述する外周型64b,74bの端面に対応している。フランジ空間CV2に臨む第5及び第6転写面は、フランジ部12の内径面14a,14bをそれぞれ形成するためのもので、外周型64b,74bの端面に対応している。第5及び第6転写面S5,S6は、対物レンズ10のレンズ光軸OAに対して傾斜するように形成されている。フランジ空間CV2に臨む第7転写面S7は、対物レンズ10の外径面14cを形成するためのもので、外周型64b,74bの端面に対応している。第4転写面S4は、第2転写面S2の頂点Q3よりもパーティング面から浅い位置に形成されている。 A pair of opposing third and fourth transfer surfaces S3 and S4 facing the flange space CV2 are first and second for forming the first and second flange surfaces 12a and 12b of the flange portion 12 of the objective lens 10, respectively. 2 corresponding to the end surfaces of the outer peripheral molds 64b and 74b described later. The fifth and sixth transfer surfaces facing the flange space CV2 are for forming the inner diameter surfaces 14a and 14b of the flange portion 12, respectively, and correspond to the end surfaces of the outer peripheral molds 64b and 74b. The fifth and sixth transfer surfaces S5 and S6 are formed to be inclined with respect to the lens optical axis OA of the objective lens 10. The seventh transfer surface S7 facing the flange space CV2 is for forming the outer diameter surface 14c of the objective lens 10, and corresponds to the end surfaces of the outer peripheral molds 64b and 74b. The fourth transfer surface S4 is formed at a position shallower from the parting surface than the vertex Q3 of the second transfer surface S2.
 ネック空間CV3に臨む一対の対向する第8及び第9転写面S8,S9は、対物レンズ10のうちネック部13の第1及び第2端面EP1,EP2をそれぞれ形成するための第3及び第4の成形面であり、外周型64b,74bの端面に対応している。第8及び第9転写面S8,S9は、ネック部13の第1及び第2端面EP1,EP2が鏡面となるように平坦面となっている。 A pair of opposed eighth and ninth transfer surfaces S8, S9 facing the neck space CV3 are the third and fourth for forming the first and second end surfaces EP1, EP2 of the neck portion 13 of the objective lens 10, respectively. And corresponds to the end surfaces of the outer peripheral molds 64b and 74b. The eighth and ninth transfer surfaces S8, S9 are flat surfaces so that the first and second end surfaces EP1, EP2 of the neck portion 13 are mirror surfaces.
 図2に戻って、可動側の可動金型41は、パーティング面PS1を形成する型板61と、型板61を背後から支持する受板62と、受板62を背後から支持する取付板63と、図3に示す型空間CV(特に本体空間CV1)を形成する金型入子としてのコア型64aと、型空間CV(特にフランジ空間CV2及びネック空間CV3)を形成する周辺部としての外周型64bとを備える。さらに、可動金型41は、対物レンズ10を分離する前の成形品のランナ部RPを突き出して離型する突き出しピン65と、コア型64aを背後から押す可動ロッド67aと、突き出しピン65を背後から押す可動ロッド67bと、可動ロッド67a,67bを進退移動させる進退部材68とを備える。ここで、コア型64aは、前進する可動ロッド67aに駆動されて固定金型42側に前進し、可動ロッド67aの後退に伴って自動的に後退して元の位置に復帰する。また、突き出しピン65は、前進する可動ロッド67bに駆動されて固定金型42側に前進し、可動ロッド67bの後退に伴って自動的に後退して元の位置に復帰する。なお、進退部材68は、進退駆動装置52に駆動され、適当なタイミング及び量でAB方向に進退動作する。 Returning to FIG. 2, the movable mold 41 on the movable side includes a mold plate 61 that forms the parting surface PS <b> 1, a receiving plate 62 that supports the mold plate 61 from behind, and an attachment plate that supports the receiving plate 62 from behind. 63, a core mold 64a as a mold insert that forms the mold space CV (particularly the main body space CV1) shown in FIG. 3, and a peripheral part that forms the mold space CV (particularly the flange space CV2 and the neck space CV3). And an outer peripheral mold 64b. Further, the movable mold 41 has a protruding pin 65 that protrudes and releases the runner portion RP of the molded product before separating the objective lens 10, a movable rod 67a that pushes the core mold 64a from the back, and the protruding pin 65 behind. A movable rod 67b that pushes from the front and a movable member 67 that moves the movable rods 67a and 67b back and forth. Here, the core mold 64a is driven by the advancing movable rod 67a to advance toward the fixed mold 42, and automatically retracts and returns to the original position as the movable rod 67a retracts. Further, the ejecting pin 65 is driven by the moving movable rod 67b to move forward to the fixed mold 42 side, and automatically retracts and returns to the original position as the movable rod 67b moves backward. The advancing / retracting member 68 is driven by the advancing / retreating drive device 52 and moves forward and backward in the AB direction at an appropriate timing and amount.
 可動金型41において、型面側の金型部品である型板61は、図1A,1Bに示すランナ部RPを形成するランナ凹部61bと、ゲート部GPを形成するゲート凹部61cと、外周型64bや突き出しピン65をそれぞれ挿入するために設けた貫通孔61e,61fとを備える。 In the movable mold 41, a mold plate 61 that is a mold part on the mold surface side includes a runner recess 61b that forms the runner portion RP shown in FIGS. 1A and 1B, a gate recess 61c that forms the gate portion GP, and an outer peripheral mold. 64b and the protruding pin 65 are provided with through holes 61e and 61f provided for insertion.
 固定側の固定金型42は、パーティング面PS2を形成する型板71と、型板71を背後から支持する取付板72と、図3に示す型空間CV(特に本体空間CV1)を形成する金型入子としてのコア型74aと、型空間CV(特にフランジ空間CV2及びネック空間CV3)を形成する周辺部としての外周型74bとを備える。 The fixed mold 42 on the fixed side forms a mold plate 71 that forms the parting surface PS2, a mounting plate 72 that supports the mold plate 71 from behind, and a mold space CV (particularly a main body space CV1) shown in FIG. A core die 74a as a mold insert and an outer peripheral die 74b as a peripheral part forming a die space CV (particularly, a flange space CV2 and a neck space CV3) are provided.
 固定金型42において、型面側の金型部品である型板71は、図1A,1Bに示すランナ部RPを形成するランナ凹部71bと、ゲート部GPを形成するゲート面71cと、外周型74bを挿入するために設けた貫通孔71eとを備える。 In the fixed mold 42, a mold plate 71 which is a mold part on the mold surface side includes a runner recess 71b for forming the runner part RP shown in FIGS. 1A and 1B, a gate surface 71c for forming the gate part GP, and an outer peripheral mold. And a through hole 71e provided for inserting 74b.
 以下、図3等を参照しつつ、型空間CV及び流路空間FCの寸法について説明する。型空間CVは、対物レンズ10の輪郭を反転した形状となっており、型空間CVの寸法は、上述した対物レンズ10の寸法に対応する。つまり、光学機能部11に対応する本体空間CV1において、レンズ光軸OAに垂直な方向のレンズ外径をG(mm)(図1B参照)とし、レンズ光軸OAに平行な方向のレンズ軸上厚をt(mm)とし、ネック部13に対応するネック空間CV3において、レンズ光軸OAに平行な方向のネック部の最小厚みをT(mm)とした場合に、G≦4.05(mm)、かつt/T>4.0となっており、ゲート部GPに対応するゲート凹部61c及びゲート面71cで形成される流路空間FC(ゲート部分GS)において、レンズ光軸OAに垂直な方向のゲート幅をW(mm)とし、レンズ光軸OAに平行な方向のゲート深さをD(mm)としたときに、以下の条件式(1)~(3)を満たす。
 0.5T≦D≦1.33T  (1)
 1.5T≦W≦3T     (2)
 D・W≧1.5T     (3)
Hereinafter, the dimensions of the mold space CV and the flow path space FC will be described with reference to FIG. The mold space CV has a shape obtained by inverting the contour of the objective lens 10, and the dimensions of the mold space CV correspond to the dimensions of the objective lens 10 described above. That is, in the main body space CV1 corresponding to the optical function unit 11, the lens outer diameter in the direction perpendicular to the lens optical axis OA is G (mm) (see FIG. 1B), and the lens axis on the lens axis in the direction parallel to the lens optical axis OA. When the thickness is t (mm) and the minimum thickness of the neck portion in the direction parallel to the lens optical axis OA in the neck space CV3 corresponding to the neck portion 13 is T (mm), G ≦ 4.05 (mm ) And t / T> 4.0, and in the flow path space FC (gate portion GS) formed by the gate recess 61c and the gate surface 71c corresponding to the gate portion GP, it is perpendicular to the lens optical axis OA. When the gate width in the direction is W (mm) and the gate depth in the direction parallel to the lens optical axis OA is D (mm), the following conditional expressions (1) to (3) are satisfied.
0.5T ≦ D ≦ 1.33T (1)
1.5T ≦ W ≦ 3T (2)
D · W ≧ 1.5T 2 (3)
 ここで、既に説明したように、対物レンズ10の成形において、溶融樹脂がゲート部分GSを通過する際に、ゲート部分GSの壁面等の型面と接触した溶融樹脂は、第1及び第2金型41,42に冷却されて粘度が増す。そのため、溶融樹脂は、実質上、ゲート部分GSの中心部のみを通過して型空間CVに流入する。型空間CV及び流路空間FCにおいて、上記条件式(1)~(3)を満たすように、ゲート深さDを0.5T以上に深くし、かつゲート幅Wを1.5T以上とし、かつゲート断面積(D・W)を1.5T以上となるようにすることで、ゲート部分GSの中心部における溶融樹脂の通過する横断面積が、溶融樹脂をゲート部分GSにおいて通過させる際に過大な射出圧力を必要とせずに型空間CVに満充填することができる。これにより、射出圧力不足による未充填や過大な圧力による光学性能劣化を防止することができる。 Here, as already explained, when the molten resin passes through the gate portion GS in the molding of the objective lens 10, the molten resin that comes into contact with the mold surface such as the wall surface of the gate portion GS is the first and second gold. Cooled by the molds 41 and 42, the viscosity increases. Therefore, the molten resin substantially flows only through the central portion of the gate portion GS and flows into the mold space CV. In the mold space CV and the flow path space FC, the gate depth D is increased to 0.5T or more and the gate width W is set to 1.5T or more so as to satisfy the conditional expressions (1) to (3). gate cross-sectional area of (D · W) by such a 1.5T 2 or more, the cross sectional area of passage of the molten resin at the center of the gate portion GS is excessive when passing the molten resin in the gate portion GS The mold space CV can be fully filled without requiring a high injection pressure. Thereby, it is possible to prevent optical performance deterioration due to unfilling due to insufficient injection pressure and excessive pressure.
 また、ゲート幅Wを3T以下にすることで、仕上げのゲートカットに際してフランジ部12のカット代を抑制し、第1及び第2光学面OS1,OS2への悪影響を回避することができる。さらに、ゲート深さDを1.33T以下にすることで、ネック部13の半径方向外側に設けられた突起部分14の内径面14a,14bの傾斜面に溶融樹脂の流れが当たることで生じる乱流が引き起こす、第1及び第2光学面OS1,OS2の光学性能を劣化させる樹脂の流動配向を抑制することができる。 In addition, by setting the gate width W to 3T or less, it is possible to suppress the cutting margin of the flange portion 12 when finishing gate cutting, and to avoid adverse effects on the first and second optical surfaces OS1 and OS2. Furthermore, by setting the gate depth D to 1.33 T or less, the turbulence caused by the flow of the molten resin hits the inclined surfaces of the inner diameter surfaces 14 a and 14 b of the protruding portion 14 provided on the radially outer side of the neck portion 13. It is possible to suppress the flow orientation of the resin that deteriorates the optical performance of the first and second optical surfaces OS1 and OS2 caused by the flow.
 特に、ノートパソコン等の小型ピックアップ装置用の対物レンズ10は、レンズ外径G、レンズ軸上厚t、及びネック部の最小厚みTに関して、G≦4.05(mm)、かつt/T>4.0となっている。そのため、ネック部13の断面積が比較的小さいものとなり、ネック部13における溶融樹脂の流れを妨げないようにする必要がある。型空間CV及び流路空間FCの寸法(対物レンズ10の寸法)が上記条件式(1)~(3)を満たすことにより、ネック部13において溶融樹脂の流れが極端に妨げられず、高精度に転写性を確保したレンズを得ることができる。なお、レンズ外径Gは、1.45(mm)≦G≦4.05(mm)であることが好ましい。レンズ外径Gを1.45(mm)以上にすることにより、レンズ光学面に設けた微細形状が小さくなりすぎるのを防ぐことができるため、より高精度に転写を行うことが可能となる。また、偏肉比t/Tは、9.0>t/T>4.0であることが好ましい。t/Tを9.0よりも小さくすることにより、偏肉比が大きくなりすぎないので、溶融樹脂の流れ込み量が極端に制限されるのを防ぐことができる。 In particular, the objective lens 10 for a small pickup device such as a notebook personal computer has G ≦ 4.05 (mm) and t / T> with respect to the lens outer diameter G, the lens axis thickness t, and the minimum thickness T of the neck portion. 4.0. For this reason, the cross-sectional area of the neck portion 13 is relatively small, and it is necessary to prevent the molten resin from flowing in the neck portion 13. When the dimensions of the mold space CV and the flow path space FC (the dimensions of the objective lens 10) satisfy the conditional expressions (1) to (3), the flow of the molten resin in the neck portion 13 is not extremely hindered, and high accuracy is achieved. In addition, it is possible to obtain a lens that ensures transferability. The lens outer diameter G is preferably 1.45 (mm) ≦ G ≦ 4.05 (mm). By setting the lens outer diameter G to 1.45 (mm) or more, it is possible to prevent the fine shape provided on the lens optical surface from becoming too small, and thus it is possible to perform transfer with higher accuracy. Further, the uneven thickness ratio t / T is preferably 9.0> t / T> 4.0. By making t / T smaller than 9.0, the uneven thickness ratio does not become too large, so that it is possible to prevent the flow rate of the molten resin from being extremely limited.
 一方で、ゲート深さDが0.5Tよりも小さく、かつゲート幅Wが1.5Tよりも小さく、かつゲート断面積D・Wが1.5Tより小さい場合、ゲート部分GSの中心部の溶融樹脂の横断面積が型空間CVを満充填できない、つまり第1及び第2転写面S1,S2を十分転写できない程度の面積となってしまう。これにより、溶融樹脂を型空間CVに満充填するための射出速度を維持するには、溶融樹脂をゲート部分GSに通過させるための大きな射出圧力が必要となる。このように、溶融樹脂がネック部13を通過する際の速度低下を防止するには、より大きな射出圧力が必要となるため、型空間CV内に溶融樹脂が充填される際は、大きな射出圧力により樹脂に流動方向への配向が生じる。その結果、複屈折が発生し、成形された対物レンズ10の光学性能が劣化する。また、ゲート幅Wが3Tより広いと、成形された対物レンズ10の光学機能部11の外径からフランジ部12の外径までの距離であるフランジ幅Fに対してゲート幅Wが広くなりすぎる。そのため、ゲートカット(Dカット)時にフランジ部12のカット代が多くなりカット面が第1及び第2光学面OS1,OS2に近づき、ゲートカット時に発生する応力歪の悪影響を第1及び第2光学面OS1,OS2が受けることとなる。さらに、ゲート深さDが1.33Tより深いと、ゲート部分GSからスムーズに流れてきた溶融樹脂は、溶融樹脂の流れを阻害するネック空間CV3の凸段部において型空間CVへの流れ込みが過剰に抑制される。これにより、ネック空間CV3の凸段部で乱流が生じ、成形された対物レンズ10のネック部13近傍の第1及び第2光学面OS1,OS2に溶融樹脂の流れに起因する流動配向が発生し、光学性能劣化が生じる。 On the other hand, when the gate depth D is smaller than 0.5T, the gate width W is smaller than 1.5T, and the gate cross-sectional area D · W is smaller than 1.5T 2 , the central portion of the gate portion GS The cross-sectional area of the molten resin cannot fill the mold space CV, that is, the area cannot sufficiently transfer the first and second transfer surfaces S1 and S2. Thereby, in order to maintain the injection speed for fully filling the mold space CV with the molten resin, a large injection pressure for allowing the molten resin to pass through the gate portion GS is required. Thus, since a larger injection pressure is required to prevent a decrease in speed when the molten resin passes through the neck portion 13, a large injection pressure is required when the molten resin is filled in the mold space CV. This causes the resin to be oriented in the flow direction. As a result, birefringence occurs, and the optical performance of the molded objective lens 10 deteriorates. If the gate width W is wider than 3T, the gate width W becomes too large with respect to the flange width F, which is the distance from the outer diameter of the optical function portion 11 of the molded objective lens 10 to the outer diameter of the flange portion 12. . Therefore, the cutting margin of the flange portion 12 increases at the time of gate cut (D cut), the cut surface approaches the first and second optical surfaces OS1 and OS2, and the adverse effects of stress strain generated at the time of gate cut are adversely affected by the first and second optical surfaces. Surfaces OS1 and OS2 will receive. Further, when the gate depth D is deeper than 1.33T, the molten resin flowing smoothly from the gate portion GS is excessively flowed into the mold space CV at the convex step portion of the neck space CV3 that hinders the flow of the molten resin. To be suppressed. As a result, a turbulent flow is generated at the convex step portion of the neck space CV3, and flow orientation caused by the flow of the molten resin is generated on the first and second optical surfaces OS1, OS2 in the vicinity of the neck portion 13 of the molded objective lens 10. As a result, optical performance deteriorates.
 以下、対物レンズ10の製造方法について簡単に説明する。まず、不図示の金型温度調節機により、可動金型41と固定金型42とを適宜加熱する。これにより、両金型41,42において型空間CVを形成する金型部分の温度を成形に適する温度状態とする。次に、型開閉駆動装置51を動作させ、可動金型41を固定金型42側に前進させて型閉じ状態とし、型開閉駆動装置51の閉動作を更に継続することにより、可動金型41と固定金型42とを必要な圧力で締め付ける型締めが行われる。次に、不図示の射出装置を動作させて、型締めされた可動金型41と固定金型42との間の型空間CV中に、ゲート部分GS等を介して溶融樹脂を必要な圧力で注入する射出を行わせる。溶融樹脂を型空間CVに導入した後は、型空間CV中の溶融樹脂が放熱によって徐々に冷却されるので、かかる冷却にともなって溶融樹脂が固化し成形が完了するのを待つ。次に、型開閉駆動装置51を動作させて、可動金型41を後退させ、可動金型41を固定金型42から離間させる型開きを行わせる。この結果、成形品である対物レンズ10は、可動金型41に保持された状態で固定金型42から離型される。次に、進退駆動装置52を動作させて、可動ロッド67a,67bを介してコア型64a及び突き出しピン65による対物レンズ10の突き出しを行わせる。この結果、対物レンズ10が、可動ロッド67a等に付勢されて固定金型42側に押し出されて、対物レンズ10が可動金型41から離型される。なお、両金型41,42から離型された対物レンズ10は、この対物レンズ10のランナ部RPから延びるスプル部等を把持することによって、成形装置の外部に搬出される。さらに、搬出後の対物レンズ10は、ゲート部GPの除去等の外形加工を施されて出荷用の製品とされる。 Hereinafter, a method for manufacturing the objective lens 10 will be briefly described. First, the movable mold 41 and the fixed mold 42 are appropriately heated by a mold temperature controller (not shown). Thereby, the temperature of the mold part that forms the mold space CV in both molds 41 and 42 is set to a temperature state suitable for molding. Next, the mold opening / closing drive device 51 is operated, the movable mold 41 is advanced to the fixed mold 42 side to be in the mold closed state, and the closing operation of the mold opening / closing drive device 51 is further continued, whereby the movable mold 41 is moved. The mold is clamped to clamp the fixed mold 42 with a necessary pressure. Next, by operating an injection device (not shown), the molten resin is injected into the mold space CV between the clamped movable mold 41 and the fixed mold 42 with a necessary pressure through the gate portion GS or the like. Let the injection to inject. After the molten resin is introduced into the mold space CV, the molten resin in the mold space CV is gradually cooled by heat dissipation, so that the molten resin is solidified with the cooling and waits for completion of molding. Next, the mold opening / closing drive device 51 is operated to retract the movable mold 41 and perform mold opening to separate the movable mold 41 from the fixed mold 42. As a result, the objective lens 10, which is a molded product, is released from the fixed mold 42 while being held by the movable mold 41. Next, the advancing / retreating drive device 52 is operated, and the objective lens 10 is projected by the core mold 64a and the ejection pin 65 via the movable rods 67a and 67b. As a result, the objective lens 10 is urged by the movable rod 67a or the like and pushed out toward the fixed mold 42, and the objective lens 10 is released from the movable mold 41. The objective lens 10 released from both molds 41 and 42 is carried out of the molding apparatus by gripping a sprue portion extending from the runner portion RP of the objective lens 10. Further, the objective lens 10 after being carried out is subjected to external processing such as removal of the gate portion GP to be a product for shipment.
 以上説明した本実施形態に係る対物レンズ及び対物レンズの製造方法では、対物レンズ10の成形に際しての要素が上記条件式(1)~(3)を満たすことにより、成形された対物レンズ10は、高精度に転写された微細形状を有するものとなる。つまり、対物レンズ10の成形の際に、射出圧力不足による未充填や過大な圧力による光学性能劣化を防止することができる。また、仕上げのゲートカットに際してフランジ部12のカット代を抑制し、第1及び第2光学面OS1,OS2への悪影響を回避することができる。さらに、第1及び第2光学面OS1,OS2のネック部13近傍でネック部の凸段部に溶融樹脂の流れが当たることで生じる乱流が引き起こす、光学性能を劣化させる樹脂の流動配向を抑制することができる。特に、例えばノートパソコンに用いられるような小径で微細形状を有する対物レンズにおいて、高精度に転写され、良好な光学特性を有するものを得ることができる。 In the objective lens and the objective lens manufacturing method according to the present embodiment described above, the molded objective lens 10 is obtained by satisfying the conditional expressions (1) to (3) described above when the elements for molding the objective lens 10 satisfy the conditional expressions (1) to (3). It has a fine shape transferred with high precision. That is, when the objective lens 10 is molded, it is possible to prevent unfilling due to insufficient injection pressure and optical performance deterioration due to excessive pressure. Further, it is possible to suppress the cutting margin of the flange portion 12 at the time of finishing gate cutting, and to avoid adverse effects on the first and second optical surfaces OS1 and OS2. Furthermore, it suppresses the flow orientation of the resin that deteriorates the optical performance caused by the turbulent flow caused by the flow of the molten resin hitting the convex portion of the neck near the neck 13 of the first and second optical surfaces OS1, OS2. can do. In particular, an objective lens having a small diameter and a fine shape as used in, for example, a notebook personal computer can be transferred with high accuracy and have good optical characteristics.
 以下、対物レンズ10の実施例や比較例について外形的寸法、光学性能を考察するための試験の一例について説明する。ここでは、光学性能の評価の対象の一例として、「光利用効率」と「波面収差」の2つを採用し、外形的寸法としてゲート深さD及びゲート幅Wが互いに異なる対物レンズの光学性能について考察する。「光利用効率」は、対象となる光学レンズである対物レンズの光学面に入射する光の光量に対して当該対物レンズを通過し集光したスポット光の光量の割合で定義されるものである。具体的には、光利用効率は、例えば顕微鏡に類似する測定器を用い、被検レンズである対物レンズを配置しないで、すなわちリファレンスである被検レンズ無し状態での光量値L1を接眼レンズに相当する位置に配置したパワーメーターで測定し、その後、被検レンズ有りで同様に光量値L2を測定し、両測定結果からL2÷L1×100〔%〕とすることで算出される。また、「波面収差」については、対象となる光学レンズである対物レンズを、干渉計を用いて測定し求められたもののうち、「球面収差」、「コマ収差」、「非点収差」に基づく収差を採用する。なお、光源光としては、光利用効率及び波面収差の両方ともにBD用光(波長405nm)、DVD用光(波長660nm)、及びCD用光(波長785nm)を用いている。
 表1は、対物レンズの外形的寸法と光学性能等との関係に関する上記試験の試験結果を示す。ここで、試験結果の評価は、「○」が光学性能が良好であることを示し、「×」がゲートカットにより対物レンズに歪みが生じたことを示し、「××」が溶融樹脂の乱流による光学性能の劣化が生じたことを示し、「×××」が光学面に転写不良が生じたことを示す。より具体的には、「○」は、「光利用効率」が要求される光利用効率の規格範囲を満足することを意味し、具体的一例の数値としては、BD用光(波長405nm)で87%±5%、DVD用光(波長660nm)で75%±5%、及びCD用光(波長785nm)で61%±5%を満足し、かつ、干渉計による測定で「球面収差」、「コマ収差」、「非点収差」が要求される規格範囲を満足していることを意味する。「×」は、少なくとも「コマ収差」が規格から外れた値であることを意味する。「××」は、少なくとも「非点収差」が規格から外れた値であることを意味する。「×××」は、少なくとも「光利用効率」が規格から外れた値であることを意味する。なお、「×」、「××」及び「×××」については、複数該当する場合もある。
Figure JPOXMLDOC01-appb-T000001
Hereinafter, an example of a test for considering the external dimensions and optical performance of the example and the comparative example of the objective lens 10 will be described. Here, two examples of “light utilization efficiency” and “wavefront aberration” are adopted as examples of targets for optical performance evaluation, and optical performances of objective lenses having different gate depths D and gate widths W as external dimensions. Consider. “Light utilization efficiency” is defined as the ratio of the amount of light of the spot light that passes through the objective lens and is collected with respect to the amount of light incident on the optical surface of the objective lens that is the target optical lens. . Specifically, the light utilization efficiency is obtained by using, for example, a measuring device similar to a microscope, and without using an objective lens as a test lens, that is, using a light amount value L1 in a state without a test lens as a reference as an eyepiece. It is measured by measuring with a power meter arranged at the corresponding position, and then measuring the light quantity value L2 in the same manner with the lens to be tested, and calculating from both measurement results as L2 ÷ L1 × 100 [%]. “Wavefront aberration” is based on “spherical aberration”, “coma aberration”, and “astigmatism” among objective lenses that are optical lenses to be measured using an interferometer. Aberration is adopted. As the light source light, BD light (wavelength 405 nm), DVD light (wavelength 660 nm), and CD light (wavelength 785 nm) are used for both light utilization efficiency and wavefront aberration.
Table 1 shows the test results of the above test regarding the relationship between the external dimensions of the objective lens and the optical performance. Here, in the evaluation of the test results, “◯” indicates that the optical performance is good, “×” indicates that the objective lens is distorted by the gate cut, and “XX” indicates that the molten resin is disturbed. It indicates that the optical performance has deteriorated due to the flow, and “xxx” indicates that a transfer failure has occurred on the optical surface. More specifically, “○” means that “light utilization efficiency” satisfies the required standard range of light utilization efficiency, and a specific example of the numerical value is BD light (wavelength 405 nm). Satisfying 87% ± 5%, DVD light (wavelength 660 nm) 75% ± 5%, and CD light (wavelength 785 nm) 61% ± 5%, and “spherical aberration” as measured by an interferometer, It means that “coma” and “astigmatism” satisfy the required standard range. “X” means that at least “coma” is a value out of the standard. “XX” means that at least “astigmatism” is a value deviating from the standard. “XXX” means that at least “light utilization efficiency” is a value out of the standard. Note that there may be a plurality of “x”, “xxx”, and “xxx”.
Figure JPOXMLDOC01-appb-T000001
 表1に示すように、対物レンズの光学性能が「良好」となるのは、(D,W)=(1.0T,1.5T)、(1.33T,1.5T)、(1.0T,2.0T)、(1.33T,2.0T)、(0.5T,3.0T)、(1.0T,3.0T)、(1.33T,3.0T)の組み合わせの場合であった。これは、上記条件式(1)~(3)を満たすものである。 As shown in Table 1, the optical performance of the objective lens is “good” because (D, W) = (1.0T, 1.5T), (1.33T, 1.5T), (1. 0T, 2.0T), (1.33T, 2.0T), (0.5T, 3.0T), (1.0T, 3.0T), (1.33T, 3.0T) Met. This satisfies the conditional expressions (1) to (3).
 なお、表1において、上記条件式(1)~(3)を満たさない組み合わせは、いずれも光学面の転写不良により光学性能に問題が生じた。 In Table 1, any combination that did not satisfy the above conditional expressions (1) to (3) caused a problem in optical performance due to poor transfer of the optical surface.
 以下、対物レンズ10の具体的な寸法の実施例について説明する。
 本実施例において、対物レンズ10の寸法をレンズ外径Gを4.00(mm)、ゲート幅Wを0.80(mm)、ゲート深さDを0.44(mm)、レンズ軸上厚tを2.0(mm)、ネック部の最小厚みTを0.475(mm)とした。いずれの寸法も上記条件式(1)~(3)及びt/T>4.0の範囲を満たしている。上記寸法の対物レンズ10に対応する成形金型によって対物レンズ10を成形することにより、高精度に転写された微細形状を有する対物レンズ10が得られた。
Hereinafter, examples of specific dimensions of the objective lens 10 will be described.
In this embodiment, the objective lens 10 has the following dimensions: the lens outer diameter G is 4.00 (mm), the gate width W is 0.80 (mm), the gate depth D is 0.44 (mm), and the thickness on the lens axis. t was 2.0 (mm), and the minimum thickness T of the neck was 0.475 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0. The objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
 本実施例において、対物レンズ10の寸法をレンズ外径Gを4.00(mm)、ゲート幅Wを1.1(mm)、ゲート深さDを0.38(mm)、レンズ軸上厚tを2.0(mm)、ネック部の最小厚みTを0.475(mm)とした。いずれの寸法も上記条件式(1)~(3)及びt/T>4.0の範囲を満たしている。上記寸法の対物レンズ10に対応する成形金型によって対物レンズ10を成形することにより、高精度に転写された微細形状を有する対物レンズ10が得られた。 In this embodiment, the objective lens 10 has a lens outer diameter G of 4.00 (mm), a gate width W of 1.1 (mm), a gate depth D of 0.38 (mm), and a thickness on the lens axis. t was 2.0 (mm), and the minimum thickness T of the neck was 0.475 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0. The objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
 本実施例において、対物レンズ10の寸法をレンズ外径Gを4.00(mm)、ゲート幅Wを0.66(mm)、ゲート深さDを0.50(mm)、レンズ軸上厚tを2.0(mm)、ネック部の最小厚みTを0.42(mm)とした。いずれの寸法も上記条件式(1)~(3)及びt/T>4.0の範囲を満たしている。上記寸法の対物レンズ10に対応する成形金型によって対物レンズ10を成形することにより、高精度に転写された微細形状を有する対物レンズ10が得られた。 In this embodiment, the objective lens 10 has a lens outer diameter G of 4.00 (mm), a gate width W of 0.66 (mm), a gate depth D of 0.50 (mm), and a thickness on the lens axis. t was 2.0 (mm), and the minimum thickness T of the neck was 0.42 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0. The objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
 本実施例において、対物レンズ10の寸法をレンズ外径Gを4.00(mm)、ゲート幅Wを0.75(mm)、ゲート深さDを0.48(mm)、レンズ軸上厚tを2.0(mm)、ネック部の最小厚みTを0.38(mm)とした。いずれの寸法も上記条件式(1)~(3)及びt/T>4.0の範囲を満たしている。上記寸法の対物レンズ10に対応する成形金型によって対物レンズ10を成形することにより、高精度に転写された微細形状を有する対物レンズ10が得られた。 In the present embodiment, the objective lens 10 has a lens outer diameter G of 4.00 (mm), a gate width W of 0.75 (mm), a gate depth D of 0.48 (mm), and a thickness on the lens axis. t was 2.0 (mm), and the minimum thickness T of the neck was 0.38 (mm). All dimensions satisfy the above conditions (1) to (3) and the range of t / T> 4.0. The objective lens 10 having a fine shape transferred with high accuracy was obtained by molding the objective lens 10 with a molding die corresponding to the objective lens 10 having the above dimensions.
〔第2実施形態〕
 以下、第2実施形態に係る対物レンズについて説明する。なお、第2実施形態の対物レンズは第1実施形態の対物レンズを変形したものであり、特に説明しない部分は第1実施形態と同様であるものとする。
[Second Embodiment]
Hereinafter, the objective lens according to the second embodiment will be described. The objective lens according to the second embodiment is a modification of the objective lens according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
 図4Aに示すように、本実施形態のフランジ部212において、第1フランジ面12aは、ネック部13の第1端面EP1よりも凹んで配置されている。つまり、フランジ部212の突起部分214は、光情報記録媒体側すなわち第2光学面OS2側のみが突起した形状となっている。なお、フランジ部212において、内径面214aは、レーザ光源側で狭まるテーパ形状を有している。 As shown in FIG. 4A, in the flange portion 212 of the present embodiment, the first flange surface 12 a is disposed so as to be recessed from the first end surface EP <b> 1 of the neck portion 13. That is, the protruding portion 214 of the flange portion 212 has a shape in which only the optical information recording medium side, that is, the second optical surface OS2 side protrudes. In the flange portion 212, the inner diameter surface 214a has a tapered shape that narrows on the laser light source side.
 図4Bに示すように、対物レンズ210を成形する成形金型40は、対物レンズ210の寸法に対応するものとなっている。可動金型41において、第5転写面S5は、フランジ部212の内径面214aに対応してレンズ光軸OAに対して傾斜するように形成されている。 As shown in FIG. 4B, the molding die 40 for molding the objective lens 210 corresponds to the dimensions of the objective lens 210. In the movable mold 41, the fifth transfer surface S5 is formed so as to be inclined with respect to the lens optical axis OA corresponding to the inner diameter surface 214a of the flange portion 212.
 本実施形態に係る対物レンズ210では、第1フランジ面12aが凹んだ位置にある第1光学面OS1側のネック部13において、溶融樹脂の流れを阻害するネック部13の凸段部が無くなるため、対物レンズ210の成形の際に、溶融樹脂の流れが阻害されることによる乱流が生じず、スムーズに流れ込む。そのため、第1及び第2光学面OS1,OS2のネック部13近傍の光学性能の劣化を抑制することができる。 In the objective lens 210 according to the present embodiment, the convex portion of the neck portion 13 that obstructs the flow of the molten resin is eliminated in the neck portion 13 on the first optical surface OS1 side where the first flange surface 12a is recessed. When the objective lens 210 is molded, turbulent flow due to inhibition of the flow of the molten resin does not occur, and the objective lens 210 flows smoothly. Therefore, it is possible to suppress the deterioration of the optical performance in the vicinity of the neck portion 13 of the first and second optical surfaces OS1, OS2.
 なお、フランジ部212において、第1フランジ面12aでなく、第2フランジ面12bをネック部13の第2端面EP2よりも凹んで配置してもよい。 In addition, in the flange part 212, you may arrange | position not 2nd flange surface 12b rather than 1st flange surface 12a rather than 2nd end surface EP2 of the neck part 13. FIG.
〔第3実施形態〕
 以下、第3実施形態に係る対物レンズについて説明する。なお、第3実施形態の対物レンズは第1実施形態の対物レンズを変形したものであり、特に説明しない部分は第1実施形態と同様であるものとする。
[Third Embodiment]
Hereinafter, the objective lens according to the third embodiment will be described. The objective lens according to the third embodiment is a modification of the objective lens according to the first embodiment, and parts not specifically described are the same as those in the first embodiment.
 図5Aに示すように、本実施形態のフランジ部312は、第2フランジ面12b側に、レンズ光軸OAに平行な方向の厚みを変化させる段差形状315を有する。段差形状315は、フランジ部312の内径面14b上に2段に形成されている。具体的には、第2フランジ面12bの内側すなわち光学機能部11側に第1段部315aと、第1段部315aに隣接して第2フランジ面12bの外側に第2段部315bとが形成されている。第1段部315aは、情報記録媒体側から遠い位置に設けられており、第2段部315bは、第1段部315aよりも情報記録媒体側から近い位置に設けられている。つまり、段差形状315は、フランジ部12の外側に向かってフランジ厚が厚くなる階段形状となっている。第1段部315aと第2段部315bとをつなぐ面315cは、情報記録媒体側に広がるテーパ面となっている。第1段部315bの内側に隣接する面315dは、情報記録媒体側に広がるテーパ面となっている。 As shown in FIG. 5A, the flange portion 312 of the present embodiment has a step shape 315 that changes the thickness in the direction parallel to the lens optical axis OA on the second flange surface 12b side. The step shape 315 is formed in two steps on the inner diameter surface 14 b of the flange portion 312. Specifically, a first step 315a is formed on the inner side of the second flange surface 12b, that is, on the optical function unit 11 side, and a second step 315b is disposed on the outer side of the second flange surface 12b adjacent to the first step 315a. Is formed. The first step portion 315a is provided at a position far from the information recording medium side, and the second step portion 315b is provided at a position closer to the information recording medium side than the first step portion 315a. That is, the step shape 315 has a staircase shape in which the flange thickness increases toward the outside of the flange portion 12. A surface 315c connecting the first step portion 315a and the second step portion 315b is a tapered surface extending toward the information recording medium side. A surface 315d adjacent to the inside of the first step portion 315b is a tapered surface extending toward the information recording medium side.
 図5Bに示すように、対物レンズ310を成形する成形金型40は、対物レンズ310の寸法に対応するものとなっている。固定金型42において、第6転写面S6は、フランジ部312の段差形状315に対応する段差形状の転写面ST1が形成されている。 As shown in FIG. 5B, the molding die 40 for molding the objective lens 310 corresponds to the dimensions of the objective lens 310. In the fixed mold 42, the sixth transfer surface S6 is formed with a step-shaped transfer surface ST1 corresponding to the step shape 315 of the flange portion 312.
 本実施形態に係る対物レンズ310では、第2フランジ面12bと第2端面EP2との境界である傾斜部分である段差形状315が緩やかとなり、対物レンズ310の成形の際に、溶融樹脂がよりスムーズにネック部13に流れ込むことができる。 In the objective lens 310 according to the present embodiment, the stepped shape 315 that is an inclined portion that is the boundary between the second flange surface 12b and the second end surface EP2 becomes gentle, and the molten resin is more smoothly formed when the objective lens 310 is molded. Can flow into the neck portion 13.
 なお、フランジ部312において、第1フランジ面12a側に段差形状315を設けてもよい。 In the flange portion 312, a step shape 315 may be provided on the first flange surface 12a side.
〔第4実施形態〕
 以下、第4実施形態に係る対物レンズについて説明する。なお、第4実施形態の対物レンズは第1実施形態の対物レンズを変形したものであり、特に説明しない部分は第1実施形態と同様であるものとする。
[Fourth Embodiment]
The objective lens according to the fourth embodiment will be described below. The objective lens according to the fourth embodiment is a modification of the objective lens according to the first embodiment, and parts not specifically described are the same as those according to the first embodiment.
 図6Aに示すように、本実施形態のネック部13は、第2端面EP2に金型識別用の凸形状のマークMを有する。マークMは、略半球状であり、情報記録媒体側のネック部13と光学機能部11との境界付近に配置されている。このように、対物レンズ410が、成形の際に溶融樹脂の通過しにくいネック部13にマークMを有していても、対物レンズ410が上記条件式(1)~(3)を満たすことにより、マークMも高精度に転写することができる。なお、マークMを配置する場所は第2端面EP2に限定されず、第2フランジ面12bに配置してもよい。 As shown in FIG. 6A, the neck portion 13 of the present embodiment has a convex mark M for mold identification on the second end face EP2. The mark M is substantially hemispherical, and is arranged near the boundary between the neck portion 13 and the optical function portion 11 on the information recording medium side. Thus, even if the objective lens 410 has the mark M on the neck portion 13 where the molten resin is difficult to pass during molding, the objective lens 410 satisfies the conditional expressions (1) to (3). The mark M can also be transferred with high accuracy. The place where the mark M is disposed is not limited to the second end surface EP2, and may be disposed on the second flange surface 12b.
 図6Bに示すように、対物レンズ410を成形する成形金型40は、対物レンズ410の寸法に対応するものとなっている。固定金型42において、第9転写面S9は、ネック部13のマークMに対応して凹部転写面PTが形成されている。 As shown in FIG. 6B, the molding die 40 for molding the objective lens 410 corresponds to the dimensions of the objective lens 410. In the fixed mold 42, the ninth transfer surface S9 is formed with a concave transfer surface PT corresponding to the mark M of the neck portion 13.
〔第5実施形態〕
 以下、第5実施形態に係る対物レンズについて説明する。なお、第5実施形態の対物レンズは第2実施形態の対物レンズを変形したものであり、特に説明しない部分は第2実施形態と同様であるものとする。
[Fifth Embodiment]
The objective lens according to the fifth embodiment will be described below. Note that the objective lens of the fifth embodiment is a modification of the objective lens of the second embodiment, and parts not specifically described are the same as those of the second embodiment.
 図7Aに示すように、本実施形態のフランジ部512において、第1フランジ面12aは、レンズ光軸OAに平行な厚みを変化させる段差形状515を有する。段差形状515は、フランジ部512の内径面14a上に2段に形成されている。具体的には、第1フランジ面12aの内側すなわち光学機能部11側に第1段部515aと、第1段部515aに隣接して第1フランジ面12aの外側に第2段部515bとが形成されている。第1段部515aは、レーザ光源側から近い位置に設けられており、第2段部515bは、第1段部515aよりもレーザ光源側から遠い位置に設けられている。つまり、段差形状515は、フランジ部12の外側に向かってフランジ厚が薄くなる階段形状となっている。第1段部515aと第2段部515bとをつなぐ面515cは、レーザ光源側に狭まるテーパ面となっている。第2段部515bの外側に隣接する面515dは、レンズ光軸OAと平行な方向の面となっている。なお、フランジ部512において、第2フランジ面12bに段差形状515を設けてもよい。 7A, in the flange portion 512 of the present embodiment, the first flange surface 12a has a step shape 515 that changes the thickness parallel to the lens optical axis OA. The step shape 515 is formed in two steps on the inner diameter surface 14 a of the flange portion 512. Specifically, a first step 515a is formed on the inner side of the first flange surface 12a, that is, on the optical function unit 11 side, and a second step 515b is disposed on the outer side of the first flange surface 12a adjacent to the first step 515a. Is formed. The first step portion 515a is provided at a position closer to the laser light source side, and the second step portion 515b is provided at a position farther from the laser light source side than the first step portion 515a. That is, the step shape 515 has a stepped shape in which the flange thickness decreases toward the outside of the flange portion 12. A surface 515c that connects the first step portion 515a and the second step portion 515b is a tapered surface that narrows toward the laser light source side. A surface 515d adjacent to the outside of the second step portion 515b is a surface in a direction parallel to the lens optical axis OA. In the flange portion 512, a step shape 515 may be provided on the second flange surface 12b.
 図7Bに示すように、対物レンズ510を成形する成形金型40は、対物レンズ510の寸法に対応するものとなっている。可動金型41において、第5転写面S5は、フランジ部512の段差形状515に対応する段差形状の転写面ST2が形成されている。 As shown in FIG. 7B, the molding die 40 for molding the objective lens 510 corresponds to the dimensions of the objective lens 510. In the movable mold 41, a step-shaped transfer surface ST2 corresponding to the step shape 515 of the flange portion 512 is formed on the fifth transfer surface S5.
 以上実施形態に即して本発明を説明したが、本発明は、上記実施形態に限定されるものではなく、様々な変形が可能である。例えば、上記実施形態において、固定金型42及び可動金型41で構成される射出成形金型に設ける型空間CVの形状は、上記条件式(1)~(3)を満たすものであれば、様々な形状とすることができる。すなわち、コア型64a,74a等によって形成される型空間CVの形状は、単なる例示であり、対物レンズ10その他の光学素子の用途等に応じて適宜変更することができる。例えば、固定金型42で対物レンズ10の第1光学面OS1を成形し、可動金型41で第1光学面OS1よりも曲率の小さい第2光学面OS2を成形する金型構成とすることもできる。 Although the present invention has been described based on the above embodiments, the present invention is not limited to the above embodiments, and various modifications are possible. For example, in the above embodiment, if the shape of the mold space CV provided in the injection mold constituted by the fixed mold 42 and the movable mold 41 satisfies the conditional expressions (1) to (3), Various shapes can be used. That is, the shape of the mold space CV formed by the core molds 64a and 74a is merely an example, and can be appropriately changed according to the purpose of the objective lens 10 and other optical elements. For example, the first optical surface OS1 of the objective lens 10 may be molded with the fixed mold 42, and the second optical surface OS2 having a smaller curvature than the first optical surface OS1 may be molded with the movable mold 41. it can.
 また、上記実施形態において、対物レンズ10の光学機能部11に形成する微細形状FSも図示のものに限らず、用途に応じた様々な回折構造等とすることができる。 Further, in the above embodiment, the fine shape FS formed in the optical function unit 11 of the objective lens 10 is not limited to the illustrated one, and various diffractive structures and the like according to applications can be used.
 また、上記実施形態において、第2フランジ面12bが第2光学面OS2の頂点Q2よりも低く配置されているとしたが、ネック部13での溶融樹脂の流れが妨げられない程度であれば、第2フランジ面12bが第2光学面OS2の頂点Q2よりも高く配置されていてもよい。つまり、第2フランジ面12bが第2光学面OS2よりも突出していてもよい。 In the above embodiment, the second flange surface 12b is arranged lower than the vertex Q2 of the second optical surface OS2, but if the molten resin flow at the neck portion 13 is not hindered, The second flange surface 12b may be disposed higher than the vertex Q2 of the second optical surface OS2. That is, the second flange surface 12b may protrude beyond the second optical surface OS2.
 また、上記実施形態において、第2光学面OS2の外周が第1光学面OS1の外周よりも内側に形成されているとしたが、第2光学面OS2の外周が第1光学面OS1の外周と鉛直線上に略同じ位置に形成されてもよい。また、第1光学面OS1の外周よりも外側に形成されてもよい。 In the above embodiment, the outer periphery of the second optical surface OS2 is formed inside the outer periphery of the first optical surface OS1, but the outer periphery of the second optical surface OS2 is the same as the outer periphery of the first optical surface OS1. They may be formed at substantially the same position on the vertical line. Moreover, you may form outside the outer periphery of 1st optical surface OS1.
 また、上記実施形態において、ネック部13の第1及び第2端面EP1,EP2が鏡面を有するとしたが、鏡面でなくてもよい。また、第1及び第2端面EP1,EP2のいずれか一方を鏡面としてもよい。 Moreover, in the said embodiment, although 1st and 2nd end surface EP1, EP2 of the neck part 13 had a mirror surface, it does not need to be a mirror surface. Moreover, it is good also considering either one of 1st and 2nd end surface EP1, EP2 as a mirror surface.

Claims (25)

  1.  光学面に微細形状を設けた光学機能部と、前記光学機能部の周囲に設けられるフランジ部とを有し、前記フランジ部の外周縁に設けられたゲート部から型空間内に導入された樹脂によって射出成形され、BD、DVD、及びCDの情報読み取り及び/又は書き込みに用いられる対物レンズであって、
     前記光学機能部は、第1光学面と、前記第1光学面よりも曲率の小さい第2光学面とを有し、
     前記光学機能部と前記フランジ部との間にネック部を有し、
     レンズ光軸に垂直な方向のレンズ外径をG(mm)とし、前記光学機能部において、前記レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、
     前記ネック部において、前記レンズ光軸に平行な方向のネック部の最小厚みをT(mm)とした場合に、G≦4.05(mm)、かつt/T>4.0となっており、
     前記ゲート部において、前記レンズ光軸に垂直な方向のゲート幅をW(mm)とし、前記レンズ光軸に平行な方向のゲート深さをD(mm)としたときに、以下の条件式を満たすことを特徴とする対物レンズ。
     0.5T≦D≦1.33T
     1.5T≦W≦3T
     D・W≧1.5T
    Resin introduced into a mold space from a gate portion provided at an outer peripheral edge of the flange portion, having an optical function portion having a fine shape on an optical surface and a flange portion provided around the optical function portion An objective lens that is injection molded by and used to read and / or write information on BD, DVD, and CD,
    The optical function unit includes a first optical surface and a second optical surface having a smaller curvature than the first optical surface,
    A neck portion is provided between the optical function portion and the flange portion,
    The lens outer diameter in the direction perpendicular to the lens optical axis is G (mm), and in the optical function unit, the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm),
    When the minimum thickness of the neck portion in the direction parallel to the lens optical axis is T (mm), G ≦ 4.05 (mm) and t / T> 4.0. ,
    In the gate portion, when the gate width in the direction perpendicular to the lens optical axis is W (mm) and the gate depth in the direction parallel to the lens optical axis is D (mm), the following conditional expression is satisfied. Objective lens characterized by satisfying.
    0.5T ≦ D ≦ 1.33T
    1.5T ≦ W ≦ 3T
    D · W ≧ 1.5T 2
  2.  前記フランジ部は、前記第1光学面側に第1フランジ面と、前記第2光学面側に第2フランジ面とを有し、
     前記第2フランジ面は、前記第2光学面の頂点よりも低く配置されることを特徴とする請求項1に記載の対物レンズ。
    The flange portion has a first flange surface on the first optical surface side and a second flange surface on the second optical surface side,
    The objective lens according to claim 1, wherein the second flange surface is disposed lower than a vertex of the second optical surface.
  3.  前記第2光学面の外周は、前記第1光学面の外周よりも内側に形成されていることを特徴とする請求項1及び2のいずれか一項に記載の対物レンズ。 3. The objective lens according to claim 1, wherein an outer periphery of the second optical surface is formed on an inner side than an outer periphery of the first optical surface.
  4.  前記ネック部は、前記第1光学面側に第1端面と、前記第2光学面側に第2端面とを有し、
     前記第1フランジ面と前記第1端面とをつなぐ面及び前記第2フランジ面と前記第2端面とをつなぐ面の少なくともいずれか一方は、前記レンズ光軸に対して傾斜していることを特徴とする請求項1から3までのいずれか一方に記載の対物レンズ。
    The neck portion has a first end surface on the first optical surface side and a second end surface on the second optical surface side,
    At least one of a surface connecting the first flange surface and the first end surface and a surface connecting the second flange surface and the second end surface is inclined with respect to the lens optical axis. The objective lens according to any one of claims 1 to 3.
  5.  前記第1端面及び前記第2端面の少なくともいずれか一方は、鏡面を有することを特徴とする請求項4に記載の対物レンズ。 The objective lens according to claim 4, wherein at least one of the first end surface and the second end surface has a mirror surface.
  6.  前記第1フランジ面及び第2フランジ面のいずれか一方は、前記ネック部側において、対応する前記第1端面及び前記第2端面のいずれか一方よりも凹んで配置されることを特徴とする請求項4及び5のいずれか一項に記載の対物レンズ。 One of the first flange surface and the second flange surface is disposed on the neck portion side so as to be recessed from either the corresponding first end surface or the second end surface. Item 6. The objective lens according to any one of Items 4 and 5.
  7.  前記フランジ部は、前記第1フランジ面及び前記第2フランジ面の少なくともいずれか一方側において、前記レンズ光軸に平行な方向の厚みを変化させる段差形状を有することを特徴とする請求項4から6までのいずれか一項に記載の対物レンズ。 The said flange part has a level | step difference shape which changes the thickness of the direction parallel to the said lens optical axis in at least any one side of a said 1st flange surface and a said 2nd flange surface. The objective lens according to any one of 6 to 6.
  8.  前記第2端面に金型識別用の凸形状のマークを有することを特徴とする請求項4から7までのいずれか一項に記載の対物レンズ。 The objective lens according to any one of claims 4 to 7, wherein a convex mark for identifying a mold is provided on the second end face.
  9.  前記第2フランジ面に金型識別用の凸形状のマークを有することを特徴とする請求項1から7までのいずれか一項に記載の対物レンズ。 The objective lens according to any one of claims 1 to 7, wherein a convex mark for identifying a mold is provided on the second flange surface.
  10.  前記レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、500nm以下の波長の光束における焦点距離をf(mm)としたときに、0.8≦t/f≦2.0であることを特徴とする請求項1から9までのいずれか一項に記載の対物レンズ。 When the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm) and the focal length of a light beam having a wavelength of 500 nm or less is f (mm), 0.8 ≦ t / f ≦ 2.0. The objective lens according to any one of claims 1 to 9, wherein
  11.  光学面に微細形状を設けた光学機能部と、前記光学機能部の周囲に設けられるフランジ部とを有し、前記フランジ部の外周縁に設けられたゲート部から型空間内に導入された樹脂によって射出成形され、BD、DVD、及びCDの情報の記録及び/又は再生に用いられる対物レンズの製造方法であって、
     前記対物レンズの第1光学面を成形する第1の金型と、前記対物レンズの第2光学面を成形する第2の金型とによって形成される型空間に溶融樹脂を射出して前記対物レンズを成形する工程と、
     前記第1の金型と前記第2の金型とを相対的に離間させて型開きすることにより、前記型空間から前記対物レンズを取り出す工程と、
    を備え、
     前記対物レンズは、前記光学機能部と前記フランジ部との間にネック部を有し、
     レンズ光軸に垂直な方向のレンズ外径をG(mm)とし、前記光学機能部において、前記レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、
     前記ネック部において、前記レンズ光軸に平行な方向のネック部の最小厚みをT(mm)とした場合に、G≦4.05(mm)、かつt/T>4.0となっており、
     前記ゲート部において、前記レンズ光軸に垂直な方向のゲート幅をW(mm)とし、前記レンズ光軸に平行な方向のゲート深さをD(mm)としたときに、以下の条件式を満たすことを特徴とする対物レンズの製造方法。
     0.5T≦D≦1.33T
     1.5T≦W≦3T
     D・W≧1.5T
    Resin introduced into a mold space from a gate portion provided at an outer peripheral edge of the flange portion, having an optical function portion having a fine shape on an optical surface and a flange portion provided around the optical function portion A method of manufacturing an objective lens that is injection-molded by and used for recording and / or reproducing information of BD, DVD, and CD,
    Molten resin is injected into a mold space formed by a first mold that molds the first optical surface of the objective lens and a second mold that molds the second optical surface of the objective lens, and the objective Forming a lens;
    Removing the objective lens from the mold space by relatively opening the first mold and the second mold apart from each other; and
    With
    The objective lens has a neck portion between the optical function portion and the flange portion,
    The lens outer diameter in the direction perpendicular to the lens optical axis is G (mm), and in the optical function unit, the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm),
    When the minimum thickness of the neck portion in the direction parallel to the lens optical axis is T (mm), G ≦ 4.05 (mm) and t / T> 4.0. ,
    In the gate portion, when the gate width in the direction perpendicular to the lens optical axis is W (mm) and the gate depth in the direction parallel to the lens optical axis is D (mm), the following conditional expression is satisfied. An objective lens manufacturing method characterized by satisfying:
    0.5T ≦ D ≦ 1.33T
    1.5T ≦ W ≦ 3T
    D · W ≧ 1.5T 2
  12.  前記光学機能部は、第1光学面と、前記第1光学面よりも曲率の小さい第2光学面とを有し、
     前記フランジ部は、前記第1光学面側に第1フランジ面と、前記第2光学面側に第2フランジ面とを有し、
     前記第2フランジ面は、前記第2光学面の頂点よりも低く配置されることを特徴とする請求項11に記載の対物レンズの製造方法。
    The optical function unit includes a first optical surface and a second optical surface having a smaller curvature than the first optical surface,
    The flange portion has a first flange surface on the first optical surface side and a second flange surface on the second optical surface side,
    The method of manufacturing an objective lens according to claim 11, wherein the second flange surface is disposed lower than a vertex of the second optical surface.
  13.  前記第2光学面の外周は、前記第1光学面の外周よりも内側に形成されていることを特徴とする請求項11及び12のいずれか一項に記載の対物レンズの製造方法。 13. The method of manufacturing an objective lens according to claim 11, wherein an outer periphery of the second optical surface is formed inside an outer periphery of the first optical surface.
  14.  前記ネック部は、前記第1光学面側に第1端面と、前記第2光学面側に第2端面とを有し、
     前記第1フランジ面と前記第1端面とをつなぐ面及び前記第2フランジ面と前記第2端面とをつなぐ面の少なくともいずれか一方は、前記レンズ光軸に対して傾斜していることを特徴とする請求項11から13までのいずれか一方に記載の対物レンズの製造方法。
    The neck portion has a first end surface on the first optical surface side and a second end surface on the second optical surface side,
    At least one of a surface connecting the first flange surface and the first end surface and a surface connecting the second flange surface and the second end surface is inclined with respect to the lens optical axis. The method for manufacturing an objective lens according to any one of claims 11 to 13.
  15.  前記第1端面及び前記第2端面の少なくともいずれか一方は、鏡面を有することを特徴とする請求項14に記載の対物レンズの製造方法。 15. The method of manufacturing an objective lens according to claim 14, wherein at least one of the first end surface and the second end surface has a mirror surface.
  16.  前記第1フランジ面及び第2フランジ面のいずれか一方は、前記ネック部において、対応する前記第1端面及び前記第2端面のいずれか一方よりも凹んで配置されることを特徴とする請求項14及び15のいずれか一項に記載の対物レンズの製造方法。 One of the first flange surface and the second flange surface is disposed in the neck portion so as to be recessed from either the corresponding first end surface or the second end surface. The manufacturing method of the objective lens as described in any one of 14 and 15.
  17.  光学面に微細形状を設けた光学機能部と、前記光学機能部の周囲に設けられるフランジ部とを有し、前記フランジ部の外周縁に設けられたゲート部から型空間内に導入された樹脂によって射出成形され、BD、DVD、及びCDの情報読み取り及び/又は書き込みに用いられる対物レンズを成形するための成形金型であって、
     前記対物レンズの第1光学面を形成する第1の転写面と、前記第1光学面の周囲に延在する第1フランジ面を形成する第1の成形面とを有する第1の金型と、
     前記第1光学面よりも曲率が小さい第2光学面を形成する第2の転写面と、前記第2光学面の周囲に延在する第2フランジ面を形成する第2の成形面とを有する第2の金型と、
    を備え、
     前記第1の転写面と前記第1の成形面との間に前記対物レンズのネック部を形成する第3の成形面を有し、
     前記第2の転写面と前記第2の成形面との間に前記対物レンズのネック部を形成する第4の成形面を有し、
     前記第1の金型と前記第2の金型とによって形成される型空間の寸法が、
     レンズ光軸に垂直な方向のレンズ外径をG(mm)とし、前記光学機能部において、前記レンズ光軸に平行な方向のレンズ軸上厚をt(mm)とし、
     前記ネック部において、前記レンズ光軸に平行な方向のネック部の最小厚みをT(mm)とした場合に、G≦4.05(mm)、かつt/T>4.0となっており、
     前記ゲート部において、前記レンズ光軸に垂直な方向のゲート幅をW(mm)とし、前記レンズ光軸に平行な方向のゲート深さをD(mm)としたときに、以下の条件式を満たす対物レンズに対応することを特徴とする成形金型。
     0.5T≦D≦1.33T
     1.5T≦W≦3T
     D・W≧1.5T
    Resin introduced into a mold space from a gate portion provided at an outer peripheral edge of the flange portion, having an optical function portion having a fine shape on an optical surface and a flange portion provided around the optical function portion A molding die for molding an objective lens that is injection-molded by and used to read and / or write information on BD, DVD, and CD,
    A first mold having a first transfer surface forming a first optical surface of the objective lens and a first molding surface forming a first flange surface extending around the first optical surface; ,
    A second transfer surface that forms a second optical surface having a smaller curvature than the first optical surface; and a second molding surface that forms a second flange surface extending around the second optical surface. A second mold,
    With
    A third molding surface forming a neck portion of the objective lens between the first transfer surface and the first molding surface;
    A fourth molding surface that forms a neck portion of the objective lens between the second transfer surface and the second molding surface;
    The dimension of the mold space formed by the first mold and the second mold is as follows:
    The lens outer diameter in the direction perpendicular to the lens optical axis is G (mm), and in the optical function unit, the thickness on the lens axis in the direction parallel to the lens optical axis is t (mm),
    When the minimum thickness of the neck portion in the direction parallel to the lens optical axis is T (mm), G ≦ 4.05 (mm) and t / T> 4.0. ,
    In the gate portion, when the gate width in the direction perpendicular to the lens optical axis is W (mm) and the gate depth in the direction parallel to the lens optical axis is D (mm), the following conditional expression is satisfied. A molding die characterized by corresponding to the objective lens to be filled.
    0.5T ≦ D ≦ 1.33T
    1.5T ≦ W ≦ 3T
    D · W ≧ 1.5T 2
  18.  前記第2の成形面は、前記第2の転写面の頂点よりも前記第1の金型と前記第2の金型との型合わせ面から浅い位置に形成されていることを特徴とする請求項17に記載の成形金型。 The second molding surface is formed at a position shallower than a die-mating surface between the first mold and the second mold than an apex of the second transfer surface. Item 18. A mold according to Item 17.
  19.  前記第2の転写面の外周は、前記第1の転写面の外周よりも内側に形成されていることを特徴とする請求項17及び18のいずれか一項に記載の成形金型。 The molding die according to any one of claims 17 and 18, wherein an outer periphery of the second transfer surface is formed inside an outer periphery of the first transfer surface.
  20.  前記第1の成形面と前記第3の成形面とをつなぐ面及び前記第2の成形面と前記第4の成形面とをつなぐ面の少なくともいずれか一方は、前記レンズ光軸に対して傾斜していることを特徴とする請求項17から19までのいずれか一方に記載の成形金型。 At least one of a surface connecting the first molding surface and the third molding surface and a surface connecting the second molding surface and the fourth molding surface is inclined with respect to the lens optical axis. The molding die according to any one of claims 17 to 19, wherein the molding die is provided.
  21.  前記第1の成形面及び前記第2の成形面のいずれか一方は、前記第3の成形面及び前記第4の成形面のいずれか一方よりも凹んで配置されることを特徴とする請求項20に記載の成形金型。 The one of the first molding surface and the second molding surface is disposed so as to be recessed from either the third molding surface or the fourth molding surface. 20. A molding die according to 20.
  22.  前記第1の成形面及び前記第2の成形面の少なくともいずれか一方側において、前記レンズ光軸に平行な方向の厚みを変化させる段差形状を形成する転写面を有することを特徴とする請求項20及び21のいずれか一項に記載の成形金型。 The transfer surface for forming a step shape that changes the thickness in a direction parallel to the lens optical axis is provided on at least one of the first molding surface and the second molding surface. The molding die according to any one of 20 and 21.
  23.  前記第4の成形面に金型識別用の凸形状のマークを転写する凹転写面を有することを特徴とする請求項17から22までのいずれか一項に記載の成形金型。 The molding die according to any one of claims 17 to 22, wherein the fourth molding surface has a concave transfer surface for transferring a convex mark for mold identification.
  24.  前記第2の成形面に金型識別用の凸形状のマークを転写する凹転写面を有することを特徴とする請求項17から22までのいずれか一項に記載の成形金型。 The molding die according to any one of claims 17 to 22, further comprising a concave transfer surface for transferring a convex mark for mold identification to the second molding surface.
  25.  前記型空間の寸法は、前記対物レンズのレンズ光軸に平行な方向のレンズ軸上厚をt(mm)、500nm以下の波長の光束における前記対物レンズの焦点距離をf(mm)としたときに、0.8≦t/f≦2.0である対物レンズに対応することを特徴とする請求項17から24までのいずれか一項に記載の成形金型。 The dimension of the mold space is such that the thickness on the lens axis in the direction parallel to the lens optical axis of the objective lens is t (mm), and the focal length of the objective lens in a light beam having a wavelength of 500 nm or less is f (mm). Furthermore, it corresponds to the objective lens which is 0.8 <= t / f <= 2.0, The molding die as described in any one of Claim 17-24 characterized by the above-mentioned.
PCT/JP2012/052519 2011-02-04 2012-02-03 Objective lens, method for manufacturing objective lens, and mold WO2012105692A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012555974A JP5716754B2 (en) 2011-02-04 2012-02-03 Objective lens manufacturing method and mold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011023355 2011-02-04
JP2011-023355 2011-10-12

Publications (1)

Publication Number Publication Date
WO2012105692A1 true WO2012105692A1 (en) 2012-08-09

Family

ID=46602892

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052519 WO2012105692A1 (en) 2011-02-04 2012-02-03 Objective lens, method for manufacturing objective lens, and mold

Country Status (2)

Country Link
JP (1) JP5716754B2 (en)
WO (1) WO2012105692A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211030A (en) * 1990-01-17 1991-09-13 Hitachi Ltd Plastic lens
JP2002240108A (en) * 2000-08-25 2002-08-28 Asahi Optical Co Ltd Molding finished product having plastic lens and method for breaking and separating plastic lens therefrom
WO2006046437A1 (en) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. Optical component production system
WO2010087068A1 (en) * 2009-01-30 2010-08-05 コニカミノルタオプト株式会社 Lens and molding die
WO2010116804A1 (en) * 2009-03-30 2010-10-14 コニカミノルタオプト株式会社 Lens
JP2010234671A (en) * 2009-03-31 2010-10-21 Sharp Corp Molding mold and optical element molded with the molding mold

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03211030A (en) * 1990-01-17 1991-09-13 Hitachi Ltd Plastic lens
JP2002240108A (en) * 2000-08-25 2002-08-28 Asahi Optical Co Ltd Molding finished product having plastic lens and method for breaking and separating plastic lens therefrom
WO2006046437A1 (en) * 2004-10-29 2006-05-04 Konica Minolta Opto, Inc. Optical component production system
WO2010087068A1 (en) * 2009-01-30 2010-08-05 コニカミノルタオプト株式会社 Lens and molding die
WO2010116804A1 (en) * 2009-03-30 2010-10-14 コニカミノルタオプト株式会社 Lens
JP2010234671A (en) * 2009-03-31 2010-10-21 Sharp Corp Molding mold and optical element molded with the molding mold

Also Published As

Publication number Publication date
JP5716754B2 (en) 2015-05-13
JPWO2012105692A1 (en) 2014-07-03

Similar Documents

Publication Publication Date Title
JP4525868B2 (en) Optical pickup objective lens manufacturing method, optical pickup objective lens molding die, and optical pickup objective lens
JP5704172B2 (en) Molding equipment
WO2009122862A1 (en) Optical element manufacturing method, optical element molding die, and optical element
WO2008053692A1 (en) Optical element, resin molding metal die and optical element manufacturing method
JP4993326B2 (en) lens
JP5120525B2 (en) Optical element manufacturing method and optical element
JP5716755B2 (en) Objective lens manufacturing method and mold
JP5733388B2 (en) Objective lens, objective lens manufacturing method, and molding die
JP4407148B2 (en) Optical element manufacturing method and apparatus, and optical element
JP5716754B2 (en) Objective lens manufacturing method and mold
WO2011040148A1 (en) Optical element
JP2004151665A (en) Formed lens and optical pickup device
WO2013094173A1 (en) Objective lens, optical pickup, optical disc device, mold for resin forming, and method for manufacturing objective lens
JP5057298B2 (en) Objective lens and optical pickup device
WO2012118041A1 (en) Optical element, molding die, and method for producing optical element
WO2012133596A1 (en) Optical element, molding die, and method for manufacturing optical element
WO2011093165A1 (en) Objective lens and optical pickup device
WO2013146652A1 (en) Lens manufacturing method and molding die
WO2013039241A1 (en) Optical element and production method therefor
JP2011118964A (en) Objective lens and molding die for optical pickup device
JP2003211497A (en) Mold for manufacturing plastic lens
CN102834240A (en) Molding die, injection molding machine, and method of manufacturing objective optical element
JP2012071546A (en) Method of manufacturing optical element and molding die

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741989

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012555974

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741989

Country of ref document: EP

Kind code of ref document: A1