WO2012105671A1 - Silicon-containing carbon-based composite material - Google Patents

Silicon-containing carbon-based composite material Download PDF

Info

Publication number
WO2012105671A1
WO2012105671A1 PCT/JP2012/052443 JP2012052443W WO2012105671A1 WO 2012105671 A1 WO2012105671 A1 WO 2012105671A1 JP 2012052443 W JP2012052443 W JP 2012052443W WO 2012105671 A1 WO2012105671 A1 WO 2012105671A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
composite material
silicon
component
material according
Prior art date
Application number
PCT/JP2012/052443
Other languages
French (fr)
Japanese (ja)
Inventor
弘 福井
志成 張原
昌保 赤坂
ソン タイン ファン
日野 賢一
勝哉 江口
潮 嘉人
Original Assignee
東レ・ダウコーニング株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ・ダウコーニング株式会社 filed Critical 東レ・ダウコーニング株式会社
Publication of WO2012105671A1 publication Critical patent/WO2012105671A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/90Carbides
    • C01B32/907Oxycarbides; Sulfocarbides; Mixture of carbides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0088Composites
    • H01M2300/0091Composites in the form of mixtures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a silicon-containing carbon-based composite material, an electrode active material made of the composite material, an electrode including the active material, and an electricity storage device including the electrode.
  • An electricity storage device in particular, a lithium or lithium ion secondary battery has been studied as a kind of high energy density type secondary battery.
  • a negative electrode material of a lithium ion secondary battery a high charge / discharge capacity far exceeding the theoretical capacity of graphite can be obtained by firing various carbon sources at a temperature around 1000 ° C. in an inert gas or in vacuum. It is known. For example, J. et al. Electrochem. Soc. , 142, 2581 (1995), it is reported that a reversible capacity exceeding 800 mAh / g can be obtained by firing various carbon sources in an argon atmosphere and using the obtained carbon material as a negative electrode material. .
  • the carbon material obtained by firing in such a temperature region has drawbacks such as low initial charge / discharge efficiency and charge / discharge cycle characteristics.
  • a silicon-containing carbon material obtained by thermally decomposing a silicon polymer is used as a negative electrode material for a lithium ion secondary battery.
  • materials that can be used for manufacturing a large-capacity battery by using polysilane and coal tar pitch as precursors are disclosed. The production is described. JP-A-10-74506, JP-A-10-275617, JP-A-2004-273377, and J. Org. Electrochem. Soc.
  • a high-capacity battery is obtained by thermally decomposing a siloxane polymer and then introducing lithium into an electrode for a lithium or lithium ion secondary battery.
  • a lithium ion secondary battery including such an electrode containing a silicon-containing carbon material has a high reversible capacity, but has a low initial charge / discharge efficiency and lacks practical performance in terms of charge / discharge cycle characteristics and the like. Yes.
  • JP 2006-062949 A describes a silicon-containing carbon material obtained by curing and sintering a siloxane polymer containing a graphene-based material such as graphite.
  • a lithium or lithium ion secondary battery including an electrode including such a silicon-containing carbon material has a limited reversible capacity due to a crystal structure such as graphite.
  • An object of the present invention is to provide an electricity storage device, in particular, a composite material suitable for an electrode of a lithium or lithium ion secondary battery, an electrode active material made of the composite material, an electrode using the active material, and an electricity storage device including the electrode Is to provide.
  • the object of the present invention is represented by the composition formula: SiO x C y (wherein x is 0.8 to 1.7, y is 1.4 to 7.5), and (sp2 carbon of 13 C MAS NMR spectrum) This is achieved by a silicon-containing carbon-based composite material having a ratio of atomic origin peak area / sp3 carbon atom origin peak area of 1.6 to 46.0.
  • the composite material is obtained by heat-treating a cured product obtained by crosslinking reaction of (A) a crosslinkable group-containing organic compound and (B) a silicon-containing compound capable of crosslinking the crosslinkable group-containing organic compound.
  • the present invention relates to (A) a crosslinkable group-containing organic compound (hereinafter also referred to as “component (A)”) and (B) the crosslinkable group-containing organic compound (hereinafter referred to as “component (B)”).
  • the heat treatment is preferably performed at 300 to 1500 ° C. in an inert gas or in vacuum.
  • the crosslinkable group can be selected from the group consisting of aliphatic unsaturated groups, epoxy groups, acrylic groups, methacrylic groups, amino groups, hydroxyl groups, mercapto groups, and halogenated alkyl groups.
  • the component (A) may have an aromatic group.
  • the component (A) has the general formula: (In the formula, R 1 is a crosslinkable group, x is an integer of 1 or more, and R 2 is an x-valent aromatic group).
  • the component (A) preferably contains a silicon atom.
  • the component (A) is preferably siloxane, silane, silazane, carbosilane, or a mixture thereof.
  • the component (B) is preferably siloxane, silane, silazane, carbosilane, or a mixture thereof.
  • each R 3 independently represents a monovalent hydrocarbon group, hydrogen atom, halogen atom, epoxy group-containing organic group, acrylic group-containing organic group, methacryl group-containing organic group, amino group-containing organic group, mercapto.
  • the crosslinking reaction may be any of an addition reaction, a condensation reaction, a ring-opening reaction, or a radical reaction.
  • the cured product may be obtained by a hydrosilylation reaction between the component (A) having an aliphatic unsaturated group and the component (B) having a silicon atom-bonded hydrogen atom.
  • the cured product may be obtained by a hydrosilylation reaction between the component (A) having a silicon atom-bonded hydrogen atom and the component (B) having an aliphatic unsaturated group.
  • the cured product is obtained by radical reaction between the component (A) having an aliphatic unsaturated group and the component (B) having an aliphatic unsaturated group, an acrylic group, a methacryl group or a silicon-bonded hydrogen atom. It may be.
  • cured material was obtained by the radical reaction of (A) component which has an aliphatic unsaturated group, an acryl group, a methacryl group, or a silicon atom bond hydrogen atom, and (B) component which has an aliphatic unsaturated group. It may be a thing.
  • the silicon-containing carbon-based composite material of the present invention is preferably in an amorphous form.
  • the composite material is preferably in the form of particles having an average particle diameter of 5 nm to 50 ⁇ m.
  • the electrode active material of the present invention is composed of the above composite material.
  • the electrode active material is preferably particles having an average particle diameter of 1 to 50 ⁇ m.
  • the electrode of the present invention contains the above electrode active material.
  • the said electrode can be used conveniently for an electrical storage device, especially a lithium or lithium ion secondary battery.
  • the composite material of the present invention has high reversible capacity and stable charge / discharge cycle characteristics, and has high initial charge / discharge efficiency, and is suitable for an electrode of an electricity storage device, particularly lithium or lithium ion secondary battery. Further, the composite material of the present invention can be manufactured by a simple manufacturing process using inexpensive raw materials.
  • the electrode active material of the present invention is suitable for an electricity storage device, particularly an electrode of a lithium or lithium ion secondary battery.
  • the electrode of the present invention can impart high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency to the battery.
  • the electrical storage device of the present invention can have high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency.
  • the lithium ion secondary battery which is an example of the electrical storage device of this invention is shown.
  • the lithium secondary battery which is an example of the electrical storage device of this invention is shown.
  • the composite material of the present invention includes a step of heat treating a cured product obtained by crosslinking reaction of (A) a crosslinkable group-containing organic compound and (B) a silicon-containing compound capable of crosslinking the crosslinkable group-containing organic compound. It can obtain by the manufacturing method containing.
  • the crosslinkable group in the component (A) is not particularly limited as long as it is a crosslinkable group.
  • an aliphatic unsaturated group, an epoxy group, an acrylic group, a methacryl group, an amino group, a hydroxyl group, A mercapto group or a halogenated alkyl group may be mentioned.
  • Specific examples of the aliphatic unsaturated group include alkenyl groups such as vinyl group, propenyl group, butenyl group, pentenyl group and hexenyl group; and alkynyl groups such as acetyl group, propynyl group and pentynyl group.
  • the epoxy group examples include a glycidyl group, a glycidoxy group, an epoxycyclohexyl group, a 3-glycidoxypropyl group, and a 2- (3,4-epoxycyclohexyl) ethyl group.
  • Specific examples of the acryl group include a 3-acryloxypropyl group.
  • Specific examples of the methacryl group include a 3-methacryloxypropyl group.
  • Specific examples of the amino group include a 3-aminopropyl group and an N- (2-aminoethyl) -3-aminopropyl group.
  • hydroxyl group examples include hydroxyalkyl groups such as hydroxyethyl group and hydroxypropyl group; and hydroxyaryl groups such as hydroxyphenyl group.
  • mercapto group examples include a 3-mercaptopropyl group.
  • halogenated alkyl group examples include a 3-chloropropyl group.
  • the component (A) may be a mixture of an organic compound having one crosslinkable group in one molecule and an organic compound having at least two crosslinkable groups in one molecule.
  • the content of the latter in the mixture is not particularly limited, but is preferably at least 15 mass (weight)%, and more preferably at least 30 mass (weight)% because of its excellent crosslinkability. preferable.
  • the component (A) may not contain a silicon atom or may contain a silicon atom.
  • the component (A) that does not contain a silicon atom is preferably an organic compound having at least one aromatic ring in the molecule from the viewpoint of good carbonization efficiency by heat, such as easy formation of a graphene structure.
  • component (A) specifically, an aliphatic hydrocarbon compound containing no silicon atom having a crosslinkable group at the molecular chain terminal and / or molecular chain side chain, the molecular chain terminal and / or molecular chain side
  • Examples include aromatic hydrocarbon compounds that do not contain silicon atoms, and alicyclic compounds that contain a crosslinkable group in the molecule and that do not contain silicon atoms that have hetero atoms other than carbon atoms such as nitrogen atoms, oxygen atoms, and boron atoms. Is done.
  • R 1 is a crosslinkable group, and examples thereof include an aliphatic unsaturated group, an epoxy group, an acrylic group, a methacryl group, an amino group, a hydroxyl group, a mercapto group, and a halogenated alkyl group. Is exemplified by the same groups as described above, wherein m and n are each an integer of 1 or more, and x is an integer of 1 or more.
  • R 1 is a crosslinkable group, and examples thereof are the same groups as described above.
  • x is an integer of 1 or more.
  • R 2 represents an x-valent aromatic group. That is, in the formula, when x is 1, R 2 represents a monovalent aromatic group, and specific examples thereof include the following groups.
  • aromatic hydrocarbon compounds include ⁇ - or ⁇ -methylstyrene, ⁇ - or ⁇ -ethylstyrene, methoxystyrene, phenylstyrene, chlorostyrene, o-, m- or p-methylstyrene.
  • Ethyl styrene methyl silyl styrene, hydroxy styrene, cyano styrene, nitro styrene, amino styrene, carboxy styrene, sulfoxy styrene, sodium styrene sulfonate, vinyl pyridine, vinyl thiophene, vinyl pyrrolidone, vinyl naphthalene, vinyl anthracene, vinyl biphenyl Is exemplified.
  • R 2 represents a divalent aromatic group, and specific examples thereof include the following groups.
  • aromatic hydrocarbon compounds include divinylbenzene, divinylbiphenyl, vinylbenzyl chloride, divinylpyridine, divinylthiophene, divinylpyrrolidone, divinylnaphthalene, divinylxylene, divinylethylbenzene, and divinylanthracene.
  • the aromatic hydrocarbon compound is preferably divinylbenzene because the resulting cured product has excellent thermal decomposition characteristics.
  • R 2 represents a trivalent aromatic group, and specific examples thereof include the following groups.
  • aromatic hydrocarbon compounds include trivinylbenzene and trivinylnaphthalene.
  • R 1 is a crosslinkable group, and examples thereof are the same groups as described above.
  • R 1 is a crosslinkable group, and examples thereof are the same groups as described above.
  • the component (A) containing a silicon atom is not particularly limited as long as it has a crosslinkable group, and examples thereof include a monomer, oligomer or polymer containing a silicon atom.
  • a silane composed of a structural unit characterized by having a silicon-silicon bond a silazane composed of a structural unit characterized by having a silicon-nitrogen-silicon bond, and a silicon-oxygen-silicon bond
  • Examples thereof include siloxanes composed of structural units, carbosilanes composed of structural units characterized by having a silicon-carbon-silicon bond, and mixtures thereof.
  • each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, or a hydrogen atom.
  • the saturated aliphatic hydrocarbon group is preferably an alkyl group, and the aromatic hydrocarbon group is preferably an aryl group or an aralkyl group.
  • the alkyl group is preferably a C 1 -C 12 alkyl group, C 1 -C 6 alkyl is more preferable.
  • the alkyl group is a linear or branched alkyl group, a cycloalkyl group, or a cycloalkylene group (a linear or branched alkylene group (preferably a C 1 -C 6 alkylene group such as a methylene group or an ethylene group). ) And a carbon ring (preferably an alkyl group composed of a C 3 -C 8 ring).
  • linear or branched alkyl group a linear or branched C 1 -C 6 alkyl group is preferable.
  • the cycloalkyl group is preferably a C 4 -C 6 cycloalkyl group, for example, a cyclobutyl group, a cyclopentyl group, cyclohexyl group, etc., a cyclopentyl group and cyclohexyl group are preferable.
  • the aryl group is preferably C 6 -C 12 aryl, phenyl group, naphthyl group, tolyl group.
  • a C 7 -C 12 aralkyl group is preferable.
  • Examples of the C 7 -C 12 aralkyl group include a benzyl group, a phenethyl group, and phenylpropyl.
  • the hydrocarbon group may have a substituent.
  • substituents include halogens such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; methoxy group, ethoxy group, n-propoxy group, iso C 1 -C 6 alkoxy groups such as propoxy group; amino group; amide group; nitro group; epoxy group and the like.
  • the substituent can be bonded to any part of the hydrocarbon chain, saturated ring or aromatic ring.
  • alkoxy group examples include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • the silane can be prepared using various known methods. For example, a method of dehalogenating a halosilane in the presence of an alkali metal (Macromolecules, 23, 3423 (1990), etc.), a method of anionic polymerization of disilene (Macromolecules, 23, 4494 (1990), etc.), electrode reduction, etc. (J. Chem. Soc., Chem. Commun., 1161 (1990), J. Chem. Soc., Chem. Commun., 897 (1992), etc.), magnesium, etc.
  • a method of dehalogenating a halosilane in the presence of an alkali metal Mocromolecules, 23, 3423 (1990), etc.
  • a method of anionic polymerization of disilene Mocromolecules, 23, 4494 (1990), etc.
  • electrode reduction etc.
  • a method of performing a dehalogenation reaction of halosilanes in the presence of hydrogen (WO98 / 29476, etc.), a method of performing a dehydrogenation reaction of hydrosilanes in the presence of a metal catalyst (JP-A-4-334551, etc.), etc. Is mentioned.
  • each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, or a hydrogen atom.
  • the saturated aliphatic hydrocarbon group, aromatic hydrocarbon group, alkoxy group and halogen atom have the same meaning as defined for the silane.
  • the silazane can be prepared by methods well known in the art. For example, U.S. Pat.Nos. 4,321,970, 4,340,619, 4,395,460, 4,404,153, 4,482,689, 4,398,828, 4,540,803, 4,543,344, 4,835,312, No. 4,929,742 and No. 4,916,200. Furthermore, J. et al. Mater. Sci. 22, 2609 (1987).
  • each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, or a hydrogen atom.
  • the saturated aliphatic hydrocarbon group, aromatic hydrocarbon group, alkoxy group and halogen atom have the same meaning as defined for the silane.
  • the siloxane can be prepared by methods well known in the art.
  • the method for preparing siloxane is not particularly limited. Most commonly, siloxanes are prepared by hydrolysis of organochlorosilanes. Such and other methods are described in Noll, Chemistry and Technology of Silicones, Chapter 5 (translated 2nd German version, Academic Press, 1968).
  • each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group, an alkoxy group, or a hydrogen atom.
  • the saturated aliphatic hydrocarbon group, aromatic hydrocarbon group, alkoxy group and halogen atom have the same meaning as defined for the silane.
  • the carbosilane can be prepared by a method well known in the art.
  • the preparation method of carbosilane is described in, for example, Macromolecules, 21, 30 (1988), US Pat. No. 3,293,194.
  • silane, silazane, siloxane, and carbosilane is not particularly limited, and may be solid, liquid, paste, or the like, but is preferably solid in terms of handleability.
  • the silicon content is not extremely low, it has sufficient chemical stability, it is easy to handle at room temperature and in air, and the raw material price and manufacturing process cost are low enough.
  • a siloxane composed of units having a silicon-oxygen-silicon bond is preferred, and a polysiloxane is more preferred.
  • the component (A) may be one type of organic compound or a mixture of two or more types, and may further contain a nitrogen-containing monomer such as acrylonitrile as another component.
  • a nitrogen-containing monomer such as acrylonitrile
  • the content of the nitrogen-containing monomer is preferably 50% by mass or less, and particularly preferably in the range of 10 to 50% by mass.
  • the component (B) is a silicon-containing compound capable of crosslinking the component (A).
  • Examples of such component (B) include siloxane, silane, silazane, carbosilane, and mixtures thereof.
  • siloxanes such as monomers, oligomers, or polymers having a Si—O—Si bond; , Silanes such as monomers, oligomers or polymers having a Si—Si bond; silalkylenes such as monomers, oligomers or polymers having a Si— (CH 2 ) n —Si bond; Si— (C 6 H 4 ) n ⁇ Si or Si- (CH 2 CH 2 C 6 H 4 CH 2 CH 2) silarylene of monomers having n -Si bonds, oligomers or polymers; Si-n-Si monomer having a binding, such as oligomers or polymers Silazanes; Si—O—Si bond, Si—Si bond, Si— (CH 2 ) n —S
  • each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group.
  • the monovalent hydrocarbon group for R 7 include an alkyl group, an alkenyl group, an aralkyl group, and an aryl group.
  • the alkyl group is preferably a C 1 to C 12 alkyl group, and particularly preferably a C 1 to C 6 alkyl group.
  • the alkyl group is a linear or branched alkyl group, a cycloalkyl group, or a cycloalkylene group (a linear or branched alkylene group (preferably a C 1 -C 6 alkylene group such as a methylene group or an ethylene group). ) And a carbon ring (preferably an alkyl group composed of a C 3 to C 8 ring).
  • the linear or branched alkyl group is preferably a linear or branched C 1 -C 6 alkyl group, specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, Examples are t-butyl group, pentyl group, and hexyl group.
  • the cycloalkyl group is preferably a C 4 to C 6 cycloalkyl group, and specific examples include a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group.
  • the alkenyl group is preferably a C 2 to C 12 alkenyl group, and particularly preferably a C 2 to C 6 alkenyl group.
  • Specific examples of the C 2 -C 6 alkenyl group include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group, and a vinyl group is preferable.
  • the aralkyl group is preferably a C 7 to C 12 aralkyl group.
  • Specific examples of the C 7 to C 12 aralkyl group include a benzyl group, a phenethyl group, and phenylpropyl.
  • the aryl group is preferably a C 6 -C 12 aryl group, and specific examples thereof include a phenyl group, a naphthyl group, and a tolyl group. These monovalent hydrocarbon groups may have a substituent. Specific examples of the substituent include halogen such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; alkoxy group such as methoxy group, ethoxy group, n-propoxy group and isopropoxy group.
  • Such a substituted monovalent hydrocarbon group include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a perfluorobutylethyl group, and a perfluorooctylethyl group.
  • halogen atom for R 7 examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
  • epoxy group-containing organic group represented by R 7 include glycidoxyalkyl groups such as 3-glycidoxypropyl group and 4-glycidoxybutyl group; 2- (3,4-epoxycyclohexyl). -An epoxy cyclohexyl alkyl group such as an ethyl group or a 3- (3,4-epoxycyclohexyl) -propyl group; an oxiranyl alkyl group such as a 4-oxiranylbutyl group or an 8-oxiranyloctyl group; A glycidoxyalkyl group is preferable, and a 3-glycidoxypropyl group is particularly preferable.
  • acrylic group-containing organic group or the methacrylic group-containing organic group represented by R 7 include a 3-acryloxypropyl group, a 3-methacryloxypropyl group, a 4-acryloxybutyl group, and a 4-methacryloxybutyl group. And is preferably a 3-methacryloxypropyl group.
  • amino group-containing organic group for R 7 examples include a 3-aminopropyl group, a 4-aminobutyl group, and an N- (2-aminoethyl) -3-aminopropyl group. 3-aminopropyl group and N- (2-aminoethyl) -3-aminopropyl group.
  • mercapto group-containing organic group for R 7 examples include a 3-mercaptopropyl group and a 4-mercaptobutyl group.
  • alkoxy group for R 7 examples include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group, and a methoxy group and an ethoxy group are preferable.
  • R 7 in one molecule is an alkenyl group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, or an amino group.
  • Such siloxanes are structural units represented by (R 7 3 SiO 1/2 ), (R 7 2 SiO 2/2 ), (R 7 SiO 3/2 ), and (SiO 4/2 ). And, specifically, a linear polysiloxane comprising units of (R 7 3 SiO 1/2 ) and (R 7 2SiO 2/2 ); (R 7 2SiO cyclic polysiloxane comprising units of 2/2); (R 7 SiO 3/2 ) or (consisting SiO 4/2) units of branched polysiloxane; (R 7 3 SiO 1/2) and (R 7 Polysiloxane composed of units of (SiO 3/2 ); polysiloxane composed of units of (R 7 3SiO 1/2 ) and (SiO 4/2 ); of (R 7 SiO 3/2 ) and (SiO 4/2 ) Polysiloxane consisting of units (R 7 2 SiO 2/2) and polysiloxane comprising units of (R 7 SiO 3/2
  • the preferred number of repeating structural units represented by (R 7 3 SiO 1/2 ), (R 7 2 SiO 2/2 ), (R 7 Si ⁇ 3/2 ), and (SiO 4/2 ) is Each is preferably within the range of 1 to 10,000, more preferably within the range of 1 to 1,000, and particularly preferably within the range of 3 to 500.
  • siloxanes can be prepared by methods well known in the art.
  • the method for preparing the siloxanes is not particularly limited, and is most commonly prepared by hydrolysis of organochlorosilanes. Such and other methods are those described in Noll, Chemistry and Technology of Silicones, Chapter 5 (translated 2nd German version, Academic Press, 1968).
  • siloxanes may be silicon-containing copolymer compounds with polymers.
  • silicon-containing copolymer compound having Si—O—Si bond and Si—Si bond silicon-containing copolymer compound having Si—O—Si bond and Si—N—Si bond; Si—O—Si bond And Si- (CH 2 ) n —Si bond-containing copolymer compound; Si—O—Si bond and Si— (C 6 H 4 ) n —Si bond or Si— (CH 2 CH 2 C 6 H)
  • a silicon-containing copolymer compound having a 4 CH 2 CH 2 ) n —Si bond or the like can be used as the siloxane.
  • n is the same as described above.
  • Silanes are, for example, general formulas: Or average unit formula: (In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group.
  • silanes are represented by a general formula: R 7 4 Si or a structure represented by (R 7 3 Si), (R 7 2 Si), (R 7 Si), and (Si). It is composed of at least one unit among the units, specifically, a linear polysilane composed of units of (R 7 3 Si) and (R 7 2 Si); composed of units of (R 7 2 Si) Cyclic polysilane; Branched polysilane (polysilin) consisting of units of (R 7 Si) or (Si); Polysilane consisting of units of (R 7 3 Si) and (R 7 Si); (R 7 3 Si) and ( (Si) unit polysilane; (R 7 Si) and (Si) unit polysilane; (R 7 2 Si) and (R 7 Si) unit polysilane; (R 7 2 Si) and (Si) (R; polysilane consisting of units) 3 Si), (R 7 2Si ) and (polysilane comprising units of R 7 Si); (R 7 3 Si
  • the preferable number of repeating structural units represented by (R 7 3 Si), (R 7 2 Si), (R 7 Si) and (Si) is preferably in the range of 2 to 10,000, Is preferably within the range of 3 to 1,000, and particularly preferably within the range of 3 to 500.
  • silanes can be prepared using various known methods. For example, a method of dehalogenating a halosilane in the presence of an alkali metal (Macromolecules, 23, 3423 (1990), etc.), a method of anionic polymerization of disilene (Macromolecules, 23, 4494 (1990), etc.), electrode reduction, etc. (J. Chem. Soc., Chem. Commun., 1161 (1990), J. Chem. Soc., Chem.
  • silanes may be silicon-containing copolymer compounds with other polymers.
  • silanes have the general formula: Wherein R 8 is each independently a substituted or unsubstituted monovalent hydrocarbon group; e is an integer of 2 or more; and R 9 is an e-valent organic group. Silicon compounds are exemplified.
  • examples of the monovalent hydrocarbon group for R 8 include the same groups as the monovalent hydrocarbon group for R 7 .
  • e is an integer of 2 or more, preferably an integer of 2 to 6.
  • R 9 is an e-valent organic group, and when e is 2, R 9 is a divalent organic group.
  • R 9 is a trivalent organic group, and specific examples thereof include the following groups.
  • silazanes include, for example, an average unit formula: (In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group.
  • R 7 in one molecule is an alkenyl group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group A group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, a mercapto group-containing organic group, an alkoxy group or a hydroxy group;
  • R 10 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group;
  • Examples of the monovalent hydrocarbon group for R 10 include the same groups as the monovalent hydrocarbon group for R 7 .
  • R 10 is preferably a hydrogen atom or an alkyl group, particularly preferably a hydrogen atom or a methyl group.
  • This silazane is composed of at least one unit among structural units represented by (R 7 3 SiNR 10 ), (R 7 2 SiNR 10 ), (R 7 SiNR 10 ), and (SiNR 10 ).
  • a linear polysilazane composed of units of (R 7 3 SiNR 10 ) and (R 7 2 SiNR 10 ); a cyclic polysilazane composed of units of (R 7 2 SiNR 10 ); (R 7 SiNR 10 ) Or (SiNR 10 ) units of branched polysilazane; (R 7 3 SiNR 10 ) and (R 7 SiNR 10 ) units of polysilazane; (R 7 3 SiNR 10 ) and (SiNR 10 ) units of comprising polysilazane; (R 7 SiNR 10) and polysilazane comprising units of (SiNR 10); (R 7 2 SiNR 0) and (polysilazane comprising units of R 7 SiNR 10); (R 7 2 SiNR 10) and (
  • the preferred number of repeating structural units represented by (R 7 3 SiNR 10 ), (R 7 2 SiNR 10 ), (R 7 SiNR 10 ), and (SiNR 10 ) is in the range of 2 to 10,000, respectively. More preferably, it is preferably within the range of 3 to 1,000, and particularly preferably within the range of 3 to 500.
  • silazanes can be prepared by methods well known in the art.
  • U.S. Pat. Nos. 4,321,970, 4,340,619, 4,395,460, 4,404,153, 4,482,689, 4,398,828, 4,540,343, 4,543,344, 4,835,238 can be used for preparing such silazanes.
  • silazanes may be silicon-containing copolymer compounds with other polymers.
  • silicon-containing copolymer compound having Si—N—Si bond and Si—O—Si bond; silicon-containing copolymer compound having Si—N—Si bond and Si—Si bond; Si—N—Si bond and Si- (CH 2) containing copolymer compounds having n -Si bonds; Si-n-Si bonds and Si- (C 6 H 4) n -Si bonds or Si- (CH 2 CH 2 C 6 H 4 CH 2 CH 2) n containing copolymer compounds having -Si bond or the like may be used as a polysilazane.
  • n is the same as described above.
  • each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group.
  • R 7 in one molecule is an alkenyl group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group A group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, a mercapto group-containing organic group, an alkoxy group, or a hydroxy group;
  • the alkylene group of R 11 is represented by, for example, the formula: — (CH 2 ) n —, and the arylene group of R 11 is represented, for example, by the formula: — (C 6 H 4 ) n —.
  • n is the same as described above.
  • the carbosilanes are composed of at least one of structural units represented by (R 7 3 SiR 11 ), (R 7 2 SiR 11 ), (R 7 SiR 11 ), and (SiR 11 ), Specifically, for example, a linear polycarbosilane composed of units of (R 7 3 SiR 11 ) and (R 7 2 SiR 11 ); a cyclic polycarbosilane composed of units of (R 7 2 SiR 11 ); R 7 SiR 11 ) or branched polycarbosilane composed of (SiR 11 ) units; (R 7 3 SiR 11 ) and (R 7 SiR 11 ) units composed of units; (R 7 3 SiR 11 ) and polycarbosilane comprising units of (SiR 11); (R 7 SiR 11) and polycarbosilane comprising units of (SiR 11); (R 7 2 SiR 1) and (polycarbosilane consisting R 7 SiR 11) units; (R 7 2 SiR 11
  • the preferable number of repeating structural units represented by (R 7 3 SiR 11 ), (R 7 2 SiR 11 ), (R 7 SiR 11 ) and (SiR 11 ) is within the range of 2 to 10,000, respectively. More preferably, it is preferably within the range of 3 to 1,000, and particularly preferably within the range of 3 to 500.
  • carbosilanes can be prepared by methods well known in the art. The preparation method of carbosilanes is described in, for example, Macromolecules, 21, 30 (1988), US Pat. No. 3,293,194.
  • These carbosilanes may be silicon-containing copolymer compounds with other polymers.
  • a silicon-containing copolymer compound having a Si— (CH 2 ) n —Si bond and a Si—O—Si bond a silicon-containing copolymer having a Si— (CH 2 ) n —Si bond and a Si—Si bond Compound; silicon-containing copolymer compound having Si— (CH 2 ) n —Si bond and Si—N—Si bond; Si— (CH 2 ) n —Si bond and Si— (C 6 H 4 ) n —Si Silicon-containing copolymer compound having a bond; silicon-containing copolymer compound having a Si— (C 6 H 4 ) n —Si bond and a Si—O—Si bond; Si— (C 6 H 4 ) n —Si bond And a silicon-containing copolymer compound having a Si—Si bond; Si— (C 6 H
  • each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group.
  • crosslinking reactions include hydrosilylation reactions, Michael addition reactions, Diels-Alder reactions, and the like; condensation reactions such as dealcoholization, dehydrogenation, dehydration, and deamination; epoxy ring opening, ester ring opening, etc. Ring-opening reaction; radical reactions such as peroxide and UV are exemplified.
  • the hydrosilylation reaction can be performed in the presence of a hydrosilylation reaction catalyst.
  • hydrosilylation reaction catalyst examples include platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, platinum tetrachloride, chloroplatinic acid alcohol solution, platinum and olefins.
  • Complexes, platinum and alkenylsiloxane complexes are exemplified.
  • the content is not particularly limited, but the metal atoms in the catalyst are within the range of 0.1 to 1,000 ppm in terms of mass (weight) with respect to the total amount of the components (A) and (B). It is preferable that the amount be in the range of 1 to 500 ppm.
  • the component (A) has an aliphatic unsaturated group and the component (B) has a silicon-bonded hydrogen atom
  • the component (A) has a silicon-bonded hydrogen atom
  • the component (B) When A has an aliphatic unsaturated group, the amount of each component used is not particularly limited, but the component (B) or (A) is used with respect to 1 mol of the aliphatic unsaturated group in the component (A) or (B).
  • the amount of silicon-bonded hydrogen atoms in the component is in the range of 0.1 to 50 mol, preferably in the range of 0.1 to 30 mol, particularly preferably 0.1 The amount is in the range of ⁇ 10 mol.
  • the component (A) has an aliphatic unsaturated group
  • the component (B) has an aliphatic unsaturated group, an acrylic group, a methacryl group, or a silicon-bonded hydrogen atom
  • the component (B) In the case where the component (A) has an aliphatic unsaturated group, an acrylic group, a methacryl group, or a silicon atom-bonded hydrogen atom, it undergoes a radical reaction by heat and / or light with a radical initiator. You can also.
  • radical initiator examples include organic peroxides such as dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and organic azo compounds.
  • organic peroxides such as dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and organic azo compounds.
  • dibenzoyl peroxide bis-p-chlorobenzoyl peroxide, bis-2,4-dichlorobenzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, t-butyl perbenzoate, 2,5-bis (t-butylperoxy) -2,3-dimethylhexane, t-butyl peracetate, bis (o-methylbenzoyl peroxide), bis (m-methylbenzoyl peroxide) ), Bis (p-methylbenzoyl peroxide), 2,3-dimethylbenzoyl peroxide, 2,4-dimethyl
  • organic azo compound examples include 2,2′-azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis).
  • examples include (2,4-dimethylvaleronitrile), 2,2′-azobis-isobutylvaleronitrile, and 1,1′-azobis (1-cyclohexanecarbonitrile).
  • the content of the radical initiator is not particularly limited, but is preferably an amount that falls within a range of 0.1 to 10 mass (weight)% with respect to the total amount of the component (A) and the component (B). In particular, the amount is preferably in the range of 0.5 to 5 mass (weight)%.
  • the component (A) has an aliphatic unsaturated group
  • the component (B) has an aliphatic unsaturated group, an acrylic group, a methacryl group, or a silicon atom-bonded hydrogen atom
  • the component (B) When it has an aliphatic unsaturated group and the component (A) has an aliphatic unsaturated group, an acrylic group, a methacryl group or a silicon atom-bonded hydrogen atom, the amount of each component used is not particularly limited, The amount of the aliphatic unsaturated group, acrylic group, methacrylic group or silicon atom-bonded hydrogen atom in the other component in the range of 0.1 to 50 moles per mole of the aliphatic unsaturated group of The amount is preferably in the range of 0.1 to 30 mol, and particularly preferably in the range of 0.1 to 10 mol.
  • cured material formed by carrying out the crosslinking reaction of (A) component and (B) component it can manufacture by the method of following I or II, for example, Then, it can transfer to the process of heat processing (baking).
  • the obtained cured product may be used as it is in the next baking step, or may be used in the next baking step after being pulverized to a particle size of 0.1 to 30 ⁇ m, more preferably 1 to 20 ⁇ m.
  • a crosslinkable composition comprising the component (A) and the component (B) is sprayed into hot air to cause a crosslink reaction, or the crosslinkable composition and the noncrosslinkable composition It is preferable to carry out a crosslinking reaction by emulsifying or dispersing in a compatible medium.
  • the component (A) or the component (B) When one of the component (A) or the component (B) has an aliphatic unsaturated group and the other has a silicon atom-bonded hydrogen atom, the component (A), the component (B) and the hydrosilylation reaction catalyst are mixed.
  • the resulting crosslinkable composition is sprayed into hot air in the form of fine particles and crosslinked by a hydrosilylation reaction to obtain a fine particle cured product powder.
  • the crosslinkable composition obtained by mixing the component (A), the component (B) and the hydrosilylation reaction catalyst is added to an aqueous solution of an emulsifier, and emulsified by stirring to form fine particles of the crosslinkable composition. Subsequently, it can also be crosslinked by a hydrosilylation reaction to form a fine particle cured product powder.
  • This emulsifier is not particularly limited, and specific examples include ionic surfactants, nonionic surfactants, and mixtures of ionic surfactants and nonionic surfactants.
  • ionic surfactants since the uniform dispersibility and stability of the oil-in-water emulsion produced by mixing the crosslinkable composition and water are good, one or more ionic surfactants and one or more nonionics are used. It is preferred to use a mixture of surfactants.
  • a metal oxide such as silica (colloidal silica) or titanium oxide in combination with an emulsifier
  • carbonization is performed while holding the silica on the surface of the cured powder, thereby forming a stable film on the carbon surface. Further, it is possible to increase the carbonization yield or to suppress surface oxidation that occurs when the carbon material is left standing.
  • the particle size of the cured product powder is not particularly limited, but since a silicon-containing carbon-based composite material having an average particle size of 1 to 20 ⁇ m suitable as an electrode active material is formed by firing, the preferable average particle size is 5 to 30 ⁇ m. It is preferably within the range, and particularly preferably within the range of 5 to 20 ⁇ m.
  • the silicon-containing carbon-based composite material of the present invention can be obtained through a step of heat-treating (baking) the cured product of the component (A) and the component (B).
  • the firing conditions are not particularly limited, but firing at 300 to 1500 ° C. in an inert gas or vacuum is preferable. Nitrogen, helium, and argon are illustrated as an inert gas.
  • the inert gas may contain a reducing gas such as hydrogen gas.
  • the firing temperature is more preferably in the range of 500 ° C to 1000 ° C.
  • the firing time is not particularly limited, but can be, for example, in the range of 10 minutes to 10 hours, preferably 30 minutes to 3 hours.
  • Calcination can be performed in a fixed bed or fluidized bed type carbonization furnace, and the heating method and type of the carbonization furnace are not particularly limited as long as the furnace has a function of raising the temperature to a predetermined temperature.
  • the carbonization furnace include a lead hammer furnace, a tunnel furnace, a single furnace, an oxynon furnace, a roller hearth kiln, a pusher kiln, a batch rotary kiln, and a continuous rotary kiln.
  • a process of forming a cured product obtained by cross-linking the components (A) and (B) and a baking process of the cured product are continuously performed. Can be done automatically.
  • the step of forming a cured product obtained by crosslinking the component (A) and the component (B), the firing step, and the surface coating treatment step such as sputtering and thermal chemical vapor deposition treatment may be continuously performed in a continuous furnace. it can.
  • the oxygen concentration in each process atmosphere can be strictly controlled, so the amount of oxygen atoms in the resulting silicon-containing carbon composite material can be controlled and adjusted. There is an advantage that becomes easy.
  • the silicon-containing carbon composite material of the present invention thus obtained has a chemical composition represented by the formula: SiO x C y .
  • x is 0.8 to 1.5, preferably 0.8 to 1.4, more preferably 0.8 to 1.3, and still more preferably 0.9 to 1.2.
  • y is 1.4 to 7.5, preferably 1.7 to 7.0, more preferably 2.0 to 7.0, and still more preferably 2.5 to 4.5.
  • the peak area derived from sp2 carbon atom / the peak area derived from sp3 carbon atom in the 13 C MAS NMR spectrum is 1.6 to 46, preferably 2.0 to 40, more preferably 3. It is 0 to 30, and most preferably 4.0 to 25.
  • the measurement conditions of 13 C MAS NMR are not particularly limited, and can be appropriately changed according to the measurement apparatus.
  • the peak derived from the sp2 carbon atom in the 13 C MAS NMR spectrum can be attributed to carbon in a condensed ring condensed with an aromatic ring such as a graphene structure, and its chemical shift is 99 to 160 ppm.
  • the peak derived from the sp3 carbon atom in the 13 C MAS NMR spectrum can be attributed to aliphatic carbon and refers to a peak with a chemical shift of 11-49 ppm when TMS is 0 ppm.
  • the calculation method of each peak area is arbitrary, it can obtain
  • the chemical composition of the silicon-containing carbon composite material and the sp2 carbon atom-derived peak area / sp3 carbon atom-derived peak area of the 13 C MAS NMR spectrum are, for example, (A) component type, (B) component type, and (A It is possible to control by adjusting in advance the ratio of oxygen atom and carbon atom per silicon atom in the cured product by changing the quantitative ratio of component (B) and component (B) during the curing reaction. In particular, if there is an aromatic hydrocarbon group bonded to a silicon atom, it becomes easy to control the value of “y” after firing and the ratio of the peak area derived from sp2 carbon atom / sp3 carbon atom derived from 13 C MAS NMR spectrum.
  • the component (A) contains a silicon atom, and either the component (A) or the component (B) or both contain a silicon atom-bonded aromatic hydrocarbon group. It can also be controlled by the heat treatment atmosphere during firing, the flow rate of the inert gas, the heating rate, and the heat treatment time.
  • the silicon-containing carbon-based composite material preferably has an amorphous structure in which silicon atoms are bonded to oxygen atoms and carbon atoms. Such a structure can be confirmed by 29 Si MAS NMR or X-ray diffraction analysis. If the silicon-containing carbon-based composite material is crystallized, the charge / discharge cycle characteristics and the initial charge / discharge efficiency may be reduced.
  • the surface of the silicon-containing carbon-based composite material of the present invention may be further subjected to a surface coating treatment with metal or carbon.
  • y “sp2 carbon atom”, and “sp3 carbon atom” in the above composition formula do not include carbon atoms in the surface-coated carbon phase.
  • the carbon surface coating method of the silicon-containing carbon-based composite material is arbitrary.
  • the carbon film derived from the vapor deposition carbon source (D1) may be subjected to thermal chemical vapor deposition on the surface of the silicon-containing carbon-based composite material at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere.
  • (D2) a silicon-containing carbon-based composite material covered with a carbon phase derived from an organic material that is carbonized by heat by mixing an organic material that is carbonized by heat and a silicon-containing carbon-based composite material and further firing the mixture. It can also be obtained.
  • the apparatus used for the thermal chemical vapor deposition is not particularly limited as long as it has an apparatus for heating to 800 ° C. or higher in a non-oxidizing atmosphere, and can be appropriately selected according to the purpose.
  • a continuous method, a batch method, and an apparatus using both of these can be used.
  • Specific examples include a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a batch rotary kiln, and a continuous rotary kiln.
  • (D1) vapor deposition carbon source used in the thermal chemical vapor deposition treatment is an aliphatic hydrocarbon such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, or a mixture thereof.
  • Aromatic hydrocarbons such as benzene, divinylbenzene, monovinylbenzene, ethyl vinylbenzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene Gas gas oil, creosote oil, anthracene oil, naphtha cracked tar oil obtained in the tar distillation process; exhaust gas generated in the calcination process, or a mixture thereof. It is common to be methane or acetylene.
  • the non-oxidizing atmosphere includes the vapor deposition carbon source gas or a vaporized gas thereof; a non-oxidizing gas such as argon gas, helium gas, hydrogen gas, nitrogen gas; Can be obtained.
  • (D2) When the organic material carbonized by heat and the silicon-containing carbon composite material are mixed and further baked to obtain a silicon-containing carbon-based composite material covered with the carbon phase derived from the organic material carbonized by heat. Can be performed in the same manner as described above.
  • Specific examples of organic materials that are carbonized by heat include paraffin, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, urethane resin, AS resin, ABS resin, polyvinyl chloride, and polyacetal that are liquid or waxy at room temperature.
  • aromatic polycarbonate resins aromatic polyester resins, coal tar, phenol resins, epoxy resins, urea resins, melamine resins, fluororesins, imide resins, urethane resins, furan resins, and mixtures thereof.
  • high molecular weight aromatic compounds such as aromatic polycarbonates, aromatic polyesters, coal tars, phenol resins, fluororesins, imide resins, furan resins, and melamine resins are preferable. This is because the carbonization efficiency by heat is good, for example, the formation of the graphene structure is easy.
  • the coating amount of carbon is preferably 0.5 to 50 mass (weight)% in the silicon-containing carbon-based composite material, and 1 to 30 mass (weight). %, More preferably 1 to 20% by mass (weight). This is because even when only a silicon-containing carbon-based composite material is used as the electrode active material, it has suitable conductivity and can suppress a decrease in charge / discharge capacity of the electrode.
  • the metal surface coating method of the silicon-containing carbon-based composite material is arbitrary.
  • the surface of a silicon-containing carbon-based composite material with a metal coating such as gold, silver, copper, iron, zinc, platinum, aluminum, cobalt, nickel, titanium, palladium, stainless steel, etc. by vacuum deposition, sputtering, electrolytic plating or electroless plating Can be formed.
  • nickel and copper are suitable as the surface coating metal.
  • the silicon-containing carbon-based composite material of the present invention can be in the form of particles having an average particle diameter of 5 nm to 50 ⁇ m.
  • the average particle size is preferably 10 nm to 40 ⁇ m, more preferably 100 nm to 30 ⁇ m, and even more preferably 1 ⁇ m to 20 ⁇ m.
  • the silicon-containing carbon-based composite material of the present invention can be used as an electrode active material.
  • the electrode active material of the present invention can be in the form of particles, in which case the average particle size is preferably 1 to 50 ⁇ m, more preferably 1 to 40 ⁇ m, and further preferably 1 to 30 ⁇ m. Is more preferable.
  • the electrode active material comprising the silicon-containing carbon-based composite material of the present invention has a high reversible capacity, stable charge / discharge cycle characteristics, and can produce an electrode with a small potential loss when lithium is released by a simple manufacturing process. It can be. Therefore, this electrode active material can be suitably used as an active material for an electrode of a nonaqueous electrolyte secondary battery. In particular, this electrode active material is suitable as an active material for electrodes of lithium or lithium ion secondary batteries.
  • the electrode of the present invention is characterized by containing the above electrode active material, and the shape and preparation method of the electrode are not particularly limited.
  • the electrode of the present invention was prepared by mixing a silicon-containing carbon-based composite material with a binder to produce an electrode; obtained by mixing the silicon-containing carbon-based composite material with a binder and a solvent.
  • the method of producing the electrode include a method in which the paste is pressure-bonded on the current collector or coated on the current collector and then dried to form an electrode.
  • the thickness of the paste applied to the current collector is, for example, about 30 to 500 ⁇ m, preferably about 50 to 300 ⁇ m.
  • the means for drying after coating is not particularly limited, but a heat vacuum drying treatment is preferable.
  • the film thickness of the electrode material on the current collector after the drying treatment is, for example, about 10 to 300 ⁇ m, preferably about 20 to 200 ⁇ m.
  • the silicon-containing carbon-based composite material is in a fibrous form, it is arranged in a uniaxial direction, or in the form of a structure such as a woven fabric, and bundled or braided with conductive fibers such as metal or conductive polymer, An electrode can be produced. In forming the electrodes, terminals may be combined as necessary.
  • the current collector is not particularly limited, and specifically, a metal mesh or foil such as copper, nickel, or an alloy thereof is exemplified.
  • the binder include fluorine resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.) and styrene-butadiene resins.
  • the amount of the binder used is not particularly limited, and the lower limit thereof is preferably in the range of 5 to 30 mass (weight) parts with respect to 100 mass (weight) parts of the silicon-containing carbon-based composite material, preferably Is in the range of 5 to 20 parts by mass (weight).
  • the method for preparing the paste is not particularly limited, and examples thereof include a method of mixing a silicon-containing carbon-based composite material in a mixed liquid (or dispersion liquid) of a binder and an organic solvent.
  • a solvent capable of dissolving or dispersing the binder is usually used, and specific examples thereof include organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide.
  • the amount of the solvent used is not particularly limited as long as it is in a paste form, and is usually within a range of 0.01 to 500 mass (weight) parts with respect to 100 mass (weight) parts of the silicon-containing carbon-based composite material, Preferably it is in the range of 0.01 to 400 parts by weight (weight), more preferably in the range of 0.01 to 300 parts by weight (weight).
  • the use ratio of the conductive auxiliary agent is not particularly limited, but is within the range of 2 to 60 mass (weight) parts, preferably 5 to 40 mass (weight) with respect to 100 mass (weight) parts of the silicon-containing carbon-based composite material. ) Parts, and more preferably in the range of 5 to 20 parts by weight (weight). It is because it is excellent in electroconductivity and can suppress the fall of the charge / discharge capacity of an electrode.
  • Examples of the conductive aid include carbon black (Ketjen black, acetylene black, etc.), carbon fiber, carbon nanotube, and the like.
  • a conductive support agent can be used individually or in combination of 2 or more types.
  • a conductive support agent can be mixed with the paste containing a silicon containing carbon type composite material, a binder, and a solvent, for example.
  • an electrode active material such as graphite may be blended in the electrode of the present invention as any other additive.
  • An electricity storage device includes the electrode.
  • Examples of such electricity storage devices include lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, capacitors, hybrid capacitors (redox capacitors), organic radical batteries, and dual carbon batteries, particularly lithium or lithium ion secondary batteries.
  • a battery is preferred.
  • Lithium ion secondary batteries use, for example, battery components such as a negative electrode comprising the above electrodes, a positive electrode capable of inserting and extracting lithium, an electrolyte solution, a separator, a current collector, a gasket, a sealing plate, a case, and the like. Can be manufactured.
  • the lithium secondary battery can be produced by a conventional method using battery components such as a positive electrode made of the electrode, a negative electrode made of metallic lithium, an electrolyte, a separator, a current collector, a gasket sealing plate, and a case. .
  • the lithium or lithium ion secondary battery which is a preferred embodiment of the battery of the present invention, will be described in detail with reference to FIGS.
  • FIG. 1 is a schematic exploded sectional view of a button-type battery which is a lithium ion secondary battery which is an example of the battery of the present invention.
  • a lithium ion secondary battery shown in FIG. 1 includes a cylindrical case 1 having a bottom surface with a top opening, a cylindrical gasket 2 having an inner periphery that is substantially the same size as the outer periphery of the case 1, a washer 3, a SUS plate 4, It consists of a current collector 5, a negative electrode 6 containing the silicon-containing carbon-based composite material of the present invention as an electrode active material, a separator 7, a positive electrode 8, a current collector 9, and a sealing plate 10.
  • a washer 3 having a substantially ring shape slightly smaller than the inner periphery of the case 1 is accommodated, and the inner periphery of the case 1 is placed on the washer 3.
  • a SUS plate 4 having a substantially disk shape slightly smaller than that is placed.
  • a current collector 5 and a negative electrode 6 that are both substantially disk-shaped and slightly smaller than the inner circumference of the case 1 are disposed.
  • a separator 7 as a disk-shaped member having a size substantially the same as the inner periphery of the case 1 is placed, and the separator 7 is impregnated with an electrolytic solution.
  • the separator 7 may be composed of two or more disk-shaped members.
  • a positive electrode 8 having a size substantially equal to that of the negative electrode 6 and a current collector 9 having a size substantially equal to that of the current collector 5 are disposed on the separator 7, a positive electrode 8 having a size substantially equal to that of the negative electrode 6 and a current collector 9 having a size substantially equal to that of the current collector 5 are disposed.
  • the current collector 5 is made of foil, mesh, or the like made of metal such as copper or nickel
  • the current collector 9 is made of foil, mesh, or the like made of metal such as aluminum, and the negative electrode 6 and the positive electrode, respectively. 8 is in close contact with and integrated.
  • the gasket 2 is fitted to the wall surface of the case 1, and the bottom-opening bottomed cylindrical sealing plate 10 having an inner peripheral surface slightly larger in size than the gasket 2.
  • the inner peripheral surface is further fitted to the outer peripheral surface of the gasket 2.
  • the positive electrode 8 in the lithium ion secondary battery shown in FIG. 1 is not particularly limited, and can be composed of, for example, a positive electrode active material, a conductive additive, a binder, and the like.
  • the positive electrode active material include metal oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , polyanionic oxides such as LiFePO 4 and Li 2 FeSiO 4 , and spinel-type LiMn 2 O 4. .
  • Examples of the conductive aid and binder are the same as described above.
  • FIG. 2 is a schematic exploded cross-sectional view of a button-type battery that is a lithium secondary battery that is an example of the battery of the present invention manufactured in the examples.
  • the lithium secondary battery shown in FIG. 2 includes a cylindrical case 1 having a bottom surface with a top opening, a cylindrical gasket 2 having an inner periphery substantially the same size as the outer periphery of the case 1, a washer 3, a SUS plate 4, and a metal. It consists of a negative electrode 6 made of lithium, a separator 7, a positive electrode 8 containing the silicon-containing carbon-based composite material of the present invention as an electrode active material, a current collector 9 ′, and a sealing plate 10.
  • a washer 3 having a substantially ring shape that is slightly smaller than the inner periphery of the case 1 is accommodated.
  • a SUS plate 4 having a substantially disk shape with a slightly smaller size is placed on the SUS plate 4.
  • a negative electrode 6 having a substantially disk shape slightly smaller than the inner periphery of the case 1 is disposed on the negative electrode 6, a separator 7 as a disk-shaped member having a size substantially the same as the inner periphery of the case 1 is placed, and the separator 7 is impregnated with an electrolytic solution.
  • the separator 7 may be composed of two or more disk-shaped members.
  • the current collector 9 ′ is made of a foil, mesh, or the like made of a metal such as copper or nickel, and is in close contact with the positive electrode 8 so as to be integrated.
  • the gasket 2 is fitted to the wall surface of the case 1, and the inside of the bottom-opening bottomed cylindrical sealing plate 10 having an inner peripheral surface slightly larger in size than the gasket 2.
  • the peripheral surface is further fitted to the outer peripheral surface of the gasket 2.
  • the electrolytic solution contained in the lithium or lithium ion secondary battery shown in FIGS. 1 and 2 is not particularly limited, and known ones can be used.
  • a non-aqueous lithium or lithium ion secondary battery can be manufactured by using a solution obtained by dissolving an electrolyte in an organic solvent as the electrolytic solution.
  • the electrolyte for example, can be exemplified LiPF 6, LiClO 4, LiBF 4 , LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiCl, lithium salt such as LiI.
  • organic solvent examples include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones ( ⁇ -butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), cyclic Ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, benzonitrile, etc.), amides Aprotic solvents such as (N, N-dimethylformamide, N, N-dimethylacetamide and the like) and polyoxyalkylene glycols (diethylene glycol and the like) can be exemplified.
  • carbonates propylene carbonate, ethylene carbonate, dieth
  • An organic solvent may be used independently and may be used as a 2 or more types of mixed solvent.
  • the electrolyte concentration is, for example, about 0.3 to 5 mol, preferably 0.5 to 3 mol, and more preferably about 0.8 to 1.5 mol with respect to 1 L of the electrolyte.
  • the separator 4 in the lithium or lithium ion secondary battery shown in FIGS. 1 and 2 is not particularly limited, and is a known separator, for example, a polyolefin-based porous material such as a porous polypropylene nonwoven fabric or a porous polyethylene nonwoven fabric. A membrane or the like can be used.
  • the electricity storage device of the present invention is not limited to the examples shown in FIGS. 1 and 2, and may be various forms such as a laminated shape, a pack shape, a button shape, a gum shape, an assembled battery shape, and a square shape. Applicable.
  • the devices of the present invention particularly lithium or lithium ion secondary batteries, are lightweight and have high capacity and high energy density, so that they can be used in small portable devices such as video cameras, personal computers, word processors, radio cassettes, and mobile phones. It is preferably used as a power source for electronic devices, a power source for hybrid vehicles and electric vehicles, and a power storage power source.
  • the electrode active material of the present invention has a high reversible capacity and stable charge / discharge cycle characteristics and high initial charge / discharge efficiency, and is suitable for an electrode of an electricity storage device, particularly lithium or lithium ion secondary battery. Moreover, the electrode active material of the present invention can be manufactured by a simple manufacturing process using inexpensive raw materials. The electrode of the present invention can impart high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency to the battery. Therefore, the electricity storage device of the present invention can have high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency.
  • C, H, N analysis The total amount of elements detected by the oxygen circulating combustion method / TCD detection method and the high frequency combustion method / infrared absorption detection method was used.
  • Apparatus NCH-21 or NCH-22F type (manufactured by Sumika Chemical Analysis Service)
  • Device CS-LS600 (manufactured by LECO)
  • O analysis high temperature carbon reaction / NDIR detection system: EMGA-2800 (manufactured by Horiba, Ltd.)
  • Si analysis Samples were incinerated, melted with alkali, dissolved in acid and decomposed, and then ICP detection was performed.
  • the lithium insertion / extraction capacity of the silicon-containing carbon material of the present invention was measured as follows. Using HJ1010mSM8A manufactured by Hokuto Denko, the lithium insertion / extraction capacity was measured at a constant current. At that time, the theoretical capacity per weight of the silicon-containing carbon material was set to 700 mAh, and the current value was set to 70 mA per weight of the silicon-containing carbon material. Lithium insertion was performed after the battery voltage reached 0.005 V until the current value was reduced to 1/10. Lithium release was the capacity until the battery voltage reached 1.5V. At the time of switching between each lithium insertion / extraction, it was left in an open circuit for 30 minutes.
  • Initial irreversible capacity loss (%) First cycle lithium desorption capacity / first cycle lithium insertion capacity x 100
  • the lithium desorption capacity at the second cycle was defined as a reversible capacity, and the capacity retention rate after the cycle test was expressed as the lithium desorption capacity after the cycle with respect to the lithium desorption capacity.
  • Example 1 (Preparation of silicon-containing cured product) DVB570 (manufactured by Nippon Steel Chemical Co., Ltd., 57.0 mass (weight)% divinylbenzene and 38.9 mass (weight)% vinylethylbenzene are the main components, and the content of divinylbenzene in the main components is about 60 mass%)
  • DVB570 manufactured by Nippon Steel Chemical Co., Ltd., 57.0 mass (weight)% divinylbenzene and 38.9 mass (weight)% vinylethylbenzene are the main components, and the content of divinylbenzene in the main components is about 60 mass%)
  • the amount of silicon-bonded hydrogen atoms in this copolymer is about
  • the inside of the muffle furnace was maintained at a reduced pressure for 60 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity argon at a flow rate of 100 mL / min, the temperature was raised at a rate of 5 ° C./min, and baked at 1000 ° C. for 1 hour to obtain a baked product.
  • the obtained fired product was pulverized with an airflow pulverizer and then classified with a precision air classifier to obtain a silicon-containing carbon material.
  • Table 1 shows the chemical composition of the obtained silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
  • the crosslinkable composition was prepared by mixing 10 ppm of platinum as a platinum metal with a platinum catalyst of 1,3-divinyltetramethyldisiloxane complex platinum of platinum). Thereafter, the composition was cured at 150 ° C. in nitrogen to prepare a cured product.
  • the SSA-S grade alumina boat was charged with 2.2 g of the fired product obtained after pulverization and classification, and the boat was placed in a muffle furnace. The inside of the muffle furnace was maintained at a reduced pressure for 60 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity argon at a flow rate of 100 mL / min, the temperature was increased at a rate of 5 ° C./min, and baked at 1000 ° C. for 1 hour to obtain a silicon-containing carbon material.
  • Table 1 shows the chemical composition of the obtained silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
  • Example 3 (Preparation of silicon-containing cured product) Example 1 was performed except that the composition was cured at 120 ° C. in nitrogen.
  • the cured product 1200 g was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. The obtained fired product was pulverized with an airflow pulverizer and then classified with a precision air classifier.
  • a carbon container was charged with 800 g of the fired product obtained after pulverization and classification, and the container was placed in an oxynon furnace. Thereafter, the silicon-containing carbon material was obtained by firing at 1000 ° C. for 1 hour while supplying 4% by volume of hydrogen-containing high-purity nitrogen at a flow rate of 10 L / min.
  • Table 1 shows the chemical composition of the obtained silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
  • Example 4 (Preparation of silicon-containing cured product) DVB570 (manufactured by Nippon Steel Chemical Co., Ltd., 57.0 mass (weight)% divinylbenzene and 38.9 mass (weight)% vinylethylbenzene are the main components, and the content of divinylbenzene in the main components is about 60 mass (weight).
  • Example 5 (Preparation of silicon-containing cured product) DVB570 (manufactured by Nippon Steel Chemical Co., Ltd., 57.0 mass (weight)% divinylbenzene and 38.9 mass (weight)% vinylethylbenzene are the main components, and the content of divinylbenzene in the main components is about 60 mass (weight).
  • Example 5 (Production and evaluation of secondary battery) The measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.4 mA. Table 2 shows the characteristics of the battery of Example 5.
  • a carbon container was charged with 2.0 g of the fired product obtained after pulverization and classification, and the container was placed in an oxynon furnace. Then, while supplying 4% by volume of hydrogen-containing high-purity nitrogen at a flow rate of 10 L / min, firing was performed at 1100 ° C. for 1 hour to obtain a silicon-containing carbon material.
  • Table 1 shows the chemical composition of the silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
  • sp2 carbon / sp3 carbon means that the peak area of 99-160 ppm in the 13 C MAS NMR spectrum of each example is derived from sp2 carbon, and the peak area of 11-49 ppm is derived from sp3 carbon. It means the ratio of the peak area derived from the sp2 carbon atom / the peak area derived from the sp3 carbon atom obtained from the peak area of each peak obtained by an approximation method using a Gaussian waveform.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

A silicon-containing carbon-based composite material represented by the compositional formula SiOxCy (in the formula, x is 0.8 to 1.7 and y is 1.4 to 7.5), and for which the ratio of (peak area attributed to sp2 carbon atom/ peak area attributed to sp3 carbon atom) in the 13C NAS NMR spectrum is 1.6 to 46.0 is used. The composite material is preferably obtained by heat treatment of a cured product obtained by a crosslinking reaction of (A) an organic compound containing a crosslinking group, and (B) a silicon-containing compound crosslinkable with the organic compound containing a crosslinking group. The composite material has high reversible capacitance and stable charge-discharge cycle characteristics, and moreover high initial charge-discharge efficiency, and is suitable for an electrode of an electric storage device, particularly a lithium or lithium ion secondary battery.

Description

ケイ素含有炭素系複合材料Silicon-containing carbon-based composite material
 本発明は、ケイ素含有炭素系複合材料、当該複合材料からなる電極活物質、該活物質を含む電極、及び該電極を備える蓄電デバイスに関する。 The present invention relates to a silicon-containing carbon-based composite material, an electrode active material made of the composite material, an electrode including the active material, and an electricity storage device including the electrode.
 蓄電デバイス、特に、リチウム又はリチウムイオン二次電池は高エネルギー密度型二次電池の一種として研究されている。そして、リチウムイオン二次電池の負極材料として、各種炭素源を1000℃前後の温度で不活性ガス中又は真空中で焼成することにより、グラファイトの理論容量をはるかに超える高い充放電容量が得られることが知られている。例えば、J.Electrochem.Soc.,142,2581(1995)には、各種炭素源をアルゴン雰囲気中で焼成し、得られた炭素材料を負極材料として用いることで、800mAh/gを超える可逆容量を得られることが報告されている。しかしながら、そのような温度領域で焼成して得られた炭素材料は、低い初期充放電効率や充放電サイクル特性等の欠点を有する。 An electricity storage device, in particular, a lithium or lithium ion secondary battery has been studied as a kind of high energy density type secondary battery. And as a negative electrode material of a lithium ion secondary battery, a high charge / discharge capacity far exceeding the theoretical capacity of graphite can be obtained by firing various carbon sources at a temperature around 1000 ° C. in an inert gas or in vacuum. It is known. For example, J. et al. Electrochem. Soc. , 142, 2581 (1995), it is reported that a reversible capacity exceeding 800 mAh / g can be obtained by firing various carbon sources in an argon atmosphere and using the obtained carbon material as a negative electrode material. . However, the carbon material obtained by firing in such a temperature region has drawbacks such as low initial charge / discharge efficiency and charge / discharge cycle characteristics.
 一方、リチウムイオン二次電池の負極材料として、ケイ素ポリマーを熱分解して得られたケイ素含有炭素材料を使用することが数多く報告されている。例えば、特開平10−97853号公報、及び、Solid State Ionics,122,71(1999)には、ポリシランとコールタールピッチを前駆体とすることにより、大容量の電池の製造に使用可能な材料を作製することが記載されている。また、特開平10−74506号公報、特開平10−275617号公報、特開2004−273377号公報、及び、J.Electrochem.Soc.,144,2410(1997)には、シロキサンポリマーを熱分解し、その後、リチウムを導入してリチウム又はリチウムイオン二次電池用電極とすることにより、大容量の電池を得ることが記載されている。しかし、このようなケイ素含有炭素材料を含む電極を備えるリチウムイオン二次電池は、可逆容量は高いものの、初期充放電効率が低く、充放電サイクル特性等の点で実用上の性能が不足している。 On the other hand, as a negative electrode material for a lithium ion secondary battery, it has been reported that a silicon-containing carbon material obtained by thermally decomposing a silicon polymer is used. For example, in Japanese Patent Laid-Open No. 10-97853 and Solid State Ionics, 122, 71 (1999), materials that can be used for manufacturing a large-capacity battery by using polysilane and coal tar pitch as precursors are disclosed. The production is described. JP-A-10-74506, JP-A-10-275617, JP-A-2004-273377, and J. Org. Electrochem. Soc. , 144, 2410 (1997) describes that a high-capacity battery is obtained by thermally decomposing a siloxane polymer and then introducing lithium into an electrode for a lithium or lithium ion secondary battery. . However, a lithium ion secondary battery including such an electrode containing a silicon-containing carbon material has a high reversible capacity, but has a low initial charge / discharge efficiency and lacks practical performance in terms of charge / discharge cycle characteristics and the like. Yes.
 また、特開2006−062949号公報には、黒鉛等のグラフェン系材料を含有したシロキサンポリマーを硬化、焼結して得られるケイ素含有炭素材料が記載されている。しかし、このようなケイ素含有炭素材料を含む電極を備えるリチウム又はリチウムイオン二次電池は、黒鉛等の結晶構造に起因して、可逆容量が制限される。 In addition, JP 2006-062949 A describes a silicon-containing carbon material obtained by curing and sintering a siloxane polymer containing a graphene-based material such as graphite. However, a lithium or lithium ion secondary battery including an electrode including such a silicon-containing carbon material has a limited reversible capacity due to a crystal structure such as graphite.
特開平10−97853号公報JP 10-97853 A 特開平10−74506号公報JP-A-10-74506 特開平10−275617号公報Japanese Patent Laid-Open No. 10-275617 特開2004−273377号公報JP 2004-273377 A 特開2006−062949号公報JP 2006-062949 A
 本発明の目的は、蓄電デバイス、特にリチウム又はリチウムイオン二次電池の電極に好適な複合材料、当該複合材料からなる電極活物質、該活物質を用いてなる電極、及び該電極を備える蓄電デバイスを提供することにある。 An object of the present invention is to provide an electricity storage device, in particular, a composite material suitable for an electrode of a lithium or lithium ion secondary battery, an electrode active material made of the composite material, an electrode using the active material, and an electricity storage device including the electrode Is to provide.
本発明の目的は、組成式:SiO (式中、xは0.8~1.7、yは1.4~7.5)で表され、13C MAS NMRスペクトルの(sp2炭素原子由来ピーク面積/sp3炭素原子由来ピーク面積)の比が1.6~46.0であるケイ素含有炭素系複合材料によって達成される。 The object of the present invention is represented by the composition formula: SiO x C y (wherein x is 0.8 to 1.7, y is 1.4 to 7.5), and (sp2 carbon of 13 C MAS NMR spectrum) This is achieved by a silicon-containing carbon-based composite material having a ratio of atomic origin peak area / sp3 carbon atom origin peak area of 1.6 to 46.0.
 前記複合材料は、(A)架橋性基含有有機化合物、及び、(B)前記架橋性基含有有機化合物を架橋可能な含ケイ素化合物を架橋反応させて得られた硬化物を熱処理して得ることができる。したがって、本発明は、(A)架橋性基含有有機化合物(以下、「(A)成分」ともいう)、及び、(B)前記架橋性基含有有機化合物(以下、「(B)成分」ともいう)を架橋可能な含ケイ素化合物を架橋反応させて得られた硬化物を熱処理することを特徴とする組成式: SiO(式中、xは0.8~1.7、yは1.4~7.5)で表されるケイ素含有炭素系複合材料の製造方法としての側面を有する。 The composite material is obtained by heat-treating a cured product obtained by crosslinking reaction of (A) a crosslinkable group-containing organic compound and (B) a silicon-containing compound capable of crosslinking the crosslinkable group-containing organic compound. Can do. Therefore, the present invention relates to (A) a crosslinkable group-containing organic compound (hereinafter also referred to as “component (A)”) and (B) the crosslinkable group-containing organic compound (hereinafter referred to as “component (B)”). A composition obtained by heat-treating a cured product obtained by cross-linking a silicon-containing compound capable of cross-linking: SiO x C y (wherein x is 0.8 to 1.7, y is 1.4 to 7.5) and a side surface as a method for producing a silicon-containing carbon-based composite material.
 前記熱処理は、不活性ガス中又は真空中、300~1500℃で行われることが好ましい。 The heat treatment is preferably performed at 300 to 1500 ° C. in an inert gas or in vacuum.
 前記架橋性基は、脂肪族不飽和基、エポキシ基、アクリル基、メタクリル基、アミノ基、水酸基、メルカプト基及びハロゲン化アルキル基からなる群から選択されることができる。 The crosslinkable group can be selected from the group consisting of aliphatic unsaturated groups, epoxy groups, acrylic groups, methacrylic groups, amino groups, hydroxyl groups, mercapto groups, and halogenated alkyl groups.
 前記(A)成分は芳香族基を有してもよい。 The component (A) may have an aromatic group.
 前記(A)成分は、一般式:
Figure JPOXMLDOC01-appb-I000004
(式中、Rは架橋性基であり、xは1以上の整数であり、Rはx価の芳香族基である)で表される有機化合物であることが好ましい。
The component (A) has the general formula:
Figure JPOXMLDOC01-appb-I000004
(In the formula, R 1 is a crosslinkable group, x is an integer of 1 or more, and R 2 is an x-valent aromatic group).
 前記(A)成分はケイ素原子を含むことが好ましい。 The component (A) preferably contains a silicon atom.
 前記(A)成分は、シロキサン、シラン、シラザン、カルボシラン、又はこれらの混合物であることが好ましい。 The component (A) is preferably siloxane, silane, silazane, carbosilane, or a mixture thereof.
 前記シロキサンは、平均単位式:
Figure JPOXMLDOC01-appb-I000005
(式中、Rは、それぞれ独立して、架橋性基、炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族炭化水素基、アルコキシ基、水素原子又はハロゲン原子を示し;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはなく、一分子中のRの少なくとも1つは架橋性基である)で表されるものが好ましい。
The siloxane has an average unit formula:
Figure JPOXMLDOC01-appb-I000005
(In the formula, each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, a hydrogen atom, or A, b, c and d are each a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that a, b and c are not all 0; It is preferable that at least one of R 3 in the molecule is a crosslinkable group.
 前記(B)成分は、シロキサン、シラン、シラザン、カルボシラン又はこれらの混合物であることが好ましい。 The component (B) is preferably siloxane, silane, silazane, carbosilane, or a mixture thereof.
 前記シロキサンは、平均単位式:
Figure JPOXMLDOC01-appb-I000006
(式中、Rは、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b、及びcが共に0になることはない)で表されるものが好ましい。
The siloxane has an average unit formula:
Figure JPOXMLDOC01-appb-I000006
(In the formula, each R 3 independently represents a monovalent hydrocarbon group, hydrogen atom, halogen atom, epoxy group-containing organic group, acrylic group-containing organic group, methacryl group-containing organic group, amino group-containing organic group, mercapto. A group-containing organic group, an alkoxy group or a hydroxy group; a, b, c and d are each a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that a, b and c are Neither of them can be 0).
 前記架橋反応は、付加反応、縮合反応、開環反応又はラジカル反応のいずれであってもよい。 The crosslinking reaction may be any of an addition reaction, a condensation reaction, a ring-opening reaction, or a radical reaction.
 前記硬化物は、脂肪族不飽和基を有する(A)成分と、ケイ素原子結合水素原子を有する(B)成分とのヒドロシリル化反応により得られたものであってよい。 The cured product may be obtained by a hydrosilylation reaction between the component (A) having an aliphatic unsaturated group and the component (B) having a silicon atom-bonded hydrogen atom.
 前記硬化物は、ケイ素原子結合水素原子を有する(A)成分と、脂肪族不飽和基を有する(B)成分とのヒドロシリル化反応により得られたものであってよい。 The cured product may be obtained by a hydrosilylation reaction between the component (A) having a silicon atom-bonded hydrogen atom and the component (B) having an aliphatic unsaturated group.
 前記硬化物は、脂肪族不飽和基を有する(A)成分と、脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する(B)成分とのラジカル反応により得られたものであってよい。 The cured product is obtained by radical reaction between the component (A) having an aliphatic unsaturated group and the component (B) having an aliphatic unsaturated group, an acrylic group, a methacryl group or a silicon-bonded hydrogen atom. It may be.
 前記硬化物は、脂肪族不飽和基、アクリル基、メタクリル基、又はケイ素原子結合水素原子を有する(A)成分と、脂肪族不飽和基を有する(B)成分とのラジカル反応により得られたものであってよい。 The said hardened | cured material was obtained by the radical reaction of (A) component which has an aliphatic unsaturated group, an acryl group, a methacryl group, or a silicon atom bond hydrogen atom, and (B) component which has an aliphatic unsaturated group. It may be a thing.
 本発明のケイ素含有炭素系複合材料はアモルファス形態であることが好ましい。また、前記複合材料は、平均粒子径が5nm~50μmの粒子形態であることが好ましい。 The silicon-containing carbon-based composite material of the present invention is preferably in an amorphous form. The composite material is preferably in the form of particles having an average particle diameter of 5 nm to 50 μm.
 本発明の電極活物質は上記複合材料からなる。前記電極活物質は、平均粒子径が1~50μmの粒子であることが好ましい。 The electrode active material of the present invention is composed of the above composite material. The electrode active material is preferably particles having an average particle diameter of 1 to 50 μm.
 本発明の電極は、上記電極活物質を含む。前記電極は蓄電デバイス、特にリチウム又はリチウムイオン二次電池に好適に使用することができる。 The electrode of the present invention contains the above electrode active material. The said electrode can be used conveniently for an electrical storage device, especially a lithium or lithium ion secondary battery.
 本発明の複合材料は、高い可逆容量と安定した充放電サイクル特性を有し、且つ、初期の充放電効率が高く、蓄電デバイス、特にリチウム又はリチウムイオン二次電池の電極に好適である。また、本発明の複合材料は、廉価な原料を用いて、簡易な製造プロセスで製造可能である。 The composite material of the present invention has high reversible capacity and stable charge / discharge cycle characteristics, and has high initial charge / discharge efficiency, and is suitable for an electrode of an electricity storage device, particularly lithium or lithium ion secondary battery. Further, the composite material of the present invention can be manufactured by a simple manufacturing process using inexpensive raw materials.
 本発明の電極活物質は、蓄電デバイス、特にリチウム又はリチウムイオン二次電池の電極に好適である。そして、本発明の電極は、電池に高い可逆容量と安定した充放電サイクル特性、そして、高い初期の充放電効率を付与できる。これにより、本発明の蓄電デバイスは、高い可逆容量と安定した充放電サイクル特性、そして、高い初期の充放電効率を有することができる。 The electrode active material of the present invention is suitable for an electricity storage device, particularly an electrode of a lithium or lithium ion secondary battery. The electrode of the present invention can impart high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency to the battery. Thereby, the electrical storage device of the present invention can have high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency.
本発明の蓄電デバイスの一例であるリチウムイオン二次電池を示す。The lithium ion secondary battery which is an example of the electrical storage device of this invention is shown. 本発明の蓄電デバイスの一例であるリチウム二次電池を示す。The lithium secondary battery which is an example of the electrical storage device of this invention is shown.
 (複合材料)
 本発明の複合材料は、(A)架橋性基含有有機化合物、及び、(B)前記架橋性基含有有機化合物を架橋可能な含ケイ素化合物を架橋反応させて得られた硬化物を熱処理する工程を含む製造方法により得ることができる。
(Composite material)
The composite material of the present invention includes a step of heat treating a cured product obtained by crosslinking reaction of (A) a crosslinkable group-containing organic compound and (B) a silicon-containing compound capable of crosslinking the crosslinkable group-containing organic compound. It can obtain by the manufacturing method containing.
 前記(A)成分中の架橋性基は、架橋可能な基であれば特に限定されるものではないが、例えば、脂肪族不飽和基、エポキシ基、アクリル基、メタクリル基、アミノ基、水酸基、メルカプト基又はハロゲン化アルキル基が挙げられる。脂肪族不飽和基として、具体的には、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基等のアルケニル基;アセチル基、プロピニル基、ペンチニル基等のアルキニル基が例示される。また、エポキシ基として、具体的には、グリシジル基、グリシドキシ基、エポキシシクロヘキシル基、3−グリシドキシプロピル基、2−(3,4−エポキシシクロヘキシル)エチル基が例示される。また、アクリル基として、具体的には、3−アクリロキシプロピル基が例示される。また、メタクリル基として、具体的には、3−メタクリロキシプロピル基が例示される。また、アミノ基として、具体的には、3−アミノプロピル基、N−(2−アミノエチル)−3−アミノプロピル基が例示される。水酸基として、具体的には、ヒドロキシエチル基、ヒドロキシプロピル基等のヒドロキシアルキル基;ヒドロキシフェニル基等のヒドロキシアリール基が例示される。メルカプト基として、具体的には、3−メルカプトプロピル基が例示される。ハロゲン化アルキル基として、具体的には、3−クロロプロピル基が例示される。 The crosslinkable group in the component (A) is not particularly limited as long as it is a crosslinkable group. For example, an aliphatic unsaturated group, an epoxy group, an acrylic group, a methacryl group, an amino group, a hydroxyl group, A mercapto group or a halogenated alkyl group may be mentioned. Specific examples of the aliphatic unsaturated group include alkenyl groups such as vinyl group, propenyl group, butenyl group, pentenyl group and hexenyl group; and alkynyl groups such as acetyl group, propynyl group and pentynyl group. Specific examples of the epoxy group include a glycidyl group, a glycidoxy group, an epoxycyclohexyl group, a 3-glycidoxypropyl group, and a 2- (3,4-epoxycyclohexyl) ethyl group. Specific examples of the acryl group include a 3-acryloxypropyl group. Specific examples of the methacryl group include a 3-methacryloxypropyl group. Specific examples of the amino group include a 3-aminopropyl group and an N- (2-aminoethyl) -3-aminopropyl group. Specific examples of the hydroxyl group include hydroxyalkyl groups such as hydroxyethyl group and hydroxypropyl group; and hydroxyaryl groups such as hydroxyphenyl group. Specific examples of the mercapto group include a 3-mercaptopropyl group. Specific examples of the halogenated alkyl group include a 3-chloropropyl group.
 なお、(A)成分は、一分子中に1個の架橋性基を有する有機化合物と一分子中に少なくとも2個の架橋性基を有する有機化合物の混合物であってもよい。この場合、混合物中の後者の含有率は特に限定されないが、架橋性が優れることから、少なくとも15質量(重量)%であることが好ましく、更には、少なくとも30質量(重量)%であることが好ましい。 The component (A) may be a mixture of an organic compound having one crosslinkable group in one molecule and an organic compound having at least two crosslinkable groups in one molecule. In this case, the content of the latter in the mixture is not particularly limited, but is preferably at least 15 mass (weight)%, and more preferably at least 30 mass (weight)% because of its excellent crosslinkability. preferable.
 前記(A)成分は、ケイ素原子を含まなくてもよく、又は、ケイ素原子を含んでもよい。 The component (A) may not contain a silicon atom or may contain a silicon atom.
 ケイ素原子を含まない前記(A)成分としては、グラフェン構造の形成が容易である等、熱による炭化効率がよい点から、分子中に少なくとも1個の芳香族環を有する有機化合物が好ましい。 The component (A) that does not contain a silicon atom is preferably an organic compound having at least one aromatic ring in the molecule from the viewpoint of good carbonization efficiency by heat, such as easy formation of a graphene structure.
 このような(A)成分として、具体的には、分子鎖末端及び/又は分子鎖側鎖に架橋性基を有するケイ素原子を含まない脂肪族炭化水素化合物、分子鎖末端及び/又は分子鎖側鎖に架橋性基を有し、分子鎖中に窒素原子、酸素原子、ホウ素原子等の炭素原子以外のヘテロ原子を有するケイ素原子を含まない脂肪族炭化水素化合物、分子中に架橋性基を有するケイ素原子を含まない芳香族炭化水素化合物、分子中に架橋性基を有し、更に窒素原子、酸素原子、ホウ素原子等の炭素原子以外のヘテロ原子を有するケイ素原子を含まない脂環状化合物が例示される。 As such component (A), specifically, an aliphatic hydrocarbon compound containing no silicon atom having a crosslinkable group at the molecular chain terminal and / or molecular chain side chain, the molecular chain terminal and / or molecular chain side An aliphatic hydrocarbon compound having a crosslinkable group in the chain and not containing a silicon atom having a heteroatom other than a carbon atom such as a nitrogen atom, oxygen atom or boron atom in the molecular chain, or having a crosslinkable group in the molecule Examples include aromatic hydrocarbon compounds that do not contain silicon atoms, and alicyclic compounds that contain a crosslinkable group in the molecule and that do not contain silicon atoms that have hetero atoms other than carbon atoms such as nitrogen atoms, oxygen atoms, and boron atoms. Is done.
 前記脂肪族炭化水素化合物として、具体的には、下記一般式で表される化合物が例示される。
−(CH−R
CH−(CH−(CHR−CH
CH−(CH−(CH=CH)−CH
CH−(CH−(C≡C)−CH
−O(CHCHO)(CHCHCHO)−R
Figure JPOXMLDOC01-appb-C000007
(式中、Rは架橋性基であり、例えば、脂肪族不飽和基、エポキシ基、アクリル基、メタクリル基、アミノ基、水酸基、メルカプト基、又はハロゲン化アルキル基が挙げられ、具体的には、前記と同様の基が例示される。また、式中、m及びnはそれぞれ1以上の整数であり、xは1以上の整数である)
Specific examples of the aliphatic hydrocarbon compound include compounds represented by the following general formula.
R 1 — (CH 2 ) m —R 1
CH 3 - (CH 2) m - (CHR 1) n -CH 3
CH 3 - (CH 2) m - (CH = CH) n -CH 3
CH 3 - (CH 2) m - (C≡C) n -CH 3
R 1 -O (CH 2 CH 2 O) m (CH 2 CH 2 CH 2 O) n -R 1
Figure JPOXMLDOC01-appb-C000007
(In the formula, R 1 is a crosslinkable group, and examples thereof include an aliphatic unsaturated group, an epoxy group, an acrylic group, a methacryl group, an amino group, a hydroxyl group, a mercapto group, and a halogenated alkyl group. Is exemplified by the same groups as described above, wherein m and n are each an integer of 1 or more, and x is an integer of 1 or more.
 また、芳香族炭化水素化合物としては、具体的には、一般式:
Figure JPOXMLDOC01-appb-I000008
が挙げられる。式中、Rは架橋性基であり、前記と同様の基が例示される。また、式中、xは1以上の整数である。また、式中、Rはx価の芳香族基を示す。すなわち、式中、xが1である場合、Rは1価の芳香族基を示し、具体的には、下記の基が例示される。
Figure JPOXMLDOC01-appb-C000009
As the aromatic hydrocarbon compound, specifically, a general formula:
Figure JPOXMLDOC01-appb-I000008
Is mentioned. In the formula, R 1 is a crosslinkable group, and examples thereof are the same groups as described above. In the formula, x is an integer of 1 or more. In the formula, R 2 represents an x-valent aromatic group. That is, in the formula, when x is 1, R 2 represents a monovalent aromatic group, and specific examples thereof include the following groups.
Figure JPOXMLDOC01-appb-C000009
 このような芳香族炭化水素化合物として、具体的には、α−若しくはβ−メチルスチレン、α−若しくはβ−エチルスチレン、メトキシスチレン、フェニルスチレン、クロロスチレン、o−、m−若しくはp−メチルスチレン、エチルスチレン、メチルシリルスチレン、ヒドロキシスチレン、シアノスチレン、ニトロスチレン、アミノスチレン、カルボキシスチレン、はスルホキシスチレン、スチレンスルホン酸ソーダ、ビニルピリジン、ビニルチオフェン、ビニルピロリドン、ビニルナフタレン、ビニルアントラセン、ビニルビフェニルが例示される。 Specific examples of such aromatic hydrocarbon compounds include α- or β-methylstyrene, α- or β-ethylstyrene, methoxystyrene, phenylstyrene, chlorostyrene, o-, m- or p-methylstyrene. , Ethyl styrene, methyl silyl styrene, hydroxy styrene, cyano styrene, nitro styrene, amino styrene, carboxy styrene, sulfoxy styrene, sodium styrene sulfonate, vinyl pyridine, vinyl thiophene, vinyl pyrrolidone, vinyl naphthalene, vinyl anthracene, vinyl biphenyl Is exemplified.
 また、式中、xが2の場合、Rは2価の芳香族基を示し、具体的には、下記の基が例示される。
Figure JPOXMLDOC01-appb-C000010
In the formula, when x is 2, R 2 represents a divalent aromatic group, and specific examples thereof include the following groups.
Figure JPOXMLDOC01-appb-C000010
 このような芳香族炭化水素化合物として、具体的には、ジビニルベンゼン、ジビニルビフェニル、ビニルベンジルクロライド、ジビニルピリンジン、ジビニルチオフェン、ジビニルピロリドン、ジビニルナフタレン、ジビニルキシレン、ジビニルエチルベンゼン、ジビニルアントラセンが例示される。得られる硬化物の熱分解特性が優れることから、芳香族炭化水素化合物はジビニルベンゼンが好ましい。 Specific examples of such aromatic hydrocarbon compounds include divinylbenzene, divinylbiphenyl, vinylbenzyl chloride, divinylpyridine, divinylthiophene, divinylpyrrolidone, divinylnaphthalene, divinylxylene, divinylethylbenzene, and divinylanthracene. . The aromatic hydrocarbon compound is preferably divinylbenzene because the resulting cured product has excellent thermal decomposition characteristics.
 また、式中、xが3の場合、Rは3価の芳香族基を示し、具体的には、下記の基が例示される。
Figure JPOXMLDOC01-appb-C000011
In the formula, when x is 3, R 2 represents a trivalent aromatic group, and specific examples thereof include the following groups.
Figure JPOXMLDOC01-appb-C000011
 このような芳香族炭化水素化合物として、具体的には、トリビニルベンゼン、トリビニルナフタレンが例示される。 Specific examples of such aromatic hydrocarbon compounds include trivinylbenzene and trivinylnaphthalene.
 また、ヘテロ原子を有する芳香族化合物として、具体的には、下記一般式:
Figure JPOXMLDOC01-appb-C000012
で表される芳香族化合物が例示される。式中、Rは架橋性基であり、前記と同様の基が例示される。
Further, as an aromatic compound having a hetero atom, specifically, the following general formula:
Figure JPOXMLDOC01-appb-C000012
The aromatic compound represented by these is illustrated. In the formula, R 1 is a crosslinkable group, and examples thereof are the same groups as described above.
 更に、ヘテロ原子を有する環状化合物として、具体的には、下記一般式:
Figure JPOXMLDOC01-appb-C000013
で表される環状化合物が例示される。式中、Rは架橋性基であり、前記と同様の基が例示される。
Furthermore, as a cyclic compound having a hetero atom, specifically, the following general formula:
Figure JPOXMLDOC01-appb-C000013
The cyclic compound represented by these is illustrated. In the formula, R 1 is a crosslinkable group, and examples thereof are the same groups as described above.
 ケイ素原子を含む前記(A)成分としては、架橋性基を有する限り、特に限定されるものではないが、例えば、ケイ素原子を含むモノマー、オリゴマー又はポリマーが挙げられる。例えば、ケイ素−ケイ素結合を有することを特徴とする構造単位からなるシラン、ケイ素−窒素−ケイ素結合を有することを特徴とする構造単位からなるシラザン、ケイ素−酸素−ケイ素結合を有することを特徴とする構造単位からなるシロキサン、ケイ素−炭素−ケイ素結合を有することを特徴とする構造単位からなるカルボシラン、及び、これらの混合物を挙げることができる。 The component (A) containing a silicon atom is not particularly limited as long as it has a crosslinkable group, and examples thereof include a monomer, oligomer or polymer containing a silicon atom. For example, a silane composed of a structural unit characterized by having a silicon-silicon bond, a silazane composed of a structural unit characterized by having a silicon-nitrogen-silicon bond, and a silicon-oxygen-silicon bond Examples thereof include siloxanes composed of structural units, carbosilanes composed of structural units characterized by having a silicon-carbon-silicon bond, and mixtures thereof.
 前記(A)成分のシランとしては、例えば、平均単位式:
Figure JPOXMLDOC01-appb-I000014
又は、平均単位式:
Figure JPOXMLDOC01-appb-I000015
(式中、Rは、それぞれ独立して、上記架橋性基、炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族炭化水素基、アルコキシ基、水素原子又はハロゲン原子を示し、a、b、c及びdは0又は正数を示し、但し、a+b+c+d=1であり、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)で表されるものを使用することができる。
Examples of the silane of the component (A) include an average unit formula:
Figure JPOXMLDOC01-appb-I000014
Or average unit formula:
Figure JPOXMLDOC01-appb-I000015
(In the formula, each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, or a hydrogen atom. Or a, b, c and d are 0 or a positive number, provided that a + b + c + d = 1, and at least one, preferably at least two of R 3 in one molecule is the above-mentioned crosslinkable Which is a group) can be used.
 前記飽和脂肪族炭化水素基としてはアルキル基が好ましく、また、前記芳香族炭化水素基としてはアリール基及びアラルキル基が好ましい。 The saturated aliphatic hydrocarbon group is preferably an alkyl group, and the aromatic hydrocarbon group is preferably an aryl group or an aralkyl group.
 アルキル基としては、C−C12アルキル基が好ましく、C−Cアルキル基がより好ましい。アルキル基は、直鎖若しくは分岐鎖状アルキル基、シクロアルキル基、又は、シクロアルキレン基(直鎖又は分岐鎖状のアルキレン基(好ましくは、メチレン基、エチレン基等のC−Cアルキレン基)と炭素環(好ましくはC−C環)との組み合わせからなるアルキル基)のいずれかであることが好ましい。 The alkyl group is preferably a C 1 -C 12 alkyl group, C 1 -C 6 alkyl is more preferable. The alkyl group is a linear or branched alkyl group, a cycloalkyl group, or a cycloalkylene group (a linear or branched alkylene group (preferably a C 1 -C 6 alkylene group such as a methylene group or an ethylene group). ) And a carbon ring (preferably an alkyl group composed of a C 3 -C 8 ring).
 直鎖状若しくは分岐鎖状アルキル基としては、直鎖状若しくは分岐鎖状C−Cアルキル基が好ましく、例えば、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基等が挙げられるが特にメチル基が好ましい。 As the linear or branched alkyl group, a linear or branched C 1 -C 6 alkyl group is preferable. For example, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, t- Examples thereof include a butyl group, a pentyl group, and a hexyl group, and a methyl group is particularly preferable.
 シクロアルキル基としては、C−Cシクロアルキル基が好ましく、例えば、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられるが、シクロペンチル基及びシクロヘキシル基が好ましい。 The cycloalkyl group is preferably a C 4 -C 6 cycloalkyl group, for example, a cyclobutyl group, a cyclopentyl group, cyclohexyl group, etc., a cyclopentyl group and cyclohexyl group are preferable.
 アリール基としては、C−C12アリール基が好ましく、フェニル基、ナフチル基、トリル基が挙げられる。 The aryl group is preferably C 6 -C 12 aryl, phenyl group, naphthyl group, tolyl group.
 アラルキル基としては、C−C12アラルキル基が好ましい。C−C12アラルキル基としては、ベンジル基、フェネチル基、フェニルプロピル等が挙げられる。 As the aralkyl group, a C 7 -C 12 aralkyl group is preferable. Examples of the C 7 -C 12 aralkyl group include a benzyl group, a phenethyl group, and phenylpropyl.
 前記炭化水素基は置換基を有していてもよく、当該置換基としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン;水酸基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等のC−Cアルコキシ基;アミノ基;アミド基;ニトロ基;エポキシ基等が挙げられる。置換基は炭化水素鎖、飽和環及び芳香環のいずれの部位にも結合することができる。 The hydrocarbon group may have a substituent. Examples of the substituent include halogens such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; methoxy group, ethoxy group, n-propoxy group, iso C 1 -C 6 alkoxy groups such as propoxy group; amino group; amide group; nitro group; epoxy group and the like. The substituent can be bonded to any part of the hydrocarbon chain, saturated ring or aromatic ring.
 アルコキシ基としては、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基が例示される。 Examples of the alkoxy group include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group.
 ハロゲン原子としては、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示される。 Examples of the halogen atom include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
 前記シランは種々の公知方法を用いて調製することができる。例えば、アルカリ金属の存在下、ハロシラン類の脱ハロゲン反応を行う方法(Macromolecules,23,3423(1990)等)、ジシレンのアニオン重合を行う方法(Macromolecules,23,4494(1990)等)、電極還元によりハロシラン類の脱ハロゲン反応を行う方法(J.Chem.Soc.,Chem.Commun..,1161(1990)、J.Chem.Soc.,Chem.Commun..,897(1992)等)、マグネシウムの存在下、ハロシラン類の脱ハロゲン反応を行う方法(WO98/29476号公報等)、金属触媒の存在下、ヒドロシラン類の脱水素反応を行う方法(特開平4−334551号公報等)等の方法が挙げられる。 The silane can be prepared using various known methods. For example, a method of dehalogenating a halosilane in the presence of an alkali metal (Macromolecules, 23, 3423 (1990), etc.), a method of anionic polymerization of disilene (Macromolecules, 23, 4494 (1990), etc.), electrode reduction, etc. (J. Chem. Soc., Chem. Commun., 1161 (1990), J. Chem. Soc., Chem. Commun., 897 (1992), etc.), magnesium, etc. A method of performing a dehalogenation reaction of halosilanes in the presence of hydrogen (WO98 / 29476, etc.), a method of performing a dehydrogenation reaction of hydrosilanes in the presence of a metal catalyst (JP-A-4-334551, etc.), etc. Is mentioned.
 前記(A)成分のシラザンとしては、例えば、平均単位式:
Figure JPOXMLDOC01-appb-I000016
(式中、Rは、それぞれ独立して、上記架橋性基、炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族炭化水素基、アルコキシ基、水素原子又はハロゲン原子を示し、Rは、水素原子又は炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族炭化水素基を示し、a、b、c及びdは0又は正数を示し、但し、a+b+c+d=1であり、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)で表されるものを使用することができる。ここで、飽和脂肪族炭化水素基、芳香族炭化水素基、アルコキシ基及びハロゲン原子は上記シランについて定義したものと同一の意味である。
Examples of the silazane of the component (A) include an average unit formula:
Figure JPOXMLDOC01-appb-I000016
(In the formula, each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, or a hydrogen atom. Or a halogen atom, R 4 represents a hydrogen atom or a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, and a, b, c and d are 0 or a positive number, provided that a + b + c + d = 1, and at least one, preferably at least two of R 3 in one molecule is the crosslinkable group). it can. Here, the saturated aliphatic hydrocarbon group, aromatic hydrocarbon group, alkoxy group and halogen atom have the same meaning as defined for the silane.
 前記シラザンは、当技術分野で周知の方法により調製することができる。シラザンの調製方法は、例えば、米国特許第4312970号、第4340619号、第4395460号、第4404153号、第4482689号、第4397828号、第4540803号、第4543344号、第4835238号、第4774312号、第4929742号及び第4916200号に記載されている。更に、J.Mater.Sci.,22,2609(1987)にも記載されている。 The silazane can be prepared by methods well known in the art. For example, U.S. Pat.Nos. 4,321,970, 4,340,619, 4,395,460, 4,404,153, 4,482,689, 4,398,828, 4,540,803, 4,543,344, 4,835,312, No. 4,929,742 and No. 4,916,200. Furthermore, J. et al. Mater. Sci. 22, 2609 (1987).
 前記(A)成分のシロキサンとしては、例えば、平均単位式:
Figure JPOXMLDOC01-appb-I000017
(式中、Rは、それぞれ独立して、上記架橋性基、炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族炭化水素基、アルコキシ基、水素原子又はハロゲン原子を示し;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはなく、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)で表されるものを使用することができる。ここで、飽和脂肪族炭化水素基、芳香族炭化水素基、アルコキシ基及びハロゲン原子は上記シランについて定義したものと同一の意味である。
Examples of the siloxane of the component (A) include an average unit formula:
Figure JPOXMLDOC01-appb-I000017
(In the formula, each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, or a hydrogen atom. Each of a, b, c and d is a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that a, b and c are not all 0; It is possible to use at least one of R 3 in one molecule, preferably at least two of the above-mentioned crosslinkable groups. Here, the saturated aliphatic hydrocarbon group, aromatic hydrocarbon group, alkoxy group and halogen atom have the same meaning as defined for the silane.
 前記シロキサンは、当技術分野で周知の方法により調製することができる。シロキサンの調製方法は特に限定されない。最も一般的には、シロキサンはオルガノクロロシラン類の加水分解によって調製される。そのような方法、及び他の方法は、Noll,Chemistry and Technology of Silicones,Chapter5(翻訳された第2ドイツ語版,Academic Press,1968)に記載されている。 The siloxane can be prepared by methods well known in the art. The method for preparing siloxane is not particularly limited. Most commonly, siloxanes are prepared by hydrolysis of organochlorosilanes. Such and other methods are described in Noll, Chemistry and Technology of Silicones, Chapter 5 (translated 2nd German version, Academic Press, 1968).
 前記(A)成分のカルボシランとしては、例えば、平均単位式:
Figure JPOXMLDOC01-appb-I000018
(式中、Rは、それぞれ独立して、上記架橋性基、炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基又は芳香族炭化水素基、アルコキシ基、水素原子又はハロゲン原子を示し、R及びRは、それぞれ独立して、水素原子又は炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族炭化水素基を示し、a、b、c、dは0又は正数を示し、但し、a+b+c+d=1であり、一分子中のRの少なくとも1つ、好ましくは少なくとも2つ、は上記架橋性基である)で表されるものを使用することができる。ここで、飽和脂肪族炭化水素基、芳香族炭化水素基、アルコキシ基及びハロゲン原子は上記シランについて定義したものと同一の意味である。
Examples of the carbosilane of the component (A) include an average unit formula:
Figure JPOXMLDOC01-appb-I000018
(In the formula, each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group having 1 to 20 carbon atoms, an aromatic hydrocarbon group, an alkoxy group, or a hydrogen atom. Each of R 5 and R 6 independently represents a hydrogen atom or a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms; a, b, c and d represent 0 or a positive number, provided that a + b + c + d = 1, and at least one, preferably at least two of R 3 in one molecule is the above-mentioned crosslinkable group). Can be used. Here, the saturated aliphatic hydrocarbon group, aromatic hydrocarbon group, alkoxy group and halogen atom have the same meaning as defined for the silane.
 前記カルボシランは、当技術分野で周知の方法により調製することができる。カルボシランの調製方法は、例えば、Macromolecules,21,30(1988)、米国特許第3293194号明細書に記載されている。 The carbosilane can be prepared by a method well known in the art. The preparation method of carbosilane is described in, for example, Macromolecules, 21, 30 (1988), US Pat. No. 3,293,194.
 シラン、シラザン、シロキサン及びカルボシランの形状は、特に限定されず、固体状、液体状、ペースト状等であることができるが、取り扱い性等の点で固体状であることが好ましい。 The shape of silane, silazane, siloxane, and carbosilane is not particularly limited, and may be solid, liquid, paste, or the like, but is preferably solid in terms of handleability.
 これらのケイ素系高分子化合物のうち、ケイ素含有量が著しく低くないこと、十分な化学的安定性があり、常温、空気中での扱いが容易なこと、原料価格並びに製造プロセスコストが低く、十分な経済性を有する等の工業的利点を考慮すると、ケイ素−酸素−ケイ素結合を有する単位よりなるシロキサンが好ましく、ポリシロキサンがより好ましい。 Of these silicon-based polymer compounds, the silicon content is not extremely low, it has sufficient chemical stability, it is easy to handle at room temperature and in air, and the raw material price and manufacturing process cost are low enough. Considering industrial advantages such as having good economic efficiency, a siloxane composed of units having a silicon-oxygen-silicon bond is preferred, and a polysiloxane is more preferred.
 前記(A)成分は、前記有機化合物の1種、或いは、2種以上の混合物でもよく、更に、その他の成分として、アクリロニトリル等の含窒素モノマーを含んでいてもよい。この場合、含窒素モノマーの含有量は50質量(重量)%以下であることが好ましく、特に、10~50質量(重量)%の範囲内であることが好ましい。 The component (A) may be one type of organic compound or a mixture of two or more types, and may further contain a nitrogen-containing monomer such as acrylonitrile as another component. In this case, the content of the nitrogen-containing monomer is preferably 50% by mass or less, and particularly preferably in the range of 10 to 50% by mass.
 前記(B)成分は、前記(A)成分を架橋可能な含ケイ素化合物である。このような(B)成分として、例えば、シロキサン、シラン、シラザン、カルボシラン又はこれらの混合物が挙げられ、具体的には、Si−O−Si結合を有するモノマー、オリゴマー又はポリマー等のシロキサン類;シラン、Si−Si結合を有するモノマー、オリゴマー又はポリマー等のシラン類;Si−(CH−Si結合を有するモノマー、オリゴマー又はポリマー等のシルアルキレン類;Si−(C−Si或いはSi−(CHCHCHCH−Si結合を有するモノマー、オリゴマー又はポリマー等のシルアリーレン類;Si−N−Si結合を有するモノマー、オリゴマー又はポリマー等のシラザン類;Si−O−Si結合、Si−Si結合、Si−(CH−Si結合、Si−(C−Si結合、及びSi−N−Si結合からなる少なくとも2種の結合を有する含ケイ素共重合体化合物;及びこれらの混合物が例示される。なお、式中、nは1以上の整数である。(B)成分はケイ素原子結合水素原子を有することが好ましい。 The component (B) is a silicon-containing compound capable of crosslinking the component (A). Examples of such component (B) include siloxane, silane, silazane, carbosilane, and mixtures thereof. Specifically, siloxanes such as monomers, oligomers, or polymers having a Si—O—Si bond; , Silanes such as monomers, oligomers or polymers having a Si—Si bond; silalkylenes such as monomers, oligomers or polymers having a Si— (CH 2 ) n —Si bond; Si— (C 6 H 4 ) n − Si or Si- (CH 2 CH 2 C 6 H 4 CH 2 CH 2) silarylene of monomers having n -Si bonds, oligomers or polymers; Si-n-Si monomer having a binding, such as oligomers or polymers Silazanes; Si—O—Si bond, Si—Si bond, Si— (CH 2 ) n —Si bond , Si- (C 6 H 4 ) n —Si bond, and silicon-containing copolymer compound having at least two types of bonds consisting of Si—N—Si bond; and a mixture thereof. In the formula, n is an integer of 1 or more. The component (B) preferably has a silicon atom-bonded hydrogen atom.
 前記(B)成分のこのシロキサン類は、例えば、平均単位式:
Figure JPOXMLDOC01-appb-I000019
(式中、Rは、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)で表される。
Examples of the siloxanes of the component (B) include an average unit formula:
Figure JPOXMLDOC01-appb-I000019
(In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group. A group-containing organic group, an alkoxy group or a hydroxy group; a, b, c and d are each a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that both a, b and c are It is not 0).
 Rの一価炭化水素基として、具体的には、アルキル基、アルケニル基、アラルキル基、アリール基が例示される。アルキル基は、C~C12アルキル基が好ましく、特に、C~Cアルキル基が好ましい。アルキル基は、直鎖若しくは分岐鎖状アルキル基、シクロアルキル基、又は、シクロアルキレン基(直鎖又は分岐鎖状のアルキレン基(好ましくは、メチレン基、エチレン基等のC~Cアルキレン基)と炭素環(好ましくはC~C環)との組み合わせからなるアルキル基)のいずれかであってもよい。直鎖状若しくは分岐鎖状アルキル基は、直鎖状若しくは分岐鎖状C~Cアルキル基が好ましく、具体的には、メチル基、エチル基、n−プロピル基、イソプロピル基、ブチル基、t−ブチル基、ペンチル基、ヘキシル基が例示される。シクロアルキル基は、C~Cシクロアルキル基が好ましく、具体的には、シクロブチル基、シクロペンチル基、シクロヘキシル基が例示される。アルケニル基は、C~C12アルケニル基が好ましく、特に、C~Cアルケニル基が好ましい。C~Cアルケニル基として、具体的には、ビニル基、プロペニル基、ブテニル基、ペンテニル基、ヘキセニル基が例示され、ビニル基が好ましい。アラルキル基は、C~C12アラルキル基が好ましい。C~C12アラルキル基として、具体的には、ベンジル基、フェネチル基、フェニルプロピルが例示される。アリール基は、C~C12アリール基が好ましく、具体的には、フェニル基、ナフチル基、トリル基が例示される。これらの一価炭化水素基は置換基を有していてもよい。当該置換基として、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子等のハロゲン;水酸基;メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基等のアルコキシ基が例示される。このような置換一価炭化水素基として、具体的には、3−クロロプロピル基、3,3,3−トリフルオロプロピル基、パーフルオロブチルエチル基、パーフルオロオクチルエチル基が例示される。 Specific examples of the monovalent hydrocarbon group for R 7 include an alkyl group, an alkenyl group, an aralkyl group, and an aryl group. The alkyl group is preferably a C 1 to C 12 alkyl group, and particularly preferably a C 1 to C 6 alkyl group. The alkyl group is a linear or branched alkyl group, a cycloalkyl group, or a cycloalkylene group (a linear or branched alkylene group (preferably a C 1 -C 6 alkylene group such as a methylene group or an ethylene group). ) And a carbon ring (preferably an alkyl group composed of a C 3 to C 8 ring). The linear or branched alkyl group is preferably a linear or branched C 1 -C 6 alkyl group, specifically, a methyl group, an ethyl group, an n-propyl group, an isopropyl group, a butyl group, Examples are t-butyl group, pentyl group, and hexyl group. The cycloalkyl group is preferably a C 4 to C 6 cycloalkyl group, and specific examples include a cyclobutyl group, a cyclopentyl group, and a cyclohexyl group. The alkenyl group is preferably a C 2 to C 12 alkenyl group, and particularly preferably a C 2 to C 6 alkenyl group. Specific examples of the C 2 -C 6 alkenyl group include a vinyl group, a propenyl group, a butenyl group, a pentenyl group, and a hexenyl group, and a vinyl group is preferable. The aralkyl group is preferably a C 7 to C 12 aralkyl group. Specific examples of the C 7 to C 12 aralkyl group include a benzyl group, a phenethyl group, and phenylpropyl. The aryl group is preferably a C 6 -C 12 aryl group, and specific examples thereof include a phenyl group, a naphthyl group, and a tolyl group. These monovalent hydrocarbon groups may have a substituent. Specific examples of the substituent include halogen such as fluorine atom, chlorine atom, bromine atom and iodine atom; hydroxyl group; alkoxy group such as methoxy group, ethoxy group, n-propoxy group and isopropoxy group. Specific examples of such a substituted monovalent hydrocarbon group include a 3-chloropropyl group, a 3,3,3-trifluoropropyl group, a perfluorobutylethyl group, and a perfluorooctylethyl group.
 また、Rのハロゲン原子として、具体的には、フッ素原子、塩素原子、臭素原子、ヨウ素原子が例示され、好ましくは、塩素原子である。 Specific examples of the halogen atom for R 7 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom, and a chlorine atom is preferable.
 また、Rのエポキシ基含有有機基として、具体的には、3−グリシドキシプロピル基、4−グリシドキシブチル基等のグリシドキシアルキル基;2−(3,4−エポキシシクロヘキシル)−エチル基、3−(3,4−エポキシシクロヘキシル)−プロピル基等のエポキシシクロヘキシルアルキル基;4−オキシラニルブチル基、8−オキシラニルオクチル基等のオキシラニルアルキル基が例示され、好ましくは、グリシドキシアルキル基であり、特に好ましくは、3−グリシドキシプロピル基である。 Specific examples of the epoxy group-containing organic group represented by R 7 include glycidoxyalkyl groups such as 3-glycidoxypropyl group and 4-glycidoxybutyl group; 2- (3,4-epoxycyclohexyl). -An epoxy cyclohexyl alkyl group such as an ethyl group or a 3- (3,4-epoxycyclohexyl) -propyl group; an oxiranyl alkyl group such as a 4-oxiranylbutyl group or an 8-oxiranyloctyl group; A glycidoxyalkyl group is preferable, and a 3-glycidoxypropyl group is particularly preferable.
 また、Rのアクリル基含有有機基又はメタクリル基含有有機基として、具体的には、3−アクリロキシプロピル基、3−メタクリロキシプロピル基、4−アクリロキシブチル基、4−メタクリロキシブチル基が例示され、好ましくは、3−メタクリロキシプロピル基である。 Specific examples of the acrylic group-containing organic group or the methacrylic group-containing organic group represented by R 7 include a 3-acryloxypropyl group, a 3-methacryloxypropyl group, a 4-acryloxybutyl group, and a 4-methacryloxybutyl group. And is preferably a 3-methacryloxypropyl group.
 また、Rのアミノ基含有有機基として、具体的には、3−アミノプロピル基、4−アミノブチル基、N−(2−アミノエチル)−3−アミノプロピル基が例示され、好ましくは、3−アミノプロピル基、N−(2−アミノエチル)−3−アミノプロピル基である。 Specific examples of the amino group-containing organic group for R 7 include a 3-aminopropyl group, a 4-aminobutyl group, and an N- (2-aminoethyl) -3-aminopropyl group. 3-aminopropyl group and N- (2-aminoethyl) -3-aminopropyl group.
 また、Rのメルカプト基含有有機基として、具体的には、3−メルカプトプロピル基、4−メルカプトブチル基が例示される。 Specific examples of the mercapto group-containing organic group for R 7 include a 3-mercaptopropyl group and a 4-mercaptobutyl group.
 また、Rのアルコキシ基として、具体的には、メトキシ基、エトキシ基、n−プロポキシ基、イソプロポキシ基が例示され、好ましくは、メトキシ基、エトキシ基である。 Specific examples of the alkoxy group for R 7 include a methoxy group, an ethoxy group, an n-propoxy group, and an isopropoxy group, and a methoxy group and an ethoxy group are preferable.
 なお、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基、又はヒドロキシ基である。 In addition, at least 1, preferably at least 2, R 7 in one molecule is an alkenyl group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, or an amino group. A containing organic group, a mercapto group-containing organic group, an alkoxy group, or a hydroxy group.
 また、a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数である。但し、a、b及びcが共に0となることはない。 Further, a, b, c and d are numbers which are 0 or more and 1 or less and satisfy a + b + c + d = 1, respectively. However, a, b and c are not all 0.
 このようなシロキサン類は、(R SiO1/2)、(R SiO2/2)、(RSiO3/2)、及び、(SiO4/2)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、、(R SiO1/2)及び(R2SiO2/2)の単位からなる直鎖状ポリシロキサン;(R2SiO2/2)の単位からなる環状ポリシロキサン;(RSiO3/2)又は(SiO4/2)の単位からなる分岐鎖状ポリシロキサン;(R SiO1/2)及び(RSiO3/2)の単位からなるポリシロキサン;(R3SiO1/2)及び(SiO4/2)の単位からなるポリシロキサン;(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン;(R SiO2/2)及び(RSiO3/2)の単位からなるポリシロキサン;(R SiO2/2)及び(SiO4/2)の単位からなるポリシロキサン;(R SiO1/2)、(R SiO2/2)及び(RSiO3/2)の単位からなるポリシロキサン;(R SiO1/2)、(R SiO2/2)及び(SiO4/2)の単位からなるポリシロキサン;(R SiO1/2)、(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン;(R SiO2/2)、(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン;(R3SiO1/2)、(R SiO2/2)、(RSiO3/2)及び(SiO4/2)の単位からなるポリシロキサン等が挙げられる。(R SiO1/2)、(R SiO2/2)、(RSi○3/2)、及び、(SiO4/2)で表された構造単位の好ましい繰り返し数は、それぞれ、1~10,000の範囲内が好ましく、更には、1~1,000の範囲内が好ましく、特には、3~500の範囲内が好ましい。 Such siloxanes are structural units represented by (R 7 3 SiO 1/2 ), (R 7 2 SiO 2/2 ), (R 7 SiO 3/2 ), and (SiO 4/2 ). And, specifically, a linear polysiloxane comprising units of (R 7 3 SiO 1/2 ) and (R 7 2SiO 2/2 ); (R 7 2SiO cyclic polysiloxane comprising units of 2/2); (R 7 SiO 3/2 ) or (consisting SiO 4/2) units of branched polysiloxane; (R 7 3 SiO 1/2) and (R 7 Polysiloxane composed of units of (SiO 3/2 ); polysiloxane composed of units of (R 7 3SiO 1/2 ) and (SiO 4/2 ); of (R 7 SiO 3/2 ) and (SiO 4/2 ) Polysiloxane consisting of units (R 7 2 SiO 2/2) and polysiloxane comprising units of (R 7 SiO 3/2); ( R 7 2 SiO 2/2) and polysiloxane comprising units of (SiO 4/2); (R 7 3 SiO 1/2 ), (R 7 2 SiO 2/2 ) and (R 7 SiO 3/2) units of polysiloxane; (R 7 3 SiO 1/2 ), (R 7 2 SiO 2 / 2 ) and (SiO 4/2 ) units of polysiloxane; (R 7 3 SiO 1/2 ), (R 7 SiO 3/2 ) and (SiO 4/2 ) units of polysiloxane; (R 7 2 SiO 2/2 ), (R 7 SiO 3/2 ) and (SiO 4/2 ) units of polysiloxane; (R 7 3SiO 1/2 ), (R 7 2 SiO 2/2 ), ( R 7 SiO 3/2) and (SiO 4 Polysiloxanes and the like comprising units of 2). The preferred number of repeating structural units represented by (R 7 3 SiO 1/2 ), (R 7 2 SiO 2/2 ), (R 7 Si ○ 3/2 ), and (SiO 4/2 ) is Each is preferably within the range of 1 to 10,000, more preferably within the range of 1 to 1,000, and particularly preferably within the range of 3 to 500.
 このシロキサン類は、当技術分野で周知の方法により調製することができる。このシロキサン類の調製方法は特に限定されず、最も一般的には、オルガノクロロシラン類の加水分解によって調製される。そのような方法、及び他の方法は、Noll,Chemistryand Technology of Silicones,Chapter5(翻訳された第2ドイツ語版,Academic Press,1968)に記載されている方法である。 These siloxanes can be prepared by methods well known in the art. The method for preparing the siloxanes is not particularly limited, and is most commonly prepared by hydrolysis of organochlorosilanes. Such and other methods are those described in Noll, Chemistry and Technology of Silicones, Chapter 5 (translated 2nd German version, Academic Press, 1968).
 なお、このシロキサン類は、ポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−O−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−O−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物;Si−O−Si結合及びSi−(CH−Si結合を有する含ケイ素共重合体化合物;Si−O−Si結合及びSi−(C−Si結合或いはSi−(CHCHCHCH−Si結合を有する含ケイ素共重合体化合物等をシロキサン類として使用することができる。なお、式中、nは前記と同じである。 These siloxanes may be silicon-containing copolymer compounds with polymers. For example, silicon-containing copolymer compound having Si—O—Si bond and Si—Si bond; silicon-containing copolymer compound having Si—O—Si bond and Si—N—Si bond; Si—O—Si bond And Si- (CH 2 ) n —Si bond-containing copolymer compound; Si—O—Si bond and Si— (C 6 H 4 ) n —Si bond or Si— (CH 2 CH 2 C 6 H) A silicon-containing copolymer compound having a 4 CH 2 CH 2 ) n —Si bond or the like can be used as the siloxane. In the formula, n is the same as described above.
 また、シラン類は、例えば、一般式:
Figure JPOXMLDOC01-appb-I000020
又は、平均単位式:
Figure JPOXMLDOC01-appb-I000021
(式中、Rは、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)で表される。
Silanes are, for example, general formulas:
Figure JPOXMLDOC01-appb-I000020
Or average unit formula:
Figure JPOXMLDOC01-appb-I000021
(In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group. A group-containing organic group, an alkoxy group or a hydroxy group, provided that at least one, preferably at least 2, R 7 in one molecule is an alkenyl group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group A group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, a mercapto group-containing organic group, an alkoxy group or a hydroxy group; a, b, c and d are each 0 or more, 1 or less, and a + b + c + d = 1, provided that a, b, and c are not all 0).
 このシラン類は、一般式:R Siで表されるか、又は、(R Si)、(R Si)、(RSi)、及び、(Si)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、(R Si)及び(R Si)の単位からなる直鎖状ポリシラン;(R Si)の単位からなる環状ポリシラン;(RSi)又は(Si)の単位からなる分岐鎖状ポリシラン(ポリシリン);(R Si)及び(RSi)の単位からなるポリシラン;(R Si)及び(Si)の単位からなるポリシラン;(RSi)及び(Si)の単位からなるポリシラン;(R Si)及び(RSi)の単位からなるポリシラン;(R Si)及び(Si)の単位からなるポリシラン;(R Si)、(R2Si)及び(RSi)の単位からなるポリシラン;(R Si)、(R Si)及び(Si)の単位からなるポリシラン;(R Si)、(RSi)及び(Si)の単位からなるポリシラン;(R Si)、(RSi)及び(Si)の単位からなるポリシラン;(R Si)、(R Si)、(RSi)及び(Si)の単位からなるポリシラン等が挙げられる。(R Si)、(R Si)、(RSi)及び(Si)で表された構造単位の好ましい繰り返し数は、それぞれ、2~10,000の範囲内が好ましくは、更には、3~1,000の範囲内が好ましく、特には、3~500の範囲内が好ましい。 These silanes are represented by a general formula: R 7 4 Si or a structure represented by (R 7 3 Si), (R 7 2 Si), (R 7 Si), and (Si). It is composed of at least one unit among the units, specifically, a linear polysilane composed of units of (R 7 3 Si) and (R 7 2 Si); composed of units of (R 7 2 Si) Cyclic polysilane; Branched polysilane (polysilin) consisting of units of (R 7 Si) or (Si); Polysilane consisting of units of (R 7 3 Si) and (R 7 Si); (R 7 3 Si) and ( (Si) unit polysilane; (R 7 Si) and (Si) unit polysilane; (R 7 2 Si) and (R 7 Si) unit polysilane; (R 7 2 Si) and (Si) (R; polysilane consisting of units) 3 Si), (R 7 2Si ) and (polysilane comprising units of R 7 Si); (R 7 3 Si), (R 7 2 Si) and (polysilane comprising units of Si); (R 7 3 Si ) , (R 7 Si) and (Si) units; polysilanes; (R 7 2 Si), (R 7 Si) and (Si) units; (R 7 3 Si), (R 7 2 Si ), (R 7 Si) and polysilanes composed of (Si) units. The preferable number of repeating structural units represented by (R 7 3 Si), (R 7 2 Si), (R 7 Si) and (Si) is preferably in the range of 2 to 10,000, Is preferably within the range of 3 to 1,000, and particularly preferably within the range of 3 to 500.
 このシラン類は種々の公知方法を用いて調製することができる。例えば、アルカリ金属の存在下、ハロシラン類の脱ハロゲン反応を行う方法(Macromolecules,23,3423(1990)等)、ジシレンのアニオン重合を行う方法(Macromolecules,23,4494(1990)等)、電極還元によりハロシラン類の脱ハロゲン反応を行う方法(J.Chem.Soc.,Chem.Commun.,1161(1990)、J.Chem.Soc.,Chem.Commun.,897(1992)等)、マグネシウムの存在下、ハロシラン類の脱ハロゲン反応を行う方法(WO98/29476号公報等)、金属触媒の存在下、ヒドロシラン類の脱水素反応を行う方法(特開平4−334551号公報等)等の方法が挙げられる。 These silanes can be prepared using various known methods. For example, a method of dehalogenating a halosilane in the presence of an alkali metal (Macromolecules, 23, 3423 (1990), etc.), a method of anionic polymerization of disilene (Macromolecules, 23, 4494 (1990), etc.), electrode reduction, etc. (J. Chem. Soc., Chem. Commun., 1161 (1990), J. Chem. Soc., Chem. Commun., 897 (1992), etc.), presence of magnesium Examples thereof include a method for dehalogenating halosilanes (WO98 / 29476 etc.), a method for dehydrogenating hydrosilanes in the presence of a metal catalyst (JP-A-4-334551 etc.), and the like. It is done.
 なお、このシラン類は、他のポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物;Si−Si結合及びSi−(CH−Si結合を有する含ケイ素共重合体化合物;Si−Si結合及びSi−(C−Si結合或いはSi−(CHCHCHCH−Si結合を有する含ケイ素共重合体化合物等をシラン類として使用することができる。 These silanes may be silicon-containing copolymer compounds with other polymers. For example, a silicon-containing copolymer compound having a Si-Si bond and a Si-O-Si bond; a silicon-containing copolymer compound having a Si-Si bond and a Si-N-Si bond; a Si-Si bond and a Si- ( CH 2) containing copolymer compounds having n -Si bonds; Si-Si bonds and Si- (C 6 H 4) n -Si bonds or Si- (CH 2 CH 2 C 6 H 4 CH 2 CH 2) Silicon-containing copolymer compounds having an n- Si bond can be used as silanes.
 その他のシラン類としては、一般式:
Figure JPOXMLDOC01-appb-I000022
(式中、Rは、それぞれ独立して、置換若しくは非置換の一価炭化水素基であり;eは2以上の整数であり;Rはe価有機基である)で表される含ケイ素化合物が例示される。式中、Rの一価炭化水素基としては、前記Rの一価炭化水素基と同様の基が例示される。eは2以上の整数であり、好ましくは、2~6の整数である。また、Rはe価有機基であり、eが2の場合には、Rは二価有機基であり、具体的には、アルキレン基、アルケニレン基、アルキレンオキシアルキレン基、アリーレン基、アリーンオキシアリーレン基、アリーレンアルキレンアリーレン基が例示され、更に具体的には、下記の基が例示される。
−CHCH−,−CHCHCH−,−CHCH(CH)−,−CH=CH−,−C≡C−,−CHCHOCHCH−,−CHCHCHOCHCH−,
Figure JPOXMLDOC01-appb-C000023
Other silanes have the general formula:
Figure JPOXMLDOC01-appb-I000022
Wherein R 8 is each independently a substituted or unsubstituted monovalent hydrocarbon group; e is an integer of 2 or more; and R 9 is an e-valent organic group. Silicon compounds are exemplified. In the formula, examples of the monovalent hydrocarbon group for R 8 include the same groups as the monovalent hydrocarbon group for R 7 . e is an integer of 2 or more, preferably an integer of 2 to 6. R 9 is an e-valent organic group, and when e is 2, R 9 is a divalent organic group. Specifically, an alkylene group, an alkenylene group, an alkyleneoxyalkylene group, an arylene group, an arylene An oxyarylene group and an arylenealkylenearylene group are exemplified, and more specifically, the following groups are exemplified.
, - - -CH 2 CH 2 CH 2 CH 2 CH 2 -, - CH 2 CH (CH 3) -, - CH = CH -, - C≡C -, - CH 2 CH 2 OCH 2 CH 2 -, - CH 2 CH 2 CH 2 OCH 2 CH 2- ,
Figure JPOXMLDOC01-appb-C000023
 また、eが3の場合には、Rは三価有機基であり、具体的には、下記の基が例示される。
Figure JPOXMLDOC01-appb-C000024
When e is 3, R 9 is a trivalent organic group, and specific examples thereof include the following groups.
Figure JPOXMLDOC01-appb-C000024
 また、シラザン類としては、例えば、平均単位式:
Figure JPOXMLDOC01-appb-I000025
(式中、Rは、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;R10は水素原子又は置換若しくは非置換の一価炭化水素基であり;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)で表される。R10の一価炭化水素基としては、Rの一価炭化水素基と同様の基が例示される。R10は水素原子又はアルキル基が好ましく、特に、水素原子又はメチル基が好ましい。
Examples of silazanes include, for example, an average unit formula:
Figure JPOXMLDOC01-appb-I000025
(In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group. A group-containing organic group, an alkoxy group or a hydroxy group, provided that at least one, preferably at least 2, R 7 in one molecule is an alkenyl group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group A group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, a mercapto group-containing organic group, an alkoxy group or a hydroxy group; R 10 is a hydrogen atom or a substituted or unsubstituted monovalent hydrocarbon group; a, b, c and d are numbers which are 0 or more and 1 or less and satisfy a + b + c + d = 1, respectively, provided that a, b and c are both 0. Represented in the stomach). Examples of the monovalent hydrocarbon group for R 10 include the same groups as the monovalent hydrocarbon group for R 7 . R 10 is preferably a hydrogen atom or an alkyl group, particularly preferably a hydrogen atom or a methyl group.
 このシラザン類は、(R SiNR10)、(R SiNR10)、(RSiNR10)、及び、(SiNR10)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、(R SiNR10)及び(R SiNR10)の単位からなる直鎖状ポリシラザン;(R SiNR10)の単位からなる環状ポリシラザン;(RSiNR10)又は(SiNR10)の単位からなる分岐鎖状ポリシラザン;(R SiNR10)及び(RSiNR10)の単位からなるポリシラザン;(R SiNR10)及び(SiNR10)の単位からなるポリシラザン;(RSiNR10)及び(SiNR10)の単位からなるポリシラザン;(R SiNR10)及び(RSiNR10)の単位からなるポリシラザン;(R SiNR10)及び(SiNR10)の単位からなるポリシラザン;(R SiNR10)、(R SiNR10)及び(RSiNR10)の単位からなるポリシラザン;(R SiNR10)、(R SiNR10)及び(SiNR10)の単位からなるポリシラザン;(R SiNR10)、(RSiNR10)及び(SiNR10)の単位からなるポリシラザン;(R SiNR10)、(RSiNR10)及び(SiNR10)の単位からなるポリシラザン;(R SiNR10)、(R SiNR10)、(RSiNR10)及び(SiNR10)の単位からなるポリシラザン等が挙げられる。(R SiNR10)、(R SiNR10)、(RSiNR10)、及び、(SiNR10)で表された構造単位の好ましい繰り返し数は、それぞれ、2~10,000の範囲が好ましく、更には、3~1,000の範囲内が好ましく、特には、3~500の範囲内が好ましい。 This silazane is composed of at least one unit among structural units represented by (R 7 3 SiNR 10 ), (R 7 2 SiNR 10 ), (R 7 SiNR 10 ), and (SiNR 10 ). Specifically, a linear polysilazane composed of units of (R 7 3 SiNR 10 ) and (R 7 2 SiNR 10 ); a cyclic polysilazane composed of units of (R 7 2 SiNR 10 ); (R 7 SiNR 10 ) Or (SiNR 10 ) units of branched polysilazane; (R 7 3 SiNR 10 ) and (R 7 SiNR 10 ) units of polysilazane; (R 7 3 SiNR 10 ) and (SiNR 10 ) units of comprising polysilazane; (R 7 SiNR 10) and polysilazane comprising units of (SiNR 10); (R 7 2 SiNR 0) and (polysilazane comprising units of R 7 SiNR 10); (R 7 2 SiNR 10) and (polysilazane comprising units of SiNR 10); (R 7 3 SiNR 10), (R 7 2 SiNR 10) and ( Polysilazane composed of units of R 7 SiNR 10 ); Polysilazane composed of units of (R 7 3 SiNR 10 ), (R 7 2 SiNR 10 ) and (SiNR 10 ); (R 7 3 SiNR 10 ), (R 7 SiNR 10 ) And (SiNR 10 ) units; polysilazanes composed of units (R 7 2 SiNR 10 ), (R 7 SiNR 10 ) and (SiNR 10 ); (R 7 3 SiNR 10 ), (R 7 2 SiNR 10), Porishiraza composed of units of (R 7 SiNR 10) and (SiNR 10) Etc. The. The preferred number of repeating structural units represented by (R 7 3 SiNR 10 ), (R 7 2 SiNR 10 ), (R 7 SiNR 10 ), and (SiNR 10 ) is in the range of 2 to 10,000, respectively. More preferably, it is preferably within the range of 3 to 1,000, and particularly preferably within the range of 3 to 500.
 このシラザン類は、当技術分野で周知の方法により調製することができる。このようなシラザン類の調製方法は、例えば、米国特許第4312970号、第4340619号、第4395460号、第4404153号、第4482689号、第4397828号、第4540803号、第4543344号、第4835238号、第4774312号、第4929742号及び第4916200号に記載されている。更に、J.Mater.Sci.,22,2609(1987)にも記載されている。 These silazanes can be prepared by methods well known in the art. For example, U.S. Pat. Nos. 4,321,970, 4,340,619, 4,395,460, 4,404,153, 4,482,689, 4,398,828, 4,540,343, 4,543,344, 4,835,238 can be used for preparing such silazanes. Nos. 4,774,312, 4,929,742 and 4,916,200. Furthermore, J. et al. Mater. Sci. 22, 2609 (1987).
 このシラザン類は、他のポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−N−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−N−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−N−Si結合及びSi−(CH−Si結合を有する含ケイ素共重合体化合物;Si−N−Si結合及びSi−(C−Si結合或いはSi−(CHCHCHCH−Si結合を有する含ケイ素共重合体化合物等をポリシラザンとして使用することができる。なお、式中、nは前記と同じである。 These silazanes may be silicon-containing copolymer compounds with other polymers. For example, silicon-containing copolymer compound having Si—N—Si bond and Si—O—Si bond; silicon-containing copolymer compound having Si—N—Si bond and Si—Si bond; Si—N—Si bond and Si- (CH 2) containing copolymer compounds having n -Si bonds; Si-n-Si bonds and Si- (C 6 H 4) n -Si bonds or Si- (CH 2 CH 2 C 6 H 4 CH 2 CH 2) n containing copolymer compounds having -Si bond or the like may be used as a polysilazane. In the formula, n is the same as described above.
 カルボシラン類としては、例えば、平均単位式:
Figure JPOXMLDOC01-appb-I000026
(式中、Rは、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり、但し、一分子中、少なくとも1個、好ましくは少なくとも2個、のRは、アルケニル基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基、又はヒドロキシ基であり;R11はアルキレン基又はアリーレン基であり;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcは共に0となることはない)で表される。R11のアルキレン基は、例えば、式:−(CH−で表され、また、R11のアリーレン基は、例えば、式:−(C−で表される。なお、式中、nは前記と同じである。
Examples of carbosilanes include an average unit formula:
Figure JPOXMLDOC01-appb-I000026
(In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group. A group-containing organic group, an alkoxy group or a hydroxy group, provided that at least one, preferably at least 2, R 7 in one molecule is an alkenyl group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group A group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, a mercapto group-containing organic group, an alkoxy group, or a hydroxy group; R 11 is an alkylene group or an arylene group; a, b, c, and d Is a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that a, b and c are not 0). The alkylene group of R 11 is represented by, for example, the formula: — (CH 2 ) n —, and the arylene group of R 11 is represented, for example, by the formula: — (C 6 H 4 ) n —. In the formula, n is the same as described above.
 このカルボシラン類は、(R SiR11)、(R SiR11)、(RSiR11)及び(SiR11)で表された構造単位のうち少なくとも1つの単位で構成されており、具体的には、例えば、(R SiR11)及び(R SiR11)の単位からなる直鎖状ポリカルボシラン;(R SiR11)の単位からなる環状ポリカルボシラン;(RSiR11)又は(SiR11)の単位からなる分岐鎖状ポリカルボシラン;(R SiR11)及び(RSiR11)の単位からなるポリカルボシラン;(R SiR11)及び(SiR11)の単位からなるポリカルボシラン;(RSiR11)及び(SiR11)の単位からなるポリカルボシラン;(R SiR11)及び(RSiR11)の単位からなるポリカルボシラン;(R SiR11)及び(SiR11)の単位からなるポリカルボシラン;(R SiR11)、(R SiR11)及び(RSiR11)の単位からなるポリカルボシラン;(R SiR11)、(R SiR11)及び(SiR11)の単位からなるポリカルボシラン;(R SiR11)、(RSiR11)及び(SiR11)の単位からなるポリカルボシラン;(R SiR11)、(RSiR11)及び(SiR11)の単位からなるポリカルボシラン;(R SiR11)、(R SiR11)、(RSiR11)及び(SiR11)の単位からなるポリカルボシラン等が挙げられる。(R SiR11)、(R SiR11)、(RSiR11)及び(SiR11)で表された構造単位の好ましい繰り返し数は、それぞれ、2~10,000の範囲内が好ましく、更には、3~1,000の範囲内が好ましく、特には、3~500の範囲内が好ましい。 The carbosilanes are composed of at least one of structural units represented by (R 7 3 SiR 11 ), (R 7 2 SiR 11 ), (R 7 SiR 11 ), and (SiR 11 ), Specifically, for example, a linear polycarbosilane composed of units of (R 7 3 SiR 11 ) and (R 7 2 SiR 11 ); a cyclic polycarbosilane composed of units of (R 7 2 SiR 11 ); R 7 SiR 11 ) or branched polycarbosilane composed of (SiR 11 ) units; (R 7 3 SiR 11 ) and (R 7 SiR 11 ) units composed of units; (R 7 3 SiR 11 ) and polycarbosilane comprising units of (SiR 11); (R 7 SiR 11) and polycarbosilane comprising units of (SiR 11); (R 7 2 SiR 1) and (polycarbosilane consisting R 7 SiR 11) units; (R 7 2 SiR 11) and (polycarbosilane comprising units of SiR 11); (R 7 3 SiR 11), (R 7 2 SiR 11 ) and (R 7 SiR 11 ) units of polycarbosilane; (R 7 3 SiR 11 ), (R 7 2 SiR 11 ) and (SiR 11 ) units of polycarbosilane; (R 7 3 SiR 11 ), a polycarbosilane composed of units of (R 7 SiR 11 ) and (SiR 11 ); a polycarbosilane composed of units of (R 7 2 SiR 11 ), (R 7 SiR 11 ) and (SiR 11 ); R 7 3 SiR 11), ( R 7 2 SiR 11), include polycarbosilane like comprising units of (R 7 SiR 11) and (SiR 11) It is. The preferable number of repeating structural units represented by (R 7 3 SiR 11 ), (R 7 2 SiR 11 ), (R 7 SiR 11 ) and (SiR 11 ) is within the range of 2 to 10,000, respectively. More preferably, it is preferably within the range of 3 to 1,000, and particularly preferably within the range of 3 to 500.
 このカルボシラン類は、当技術分野で周知の方法により調製することができる。カルボシラン類の調製方法は、例えば、Macromolecules,21,30(1988)、米国特許第3293194号明細書に記載されている。 These carbosilanes can be prepared by methods well known in the art. The preparation method of carbosilanes is described in, for example, Macromolecules, 21, 30 (1988), US Pat. No. 3,293,194.
 このカルボシラン類は、他のポリマーとの含ケイ素共重合体化合物であってもよい。例えば、Si−(CH−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−(CH−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−(CH−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物;Si−(CH−Si結合及びSi−(C−Si結合を有する含ケイ素共重合体化合物;Si−(C−Si結合及びSi−O−Si結合を有する含ケイ素共重合体化合物;Si−(C−Si結合及びSi−Si結合を有する含ケイ素共重合体化合物;Si−(C−Si結合或いはSi−(CHCHCHCH−Si結合及びSi−N−Si結合を有する含ケイ素共重合体化合物等をカルボシラン類として使用することができる。なお、式中、nは前記と同じである。 These carbosilanes may be silicon-containing copolymer compounds with other polymers. For example, a silicon-containing copolymer compound having a Si— (CH 2 ) n —Si bond and a Si—O—Si bond; a silicon-containing copolymer having a Si— (CH 2 ) n —Si bond and a Si—Si bond Compound; silicon-containing copolymer compound having Si— (CH 2 ) n —Si bond and Si—N—Si bond; Si— (CH 2 ) n —Si bond and Si— (C 6 H 4 ) n —Si Silicon-containing copolymer compound having a bond; silicon-containing copolymer compound having a Si— (C 6 H 4 ) n —Si bond and a Si—O—Si bond; Si— (C 6 H 4 ) n —Si bond And a silicon-containing copolymer compound having a Si—Si bond; Si— (C 6 H 4 ) n —Si bond or Si— (CH 2 CH 2 C 6 H 4 CH 2 CH 2 ) n —Si bond and Si— Containing N-Si bond Lee Mototomo polymer compound or the like can be used as carbosilanes acids. In the formula, n is the same as described above.
 (B)成分としては、特に、平均単位式:
Figure JPOXMLDOC01-appb-I000027
(式中、Rは、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはない)で表されるシロキサン、特にポリシロキサンが好ましい。
As the component (B), in particular, the average unit formula:
Figure JPOXMLDOC01-appb-I000027
(In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group. A group-containing organic group, an alkoxy group or a hydroxy group; a, b, c and d are each a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that both a, b and c are (In particular, polysiloxane is preferred).
 架橋反応として、具体的には、ヒドロシリル化反応、マイケル付加反応、ディールズ・アルダー反応等の付加反応;脱アルコール、脱水素、脱水、脱アミン等の縮合反応;エポキシ開環、エステル開環等の開環反応;パーオキサイド、UV等のラジカル反応が例示される。特に、(A)成分が脂肪族不飽和基を有し、(B)成分がケイ素原子結合水素原子を有する場合、ヒドロシリル化反応用触媒の存在下、ヒドロシリル化反応することができる。 Specific examples of crosslinking reactions include hydrosilylation reactions, Michael addition reactions, Diels-Alder reactions, and the like; condensation reactions such as dealcoholization, dehydrogenation, dehydration, and deamination; epoxy ring opening, ester ring opening, etc. Ring-opening reaction; radical reactions such as peroxide and UV are exemplified. In particular, when the component (A) has an aliphatic unsaturated group and the component (B) has a silicon atom-bonded hydrogen atom, the hydrosilylation reaction can be performed in the presence of a hydrosilylation reaction catalyst.
 ヒドロシリル化反応用触媒として、具体的には、白金微粉末、白金黒、白金坦持シリカ微粉末、白金坦持活性炭、塩化白金酸、四塩化白金、塩化白金酸のアルコール溶液、白金とオレフィンの錯体、白金とアルケニルシロキサンの錯体が例示される。この含有量は特に限定されないが、(A)成分と(B)成分の合計量に対して、この触媒中の金属原子が質量(重量)単位で0.1~1,000ppmの範囲内となる量であることが好ましく、特には、1~500ppmの範囲内となる量であることが好ましい。 Specific examples of the hydrosilylation reaction catalyst include platinum fine powder, platinum black, platinum-supported silica fine powder, platinum-supported activated carbon, chloroplatinic acid, platinum tetrachloride, chloroplatinic acid alcohol solution, platinum and olefins. Complexes, platinum and alkenylsiloxane complexes are exemplified. The content is not particularly limited, but the metal atoms in the catalyst are within the range of 0.1 to 1,000 ppm in terms of mass (weight) with respect to the total amount of the components (A) and (B). It is preferable that the amount be in the range of 1 to 500 ppm.
 また、(A)成分が脂肪族不飽和基を有し、(B)成分がケイ素原子結合水素原子を有する場合、また、(A)成分がケイ素原子結合水素原子を有し、(B)成分が脂肪族不飽和基を有する場合、各成分の使用量は特に限定されないが、(A)成分又は(B)成分中の脂肪族不飽和基1モルに対して、(B)成分又は(A)成分中のケイ素原子結合水素原子が0.1~50モルの範囲内となる量であり、好ましくは、0.1~30モルの範囲内となる量であり、特に好ましくは、0.1~10モルの範囲内となる量である。これは、ケイ素原子結合水素原子の量が、前記範囲の下限未満であると、得られる硬化物を焼成した場合の炭化収率が減少する傾向があり、一方、前記範囲を超えると、得られる硬化物を焼成して得られるケイ素含有炭素系複合材料の電極活物質としての性能が低下する傾向があるからである。 In addition, when the component (A) has an aliphatic unsaturated group and the component (B) has a silicon-bonded hydrogen atom, the component (A) has a silicon-bonded hydrogen atom, and the component (B) When A has an aliphatic unsaturated group, the amount of each component used is not particularly limited, but the component (B) or (A) is used with respect to 1 mol of the aliphatic unsaturated group in the component (A) or (B). ) The amount of silicon-bonded hydrogen atoms in the component is in the range of 0.1 to 50 mol, preferably in the range of 0.1 to 30 mol, particularly preferably 0.1 The amount is in the range of ~ 10 mol. This is because when the amount of silicon atom-bonded hydrogen atoms is less than the lower limit of the range, the yield of carbonization when the resulting cured product is fired tends to be reduced, whereas when the amount exceeds the range, it is obtained. This is because the performance as an electrode active material of the silicon-containing carbon-based composite material obtained by firing the cured product tends to decrease.
 また、(A)成分が脂肪族不飽和基を有し、(B)成分が脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する場合、並びに、(B)成分が脂肪族不飽和基を有し、(A)成分が脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する場合は、ラジカル開始剤により、熱及び/又は光によりラジカル反応することもできる。 In addition, when the component (A) has an aliphatic unsaturated group, the component (B) has an aliphatic unsaturated group, an acrylic group, a methacryl group, or a silicon-bonded hydrogen atom, and the component (B) In the case where the component (A) has an aliphatic unsaturated group, an acrylic group, a methacryl group, or a silicon atom-bonded hydrogen atom, it undergoes a radical reaction by heat and / or light with a radical initiator. You can also.
 このラジカル開始剤として、具体的には、過酸化ジアルキル、過酸化ジアシル、パーオキシエステル、パーオキシジカーボネート等の有機過酸化物、或いは有機アゾ化合物が例示される。この有機過酸化物として、具体的には、ジベンゾイルパーオキサイド、ビス−p−クロロベンゾイルパーオキサイド、ビス−2,4−ジクロロベンゾイルパーオキサイド、ジ−t−ブチルパーオキサイド、ジクミルパーオキサイド、t−ブチルパーベンゾエート、2,5−ビス(t−ブチルパーオキシ)−2,3−ジメチルヘキサン、t−ブチルパーアセテート、ビス(o−メチルベンゾイルパーオキサイド)、ビス(m−メチルベンゾイルパーオキサイド)、ビス(p−メチルベンゾイルパーオキサイド)、2,3−ジメチルベンゾイルパーオキサイド、2,4−ジメチルベンゾイルパーオキサイド、2,6−ジメチルベンゾイルパーオキサイド、2,3,4−トリメチルベンゾイルパーオキサイド、2,4,6−トリメチルベンゾイルパーオキサイド等のメチル基置換ベンゾイルパーオキサイド;t−ブチルパーベンゾエート、ジクミルパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、t−ブチルパーオキシイソプロピルモノカーボネート、t−ブチルパーオキシアセテート、これらの混合物が例示される。また、この有機アゾ化合物として、具体的には、2,2’−アゾビスイソブチロニトリル、2,2’−アゾビス(4−メトキシ−2,4−ジメチルバレロニトリル、2,2’−アゾビス(2,4−ジメチルバレロニトリル)、2,2’−アゾビス−イソブチルバレロニトリル、1,1’−アゾビス(1−シクロヘキサンカルボニトリル)が例示される。 Specific examples of the radical initiator include organic peroxides such as dialkyl peroxide, diacyl peroxide, peroxyester, peroxydicarbonate, and organic azo compounds. Specifically, as this organic peroxide, dibenzoyl peroxide, bis-p-chlorobenzoyl peroxide, bis-2,4-dichlorobenzoyl peroxide, di-t-butyl peroxide, dicumyl peroxide, t-butyl perbenzoate, 2,5-bis (t-butylperoxy) -2,3-dimethylhexane, t-butyl peracetate, bis (o-methylbenzoyl peroxide), bis (m-methylbenzoyl peroxide) ), Bis (p-methylbenzoyl peroxide), 2,3-dimethylbenzoyl peroxide, 2,4-dimethylbenzoyl peroxide, 2,6-dimethylbenzoyl peroxide, 2,3,4-trimethylbenzoyl peroxide, 2,4,6-trimethylbenzoylpa Methyl group-substituted benzoyl peroxide such as oxide; t-butyl perbenzoate, dicumyl peroxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, t-butylperoxyisopropyl monocarbonate, Examples thereof include t-butyl peroxyacetate and a mixture thereof. Specific examples of the organic azo compound include 2,2′-azobisisobutyronitrile, 2,2′-azobis (4-methoxy-2,4-dimethylvaleronitrile, 2,2′-azobis). Examples include (2,4-dimethylvaleronitrile), 2,2′-azobis-isobutylvaleronitrile, and 1,1′-azobis (1-cyclohexanecarbonitrile).
 このラジカル開始剤の含有量は特に限定されないが、(A)成分と(B)成分の合計量に対して0.1~10質量(重量)%の範囲内となる量であることが好ましく、特には、0.5~5質量(重量)%の範囲内となる量であることが好ましい。 The content of the radical initiator is not particularly limited, but is preferably an amount that falls within a range of 0.1 to 10 mass (weight)% with respect to the total amount of the component (A) and the component (B). In particular, the amount is preferably in the range of 0.5 to 5 mass (weight)%.
 また、(A)成分が脂肪族不飽和基を有し、(B)成分が脂肪族不飽和基、アクリル基、メタクリル基、或いはケイ素原子結合水素原子を有する場合、並びに、(B)成分が脂肪族不飽和基を有し、(A)成分が脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する場合、各成分の使用量は特に限定されないが、一方の成分中の脂肪族不飽和基1モルに対して、他方の成分中の脂肪族不飽和基、アクリル基、メタクリル基或いはケイ素原子結合水素原子が0.1~50モルの範囲内となる量であり、好ましくは、0.1~30モルの範囲内となる量であり、特に好ましくは、0.1~10モルの範囲内となる量である。これは、脂肪族不飽和基、アクリル基、メタクリル基、或いはケイ素原子結合水素原子の量が、前記範囲の下限未満であると、得られる硬化物を焼成した場合の炭化収率が減少する傾向があり、一方、前記範囲を超えると、得られる硬化物を焼成して得られるケイ素含有炭素系複合材料の電極活物質としての性能が低下する傾向があるからである。 In addition, when the component (A) has an aliphatic unsaturated group, the component (B) has an aliphatic unsaturated group, an acrylic group, a methacryl group, or a silicon atom-bonded hydrogen atom, and the component (B) When it has an aliphatic unsaturated group and the component (A) has an aliphatic unsaturated group, an acrylic group, a methacryl group or a silicon atom-bonded hydrogen atom, the amount of each component used is not particularly limited, The amount of the aliphatic unsaturated group, acrylic group, methacrylic group or silicon atom-bonded hydrogen atom in the other component in the range of 0.1 to 50 moles per mole of the aliphatic unsaturated group of The amount is preferably in the range of 0.1 to 30 mol, and particularly preferably in the range of 0.1 to 10 mol. This is because the amount of aliphatic unsaturated group, acrylic group, methacryl group or silicon-bonded hydrogen atom is less than the lower limit of the above range, the carbonization yield when the obtained cured product is fired tends to decrease. On the other hand, if the above range is exceeded, the performance as an electrode active material of the silicon-containing carbon-based composite material obtained by firing the obtained cured product tends to be reduced.
 (A)成分と(B)成分を架橋反応させてなる硬化物を形成する場合、例えば、下記I又はIIの方法で製造し、次いで、熱処理(焼成)の工程に移ることができる。
I:(A)成分と(B)成分を混合した後、300℃以下、特に60~300℃の温度でプレキュアする。得られた硬化物をそのまま次の焼成工程に用いてもよく、平均粒子径が0.1~30μm、より好ましくは1~20μmの粒度に粉砕した後次の焼成工程に用いてもよい。
II:硬化物を球状の粒子として形成する場合は、例えば、(A)成分と(B)成分からなる架橋性組成物を熱風中に噴霧し架橋反応するか、又は当該架橋性組成物と非相溶性の媒体中に乳化又は分散して架橋反応することが好ましい。
When forming the hardened | cured material formed by carrying out the crosslinking reaction of (A) component and (B) component, it can manufacture by the method of following I or II, for example, Then, it can transfer to the process of heat processing (baking).
I: After mixing the component (A) and the component (B), precure at a temperature of 300 ° C. or less, particularly 60 to 300 ° C. The obtained cured product may be used as it is in the next baking step, or may be used in the next baking step after being pulverized to a particle size of 0.1 to 30 μm, more preferably 1 to 20 μm.
II: When the cured product is formed as spherical particles, for example, a crosslinkable composition comprising the component (A) and the component (B) is sprayed into hot air to cause a crosslink reaction, or the crosslinkable composition and the noncrosslinkable composition It is preferable to carry out a crosslinking reaction by emulsifying or dispersing in a compatible medium.
 (A)成分又は(B)成分の一方が脂肪族不飽和基を有し、他方がケイ素原子結合水素原子を有する場合、前記(A)成分と(B)成分とヒドロシリル化反応用触媒を混合した架橋性組成物を熱風中に微粒子状に噴霧して、ヒドロシリル化反応により架橋し、微粒子状の硬化物粉末を得ることができる。 When one of the component (A) or the component (B) has an aliphatic unsaturated group and the other has a silicon atom-bonded hydrogen atom, the component (A), the component (B) and the hydrosilylation reaction catalyst are mixed. The resulting crosslinkable composition is sprayed into hot air in the form of fine particles and crosslinked by a hydrosilylation reaction to obtain a fine particle cured product powder.
 一方、前記(A)成分と(B)成分とヒドロシリル化反応用触媒を混合した架橋性組成物を、乳化剤の水溶液中に添加し、攪拌により乳化して架橋性組成物の微粒子を形成し、次いでヒドロシリル化反応により架橋し、微粒子状の硬化物粉末を形成することもできる。 On the other hand, the crosslinkable composition obtained by mixing the component (A), the component (B) and the hydrosilylation reaction catalyst is added to an aqueous solution of an emulsifier, and emulsified by stirring to form fine particles of the crosslinkable composition. Subsequently, it can also be crosslinked by a hydrosilylation reaction to form a fine particle cured product powder.
 この乳化剤は特に限定されないが、具体的には、イオン性界面活性剤、ノニオン性界面活性剤、イオン性界面活性剤とノニオン性界面活性剤の混合物が例示される。特に、架橋性組成物と水を混合することにより製造される水中油型エマルジョンの均一分散性及び安定性が良好であることから、1種類以上のイオン性界面活性剤と1種類以上のノニオン性界面活性剤の混合物を用いることが好ましい。 This emulsifier is not particularly limited, and specific examples include ionic surfactants, nonionic surfactants, and mixtures of ionic surfactants and nonionic surfactants. In particular, since the uniform dispersibility and stability of the oil-in-water emulsion produced by mixing the crosslinkable composition and water are good, one or more ionic surfactants and one or more nonionics are used. It is preferred to use a mixture of surfactants.
 また、乳化剤と併用してシリカ(コロイダルシリカ)、酸化チタン等金属酸化物を使用し、硬化物粉末の表面にシリカを保持した状態で炭素化することにより、炭素表面に安定な皮膜を形成し、炭化収率を上げること又は炭素材の放置時に生じる表面酸化を抑制することができる。 In addition, by using a metal oxide such as silica (colloidal silica) or titanium oxide in combination with an emulsifier, carbonization is performed while holding the silica on the surface of the cured powder, thereby forming a stable film on the carbon surface. Further, it is possible to increase the carbonization yield or to suppress surface oxidation that occurs when the carbon material is left standing.
 硬化物粉末の粒子径は特に限定されないが、焼成により、電極活物質として好適な平均粒子径1~20μmのケイ素含有炭素系複合材料を形成することから、その好ましい平均粒子径は5~30μmの範囲内であることが好ましく、特に、5~20μmの範囲内であることが好ましい。 The particle size of the cured product powder is not particularly limited, but since a silicon-containing carbon-based composite material having an average particle size of 1 to 20 μm suitable as an electrode active material is formed by firing, the preferable average particle size is 5 to 30 μm. It is preferably within the range, and particularly preferably within the range of 5 to 20 μm.
 このようにして得られた硬化物粉末の架橋を更に促進し、焼成による炭化収率を向上できることから、空気中、150~300℃で更に熱処理することが好ましい。 It is preferable to further heat-treat at 150 to 300 ° C. in the air, since crosslinking of the cured powder thus obtained can be further promoted and the carbonization yield by firing can be improved.
 本発明のケイ素含有炭素系複合材料は、(A)成分及び(B)成分の硬化物を熱処理(焼成)する工程を経て得ることができる。 The silicon-containing carbon-based composite material of the present invention can be obtained through a step of heat-treating (baking) the cured product of the component (A) and the component (B).
 前記焼成の条件は特には限定されるものではないが、不活性ガス又は真空中、300~1500℃で焼成することが好ましい。不活性ガスとしては、窒素、ヘリウム、アルゴンが例示される。なお、この不活性ガス中に、水素ガス等の還元性ガスを含んでもよい。焼成温度としては、500℃から1000℃の範囲がより好ましい。焼成時間も特に限定されるものではないが、例えば、10分~10時間、好ましくは30分~3時間の範囲とすることができる。 The firing conditions are not particularly limited, but firing at 300 to 1500 ° C. in an inert gas or vacuum is preferable. Nitrogen, helium, and argon are illustrated as an inert gas. The inert gas may contain a reducing gas such as hydrogen gas. The firing temperature is more preferably in the range of 500 ° C to 1000 ° C. The firing time is not particularly limited, but can be, for example, in the range of 10 minutes to 10 hours, preferably 30 minutes to 3 hours.
 焼成は、固定床又は流動床方式の炭化炉で行うことができ、所定温度へ昇温できる機能を有する炉であれば、炭化炉の加熱方式及び種類は特に限定されない。炭化炉として、具体的には、リードハンマー炉、トンネル炉、単独炉、オキシノン炉、ローラーハースキルン、プッシャーキルン、バッチ式ロータリーキルン、連続式ロータリーキルンが例示される。 Calcination can be performed in a fixed bed or fluidized bed type carbonization furnace, and the heating method and type of the carbonization furnace are not particularly limited as long as the furnace has a function of raising the temperature to a predetermined temperature. Specific examples of the carbonization furnace include a lead hammer furnace, a tunnel furnace, a single furnace, an oxynon furnace, a roller hearth kiln, a pusher kiln, a batch rotary kiln, and a continuous rotary kiln.
ローラーハースキルン、プッシャーキルン及び連続式ロータリーキルン等の連続炉を用いた場合、前記の(A)成分と(B)成分を架橋反応させてなる硬化物を形成する工程および硬化物の焼成工程を連続的に行うことができる。また、(A)成分と(B)成分を架橋反応させてなる硬化物を形成する工程、焼成工程、スパッタリングや熱化学蒸着処理等の表面被覆処理工程を連続炉中で連続的に行うこともできる。ローラーハースキルン、プッシャーキルン及び連続式ロータリーキルン等の連続炉を用いた場合、各工程雰囲気中の酸素濃度を厳密に制御できるので、得られるケイ素含有炭素複合材料中の酸素原子の量の制御、調整が容易となるという利点がある。 When a continuous furnace such as a roller hearth kiln, pusher kiln, or continuous rotary kiln is used, a process of forming a cured product obtained by cross-linking the components (A) and (B) and a baking process of the cured product are continuously performed. Can be done automatically. In addition, the step of forming a cured product obtained by crosslinking the component (A) and the component (B), the firing step, and the surface coating treatment step such as sputtering and thermal chemical vapor deposition treatment may be continuously performed in a continuous furnace. it can. When a continuous furnace such as a roller hearth kiln, pusher kiln, or continuous rotary kiln is used, the oxygen concentration in each process atmosphere can be strictly controlled, so the amount of oxygen atoms in the resulting silicon-containing carbon composite material can be controlled and adjusted. There is an advantage that becomes easy.
 このようにして得られた本発明のケイ素含有炭素複合材料は、式:SiO表される化学組成を有する。式中、xは0.8~1.5であり、好ましくは0.8~1.4、より好ましくは0.8~1.3、更により好ましくは0.9~1.2である。yは1.4~7.5であり、好ましくは1.7~7.0、より好ましくは2.0~7.0、更により好ましくは2.5~4.5の範囲である。また本発明のケイ素含有炭素複合材料は、13C MAS NMRスペクトルのsp2炭素原子由来ピーク面積/sp3炭素原子由来ピーク面積が1.6~46、好ましくは2.0~40、より好ましくは3.0~30、最も好ましくは4.0~25である。上記範囲内であると、可逆容量及び充放電サイクル特性が向上し、特に初期の充放電効率が向上する。なお、13C MAS NMRの測定条件は特に限定されず、測定装置に応じて適宜変更可能である。 The silicon-containing carbon composite material of the present invention thus obtained has a chemical composition represented by the formula: SiO x C y . In the formula, x is 0.8 to 1.5, preferably 0.8 to 1.4, more preferably 0.8 to 1.3, and still more preferably 0.9 to 1.2. y is 1.4 to 7.5, preferably 1.7 to 7.0, more preferably 2.0 to 7.0, and still more preferably 2.5 to 4.5. In the silicon-containing carbon composite material of the present invention, the peak area derived from sp2 carbon atom / the peak area derived from sp3 carbon atom in the 13 C MAS NMR spectrum is 1.6 to 46, preferably 2.0 to 40, more preferably 3. It is 0 to 30, and most preferably 4.0 to 25. Within the above range, reversible capacity and charge / discharge cycle characteristics are improved, and in particular, initial charge / discharge efficiency is improved. In addition, the measurement conditions of 13 C MAS NMR are not particularly limited, and can be appropriately changed according to the measurement apparatus.
 13C MAS NMRスペクトルのsp2炭素原子由来のピークは、グラフェン構造等の芳香環が縮合した縮合環中の炭素に帰属でき、その化学シフトは99−160ppmである。13C MAS NMRスペクトルのsp3炭素原子由来のピークは、脂肪族系の炭素に帰属でき、TMSを0ppmとしたときの化学シフト11−49ppmのピークのことをいう。それぞれのピーク面積の算出方法は任意であるが、例えば、ガウシアン波形を用いた近似法により求めることができる。 The peak derived from the sp2 carbon atom in the 13 C MAS NMR spectrum can be attributed to carbon in a condensed ring condensed with an aromatic ring such as a graphene structure, and its chemical shift is 99 to 160 ppm. The peak derived from the sp3 carbon atom in the 13 C MAS NMR spectrum can be attributed to aliphatic carbon and refers to a peak with a chemical shift of 11-49 ppm when TMS is 0 ppm. Although the calculation method of each peak area is arbitrary, it can obtain | require by the approximation method using a Gaussian waveform, for example.
 上記ケイ素含有炭素複合材料の化学組成及び13C MAS NMRスペクトルのsp2炭素原子由来ピーク面積/sp3炭素原子由来ピーク面積は、例えば、(A)成分の種類、(B)成分の種類、及び(A)成分と(B)成分の硬化反応時の量比を変更することにより、硬化物中のケイ素原子1個あたりの酸素原子及び炭素原子の比を予め調整することで制御可能である。特にケイ素原子に結合した芳香族炭化水素基が存在すると焼成後の「y」の値及び13C MAS NMRスペクトルのsp2炭素原子由来ピーク面積/sp3炭素原子由来ピーク面積比の制御が容易になることから、(A)成分がケイ素原子を含み、(A)成分若しくは(B)成分のいずれか、又は両方がケイ素原子結合芳香族炭化水素基を含有することが好ましい。また焼成時の熱処理雰囲気、不活性ガスの流量、昇温速度及び熱処理時間でも制御可能である。 The chemical composition of the silicon-containing carbon composite material and the sp2 carbon atom-derived peak area / sp3 carbon atom-derived peak area of the 13 C MAS NMR spectrum are, for example, (A) component type, (B) component type, and (A It is possible to control by adjusting in advance the ratio of oxygen atom and carbon atom per silicon atom in the cured product by changing the quantitative ratio of component (B) and component (B) during the curing reaction. In particular, if there is an aromatic hydrocarbon group bonded to a silicon atom, it becomes easy to control the value of “y” after firing and the ratio of the peak area derived from sp2 carbon atom / sp3 carbon atom derived from 13 C MAS NMR spectrum. Therefore, it is preferable that the component (A) contains a silicon atom, and either the component (A) or the component (B) or both contain a silicon atom-bonded aromatic hydrocarbon group. It can also be controlled by the heat treatment atmosphere during firing, the flow rate of the inert gas, the heating rate, and the heat treatment time.
 ケイ素含有炭素系複合材料は、ケイ素原子が酸素原子及び炭素原子に結合しており、且つ、アモルファス構造であることが好ましい。このような構造は29Si MAS NMRやX線回折分析により確認することができる。ケイ素含有炭素系複合材料が結晶化すると、充放電サイクル特性や初期充放電効率が低下する恐れがある。 The silicon-containing carbon-based composite material preferably has an amorphous structure in which silicon atoms are bonded to oxygen atoms and carbon atoms. Such a structure can be confirmed by 29 Si MAS NMR or X-ray diffraction analysis. If the silicon-containing carbon-based composite material is crystallized, the charge / discharge cycle characteristics and the initial charge / discharge efficiency may be reduced.
 本発明のケイ素含有炭素系複合材料の表面に、金属や炭素による表面被覆処理を更に実施してもよい。但し、上記組成式中の「y」、「sp2炭素原子」及び「sp3炭素原子」には表面被覆炭素相中の炭素原子は含まれない。 The surface of the silicon-containing carbon-based composite material of the present invention may be further subjected to a surface coating treatment with metal or carbon. However, “y”, “sp2 carbon atom”, and “sp3 carbon atom” in the above composition formula do not include carbon atoms in the surface-coated carbon phase.
 ケイ素含有炭素系複合材料の炭素表面被覆方法は任意である。例えば、非酸化性雰囲気下で800℃以上の温度でケイ素含有炭素系複合材料表面に(D1)蒸着炭素源由来の炭素皮膜を熱化学蒸着処理してもよい。また、(D2)熱により炭化する有機材料とケイ素含有炭素系複合材料とを混合し更に焼成することで、熱により炭化する有機材料に由来する炭素相で覆われたケイ素含有炭素系複合材料を得ることもできる。 The carbon surface coating method of the silicon-containing carbon-based composite material is arbitrary. For example, the carbon film derived from the vapor deposition carbon source (D1) may be subjected to thermal chemical vapor deposition on the surface of the silicon-containing carbon-based composite material at a temperature of 800 ° C. or higher in a non-oxidizing atmosphere. In addition, (D2) a silicon-containing carbon-based composite material covered with a carbon phase derived from an organic material that is carbonized by heat by mixing an organic material that is carbonized by heat and a silicon-containing carbon-based composite material and further firing the mixture. It can also be obtained.
 熱化学蒸着処理に用いる装置は、非酸化性雰囲気で800℃以上に加熱する手段を有する装置であれば特に限定されず、その目的に応じて適宜選択することができる。連続法、回分法及びこれらを併用した装置が使用でき、具体的には、流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、バッチ式ロータリーキルン、連続ロータリーキルンが例示される。 The apparatus used for the thermal chemical vapor deposition is not particularly limited as long as it has an apparatus for heating to 800 ° C. or higher in a non-oxidizing atmosphere, and can be appropriately selected according to the purpose. A continuous method, a batch method, and an apparatus using both of these can be used. Specific examples include a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a batch rotary kiln, and a continuous rotary kiln. The
 熱化学蒸着処理に用いる(D1)蒸着炭素源としては、具体的には、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の脂肪族系炭化水素若しくはこれらの混合物;ベンゼン、ジビニルベンゼン、モノビニルベンゼン、エチルビニルベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の芳香族系炭化水素;タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油;前記焼成工程発生した排気ガス若しくはこれらの混合物が例示される。メタンやアセチレンであることが一般的である。 Specifically, (D1) vapor deposition carbon source used in the thermal chemical vapor deposition treatment is an aliphatic hydrocarbon such as methane, ethane, ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, or a mixture thereof. ; Aromatic hydrocarbons such as benzene, divinylbenzene, monovinylbenzene, ethyl vinylbenzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone, pyridine, anthracene, phenanthrene Gas gas oil, creosote oil, anthracene oil, naphtha cracked tar oil obtained in the tar distillation process; exhaust gas generated in the calcination process, or a mixture thereof. It is common to be methane or acetylene.
 非酸化性雰囲気は、前記蒸着炭素源ガス又はその気化ガス;アルゴンガス、ヘリウムガス、水素ガス、窒素ガス等の非酸化性ガス;及びこれらの混合ガス等を熱化学蒸着処理装置内に導入することで得ることができる。 The non-oxidizing atmosphere includes the vapor deposition carbon source gas or a vaporized gas thereof; a non-oxidizing gas such as argon gas, helium gas, hydrogen gas, nitrogen gas; Can be obtained.
 (D2)熱により炭化する有機材料とケイ素含有炭素複合材料とを混合後更に焼成して、熱により炭化する有機材料に由来する炭素相で覆われたケイ素含有炭素系複合材料を得る場合、焼成は、前記と同様にしておこなうことができる。(D2)熱により炭化する有機材料としては、具体的には、常温で液状若しくはワックス状のパラフィン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリメチルメタクリレート、ウレタン樹脂、AS樹脂、ABS樹脂、ポリ塩化ビニル、ポリアセタール、芳香族系ポリカーボネート樹脂、芳香族系ポリエステル樹脂、コールタール、フェノール樹脂、エポキシ樹脂、ウレア樹脂、メラミン樹脂、フッ素樹脂、イミド樹脂、ウレタン樹脂、フラン樹脂、及びこれらの混合物が例示される。中でも、芳香族系ポリカーボネート、芳香族系ポリエステル、コールタール、フェノール樹脂、フッ素樹脂、イミド樹脂、フラン樹脂等の高分子量芳香族化合物やメラミン樹脂であることが好ましい。グラフェン構造の形成が容易である等、熱による炭化効率がよいからである。 (D2) When the organic material carbonized by heat and the silicon-containing carbon composite material are mixed and further baked to obtain a silicon-containing carbon-based composite material covered with the carbon phase derived from the organic material carbonized by heat. Can be performed in the same manner as described above. (D2) Specific examples of organic materials that are carbonized by heat include paraffin, polyethylene, polypropylene, polystyrene, polymethyl methacrylate, urethane resin, AS resin, ABS resin, polyvinyl chloride, and polyacetal that are liquid or waxy at room temperature. And aromatic polycarbonate resins, aromatic polyester resins, coal tar, phenol resins, epoxy resins, urea resins, melamine resins, fluororesins, imide resins, urethane resins, furan resins, and mixtures thereof. Among these, high molecular weight aromatic compounds such as aromatic polycarbonates, aromatic polyesters, coal tars, phenol resins, fluororesins, imide resins, furan resins, and melamine resins are preferable. This is because the carbonization efficiency by heat is good, for example, the formation of the graphene structure is easy.
 ケイ素含有炭素複合材料表面に炭素による被覆をおこなう場合、炭素の被覆量は、ケイ素含有炭素系複合材料中0.5~50質量(重量)%であることが好ましく、1~30質量(重量)%であることがより好ましく、1~20質量(重量)%であることが更に好ましい。電極活物質としてケイ素含有炭素系複合材料のみを使用する場合でも好適な導電性を有し、電極の充放電容量の低下を抑制できるからである。 When the surface of the silicon-containing carbon composite material is coated with carbon, the coating amount of carbon is preferably 0.5 to 50 mass (weight)% in the silicon-containing carbon-based composite material, and 1 to 30 mass (weight). %, More preferably 1 to 20% by mass (weight). This is because even when only a silicon-containing carbon-based composite material is used as the electrode active material, it has suitable conductivity and can suppress a decrease in charge / discharge capacity of the electrode.
 ケイ素含有炭素系複合材料の金属表面被覆方法は任意である。例えば、真空蒸着、スパッタリング、電解めっきや無電解めっきにより金、銀、銅、鉄、亜鉛、白金、アルミ、コバルト、ニッケル、チタン、パラジウム、ステンレススチール等の金属被覆をケイ素含有炭素系複合材料表面に形成することができる。中でも、ニッケルと銅が表面被覆金属として好適である。 The metal surface coating method of the silicon-containing carbon-based composite material is arbitrary. For example, the surface of a silicon-containing carbon-based composite material with a metal coating such as gold, silver, copper, iron, zinc, platinum, aluminum, cobalt, nickel, titanium, palladium, stainless steel, etc. by vacuum deposition, sputtering, electrolytic plating or electroless plating Can be formed. Among these, nickel and copper are suitable as the surface coating metal.
 本発明のケイ素含有炭素系複合材料は、平均粒子径が5nm~50μmの粒子の形態であることができる。平均粒子径は10nm~40μmであることが好ましく、100nm~30μmであることがより好ましく、1μm~20μmであることが更により好ましい。 The silicon-containing carbon-based composite material of the present invention can be in the form of particles having an average particle diameter of 5 nm to 50 μm. The average particle size is preferably 10 nm to 40 μm, more preferably 100 nm to 30 μm, and even more preferably 1 μm to 20 μm.
 本発明のケイ素含有炭素系複合材料は電極活物質として使用することができる。本発明の電極活物質は粒子の形態であることができ、その場合の平均粒子径は1~50μmであることが好ましく、1~40μmであることがより好ましく、1~30μmであることが更により好ましい。 The silicon-containing carbon-based composite material of the present invention can be used as an electrode active material. The electrode active material of the present invention can be in the form of particles, in which case the average particle size is preferably 1 to 50 μm, more preferably 1 to 40 μm, and further preferably 1 to 30 μm. Is more preferable.
 本発明のケイ素含有炭素系複合材料からなる電極活物質は、高い可逆容量と安定した充放電サイクル特性を有し、リチウムが放出される際の電位損失が小さい電極を簡易な製造プロセスで製造可能とすることができる。したがって、この電極活物質は非水電解質二次電池の電極用活物質として好適に使用することができる。特に、この電極活物質はリチウム又はリチウムイオン二次電池の電極の活物質として好適である。 The electrode active material comprising the silicon-containing carbon-based composite material of the present invention has a high reversible capacity, stable charge / discharge cycle characteristics, and can produce an electrode with a small potential loss when lithium is released by a simple manufacturing process. It can be. Therefore, this electrode active material can be suitably used as an active material for an electrode of a nonaqueous electrolyte secondary battery. In particular, this electrode active material is suitable as an active material for electrodes of lithium or lithium ion secondary batteries.
(電極)
 本発明の電極は、前記の電極活物質を含有することを特徴とし、電極の形状及び調製方法は特に限定されるものでない。本発明の電極を調製する方法として、具体的には、ケイ素含有炭素系複合材料をバインダーと混合して電極を作製する方法;ケイ素含有炭素系複合材料をバインダー及び溶媒と混合し、得られたペーストを、集電体上に圧着し、或いは集電体上に塗布し、その後に乾燥して電極とする等の方法により電極を作製する方法が例示される。また、集電体に塗布したペーストの膜厚は、例えば、30~500μm、好ましくは50~300μm程度である。なお、塗布後の乾燥の手段は特に限定されるものではないが、加熱真空乾燥処理が好ましい。乾燥処理後の集電体上の電極材料の膜厚は、例えば、10~300μm、好ましくは20~200μm程度である。なお、ケイ素含有炭素系複合材料が繊維状の場合には、一軸方向に配したり、織物等の構造体の形にし、金属や導電性高分子等の導電性繊維で束ねたり編み込むことにより、電極を作製することができる。電極の形成においては、必要に応じて端子を組み合わせてもよい。
(electrode)
The electrode of the present invention is characterized by containing the above electrode active material, and the shape and preparation method of the electrode are not particularly limited. Specifically, the electrode of the present invention was prepared by mixing a silicon-containing carbon-based composite material with a binder to produce an electrode; obtained by mixing the silicon-containing carbon-based composite material with a binder and a solvent. Examples of the method of producing the electrode include a method in which the paste is pressure-bonded on the current collector or coated on the current collector and then dried to form an electrode. The thickness of the paste applied to the current collector is, for example, about 30 to 500 μm, preferably about 50 to 300 μm. The means for drying after coating is not particularly limited, but a heat vacuum drying treatment is preferable. The film thickness of the electrode material on the current collector after the drying treatment is, for example, about 10 to 300 μm, preferably about 20 to 200 μm. In addition, when the silicon-containing carbon-based composite material is in a fibrous form, it is arranged in a uniaxial direction, or in the form of a structure such as a woven fabric, and bundled or braided with conductive fibers such as metal or conductive polymer, An electrode can be produced. In forming the electrodes, terminals may be combined as necessary.
 集電体は、特に限定されるものではなく、具体的には、銅、ニッケル、又はそれらの合金等の金属のメッシュ、箔が例示される。 The current collector is not particularly limited, and specifically, a metal mesh or foil such as copper, nickel, or an alloy thereof is exemplified.
 バインダーとして、具体的には、フッ素系樹脂(ポリフッ化ビニリデン、ポリテトラフルオロエチレン等)、スチレン−ブタジエン樹脂が例示される。バインターの使用量は、特に限定されるものではなく、その下限値は、ケイ素含有炭素系複合材料100質量(重量)部に対して、5~30質量(重量)部の範囲内であり、好ましくは5~20質量(重量)部の範囲内である。バインダーの使用量が前記範囲を外れると、例えば、集電体表面上へのケイ素含有炭素系複合材料の密着強度が不十分になり、また、電極内部抵抗上昇の原因となる絶縁層が形成されるおそれがある。ペーストの調製方法は、特に制限されず、例えば、バインダーと有機溶媒との混合液(又は分散液)にケイ素含有炭素系複合材料を混合する方法等を例示することができる。 Specific examples of the binder include fluorine resins (polyvinylidene fluoride, polytetrafluoroethylene, etc.) and styrene-butadiene resins. The amount of the binder used is not particularly limited, and the lower limit thereof is preferably in the range of 5 to 30 mass (weight) parts with respect to 100 mass (weight) parts of the silicon-containing carbon-based composite material, preferably Is in the range of 5 to 20 parts by mass (weight). When the amount of the binder used is outside the above range, for example, the adhesion strength of the silicon-containing carbon-based composite material on the current collector surface becomes insufficient, and an insulating layer that causes an increase in electrode internal resistance is formed. There is a risk. The method for preparing the paste is not particularly limited, and examples thereof include a method of mixing a silicon-containing carbon-based composite material in a mixed liquid (or dispersion liquid) of a binder and an organic solvent.
 溶媒としては、通常、バインダーを溶解又は分散可能な溶媒が使用され、具体的には、N−メチルピロリドン、N,N−ジメチルホルムアミド等の有機溶媒を例示することができる。溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、ケイ素含有炭素系複合材料100質量(重量)部に対して、通常、0.01~500質量(重量)部の範囲内、好ましくは0.01~400質量(重量)部の範囲内で、更に好ましくは0.01~300質量(重量)部の範囲内である。 As the solvent, a solvent capable of dissolving or dispersing the binder is usually used, and specific examples thereof include organic solvents such as N-methylpyrrolidone and N, N-dimethylformamide. The amount of the solvent used is not particularly limited as long as it is in a paste form, and is usually within a range of 0.01 to 500 mass (weight) parts with respect to 100 mass (weight) parts of the silicon-containing carbon-based composite material, Preferably it is in the range of 0.01 to 400 parts by weight (weight), more preferably in the range of 0.01 to 300 parts by weight (weight).
 なお、本発明の電極には任意の添加材を配合してもよい。例えば、導電助剤を加えて電極を製造してもよい。導電助剤の使用割合は特に制限されないが、ケイ素含有炭素系複合材料100質量(重量)部に対して、2~60質量(重量)部の範囲内であり、好ましくは5~40質量(重量)部の範囲内であり、更に好ましくは5~20質量(重量)部の範囲内である。導電性に優れ、電極の充放電容量の低下を抑制できるからである。 In addition, you may mix | blend arbitrary additives with the electrode of this invention. For example, you may manufacture an electrode by adding a conductive support agent. The use ratio of the conductive auxiliary agent is not particularly limited, but is within the range of 2 to 60 mass (weight) parts, preferably 5 to 40 mass (weight) with respect to 100 mass (weight) parts of the silicon-containing carbon-based composite material. ) Parts, and more preferably in the range of 5 to 20 parts by weight (weight). It is because it is excellent in electroconductivity and can suppress the fall of the charge / discharge capacity of an electrode.
 導電助剤としては、カーボンブラック(ケッチェンブラック、アセチレンブラック等)、炭素繊維、カーボンナノチューブ等が例示できる。導電助剤は、単独で又は2種以上組み合わせて使用することができる。なお、導電助剤は、例えば、ケイ素含有炭素系複合材料、バインダー及び溶媒を含むペーストに混合することができる。 Examples of the conductive aid include carbon black (Ketjen black, acetylene black, etc.), carbon fiber, carbon nanotube, and the like. A conductive support agent can be used individually or in combination of 2 or more types. In addition, a conductive support agent can be mixed with the paste containing a silicon containing carbon type composite material, a binder, and a solvent, for example.
 また、本発明の電極にはその他任意の添加材として、黒鉛等の電極活物質を配合してもよい。 Moreover, an electrode active material such as graphite may be blended in the electrode of the present invention as any other additive.
(蓄電デバイス)
 本発明の蓄電デバイスは、前記の電極を備えたことを特徴とする。このような蓄電デバイスとしては、リチウム一次電池、リチウム二次電池、リチウムイオン二次電池、キャパシタ、ハイブリッドキャパシタ(レドックスキャパシタ)、有機ラジカル電池、デュアルカーボン電池が例示され、特にリチウム又はリチウムイオン二次電池が好ましい。リチウムイオン二次電池は、例えば、前記電極からなる負極、リチウムを吸蔵・放出可能な正極、電解液、セパレータ、集電体、ガスケット、封口板、ケース等の電池構成要素を用い、常法により製造することができる。リチウム二次電池は、例えば、前記電極からなる正極、金属リチウムからなる負極、電解液、セパレータ、集電体、ガスケット封口板、ケース等の電池構成要素を用い、常法により製造することができる。
(Electric storage device)
An electricity storage device according to the present invention includes the electrode. Examples of such electricity storage devices include lithium primary batteries, lithium secondary batteries, lithium ion secondary batteries, capacitors, hybrid capacitors (redox capacitors), organic radical batteries, and dual carbon batteries, particularly lithium or lithium ion secondary batteries. A battery is preferred. Lithium ion secondary batteries use, for example, battery components such as a negative electrode comprising the above electrodes, a positive electrode capable of inserting and extracting lithium, an electrolyte solution, a separator, a current collector, a gasket, a sealing plate, a case, and the like. Can be manufactured. The lithium secondary battery can be produced by a conventional method using battery components such as a positive electrode made of the electrode, a negative electrode made of metallic lithium, an electrolyte, a separator, a current collector, a gasket sealing plate, and a case. .
 本発明の電池の好ましい態様であるリチウム又はリチウムイオン二次電池を図1及び図2により詳細に説明する。 The lithium or lithium ion secondary battery, which is a preferred embodiment of the battery of the present invention, will be described in detail with reference to FIGS.
 図1は、本発明の電池の一例であるリチウムイオン二次電池であるボタン形電池の概略分解断面図である。 FIG. 1 is a schematic exploded sectional view of a button-type battery which is a lithium ion secondary battery which is an example of the battery of the present invention.
 図1に示すリチウムイオン二次電池は、上面開口有底円筒形状のケース1、ケース1の外周と略同等のサイズの内周を有する両端開口円筒形状のガスケット2、ワッシャー3、SUS板4、集電体5、本発明のケイ素含有炭素系複合材料を電極活物質として含む負極6、セパレータ7、正極8、集電体9、及び、封口板10からなる。 A lithium ion secondary battery shown in FIG. 1 includes a cylindrical case 1 having a bottom surface with a top opening, a cylindrical gasket 2 having an inner periphery that is substantially the same size as the outer periphery of the case 1, a washer 3, a SUS plate 4, It consists of a current collector 5, a negative electrode 6 containing the silicon-containing carbon-based composite material of the present invention as an electrode active material, a separator 7, a positive electrode 8, a current collector 9, and a sealing plate 10.
 図1に示すリチウムイオン二次電池のケース1内には、ケース1の内周よりも若干小さいサイズの略リング状であるワッシャー3が収容されており、ワッシャー3の上にケース1の内周よりも若干小さいサイズの略円盤状であるSUS板4が載置されている。SUS板4の上には、共にケース1の内周よりも若干小さいサイズの略円盤状である集電体5及び負極6が配設される。負極6の上には、ケース1の内周と略同等のサイズの一枚の円盤状部材としてのセパレータ7が載置され、セパレータ7には電解液が含浸されている。なお、セパレータ7は2枚以上の円盤状部材から構成されていてもよい。セパレータ7上には負極6と略同等のサイズの正極8及び集電体5と略同等のサイズの集電体9が配設される。集電体5は銅、ニッケル等の金属からなる箔、メッシュ等で構成されており、集電体9はアルミニウム等の金属からなる箔、メッシュ等で構成されており、それぞれ、負極6及び正極8に密着して一体化している。 In the case 1 of the lithium ion secondary battery shown in FIG. 1, a washer 3 having a substantially ring shape slightly smaller than the inner periphery of the case 1 is accommodated, and the inner periphery of the case 1 is placed on the washer 3. A SUS plate 4 having a substantially disk shape slightly smaller than that is placed. On the SUS plate 4, a current collector 5 and a negative electrode 6 that are both substantially disk-shaped and slightly smaller than the inner circumference of the case 1 are disposed. On the negative electrode 6, a separator 7 as a disk-shaped member having a size substantially the same as the inner periphery of the case 1 is placed, and the separator 7 is impregnated with an electrolytic solution. The separator 7 may be composed of two or more disk-shaped members. On the separator 7, a positive electrode 8 having a size substantially equal to that of the negative electrode 6 and a current collector 9 having a size substantially equal to that of the current collector 5 are disposed. The current collector 5 is made of foil, mesh, or the like made of metal such as copper or nickel, and the current collector 9 is made of foil, mesh, or the like made of metal such as aluminum, and the negative electrode 6 and the positive electrode, respectively. 8 is in close contact with and integrated.
 図1に示すリチウムイオン二次電池では、ケース1の壁面にガスケット2が嵌合されており、ガスケット2よりも若干大きいサイズの内周面を有する下面開口有底円筒形状の封口板10の当該内周面がガスケット2の外周面に更に嵌合されている。これにより、ケース1と封口板10はガスケット2によって絶縁され、ケース1、ガスケット2、ワッシャー3、SUS板4、集電体5、負極6、セパレータ7、正極8、集電体9及び封口板10の軸線が一致したボタン形電池が形成される。 In the lithium ion secondary battery shown in FIG. 1, the gasket 2 is fitted to the wall surface of the case 1, and the bottom-opening bottomed cylindrical sealing plate 10 having an inner peripheral surface slightly larger in size than the gasket 2. The inner peripheral surface is further fitted to the outer peripheral surface of the gasket 2. As a result, the case 1 and the sealing plate 10 are insulated by the gasket 2, and the case 1, the gasket 2, the washer 3, the SUS plate 4, the current collector 5, the negative electrode 6, the separator 7, the positive electrode 8, the current collector 9 and the sealing plate. A button-type battery in which 10 axes coincide with each other is formed.
 図1に示すリチウムイオン二次電池における正極8は、特に限定されるものではなく、例えば、正極活物質、導電助材及びバインダー等で構成することができる。正極活物質としては、例えば、LiCoO、LiNiO、LiMn等の金属酸化物、LiFePO、LiFeSiO等のポリアニオン型酸化物、スピネル型LiMn等を挙げることができる。正極活物質は、単独で又は二種以上組み合わせて使用してもよい。導電助材及びバインダーとしては上記と同様のものが例示される。 The positive electrode 8 in the lithium ion secondary battery shown in FIG. 1 is not particularly limited, and can be composed of, for example, a positive electrode active material, a conductive additive, a binder, and the like. Examples of the positive electrode active material include metal oxides such as LiCoO 2 , LiNiO 2 , and LiMn 2 O 4 , polyanionic oxides such as LiFePO 4 and Li 2 FeSiO 4 , and spinel-type LiMn 2 O 4. . You may use a positive electrode active material individually or in combination of 2 or more types. Examples of the conductive aid and binder are the same as described above.
 図2は実施例で作製した本発明の電池の一例であるリチウム二次電池であるボタン形電池の概略分解断面図である。 FIG. 2 is a schematic exploded cross-sectional view of a button-type battery that is a lithium secondary battery that is an example of the battery of the present invention manufactured in the examples.
 図2に示すリチウム二次電池は、上面開口有底円筒形状のケース1、ケース1の外周と略同等のサイズの内周を有する両端開口円筒形状のガスケット2、ワッシャー3、SUS板4、金属リチウムからなる負極6、セパレータ7、本発明のケイ素含有炭素系複合材料を電極活物質として含む正極8、集電体9’、及び、封口板10からなる。 The lithium secondary battery shown in FIG. 2 includes a cylindrical case 1 having a bottom surface with a top opening, a cylindrical gasket 2 having an inner periphery substantially the same size as the outer periphery of the case 1, a washer 3, a SUS plate 4, and a metal. It consists of a negative electrode 6 made of lithium, a separator 7, a positive electrode 8 containing the silicon-containing carbon-based composite material of the present invention as an electrode active material, a current collector 9 ′, and a sealing plate 10.
 図2に示すリチウム二次電池のケース1内には、ケース1の内周よりも若干小さいサイズの略リング状であるワッシャー3が収容されており、ワッシャー3の上にケース1の内周よりも若干小さいサイズの略円盤状であるSUS板4が載置されている。SUS板4の上には、ケース1の内周よりも若干小さいサイズの略円盤状である負極6が配設される。負極6の上には、ケース1の内周と略同等のサイズの一枚の円盤状部材としてのセパレータ7が載置され、セパレータ7には電解液が含浸されている。なお、セパレータ7は2枚以上の円盤状部材から構成されていてもよい。セパレータ7上には負極6と略同等のサイズの正極8及び集電体9’が配設される。集電体9’は銅、ニッケル等の金属からなる箔、メッシュ等で構成されており、正極8に密着して一体化している。 In the case 1 of the lithium secondary battery shown in FIG. 2, a washer 3 having a substantially ring shape that is slightly smaller than the inner periphery of the case 1 is accommodated. Also, a SUS plate 4 having a substantially disk shape with a slightly smaller size is placed. On the SUS plate 4, a negative electrode 6 having a substantially disk shape slightly smaller than the inner periphery of the case 1 is disposed. On the negative electrode 6, a separator 7 as a disk-shaped member having a size substantially the same as the inner periphery of the case 1 is placed, and the separator 7 is impregnated with an electrolytic solution. The separator 7 may be composed of two or more disk-shaped members. On the separator 7, a positive electrode 8 and a current collector 9 ′ having substantially the same size as the negative electrode 6 are disposed. The current collector 9 ′ is made of a foil, mesh, or the like made of a metal such as copper or nickel, and is in close contact with the positive electrode 8 so as to be integrated.
 図2に示すリチウム二次電池では、ケース1の壁面にガスケット2が嵌合されており、ガスケット2よりも若干大きいサイズの内周面を有する下面開口有底円筒形状の封口板10の当該内周面がガスケット2の外周面に更に嵌合されている。これにより、ケース1と封口板10はガスケット2によって絶縁され、ケース1、ガスケット2、ワッシャー3、SUS板4、負極6、セパレータ7、正極8、集電体9’及び封口板10の軸線が一致したボタン形電池が形成される。 In the lithium secondary battery shown in FIG. 2, the gasket 2 is fitted to the wall surface of the case 1, and the inside of the bottom-opening bottomed cylindrical sealing plate 10 having an inner peripheral surface slightly larger in size than the gasket 2. The peripheral surface is further fitted to the outer peripheral surface of the gasket 2. Thereby, the case 1 and the sealing plate 10 are insulated by the gasket 2, and the axes of the case 1, the gasket 2, the washer 3, the SUS plate 4, the negative electrode 6, the separator 7, the positive electrode 8, the current collector 9 ', and the sealing plate 10 are aligned. A matched button cell is formed.
 図1及び図2に示すリチウム又はリチウムイオン二次電池に含まれる電解液は、特に限定されるものではなく、公知のものを用いることができる。例えば、電解液として、有機溶媒に電解質を溶解させた溶液を用いることにより、非水系リチウム又はリチウムイオン二次電池を製造することができる。電解質としては、例えば、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiCl、LiI等のリチウム塩を例示することができる。有機溶媒としては、例えば、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート等)、ラクトン類(γ一ブチロラクトン等)、鎖状エーテル類(1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテル等)、環状エーテル類(テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソラン等)、スルホラン類(スルホラン等)、スルホキシド類(ジメチルスルホキシド等)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリル等)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド等)、ポリオキシアルキレングリコール類(ジエチレングリコール等)等の非プロトン性溶媒を例示することができる。有機溶媒は、単独で用いてもよく二種以上の混合溶媒として用いてもよい。電解質濃度は、例えば、電解液1Lに対して、電解質0.3~5モル、好ましくは0.5~3モル、更に好ましくは0.8~1.5モル程度である。 The electrolytic solution contained in the lithium or lithium ion secondary battery shown in FIGS. 1 and 2 is not particularly limited, and known ones can be used. For example, a non-aqueous lithium or lithium ion secondary battery can be manufactured by using a solution obtained by dissolving an electrolyte in an organic solvent as the electrolytic solution. As the electrolyte, for example, can be exemplified LiPF 6, LiClO 4, LiBF 4 , LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiCl, lithium salt such as LiI. Examples of the organic solvent include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), cyclic Ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, benzonitrile, etc.), amides Aprotic solvents such as (N, N-dimethylformamide, N, N-dimethylacetamide and the like) and polyoxyalkylene glycols (diethylene glycol and the like) can be exemplified. An organic solvent may be used independently and may be used as a 2 or more types of mixed solvent. The electrolyte concentration is, for example, about 0.3 to 5 mol, preferably 0.5 to 3 mol, and more preferably about 0.8 to 1.5 mol with respect to 1 L of the electrolyte.
 図1及び図2に示すリチウム又はリチウムイオン二次電池におけるセパレータ4は、特に限定されるものではなく、公知のセパレータ、例えば、多孔質ポリプロピレン製不織布、多孔質ポリエチレン製不織布等のポリオレフィン系の多孔質膜等を使用することができる。 The separator 4 in the lithium or lithium ion secondary battery shown in FIGS. 1 and 2 is not particularly limited, and is a known separator, for example, a polyolefin-based porous material such as a porous polypropylene nonwoven fabric or a porous polyethylene nonwoven fabric. A membrane or the like can be used.
 本発明の蓄電デバイスは、図1、図2に示した例に限定されるものではなく、例えば、積層形、パック形、ボタン形、ガム形、組電池形、角形といった様々な形態のものに適用可能である。本発明の知でンデバイス、特に、リチウム又はリチウムイオン二次電池は、軽量且つ高容量で高エネルギー密度の特徴を利用して、ビデオカメラ、パソコン、ワープロ、ラジカセ、携帯電話等の携帯用小型電子機器の電源、ハイブリット自動車や電気自動車の電源、電力貯蔵用電源として使用されることが好ましい。 The electricity storage device of the present invention is not limited to the examples shown in FIGS. 1 and 2, and may be various forms such as a laminated shape, a pack shape, a button shape, a gum shape, an assembled battery shape, and a square shape. Applicable. The devices of the present invention, particularly lithium or lithium ion secondary batteries, are lightweight and have high capacity and high energy density, so that they can be used in small portable devices such as video cameras, personal computers, word processors, radio cassettes, and mobile phones. It is preferably used as a power source for electronic devices, a power source for hybrid vehicles and electric vehicles, and a power storage power source.
 本発明の電極活物質は、高い可逆容量と安定した充放電サイクル特性を有し、かつ初期の充放電効率が高く、蓄電デバイス、特にリチウム又はリチウムイオン二次電池の電極に好適である。また、本発明の電極活物質は、廉価な原料を用いて、簡易な製造プロセスで製造可能である。そして、本発明の電極は、電池に高い可逆容量と安定した充放電サイクル特性、且つ、高い初期充放電効率を付与できる。したがって、本発明の蓄電デバイスは、高い可逆容量と安定した充放電サイクル特性、且つ、高い初期充放電効率を有することができる。 The electrode active material of the present invention has a high reversible capacity and stable charge / discharge cycle characteristics and high initial charge / discharge efficiency, and is suitable for an electrode of an electricity storage device, particularly lithium or lithium ion secondary battery. Moreover, the electrode active material of the present invention can be manufactured by a simple manufacturing process using inexpensive raw materials. The electrode of the present invention can impart high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency to the battery. Therefore, the electricity storage device of the present invention can have high reversible capacity, stable charge / discharge cycle characteristics, and high initial charge / discharge efficiency.
 以下、実施例及び比較例に基づいて本発明を詳細に説明するが、本発明は実施例に限定されるものではない。なお、実施例及び比較例における各元素分析、13C MAS NMR測定、sp2ピーク面積/sp3ピーク面積決定、及び、電池特性の評価は以下のとおりに実施された。 EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example and a comparative example, this invention is not limited to an Example. In addition, each elemental analysis in an Example and a comparative example, < 13 > C MAS NMR measurement, sp2 peak area / sp3 peak area determination, and evaluation of the battery characteristic were implemented as follows.
 [元素分析]
 C、H、N分析:酸素循環燃焼法・TCD検出方式及び高周波燃焼法・赤外線吸収検出方式により検出された元素量の総和により求めた。
装置:NCH−21またはNCH−22F型(住化分析センター社製)
装置:CS−LS600(LECO社製)
O分析:高温炭素反応・NDIR検出方式
装置:EMGA−2800(堀場製作所社製)
Si分析:試料を灰化、アルカリ溶融、酸溶解して分解した後、ICP検出を行った。
装置:iCAP6500DuoView(サーモフィッシャーサイエンティフィック社製)
[Elemental analysis]
C, H, N analysis: The total amount of elements detected by the oxygen circulating combustion method / TCD detection method and the high frequency combustion method / infrared absorption detection method was used.
Apparatus: NCH-21 or NCH-22F type (manufactured by Sumika Chemical Analysis Service)
Device: CS-LS600 (manufactured by LECO)
O analysis: high temperature carbon reaction / NDIR detection system: EMGA-2800 (manufactured by Horiba, Ltd.)
Si analysis: Samples were incinerated, melted with alkali, dissolved in acid and decomposed, and then ICP detection was performed.
Device: iCAP6500 DuoView (manufactured by Thermo Fisher Scientific)
 [13C MAS NMR]
Chemagnetics社製 CMX−300Infinity
測定方法: 定量性を確保するためDD MAS法を用いた。
測定核周波数:75.19MHz
試料回転数:10.5kHz
基準物質:ポリジメチルシロキサン(1.56ppm:TMSを0ppmとしたときの化学シフト)
[ 13 C MAS NMR]
CMX-300 Infinity manufactured by Chemicals
Measuring method: DD MAS method was used to ensure quantitativeness.
Measurement nuclear frequency: 75.19 MHz
Sample rotation speed: 10.5 kHz
Reference substance: polydimethylsiloxane (1.56 ppm: chemical shift when TMS is 0 ppm)
 [sp2ピーク面積/sp3ピーク面積の比]
13C MAS NMRスペクトル中の99−160ppmのピーク面積をsp2炭素に由来するとし、11−49ppmのピーク面積をsp3炭素に由来するものとし、それぞれのピークについてガウシアン波形を用いた近似法によりピーク面積を求めて、sp2炭素原子由来ピーク面積/sp3炭素原子由来ピーク面積の比を求めた。
[Ratio of sp2 peak area / sp3 peak area]
The peak area of 99-160 ppm in the 13 C MAS NMR spectrum is assumed to be derived from sp2 carbon, the peak area of 11-49 ppm is assumed to be derived from sp3 carbon, and the peak area is approximated using a Gaussian waveform for each peak. The ratio of the peak area derived from sp2 carbon atoms / the peak area derived from sp3 carbon atoms was determined.
 [電池特性]
 本発明のケイ素含有炭素材料のリチウム挿入脱離容量を次のようにして測定した。
 北斗電工製、HJ1010mSM8Aを用い、リチウム挿入脱離容量測定を定電流でおこなった。その際、ケイ素含有炭素材料重量あたりの理論容量を700mAhとし、電流値をケイ素含有炭素材料重量あたり70mAとなるようにした。また、リチウム挿入は電池電圧が0.005Vに達した後、更に10分の1の電流値となるまでとした。リチウム放出は電池電圧が1.5Vに到達するまでの容量とした。各リチウム挿入脱離の切り替え時には、30分間、開回路で放置した。なお、サイクル特性については、2回目以降ケイ素含有炭素材料重量あたり、140mAの電流値とした以外は同様な条件で行った。また、最初のサイクルの効率の計算は以下の式を元に行った。
初期不可逆容量ロス(%)=
1サイクル目のリチウム脱離容量/1サイクル目のリチウム挿入容量 × 100
2サイクル目リチウム脱離容量を可逆容量とし、サイクル試験後の容量維持率はそのリチウム脱離容量に対するサイクル後のリチウム脱離容量で表示した。
[Battery characteristics]
The lithium insertion / extraction capacity of the silicon-containing carbon material of the present invention was measured as follows.
Using HJ1010mSM8A manufactured by Hokuto Denko, the lithium insertion / extraction capacity was measured at a constant current. At that time, the theoretical capacity per weight of the silicon-containing carbon material was set to 700 mAh, and the current value was set to 70 mA per weight of the silicon-containing carbon material. Lithium insertion was performed after the battery voltage reached 0.005 V until the current value was reduced to 1/10. Lithium release was the capacity until the battery voltage reached 1.5V. At the time of switching between each lithium insertion / extraction, it was left in an open circuit for 30 minutes. In addition, about cycling characteristics, it carried out on the same conditions except having set it as the electric current value of 140 mA per silicon-containing carbon material weight after the 2nd time. The calculation of the efficiency of the first cycle was performed based on the following formula.
Initial irreversible capacity loss (%) =
First cycle lithium desorption capacity / first cycle lithium insertion capacity x 100
The lithium desorption capacity at the second cycle was defined as a reversible capacity, and the capacity retention rate after the cycle test was expressed as the lithium desorption capacity after the cycle with respect to the lithium desorption capacity.
[実施例1]
(ケイ素含有硬化物の調製)
 DVB570(新日鐵化学社製、ジビニルベンゼン57.0質量(重量)%とビニルエチルベンゼン38.9質量(重量)%が主成分であり、主成分中のジビニルベンゼンの含有率約60質量%)775gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)531g(前記DVB570中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、大気中120℃でこの組成物を硬化させることで硬化物を作製した。
[Example 1]
(Preparation of silicon-containing cured product)
DVB570 (manufactured by Nippon Steel Chemical Co., Ltd., 57.0 mass (weight)% divinylbenzene and 38.9 mass (weight)% vinylethylbenzene are the main components, and the content of divinylbenzene in the main components is about 60 mass%) To 775 g, 531 g of vinyl group in the above-mentioned DVB570 (the content of silicon atom-bonded hydrogen atoms = 1.58 mass (weight)%) having a viscosity of 20 mPa · s and having a molecular chain at both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane The amount of silicon-bonded hydrogen atoms in this copolymer is about 1 mol) and platinum 1,3-divinyltetramethyldisiloxane complex platinum catalyst as platinum metal in an amount of 10 ppm mixed to form a crosslinkable composition Prepared. Thereafter, the composition was cured at 120 ° C. in the atmosphere to prepare a cured product.
(ケイ素含有炭素材料の調製)
 SSA−Sグレードのアルミナ製ボートに、前記硬化物969gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。SSA−Sグレードのアルミナ製ボートに、得られた焼成物591gを投入し、ボートをマッフル炉内へ設置した。マッフル炉内を減圧に60分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度アルゴンを100mL/分の流量で供給しつつ、5℃/分の割合で昇温し、1000℃で1時間焼成することで焼成物を得た。得られた焼成物を気流式粉砕機で粉砕後、精密空気分級機を用いて分級することでケイ素含有炭素材料を得た。得られたケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
969 g of the cured product was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. 591 g of the fired product obtained was put into an SSA-S grade alumina boat, and the boat was placed in a muffle furnace. The inside of the muffle furnace was maintained at a reduced pressure for 60 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity argon at a flow rate of 100 mL / min, the temperature was raised at a rate of 5 ° C./min, and baked at 1000 ° C. for 1 hour to obtain a baked product. The obtained fired product was pulverized with an airflow pulverizer and then classified with a precision air classifier to obtain a silicon-containing carbon material. Table 1 shows the chemical composition of the obtained silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 前記ケイ素含有炭素材料85質量(重量)%、カーボンブラック5質量(重量)%を加え、15分混合した。その後、5質量(重量)%ポリフッ化ビニリデン含有N−メチル−2−ピロリドン溶液をポリフッ化ビニリデンが固形分として10質量(重量)%となるように加え、さらにN−メチル−2−ピロリドン適量を加え15分混合することによりスラリー状にした。その後、ドクターブレード法により、銅箔ロール上にスラリーを塗布した。こうして得られた電極を85℃で、12時間以上真空下保存し、厚み約40μmの電極を作製した。
(Production of electrodes)
85 mass (weight)% of the silicon-containing carbon material and 5 mass (weight)% of carbon black were added and mixed for 15 minutes. Then, 5 mass (weight)% polyvinylidene fluoride-containing N-methyl-2-pyrrolidone solution was added so that the polyvinylidene fluoride was 10 mass (weight)% as a solid content, and an appropriate amount of N-methyl-2-pyrrolidone was further added. The mixture was mixed for 15 minutes to form a slurry. Then, the slurry was apply | coated on the copper foil roll by the doctor blade method. The electrode thus obtained was stored under vacuum at 85 ° C. for 12 hours or more to produce an electrode having a thickness of about 40 μm.
(二次電池の作製及び評価)
 前記電極、対極に金属リチウム、電解液として六フッ化リン酸リチウムを1モル/Lの割合で溶解させたエチレンカーボネートとジエチルカーボネート1:1(体積比)混合溶媒、及びセパレータとしてポリプロピレン不織布を用い、コイン型リチウム二次電池を作製した。また、定電流充放電測定は0.4mAの電流値でおこなった。表2に実施例1の電池の特性を示す。
(Production and evaluation of secondary battery)
Metallic lithium was used for the electrode, counter electrode, and a mixed solvent of ethylene carbonate and diethyl carbonate 1: 1 (volume ratio) in which lithium hexafluorophosphate was dissolved at a rate of 1 mol / L as an electrolyte, and a polypropylene nonwoven fabric was used as a separator. A coin-type lithium secondary battery was produced. Moreover, the constant current charge / discharge measurement was performed at a current value of 0.4 mA. Table 2 shows the characteristics of the battery of Example 1.
[実施例2]
(ケイ素含有硬化物の調製)
 ジフェニルビス(ジメチルビニルシロキシ)シラン(東レ・ダウコーニング社製、RMS312)3.0g(14.06質量(重量)%ビニル基含有)に、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)0.98g(前記ジフェニルビス(ジメチルビニルシロキシ)シラン中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppmを混合して架橋性組成物を調製した。その後、窒素中150℃にてこの組成物を硬化させることで硬化物を作製した。
[Example 2]
(Preparation of silicon-containing cured product)
Diphenylbis (dimethylvinylsiloxy) silane (Toray Dow Corning, RMS 312) 3.0 g (containing 14.06 mass (weight)% vinyl group), viscosity 20 mPa · s molecular chain both ends trimethylsiloxy group blocked methyl Hydrogen polysiloxane (content of silicon atom-bonded hydrogen atom = 1.58 mass (weight)%) 0.98 g (in the copolymer with respect to 1 mol of vinyl group in the diphenylbis (dimethylvinylsiloxy) silane) The crosslinkable composition was prepared by mixing 10 ppm of platinum as a platinum metal with a platinum catalyst of 1,3-divinyltetramethyldisiloxane complex platinum of platinum). Thereafter, the composition was cured at 150 ° C. in nitrogen to prepare a cured product.
(ケイ素含有炭素材料の調製)
 SSA−Sグレードのアルミナ製ボートに、前記硬化物3.7gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級を行った。SSA−Sグレードのアルミナ製ボートに、粉砕分級後得られた焼成物2.2gを投入し、ボートをマッフル炉内へ設置した。マッフル炉内を減圧に60分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度アルゴンを100mL/分の流量で供給しつつ、5℃/分の割合で昇温し、1000℃で1時間焼成することでケイ素含有炭素材料を得た。得られたケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
3.7 g of the cured product was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. The obtained fired product was pulverized with a ball mill and classified with 300 mesh. The SSA-S grade alumina boat was charged with 2.2 g of the fired product obtained after pulverization and classification, and the boat was placed in a muffle furnace. The inside of the muffle furnace was maintained at a reduced pressure for 60 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity argon at a flow rate of 100 mL / min, the temperature was increased at a rate of 5 ° C./min, and baked at 1000 ° C. for 1 hour to obtain a silicon-containing carbon material. Table 1 shows the chemical composition of the obtained silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 実施例1と同様に行い、厚み約40μmの電極を作製した。
(Production of electrodes)
An electrode having a thickness of about 40 μm was produced in the same manner as in Example 1.
(二次電池の作製及び評価)
 定電流充放電測定は0.3mAの電流値でおこなった以外は、実施例1と同様に行った。表2に実施例2の電池の特性を示す。
(Production and evaluation of secondary battery)
The constant current charge / discharge measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.3 mA. Table 2 shows the characteristics of the battery of Example 2.
[実施例3]
(ケイ素含有硬化物の調製)
 窒素中120℃で組成物を硬化させた以外は実施例1と同様に行った。
[Example 3]
(Preparation of silicon-containing cured product)
Example 1 was performed except that the composition was cured at 120 ° C. in nitrogen.
(ケイ素含有炭素材料の調製)
 SSA−Sグレードのアルミナ製ボートに、前記硬化物1200gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物を気流式粉砕機で粉砕後、精密空気分級機を用いて分級した。カーボン製容器に粉砕分級後得られた焼成物800gを投入し、容器をオキシノン炉内へ設置した。その後、4体積%水素含有高純度窒素を10L/分の流量で供給しつつ、1000℃で1時間かけて焼成することでケイ素含有炭素材料を得た。得られたケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
The cured product 1200 g was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. The obtained fired product was pulverized with an airflow pulverizer and then classified with a precision air classifier. A carbon container was charged with 800 g of the fired product obtained after pulverization and classification, and the container was placed in an oxynon furnace. Thereafter, the silicon-containing carbon material was obtained by firing at 1000 ° C. for 1 hour while supplying 4% by volume of hydrogen-containing high-purity nitrogen at a flow rate of 10 L / min. Table 1 shows the chemical composition of the obtained silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 実施例1と同様に行い、厚み約40μmの電極を作製した。
(Production of electrodes)
An electrode having a thickness of about 40 μm was produced in the same manner as in Example 1.
(二次電池の作製及び評価)
 定電流充放電測定を0.3mAの電流値でおこなった以外は、実施例1と同様に行った。表2に実施例3の電池の特性を示す。
(Production and evaluation of secondary battery)
The measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.3 mA. Table 2 shows the characteristics of the battery of Example 3.
[実施例4]
(ケイ素含有硬化物の調製)
 DVB570(新日鐵化学社製、ジビニルベンゼン57.0質量(重量)%とビニルエチルベンゼン38.9質量(重量)%が主成分であり、主成分中のジビニルベンゼンの含有率約60質量(重量)%)28.45gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)6.25g(前記DVB570中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約0.3モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中150℃でこの組成物を硬化させることで硬化物を作製した。
[Example 4]
(Preparation of silicon-containing cured product)
DVB570 (manufactured by Nippon Steel Chemical Co., Ltd., 57.0 mass (weight)% divinylbenzene and 38.9 mass (weight)% vinylethylbenzene are the main components, and the content of divinylbenzene in the main components is about 60 mass (weight). )%) To 28.45 g, the molecular chain both ends trimethylsiloxy group-blocked methyl hydrogen polysiloxane having a viscosity of 20 mPa · s (content of silicon atom-bonded hydrogen atoms = 1.58 mass (weight)%) 6.25 g The amount of silicon-bonded hydrogen atoms in this copolymer is about 0.3 mol per mol of vinyl group in DVB570) and platinum catalyst of 1,3-divinyltetramethyldisiloxane complex platinum as platinum metal A crosslinkable composition was prepared by mixing 10 ppm. Thereafter, the composition was cured at 150 ° C. in nitrogen to prepare a cured product.
(ケイ素含有炭素材料の調製)
 SSA−Sグレードのアルミナ製ボートに、前記硬化物20.28gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級を行った。SSA−Sグレードのアルミナ製ボートに、粉砕分級後得られた焼成物2.14gを投入し、ボートをマッフル炉内へ設置した。マッフル炉内を減圧に60分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度アルゴンを100mL/分の流量で供給しつり、5℃/分の割合で昇温し、1000℃で1時間焼成することでケイ素含有炭素材料を得た。前記ケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
20.28 g of the cured product was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. The obtained fired product was pulverized with a ball mill and classified with 300 mesh. 2.14 g of the fired product obtained after pulverization and classification was put into an SSA-S grade alumina boat, and the boat was placed in a muffle furnace. The inside of the muffle furnace was maintained at a reduced pressure for 60 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, high-purity argon was supplied at a flow rate of 100 mL / min, the temperature was raised at a rate of 5 ° C./min, and baked at 1000 ° C. for 1 hour to obtain a silicon-containing carbon material. Table 1 shows the chemical composition of the silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 実施例1と同様に行い、厚み約50μmの電極を作製した。
(Production of electrodes)
It carried out similarly to Example 1 and produced the electrode of thickness about 50 micrometers.
(二次電池の作製及び評価)
 定電流充放電測定を0.4mAの電流値でおこなった以外は、実施例1と同様に行った。表2に実施例4の電池の特性を示す。
(Production and evaluation of secondary battery)
The measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.4 mA. Table 2 shows the characteristics of the battery of Example 4.
[実施例5]
(ケイ素含有硬化物の調製)
 DVB570(新日鐵化学社製、ジビニルベンゼン57.0質量(重量)%とビニルエチルベンゼン38.9質量(重量)%が主成分であり、主成分中のジビニルベンゼンの含有率約60質量(重量)%)8.54gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)12.50g(前記DVB570中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約2モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中150℃でこの組成物を硬化させることで硬化物を作製した。
[Example 5]
(Preparation of silicon-containing cured product)
DVB570 (manufactured by Nippon Steel Chemical Co., Ltd., 57.0 mass (weight)% divinylbenzene and 38.9 mass (weight)% vinylethylbenzene are the main components, and the content of divinylbenzene in the main components is about 60 mass (weight). )%) 8.54 g, viscosity 20 mPa · s molecular chain both ends trimethylsiloxy group-blocked methyl hydrogen polysiloxane (content of silicon-bonded hydrogen atoms = 1.58 mass (weight)%) 12.50 g (above Mixing 10 ppm of platinum metal with 1,3-divinyltetramethyldisiloxane complex platinum catalyst of platinum and platinum catalyst in an amount of about 2 mol of silicon-bonded hydrogen atoms in this copolymer with respect to 1 mol of vinyl group in DVB570 Thus, a crosslinkable composition was prepared. Thereafter, the composition was cured at 150 ° C. in nitrogen to prepare a cured product.
(ケイ素含有炭素材料の調製)
 SSA−Sグレードのアルミナ製ボートに、前記硬化物20.21gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級を行った。SSA−Sグレードのアルミナ製ボートに、粉砕分級後得られた焼成物1.93gを投入し、ボートをマッフル炉内へ設置した。マッフル炉内を減圧に60分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度アルゴンを100mL/分の流量で供給しつつ、5℃/分の割合で昇温し、1000℃で1時間焼成することでケイ素含有炭素材料を得た。前記ケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
20.21 g of the cured product was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. The obtained fired product was pulverized with a ball mill and classified with 300 mesh. 1.93 g of the fired product obtained after pulverization and classification was put into an SSA-S grade alumina boat, and the boat was placed in a muffle furnace. The inside of the muffle furnace was maintained at a reduced pressure for 60 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity argon at a flow rate of 100 mL / min, the temperature was increased at a rate of 5 ° C./min, and baked at 1000 ° C. for 1 hour to obtain a silicon-containing carbon material. Table 1 shows the chemical composition of the silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 実施例1と同様に行い、厚み約45μmの電極を作製した。
(Production of electrodes)
In the same manner as in Example 1, an electrode having a thickness of about 45 μm was produced.
(二次電池の作製及び評価)
 定電流充放電測定を0.4mAの電流値でおこなった以外は、実施例1と同様に行った。表2に実施例5の電池の特性を示す。
(Production and evaluation of secondary battery)
The measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.4 mA. Table 2 shows the characteristics of the battery of Example 5.
[比較例1]
(ケイ素含有硬化物の調製)
 DVB570(新日鐵化学社製、ジビニルベンゼン57.0重量%とビニルエチルベンゼン38.9質量(重量)%が主成分であり、主成分中のジビニルベンゼンの含有率約60質量(重量)%)15.49gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)2.65g(前記DVB570中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約0.25モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中120℃でこの組成物を硬化させることで硬化物を作製した。
[Comparative Example 1]
(Preparation of silicon-containing cured product)
DVB570 (manufactured by Nippon Steel Chemical Co., Ltd., 57.0% by weight of divinylbenzene and 38.9% by weight of vinylethylbenzene are the main components, and the content of divinylbenzene in the main component is about 60% by weight) In 15.49 g, 2.65 g (content of silicon atom-bonded hydrogen atom = 1.58 mass (weight)%) of the molecular chain both ends trimethylsiloxy group-blocked methylhydrogenpolysiloxane having a viscosity of 20 mPa · s (in the DVB570) The amount of silicon atom-bonded hydrogen atoms in the copolymer is about 0.25 mol per mol of vinyl group) and platinum catalyst of 1,3-divinyltetramethyldisiloxane complex platinum in platinum is mixed at 10 ppm as platinum metal. Thus, a crosslinkable composition was prepared. Thereafter, the composition was cured at 120 ° C. in nitrogen to prepare a cured product.
(ケイ素含有炭素材料の調製)
 カーボン製容器に、前記硬化物4gを投入し、容器をオキシノン内へ設置した。その後、4%水素含有高純度窒素を10L/分の流量で供給しつつ、1000℃で1時間かけて焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級することでケイ素含有炭素材料を得た。得られた前記ケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
4 g of the cured product was put into a carbon container, and the container was placed in oxynon. Then, it baked over 1 hour at 1000 ° C. while supplying high purity nitrogen containing 4% hydrogen at a flow rate of 10 L / min. The obtained fired product was pulverized with a ball mill and classified with 300 mesh to obtain a silicon-containing carbon material. Table 1 shows the chemical composition of the obtained silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 実施例1と同様に行い、厚み約40μmの電極を作製した。
(Production of electrodes)
An electrode having a thickness of about 40 μm was produced in the same manner as in Example 1.
(二次電池の作製及び評価)
 定電流充放電測定を0.4mAの電流値でおこなった以外は、実施例1と同様に行った。表3に比較例1の電池の特性を示す。
(Production and evaluation of secondary battery)
The measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.4 mA. Table 3 shows the characteristics of the battery of Comparative Example 1.
 [比較例2]
(ケイ素含有硬化物の調製)
 テトラメチルジビニルジシロキサン(東レ・ダウコーニング社製)10gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)6.7g(前記テトラメチルジビニルジシロキサン中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中120℃でこの組成物を硬化させることで硬化物を作製した。
[Comparative Example 2]
(Preparation of silicon-containing cured product)
10 g of tetramethyldivinyldisiloxane (manufactured by Toray Dow Corning Co., Ltd.), methylhydrogenpolysiloxane blocked with trimethylsiloxy group-blocked methylhydrogenpolysiloxane having a viscosity of 20 mPa · s (content of silicon-bonded hydrogen atoms = 1.58 mass (weight) )%) 6.7 g (amount in which the silicon-bonded hydrogen atom in the copolymer is about 1 mol per 1 mol of vinyl group in the tetramethyldivinyldisiloxane) and platinum 1,3-divinyltetra A crosslinkable composition was prepared by mixing 10 ppm of a methyldisiloxane complex platinum catalyst as platinum metal. Thereafter, the composition was cured at 120 ° C. in nitrogen to prepare a cured product.
(ケイ素含有炭素材料の調製)
 SSA−Sグレードのアルミナ製ボートに、前記硬化物4.0gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級を行った。カーボン製容器に、粉砕分級後得られた焼成物2.0gを投入し、容器をオキシノン炉内へ設置した。その後、4体積%水素含有高純度窒素を10L/分の流量で供給しつつ、1100℃で1時間かけて焼成し、ケイ素含有炭素材料を得た。前記ケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
4.0 g of the cured product was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. The obtained fired product was pulverized with a ball mill and classified with 300 mesh. A carbon container was charged with 2.0 g of the fired product obtained after pulverization and classification, and the container was placed in an oxynon furnace. Then, while supplying 4% by volume of hydrogen-containing high-purity nitrogen at a flow rate of 10 L / min, firing was performed at 1100 ° C. for 1 hour to obtain a silicon-containing carbon material. Table 1 shows the chemical composition of the silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 実施例1と同様に行い、厚み約40μmの電極を作製した。
(Production of electrodes)
An electrode having a thickness of about 40 μm was produced in the same manner as in Example 1.
(二次電池の作製及び評価)
 定電流充放電測定を0.4mAの電流値でおこなった以外は、実施例1と同様に行った。表3に比較例2の電池の特性を示す。
(Production and evaluation of secondary battery)
The measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.4 mA. Table 3 shows the characteristics of the battery of Comparative Example 2.
 [比較例3]
(ケイ素含有硬化物の調製)
 テトラメチルテトラビニルポリシロキサン(東レ・ダウコーニング社製)17.2gに、粘度20mPa・sの分子鎖両末端トリメチルシロキシ基封鎖メチルハイドロジェンポリシロキサン(ケイ素原子結合水素原子の含有量=1.58質量(重量)%)12.5g(前記テトラメチルジビニルジシロキサン中のビニル基1モルに対して本共重合体中のケイ素原子結合水素原子が約1モルとなる量)及び白金の1,3−ジビニルテトラメチルジシロキサン錯体白金触媒を白金金属として10ppm混合して架橋性組成物を調製した。その後、窒素中120℃でこの組成物を硬化させることで硬化物を作製した。
[Comparative Example 3]
(Preparation of silicon-containing cured product)
17.2 g of tetramethyltetravinylpolysiloxane (manufactured by Toray Dow Corning Co., Ltd.) and methylhydrogenpolysiloxane blocked with trimethylsiloxy group-blocked methylhydrogenpolysiloxane having a viscosity of 20 mPa · s (content of silicon-bonded hydrogen atoms = 1.58) 12.5 g (mass (weight)%) (amount of silicon atom-bonded hydrogen atoms in the copolymer to be about 1 mol with respect to 1 mol of vinyl groups in the tetramethyldivinyldisiloxane) and 1,3 of platinum A crosslinkable composition was prepared by mixing 10 ppm of divinyltetramethyldisiloxane complex platinum catalyst as platinum metal. Thereafter, the composition was cured at 120 ° C. in nitrogen to prepare a cured product.
(ケイ素含有炭素材料の調製)
 SSA−Sグレードのアルミナ製ボートに、前記硬化物28.78gを投入し、ボートを脱脂炉内へ設置した。その後、脱脂炉内を減圧に10分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度窒素を2L/分の流量で供給しつつ、2℃/分の割合で昇温し、600℃で2時間焼成した。得られた焼成物をボールミルで粉砕し、300メッシュで分級を行った。SSA−Sグレードのアルミナ製ボートに、粉砕分級後得られた焼成物1.59gを投入し、ボートをマッフル炉内へ設置した。マッフル炉内を減圧に60分間維持した後、高純度窒素(99.99%)にて常圧へ戻した。この操作を計1回繰り返した。その後、高純度アルゴンを100mL/分の流量で供給しつつ、5℃/分の割合で昇温し、1000℃で1時間焼成することでケイ素含有炭素材料を得た。前記ケイ素含有炭素材料の化学組成及びsp2ピーク面積/sp3ピーク面積の比を表1に示す。
(Preparation of silicon-containing carbon material)
28.78 g of the cured product was put into an SSA-S grade alumina boat, and the boat was placed in a degreasing furnace. Thereafter, the inside of the degreasing furnace was maintained at a reduced pressure for 10 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity nitrogen at a flow rate of 2 L / min, the temperature was raised at a rate of 2 ° C./min and calcined at 600 ° C. for 2 hours. The obtained fired product was pulverized with a ball mill and classified with 300 mesh. 1.59 g of the fired product obtained after pulverization and classification was put into an SSA-S grade alumina boat, and the boat was placed in a muffle furnace. The inside of the muffle furnace was maintained at a reduced pressure for 60 minutes, and then returned to normal pressure with high-purity nitrogen (99.99%). This operation was repeated once in total. Thereafter, while supplying high-purity argon at a flow rate of 100 mL / min, the temperature was increased at a rate of 5 ° C./min, and baked at 1000 ° C. for 1 hour to obtain a silicon-containing carbon material. Table 1 shows the chemical composition of the silicon-containing carbon material and the ratio of sp2 peak area / sp3 peak area.
(電極の作製)
 実施例1と同様に行い、厚み約40μmの電極を作製した。
(Production of electrodes)
An electrode having a thickness of about 40 μm was produced in the same manner as in Example 1.
(二次電池の作製及び評価)
 定電流充放電測定を0.4mAの電流値でおこなった以外は、実施例1と同様に行った。表3に比較例3の電池の特性を示す。
(Production and evaluation of secondary battery)
The measurement was performed in the same manner as in Example 1 except that the constant current charge / discharge measurement was performed at a current value of 0.4 mA. Table 3 shows the characteristics of the battery of Comparative Example 3.
Figure JPOXMLDOC01-appb-T000028
※表中、「sp2炭素/sp3炭素」は、各例の13C MAS NMRスペクトル中の99−160ppmのピーク面積をsp2炭素に由来するものとし、11−49ppmのピーク面積をsp3炭素に由来するものとし、ガウシアン波形を用いた近似法により求めたそれぞれのピークのピーク面積から求めた、sp2炭素原子由来ピーク面積/sp3炭素原子由来ピーク面積の比を意味する。
Figure JPOXMLDOC01-appb-T000028
* In the table, “sp2 carbon / sp3 carbon” means that the peak area of 99-160 ppm in the 13 C MAS NMR spectrum of each example is derived from sp2 carbon, and the peak area of 11-49 ppm is derived from sp3 carbon. It means the ratio of the peak area derived from the sp2 carbon atom / the peak area derived from the sp3 carbon atom obtained from the peak area of each peak obtained by an approximation method using a Gaussian waveform.
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000029
Figure JPOXMLDOC01-appb-T000030
Figure JPOXMLDOC01-appb-T000030
1:ケース、2:ガスケット、3:ワッシャー、4:SUS板、5:集電体、6:負極、7:セパレータ、8:正極、9、9’:集電体、10:封口板 1: Case, 2: Gasket, 3: Washer, 4: SUS plate, 5: Current collector, 6: Negative electrode, 7: Separator, 8: Positive electrode, 9, 9 ': Current collector, 10: Sealing plate

Claims (23)

  1. 組成式:SiO (式中、xは0.8~1.7、yは1.4~7.5)で表され、13C MAS NMRスペクトルの(sp2炭素原子由来ピーク面積/sp3炭素原子由来ピーク面積)の比が1.6~46.0であるケイ素含有炭素系複合材料。 Composition formula: SiO x C y (wherein x is 0.8 to 1.7, y is 1.4 to 7.5), and 13 C MAS NMR spectrum (sp2 carbon atom-derived peak area / sp3 A silicon-containing carbon-based composite material having a carbon atom-derived peak area ratio of 1.6 to 46.0.
  2. (A)架橋性基含有有機化合物、及び
    (B)前記架橋性基含有有機化合物を架橋可能な含ケイ素化合物
    を架橋反応させて得られた硬化物を熱処理して得られる請求項1記載の複合材料。
    The composite according to claim 1, which is obtained by heat-treating (A) a crosslinkable group-containing organic compound and (B) a cured product obtained by crosslinking reaction of a silicon-containing compound capable of crosslinking the crosslinkable group-containing organic compound. material.
  3. 前記熱処理が、不活性ガス中又は真空中、300~1500℃で行われる、請求項2記載の複合材料。 The composite material according to claim 2, wherein the heat treatment is performed at 300 to 1500 ° C in an inert gas or in a vacuum.
  4. 前記架橋性基が、脂肪族不飽和基、エポキシ基、アクリル基、メタクリル基、アミノ基、水酸基、メルカプト基及びハロゲン化アルキル基からなる群から選択される、請求項2又は3記載の複合材料。 The composite material according to claim 2 or 3, wherein the crosslinkable group is selected from the group consisting of an aliphatic unsaturated group, an epoxy group, an acrylic group, a methacryl group, an amino group, a hydroxyl group, a mercapto group, and a halogenated alkyl group. .
  5. 前記(A)成分が芳香族基を有する、請求項2乃至4のいずれかに記載の複合材料。 The composite material according to claim 2, wherein the component (A) has an aromatic group.
  6. 前記(A)成分が、一般式:
    Figure JPOXMLDOC01-appb-I000001
    (式中、Rは架橋性基であり、xは1以上の整数であり、Rはx価の芳香族基である)で表される有機化合物である、請求項5記載の複合材料。
    The component (A) has the general formula:
    Figure JPOXMLDOC01-appb-I000001
    The composite material according to claim 5, wherein R 1 is a crosslinkable group, x is an integer of 1 or more, and R 2 is an x-valent aromatic group. .
  7. 前記(A)成分がケイ素原子を含む、請求項2乃至4のいずれかに記載の複合材料。 The composite material according to claim 2, wherein the component (A) contains a silicon atom.
  8. 前記(A)成分が、シロキサン、シラン、シラザン、カルボシラン、又はこれらの混合物である、請求項7記載の複合材料。 The composite material according to claim 7, wherein the component (A) is siloxane, silane, silazane, carbosilane, or a mixture thereof.
  9. 前記シロキサンが、平均単位式:
    Figure JPOXMLDOC01-appb-I000002
    (式中、Rは、それぞれ独立して、架橋性基、炭素数1~20の1価の置換若しくは非置換の飽和脂肪族炭化水素基若しくは芳香族炭化水素基、アルコキシ基、水素原子又はハロゲン原子を示し;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0となることはなく、一分子中のRの少なくとも1つは架橋性基である)で表される、請求項8記載の複合材料。
    The siloxane has an average unit formula:
    Figure JPOXMLDOC01-appb-I000002
    (In the formula, each R 3 independently represents a crosslinkable group, a monovalent substituted or unsubstituted saturated aliphatic hydrocarbon group or aromatic hydrocarbon group having 1 to 20 carbon atoms, an alkoxy group, a hydrogen atom, or A, b, c and d are each a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that a, b and c are not all 0; The composite material according to claim 8, wherein at least one of R 3 in the molecule is a crosslinkable group.
  10. 前記(B)成分が、シロキサン、シラン、シラザン、カルボシラン又はこれらの混合物である、請求項2乃至9のいずれかに記載の複合材料。 The composite material according to any one of claims 2 to 9, wherein the component (B) is siloxane, silane, silazane, carbosilane, or a mixture thereof.
  11. 前記シロキサンが、平均単位式:
    Figure JPOXMLDOC01-appb-I000003
    (式中、Rは、それぞれ独立して、一価炭化水素基、水素原子、ハロゲン原子、エポキシ基含有有機基、アクリル基含有有機基、メタクリル基含有有機基、アミノ基含有有機基、メルカプト基含有有機基、アルコキシ基又はヒドロキシ基であり;a、b、c及びdは、それぞれ、0以上、1以下、且つ、a+b+c+d=1を満たす数であり、但し、a、b及びcが共に0になることはない)で表される、請求項10記載の複合材料。
    The siloxane has an average unit formula:
    Figure JPOXMLDOC01-appb-I000003
    (In the formula, each R 7 independently represents a monovalent hydrocarbon group, a hydrogen atom, a halogen atom, an epoxy group-containing organic group, an acrylic group-containing organic group, a methacryl group-containing organic group, an amino group-containing organic group, or a mercapto group. A group-containing organic group, an alkoxy group or a hydroxy group; a, b, c and d are each a number satisfying 0 or more and 1 or less and satisfying a + b + c + d = 1, provided that both a, b and c are The composite material according to claim 10, wherein the composite material is not represented by 0).
  12. 前記架橋反応が、付加反応、縮合反応、開環反応又はラジカル反応である、請求項2乃至11のいずれかに記載の複合材料。 The composite material according to claim 2, wherein the crosslinking reaction is an addition reaction, a condensation reaction, a ring-opening reaction, or a radical reaction.
  13. 前記硬化物が、脂肪族不飽和基を有する(A)成分と、ケイ素原子結合水素原子を有する(B)成分とのヒドロシリル化反応により得られたものである、請求項2乃至12のいずれかに記載の複合材料。 The cured product is obtained by a hydrosilylation reaction between the component (A) having an aliphatic unsaturated group and the component (B) having a silicon atom-bonded hydrogen atom. The composite material described in 1.
  14. 前記硬化物が、ケイ素原子結合水素原子を有する(A)成分と、脂肪族不飽和基を有する(B)成分とのヒドロシリル化反応により得られたものである、請求項2乃至12のいずれかに記載の複合材料。 The cured product is obtained by a hydrosilylation reaction between the component (A) having a silicon atom-bonded hydrogen atom and the component (B) having an aliphatic unsaturated group. The composite material described in 1.
  15. 前記硬化物が、脂肪族不飽和基を有する(A)成分と、脂肪族不飽和基、アクリル基、メタクリル基又はケイ素原子結合水素原子を有する(B)成分とのラジカル反応により得られたものである、請求項2乃至12のいずれかに記載の複合材料。 The cured product obtained by radical reaction between the component (A) having an aliphatic unsaturated group and the component (B) having an aliphatic unsaturated group, an acrylic group, a methacryl group or a silicon atom-bonded hydrogen atom The composite material according to claim 2, wherein
  16. 前記硬化物が、脂肪族不飽和基、アクリル基、メタクリル基、又はケイ素原子結合水素原子を有する(A)成分と、脂肪族不飽和基を有する(B)成分とのラジカル反応により得られたものである、請求項2乃至12のいずれかに記載の複合材料。 The cured product was obtained by a radical reaction between the component (A) having an aliphatic unsaturated group, acrylic group, methacryl group, or silicon-bonded hydrogen atom and the component (B) having an aliphatic unsaturated group. The composite material according to claim 2, which is a material.
  17. アモルファス形態である、請求項1乃至16のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 16, which is in an amorphous form.
  18. 平均粒子径が5nm~50μmの粒子形態である、請求項1乃至17のいずれかに記載の複合材料。 The composite material according to any one of claims 1 to 17, which is in the form of particles having an average particle diameter of 5 nm to 50 µm.
  19. 請求項1乃至18のいずれかに記載の複合材料からなる電極活物質。 An electrode active material comprising the composite material according to claim 1.
  20. 平均粒子径が1~50μmの粒子である、請求項19記載の電極活物質。 20. The electrode active material according to claim 19, which is a particle having an average particle diameter of 1 to 50 μm.
  21. 請求項19又は20記載の電極活物質を含む電極。 An electrode comprising the electrode active material according to claim 19 or 20.
  22. 請求項21記載の電極を備える蓄電デバイス。 An electricity storage device comprising the electrode according to claim 21.
  23. リチウム又はリチウムイオン二次電池である、請求項22記載の蓄電デバイス。 The electricity storage device according to claim 22, which is a lithium or lithium ion secondary battery.
PCT/JP2012/052443 2011-01-31 2012-01-27 Silicon-containing carbon-based composite material WO2012105671A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011-018237 2011-01-31
JP2011018237 2011-01-31
JP2011-032464 2011-02-17
JP2011032464 2011-02-17

Publications (1)

Publication Number Publication Date
WO2012105671A1 true WO2012105671A1 (en) 2012-08-09

Family

ID=46602871

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/052443 WO2012105671A1 (en) 2011-01-31 2012-01-27 Silicon-containing carbon-based composite material

Country Status (2)

Country Link
TW (1) TW201236972A (en)
WO (1) WO2012105671A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098070A1 (en) * 2012-12-19 2014-06-26 Dic株式会社 Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
CN112467135A (en) * 2020-09-09 2021-03-09 珠海中科兆盈丰新材料科技有限公司 Silicon-carbon composite material, preparation method and lithium ion battery thereof
US11728486B1 (en) 2022-07-27 2023-08-15 Jing Wang Electrode materials prepared by nanoporous carbon composite technology

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020430A1 (en) * 1987-01-09 1994-09-15 Allied-Signal Inc. Carbon-containing black glass monoliths
JPH08188443A (en) * 1994-11-09 1996-07-23 Dow Corning Asia Ltd Production of siliconoxycarbide
JP2003197193A (en) * 2001-12-27 2003-07-11 Toshiba Corp Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994020430A1 (en) * 1987-01-09 1994-09-15 Allied-Signal Inc. Carbon-containing black glass monoliths
JPH08188443A (en) * 1994-11-09 1996-07-23 Dow Corning Asia Ltd Production of siliconoxycarbide
JP2003197193A (en) * 2001-12-27 2003-07-11 Toshiba Corp Negative active material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S.MODENA ET AL.: "Passive Oxidation of an Effluent System: The Case of Polymer-Derived SiCO", JOURNAL OF THE AMERICAN CERAMIC SOCIETY, vol. 88, no. 2, February 2005 (2005-02-01), pages 339 - 345 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014098070A1 (en) * 2012-12-19 2014-06-26 Dic株式会社 Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
CN104885264A (en) * 2012-12-19 2015-09-02 Dic株式会社 Active material for negative electrodes of nonaqueous secondary batteries, and nonaqueous secondary battery
JP2015222733A (en) * 2012-12-19 2015-12-10 Dic株式会社 Active material for non-aqueous secondary battery negative electrodes and non-aqueous secondary battery
JP5892264B2 (en) * 2012-12-19 2016-03-23 Dic株式会社 Non-aqueous secondary battery negative electrode active material and non-aqueous secondary battery
JPWO2014098070A1 (en) * 2012-12-19 2017-01-12 Dic株式会社 Non-aqueous secondary battery negative electrode active material and non-aqueous secondary battery
CN104885264B (en) * 2012-12-19 2017-10-10 Dic株式会社 Non-aqueous secondary battery negative pole active material and non-aqueous secondary cell
CN112467135A (en) * 2020-09-09 2021-03-09 珠海中科兆盈丰新材料科技有限公司 Silicon-carbon composite material, preparation method and lithium ion battery thereof
US11728486B1 (en) 2022-07-27 2023-08-15 Jing Wang Electrode materials prepared by nanoporous carbon composite technology

Also Published As

Publication number Publication date
TW201236972A (en) 2012-09-16

Similar Documents

Publication Publication Date Title
WO2011013855A1 (en) Electrode active material, electrode, and electricity storage device
WO2012105672A1 (en) Silicon-containing carbonaceous composite material
EP2104164A1 (en) Porous silicon-containing carbon-based composite material, electrode composed of the same and battery
JP6269623B2 (en) Non-aqueous secondary battery negative electrode active material and non-aqueous secondary battery
WO2011013851A1 (en) Electrode active material, electrode, and electricity storage device
JP2014107013A (en) Silicon-containing composite material
TWI766129B (en) Negative electrode active material and method for producing the same
Lim et al. Novel approach for controlling free-carbon domain in silicone oil-derived silicon oxycarbide (SiOC) as an anode material in secondary batteries
JP2012178224A (en) Manufacturing method of surface carbon-coating silicon-containing carbon-based composite material
CN111640917A (en) Composite, SiOC structure, method for producing same, negative electrode, composition, and secondary battery
JPH1074506A (en) Electrode for lithium ion battery using polysiloxane
JP2006059558A (en) Electrochemical electric energy storage device and its manufacturing method
EP4104220A1 (en) Predominantly amorphous silicon particles and use thereof as active anode material in secondary lithium ion batteries
WO2013115114A1 (en) Silicon-containing carbon-based composite material
WO2013002157A1 (en) Silicon-containing carbon-based composite material in which fine lithium-coated silicon metal or silicon alloy particles are dispersed
JP2019178038A (en) Spherical hydrogen polysilsesquioxane fine particle, spherical silicon oxide fine particle, and methods for producing them
JP6727558B2 (en) Silicon nanoparticle-containing fired product of hydrogen polysilsesquioxane, negative electrode active material for lithium ion battery, negative electrode for lithium ion battery, and lithium ion battery
WO2012105671A1 (en) Silicon-containing carbon-based composite material
KR20230030569A (en) Active materials for batteries, composite active materials for batteries, and secondary batteries
JPH1097853A (en) Lithium ion battery electrode using polysylane
JP2014029785A (en) Silicon-containing carbon-based composite material
EP4234489A1 (en) Secondary and tertiary composite particles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12741944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12741944

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP