WO2012105099A1 - Rotating apparatus - Google Patents

Rotating apparatus Download PDF

Info

Publication number
WO2012105099A1
WO2012105099A1 PCT/JP2011/075817 JP2011075817W WO2012105099A1 WO 2012105099 A1 WO2012105099 A1 WO 2012105099A1 JP 2011075817 W JP2011075817 W JP 2011075817W WO 2012105099 A1 WO2012105099 A1 WO 2012105099A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnet
electromagnet
commutator
stator
pair
Prior art date
Application number
PCT/JP2011/075817
Other languages
French (fr)
Japanese (ja)
Inventor
収一 佐古田
Original Assignee
Sakoda Shuichi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sakoda Shuichi filed Critical Sakoda Shuichi
Publication of WO2012105099A1 publication Critical patent/WO2012105099A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K23/00DC commutator motors or generators having mechanical commutator; Universal AC/DC commutator motors
    • H02K23/62Motors or generators with stationary armatures and rotating excitation field

Definitions

  • the present invention relates to a rotating device using a direct current, and more particularly to a rotating device having high efficiency and a large torque.
  • a rotating device using direct current has been widely used as a motor for control because it is generally considered that torque and rotation speed can be easily controlled by changing current and voltage, and that efficiency is higher. Yes.
  • an electromagnet is often used as a magnet for a rotor, but in a conventional motor, only one of the two magnetic poles (N pole and S pole) of the electromagnet is used. There is no room for further efficiency improvement.
  • a rotating device has been proposed in which an electromagnet is used as a stator magnet and a rotor using a permanent magnet is arranged on both poles of the electromagnet so as to effectively use electric power input to the electromagnet. (See Patent Document 1).
  • an object of the present invention is to provide a rotating device with higher efficiency and higher torque by aligning the magnetic poles of the electromagnet.
  • a first feature of the present invention is that a plurality of electromagnets arranged in parallel with each other and having magnetic poles aligned are arranged on a circumference around a rotation axis.
  • a stator having a structured structure, a rotor disposed at one or both ends of the stator, and a control unit (for example, a commutator) that controls a current flowing through the electromagnet.
  • the rotor has an electromagnet magnetic pole (for example, an N pole).
  • a plurality of pairs of magnets consisting of a front magnet with a repulsive magnetic pole (for example, N pole) facing the stator side and a rear magnet with a magnetic pole to be attracted (for example, S pole) directed,
  • the distance between the front magnet and the rear magnet of the magnet pair (for example, D1 in FIG. 7) is larger than the distance between the adjacent magnet pair and the magnet pair (for example, D2 in FIG. 7), and the front magnet of the magnet pair.
  • the counter electrode side is bridged by a bridge-like body made of a ferromagnetic material, and the control unit is between the front magnet and the rear magnet of the magnet pair (including the case where the electromagnet is opposed to the front magnet or the rear magnet). It is energized at some point, and the current is cut off when the electromagnet is between adjacent magnet pairs (eg, between magnet pair 6-1 and magnet pair 6-2 in FIG. 10).
  • the control unit is composed of two commutator equivalent portions (for the A row and B row), and one commutator equivalent portion has one commutator or an equivalent function.
  • the number of electromagnets in the stator is twice the number of magnet pairs consisting of the front magnet and the rear magnet of the rotor, the electromagnet connected to one commutator equivalent part, and the other commutator
  • the electromagnets connected to the corresponding parts are alternately arranged at equal intervals,
  • the commutator equivalent part and the electromagnet connected to the one commutator equivalent part are connected in series, and the other commutator equivalent part and the electromagnet connected to the other commutator equivalent part are connected in series.
  • both the electromagnet connected to the commutator equivalent part and the electromagnet connected to the other commutator equivalent part are inserted between the front magnet and the rear magnet of the magnet pair, the commutator equivalent Both of the parts are configured to be a rotating device that is configured to be energized.
  • the rotating device has high efficiency because the electromagnets are arranged with the magnetic poles aligned.
  • the electromagnet contained between the front magnet and the rear magnet of the magnet pair is energized, a repulsive force is generated between the front magnet and an attractive force is generated between the rear magnet and the driving force (
  • the driving force is obtained by obtaining the rotational force (hereinafter the same) and cutting off the current of the electromagnet between the adjacent magnet pair (for example, between the magnet pair 6-1 and the magnet pair 6-2 in FIG. 10). Therefore, a large torque can be obtained because no force is generated in the opposite direction.
  • the magnetic poles of the electromagnet are reversed for a short time due to the back electromotive force generated when the current is interrupted, but if the power is turned off immediately after the rear magnet passes through the electromagnet, the back side of the electromagnet whose magnetic pole is reversed by the back electromotive force Since the magnet repels and a force in the same direction as the driving force is obtained, the torque of the rotating device is further increased.
  • the distance between the front magnet and the rear magnet of the magnet pair (for example, D1 in FIG. 7) larger than the distance between the adjacent magnet pair and the magnet pair (for example, D2 in FIG. 7)
  • a plurality of electromagnets enter between the rear magnet and the rotor, and the rotor is driven by the repulsive force and attractive force of the plurality of electromagnets, so that the torque is further increased.
  • the distance between the front magnet and the rear magnet of the magnet pair (for example, D1 in FIG. 7) is made larger than the distance between the adjacent magnet pair and the magnet pair (for example, D2 in FIG.
  • the magnetic flux density increases between the front magnet and the rear magnet of the bridged magnet pair.
  • the repulsive force and suction force are increased between and the efficiency.
  • control unit in the present invention a commutator or an IC driver is suitable.
  • FIG. 1 is a perspective view showing an embodiment of the rotating device of the present invention.
  • FIG. 2 is a front view of the embodiment of FIG.
  • FIG. 3 is a side view of the embodiment of FIG.
  • FIG. 4 is a cross-sectional view of the embodiment of FIG.
  • FIG. 5 is a perspective view showing a magnetic core and an electromagnet formed by winding an electric wire around the magnetic core.
  • FIG. 6 is a perspective view showing the rotor.
  • FIG. 7 is a schematic explanatory view showing the positional relationship between the electromagnet and the magnet pair and the ON / OFF of the electromagnet.
  • FIG. 8 is a schematic explanatory view showing the positional relationship between the electromagnet and the magnet pair and the ON / OFF of the electromagnet when the time advances from FIG.
  • FIG. 9 is a wiring diagram showing the connection between the control unit and the electromagnet in the stator.
  • 10A is an explanatory view showing the position of the electromagnet with respect to the magnet pair
  • FIG. 10B is an explanatory view showing a commutator for the A row in the state of FIG. 10A
  • FIG. It is explanatory drawing which shows this commutator.
  • FIG. 11A is an explanatory view showing a magnet pair and an electromagnet in a state in which the time has advanced from the case of FIG. 10
  • FIG. 11B is an explanatory view showing a row A commutator in the state of FIG. (C) is explanatory drawing which similarly shows the commutator for B rows.
  • FIG. 12A is an explanatory diagram showing a magnet pair and an electromagnet in a state in which the time is further advanced than in the case of FIG. 11, and FIG. 12B is an explanatory diagram showing a row A commutator in the state of FIG. And (c) is an explanatory view showing a B-row commutator.
  • FIG. 13 is a schematic explanatory view showing a relationship between an electromagnet and a magnet pair in the embodiment of the present invention.
  • FIG. 14 is a schematic explanatory view showing the state of the control unit (commutator) in the embodiment of the present invention.
  • FIG. 15 is an explanatory diagram showing a method for measuring torque when one rotor is used.
  • FIG. 16 is an explanatory diagram showing a torque measurement method when two rotors are used.
  • a plurality of electromagnets 3 arranged parallel to each other and aligned with magnetic poles are arranged on a circumference around a rotating shaft 9.
  • a stator 2 having one structure, a rotor 5 disposed at one or both ends of the stator 2, and a control unit 8 that controls a current flowing through the electromagnet 3.
  • the rotor 5 has a magnetic pole that repels the magnetic pole of the electromagnet 3.
  • a plurality of pairs of magnets 6 including a front magnet 6f facing the stator 2 and a rear magnet 6r facing a magnetic pole to be attracted, as shown in FIG.
  • the distance D1 between 6r is larger than the distance D2 between the adjacent magnet pair 6 and the magnet pair 6, and the opposite pole side of the front magnet 6f and the rear magnet 6r of the magnet pair is made of a ferromagnetic material.
  • the control unit 8 is energized when the electromagnet 3 is between the front magnet 6f and the rear magnet 6r of the magnet pair 6, and the electromagnet 3 is between the adjacent magnet pair (for example, FIG. In the rotating device that controls the current so as to cut off the current when it is between the magnet pair 6-1 and the magnet pair 6-2 in FIG.
  • Commutator equivalent part, and one commutator equivalent part is one commutator or an IC driver part having the same function
  • the number of electromagnets 3 of the stator 2 is the front magnet of the rotor 5.
  • 6f and the number of magnet pairs 6 composed of the rear magnet 6r is twice the number of magnet pairs 6 and the electromagnets 3 connected to one commutator equivalent part 8A and the electromagnets 3 connected to the other commutator equivalent part 8B alternately
  • the connected electromagnets 3 are connected in series
  • the other commutator equivalent part 8B and the electromagnet 3 connected to the other commutator equivalent part are connected in series, and the front magnet 6f of the magnet pair and
  • both the commutator equivalent parts 8A and 8B are It is configured
  • the rotating device 1 of the present invention includes a stator 2 provided with a plurality of electromagnets 3 (eight in the illustrated embodiment) and a plurality of pairs of magnets 6 (four in the illustrated embodiment). And a control unit 8 (two commutators (for A row and B row) in the illustrated embodiment).
  • the stator 2 according to the present invention has a structure in which the electromagnets 3 are arranged on the circumference (circumferential direction) centering on the rotation shaft 9, and two rotors 5 can be installed at each end of the electromagnet 3. Has been.
  • the electromagnet 3 is arranged on a circumference centered on a bearing through which the rotary shaft 9 of the rotor 5 passes. However, in order to easily control the rotational speed and torque of the rotor 5, it is preferable to make the intervals between the electromagnets 3 equal. . In the present invention, all the magnetic poles of the electromagnet 3 are aligned. For this reason, the stator 2 is polarized to N and S poles as a whole, and the present invention is configured to attach the rotors 5 and 5 'to the N and S pole portions of the stator 2.
  • the electromagnet 3 used in the present invention is not particularly limited as long as it is rod-shaped, and for example, all general magnets in which an electric wire is wound around an iron core 4 as shown in FIG. 5 can be suitably used.
  • electromagnetic steel as the iron core 4 because electric energy can be efficiently converted into magnetic energy, and if silicon steel is used as the electromagnetic steel, the cost is low.
  • a silicon steel plate 4 is formed by cutting a silicon steel plate into a rectangular shape and laminating it into a rectangular parallelepiped shape, the electromagnet 3 that generates a strong magnetic force can be obtained at low cost.
  • the rotor 5 in the present invention includes a plurality of pairs (four pairs in FIG. 6) of a pair of magnets 6 including a front magnet 6 f and a rear magnet 6 r.
  • the front magnet 6f is a permanent magnet in which the same magnetic pole as the magnetic pole of the stator 2 on the side where the rotor 5 is attached is directed inward (meaning the side facing the stator 2; hereinafter the same). is there.
  • the stator 2 of the present invention has two locations where the rotor 5 is attached, one on each side of the stator 2, one of which is the N pole, and the other is the S In the rotor 5 attached to the N pole side of the stator 2, the front magnet 6 f is a permanent magnet with the N pole facing inward, and in the rotor 5 ′ attached to the S pole side of the stator 2.
  • the permanent magnet with the south pole facing inward is the front magnet 6f ′.
  • the rear magnet 6r is a permanent magnet in which a magnetic pole different from the magnetic pole on the stator 2 side is directed inward.
  • the rear magnet 6r is a permanent magnet having the south pole facing inward, and in the rotor attached to the south pole side of the stator 2, the north pole is directed inward.
  • the permanent magnet is the rear magnet 6r.
  • the front magnet 6f and the rear magnet 6r function as a pair, they are collectively referred to as a magnet pair 6. Which of the magnet pairs 6 is the front magnet 6f and the rear magnet 6r is determined by the rotation direction of the rotor 5, and the rotation direction is determined by the magnetic poles of the stator 2 to which the rotor 5 is attached.
  • the rear magnet 6r cannot be distinguished, in FIG. 6, the front magnet 6f and the rear magnet 6r are shown as the rotor 5 rotating in the direction indicated by the arrow.
  • the electromagnet 3 when the electromagnet 3 is inserted (positioned) between the front magnet 6f and the rear magnet 6r of the magnet pair 6, the electromagnet 3 is energized to exert a magnetic force, and the front magnet of the magnet pair 6 is displayed.
  • the rotor 5 is driven (rotation, the same applies hereinafter) by cutting off the current when the electromagnet 3 is coming out between the 6f and the rear magnet 6r. That is, as shown in the schematic explanatory diagram of FIG.
  • the electromagnets 3 (3B-2 and 3B-8) whose magnetic poles are reversed by the back electromotive force and the rear magnets 6r (6r1 and 6r4) repel each other to obtain a force in the same direction as the driving force. Is added, and the torque of the rotating device is further increased.
  • the electromagnet 3 (3A-1 and 3B-2 in the example of FIG. 7) energized between the front magnet 6f and the rear magnet 6r of the magnet pair 6 is energized, and the adjacent magnet pair 6
  • the energization is controlled so as to cut off the current of the electromagnet 3 (3B-2 in the example of FIG. 10) between the magnet pair 6 (for example, between the magnet pair 6-1 and the magnet pair 6-2 in FIG. 10).
  • the number of electromagnets 3 is an integral multiple of the number of magnet pairs 6 (e.g., 4 pairs) (e.g., 8 times 2), and the electromagnets 3 are grouped together every several magnet pairs 6 (e.g., 4).
  • the electromagnets 3 are grouped into several (for example, four) magnet pairs 6 to form A and B columns, and the electromagnets 3 belonging to each column are arranged in order of A, B, A, and B. Arrange at equal intervals and on the circumference. Normally, the magnet pairs 6 are also arranged at equal intervals, so in this way, the positions of the electromagnets 3 in the A row are the same with respect to each magnet pair 6, and the B row is the same.
  • the electromagnet 3 can be controlled collectively for each column.
  • the distance D1 between the front magnet 6f and the rear magnet 6r of the magnet pair 6 is made larger than the distance D2 between the adjacent magnet pair 6 and the magnet pair 6.
  • the time during which the electromagnet 3 can be energized can be lengthened, the time during which the current is interrupted can be shortened, and the number of electromagnets 3 that can be energized at the same time increases, so the torque increases accordingly.
  • the magnetic flux is generated between the bridged front magnet 6f and the rear magnet 6r. Since the density is increased, the repulsive force and the attractive force with the electromagnet 3 are also increased, and the torque is further increased.
  • the shape of the bridge-like body is not particularly limited, but a plate-like body having a width enough to cover the upper surfaces of the front magnet 6f and the rear magnet 6r of the magnet pair 6 is preferable. Further, the material of the bridge-like body is not particularly limited as long as it is a ferromagnetic material, but it is preferably made of iron in terms of cost.
  • the rotor 5 is driven by controlling the energization of the electromagnet 3, and the energization control is performed by the control unit 8.
  • the control unit 8 that can be used in the present invention is not particularly limited as long as it can energize the electromagnet 3 when the electromagnet 3 is between the magnet pairs 6, and usually two units that interlock with the rotating shaft 9 of the rotor 5.
  • the commutator is used, but an IC driver can also be used.
  • the IC driver has a function of controlling the energization in the same way as the above-described commutator and increasing the voltage as a whole so that the voltage in each electromagnet 3 does not drop when all the electromagnets 3 are energized. Is preferred.
  • FIGS. 9 is a wiring diagram of the stator 2 used in the rotating device of the present invention shown in FIGS. 1 to 4.
  • FIGS. 10 to 12 show the positional relationship between the magnet pair 6 and the electromagnet 3, and the control unit 8 at that time. It is explanatory drawing which shows the state of (the one commutator equivalent part 8A and the other commutator equivalent part 8B). Further, in FIG. 9, the electromagnets 3 are shown in a vertical line, but this is for the convenience of drawing, and actually, as shown in FIGS. 1 to 4, they are arranged on the circumference. Needless to say.
  • the rotor 5 is provided with four magnet pairs 6, the stator 2 is provided with eight electromagnets 3, and the electromagnets 3 are coupled with the rotating shaft 9 of the rotor 5.
  • a control unit 8 including commutator-corresponding portions 8A and 8B.
  • the electromagnets 3 are grouped into an A row and a B row, and the electromagnets 3A in the A row and the electromagnets 3B in the B row are alternately arranged.
  • FIGS. 7 and 8 the installation cycle of the magnet pair 6, the installation cycle of the electromagnet 3A for the A row, and the installation cycle of the electromagnet 3B for the B row are equal to each other.
  • the distance D1 between the front magnet 6f and the rear magnet 6r is larger than the distance D3 between the electromagnet 3A for row A and the electromagnet 3B for row B, and the distance D2 between the adjacent magnet pair 6 and magnet pair 6 is the electromagnet 3A. And the distance D3 between the electromagnet 3B.
  • control unit 8 is composed of one commutator equivalent portion (A row commutator) 8A and another commutator equivalent portion (B row commutator) 8B.
  • the commutator-corresponding portions 8A and 8B are each composed of a doughnut-shaped conductor 8d and a brush 8b, and four energized portions 8c and four non-energized portions 8n are alternately provided on the surface of the donut-shaped conductor 8d.
  • one commutator equivalent portion (A row commutator) 8A and the other commutator (B row commutator) 8B are attached to the rotary shaft 9 while being shifted from each other by 45 degrees.
  • the donut-shaped conductor 8d and the rotary shaft 9 are insulated to prevent leakage or short circuit.
  • the doughnut-shaped conductor 8d is made of metal, and a metal energizing portion 8c and a synthetic resin or rubber non-energizing portion 8n are bonded to the surface thereof. It is sufficient if it can contact the brush 8b to energize the doughnut-shaped conductor 8d, and the non-energized portion 8n only needs to prevent the contact between the brush 8b and the donut-shaped conductor 8d.
  • a recess provided in a part of the peripheral surface of the doughnut-shaped conductor 8d is a non-energized portion 8n
  • a portion not provided with a recess is an energized portion 8c
  • a device that prevents the contact between the brush 8b and the donut-shaped conductor 8d by creating a gap between the donut-shaped conductor 8d can also be used as the commutator 8 in the present invention.
  • the electromagnet 3 between the front magnet 6f and the rear magnet 6r of the magnet pair 6 (for example, the magnet pair 6-1 in FIG. 10A).
  • the electromagnet 3A-1) between the front magnet 6f1 and the rear magnet 6r1 is energized, and the electromagnet 3 between the adjacent magnet pair 6 and the magnet pair 6 (for example, the magnet pair in FIG. 10A).
  • the current is controlled so that the current of the electromagnet 3B-2) between the rear magnet 6r1 of 6-1 and the front magnet 6f2 of the adjacent magnet pair 6-2 is cut off.
  • the brush 8b in one commutator equivalent portion (A row commutator) 8A, the brush 8b is in contact with the energizing portion 8c as shown in FIG. Flows through the A-line electromagnet 3A.
  • the brush 8b in the other commutator equivalent part (B row commutator) 8B, as shown in FIG. 10C, the brush 8b is in contact with the non-energized part 8n. It is interrupted between the conductors 8d, and no current flows through the B row electromagnets 3B.
  • the brush 8b becomes one commutator equivalent portion as shown in FIG. 12 (b).
  • a row commutator The current is cut off from the energizing portion 8c of 8A.
  • the end of the energizing portion 8c is in contact with the end of the brush 8b.
  • the donut-shaped conductor 8d rotates in the direction indicated by the arrow, energization ends at this position.
  • the attractive force between the rear magnet 6r and the electromagnet 3A is almost lost (because the rear magnet 6r, which is a permanent magnet, attracts an iron core or the like as a ferromagnetic material, it is not completely zero). Thereby, generation
  • the other commutator equivalent portion (B row commutator) 8B is in an energized state because the brush 8b and the energizing portion 8c remain in contact as shown in FIG. 12 (c). Therefore, the electromagnet 3B repels the front magnet 6f and attracts the rear magnet 6r to generate a torque in the forward direction.
  • the rotating device 1 continues to rotate by repeating such an energization control cycle.
  • the torque of the rotating device 1 of the present invention was measured using an example of the rotating device 1 schematically shown in FIGS.
  • the rotating device 1 includes a stator 2 in which eight electromagnets 3 are arranged at equal intervals, and four pairs of magnets 6, and the opposite pole side of the pair of front magnets 6 f and rear magnets 6 r is a ferromagnetic material (iron The rotor 5 is bridged by a bridge-like body 7 made of Although FIG. 13 shows a state in which two rotors 5 are provided on both sides of the stator 2, even one can be driven.
  • the control unit 8 is an IC driver, but one commutator (A column commutator) 8 ⁇ / b> A fixed to the rotating shaft of the rotating device 1 and another commutator (B column commutation). Child) Since the function is almost the same as when 8B is used, the following explanation will be made by replacing it with a commutator.
  • the IC driver used in this embodiment is the same as the case where the current flows in either one of the electromagnet 3A for the A row or the electromagnet 3B for the B row even when the current flows in all the electromagnets 3. Has the function of maintaining voltage.
  • the rotating device 1 has the following characteristics. (1) Use both N and S poles of the electromagnet 3; (2) The right sides of the arranged electromagnets 3 are all aligned with the S pole, and the left sides are all aligned with the N pole. (3) An odd number from an electromagnet 3 is an A series, and an even number is a B series, and the A series electromagnet 3 and the B series electromagnet 3 are used alternately. Simultaneous use (A series 3A is used when the state of the control unit 8 is FIG. 14 (a), all electromagnets 3 are used simultaneously when (b), and B series 3B is used when (c).
  • the torque of the rotating device 1 of the present invention was measured by the method shown in FIGS. That is, one end F of a cypress square T made of wood having a length of 36 cm is attached to the surface of the wooden desk D using a hinge, and the rotary shaft 9 is sandwiched between the desk D and the square T at a position A of 7 cm from the hinge.
  • the rotating device 1 was installed, and a load was applied to the rotating shaft 9 by hanging a weight W from a position A to a position L of 28 cm.
  • the measurement was performed in two ways: a state using only one rotor 5 (FIG. 15) and a state using both rotors (FIG. 16).
  • the power source used to drive the rotating device 1 was 10V1.8A when there was one rotor 5 and 10V1.6A when there were two rotors 5.
  • the rotating device 1 stops when the weight W is set to 800 g.
  • both rotors 5 are used, the rotating device does not stop even when the weight W is set to 1600 g. There wasn't.
  • the rotating device of the present invention includes a stator having a structure in which a plurality of electromagnets arranged parallel to each other and aligned with magnetic poles are arranged on a circumference around a rotation axis, and one end of the stator or It consists of a rotor arranged at both ends and a control unit that controls the current flowing through the electromagnet.
  • the rotor is composed of a front magnet with the magnetic pole repelling the electromagnet and facing the stator, and a rear magnet with the attracting magnetic pole A plurality of magnet pairs are provided, and the control unit is energized when the electromagnet is between the front magnet and the rear magnet of the magnet pair, and the electromagnet is between the adjacent magnet pair (for example, FIG. 10).
  • the current is controlled so that the current is cut off when the magnet is between the magnet pair 6-1 and the magnet pair 6-2. , It is those highly useful Te order.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

Provided is a rotating apparatus (1) comprising: a stator (2) having a structure wherein a plurality of electromagnets (3), which are parallel to each other and arranged so as to have like poles thereof at the same side, are arranged along a circumference centering around a rotation axle (9); a rotor (5) to be arranged at one end or at both ends of the stator (2); and a control unit (8) for controlling the currents that are to be made to flow through the electromagnets. A plurality of magnet pairs (6), each of which comprises a forward magnet (6f) that has a magnetic pole thereof having repulsive force with respect to the magnet poles of the electromagnets (3) face the stator (2) side, and a backward magnet (6r) that has a magnetic pole thereof having attractive force with respect to the magnet poles face the stator (2) side, are provided on the rotor (5). The rotating apparatus (1) is characterized in having the control unit (8) control the currents to the electromagnet (3) such that a current is supplied to an electromagnet (3) when the electromagnet (3) is between a forward magnet (6f) and a backward magnet (6r) of a magnet pair (6), and the current is cut off when the electromagnet (3) is between adjacent magnet pairs (6). A rotating apparatus of the present invention is highly efficient, and has strong torque.

Description

回転装置Rotating device
 本発明は、直流電流を用いた回転装置に関し、更に詳しくは、効率が高くトルクが大きい回転装置に関する。 The present invention relates to a rotating device using a direct current, and more particularly to a rotating device having high efficiency and a large torque.
 従来より、直流電流を用いた回転装置は電流や電圧を変化させることによりトルクや回転数を制御しやすく、さらに効率が高いと一般に考えられていることから、制御用モーター等として広く使用されている。
 このような直流回転装置において、ローター用の磁石として電磁石が使用されることが多いが、従来のモーターでは該電磁石の二つの磁極(N極とS極)のうちいずれか一方だけしか使用されていないので、更なる高効率化の余地は十分にあると考えられる。このような見地に基づき、電磁石をステーター用の磁石として用い、当該電磁石の両極に永久磁石を用いたローターを配置して、電磁石に入力する電力の有効利用を図った回転装置が提案されている(特許文献1参照)。
Conventionally, a rotating device using direct current has been widely used as a motor for control because it is generally considered that torque and rotation speed can be easily controlled by changing current and voltage, and that efficiency is higher. Yes.
In such a DC rotating device, an electromagnet is often used as a magnet for a rotor, but in a conventional motor, only one of the two magnetic poles (N pole and S pole) of the electromagnet is used. There is no room for further efficiency improvement. Based on such a viewpoint, a rotating device has been proposed in which an electromagnet is used as a stator magnet and a rotor using a permanent magnet is arranged on both poles of the electromagnet so as to effectively use electric power input to the electromagnet. (See Patent Document 1).
特開2006-25469号公報JP 2006-25469 A
 しかしながら、特許文献1で提案された回転装置では、ステーター内で使用する電磁石の磁極の向きが不揃いなため、その効率化には限界がある。
 本発明者は、電磁石の磁極の向きを揃えることにより、更なる高効率化を図ることができるとの知見に基づき本発明を完成したものである。
However, in the rotating device proposed in Patent Document 1, the direction of the magnetic poles of the electromagnet used in the stator is not uniform, so that there is a limit to the efficiency.
The present inventor has completed the present invention based on the knowledge that the efficiency can be further improved by aligning the direction of the magnetic poles of the electromagnet.
 即ち、本発明は、電磁石の磁極の向きを揃えることにより、効率が一層高く、トルクが大きい回転装置を提供することを目的とする。 That is, an object of the present invention is to provide a rotating device with higher efficiency and higher torque by aligning the magnetic poles of the electromagnet.
 本発明は上記目的を達成するためになされたもので、本発明の特徴の第1は、互いに平行で磁極を揃えて配置された複数の電磁石が回転軸を中心とする円周上に列設された構造を有するステーターと、前記ステーターの一端又は両端に配置されるローターと、電磁石に流す電流を制御する制御部(例えば整流子)からなり、ローターには、電磁石の磁極(例えばN極)と反発する磁極(例えばN極)をステーター側に向けた前方磁石、及び吸引する磁極(例えばS極)を向けた後方磁石からなる磁石対(永久磁石を使用)が複数対設けられており、磁石対の前方磁石と後方磁石の間の距離(例えば図7におけるD1)は、隣接する磁石対と磁石対の間の距離(例えば図7におけるD2)よりも大きく、且つ、磁石対の前方磁石と後方磁石の反対極側は強磁性材料からなる橋様体で架橋されており、制御部は電磁石が磁石対の前方磁石と後方磁石の間(電磁石が前方磁石又は後方磁石と対峙している場合を含む)にあるときに通電しており、電磁石が隣接する磁石対と磁石対の間(例えば図10における磁石対6-1と磁石対6-2の間)にあるときに電流を遮断しているように電流を制御する回転装置において、制御部が2個(A列用とB列用)の整流子相当部からなり、1個の整流子相当部は1個の整流子又はこれと同等の機能を有するICドライバーの部分であり、ステーターの電磁石の数がローターの前方磁石と後方磁石からなる磁石対の数の2倍であり、一の整流子相当部に接続された電磁石と、他の整流子相当部に接続された電磁石は交互に等間隔に配置されており、一の整流子相当部及び当該一の整流子相当部に接続された電磁石は直列に接続されているとともに、他の整流子相当部及び当該他の整流子相当部に接続された電磁石は直列に接続されており、磁石対の前方磁石と後方磁石の間に一の整流子相当部に接続された電磁石と他の整流子相当部に接続された電磁石が両方とも入った際には、整流子相当部は両方とも通電状態となるように構成されることを特徴とする回転装置を内容とする。 The present invention has been made in order to achieve the above object, and a first feature of the present invention is that a plurality of electromagnets arranged in parallel with each other and having magnetic poles aligned are arranged on a circumference around a rotation axis. A stator having a structured structure, a rotor disposed at one or both ends of the stator, and a control unit (for example, a commutator) that controls a current flowing through the electromagnet. The rotor has an electromagnet magnetic pole (for example, an N pole). Are provided with a plurality of pairs of magnets (using permanent magnets) consisting of a front magnet with a repulsive magnetic pole (for example, N pole) facing the stator side and a rear magnet with a magnetic pole to be attracted (for example, S pole) directed, The distance between the front magnet and the rear magnet of the magnet pair (for example, D1 in FIG. 7) is larger than the distance between the adjacent magnet pair and the magnet pair (for example, D2 in FIG. 7), and the front magnet of the magnet pair. And the rear magnet The counter electrode side is bridged by a bridge-like body made of a ferromagnetic material, and the control unit is between the front magnet and the rear magnet of the magnet pair (including the case where the electromagnet is opposed to the front magnet or the rear magnet). It is energized at some point, and the current is cut off when the electromagnet is between adjacent magnet pairs (eg, between magnet pair 6-1 and magnet pair 6-2 in FIG. 10). In the rotating device that controls the current, the control unit is composed of two commutator equivalent portions (for the A row and B row), and one commutator equivalent portion has one commutator or an equivalent function. The number of electromagnets in the stator is twice the number of magnet pairs consisting of the front magnet and the rear magnet of the rotor, the electromagnet connected to one commutator equivalent part, and the other commutator The electromagnets connected to the corresponding parts are alternately arranged at equal intervals, The commutator equivalent part and the electromagnet connected to the one commutator equivalent part are connected in series, and the other commutator equivalent part and the electromagnet connected to the other commutator equivalent part are connected in series. When both the electromagnet connected to the commutator equivalent part and the electromagnet connected to the other commutator equivalent part are inserted between the front magnet and the rear magnet of the magnet pair, the commutator equivalent Both of the parts are configured to be a rotating device that is configured to be energized.
 本発明の回転装置は、電磁石が磁極を揃えて配置されているので、効率が高くなる。
 また、磁石対の前方磁石と後方磁石の間に入っている電磁石に通電し、前方磁石との間に反発力を生じさせ、且つ後方磁石との間に吸引力を生じさせることにより駆動力(回転力、以下同じ)を得るとともに、隣接する磁石対と磁石対の間(例えば図10における磁石対6-1と磁石対6-2の間)にある電磁石の電流を遮断することにより駆動力とは逆向きの力が生じないようにするので大きいトルクが得られる。
 さらに、電流を遮断する際に発生する逆起電力により電磁石の磁極はわずかな間だけ反転するが、後方磁石が電磁石を通過した直後に電源を切れば逆起電力により磁極が反転した電磁石と後方磁石が反発して駆動力と同方向の力が得られるので回転装置のトルクが一層大きくなる。
The rotating device according to the present invention has high efficiency because the electromagnets are arranged with the magnetic poles aligned.
In addition, the electromagnet contained between the front magnet and the rear magnet of the magnet pair is energized, a repulsive force is generated between the front magnet and an attractive force is generated between the rear magnet and the driving force ( The driving force is obtained by obtaining the rotational force (hereinafter the same) and cutting off the current of the electromagnet between the adjacent magnet pair (for example, between the magnet pair 6-1 and the magnet pair 6-2 in FIG. 10). Therefore, a large torque can be obtained because no force is generated in the opposite direction.
Furthermore, the magnetic poles of the electromagnet are reversed for a short time due to the back electromotive force generated when the current is interrupted, but if the power is turned off immediately after the rear magnet passes through the electromagnet, the back side of the electromagnet whose magnetic pole is reversed by the back electromotive force Since the magnet repels and a force in the same direction as the driving force is obtained, the torque of the rotating device is further increased.
 磁石対の前方磁石と後方磁石の間の距離(例えば図7におけるD1)を隣接する磁石対と磁石対の間の距離(例えば図7におけるD2)よりも大きくすることにより、磁石対の前方磁石と後方磁石の間に複数の電磁石が入り、この複数の電磁石による反発力、吸引力でローターが駆動されるので、トルクがさらに大きくなる。
 また、磁石対の前方磁石と後方磁石の間の距離(例えば図7におけるD1)を隣接する磁石対と磁石対の間の距離(例えば図7におけるD2)よりも大きくし、磁石対の数の2倍の電磁石をステーターに等間隔に配列することにより、少なくとも半数の電磁石が常に磁石対の間にあるので、ステーターとローターの位置関係に関わらず始動でき、また制御が容易である。
By making the distance between the front magnet and the rear magnet of the magnet pair (for example, D1 in FIG. 7) larger than the distance between the adjacent magnet pair and the magnet pair (for example, D2 in FIG. 7), A plurality of electromagnets enter between the rear magnet and the rotor, and the rotor is driven by the repulsive force and attractive force of the plurality of electromagnets, so that the torque is further increased.
Further, the distance between the front magnet and the rear magnet of the magnet pair (for example, D1 in FIG. 7) is made larger than the distance between the adjacent magnet pair and the magnet pair (for example, D2 in FIG. 7), and the number of magnet pairs By arranging twice the electromagnets on the stator at equal intervals, at least half of the electromagnets are always between the magnet pairs, so that the engine can be started regardless of the positional relationship between the stator and the rotor, and control is easy.
 磁石対の前方磁石と後方磁石の反対極側を強磁性材料からなる橋様体で架橋することにより、架橋した磁石対の前方磁石と後方磁石の間で磁束密度が高まるので、この間にある電磁石との間で反発力、吸引力が強まり、一層効率が高くなる。 By bridging the opposite poles of the front magnet and the rear magnet of the magnet pair with a bridge-like body made of a ferromagnetic material, the magnetic flux density increases between the front magnet and the rear magnet of the bridged magnet pair. The repulsive force and suction force are increased between and the efficiency.
 本発明における制御部としては、整流子やICドライバーが好適である。 As the control unit in the present invention, a commutator or an IC driver is suitable.
図1は本発明の回転装置の実施例を示す斜視図である。FIG. 1 is a perspective view showing an embodiment of the rotating device of the present invention. 図2は図1の実施例の正面図である。FIG. 2 is a front view of the embodiment of FIG. 図3は図1の実施例の側面図である。FIG. 3 is a side view of the embodiment of FIG. 図4は図1の実施例の断面図である。FIG. 4 is a cross-sectional view of the embodiment of FIG. 図5は磁心及び磁心に電線を巻きつけてなる電磁石を示す斜視図である。FIG. 5 is a perspective view showing a magnetic core and an electromagnet formed by winding an electric wire around the magnetic core. 図6はローターを示す斜視図である。FIG. 6 is a perspective view showing the rotor. 図7は電磁石と磁石対の位置関係と電磁石のON-OFFを示す模式説明図である。FIG. 7 is a schematic explanatory view showing the positional relationship between the electromagnet and the magnet pair and the ON / OFF of the electromagnet. 図8は図7より時間が進んだ際の電磁石と磁石対の位置関係と電磁石のON-OFFを示す模式説明図である。FIG. 8 is a schematic explanatory view showing the positional relationship between the electromagnet and the magnet pair and the ON / OFF of the electromagnet when the time advances from FIG. 図9はステーターにおける制御部と電磁石の接続を示す配線図である。FIG. 9 is a wiring diagram showing the connection between the control unit and the electromagnet in the stator. 図10(a)は磁石対に対する電磁石の位置を示す説明図であり、(b)は(a)の状態におけるA列用の整流子を示す説明図であり、(c)は同じくB列用の整流子を示す説明図である。10A is an explanatory view showing the position of the electromagnet with respect to the magnet pair, FIG. 10B is an explanatory view showing a commutator for the A row in the state of FIG. 10A, and FIG. It is explanatory drawing which shows this commutator. 図11(a)は図10の場合より時間が進んだ状態の磁石対及び電磁石を示す説明図であり、(b)は(a)の状態におけるA列用の整流子を示す説明図であり、(c)は同じくB列用の整流子を示す説明図である。FIG. 11A is an explanatory view showing a magnet pair and an electromagnet in a state in which the time has advanced from the case of FIG. 10, and FIG. 11B is an explanatory view showing a row A commutator in the state of FIG. (C) is explanatory drawing which similarly shows the commutator for B rows. 図12(a)は図11の場合よりさらに時間が進んだ状態の磁石対及び電磁石を示す説明図であり、(b)は(a)の状態におけるA列用の整流子を示す説明図であり、(c)は同じくB列用の整流子を示す説明図である。FIG. 12A is an explanatory diagram showing a magnet pair and an electromagnet in a state in which the time is further advanced than in the case of FIG. 11, and FIG. 12B is an explanatory diagram showing a row A commutator in the state of FIG. And (c) is an explanatory view showing a B-row commutator. 図13は本発明の実施例における電磁石と磁石対の関係を示す模式説明図である。FIG. 13 is a schematic explanatory view showing a relationship between an electromagnet and a magnet pair in the embodiment of the present invention. 図14は本発明の実施例における制御部(整流子)の状態を示す模式説明図である。FIG. 14 is a schematic explanatory view showing the state of the control unit (commutator) in the embodiment of the present invention. 図15はローターを1つ使用した場合のトルクの測定方法を示す説明図である。FIG. 15 is an explanatory diagram showing a method for measuring torque when one rotor is used. 図16はローターを2つ使用した場合のトルクの測定方法を示す説明図である。FIG. 16 is an explanatory diagram showing a torque measurement method when two rotors are used.
 本発明の回転装置1は、図1乃至図4の実施例に示すように、互いに平行で磁極を揃えて配置された複数の電磁石3が回転軸9を中心とする円周上に列設された構造を有するステーター2と、前記ステーター2の一端又は両端に配置されるローター5と、電磁石3に流す電流を制御する制御部8からなり、ローター5には、電磁石3の磁極と反発する磁極をステーター2側に向けた前方磁石6f、及び吸引する磁極を向けた後方磁石6rからなる磁石対6が複数対設けられており、図7に示すように、磁石対の前方磁石6fと後方磁石6rの間の距離D1は、隣接する磁石対6と磁石対6の間の距離D2よりも大きく、且つ、磁石対の前方磁石6fと後方磁石6rの反対極側は強磁性材料からなる橋様体7で架橋されており、図10乃至図12に示すように、制御部8は電磁石3が磁石対6の前方磁石6fと後方磁石6rの間にあるときに通電しており、電磁石3が隣接する磁石対と磁石対の間(例えば図10における磁石対6-1と磁石対6-2の間)にあるときに電流を遮断しているように電流を制御する回転装置において、制御部8が2個(A列用とB列用)の整流子相当部からなり、1個の整流子相当部は1個の整流子又はこれと同等の機能を有するICドライバーの部分であり、ステーター2の電磁石3の数がローター5の前方磁石6fと後方磁石6rからなる磁石対6の数の2倍であり、一の整流子相当部8Aに接続された電磁石3と、他の整流子相当部8Bに接続された電磁石3は交互に等間隔に配置されており、一の整流子相当部8A及び当該一の整流子相当部に接続された電磁石3は直列に接続されているとともに、他の整流子相当部8B及び当該他の整流子相当部に接続された電磁石3は直列に接続されており、磁石対の前方磁石6fと後方磁石6rの間に一の整流子相当部に接続された電磁石3と他の整流子相当部に接続された電磁石3が両方とも入った際には、整流子相当部8A、8Bは両方とも通電状態となるように構成されることを特徴とする。 In the rotating device 1 of the present invention, as shown in the embodiments of FIGS. 1 to 4, a plurality of electromagnets 3 arranged parallel to each other and aligned with magnetic poles are arranged on a circumference around a rotating shaft 9. A stator 2 having one structure, a rotor 5 disposed at one or both ends of the stator 2, and a control unit 8 that controls a current flowing through the electromagnet 3. The rotor 5 has a magnetic pole that repels the magnetic pole of the electromagnet 3. Are provided with a plurality of pairs of magnets 6 including a front magnet 6f facing the stator 2 and a rear magnet 6r facing a magnetic pole to be attracted, as shown in FIG. The distance D1 between 6r is larger than the distance D2 between the adjacent magnet pair 6 and the magnet pair 6, and the opposite pole side of the front magnet 6f and the rear magnet 6r of the magnet pair is made of a ferromagnetic material. Cross-linked with body 7, FIG. 10 to FIG. 2, the control unit 8 is energized when the electromagnet 3 is between the front magnet 6f and the rear magnet 6r of the magnet pair 6, and the electromagnet 3 is between the adjacent magnet pair (for example, FIG. In the rotating device that controls the current so as to cut off the current when it is between the magnet pair 6-1 and the magnet pair 6-2 in FIG. ) Commutator equivalent part, and one commutator equivalent part is one commutator or an IC driver part having the same function, and the number of electromagnets 3 of the stator 2 is the front magnet of the rotor 5. 6f and the number of magnet pairs 6 composed of the rear magnet 6r is twice the number of magnet pairs 6 and the electromagnets 3 connected to one commutator equivalent part 8A and the electromagnets 3 connected to the other commutator equivalent part 8B alternately One commutator equivalent part 8A and the one commutator equivalent part arranged at intervals The connected electromagnets 3 are connected in series, and the other commutator equivalent part 8B and the electromagnet 3 connected to the other commutator equivalent part are connected in series, and the front magnet 6f of the magnet pair and When both the electromagnet 3 connected to one commutator equivalent part and the electromagnet 3 connected to another commutator equivalent part enter between the rear magnets 6r, both the commutator equivalent parts 8A and 8B are It is configured to be in an energized state.
 本発明の回転装置1は、図1乃至図4に示すように、電磁石3を複数(図示した実施例では8本)備えたステーター2と、磁石対6を複数対(図示した実施例では4対)備えたローター5と、制御部8(図示した実施例では2個(A列用とB列用)の整流子)を有する。
 本発明におけるステーター2は電磁石3が回転軸9を中心とする円周上(周方向)に列設された構造とされ、ローター5を電磁石3の両端側に1個づつ、計2個設置できるようにされている。なお、本発明の回転装置1を駆動するだけなら、ローター5は一つだけでも十分であるが、2個設置したほうが電力の利用効率が高く、トルクも大きくなる。
 以下、ローター5を二つ用いる場合に基づいて本発明を説明するが、他端側については同様であるので、煩雑さを避けるために原則として記載を省略する。
As shown in FIGS. 1 to 4, the rotating device 1 of the present invention includes a stator 2 provided with a plurality of electromagnets 3 (eight in the illustrated embodiment) and a plurality of pairs of magnets 6 (four in the illustrated embodiment). And a control unit 8 (two commutators (for A row and B row) in the illustrated embodiment).
The stator 2 according to the present invention has a structure in which the electromagnets 3 are arranged on the circumference (circumferential direction) centering on the rotation shaft 9, and two rotors 5 can be installed at each end of the electromagnet 3. Has been. Note that if only the rotating device 1 of the present invention is driven, only one rotor 5 is sufficient, but if two rotors are installed, the power utilization efficiency is higher and the torque becomes larger.
Hereinafter, the present invention will be described based on the case where two rotors 5 are used. However, since the same applies to the other end side, the description is omitted in principle in order to avoid complexity.
 電磁石3はローター5の回転軸9を通す軸受けを中心とした円周上に配置されるが、ローター5の回転速度やトルクを制御しやすくするため、電磁石3同士の間隔を等しくするのが好ましい。
 なお、本発明においては、電磁石3の磁極は全て揃えられている。このため、ステーター2が全体としてN極とS極に分極されており、本発明ではこのステーター2のN極、S極の部分にローター5、5’を取り付けるように構成される。
The electromagnet 3 is arranged on a circumference centered on a bearing through which the rotary shaft 9 of the rotor 5 passes. However, in order to easily control the rotational speed and torque of the rotor 5, it is preferable to make the intervals between the electromagnets 3 equal. .
In the present invention, all the magnetic poles of the electromagnet 3 are aligned. For this reason, the stator 2 is polarized to N and S poles as a whole, and the present invention is configured to attach the rotors 5 and 5 'to the N and S pole portions of the stator 2.
 本発明で用いる電磁石3は棒状である限り特に限定されず、例えば図5に示したような、鉄芯4に電線を巻回した一般的なものが全て好適に利用できる。
 なお、鉄芯4として電磁鋼を用いれば、電気エネルギーを効率よく磁力エネルギーに変換できるので好ましく、電磁鋼として珪素鋼を用いればコスト面でも低廉になる。好ましくは、珪素鋼板を矩形状に切断し、これを直方体状に積層したものを鉄芯4とすれば、強い磁力を発する電磁石3が安価に得られる。
The electromagnet 3 used in the present invention is not particularly limited as long as it is rod-shaped, and for example, all general magnets in which an electric wire is wound around an iron core 4 as shown in FIG. 5 can be suitably used.
In addition, it is preferable to use electromagnetic steel as the iron core 4 because electric energy can be efficiently converted into magnetic energy, and if silicon steel is used as the electromagnetic steel, the cost is low. Preferably, if a silicon steel plate 4 is formed by cutting a silicon steel plate into a rectangular shape and laminating it into a rectangular parallelepiped shape, the electromagnet 3 that generates a strong magnetic force can be obtained at low cost.
 本発明におけるローター5は、例えば図6に示したように、前方磁石6fと後方磁石6rを一対にした磁石対6を複数対(図6では4対)備えている。
 本発明において、前方磁石6fとは、当該ローター5が取り付けられる側のステーター2の磁極と同じ磁極が内側(ステーター2と対向する側を意味する。以下同じ)に向けられた永久磁石のことである。即ち、図示する通り、本発明のステーター2にはローター5を取り付ける箇所がステーター2の両側にそれぞれを1箇所づつの計2箇所あり、その内の一箇所はN極となり、残る一箇所はS極となっているが、ステーター2のN極側に取り付けるローター5において前方磁石6fとはN極を内側に向けた永久磁石のことであり、ステーター2のS極側に取り付けるローター5’においてはS極を内側に向けた永久磁石が前方磁石6f’である。
 また、本発明において後方磁石6rとは、ステーター2側の磁極とは異なる磁極が内側に向けられた永久磁石のことである。即ち、ステーター2のN極側に取り付けるローター5において後方磁石6rとはS極を内側に向けた永久磁石のことであり、ステーター2のS極側に取り付けるローターにおいてはN極を内側に向けた永久磁石が後方磁石6rである。
 なお、本発明において前方磁石6fと後方磁石6rは一対になって機能するため、これらを二つ合わせて磁石対6と称する。磁石対6のうち、いずれが前方磁石6f、後方磁石6rになるかはローター5の回転方向により定まり、回転方向はローター5を取り付けるステーター2の磁極により定まるので、ローター5だけでは前方磁石6f、後方磁石6rの区別はできないが、図6においては、矢示する方向にローター5が回転するものとして前方磁石6f、後方磁石6rを示す。
For example, as shown in FIG. 6, the rotor 5 in the present invention includes a plurality of pairs (four pairs in FIG. 6) of a pair of magnets 6 including a front magnet 6 f and a rear magnet 6 r.
In the present invention, the front magnet 6f is a permanent magnet in which the same magnetic pole as the magnetic pole of the stator 2 on the side where the rotor 5 is attached is directed inward (meaning the side facing the stator 2; hereinafter the same). is there. That is, as shown in the figure, the stator 2 of the present invention has two locations where the rotor 5 is attached, one on each side of the stator 2, one of which is the N pole, and the other is the S In the rotor 5 attached to the N pole side of the stator 2, the front magnet 6 f is a permanent magnet with the N pole facing inward, and in the rotor 5 ′ attached to the S pole side of the stator 2. The permanent magnet with the south pole facing inward is the front magnet 6f ′.
In the present invention, the rear magnet 6r is a permanent magnet in which a magnetic pole different from the magnetic pole on the stator 2 side is directed inward. That is, in the rotor 5 attached to the north pole side of the stator 2, the rear magnet 6r is a permanent magnet having the south pole facing inward, and in the rotor attached to the south pole side of the stator 2, the north pole is directed inward. The permanent magnet is the rear magnet 6r.
In the present invention, since the front magnet 6f and the rear magnet 6r function as a pair, they are collectively referred to as a magnet pair 6. Which of the magnet pairs 6 is the front magnet 6f and the rear magnet 6r is determined by the rotation direction of the rotor 5, and the rotation direction is determined by the magnetic poles of the stator 2 to which the rotor 5 is attached. Although the rear magnet 6r cannot be distinguished, in FIG. 6, the front magnet 6f and the rear magnet 6r are shown as the rotor 5 rotating in the direction indicated by the arrow.
 本発明では、磁石対6の前方磁石6fと後方磁石6rの間に電磁石3が入っている(位置している)ときに当該電磁石3に通電して磁力を発揮させ、磁石対6の前方磁石6fと後方磁石6rの間から電磁石3が出ているときに電流を遮断することによりローター5を駆動(回転、以下同じ)する。
 即ち、図7の模式説明図に示したように、例えば磁石対6-1に着目すると、前方磁石6f1と後方磁石6r1の間に入っている電磁石3A-1及び電磁石3B-2に通電すれば、電磁石3A-1の前方に配置された前方磁石6f1は電磁石3A-1と反発して矢示するように前方に押し出される。また、電磁石3B-2の後方に配置された後方磁石6r1は電磁石3B-2に吸引されて矢示するように前方に引き寄せられる。その結果、ローター5が回転する。
In the present invention, when the electromagnet 3 is inserted (positioned) between the front magnet 6f and the rear magnet 6r of the magnet pair 6, the electromagnet 3 is energized to exert a magnetic force, and the front magnet of the magnet pair 6 is displayed. The rotor 5 is driven (rotation, the same applies hereinafter) by cutting off the current when the electromagnet 3 is coming out between the 6f and the rear magnet 6r.
That is, as shown in the schematic explanatory diagram of FIG. 7, for example, when focusing on the magnet pair 6-1, if the electromagnet 3A-1 and the electromagnet 3B-2 that are between the front magnet 6f1 and the rear magnet 6r1 are energized, The front magnet 6f1 disposed in front of the electromagnet 3A-1 is pushed forward as shown by an arrow in response to the electromagnet 3A-1. Further, the rear magnet 6r1 disposed behind the electromagnet 3B-2 is attracted by the electromagnet 3B-2 and pulled forward as indicated by an arrow. As a result, the rotor 5 rotates.
 また、図8に示したように、時間が進んで後方磁石6r1が電磁石3B-2を通り過ぎている状態では、後方磁石6r1に乗り越えられた電磁石3B-2の電流を遮断する。このようにすることにより、後方磁石6r1が後方の電磁石3B-2に吸引されて後側に引っ張られることがない。
 さらに、電流を遮断する際に発生する逆起電力により電磁石3(図8における3B-2と3B-8)の磁極はわずかな間だけ反転するが、後方磁石6rが電磁石3を通過した直後に電流を遮断すれば逆起電力により磁極が反転した電磁石3(3B-2及び3B-8)と後方磁石6r(6r1及び6r4)が反発して駆動力と同方向の力が得られ、この力が付加されることになるので、回転装置のトルクが一層大きくなる。
Further, as shown in FIG. 8, when the time advances and the rear magnet 6r1 passes the electromagnet 3B-2, the current of the electromagnet 3B-2 that has passed over the rear magnet 6r1 is cut off. By doing so, the rear magnet 6r1 is not attracted to the rear electromagnet 3B-2 and pulled rearward.
Further, the magnetic poles of the electromagnet 3 (3B-2 and 3B-8 in FIG. 8) are reversed for a short time due to the counter electromotive force generated when the current is cut off, but immediately after the rear magnet 6r passes the electromagnet 3. If the current is cut off, the electromagnets 3 (3B-2 and 3B-8) whose magnetic poles are reversed by the back electromotive force and the rear magnets 6r (6r1 and 6r4) repel each other to obtain a force in the same direction as the driving force. Is added, and the torque of the rotating device is further increased.
 上記した通り、本発明では磁石対6の前方磁石6fと後方磁石6rの間に入っている電磁石3(図7の例では3A-1及び3B-2)に通電し、隣接する磁石対6と磁石対6の間(例えば図10における磁石対6-1と磁石対6-2の間)に入っている電磁石3(図10の例では3B-2)の電流を遮断するように通電が制御されているが、電磁石3の数を磁石対6の数(例えば4対)の整数倍(例えば2倍の8個)とし、磁石対6の数個(例えば4個)ごとにまとめて電磁石3の通電を制御するのが簡便で好ましい。
 詳しくは、電磁石3を磁石対6の数個(例えば4個)ごとにまとめてそれぞれをA列、B列とし、それぞれの列に属する電磁石3をA、B、A、B、と順に並べて、等間隔且つ円周上に配列する。通常は磁石対6も等間隔に配列されるので、このようにすれば、A列の電磁石3の位置は各磁石対6に対して同じであり、B列も同様であるから、各列の電磁石3は列ごとにまとめて制御できる。
 また、磁石対6の前方磁石6fと後方磁石6rの間の距離(例えば、図7で磁石対6-1の前方磁石6f1と後方磁石6r1の距離)D1を、隣接する磁石対6と磁石対6の間の距離(例えば、図7で磁石対6-1と磁石対6-2の距離)D2よりも大きくし、電磁石3の数を磁石対6の数の2倍にすれば、少なくとも各列のうちいずれかの電磁石3は必ず磁石対6の前方磁石6fと後方磁石6rの間に入るので、電磁石3と磁石対6の位置関係に関わらず駆動力を得ることができる。
As described above, according to the present invention, the electromagnet 3 (3A-1 and 3B-2 in the example of FIG. 7) energized between the front magnet 6f and the rear magnet 6r of the magnet pair 6 is energized, and the adjacent magnet pair 6 The energization is controlled so as to cut off the current of the electromagnet 3 (3B-2 in the example of FIG. 10) between the magnet pair 6 (for example, between the magnet pair 6-1 and the magnet pair 6-2 in FIG. 10). However, the number of electromagnets 3 is an integral multiple of the number of magnet pairs 6 (e.g., 4 pairs) (e.g., 8 times 2), and the electromagnets 3 are grouped together every several magnet pairs 6 (e.g., 4). It is convenient and preferable to control the energization.
Specifically, the electromagnets 3 are grouped into several (for example, four) magnet pairs 6 to form A and B columns, and the electromagnets 3 belonging to each column are arranged in order of A, B, A, and B. Arrange at equal intervals and on the circumference. Normally, the magnet pairs 6 are also arranged at equal intervals, so in this way, the positions of the electromagnets 3 in the A row are the same with respect to each magnet pair 6, and the B row is the same. The electromagnet 3 can be controlled collectively for each column.
Further, the distance D1 between the front magnet 6f and the rear magnet 6r of the magnet pair 6 (for example, the distance between the front magnet 6f1 and the rear magnet 6r1 of the magnet pair 6-1 in FIG. 7) D1, and the adjacent magnet pair 6 and magnet pair 6 (for example, the distance between magnet pair 6-1 and magnet pair 6-2 in FIG. 7) D2 and the number of electromagnets 3 is twice the number of magnet pairs 6, at least each Since any one of the electromagnets 3 in the row always enters between the front magnet 6f and the rear magnet 6r of the magnet pair 6, a driving force can be obtained regardless of the positional relationship between the electromagnet 3 and the magnet pair 6.
 また、図7及び図8に示したように、磁石対6の前方磁石6fと後方磁石6rの間の距離D1を、隣接する磁石対6と磁石対6の間の距離D2よりも大きくすれば、電磁石3に通電できる時間を長く、電流を遮断している時間を短くすることができ、また同時に通電できる電磁石3の数も多くなるので、その分トルクが大きくなる。 As shown in FIGS. 7 and 8, if the distance D1 between the front magnet 6f and the rear magnet 6r of the magnet pair 6 is made larger than the distance D2 between the adjacent magnet pair 6 and the magnet pair 6. In addition, the time during which the electromagnet 3 can be energized can be lengthened, the time during which the current is interrupted can be shortened, and the number of electromagnets 3 that can be energized at the same time increases, so the torque increases accordingly.
 また、図示したように、磁石対6の前方磁石6fと後方磁石6rの反対極側を強磁性材料からなる橋様体7で架橋すれば、架橋した前方磁石6fと後方磁石6rの間で磁束密度が高くなるので、電磁石3との反発力、吸引力も強まり、トルクが一層大きくなる。
 橋様体の形状は特に限定されないが、磁石対6の前方磁石6f及び後方磁石6rの上面を覆う程度の幅を有する板状体が好ましい。また、橋様体の材質は強磁性材料であれば特に限定されないが、鉄製とするのがコスト面で好ましい。
Further, as shown in the figure, if the opposite pole sides of the front magnet 6f and the rear magnet 6r of the magnet pair 6 are bridged by a bridge-like body 7 made of a ferromagnetic material, the magnetic flux is generated between the bridged front magnet 6f and the rear magnet 6r. Since the density is increased, the repulsive force and the attractive force with the electromagnet 3 are also increased, and the torque is further increased.
The shape of the bridge-like body is not particularly limited, but a plate-like body having a width enough to cover the upper surfaces of the front magnet 6f and the rear magnet 6r of the magnet pair 6 is preferable. Further, the material of the bridge-like body is not particularly limited as long as it is a ferromagnetic material, but it is preferably made of iron in terms of cost.
 上記したように、本発明では電磁石3の通電を制御することによりローター5を駆動するが、通電の制御は制御部8により行われる。
 本発明で使用できる制御部8としては、電磁石3が磁石対6の間にあるときに電磁石3に通電できるものであれば特に限定されず、通常はローター5の回転軸9と連動する2個の整流子が使用されるが、ICドライバーも使用できる。なお、ICドライバーとしては前述の整流子と同様に通電を制御するとともに、全ての電磁石3に通電する際にそれぞれの電磁石3における電圧が落ちないように、全体としての電圧を上げる機能を有するものが好ましい。
As described above, in the present invention, the rotor 5 is driven by controlling the energization of the electromagnet 3, and the energization control is performed by the control unit 8.
The control unit 8 that can be used in the present invention is not particularly limited as long as it can energize the electromagnet 3 when the electromagnet 3 is between the magnet pairs 6, and usually two units that interlock with the rotating shaft 9 of the rotor 5. The commutator is used, but an IC driver can also be used. The IC driver has a function of controlling the energization in the same way as the above-described commutator and increasing the voltage as a whole so that the voltage in each electromagnet 3 does not drop when all the electromagnets 3 are energized. Is preferred.
 以下、本発明における電磁石3への通電制御の一例について、図9乃至図12に基づいて説明する。なお、図9は図1乃至図4に示した本発明の回転装置に用いるステーター2の配線図であり、図10乃至12は磁石対6と電磁石3の位置関係、及びそのときの制御部8(一の整流子相当部8A及び他の整流子相当部8B。)の状態を示す説明図である。また、図9において電磁石3は縦一列に記載されているが、これは作図上の都合であり、実際には図1乃至図4に示したように、円周上に列設されていることは云うまでもない。 Hereinafter, an example of energization control to the electromagnet 3 according to the present invention will be described with reference to FIGS. 9 to 12. 9 is a wiring diagram of the stator 2 used in the rotating device of the present invention shown in FIGS. 1 to 4. FIGS. 10 to 12 show the positional relationship between the magnet pair 6 and the electromagnet 3, and the control unit 8 at that time. It is explanatory drawing which shows the state of (the one commutator equivalent part 8A and the other commutator equivalent part 8B). Further, in FIG. 9, the electromagnets 3 are shown in a vertical line, but this is for the convenience of drawing, and actually, as shown in FIGS. 1 to 4, they are arranged on the circumference. Needless to say.
 この例では、上記と同様に、ローター5に4対の磁石対6が設けられ、ステーター2には8本の電磁石3が設けられ、この電磁石3はローター5の回転軸9と連動する2個の整流子相当部8A、8Bからなる制御部8により制御されている。
 詳しくは、電磁石3はA列とB列にグループ分けされ、A列の電磁石3AとB列の電磁石3Bが交互に配置されている。また、図7及び図8に模式的に示すごとく、磁石対6の設置周期と、A列用の電磁石3Aの設置周期と、B列用の電磁石3Bの設置周期とはそれぞれ等しいが、磁石対6の前方磁石6fと後方磁石6rの距離D1はA列用の電磁石3AとB列用の電磁石3Bの間の距離D3よりも大きく、隣接する磁石対6と磁石対6の間隔D2は電磁石3Aと電磁石3Bの間の距離D3よりも小さくされている。
In this example, similarly to the above, the rotor 5 is provided with four magnet pairs 6, the stator 2 is provided with eight electromagnets 3, and the electromagnets 3 are coupled with the rotating shaft 9 of the rotor 5. Are controlled by a control unit 8 including commutator-corresponding portions 8A and 8B.
Specifically, the electromagnets 3 are grouped into an A row and a B row, and the electromagnets 3A in the A row and the electromagnets 3B in the B row are alternately arranged. Further, as schematically shown in FIGS. 7 and 8, the installation cycle of the magnet pair 6, the installation cycle of the electromagnet 3A for the A row, and the installation cycle of the electromagnet 3B for the B row are equal to each other. 6, the distance D1 between the front magnet 6f and the rear magnet 6r is larger than the distance D3 between the electromagnet 3A for row A and the electromagnet 3B for row B, and the distance D2 between the adjacent magnet pair 6 and magnet pair 6 is the electromagnet 3A. And the distance D3 between the electromagnet 3B.
 このようなステーター2とローター5において、各磁石対6に対する各A列の電磁石3Aの位置関係は同期して変化するので、A列の電磁石3Aは4個まとめて制御することができる。B列の電磁石3Bについても同様で、4個まとめて制御することができる。従って、本実施例においても、A列の電磁石3Aは全てA列用の整流子相当部8Aと接続され、B列の電磁石3Bは全てB列用の整流子相当部8Bと接続されている。
 なお、図9に示すように、A列の電磁石3A及びB列の電磁石3Bはそれぞれ直列に接続されている。
In such a stator 2 and rotor 5, the positional relationship of the electromagnets 3 </ b> A in each A row with respect to each magnet pair 6 changes synchronously, so that four electromagnets 3 </ b> A in the A row can be controlled together. The same applies to the electromagnets 3B in the B row, and four can be controlled together. Accordingly, also in this embodiment, all the A-row electromagnets 3A are connected to the A-row commutator equivalent portion 8A, and all the B-row electromagnets 3B are connected to the B-row commutator equivalent portion 8B.
In addition, as shown in FIG. 9, the electromagnet 3A of row A and the electromagnet 3B of row B are each connected in series.
 一方、制御部8は一の整流子相当部(A列用の整流子)8Aと他の整流子相当部(B列用の整流子)8Bからなり、図10乃至図12に示すように、整流子相当部8A、8Bはそれぞれドーナツ状導電体8d及びブラシ8bからなり、ドーナツ状導電体8dの表面に通電部8cと非通電部8nが4箇所ずつ交互に設けられている。また、一の整流子相当部(A列用の整流子)8Aと他の整流子(B列用の整流子)8Bは互いに45度ずらして回転軸9に取り付けられている。なお、ドーナツ状導電体8dと回転軸9の間は、漏電またはショートを防ぐため絶縁されている。 On the other hand, the control unit 8 is composed of one commutator equivalent portion (A row commutator) 8A and another commutator equivalent portion (B row commutator) 8B. As shown in FIGS. The commutator-corresponding portions 8A and 8B are each composed of a doughnut-shaped conductor 8d and a brush 8b, and four energized portions 8c and four non-energized portions 8n are alternately provided on the surface of the donut-shaped conductor 8d. Further, one commutator equivalent portion (A row commutator) 8A and the other commutator (B row commutator) 8B are attached to the rotary shaft 9 while being shifted from each other by 45 degrees. The donut-shaped conductor 8d and the rotary shaft 9 are insulated to prevent leakage or short circuit.
 本実施例においてはドーナツ状導電体8dは金属製であり、その表面に金属製の通電部8cと合成樹脂製又はゴム製の非通電部8nが接着されているが、本発明において通電部8cはブラシ8bと接触してドーナツ状導電体8dに通電できれば十分であるとともに、非通電部8nはブラシ8bとドーナツ状導電体8dの接触を妨げることができれば十分である。
 例えば、ドーナツ状導電体8dの周面の一部に設けた凹部を非通電部8nとし、凹部を設けていない部分を通電部8cとし、ブラシ8bが非通電部8n上にある時にブラシ8bとドーナツ状導電体8dの間に隙間を作ることにより、ブラシ8bとドーナツ状導電体8dの接触を妨げるようなものも本発明における整流子8として使用できる。
In this embodiment, the doughnut-shaped conductor 8d is made of metal, and a metal energizing portion 8c and a synthetic resin or rubber non-energizing portion 8n are bonded to the surface thereof. It is sufficient if it can contact the brush 8b to energize the doughnut-shaped conductor 8d, and the non-energized portion 8n only needs to prevent the contact between the brush 8b and the donut-shaped conductor 8d.
For example, a recess provided in a part of the peripheral surface of the doughnut-shaped conductor 8d is a non-energized portion 8n, a portion not provided with a recess is an energized portion 8c, and when the brush 8b is on the non-energized portion 8n, A device that prevents the contact between the brush 8b and the donut-shaped conductor 8d by creating a gap between the donut-shaped conductor 8d can also be used as the commutator 8 in the present invention.
 上記のように構成された回転装置1において、図10に示すように、磁石対6の前方磁石6fと後方磁石6rの間にある電磁石3(例えば、図10(a)における磁石対6-1の前方磁石6f1と後方磁石6r1の間にある電磁石3A-1)には通電されており、隣接する磁石対6と磁石対6の間にある電磁石3(例えば、図10(a)における磁石対6-1の後方磁石6r1と隣接する磁石対6-2の前方磁石6f2の間にある電磁石3B-2)の電流は遮断されているように電流が制御される。
 この場合、一の整流子相当部(A列用の整流子)8Aは、図10(b)に示すように、ブラシ8bが通電部8cと接触しているので、電流はドーナツ状導電体8dを通ってA列の電磁石3Aに流れる。
 一方、他の整流子相当部(B列用の整流子)8Bは、図10(c)に示すように、ブラシ8bは非通電部8nと接触しているので、電流はブラシ8bとドーナツ状導電体8dの間で遮断され、B列の電磁石3Bには電流が流れない。
In the rotating apparatus 1 configured as described above, as shown in FIG. 10, the electromagnet 3 between the front magnet 6f and the rear magnet 6r of the magnet pair 6 (for example, the magnet pair 6-1 in FIG. 10A). The electromagnet 3A-1) between the front magnet 6f1 and the rear magnet 6r1 is energized, and the electromagnet 3 between the adjacent magnet pair 6 and the magnet pair 6 (for example, the magnet pair in FIG. 10A). The current is controlled so that the current of the electromagnet 3B-2) between the rear magnet 6r1 of 6-1 and the front magnet 6f2 of the adjacent magnet pair 6-2 is cut off.
In this case, in one commutator equivalent portion (A row commutator) 8A, the brush 8b is in contact with the energizing portion 8c as shown in FIG. Flows through the A-line electromagnet 3A.
On the other hand, in the other commutator equivalent part (B row commutator) 8B, as shown in FIG. 10C, the brush 8b is in contact with the non-energized part 8n. It is interrupted between the conductors 8d, and no current flows through the B row electromagnets 3B.
 時間が進み、図11(a)に示すように、前方磁石6fがB列の電磁石3Bと対峙する位置に達すると、図11(c)に示すように、ブラシ8bが他の整流子相当部(B列用の整流子)8Bの通電部8cと接触し始める。なお、図11(c)では通電部8cの端部のみがブラシ8bの端部と接触しているが、ドーナツ状導電体8dは矢示する方向に回転しているので、この位置から通電が開始され、前方磁石6fはB列の電磁石3Bと反発し始める。
 一方、一の整流子相当部(A列用の整流子)8Aは、図11(b)に示すとおり、ブラシ8bと通電部8cが接触したままなので通電状態にあり、後方磁石6rを吸引している。
When time advances and the front magnet 6f reaches a position facing the electromagnet 3B in the B row as shown in FIG. 11 (a), the brush 8b becomes another commutator equivalent part as shown in FIG. 11 (c). (B row commutator) 8B begins to come into contact with the energizing portion 8c. In FIG. 11C, only the end of the energizing portion 8c is in contact with the end of the brush 8b. However, since the donut-shaped conductor 8d rotates in the direction indicated by the arrow, energization is performed from this position. The front magnet 6f starts to repel the B-row electromagnet 3B.
On the other hand, the commutator equivalent part (A row commutator) 8A, as shown in FIG. 11B, is in an energized state because the brush 8b and the energizing part 8c remain in contact with each other, and attracts the rear magnet 6r. ing.
 更に時間が進み、図12(a)に示すように、後方磁石6rがA列の電磁石3Aを乗り越える位置に達すると、図12(b)に示すように、ブラシ8bが一の整流子相当部(A列用の整流子)8Aの通電部8cから外れて電流が遮断される。なお、図12(b)では通電部8cの端部がブラシ8bの端部と接触しているが、ドーナツ状導電体8dは矢示する方向に回転しているので、この位置で通電が終了し、以後、後方磁石6rと電磁石3Aの吸引力が殆ど無くなる(永久磁石である後方磁石6rが強磁性体としての鉄芯等を吸引するので、完全なゼロにはならない)。これにより、回転方向と逆向きの力の発生が抑えられる。
 一方、他の整流子相当部(B列用の整流子)8Bは、図12(c)に示すとおり、ブラシ8bと通電部8cが接触したままなので通電状態にある。従って、電磁石3Bは前方磁石6fと反発するとともに後方磁石6rを吸着して前方方向へのトルクを発生させている。
When the time further advances and the rear magnet 6r reaches a position where it crosses over the electromagnet 3A in the A row as shown in FIG. 12 (a), the brush 8b becomes one commutator equivalent portion as shown in FIG. 12 (b). (A row commutator) The current is cut off from the energizing portion 8c of 8A. In FIG. 12B, the end of the energizing portion 8c is in contact with the end of the brush 8b. However, since the donut-shaped conductor 8d rotates in the direction indicated by the arrow, energization ends at this position. Thereafter, the attractive force between the rear magnet 6r and the electromagnet 3A is almost lost (because the rear magnet 6r, which is a permanent magnet, attracts an iron core or the like as a ferromagnetic material, it is not completely zero). Thereby, generation | occurrence | production of the force opposite to a rotation direction is suppressed.
On the other hand, the other commutator equivalent portion (B row commutator) 8B is in an energized state because the brush 8b and the energizing portion 8c remain in contact as shown in FIG. 12 (c). Therefore, the electromagnet 3B repels the front magnet 6f and attracts the rear magnet 6r to generate a torque in the forward direction.
 更に時間が進んで、前方磁石6fがA列の電磁石3Aと対峙する位置に進めば、図11に示した状態と同様、電磁石3Aの通電が開始されて強いトルクが発生する。本実施例の回転装置1は、このような通電制御のサイクルを繰り返して回転を続ける。 If the time further advances and the front magnet 6f advances to a position facing the electromagnet 3A in the A row, energization of the electromagnet 3A is started and a strong torque is generated as in the state shown in FIG. The rotating device 1 according to the present embodiment continues to rotate by repeating such an energization control cycle.
 図13、図14に模式的に示す回転装置1の実施例を用いて、本発明の回転装置1のトルクを測定した。なお、本発明はこの実施例には限定されない。
 この回転装置1は、8本の電磁石3が等間隔に配列されたステーター2と、4対の磁石対6が設けられ、一対の前方磁石6fと後方磁石6rの反対極側が強磁性材料(鉄)からなる橋様体7で架橋されたローター5を有する。図13にはステーター2の両側にローター5が2つ設けられた状態が記載されているが、1つだけでも駆動は可能である。
 この回転装置1において、制御部8はICドライバーであるが、回転装置1の回転軸に固定された一の整流子(A列用の整流子)8Aと他の整流子(B列用の整流子)8Bを用いた場合と機能はほぼ同じなので、以下、整流子に置き換えて説明する。なお、この実施例で用いるICドライバーは全ての電磁石3に電流が流れている際にも、A列用の電磁石3A又はB列用の電磁石3Bのいずれか一方に電流が流れている場合と同じ電圧を保つ機能を有している。
 この制御部8において、一の整流子相当部(A列用の整流子)8Aの通電部8cにブラシ8bが接触したとき(図14(a)上側)に、電磁石3A-1・3・5・7に通電され、通電部8cとブラシ8bが離れたとき(図14(c)上側)に通電が遮断される。同様に、他の整流子相当部(B列用の整流子)8Bの通電部8cにブラシ8bが接触したとき(図14(c)下側)に、電磁石3B-2・4・6・8に通電され、通電部8cとブラシ8bが離れたとき(図14(a)下側)に通電が遮断される。
The torque of the rotating device 1 of the present invention was measured using an example of the rotating device 1 schematically shown in FIGS. In addition, this invention is not limited to this Example.
The rotating device 1 includes a stator 2 in which eight electromagnets 3 are arranged at equal intervals, and four pairs of magnets 6, and the opposite pole side of the pair of front magnets 6 f and rear magnets 6 r is a ferromagnetic material (iron The rotor 5 is bridged by a bridge-like body 7 made of Although FIG. 13 shows a state in which two rotors 5 are provided on both sides of the stator 2, even one can be driven.
In this rotating device 1, the control unit 8 is an IC driver, but one commutator (A column commutator) 8 </ b> A fixed to the rotating shaft of the rotating device 1 and another commutator (B column commutation). Child) Since the function is almost the same as when 8B is used, the following explanation will be made by replacing it with a commutator. Note that the IC driver used in this embodiment is the same as the case where the current flows in either one of the electromagnet 3A for the A row or the electromagnet 3B for the B row even when the current flows in all the electromagnets 3. Has the function of maintaining voltage.
In the control unit 8, when the brush 8b comes into contact with the energizing unit 8c of one commutator equivalent portion (A row commutator) 8A (upper side in FIG. 14A), the electromagnets 3A-1, 3, 5 When the energizing portion 7c and the brush 8b are separated (upper side in FIG. 14 (c)), the energizing is interrupted. Similarly, when the brush 8b comes into contact with the energizing portion 8c of the other commutator equivalent portion (B row commutator) 8B (lower side in FIG. 14C), the electromagnets 3B-2, 4, 6, 8 Is energized, and the energization is interrupted when the energizing portion 8c and the brush 8b are separated (lower side in FIG. 14A).
 この回転装置1は、下記の特徴を有する。
(1)電磁石3のN・S両極を使用すること、
(2)配列された電磁石3の右側が全てS極に揃えられ、左側が全てN極に揃えられていること、
(3)ある電磁石3から数えて奇数番目がA直列、偶数番目がB直列とされ、A直列の電磁石3とB直列の電磁石3は交互に用いられるが、少しの間だけ全ての電磁石3を同時に使用すること(制御部8の状態が図14(a)のときにA直列3Aが使用され、(b)のときに全ての電磁石3が同時に使用され、(c)のときにB直列3Bが使用される)、
(4)隣接する2つの電磁石3(即ちA直列とB直列)の間隔と、一対の磁石対6の中の前方磁石6fと後方磁石6rの間隔を比較すれば、前方磁石6fと後方磁石6rの間隔のほうが長い。
 なお、このような回転装置1は大型化も容易であり、例えば、本実施例の5倍のトルクを有する回転装置1を得るには、電磁石3や磁石対6の数を5倍にすればよく、即ち、電磁石3を40本、磁石対6を20対の回転装置1を用いて、20本のA直列電磁石3Aと20本のB直列電磁石3Bが交互に働くようにすれば良い。このようにすれば、大型にした場合でも永久磁石の使用が可能で、1つの電磁石3に過大な電流が流れることもなく、発熱量が小さい優れた大型の回転装置1が得られる。
The rotating device 1 has the following characteristics.
(1) Use both N and S poles of the electromagnet 3;
(2) The right sides of the arranged electromagnets 3 are all aligned with the S pole, and the left sides are all aligned with the N pole.
(3) An odd number from an electromagnet 3 is an A series, and an even number is a B series, and the A series electromagnet 3 and the B series electromagnet 3 are used alternately. Simultaneous use (A series 3A is used when the state of the control unit 8 is FIG. 14 (a), all electromagnets 3 are used simultaneously when (b), and B series 3B is used when (c). Is used),
(4) If the distance between two adjacent electromagnets 3 (that is, A series and B series) is compared with the distance between the front magnet 6f and the rear magnet 6r in the pair of magnet pairs 6, the front magnet 6f and the rear magnet 6r. The interval is longer.
Such a rotating device 1 can be easily increased in size. For example, in order to obtain a rotating device 1 having a torque five times that of the present embodiment, the number of electromagnets 3 and magnet pairs 6 is increased five times. That is, it is only necessary that the 20 A series electromagnets 3 </ b> A and the 20 B series electromagnets 3 </ b> B work alternately by using the rotating device 1 having 40 electromagnets 3 and 20 magnet pairs 6. In this way, a permanent magnet can be used even when the size is increased, and an excessive current does not flow through one electromagnet 3, and an excellent large rotating device 1 with a small amount of heat generation can be obtained.
 本発明の回転装置1のトルクは図15及び図16に示した方法で測定した。即ち、木製の机Dの表面に長さ36cmのヒノキ製の角材Tの一端Fを蝶番を用いて取り付け、蝶番から7cmの位置Aで机Dと角材Tの間に回転軸9を挟むように回転装置1を設置し、位置Aから28cmの位置Lに重りWを吊るして回転軸9に負荷をかけた。測定は、ローター5を1つだけ用いた状態(図15)と、2つとも用いた状態(図16)の2通りについて行った。回転装置1の駆動に使用した電源は、ローター5が1つの場合は10V1.8A、ローター5が2つの場合は10V1.6Aであった。
 その結果、ローター5を1つだけ用いた場合は重りWを800gにしたときに回転装置1が静止したが、ローター5を2つとも用いた場合は重りWを1600gにしても回転装置は止まらなかった。
The torque of the rotating device 1 of the present invention was measured by the method shown in FIGS. That is, one end F of a cypress square T made of wood having a length of 36 cm is attached to the surface of the wooden desk D using a hinge, and the rotary shaft 9 is sandwiched between the desk D and the square T at a position A of 7 cm from the hinge. The rotating device 1 was installed, and a load was applied to the rotating shaft 9 by hanging a weight W from a position A to a position L of 28 cm. The measurement was performed in two ways: a state using only one rotor 5 (FIG. 15) and a state using both rotors (FIG. 16). The power source used to drive the rotating device 1 was 10V1.8A when there was one rotor 5 and 10V1.6A when there were two rotors 5.
As a result, when only one rotor 5 is used, the rotating device 1 stops when the weight W is set to 800 g. However, when both rotors 5 are used, the rotating device does not stop even when the weight W is set to 1600 g. There wasn't.
 上記したとおり、本発明の回転装置は、互いに平行で磁極を揃えて配置された複数の電磁石が回転軸を中心とする円周上に列設された構造を有するステーターと、前記ステーターの一端又は両端に配置されるローターと、電磁石に流す電流を制御する制御部からなり、ローターには、電磁石の磁極と反発する磁極をステーター側に向けた前方磁石、及び吸引する磁極を向けた後方磁石からなる磁石対が複数対設けられており、制御部は電磁石が磁石対の前方磁石と後方磁石の間にあるときに通電しており、電磁石が隣接する磁石対と磁石対の間(例えば図10における磁石対6-1と磁石対6-2の間)にあるときに電流を遮断しているように電流を制御するように構成されているので、効率が一層高く、トルクが大きい回転装置として、極めて有用性の高いものである。 As described above, the rotating device of the present invention includes a stator having a structure in which a plurality of electromagnets arranged parallel to each other and aligned with magnetic poles are arranged on a circumference around a rotation axis, and one end of the stator or It consists of a rotor arranged at both ends and a control unit that controls the current flowing through the electromagnet. The rotor is composed of a front magnet with the magnetic pole repelling the electromagnet and facing the stator, and a rear magnet with the attracting magnetic pole A plurality of magnet pairs are provided, and the control unit is energized when the electromagnet is between the front magnet and the rear magnet of the magnet pair, and the electromagnet is between the adjacent magnet pair (for example, FIG. 10). As the rotating device has a higher efficiency and a larger torque, the current is controlled so that the current is cut off when the magnet is between the magnet pair 6-1 and the magnet pair 6-2. , It is those highly useful Te order.
 1 回転装置
 2 ステーター
 3 電磁石
 4 鉄芯
 5 ローター
 6 磁石対
 6f 前方磁石
 6r 後方磁石
 7 橋様体
 8 制御部
 8A A列用の整流子相当部(一の整流子相当部)
 8B B列用の整流子相当部(他の整流子相当部)
 8b ブラシ
 8d ドーナツ状導電体
 8c 通電部
 8n 非通電部
 9 回転軸
 D1 磁石対の前方磁石6fと後方磁石6rの間の距離
 D2 隣接する磁石対6と磁石対6の間の距離
 D3 電磁石3Aと電磁石3Bの距離
 D 机
 T 角材
 W 重り
 L 重りを吊るした位置
 A 回転軸を挟んだ位置
DESCRIPTION OF SYMBOLS 1 Rotating device 2 Stator 3 Electromagnet 4 Iron core 5 Rotor 6 Magnet pair 6f Front magnet 6r Rear magnet 7 Bridge-like body 8 Control part 8A Commutator equivalent part for A row (one commutator equivalent part)
8B B row commutator equivalent part (other commutator equivalent part)
8b Brush 8d Donut-shaped conductor 8c Energizing part 8n Non-energizing part 9 Rotating shaft D1 Distance between the front magnet 6f and the rear magnet 6r of the magnet pair D2 Distance between the adjacent magnet pair 6 and the magnet pair 6 D3 Electromagnet 3A Distance of electromagnet 3B D Desk T Square material W Weight L Position where weight is suspended A Position where rotary shaft is sandwiched

Claims (1)

  1.  互いに平行で磁極を揃えて配置された複数の電磁石が回転軸を中心とする円周上に列設された構造を有するステーターと、前記ステーターの一端又は両端に配置されるローターと、電磁石に流す電流を制御する制御部からなり、
     ローターには、電磁石の磁極と反発する磁極をステーター側に向けた前方磁石、及び吸引する磁極を向けた後方磁石からなる磁石対が複数対設けられており、
     磁石対の前方磁石と後方磁石の間の距離は、隣接する磁石対と磁石対の間の距離よりも大きく、且つ、磁石対の前方磁石と後方磁石の反対極側は強磁性材料からなる橋様体で架橋されており、
     制御部は電磁石が磁石対の前方磁石と後方磁石の間にあるときに通電しており、電磁石が隣接する磁石対と磁石対の間にあるときに電流を遮断しているように電流を制御する回転装置において、
     制御部が2個の整流子相当部からなり、1個の整流子相当部は1個の整流子又はこれと同等の機能を有するICドライバーの部分であり、
     ステーターの電磁石の数がローターの前方磁石と後方磁石からなる磁石対の数の2倍であり、一の整流子相当部に接続された電磁石と、他の整流子相当部に接続された電磁石は交互に等間隔に配置されており、
     一の整流子相当部及び当該一の整流子相当部に接続された電磁石は直列に接続されているとともに、他の整流子相当部及び当該他の整流子相当部に接続された電磁石は直列に接続されており、
     磁石対の前方磁石と後方磁石の間に一の整流子相当部に接続された電磁石と他の整流子相当部に接続された電磁石が両方とも入った際には、整流子相当部は両方とも通電状態となるように構成されることを特徴とする回転装置。
    A stator having a structure in which a plurality of electromagnets arranged in parallel with each other and arranged with magnetic poles arranged on a circumference around a rotation axis, a rotor arranged at one or both ends of the stator, and a flow through the electromagnet It consists of a control unit that controls the current,
    The rotor is provided with a plurality of pairs of magnets consisting of a front magnet with the magnetic pole repelling the magnetic pole of the electromagnet facing the stator side, and a rear magnet with the magnetic pole to be attracted facing.
    The distance between the front magnet and the rear magnet of the magnet pair is larger than the distance between the adjacent magnet pair and the opposite pole side of the front magnet and the rear magnet of the magnet pair is made of a ferromagnetic material. Cross-linked with
    The controller controls the current so that it is energized when the electromagnet is between the front magnet and the rear magnet of the magnet pair, and the current is cut off when the electromagnet is between the adjacent magnet pair. In the rotating device
    The control unit is composed of two commutator equivalent parts, and one commutator equivalent part is a part of an IC driver having one commutator or an equivalent function,
    The number of electromagnets in the stator is twice the number of magnet pairs consisting of the front magnet and the rear magnet of the rotor. The electromagnet connected to one commutator equivalent part and the electromagnet connected to the other commutator equivalent part are Alternatingly spaced at equal intervals,
    The one commutator equivalent part and the electromagnet connected to the one commutator equivalent part are connected in series, and the other commutator equivalent part and the electromagnet connected to the other commutator equivalent part are connected in series. Connected,
    When both an electromagnet connected to one commutator equivalent part and an electromagnet connected to another commutator equivalent part enter between the front magnet and the rear magnet of the magnet pair, both commutator equivalent parts A rotating device configured to be in an energized state.
PCT/JP2011/075817 2011-02-03 2011-11-09 Rotating apparatus WO2012105099A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011021419A JP4861522B1 (en) 2011-02-03 2011-02-03 Rotating device
JP2011-021419 2011-02-03

Publications (1)

Publication Number Publication Date
WO2012105099A1 true WO2012105099A1 (en) 2012-08-09

Family

ID=45604566

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075817 WO2012105099A1 (en) 2011-02-03 2011-11-09 Rotating apparatus

Country Status (2)

Country Link
JP (1) JP4861522B1 (en)
WO (1) WO2012105099A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034265A1 (en) * 2015-03-25 2016-09-30 Andre Chaneac GENERATOR AND CONTINUOUS CURRENT MOTOR COMPRISING A FIXED INDUCTO
WO2024190998A1 (en) * 2023-03-13 2024-09-19 ㈜푸드포트 Magnetic torque generator

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5894414B2 (en) * 2011-10-28 2016-03-30 章 三好 Generator
KR101809640B1 (en) 2015-07-24 2018-01-18 신진붕 Power amplification device using magnetic force
KR102200620B1 (en) * 2019-10-19 2021-01-11 황주원 High Efficiency Direct Current Motor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025469A (en) * 2002-06-19 2006-01-26 Shuichi Sakoda High efficiency magnetic force rotating device
JP2007037389A (en) * 2005-07-25 2007-02-08 Shuichi Sakoda Commutator

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006025469A (en) * 2002-06-19 2006-01-26 Shuichi Sakoda High efficiency magnetic force rotating device
JP2007037389A (en) * 2005-07-25 2007-02-08 Shuichi Sakoda Commutator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3034265A1 (en) * 2015-03-25 2016-09-30 Andre Chaneac GENERATOR AND CONTINUOUS CURRENT MOTOR COMPRISING A FIXED INDUCTO
WO2024190998A1 (en) * 2023-03-13 2024-09-19 ㈜푸드포트 Magnetic torque generator

Also Published As

Publication number Publication date
JP2012161229A (en) 2012-08-23
JP4861522B1 (en) 2012-01-25

Similar Documents

Publication Publication Date Title
JP5906360B2 (en) Magnetic rotating device, electric motor, and motor generator
US3602749A (en) Dynamoelectric machine
JP5798072B2 (en) Rotating machine
US10230292B2 (en) Permanent magnet operating machine
CA2659766A1 (en) Electric motor with two or more stators or rotors
JP4861522B1 (en) Rotating device
JP4727819B2 (en) System for controlling rotary devices
JP2009254092A5 (en)
EP2394351A2 (en) Electrical machine
US8373328B2 (en) Pulsed multi-rotor constant air gap switched reluctance motor
CN104218758A (en) Permanent magnet coreless brushless motor
US20140252913A1 (en) Single phase switched reluctance machine with axial flux path
JP5372115B2 (en) Rotating electric machine
CN105958753A (en) Method of producing embedded permanent magnet steel and invisible magnetic pole drive motor rotor
JP2020065412A (en) Cylindrical linear motor
WO2015136758A1 (en) Linear motor
JP2019201441A (en) Electric motor and manufacturing method for the same
JP2013066347A (en) Rotary electric machine
JP2005124335A (en) Switched reluctance motor and control method therefor
US20120025653A1 (en) Aggregate magnetization skew in a permanent magnet assembly
JP3737750B2 (en) Hybrid magnet type DC machine
JP2015080351A (en) Magnetic force rotation device and motor generator
CN212784913U (en) Damping type switched reluctance motor
KR101656179B1 (en) DC Motor
KR20230028165A (en) magnetic rotating device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857572

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857572

Country of ref document: EP

Kind code of ref document: A1