WO2012104205A1 - Générateur d'ammoniac permettant de convertir des solutions précurseur d'ammoniac liquide en ammoniac gazeux pour applications denox par réduction catalytique sélective d'oxydes d'azote - Google Patents

Générateur d'ammoniac permettant de convertir des solutions précurseur d'ammoniac liquide en ammoniac gazeux pour applications denox par réduction catalytique sélective d'oxydes d'azote Download PDF

Info

Publication number
WO2012104205A1
WO2012104205A1 PCT/EP2012/051296 EP2012051296W WO2012104205A1 WO 2012104205 A1 WO2012104205 A1 WO 2012104205A1 EP 2012051296 W EP2012051296 W EP 2012051296W WO 2012104205 A1 WO2012104205 A1 WO 2012104205A1
Authority
WO
WIPO (PCT)
Prior art keywords
ammonia
catalyst
precursor
liquid
exhaust gas
Prior art date
Application number
PCT/EP2012/051296
Other languages
English (en)
Inventor
Oliver Kröcher
Daniel PEITZ
Original Assignee
Paul Scherrer Institut
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Paul Scherrer Institut filed Critical Paul Scherrer Institut
Publication of WO2012104205A1 publication Critical patent/WO2012104205A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/90Injecting reactants
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/08Preparation of ammonia from nitrogenous organic substances
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/08Preparation of ammonia from nitrogenous organic substances
    • C01C1/086Preparation of ammonia from nitrogenous organic substances from urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/20Reductants
    • B01D2251/206Ammonium compounds
    • B01D2251/2067Urea
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/10Noble metals or compounds thereof
    • B01D2255/106Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20707Titanium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/209Other metals
    • B01D2255/2092Aluminium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/80Type of catalytic reaction
    • B01D2255/808Hydrolytic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/40Nitrogen compounds
    • B01D2257/404Nitrogen oxides other than dinitrogen oxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2258/00Sources of waste gases
    • B01D2258/01Engine exhaust gases
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2240/00Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being
    • F01N2240/40Combination or association of two or more different exhaust treating devices, or of at least one such device with an auxiliary device, not covered by indexing codes F01N2230/00 or F01N2250/00, one of the devices being a hydrolysis catalyst
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/02Adding substances to exhaust gases the substance being ammonia or urea
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/06Adding substances to exhaust gases the substance being in the gaseous form
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2610/00Adding substances to exhaust gases
    • F01N2610/10Adding substances to exhaust gases the substance being heated, e.g. by heating tank or supply line of the added substance
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Definitions

  • Ammonia generator converting liquid ammonia precursor solutions to gaseous ammonia for DeNOx-applications using selective catalytic reduction of nitrogen oxides
  • the presented invention relates to a method and an apparatus comprising a separate ammonia generator to convert liquid ammonia precursor solutions into gaseous ammonia for NOx reduction (DeNOx) applications utilizing selective catalytic reduction of nitrogen oxides .
  • SCR selective catalytic reduction
  • ammonia gas reacts with the nitrogen oxide (NOx) gases on the SCR-catalyst to yield harmless nitrogen and water.
  • NOx nitrogen oxide
  • stationary applications such as power plants, ammonia gas is injected into and mixed with the exhaust gas, which is not feasible for mobile applications due to safety issues of
  • ammonia precursor compound solution such as urea in water is injected into the hot exhaust gas.
  • the urea is then either decomposed on a special hydrolysis catalyst or on the SCR-catalyst itself to yield gaseous ammonia for the SCR reaction.
  • the decomposition of the ammonia precursor compound yields the necessary ammonia, but also creates no issues with legislation as only a harmless ammonia precursor compound solution is transported.
  • This invention describes the production of ammonia gas and its introduction into the exhaust gas of combustion engines. However, it may also be used for any other application requiring a dynamic or constant flow of ammonia and/or hydrogen containing gas.
  • reducing agent solution is sprayed onto a devoted hydrolysis catalyst or the SCR catalyst itself for decomposition.
  • the reducing agent solution is either situated in the gas phase or present as an aerosol, both being diluted with either exhaust gas and/or pressurized air while passing the decomposition catalyst.
  • the ratio of reactants dosed per catalyst volume is much lower than the ratio which results when pumping the liquid reducing agent solution through a heated catalyst bed.
  • WO2008077587A1 and many other recent patents still contain a spraying apparatus involving either a gas to assist spraying and/or a gas into which the ammonia storage compound is sprayed and a subsequent evaporation and decomposition system.
  • FR 29 36 957 Al and FR 29 36 958 Al describe a device compromising a chamber for receiving aqueous urea.
  • the chamber is filled with a porous material with a catalytic coating (100 cm 2 surface area per 1 cm 3 ) on the pores to decompose aqueous urea to ammonia.
  • the chamber contains a heating element inside which is heated to 40- 200°C (FR 29 36 958 Al ) or to 200-400°C ( FR 29 36 957 Al ) .
  • urea During heating in a first heating zone to 50°C or during heating up of the solution after insertion, urea is claimed to precipitate in the chamber, but due to the filling with a porous material (pore size 1 - 100 ⁇ ) only small urea crystals can form. These urea crystals are claimed to decompose to ammonia during further heating.
  • the device is operated at atmospheric pressure, or slightly elevated pressure to inject the produced gases into the exhaust duct.
  • the presented method will utilize catalytic coatings or catalyst with surface areas which are larger by at least two, preferably three orders of magnitude.
  • the heating will always be intended to be from the outside of the reactor, and restricted to a single zone. No porous material will be necessary to restrict the formation of urea crystals, and pressures used will be
  • US 58 27 490 A describes a method for the conversion of aqueous urea solution (concentration of less than 20% urea) to ammonia.
  • the method is primarily intended for the treatment of NOx in the exhaust gas stream of a boiler. While heating to a temperature of 350-650°F (177-343°C), the solution is pressurized to a pressure required to keep urea reaction products in the liquid phase, at least 300 psi (20.7 bar) .
  • the heated solution is contacted with a catalyst for the conversion of urea to ammonium carbamate which is claimed to be practically equivalent to a conversion to ammonia.
  • the catalyst is preferably composed of chromium or molybdenum as metal, metal oxide or compound, but possibly also of aluminum, cobalt, niobium, titanium or vanadium as metal, metal oxide or compound. Conversion of >90% of urea to ammonia is reported for a 5% urea aqueous solution at 260°C with 4.5 min reaction time.
  • the presented method will use urea solutions with concentrations from 30% (by mass) onward, and focus on combustion engine exhaust gas.
  • the catalysts which were reported to be the most active ones will not be considered preferably.
  • the operation without catalyst which was reported to be very bad (0% yield) will be a feasible option in the presented method for urea
  • WO 98 42 623 Al describes a method for the conversion of a
  • ammonia The solution is pumped into a reactor which is heated. The heating is used to influence temperature and pressure in the reactor. While under pressure, ammonia and CO 2 are removed as gases from the reaction mixture, while the remaining solution is
  • Ammonia and CO 2 are then mixed into the process gas stream of a furnace, incinerator or power plant.
  • the decomposition is enhanced by preferably oxides, ammonium or alkali salt of vanadium or molybdenum, but also chromium, tin, bimuth or boron or by "active surface solids" like activated carbon, activated silica, activated alumina and ion-exchange resins in their acid and basic form.
  • the temperature for operation is preferably 130- 170°C, in general 110-200°C, the coupled pressure 20-120 psi (1.4- 8.3 bar), in general 20-500 psi (1.4-34.5 bar) .
  • the presented method will not control pressure by the heating rate, but by mechanical means. Also, the solution will not be recycled, but completely inserted into the exhaust gas duct.
  • the conversion temperature for urea solution will be significantly higher than 170° and even 200°C.
  • the mentioned catalysts will not be preferably utilized, with the exception of alumina as
  • US 63 61 754 Bl describes a system for the conversion of urea, urea hydrolysis products, urea dimers and polymers, urea adducts or urea condensation products to yield ammonia gas without the formation of urea decomposition products in solid or molten form. Conversion is performed at 50-600 psi (3.4-41.4 bar) and
  • a liquid catalyst may be added to the urea solution (e.g. phosphoric acid) or a solid catalyst may be present in the heating unit (e.g. aluminum oxides) .
  • ammonia storage compounds will be utilized with the advantage of producing hydrogen in addition to ammonia to further increase the efficiency of NOx removal.
  • No liquid catalysts will be considered, but some solid catalysts could be inserted in the reactor to accelerate the decomposition of the ammonia precursor compounds.
  • the objective of the present invention is to disclose a method and a compact apparatus for the efficient generation of ammonia from liquid ammonia precursors for the selective catalytic reduction of NOx in engine exhaust gas.
  • aqueous ammonia precursor solutions containing 30-80% by mass of urea, ammonium formate, guanidinium formate, methanamide or mixtures thereof, and their catalyzed hydrolysis by heating under pressure in presence of a hydrolysis catalyst in a reactor.
  • the product gas mixture from the described ammonia generator is first produced as gas flow apart from the engine exhaust gas. Only upon release from the reactor the product gas is mixed into the main exhaust flux. The position of the mixing must be upstream of the SCR catalyst but could be as far upstream as the exhaust manifold on the engine before entering a turbo charger.
  • the turbine would enable good mixing of the product gas with exhaust gas while the high pressure inserted gas may add to the performance of the turbine. Addition of the product gas at a further downstream position of the exhaust gas duct could be very advantageous in order to raise the temperature of the exhaust gas flow before entering the SCR catalyst, thereby increasing DeNOx activity.
  • ammonia "apart from the engine exhaust gas” shall mean that the engine exhaust gas stream does not flow through the ammonia generator, but its walls or other parts of it may be in direct or indirect (using e.g. a heat pipe) contact with the engine exhaust gas flow in order to transfer heat from the exhaust gas to the ammonia reactor.
  • the heat transfer from the exhaust gas to the ammonia reactor may satisfy the complete need for decomposition heat or a part thereof.
  • Hot ammonia gas mixes much faster and more homogeneously with the exhaust gas than the spray of a liquid reducing agent giving the described generator a significant increase in reaction rate and yield for DeNOx compared to previous designs for the SCR process. It may even be possible to replace a spray nozzle in an existing SCR system by a compact converter.
  • the addition of the hot ammonia gas to the exhaust gas flow is
  • a valve to control the amount of dosed ammonia.
  • the signal for the valve originates from a control unit which may determine the amount of necessary ammonia either solely from engine operation parameters like load and rpms, from NOx sensors before and/or after the SCR catalyst or a combination of these techniques .
  • a control unit which may determine the amount of necessary ammonia either solely from engine operation parameters like load and rpms, from NOx sensors before and/or after the SCR catalyst or a combination of these techniques .
  • the decomposition of the ammonia precursor is
  • the suppression of the boiling of the reducing agent solution is achieved by applying high pressures of 5 to 100 bar, depending on the operation temperature.
  • a catalytic bed is arranged inside the ammonia reactor with a sufficiently large void volume to provide for a constant flow of liquid through the void volume; said catalytic bed
  • the catalytic bed contains catalyst particles with of size from 0.01 mm to 10 mm, preferably 0.1 mm to 10 mm, more preferably 0.1 mm to 5 mm, most preferably 0.1 mm to 1 mm.
  • the catalytic bed comprises either solid catalyst particles, catalyst coated on non-catalytic particles, catalyst coated on ceramic or metallic substrates or extruded catalysts.
  • Catalyst materials may be chosen to be T1O 2 , AI 2 O 3 , ZrC> 2 , zeolite, metal organic frameworks (MOF) or mixtures thereof, preferably T1O 2 , AI 2 O 3 , r0 2 , zeolite, most preferably
  • the catalyst may possibly be stabilized by WO 3 or S1 2 O 3 .
  • the catalyst could be doped with metals, metal oxides or combinations thereof to facilitate the decomposition of ammonia precursor compounds other than urea.
  • Metals or metal oxides for doping could be Au, Pt, Pd, Re, Ru, Ag, Rh as well as rare earth metals and/or transition metals, such as Cr, Ni, Cd, Cu, Mn, V, Co, Fe, Zn, Nb, Ta, Os, Ir, Sn, or alloys/mixtures thereof, preferably Au, Pt, Pd, Ag, Cu, Nb, more preferably Au, Ag, Pt, Pd, most preferably Au.
  • the catalyst has a specific surface area
  • a further preferred embodiment of the present invention may contain a porous material, most preferred a metal frit, of
  • a pressurizer a valve which will open above a set pressure but close below the set pressure
  • a controllable valve that is used at the outlet of the ammonia generator to create the necessary pressure.
  • a valve may be used at the outlet of the ammonia generator to create the necessary pressure and/or improve the dynamics of the ammonia dosage into the exhaust gas system.
  • Figure 2 a plot of the conversion rate and the contents of the involved compounds as a function of the reactor wall temperature; and Figure 3 a plot of the conversion rate with different catalyst as a function of the reactor temperature.
  • Figure 1 shows a first system for the hydrolysis of the ammonia precursor material.
  • a stainless steel tube with 10 mm internal diameter was sealed at one end with a 0.1 ⁇ diameter pore size stainless steel frit (9) .
  • a high pressure valve with small flow diameter could have been chosen instead.
  • the urea was completely decomposed to ammonia. If deposits of cyanuric acid, biuret, triuret, ammelide and/or other side products of the ammonia production via hydrolysis of the precursor were formed, they were hydrolytically decomposed under the previously described reaction conditions present in the ammonia generator.
  • the ammonia generator decomposes these side products and prevents the inhibition of the process.
  • the decomposition of the side-products from the ammonia production from the precursor in the ammonia generator would also prevent the plugging of the packed bed by deposits.
  • the nitrogen contained in potentially formed side-products would be released as ammonia, improving the yield of ammonia gas.
  • the reaction products ammonia, carbon dioxide and water vapor were released as hot gases from the exit of the ammonia generator from the 1 ml/min input of 32.5% urea in water.
  • the ammonia content was determined quantitatively by bubbling the gases through an acidic solution and titrating the resulting solution. Assuming 100% conversion of ammonia to ammonium in the acidic solution, the amount of gaseous ammonia produced by the generator was calculated backwards.
  • the product gas mixture is then dosed into an exhaust gas stream (3) collected by the exhaust manifold (2) in a combustion engine (1) .
  • the NOx produced by the combustion process will react with the dosed ammonia gas on the SCR-catalyst (10) .
  • a second system for the hydrolysis of the ammonia precursor material has been designed and constructed similar to the first one.
  • the second system was also operated for several hours.
  • a pressurizer a valve which will open above a set pressure but close below the set pressure
  • the tube was heated from the outside, the temperature sensor for the feedback loop was
  • Methanamide can be hydrolyzed to ammonia and formic acid.
  • Formic acid can decompose to yield CO 2 and 3 ⁇ 4 .
  • the ammonia generator can therefore be used to produce a gas flow containing ammonia and hydrogen. Hydrogen has been shown to enhance the catalytic removal of NOx .
  • Ammonium formate and guanidinium formate are expected to show a similar decomposition product gas mixture, as they can be
  • An application could contain a second pressure containment after the pressurizer.
  • the operating pressure of the second containment would be below the pressure of the reactor, in order to enable a complete evaporation of the liquid phase.
  • the gases would be

Abstract

L'invention concerne un générateur d'ammoniac conçu pour convertir des solutions précurseur d'ammoniac liquide en ammoniac gazeux. Le composé précurseur est décomposé en une solution d'agent réducteur liquide sous des pressions et des températures élevées. Après conversion de la majeure partie du composé précurseur d'ammoniac en ammoniac et autres gaz, les gaz ainsi obtenus sont libérés à la pression ambiante. Le fait de chauffer la solution de composé précurseur sans la faire bouillir permet d'obtenir de bonnes conditions d'hydrolyse pour le composé précurseur d'ammoniac. La pression élevée régnant dans le générateur d'ammoniac permet de maintenir l'eau à essentiellement l'état liquide et en contact direct avec le composé précurseur d'ammoniac réactif dans le lit de catalyseur. Le transfert de chaleur est accéléré si l'eau est encore pratiquement à l'état liquide, du fait que la chaleur consommée par les réactions de décomposition est rapidement reconstituée. L'application du principe décrit selon les revendications 1 à 820 rend possible la conception et la réalisation d'une unité de convertisseur très compacte pour l'hydrolyse continue de composés précurseurs d'ammoniac en gaz d'ammoniac chaud. Le gaz d'ammoniac produit peut être introduit dans les gaz d'échappement chauds sans provoquer de refroidissement, ce qui permet une réduction catalytique sélective (SCR) des NOx à des températures des gaz d'échappement basses jamais atteintes. Dans le générateur d'ammoniac décrit ici, la formation de dépôts dûs une décomposition incomplète du composé précurseur peut être supprimée. L'ammoniac se mélange beaucoup plus vite avec les gaz d'échappement que dans le cas de la pulvérisation d'un agent réducteur liquide, ce qui procure pour le générateur sus-décrit une augmentation sensible du taux de réaction et du rendement DeNOx comparés à des systèmes antérieurs pour processus SCR. Il est même possible de remplacer la buse d'injection d'un système SCR existant par un convertisseur compact.
PCT/EP2012/051296 2011-02-04 2012-01-27 Générateur d'ammoniac permettant de convertir des solutions précurseur d'ammoniac liquide en ammoniac gazeux pour applications denox par réduction catalytique sélective d'oxydes d'azote WO2012104205A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP11153417.8 2011-02-04
EP11153417 2011-02-04

Publications (1)

Publication Number Publication Date
WO2012104205A1 true WO2012104205A1 (fr) 2012-08-09

Family

ID=45558719

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/051296 WO2012104205A1 (fr) 2011-02-04 2012-01-27 Générateur d'ammoniac permettant de convertir des solutions précurseur d'ammoniac liquide en ammoniac gazeux pour applications denox par réduction catalytique sélective d'oxydes d'azote

Country Status (1)

Country Link
WO (1) WO2012104205A1 (fr)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103615300A (zh) * 2013-11-12 2014-03-05 北京工业大学 一种柴油机scr后处理系统或部件性能测试装置和方法
FR3020765A1 (fr) * 2014-05-06 2015-11-13 Peugeot Citroen Automobiles Sa Injecteur de reducteur d'oxydes d'azote a decomposition amelioree du reducteur
WO2017042896A1 (fr) * 2015-09-08 2017-03-16 中国電力株式会社 Procédé de purification de gaz d'échappement
WO2017042895A1 (fr) * 2015-09-08 2017-03-16 中国電力株式会社 Système de génération d'énergie thermique
US9644515B2 (en) 2015-03-24 2017-05-09 Cummins Emission Solutions, Inc. Gaseous ammonia injection system
DE102016004337A1 (de) 2016-04-13 2017-10-19 A.RAYMOND et Cie. SCS Clip zum Befestigen eines ersten Elements an einem zweiten Element
DE102016004336A1 (de) 2016-04-13 2017-10-19 A.RAYMOND et Cie. SCS Clip zum Befestigen eines Elements an einem anderen Element und Verwendung eines solchen zweiteiligen Clips
DE102016014628A1 (de) 2016-12-09 2018-06-14 A.RAYMOND et Cie. SCS Clip zum Befestigen eines ersten Elements an einem zweiten Element
DE102017005352A1 (de) 2017-05-29 2018-11-29 A. Raymond Et Cie Clip zum Befestigen eines ersten Elements an einem zweiten Element und Vorrichtung mit einem derartigen Clip
US10267196B1 (en) 2016-09-14 2019-04-23 Southwest Research Institute Treatment of reductant urea solutions with catalyst precursors to assist selective catalytic reduction
US10378411B1 (en) 2018-01-03 2019-08-13 Southwest Research Institute Dosing method and apparatus for reductant urea solutions with catalyst precursors to assist selective catalytic reduction
KR20200061646A (ko) * 2018-11-26 2020-06-03 현대제철 주식회사 소결 배기가스 정화 장치
CN111386152A (zh) * 2017-07-10 2020-07-07 博萨尔排放控制系统公司 包括混合金属氧化物类水滑石化合物的催化器元件
US10774715B1 (en) 2018-03-27 2020-09-15 Southwest Research Institute Stabilization of aqueous urea solutions containing organometallic catalyst precursors
CN114367313A (zh) * 2022-01-18 2022-04-19 安徽大学 一种基于Ni-MOF的催化材料的制备方法及其应用
CN114453028A (zh) * 2020-11-10 2022-05-10 陕西青朗万城环保科技有限公司 一种尿素微波水解催化剂的制备方法及其制备装置
FR3123382A1 (fr) * 2021-05-31 2022-12-02 Faurecia Systemes D'echappement Dispositif et méthode pour injecter un fluide dans un conduit d'échappement , ligne d'échappement et véhicule associés

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4038054A1 (de) 1990-11-29 1992-06-04 Man Technologie Gmbh Verfahren und vorrichtung zur selektiven katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion in sauerstoffhaltigen abgasen
DE4203807A1 (de) 1990-11-29 1993-08-12 Man Nutzfahrzeuge Ag Vorrichtung zur katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion
US5240688A (en) * 1990-08-01 1993-08-31 Fuel Tech Gmbh Process for the in-line hydrolysis of urea
WO1993022047A1 (fr) * 1992-05-06 1993-11-11 Nalco Fuel Tech Procede de reduction catalytique d'oxydes azotes
WO1998042623A1 (fr) 1997-03-21 1998-10-01 Ec&C Technologies Procedes de production d'ammoniac a partir d'uree et mise en oeuvre de ce procede
US5827490A (en) 1991-09-27 1998-10-27 Noell, Inc. Method for converting urea to ammonia
US6361754B1 (en) 1997-03-27 2002-03-26 Clean Diesel Technologies, Inc. Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction
JP2004202450A (ja) * 2002-12-26 2004-07-22 Babcock Hitachi Kk 排ガス脱硝方法および脱硝装置
US20050207961A1 (en) * 2001-05-16 2005-09-22 The Chemithon Corporation Process and apparatus for quantitatively converting urea to ammonia on demand
JP2006223937A (ja) * 2005-02-15 2006-08-31 Babcock Hitachi Kk 尿素の分解触媒、それを用いた排ガス脱硝方法及び装置
WO2007099372A1 (fr) * 2006-03-01 2007-09-07 Johnson Matthey Public Limited Company Réacteur pour conversion d'un précurseur d'ammoniac
DE102006047018A1 (de) * 2006-10-02 2008-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zum Bereitstellen eines Reduktionsmittelvorläufers
WO2008077587A1 (fr) 2006-12-23 2008-07-03 Alzchem Trostberg Gmbh Utilisation de solutions aqueuses de formiate de guanidinium
FR2936957A1 (fr) 2008-10-13 2010-04-16 Peugeot Citroen Automobiles Sa Dispositif de decomposition d'uree aqueuse en ammoniaque pour le traitement de gaz d'echappement.
FR2936958A1 (fr) 2008-10-13 2010-04-16 Peugeot Citroen Automobiles Sa Dispositif de decomposition d'uree aqueuse en ammoniaque pour le traitement de gaz d'echappement

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5240688A (en) * 1990-08-01 1993-08-31 Fuel Tech Gmbh Process for the in-line hydrolysis of urea
DE4038054A1 (de) 1990-11-29 1992-06-04 Man Technologie Gmbh Verfahren und vorrichtung zur selektiven katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion in sauerstoffhaltigen abgasen
DE4203807A1 (de) 1990-11-29 1993-08-12 Man Nutzfahrzeuge Ag Vorrichtung zur katalytischen no(pfeil abwaerts)x(pfeil abwaerts)-reduktion
US5827490A (en) 1991-09-27 1998-10-27 Noell, Inc. Method for converting urea to ammonia
WO1993022047A1 (fr) * 1992-05-06 1993-11-11 Nalco Fuel Tech Procede de reduction catalytique d'oxydes azotes
WO1998042623A1 (fr) 1997-03-21 1998-10-01 Ec&C Technologies Procedes de production d'ammoniac a partir d'uree et mise en oeuvre de ce procede
US6361754B1 (en) 1997-03-27 2002-03-26 Clean Diesel Technologies, Inc. Reducing no emissions from an engine by on-demand generation of ammonia for selective catalytic reduction
US20050207961A1 (en) * 2001-05-16 2005-09-22 The Chemithon Corporation Process and apparatus for quantitatively converting urea to ammonia on demand
JP2004202450A (ja) * 2002-12-26 2004-07-22 Babcock Hitachi Kk 排ガス脱硝方法および脱硝装置
JP2006223937A (ja) * 2005-02-15 2006-08-31 Babcock Hitachi Kk 尿素の分解触媒、それを用いた排ガス脱硝方法及び装置
WO2007099372A1 (fr) * 2006-03-01 2007-09-07 Johnson Matthey Public Limited Company Réacteur pour conversion d'un précurseur d'ammoniac
DE102006047018A1 (de) * 2006-10-02 2008-04-03 Emitec Gesellschaft Für Emissionstechnologie Mbh Verfahren und Vorrichtung zum Bereitstellen eines Reduktionsmittelvorläufers
WO2008077587A1 (fr) 2006-12-23 2008-07-03 Alzchem Trostberg Gmbh Utilisation de solutions aqueuses de formiate de guanidinium
FR2936957A1 (fr) 2008-10-13 2010-04-16 Peugeot Citroen Automobiles Sa Dispositif de decomposition d'uree aqueuse en ammoniaque pour le traitement de gaz d'echappement.
FR2936958A1 (fr) 2008-10-13 2010-04-16 Peugeot Citroen Automobiles Sa Dispositif de decomposition d'uree aqueuse en ammoniaque pour le traitement de gaz d'echappement

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103615300A (zh) * 2013-11-12 2014-03-05 北京工业大学 一种柴油机scr后处理系统或部件性能测试装置和方法
FR3020765A1 (fr) * 2014-05-06 2015-11-13 Peugeot Citroen Automobiles Sa Injecteur de reducteur d'oxydes d'azote a decomposition amelioree du reducteur
US9644515B2 (en) 2015-03-24 2017-05-09 Cummins Emission Solutions, Inc. Gaseous ammonia injection system
WO2017042896A1 (fr) * 2015-09-08 2017-03-16 中国電力株式会社 Procédé de purification de gaz d'échappement
WO2017042895A1 (fr) * 2015-09-08 2017-03-16 中国電力株式会社 Système de génération d'énergie thermique
JPWO2017042896A1 (ja) * 2015-09-08 2017-09-07 中国電力株式会社 排ガス浄化方法
DE202017006938U1 (de) 2016-04-13 2018-12-21 A.RAYMOND et Cie. SCS Clip zum Befestigen eines ersten Elements an einem zweiten Element
DE102016004337A1 (de) 2016-04-13 2017-10-19 A.RAYMOND et Cie. SCS Clip zum Befestigen eines ersten Elements an einem zweiten Element
DE102016004336A1 (de) 2016-04-13 2017-10-19 A.RAYMOND et Cie. SCS Clip zum Befestigen eines Elements an einem anderen Element und Verwendung eines solchen zweiteiligen Clips
US10267196B1 (en) 2016-09-14 2019-04-23 Southwest Research Institute Treatment of reductant urea solutions with catalyst precursors to assist selective catalytic reduction
DE102016014628A1 (de) 2016-12-09 2018-06-14 A.RAYMOND et Cie. SCS Clip zum Befestigen eines ersten Elements an einem zweiten Element
WO2018104421A1 (fr) 2016-12-09 2018-06-14 A.RAYMOND et Cie. SCS Clip servant à fixer un premier élément à un deuxième élément
DE202017006937U1 (de) 2016-12-09 2018-12-21 A.RAYMOND et Cie. SCS Clip zum Befestigen eines ersten Elements an einem zweiten Element
DE102017005352A1 (de) 2017-05-29 2018-11-29 A. Raymond Et Cie Clip zum Befestigen eines ersten Elements an einem zweiten Element und Vorrichtung mit einem derartigen Clip
WO2018219799A1 (fr) 2017-05-29 2018-12-06 A. Raymond Et Cie Clip servant à fixer un premier élément sur un deuxième élément et dispositif comprenant un clip de ce type
CN111386152A (zh) * 2017-07-10 2020-07-07 博萨尔排放控制系统公司 包括混合金属氧化物类水滑石化合物的催化器元件
CN111386152B (zh) * 2017-07-10 2023-05-26 博萨尔排放控制系统公司 包括混合金属氧化物类水滑石化合物的催化器元件
US10378411B1 (en) 2018-01-03 2019-08-13 Southwest Research Institute Dosing method and apparatus for reductant urea solutions with catalyst precursors to assist selective catalytic reduction
US10774715B1 (en) 2018-03-27 2020-09-15 Southwest Research Institute Stabilization of aqueous urea solutions containing organometallic catalyst precursors
KR102166597B1 (ko) * 2018-11-26 2020-10-16 현대제철 주식회사 소결 배기가스 정화 장치
KR20200061646A (ko) * 2018-11-26 2020-06-03 현대제철 주식회사 소결 배기가스 정화 장치
CN114453028A (zh) * 2020-11-10 2022-05-10 陕西青朗万城环保科技有限公司 一种尿素微波水解催化剂的制备方法及其制备装置
FR3123382A1 (fr) * 2021-05-31 2022-12-02 Faurecia Systemes D'echappement Dispositif et méthode pour injecter un fluide dans un conduit d'échappement , ligne d'échappement et véhicule associés
CN114367313A (zh) * 2022-01-18 2022-04-19 安徽大学 一种基于Ni-MOF的催化材料的制备方法及其应用

Similar Documents

Publication Publication Date Title
WO2012104205A1 (fr) Générateur d'ammoniac permettant de convertir des solutions précurseur d'ammoniac liquide en ammoniac gazeux pour applications denox par réduction catalytique sélective d'oxydes d'azote
DK2726412T5 (en) PROCEDURE FOR PREPARING AMMONIA FROM AN AMMONIA EXPOSURE TO REDUCE NITROGEN OXIDES IN EXHAUST GAS
JP5618543B2 (ja) 排ガス中の窒素酸化物の選択的接触還元法
EP2882521B1 (fr) Réduction catalytique de nox avec des catalyseurs à activité élevée
US9101908B2 (en) Vanadia—titania catalyst for removing nitrogen oxides and method for manufacturing the same
JP4646063B2 (ja) 尿素の分解触媒を用いた排ガス脱硝方法及び装置
US8476185B2 (en) Apparatus and method for manufacturing manganese oxide-titania catalyst
JP2006122792A (ja) 尿素加水分解触媒、アンモニア製造方法および脱硝方法
CN104602792A (zh) 在高活性催化剂下用NH3还原剂催化还原NOx
JP2007301524A (ja) 脱硝方法および脱硝設備
US20150321145A1 (en) Internally Heated Urea Reactor/Injector For Use With SCR Emissions Control Device
CN104519982A (zh) 在高活性催化剂下用乙醛还原剂催化还原NOx

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12701888

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12701888

Country of ref document: EP

Kind code of ref document: A1