WO2012103888A1 - Method for producing a crystalline silicon solar cell avoiding unwanted metal deposits - Google Patents
Method for producing a crystalline silicon solar cell avoiding unwanted metal deposits Download PDFInfo
- Publication number
- WO2012103888A1 WO2012103888A1 PCT/DE2012/100024 DE2012100024W WO2012103888A1 WO 2012103888 A1 WO2012103888 A1 WO 2012103888A1 DE 2012100024 W DE2012100024 W DE 2012100024W WO 2012103888 A1 WO2012103888 A1 WO 2012103888A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- silicon
- emitter
- silicon substrate
- openings
- nitride layer
- Prior art date
Links
- 239000002184 metal Substances 0.000 title claims abstract description 14
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 14
- 229910021419 crystalline silicon Inorganic materials 0.000 title claims abstract description 5
- 238000004519 manufacturing process Methods 0.000 title abstract description 4
- 239000000758 substrate Substances 0.000 claims abstract description 44
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract description 41
- 229910052710 silicon Inorganic materials 0.000 claims abstract description 41
- 239000010703 silicon Substances 0.000 claims abstract description 41
- 229910052581 Si3N4 Inorganic materials 0.000 claims abstract description 30
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims abstract description 30
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 19
- 229910052814 silicon oxide Inorganic materials 0.000 claims abstract description 19
- 239000002019 doping agent Substances 0.000 claims abstract description 15
- 230000008021 deposition Effects 0.000 claims abstract description 8
- 238000007747 plating Methods 0.000 claims abstract description 7
- 238000000034 method Methods 0.000 claims description 27
- 238000009792 diffusion process Methods 0.000 claims description 12
- 238000000151 deposition Methods 0.000 claims description 9
- 238000009713 electroplating Methods 0.000 claims description 8
- 230000003647 oxidation Effects 0.000 claims description 6
- 238000007254 oxidation reaction Methods 0.000 claims description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 239000007789 gas Substances 0.000 claims description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 6
- 238000000608 laser ablation Methods 0.000 description 6
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 5
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 238000003486 chemical etching Methods 0.000 description 4
- 238000007772 electroless plating Methods 0.000 description 4
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005530 etching Methods 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241000282941 Rangifer tarandus Species 0.000 description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 229910052709 silver Inorganic materials 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000283011 Rangifer Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000012993 chemical processing Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000004070 electrodeposition Methods 0.000 description 1
- 230000005670 electromagnetic radiation Effects 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 229910001092 metal group alloy Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0224—Electrodes
- H01L31/022408—Electrodes for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/022425—Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/02—Details
- H01L31/0216—Coatings
- H01L31/02161—Coatings for devices characterised by at least one potential jump barrier or surface barrier
- H01L31/02167—Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L31/00—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/04—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
- H01L31/06—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
- H01L31/068—Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/547—Monocrystalline silicon PV cells
Definitions
- the invention relates to a process for preparing a crystalline silicon solar cell according to the preamble of claim 1. and a made by this method Solarzel ⁇ le.
- the object of the present invention is to provide a method of the generic type with which the formation of ghosts - deposits can be avoided without reducing the efficiency of the finished solar cell.
- the invention is based on the object to provide such a ⁇ larzelle formed by plating with contacts without ghost deposits are available.
- the inventive method provides for the ren guideddiffundie-forming an emitter on a first side of a silicon ⁇ substrate dopant into the silicon substrate for the purpose from ⁇ , subsequently deposit a silicon nitride layer at least on the first side of the silicon substrate, then locally on the first side of the silicon substrate Introduce openings in the silicon nitride layer and then form in the openings by means of plating metal contacts.
- the emitter on the first side of the silicon substrate is partially etched back.
- a silicon oxide layer ⁇ is formed with a thickness in the range of 1.0 nm to 10 nm on the first side of the silicon substrate.
- the formation of the emitter described is not notwendi ⁇ g considered limited to the first side of the silicon substrate, but may also take place on other sites of the silicon substrate.
- the deposition of the silicon nitride layer, the formation of the silicon oxide ⁇ layer as well as the etching back of the emitter are also not necessarily limited to the first side of the silicon substrate.
- plating in the present sense is a Elektroplattie- ren, which is sometimes also referred to as electro-deposition or electroplating, or means a electroless plating, which is sometimes referred to as chemical Me ⁇ tallabscheidung or electroless plating.
- a metal contact in the present sense is a contact formed from one or more metals or one or more metal alloys.
- the openings are preferably introduced into the silicon nitride layer by means of laser ablation.
- ei ⁇ ne hydrogen-containing silicon nitride layer is deposited on the first side of the silicon substrate.
- hydrogen can be diffused from the silicon nitride layer to passivate defects into the silicon substrate. This is particularly advantageous when using multicrystalline silicon substrates. Due to the small thickness of the silicon oxide layer formed prior to the deposition of the silicon nitride layer, the diffusion of hydrogen from the silicon nitride layer into the silicon substrate is not hindered to a relevant extent by the silicon oxide layer.
- the metal contacts are formed in the openings by electroplating.
- the invention has a particularly advantageous effect, since ghost deposits occur to a greater extent in electroplating than in electroless plating. It has proven to be advantageous to zer etch back the emitter zen. Preferably, it is etched back in an etching solution comprising hydrofluoric acid and nitric acid or hydrofluoric acid and ozone. In an advantageous embodiment variant of the method, the etch-back of the emitter increases its layer resistance value by 10 ⁇ / sq to 50 ⁇ / sq.
- the silicon oxide layer is preferably formed by means of a wet-chemical oxidation. This can be done, for example, in a solution comprising ozone, hydrogen peroxide or nitric acid. Particularly preferably, the silicon oxide ⁇ layer is formed in an oxidation solution of deionized water and dissolved ozone therein.
- the silicon oxide layer can be formed by means of a gas phase oxidation. Preferably, this takes place in an ozone-containing gas atmospheres ⁇ sphere.
- this is energetically excited, for example by irradiation of electromagnetic radiation, preferably of ultraviolet light.
- the silicon oxide layer in a thickness in the range of 2 nm to 3 nm.
- the silicon oxide layer is locally removed ⁇ ent. Again, this can be effected by means Laserabiation and particularly preferably in the same Laserabiations intimid in which the openings are ⁇ into the silicon nitride layer.
- the openings are introduced into the silicon nitride layer by means of laser ablation and, in this case, emitter regions which are doped more heavily by laser diffusion are formed in regions of the openings.
- emitter regions which are doped more heavily by laser diffusion are formed in regions of the openings.
- a La ⁇ serdiffusion is understood to mean that the silicon substrate by means of laser radiation which is already irradiated for Laserabiation, is locally heated so that it comes to a rearrangement of the dopant into the areas of the openings, an emitter profile is thus changed locally. Under such a rearrangement of dopant also falls the activation of electrically inactive dopant.
- By means of such a laser diffusion locally stronger doped emitter regions and thus a so-called selective emitter can be formed in regions of the openings.
- laser-induced chemical processes sometimes referred to as laser chemical processing
- a laser-induced chemical etching which is sometimes referred to as laser chemical etching
- the laser ablation can also be realized by means of laser beam evaporation, which, like the laser-induced chemical processes, enables laser diffusion for the purpose of forming a selective emitter. If a selective emitter is formed in the manner described, a stronger diffusion can be used to form the emitter on the first side of the silicon substrate.
- Figure 1 is a schematic representation of a first embodiment ⁇ example of the method according to the invention
- Figure 2 is a schematic representation of a second embodiment ⁇ example of the method according to the invention
- Figure 1 shows an embodiment of the invention
- dopant is diffused into a Sili ⁇ ziumsubstrat 50 and 10 formed an emitter 52 in this manner.
- the dopant is merely diffused into the upper side of the solar cell substrate 50. This can be done in a manner known per se, for example by diffusion of dopant from a top surface of the silicon substrate 50. th, dopant-containing solution.
- the dopant used is matched to the volume doping of the silicon substrate 50. In principle, both an n-doped and a p-doped emitter can be formed.
- the emitter 52 is partially etched back. In the present exemplary embodiment, this is carried out wet-chemically in a solution containing hydrofluoric acid and nitric acid.
- the silicon substrate 50 is dipped for the purpose of forming ⁇ From 14 of a silicon oxide layer 54 in deionized What ⁇ ser, in which ozone is dissolved. In this way, a wet-chemical oxidation of the entire surface of the silicon substrate 50 takes place.
- a hydrogen-containing silicon nitride layer is deposited 16. This is usually done by means of a chemical vapor deposition (CVD) deposition.
- CVD chemical vapor deposition
- the downwardly facing rear side of the silicon substrate 50 in the representation of FIG. 1 is kept free of the silicon nitride layer 56. This can be done for example, by the silicon substrates in pairs placed back to back in a used coating system or by the back print ⁇ te is placed on a boat to the plant, which is inserted into the ver ⁇ applied coating system.
- local openings 58 are introduced into the silicon nitride layer 56 on the first side of the silicon substrate 50, in the present exemplary embodiment thus on the upper side of the silicon substrate 50. This takes place in the illustrated exemplary embodiment by means of laser ablation.
- the silicon oxide layer 54 is also locally removed in the openings 58.
- front side contacts 60 are formed in the openings 58 by means of electroplates 20.
- metal contacts which have, for example, nickel, and silver or nickel, copper and silver.
- the rear side contact 62 is additionally formed on the rear side of the silicon substrate 50. This therefore consists of the same material as the front ⁇ side contacts 60th
- FIG. 1 In addition to the last method step of electroplating 20, the lowermost partial illustration in FIG. 1 also illustrates an exemplary embodiment of the solar cell according to the invention.
- the embodiment of Figure 2 differs from that of Figure 1 in that the local introduction 28 of openings 58 in the silicon nitride layer 56 and a laser diffusion takes place 28.
- regions of the openings 58 more heavily doped emitter regions 64 are formed, which together with the remaining areas of the emitter 52 form a selective emitter.
- the laser ablation, and in conjunction with the laser diffusion can be realized by means of laser-induced chemical etching. Instead of a laserinduzier ⁇ th chemical etching can find reindeer using a Laserstrahlverdampfungsverfah-.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Life Sciences & Earth Sciences (AREA)
- Power Engineering (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Photovoltaic Devices (AREA)
Abstract
The invention relates to a method for producing a crystalline silicon solar cell, wherein for the purpose of forming an emitter (52) on a first side of a silicon substrate (50) doping agent is diffused (10) into the silicon substrate, next a silicon nitride layer (56) is deposited (16) on the first side of the silicon substrate (50), next local openings (58) are introduced into the silicon nitride layer (56) on the first side of the silicon substrate (50), next metal contacts (60) are formed (20) in the openings (58) by means of plating (20), wherein before the deposition (16) of the silicon nitride layer (56) the emitter (52) is partially etched back (12) on the first side of the silicon substrate (50) and next before the deposition (16) of the silicon nitride layer (56) a silicon oxide layer (54) having a thickness of 1.0 nm to 10 nm is formed (14) on the first side of the silicon substrate (50).
Description
Verfahren zur Herstellung einer kristallinen Siliziumsolarzelle unter Vermeidung unerwünschter Metallabscheidungen Process for producing a crystalline silicon solar cell while avoiding unwanted metal deposits
Die Erfindung betrifft ein Verfahren zur Herstellung einer kristallinen Siliziumsolarzelle gemäß dem Oberbegriff des An- spruchs 1 sowie eine mit diesem Verfahren gefertigte Solarzel¬ le. The invention relates to a process for preparing a crystalline silicon solar cell according to the preamble of claim 1. and a made by this method Solarzel ¬ le.
Aus der internationalen Patentanmeldung WO 2008/039067 A2 ist bekannt, vor der Abscheidung einer Siliziumnitridschicht als dielektrischen Schicht die Oberfläche eines Siliziumsubstrats nasschemisch zu oxidieren. Dies dient der Verbesserung der Oberflächenpassivierung bei Solarzellen mit siebgedruckten Kontakten . Eine andere Möglichkeit zur Ausbildung von Metallkontakten bei Solarzellen besteht darin, lokal Öffnungen in dielektrischen Schichten, welche auf einer Oberfläche eines verwendeten Sili¬ ziumssubstrats angeordnet sind, auszubilden. In diesen Öffnun¬ gen wird im Weiteren mittels Plattieren Metall abgeschieden. Es hat sich herausgestellt, dass bei dem Plattieren, sei es Elektroplattieren oder stromloses Plattieren, teilweise auch Metall auf ungeöffneten Bereichen der dielektrischen Schicht abgeschieden wird, beispielsweise auf ungeöffnetem Bereichen einer Siliziumnitridschicht. Derartige unerwünschte Metallab- Scheidungen werden häufig als „Geisterabscheidungen" oderFrom the international patent application WO 2008/039067 A2 it is known to wet-chemically oxidize the surface of a silicon substrate prior to the deposition of a silicon nitride layer as a dielectric layer. This serves to improve the surface passivation in solar cells with screen printed contacts. Another possibility for the formation of metal contacts for solar cells is locally form openings in the dielectric layers, which are arranged on a surface of a used Sili ¬ ziumssubstrats. In these Öffnun ¬ gen metal is deposited by plating in addition. It has been found that during plating, whether electroplating or electroless plating, metal is also partly deposited on unopened regions of the dielectric layer, for example on unopened regions of a silicon nitride layer. Such unwanted metal deposits are often referred to as "ghost deposits" or
„ghostplating" bezeichnet. Sie sind deshalb unerwünscht, da sie zu zusätzlichen Abschattungsverlusten führen und den Wirkungsgrad der Solarzelle beeinträchtigen. Vor diesem Hintergrund liegt der vorliegenden Erfindung die Aufgabe zugrunde, ein Verfahren der gattungsgemäßen Art zur Verfügung zu stellen, mit welchem die Entstehung von Geister-
abscheidungen vermieden werden kann, ohne den Wirkungsgrad der fertigen Solarzelle zu verringern. They are therefore undesirable since they lead to additional shading losses and impair the efficiency of the solar cell. Against this background, the object of the present invention is to provide a method of the generic type with which the formation of ghosts - deposits can be avoided without reducing the efficiency of the finished solar cell.
Diese Aufgabe wird gelöst durch ein Verfahren mit den Merkma- len des Anspruchs 1. This object is achieved by a method having the features of claim 1.
Weiterhin liegt der Erfindung die Aufgabe zu Grunde, eine So¬ larzelle mit durch Plattieren ausgebildeten Kontakten ohne Geisterabscheidungen zur Verfügung zu stellen. Furthermore, the invention is based on the object to provide such a ¬ larzelle formed by plating with contacts without ghost deposits are available.
Diese Aufgabe wird gelöst durch eine Solarzelle mit den Merk¬ malen des Anspruchs 12. This object is achieved by a solar cell having the features of claim 12.
Vorteilhafte Weiterbildungen sind jeweils Gegenstand abhängi- ger Unteransprüche. Advantageous developments are each the subject of dependent subclaims.
Das erfindungsgemäße Verfahren sieht vor, zum Zwecke des Aus¬ bildens eines Emitters auf einer ersten Seite eines Silizium¬ substrats Dotierstoff in das Siliziumsubstrat einzudiffundie- ren, nachfolgend eine Siliziumnitridschicht zumindest auf der ersten Seite des Siliziumsubstrats abzuscheiden, nachfolgend auf der ersten Seite des Siliziumsubstrats lokal Öffnungen in die Siliziumnitridschicht einzubringen und nachfolgend in den Öffnungen mittels Plattieren Metallkontakte auszubilden. Vor dem Abscheiden der Siliziumnitridschicht wird der Emitter auf der ersten Seite des Siliziumsubstrats teilweise zurückgeätzt. Danach, jedoch vor dem Abscheiden der Siliziumnitridschicht, wird auf der ersten Seite des Siliziumsubstrats eine Silizium¬ oxidschicht mit einer Dicke im Bereich von 1,0 nm bis 10 nm ausgebildet. The inventive method provides for the ren einzudiffundie- forming an emitter on a first side of a silicon ¬ substrate dopant into the silicon substrate for the purpose from ¬, subsequently deposit a silicon nitride layer at least on the first side of the silicon substrate, then locally on the first side of the silicon substrate Introduce openings in the silicon nitride layer and then form in the openings by means of plating metal contacts. Prior to depositing the silicon nitride layer, the emitter on the first side of the silicon substrate is partially etched back. Thereafter, but prior to depositing the silicon nitride layer, a silicon oxide layer ¬ is formed with a thickness in the range of 1.0 nm to 10 nm on the first side of the silicon substrate.
Es hat sich gezeigt, dass auf diese Weise Geisterabscheidungen vermieden und dadurch Solarzellen mit verringerten Abschat- tungsverlusten hergestellt werden können.
Die beschriebene Ausbildung des Emitters ist nicht notwendi¬ gerweise auf die erste Seite des Siliziumsubstrats beschränkt, sondern kann auch auf weiteren Seiten des Siliziumsubstrats erfolgen. Die Abscheidung der Siliziumnitridschicht, die Aus¬ bildung der Siliziumoxidschicht wie auch das Zurückätzen des Emitters sind ebenfalls nicht notwendigerweise auf die erste Seite des Siliziumsubstrats beschränkt. Unter Plattieren im vorliegenden Sinne ist ein Elektroplattie- ren, welches teilweise auch als galvanische Metallabscheidung oder electroplating bezeichnet wird, oder ein stromfreies Plattieren zu verstehen, welches teilweise als chemische Me¬ tallabscheidung oder electroless plating bezeichnet wird. Ein Metallkontakt im vorliegenden Sinne ist ein aus einem oder mehreren Metallen oder einem oder mehrerer Metalllegierungen gebildeter Kontakt. It has been found that in this way ghost deposits can be avoided and thus solar cells with reduced shading losses can be produced. The formation of the emitter described is not notwendi ¬ gerweise limited to the first side of the silicon substrate, but may also take place on other sites of the silicon substrate. The deposition of the silicon nitride layer, the formation of the silicon oxide ¬ layer as well as the etching back of the emitter are also not necessarily limited to the first side of the silicon substrate. Under plating in the present sense, is a Elektroplattie- ren, which is sometimes also referred to as electro-deposition or electroplating, or means a electroless plating, which is sometimes referred to as chemical Me ¬ tallabscheidung or electroless plating. A metal contact in the present sense is a contact formed from one or more metals or one or more metal alloys.
Die Öffnungen werden vorzugsweise mittels Laserabiation in die Siliziumnitridschicht eingebracht. Vorteilhafterweise wird ei¬ ne Wasserstoffhaltige Siliziumnitridschicht auf der ersten Seite des Siliziumsubstrats abgeschieden. Auf diese Weise kann im Verlauf der Solarzellenfertigung Wasserstoff aus der Siliziumnitridschicht zur Passivierung von Defekten in das Silizi- umsubstrat eindiffundiert werden. Dies ist insbesondere bei der Verwendung multikristalliner Siliziumsubstrate von Vorteil. Aufgrund der geringen Dicke der noch vor Abscheidung der Siliziumnitridschicht ausgebildeten Siliziumoxidschicht wird die Eindiffusion von Wasserstoff aus der Siliziumnitridschicht in das Siliziumsubstrat durch die Siliziumoxidschicht nicht in relevantem Umfang behindert. The openings are preferably introduced into the silicon nitride layer by means of laser ablation. Advantageously, ei ¬ ne hydrogen-containing silicon nitride layer is deposited on the first side of the silicon substrate. In this way, in the course of solar cell production, hydrogen can be diffused from the silicon nitride layer to passivate defects into the silicon substrate. This is particularly advantageous when using multicrystalline silicon substrates. Due to the small thickness of the silicon oxide layer formed prior to the deposition of the silicon nitride layer, the diffusion of hydrogen from the silicon nitride layer into the silicon substrate is not hindered to a relevant extent by the silicon oxide layer.
Vorzugsweise werden die Metallkontakte in den Öffnungen durch Elektroplattieren ausgebildet. Bei dieser Ausführungsvariante
wirkt sich die Erfindung besonders vorteilhaft aus, da beim Elektroplattieren Geisterabscheidungen in einem stärkeren Ausmaß auftreten als bei einem stromfreien Plattieren. Es hat sich als vorteilhaft erwiesen, den Emitter nasschemisch zurückzuät zen . Vorzugsweise wird er in einer Ätzlösung zurückgeätzt, welche Flusssäure und Salpetersäure oder Flusssäure und Ozon aufweist. In einer vorteilhaften Ausführungsvariante des Verfahrens wird durch das Zurückätzen des Emitters dessen Schichtwiderstands¬ wert um 10 Ω/sq bis 50 Ω/sq erhöht. Bei Verwendung eines mul¬ tikristallinen Siliziumsubstrats hat sich in der Praxis nach dem Zurückätzen des Emitters eine Höchstgrenze für dessen Schichtwiderstandswert von 90 Ω/sq bewährt. Werden monokri¬ stalline Siliziumsubstrate verwendet, so kann diese Höchst¬ grenze höher liegen. Preferably, the metal contacts are formed in the openings by electroplating. In this embodiment the invention has a particularly advantageous effect, since ghost deposits occur to a greater extent in electroplating than in electroless plating. It has proven to be advantageous to zer etch back the emitter zen. Preferably, it is etched back in an etching solution comprising hydrofluoric acid and nitric acid or hydrofluoric acid and ozone. In an advantageous embodiment variant of the method, the etch-back of the emitter increases its layer resistance value by 10 Ω / sq to 50 Ω / sq. When using a mul ¬ tikristallinen silicon substrate, a ceiling for whose sheet resistance value of 90 Ω has / sq proven in practice after the etching back of the emitter. Be monokri ¬ stalline silicon substrates used, this can limit maximum ¬ higher.
Vorzugsweise wird die Siliziumoxidschicht mittels einer nass- chemischen Oxidation ausgebildet. Dies kann beispielsweise in einer Ozon, Wasserstoffperoxid oder Salpetersäure aufweisenden Lösung erfolgen. Besonders bevorzugt wird die Siliziumoxid¬ schicht in einer Oxidationslösung aus deionisiertem Wasser und darin gelöstem Ozon ausgebildet. The silicon oxide layer is preferably formed by means of a wet-chemical oxidation. This can be done, for example, in a solution comprising ozone, hydrogen peroxide or nitric acid. Particularly preferably, the silicon oxide ¬ layer is formed in an oxidation solution of deionized water and dissolved ozone therein.
In einer alternativen Ausführungsvariante kann die Siliziumoxidschicht mittels einer Gasphasenoxidation ausgebildet wer¬ den. Vorzugsweise erfolgt dies in einer ozonhaltigen Gasatmo¬ sphäre. Vorteilhafterweise wird diese energetisch angeregt, beispielsweise durch Einstrahlung von elektromagnetischer Strahlung, vorzugsweise von ultraviolettem Licht. In an alternative embodiment variant, the silicon oxide layer can be formed by means of a gas phase oxidation. Preferably, this takes place in an ozone-containing gas atmospheres ¬ sphere. Advantageously, this is energetically excited, for example by irradiation of electromagnetic radiation, preferably of ultraviolet light.
In der Praxis hat es sich bewährt, die Siliziumoxidschicht in einer Dicke im Bereich von 2 nm bis 3 nm auszubilden.
Vorteilhafterweise wird in den in die Siliziumnitridschicht eingebrachten Öffnungen die Siliziumoxidschicht lokal ent¬ fernt. Dies kann wiederum mittels Laserabiation erfolgen und besonders bevorzugt in demselben Laserabiationsschritt , in welchem auch die Öffnungen in die Siliziumnitridschicht einge¬ bracht werden. In practice, it has been found useful to form the silicon oxide layer in a thickness in the range of 2 nm to 3 nm. Advantageously, in the silicon nitride layer is introduced into the openings, the silicon oxide layer is locally removed ¬ ent. Again, this can be effected by means Laserabiation and particularly preferably in the same Laserabiationsschritt in which the openings are ¬ into the silicon nitride layer.
Gemäß einer Weiterbildung des Verfahrens werden die Öffnungen mittels Laserabiation in die Siliziumnitridschicht eingebracht und dabei mittels Laserdiffusion in Bereichen der Öffnungen stärker dotierte Emitterbereiche ausgebildet. Unter einer La¬ serdiffusion ist dabei zu verstehen, dass das Siliziumsubstrat mittels Laserstrahlung, welche bereits für die Laserabiation eingestrahlt wird, lokal derart erhitzt wird, dass es in den Bereichen der Öffnungen zu einer Umlagerung des Dotierstoffs kommt, ein Emitterprofil also lokal verändert wird. Unter eine solche Umlagerung von Dotierstoff fällt auch die Aktivierung elektrisch inaktiven Dotierstoffs. Mittels einer derartigen Laserdiffusion können in Bereichen der Öffnungen lokal stärker dotierte Emitterbereiche und damit ein sogenannter selektiver Emitter ausgebildet werden. According to a further development of the method, the openings are introduced into the silicon nitride layer by means of laser ablation and, in this case, emitter regions which are doped more heavily by laser diffusion are formed in regions of the openings. Under a La ¬ serdiffusion is understood to mean that the silicon substrate by means of laser radiation which is already irradiated for Laserabiation, is locally heated so that it comes to a rearrangement of the dopant into the areas of the openings, an emitter profile is thus changed locally. Under such a rearrangement of dopant also falls the activation of electrically inactive dopant. By means of such a laser diffusion locally stronger doped emitter regions and thus a so-called selective emitter can be formed in regions of the openings.
Bei der praktischen Umsetzung der Laserabiation haben sich, sowohl in Verbindung mit homogenen wie auch selektiven Emittern, laserinduzierte chemische Verfahren, teilweise als laser chemical processing bezeichnet, bewährt; beispielsweise ein laserinduziertes chemisches Ätzen, welches teilweise als laser chemical etching bezeichnet wird. Alternativ kann die Laserab- lation auch mittels Laserstrahlverdampfung realisiert werden, welches ebenso wie die laserinduzierten chemischen Verfahren eine Laserdiffusion zum Zwecke der Ausbildung eines selektiven Emitters ermöglicht.
Wird in der beschriebenen Weise ein selektiver Emitter ausgebildet, so kann eine stärkere Diffusion zur Ausbildung des Emitters auf der ersten Seite des Siliziumsubstrats eingesetzt werden. Dies erleichtert zum einen die Verfahrensführung zum anderen können bei einer stärkeren Eindiffusion von Dotierstoff in dem Siliziumsubstrat vorhandene Verunreinigungen bes¬ ser gegettert werden, was sich vorteilhaft auf den Wirkungs¬ grad der fertigen Solarzelle auswirkt. Der Vollständigkeit halber sei erwähnt, dass im Falle eines selektiven Emitters die oben genannten, vorteilhaften Höchstgrenzen für Emitterschichtwiderstandswerte abseits stärker do¬ tierter Emitterbereiche überschritten werden können. Höhere Schichtwiderstandswerte in diesen Bereichen können sich vor- teilhaft auf den Wirkungsgrad gefertigter Solarzellen auswirken . In the practical implementation of the laser ablation have, both in conjunction with homogeneous and selective emitters, laser-induced chemical processes, sometimes referred to as laser chemical processing, proven; For example, a laser-induced chemical etching, which is sometimes referred to as laser chemical etching. Alternatively, the laser ablation can also be realized by means of laser beam evaporation, which, like the laser-induced chemical processes, enables laser diffusion for the purpose of forming a selective emitter. If a selective emitter is formed in the manner described, a stronger diffusion can be used to form the emitter on the first side of the silicon substrate. This facilitates on the one hand the process management on the other hand can be gettered in a greater diffusion of dopant into the silicon substrate impurities present bes ¬ Ser, which has an advantageous effect ¬ degree affects the the finished solar cell. For completeness, it should be mentioned that in the case of a selective emitter more do ¬-oriented emitter regions may exceed the above-mentioned advantageous limits for emitter sheet resistance values off. Higher sheet resistance values in these areas can have an advantageous effect on the efficiency of manufactured solar cells.
Im Weiteren wird die Erfindung anhand von Figuren näher erläutert. Es zeigen: Furthermore, the invention will be explained in more detail with reference to figures. Show it:
Figur 1 schematische Darstellung eines ersten Ausführungs¬ beispiels des erfindungsgemäßen Verfahrens Figure 1 is a schematic representation of a first embodiment ¬ example of the method according to the invention
Figur 2 schematische Darstellung eines zweiten Ausführungs¬ beispiels des erfindungsgemäßen Verfahrens Figur 1 zeigt ein Ausführungsbeispiel des erfindungsgemäßenFigure 2 is a schematic representation of a second embodiment ¬ example of the method according to the invention Figure 1 shows an embodiment of the invention
Verfahrens. Bei diesem wird zunächst Dotierstoff in ein Sili¬ ziumsubstrat 50 eindiffundiert 10 und in dieser Weise ein Emitter 52 ausgebildet. Im vorliegenden Ausführungsbeispiel wird der Dotierstoff lediglich in die Oberseite des Solarzel- lensubstrats 50 eindiffundiert. Dies kann in an sich bekannter Weise beispielsweise durch Eindiffusion von Dotierstoff aus einer auf die Oberseite des Siliziumsubstrats 50 aufgebrach-
ten, dotierstoffhaltigen Lösung erfolgen. Der eingesetzte Dotierstoff ist auf die Volumendotierung des Siliziumsubstrats 50 abzustimmen. Grundsätzlich kann sowohl ein n- wie auch ein p-dotierter Emitter ausgebildet werden. Des Weiteren besteht grundsätzlich die Möglichkeit, nicht nur in die Oberseite des Siliziumsubstrats Dotierstoff einzudiffundieren, sondern in die gesamte Oberfläche. In diesem Falle wären geeignete Ma߬ nahmen zu treffen, um einen Kurzschluss zwischen dem Emitter 52 und einem später aufzubringenden Rückkontakt 62 zu verhin- dern. Process. In this first dopant is diffused into a Sili ¬ ziumsubstrat 50 and 10 formed an emitter 52 in this manner. In the present exemplary embodiment, the dopant is merely diffused into the upper side of the solar cell substrate 50. This can be done in a manner known per se, for example by diffusion of dopant from a top surface of the silicon substrate 50. th, dopant-containing solution. The dopant used is matched to the volume doping of the silicon substrate 50. In principle, both an n-doped and a p-doped emitter can be formed. Furthermore, it is fundamentally possible to diffuse dopant not only into the upper side of the silicon substrate, but into the entire surface. In this case would be appropriate level ¬ measures must be taken to countries to prevent a short circuit between the emitter 52 and a subsequently applied back contact 62nd
Im weiteren Verfahrensverlauf wird der Emitter 52 teilweise zurückgeätzt 12. Im vorliegenden Ausführungsbeispiel erfolgt dies nasschemisch in einer Flusssäure und Salpetersäure ent- haltenden Lösung. In the further course of the process, the emitter 52 is partially etched back. In the present exemplary embodiment, this is carried out wet-chemically in a solution containing hydrofluoric acid and nitric acid.
Im Weiteren wird das Siliziumsubstrat 50 zum Zwecke des Aus¬ bildens 14 einer Siliziumoxidschicht 54 in deionisiertes Was¬ ser getaucht, in welchem Ozon gelöst ist. In dieser Weise er- folgt eine nasschemische Oxidation der gesamten Oberfläche des Siliziumsubstrats 50. In addition, the silicon substrate 50 is dipped for the purpose of forming ¬ From 14 of a silicon oxide layer 54 in deionized What ¬ ser, in which ozone is dissolved. In this way, a wet-chemical oxidation of the entire surface of the silicon substrate 50 takes place.
Im Weiteren wird eine Wasserstoffhaltige Siliziumnitridschicht abgeschieden 16. Dies erfolgt üblicherweise mittels einer che- mischen Abscheidung aus der Dampfphase (CVD) . Die in der Darstellung der Figur 1 nach unten weisende Rückseite des Siliziumsubstrats 50 wird dabei von der Siliziumnitridschicht 56 freigehalten. Dies kann beispielsweise erfolgen, indem die Siliziumsubstrate paarweise Rücken an Rücken in eine verwendete Beschichtungsanlage eingebracht werden oder indem die Rücksei¬ te an einem Boot zur Anlage gebracht wird, welches in die ver¬ wendete Beschichtungsanlage eingefahren wird.
Im weiteren Verfahrensverlauf werden auf der ersten Seite des Siliziumsubstrats 50, im vorliegenden Ausführungsbeispiel also auf der Oberseite des Siliziumssubstrats 50, lokal Öffnungen 58 in die Siliziumnitridschicht 56 eingebracht 18. Dies er- folgt im dargestellten Ausführungsbeispiel mittels Laserabla- tion. Hierbei wird bei dieser Ausführungsvariante zudem in den Öffnungen 58 die Siliziumoxidschicht 54 lokal entfernt. In addition, a hydrogen-containing silicon nitride layer is deposited 16. This is usually done by means of a chemical vapor deposition (CVD) deposition. The downwardly facing rear side of the silicon substrate 50 in the representation of FIG. 1 is kept free of the silicon nitride layer 56. This can be done for example, by the silicon substrates in pairs placed back to back in a used coating system or by the back print ¬ te is placed on a boat to the plant, which is inserted into the ver ¬ applied coating system. In the further course of the process, local openings 58 are introduced into the silicon nitride layer 56 on the first side of the silicon substrate 50, in the present exemplary embodiment thus on the upper side of the silicon substrate 50. This takes place in the illustrated exemplary embodiment by means of laser ablation. In this embodiment, the silicon oxide layer 54 is also locally removed in the openings 58.
Abschließend werden in den Öffnungen 58 mittels Elektroplat- tieren 20 Vorderseitenkontakte 60 ausgebildet. Bei diesen han¬ delt es sich um Metallkontakte, welche beispielsweise Nickel und Silber oder Nickel, Kupfer und Silber aufweisen. Im Rahmen des Elektroplattierens 20 wird zudem der Rückseitenkontakt 62 auf der Rückseite des Siliziumsubstrats 50 ausgebildet. Dieser besteht demzufolge aus dem gleichen Material wie die Vorder¬ seitenkontakte 60. Finally, front side contacts 60 are formed in the openings 58 by means of electroplates 20. In these han ¬ it delt are metal contacts, which have, for example, nickel, and silver or nickel, copper and silver. In the context of the electroplating 20, the rear side contact 62 is additionally formed on the rear side of the silicon substrate 50. This therefore consists of the same material as the front ¬ side contacts 60th
Auf die Darstellung an sich bekannter Verfahrensschritte zur Ausbildung von Rückseitenfeldern, so genannten back surface fields, wurde in Figur 1 aus Gründen der besseren Übersicht¬ lichkeit verzichtet. Entsprechende, an sich bekannte Verfah¬ renschritte können jedoch ohne Weiteres integriert werden. The illustration of a known process steps for forming of back panels, so-called back surface fields have been omitted in Figure 1 for reasons of clarity ¬ friendliness. However, corresponding, known per se procedural ¬ Rensch rode can be integrated easily.
Die unterste Teildarstellung in Figur 1 illustriert neben dem letzten Verfahrensschritt des Elektroplattierens 20 zudem ein Ausführungsbeispiel der erfindungsgemäßen Solarzelle. In addition to the last method step of electroplating 20, the lowermost partial illustration in FIG. 1 also illustrates an exemplary embodiment of the solar cell according to the invention.
Das Ausführungsbeispiel der Figur 2 unterscheidet sich von demjenigen der Figur 1 darin, dass bei dem lokalen Einbringen 28 von Öffnungen 58 in die Siliziumnitridschicht 56 auch eine Laserdiffusion erfolgt 28. Hierbei werden in Bereichen der Öffnungen 58 stärker dotierte Emitterbereiche 64 ausgebildet, welche zusammen mit den übrigen Bereichen des Emitters 52 einen selektiven Emitter bilden. Wie im Fall des Ausführungsbei-
spiels der Figur 1 kann die Laserabiation, und in Verbindung hiermit die Laserdiffusion, mittels laserinduzierten chemischen Ätzens realisiert werden. Anstelle eines laserinduzier¬ ten chemischen Ätzens kann ein Laserstrahlverdampfungsverfah- ren Verwendung finden. The embodiment of Figure 2 differs from that of Figure 1 in that the local introduction 28 of openings 58 in the silicon nitride layer 56 and a laser diffusion takes place 28. Here, in regions of the openings 58 more heavily doped emitter regions 64 are formed, which together with the remaining areas of the emitter 52 form a selective emitter. As in the case of the 1 of the game, the laser ablation, and in conjunction with the laser diffusion, can be realized by means of laser-induced chemical etching. Instead of a laserinduzier ¬ th chemical etching can find reindeer using a Laserstrahlverdampfungsverfah-.
Die unterste Teildarstellung in Figur 2 illustriert schema¬ tisch neben dem letzten Verfahrensschritt des Elektroplattie- rens 20 zudem ein weiteres Ausführungsbeispiel der erfindungs- gemäßen Solarzelle.
The bottom part shown in Figure 2 illustrates schematically ¬ table next to the last step of Elektroplattie- Rens 20 also another embodiment of the invention the solar cell of invention.
Bezugs zeichenliste Reference sign list
10 Eindiffusion Dotierstoff 10 indiffusion dopant
12 Zurückätzen Emitter 12 etch etch emitter
14 Ausbilden Siliziumoxidschicht 14 forming silicon oxide layer
16 Siliziumnitridabscheidung 16 silicon nitride deposition
18 Einbringen Öffnungen 18 inserting openings
20 Elektroplattieren 20 electroplating
28 Einbringen Öffnungen und Laserdiffusion 28 introducing openings and laser diffusion
50 Siliziumsubstrat 50 silicon substrate
52 Emitter 52 emitters
54 Siliziumoxidschicht 54 silicon oxide layer
56 Siliziumnitridschicht 56 silicon nitride layer
58 Öffnung 58 opening
60 Vorderseitenkontakt 60 front side contact
62 Rückseitenkontakt 62 back contact
64 stärker dotierter Emitterbereich
64 more heavily doped emitter region
Claims
1. Verfahren zur Herstellung einer kristallinen Siliziumsolarzelle, bei welchem A process for producing a crystalline silicon solar cell, in which
- zum Zwecke des Ausbildens eines Emitters (52) auf einer ersten Seite eines Siliziumsubstrats (50) Dotierstoff in das Siliziumsubstrat (50) eindiffundiert wird (10); - for the purpose of forming an emitter (52) on a first side of a silicon substrate (50) dopant is diffused into the silicon substrate (50) (10);
- nachfolgend eine Siliziumnitridschicht (56) auf der ers¬ ten Seite des Siliziumsubstrats (50) abgeschieden wird (16); - Subsequently, a silicon nitride layer (56) on the first ¬ th side of the silicon substrate (50) is deposited (16);
- nachfolgend auf der ersten Seite des Siliziumsubstrats (50) lokal Öffnungen (58) in die Siliziumnitridschicht (56) eingebracht werden; - Subsequently, on the first side of the silicon substrate (50) locally openings (58) are introduced into the silicon nitride layer (56);
- nachfolgend in den Öffnungen (58) mittels Plattieren - subsequently in the openings (58) by means of plating
(20) Metallkontakte (60) ausgebildet werden (20); d a d u r c h g e k e n n z e i c h n e t , (20) metal contacts (60) are formed (20); characterized ,
dass that
- vor dem Abscheiden (16) der Siliziumnitridschicht (56) der Emitter (52) auf der ersten Seite des Siliziumsub- strats (50) teilweise zurückgeätzt wird (12); - prior to depositing (16) the silicon nitride layer (56), the emitter (52) on the first side of the silicon substrate (50) is partially etched back (12);
- nachfolgend vor dem Abscheiden (16) der Siliziumnitrid¬ schicht (56) auf der ersten Seite des Siliziumsubstrats (50) eine Siliziumoxidschicht (54) mit einer Dicke im Bereich von 1,0 nm bis 10 nm ausgebildet wird (14) . - Before the deposition (16) of the silicon nitride ¬ layer (56) on the first side of the silicon substrate (50) is subsequently formed a silicon oxide layer (54) having a thickness in the range of 1.0 nm to 10 nm (14).
2. Verfahren nach Anspruch 1, 2. The method according to claim 1,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die Metallkontakte (60) in den Öffnungen (58) mittels that the metal contacts (60) in the openings (58) by means of
Elektroplattieren (20) ausgebildet werden (20). Electroplating (20) are formed (20).
3. Verfahren nach einem der vorangegangenen Ansprüche, 3. Method according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass durch die Eindiffusion (10) von Dotierstoff in das Si- liziumsubstrat (50) ein Emitter (52) mit einem Schichtwiderstandswert im Bereich von 50 Ω/sq bis 70 Ω/sq ausgebil¬ det wird. that by the diffusion (10) of dopant into the Si a substrate (50), an emitter (52) with a sheet resistance value in the range of 50 Ω / sq to 70 Ω / sq is ausgebil ¬ det.
4. Verfahren nach einem der vorangegangenen Ansprüche, 4. Method according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass der Emitter (52) nasschemisch zurückgeätzt wird (12). that the emitter (52) is etched back wet-chemically (12).
5. Verfahren nach einem der vorangegangenen Ansprüche, 5. Method according to one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass durch das Zurückätzen (12) des Emitters (52) dessen Schichtwiderstandswert um 10 Ω/sq bis 50 Ω/sq erhöht wird. in that the etch resistance (12) of the emitter (52) increases its sheet resistance value by 10 Ω / sq to 50 Ω / sq.
6. Verfahren nach einem der vorangegangenen Ansprüche, 6. The method according to any one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die Siliziumoxidschicht (54) mittels einer nasschemi¬ schen Oxidation ausgebildet wird (14) . the silicon oxide layer (54) is formed by means of a nasschemi ¬ rule oxidation (14).
7. Verfahren nach einem der vorangegangenen Ansprüche, 7. The method according to any one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die Siliziumoxidschicht mittels einer Gasphasenoxida- tion ausgebildet wird. the silicon oxide layer is formed by means of a gas phase oxidation.
8. Verfahren nach einem der vorangegangenen Ansprüche, 8. The method according to any one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die Siliziumoxidschicht (54) in einer Dicke im Bereich von 2 nm bis 3 nm ausgebildet wird (14) . the silicon oxide layer (54) is formed in a thickness in the range of 2 nm to 3 nm (14).
9. Verfahren nach einem der vorangegangenen Ansprüche, 9. The method according to any one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass in den Öffnungen (58) die Siliziumoxidschicht (54) lo¬ kal entfernt wird, vorzugsweise mittels Laserabiation . the silicon oxide layer (54) lo ¬ kal is removed in the openings (58), preferably by means Laserabiation.
10. Verfahren nach einem der vorangegangenen Ansprüche, d a d u r c h g e k e n n z e i c h n e t , 10. The method according to one of the preceding claims, d a d u r c h e c e n e c e n e,
dass eine Wasserstoff enthaltende Siliziumnitridschicht (56) abgeschieden wird (16). a hydrogen-containing silicon nitride layer (56) is deposited (16).
11. Verfahren nach einem der vorangegangenen Ansprüche, 11. The method according to any one of the preceding claims,
d a d u r c h g e k e n n z e i c h n e t , characterized ,
dass die Öffnungen (58) mittels Laserabiation in die Sili¬ ziumnitridschicht (54) eingebracht werden (28) und dabei mittels Laserdiffusion in Bereichen der Öffnungen (58) stärker dotierte Emitterbereiche (62) ausgebildet werden (28) . be that the openings (58) are introduced by means Laserabiation in the Sili ¬ ziumnitridschicht (54) (28) while in the areas of the openings by laser diffusion (58) more heavily doped emitter regions (62) formed (28).
12. Solarzelle hergestellt mit dem Verfahren nach einem der Ansprüche 1 bis 11. 12. Solar cell produced by the method according to one of claims 1 to 11.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE201110010306 DE102011010306A1 (en) | 2011-02-03 | 2011-02-03 | Process for producing a crystalline silicon solar cell while avoiding unwanted metal deposits |
DE102011010306.6 | 2011-02-03 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012103888A1 true WO2012103888A1 (en) | 2012-08-09 |
Family
ID=46168013
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/DE2012/100024 WO2012103888A1 (en) | 2011-02-03 | 2012-02-03 | Method for producing a crystalline silicon solar cell avoiding unwanted metal deposits |
Country Status (3)
Country | Link |
---|---|
DE (1) | DE102011010306A1 (en) |
TW (1) | TW201236188A (en) |
WO (1) | WO2012103888A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108123010A (en) * | 2016-11-29 | 2018-06-05 | 茂迪股份有限公司 | Solar cell and method for manufacturing same |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011565A (en) * | 1989-12-06 | 1991-04-30 | Mobil Solar Energy Corporation | Dotted contact solar cell and method of making same |
WO2000001019A1 (en) * | 1998-06-29 | 2000-01-06 | Unisearch Limited | A self aligning method for forming a selective emitter and metallization in a solar cell |
WO2008039067A2 (en) | 2006-09-25 | 2008-04-03 | Ecn Energieonderzoek Centrum Nederland | Method of manufacturing crystalline silicon solar cells with improved surface passivation |
EP2103716A1 (en) * | 2008-03-19 | 2009-09-23 | Rohm and Haas Electronic Materials LLC | Method for Inhibiting Background Plating |
WO2010003784A2 (en) * | 2008-06-16 | 2010-01-14 | Institut Für Solarenergieforschung Gmbh | Silicon solar cell comprising a passivated p-type surface and method for producing the same |
EP2157209A2 (en) * | 2008-07-31 | 2010-02-24 | Rohm and Haas Electronic Materials LLC | Inhibiting Background Plating |
DE102008063558A1 (en) * | 2008-12-08 | 2010-06-10 | Gebr. Schmid Gmbh & Co. | Method for processing the surface of a wafer for producing a solar cell and wafer |
US20100186808A1 (en) * | 2009-01-27 | 2010-07-29 | Peter Borden | Plating through tunnel dielectrics for solar cell contact formation |
WO2010151478A1 (en) * | 2009-06-22 | 2010-12-29 | International Business Machines Corporation | Method of making a semiconductor optical detector structure |
WO2011050399A1 (en) * | 2009-10-26 | 2011-05-05 | Newsouth Innovations Pty Limited | Improved metallization method for silicon solar cells |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4217428A1 (en) * | 1991-12-09 | 1993-06-17 | Deutsche Aerospace | High performance silicon crystalline solar cell structure - has more highly doped layer integrated in lightly doped layer in area below metallic contact |
-
2011
- 2011-02-03 DE DE201110010306 patent/DE102011010306A1/en not_active Withdrawn
-
2012
- 2012-02-01 TW TW101103238A patent/TW201236188A/en unknown
- 2012-02-03 WO PCT/DE2012/100024 patent/WO2012103888A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5011565A (en) * | 1989-12-06 | 1991-04-30 | Mobil Solar Energy Corporation | Dotted contact solar cell and method of making same |
WO2000001019A1 (en) * | 1998-06-29 | 2000-01-06 | Unisearch Limited | A self aligning method for forming a selective emitter and metallization in a solar cell |
WO2008039067A2 (en) | 2006-09-25 | 2008-04-03 | Ecn Energieonderzoek Centrum Nederland | Method of manufacturing crystalline silicon solar cells with improved surface passivation |
EP2103716A1 (en) * | 2008-03-19 | 2009-09-23 | Rohm and Haas Electronic Materials LLC | Method for Inhibiting Background Plating |
WO2010003784A2 (en) * | 2008-06-16 | 2010-01-14 | Institut Für Solarenergieforschung Gmbh | Silicon solar cell comprising a passivated p-type surface and method for producing the same |
EP2157209A2 (en) * | 2008-07-31 | 2010-02-24 | Rohm and Haas Electronic Materials LLC | Inhibiting Background Plating |
DE102008063558A1 (en) * | 2008-12-08 | 2010-06-10 | Gebr. Schmid Gmbh & Co. | Method for processing the surface of a wafer for producing a solar cell and wafer |
US20100186808A1 (en) * | 2009-01-27 | 2010-07-29 | Peter Borden | Plating through tunnel dielectrics for solar cell contact formation |
WO2010151478A1 (en) * | 2009-06-22 | 2010-12-29 | International Business Machines Corporation | Method of making a semiconductor optical detector structure |
WO2011050399A1 (en) * | 2009-10-26 | 2011-05-05 | Newsouth Innovations Pty Limited | Improved metallization method for silicon solar cells |
Non-Patent Citations (7)
Title |
---|
A. LENNON ET AL: "New Dielectric Patterning Technique for Silicon Solar Cells", THE COMPILED STATE-OF-THE-ART OF PV SOLAR TECHNOLOGY AND DEPLOYMENT : 24TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE AND EXHIBITION ; CONFERENCE 21 - 25 SEPTEMBER 2009, EXHIBITION 21 - 24 SEPTEMBER 2009, HAMBURG ; PROCEEDINGS ; EU PVSEC, WIP-RENE, 21 September 2009 (2009-09-21), XP040529869, ISBN: 978-3-936338-25-6 * |
EVRARD O ET AL: "A COMPARISON BETWEEN THE PERFORMANCES OF POLYCRYSTALLINE SILICON SOLAR CELLS WITH ETCHED BACK EMITTERS AND NON ETCHED BACK EMITTERS OF IDENTICAL SHEET RESISTANCES", 12TH. E.C. PHOTOVOLTAIC SOLAR ENERGY CONFERENCE. AMSTERDAM, THE NETHERLANDS, APRIL 11 - 15, 1994; [PROCEEDINGS OF THE INTERNATIONAL PHOTOVOLTAIC SOLAR ENERGY CONFERENCE], BEDFORD : H.S. STEPHENS & ASSOCIATES, GB, vol. CONF. 12, 11 April 1994 (1994-04-11), pages 788 - 792, XP001136861, ISBN: 978-0-9521452-4-0 * |
G. HAMM ET AL: "Development of a Plated Nickel Seed Layer for Front Side Metallization of Silicon Solar Cells", THE COMPILED STATE-OF-THE-ART OF PV SOLAR TECHNOLOGY AND DEPLOYMENT : 24TH EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE AND EXHIBITION ; CONFERENCE 21 - 25 SEPTEMBER 2009, EXHIBITION 21 - 24 SEPTEMBER 2009, HAMBURG ; PROCEEDINGS ; EU PVSEC, WIP-RENE, 21 September 2009 (2009-09-21), XP040529969, ISBN: 978-3-936338-25-6 * |
HUA DONG ET AL: "Inkjet plating resist for improved cell efficency", 35TH IEEE PHOTOVOLTAIC SPECIALISTS CONFERENCE (PVSC), 20-25 JUNE 2010, HONOLULU, HI, USA, IEEE, PISCATAWAY, NJ, USA, 20 June 2010 (2010-06-20), pages 2142 - 2146, XP031785435, ISBN: 978-1-4244-5890-5 * |
MIHAILETCHI VALENTIN ET AL: "Nitric acid pretreatment for the passivation of boron emitters for n-type base silicon solar cells", APPLIED PHYSICS LETTERS, AIP, AMERICAN INSTITUTE OF PHYSICS, MELVILLE, NY, US, vol. 92, no. 6, 14 February 2008 (2008-02-14), pages 63510 - 63510, XP012108251, ISSN: 0003-6951, DOI: 10.1063/1.2870202 * |
S. BRAUN ET AL: "Electroless Nickel and Copper Metallization: Contact Formation on Crystalline Silicon and Background Plating Behaviour on PECVD SiNx:H Layers", 25ND EUROPEAN PHOTOVOLTAIC SOLAR ENERGY CONFERENCE, PROCEEDINGS OF THE 25ND INTERNATIONAL CONFERENCE, WIP-RENEWABLE ENERGIES, 6 September 2010 (2010-09-06), XP040531103, ISBN: 978-3-936338-26-3 * |
SCHUBERT W K ET AL: "Phosphorus and aluminum gettering-investigation of synergistic effects in single-crystal and multicrystalline silicon solar cells", 19960513; 19960513 - 19960517, 13 May 1996 (1996-05-13), pages 437 - 440, XP010208182 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108123010A (en) * | 2016-11-29 | 2018-06-05 | 茂迪股份有限公司 | Solar cell and method for manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
DE102011010306A1 (en) | 2012-08-09 |
TW201236188A (en) | 2012-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1977442B1 (en) | Method for fabricating a semiconductor component having regions with different levels of doping | |
EP2135300B1 (en) | Method for the production of a solar cell and solar cell produced using said method | |
DE102004049160B4 (en) | Silicon solar cell with lattice-shaped electrodes on both sides of the silicon substrate and manufacturing method for this silicon solar cell | |
EP1277239A1 (en) | Method for producing a solar cell, and solar cell | |
DE102009005168A1 (en) | Solar cell and method for producing a solar cell from a silicon substrate | |
EP2151869A2 (en) | Semiconductor component | |
DE102008056456A1 (en) | Process for producing a solar cell with a two-stage doping | |
DE112010000831T5 (en) | Back contact and connection of two solar cells | |
DE112013001641T5 (en) | Solar cell and method for producing a solar cell | |
DE102009041546A1 (en) | Process for the production of solar cells with selective emitter | |
DE102011088899A1 (en) | Back contact solar cell and method of making a back contact solar cell | |
DE102007012268A1 (en) | Process for producing a solar cell and solar cell produced therewith | |
WO2012143467A2 (en) | Method for manufacturing a solar cell | |
WO2011107092A2 (en) | Method for doping a semiconductor substrate, and solar cell having two-stage doping | |
WO2014128032A1 (en) | Semiconductor component, more particularly solar cell, and method for producing a metallic contact-making structure of a semiconductor component | |
WO2012103888A1 (en) | Method for producing a crystalline silicon solar cell avoiding unwanted metal deposits | |
DE102008033223A1 (en) | Contact-structure producing method for solar cell, involves tempering semiconductor-substrate with germination layer for diffusion of dopant from germination layer into semiconductor-substrate | |
EP4226432A1 (en) | Method for producing a metal halide perovskite solar module | |
DE102010060303A1 (en) | Process for producing a solar cell | |
DE202015103518U1 (en) | Solar cell with optimized local back contacts | |
WO2009121344A2 (en) | Method for producing a solar cell having two-stage doping | |
WO2020114807A1 (en) | Solar cell string, solar module and method for producing a solar cell string | |
DE102007051725A1 (en) | Solar cell contacting method, involves dimensioning opening and pressing contact material on opening, such that material is pressed in surrounding of opening, where metallic paste made of aluminum and/or silver is used as material | |
DE102009037217A1 (en) | Method for producing a semiconductor device | |
WO2011085715A2 (en) | Method for creating a two-stage doping in a semiconductor substrate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 12723593 Country of ref document: EP Kind code of ref document: A1 |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 12723593 Country of ref document: EP Kind code of ref document: A1 |