WO2012103767A1 - 一种新型三维立体电子胆道镜系统及其使用方法 - Google Patents

一种新型三维立体电子胆道镜系统及其使用方法 Download PDF

Info

Publication number
WO2012103767A1
WO2012103767A1 PCT/CN2011/083124 CN2011083124W WO2012103767A1 WO 2012103767 A1 WO2012103767 A1 WO 2012103767A1 CN 2011083124 W CN2011083124 W CN 2011083124W WO 2012103767 A1 WO2012103767 A1 WO 2012103767A1
Authority
WO
WIPO (PCT)
Prior art keywords
dimensional
soft
novel
ccd
end portion
Prior art date
Application number
PCT/CN2011/083124
Other languages
English (en)
French (fr)
Inventor
乔铁
Original Assignee
广州宝胆医疗器械科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州宝胆医疗器械科技有限公司 filed Critical 广州宝胆医疗器械科技有限公司
Publication of WO2012103767A1 publication Critical patent/WO2012103767A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • A61B1/05Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances characterised by the image sensor, e.g. camera, being in the distal end portion
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/00064Constructional details of the endoscope body
    • A61B1/00071Insertion part of the endoscope body
    • A61B1/0008Insertion part of the endoscope body characterised by distal tip features
    • A61B1/00096Optical elements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/307Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor for the urinary organs, e.g. urethroscopes, cystoscopes

Definitions

  • the invention belongs to a medical instrument, and particularly relates to a novel three-dimensional electronic choledochoscope system for reconstructing a stereo image by using a multi-CCD array.
  • CCD Charge-Coupled Device
  • the CCD image sensor technology is extremely mature and can be spliced into an array of any shape as needed.
  • Fujifilm introduced super CCD technology, which has a 60% increase in resolution, a 130% increase in dynamic range, a 40% increase in color reproduction capability, and a 40% reduction in energy consumption, with the same area and number of photosensitive cells as conventional CCDs. Improve the function of the CCD.
  • the size of the CCD's photosensitive unit is constantly decreasing. At present, the size of the photosensitive unit has been reported to be only 0.
  • the CCD entering the sub-micron era, the CCD will surround high resolution, high readout speed, low cost, miniaturization, structure. Further developments in optimization, multi-spectral applications and 3D photography.
  • An array of photoreceptor cells arranged in a matrix can sense the image.
  • CCDs are now widely used in digital cameras and digital camcorders, as well as in astronomical telescopes, scanners, and bar code readers.
  • " ⁇ " uses the 96 line CCD array to sample the same target, and finally accumulates all the signals.
  • the very dark target and the high resolution target, " ⁇ " can be photographed, and its resolution can reach 1 meter.
  • the endoscopes currently used can be divided into monocular and binoculars.
  • the monocular endoscope is imaged by an optical system.
  • the doctor can directly observe the eye through the eyepiece end, but since it is a monocular, it can only be obtained.
  • An image of an object at an angle is like the effect of looking at an object with a single eye.
  • the object lacks a sense of depth and distance.
  • Doctors use monocular endoscopes for surgery. Because of the flat image of the monocular, there is a lack of stereoscopic perception, so it depends on the doctor's skill level.
  • Some stereoscopic endoscopes use a binocular structure.
  • the front end of the endoscope can be a lens or two lenses.
  • the image of the object is output through two eyepieces.
  • the doctor can observe the human eye through the binoculars.
  • the stereo image of the object can also be connected to a special processing host and display, and the stereo processing can be displayed on the display by processing the host, but the image is also single-angled and has certain limitations.
  • the binocular stereo endoscope can obtain a stereoscopic feeling similar to that observed by the human eye, due to the limitation of the human body cavity, the stereoscopic whole view of the entire surgical field cannot be stereoscopically reflected, so the doctor performs the operation using the current endoscope. At the time, it is subject to visual constraints, and there are certain restrictions on the development of surgery and the improvement of the cure rate of the disease.
  • the CCD array concept has not been combined with a soft choledochoscope, so Clear three-dimensional images in the bile duct, designing an endoscopic technique that combines multiple CCD array technology with fiber choledochoscopy is imminent.
  • the invention overcomes some shortcomings of the prior art choledochoscope, and provides a novel three-dimensional electronic choledochoscope system, which enables the soft choledochoscope to enter the cystic duct, the common bile duct and even the intrahepatic bile duct, and utilizes the working end portion thereof.
  • the multi-CCD array module at the tip end performs three-dimensional scanning on the bile duct to obtain a stereoscopic image.
  • a novel three-dimensional electronic choledochoscope system comprising a soft electronic choledochoscope, and a processing host, a light source host and a workstation assembly connected thereto, the soft electronic choledochoscope comprising a soft working end, an operation part and an external connection a data port, the soft working end portion includes a controllable curved tip portion, the tip end portion is connected to the operation portion, and the tip end portion is provided for performing three-dimensional stereo scanning, displaying a panoramic three-dimensional image, and the biliary cavity a multi-CCD array module for performing stereoscopic image reconstruction, the multi-CCD array module comprising at least one first CCD array disposed on a front end surface of the tip end portion, and at least one second CCD array disposed on an outer peripheral surface of the tip end portion
  • a distance measuring device is disposed on the front end surface of the tip end portion and the outer peripheral surface of the tip end portion.
  • the soft working end has a diameter of less than or equal to 6. Omm, a length of 500 mm or less, and a tip length of at least 20 mm.
  • the outer peripheral surface of the soft working end portion is provided with a rotating ring carrier
  • the second CCD array is disposed on the rotating ring carrier
  • the distance measuring device is disposed on the front end surface of the tip end portion and rotates On the ring carrier.
  • the operation unit is provided with a control wheel for controlling the bending of the tip end portion, a button for controlling image fine adjustment, and an instrument channel.
  • a micro motor that drives the rotation of the rotating ring carrier is disposed in the soft working end.
  • the first CCD array includes at least two CCD elements, and each CCD element corresponds to a group of lenses.
  • each group of lenses has an angle of view of at least 90 °.
  • the second CCD array includes at least one set of CCD arrays, and one set of CCD arrays includes at least two CCD elements and corresponding lenses.
  • an external fixing bracket including a precision moving device, a bracket and a fixing jig, the precision moving device being driven by a motor, the precision moving device being fixed by the bracket, the fixing jig and the soft working end.
  • the core part of the processing host uses a high-speed central processing unit and a high-performance graphics card for receiving and processing data packets returned by the soft electronic choledochoscope and the data of the range finder, by analyzing the data packet.
  • Various numbers According to the stereoscopic reconstruction of the cavity image, the stereoscopic three-dimensional image of the cavity is restored.
  • the soft electronic choledochoscope enters the gallbladder cavity through a tiny incision at the bottom of the gallbladder, and the guiding mechanism of the active anterior end of the working end of the soft electronic choledochoscope can conveniently find the cystic duct and pass appropriate
  • the operation method enters the cystic duct and then enters the common bile duct;
  • the multi-CCD array module set at the apex is a three-dimensional stereoscopic imaging of the common bile duct and the cystic duct, displaying a panoramic three-dimensional image, and reconstructing the stereoscopic image of the common bile duct and the cystic duct.
  • the invention performs circular and linear image capturing on the bile duct, and the obtained data is processed by the processing host to obtain a three-dimensional image of the cystic duct, the common bile duct or the intrahepatic bile duct, and the stereoscopic image of the bile duct is observed by the doctor from multiple angles. It is of practical significance to develop lesions and study their environment and to develop the most reasonable and effective treatment plan.
  • Figure 1 is a schematic view of the system and clinical procedure of the present invention
  • FIG. 2 is a schematic structural view of a soft electronic choledochoscope of the present invention.
  • Figure 3 is a schematic view showing the tip end portion of the soft electronic choledochoscope of the present invention.
  • FIG. 4 is a schematic cross-sectional view showing a front end multi-CCD array module of a soft electronic choledochoscope according to the present invention
  • Figure 5 is a schematic view showing the structure of the external fixing bracket of the present invention.
  • the novel three-dimensional electronic choledochoscope system of the present invention comprises a soft electronic choledochoscope 1, an external fixing bracket 2, and a processing host 3, a light source host 5, and a workstation component connected thereto, and the workstation component includes a workstation host. 4.
  • Control unit 6 keyboard mouse, etc.
  • monitor 7 and external device 8 external storage, printer, etc.
  • the workstation component and the processing host are connected by a data line.
  • the function of the workstation component is to display a three-dimensional stereo image output by the processing host 3, analyze, store data, and print related materials.
  • the core part of the processing host 3 uses a high-speed central processing unit and a high-performance graphics card for receiving and processing data packets composed of the soft electronic choledochoscope 1 returned image information and the range finder data, by analyzing various data packets. Data, stereo reconstruction of the cavity image, reducing the stereoscopic three-dimensional image of the cavity.
  • the internal motion control card is used to precisely control the movement of the external fixed bracket.
  • FIG. 2 is a schematic view showing the structure of the soft electronic choledochoscope 1 of the present invention.
  • the structure of the soft electronic choledochoscope 1 includes at least a soft working end portion 11, an operation portion 12, and a data port 13 that connects the external processing host 3 and the light source host 5.
  • the diameter of the soft working end portion 11 is less than or equal to 6.
  • the effective length is less than or equal to 500 mm
  • at least the soft working end portion 11 is at least 20mm is a controllable curved portion, called a tip end portion
  • the tip end portion 111 is simultaneously provided with a multi-CCD array module (131, 132, 134, 135) for performing three-dimensional stereoscopic scanning and displaying a panoramic three-dimensional image
  • the operation portion 12 is provided The doctor holds the operation part, and is provided with a control wheel 123 for controlling the bending of the tip end, a button 122 for controlling the state of the endoscope, and an instrument channel 121
  • the data port 13 is externally connected to the processing host 3 and the light source host 5, and is a multi-CCD array module (131). , 132, 134, 135 )
  • the data provides the channel for the output.
  • Fig. 3 is a schematic view showing the tip end portion of the novel three-dimensional choledochoscope 1 according to the present invention.
  • the distal end of the soft electronic choledochoscope 1 is designed with a plurality of CCD array modules (131, 132, 134, 135), an optical fiber portion 133 and an instrument channel outlet 1211.
  • the optical fiber portion 133 provides a soft electronic choledochoscope 1 front end and a circular shape. The end face observes the necessary brightness.
  • the multi-CCD array module includes a first CCD array 131 and a range finder 132 at the front end surface of the tip end, and the outer end of the apex portion
  • the first CCD array 131 of the front end face of the tip end has a minimum structure including two CCD elements, and the CCD elements are linearly arranged, and each CCD corresponds to a group of lenses, and can simultaneously image the same cavity portion, and the field of view of each group of lenses
  • the angle is at least 90 ° and the CCD array has at least 5 shots per second.
  • the range finder 132 measures the distance and depth of the cavity by the reflection principle of laser or sound wave.
  • the operating frequency of the range finder 132 is the same as the operating frequency of the CCD array, ensuring data synchronization and facilitating stereo reconstruction.
  • the second CCD array 134 of the outer peripheral surface of the tip end includes at least one set of CCD arrays, and the set of CCD arrays includes at least two CCD elements and corresponding lenses, which can simultaneously image the same intracavity portion, and the field of view of each set of lenses
  • the angle is at least 90 ° and the CCD array has at least 5 shots per second.
  • a range of CCD arrays is equipped with a range finder 1325, which operates at a frequency consistent with the operating frequency of the CCD array to ensure data synchronization for dimensional reconstruction.
  • the second CCD array 134 is mounted on a rotating ring carrier 136 capable of rotating the main shaft 111 of the soft working end portion 11, and can rotate the CCD image of the cavity to rotate the rotating ring carrier 136. It is proportional to the speed of movement of the external fixing bracket 2 to ensure that the image in the cavity can be seamlessly combined at multiple angles.
  • the first CCD array 131 and the range finder 132 of the front end face of the tip end are in a fixed form, and the field of view of the first CCD array 131 is at least 90 °, which is mainly for taking a three-dimensional image of the front end of the endoscope;
  • the circular CCD array 134 and the range finder 135 are mounted on the rotating ring carrier 136 of the endoscope end portion which is rotatable about the main axis of the end portion 111 of the endoscope working end portion 11.
  • the rotating ring carrier 136 is fixed by the fit
  • the fixing mechanism 138 inside the endoscope can perform smooth relative rotational movement with the fixing mechanism 138, and the data of the second CCD array 134 and the range finder 135 are also transmitted to the processing host via the data line 137 by an appropriate transmission method, and the rotating ring carrier is rotated.
  • the power of 136 is derived from the micromotor 139 at the end of the endoscope, which provides the energy of rotation of the rotating ring carrier 136 about the securing mechanism 138 via the transmission structure.
  • FIG. 5 is a schematic view showing the structure of the external fixing bracket 2 according to the present invention.
  • the function of the external fixing bracket 2 is to cooperate with the soft electronic choledochoscope 1 to scan the CCD array of the cavity, and the moving speed thereof and the three-dimensional soft electronic choledochoscope 1 apex
  • the multi-CCD array modules (131, 132, 134, 135) are proportional to the rotational scanning shooting speed.
  • the structure includes a fixing jig 23, a bracket 22, and a precision moving device 21.
  • the fixing jig 23 is used for tightly fixing the endoscope main body portion of the soft electronic choledochoscope 1, the bracket 22 is connected to the fixing jig 23 and the precision moving device 21, and the precision moving device 21 is driven by a high-performance motor, and the moving speed of the motor is controlled by the workstation main unit 4 Unified control.
  • the precision moving device 21 has an unlimited transmission mode, and can be driven by a screw rod or a guide rail, and the precision moving device 21 is fixed on the rigid platform.
  • FIG. 1 is a schematic view showing the clinical application of the novel three-dimensional electronic choledochoscopy system of the present invention.
  • the new three-dimensional electronic choledochoscopy system is connected as shown in Figure 1.
  • the clinical application method is as follows: The doctor uses a soft electronic choledochoscope 1 to enter the gallbladder cavity through a tiny incision at the bottom of the gallbladder 9, or through the bile duct wall during surgery. The small incision enters the biliary tract, and the guiding action of the active controlled bending of the anterior end portion 111 of the working end portion 11 of the soft electronic choledochoscope 1 can conveniently find the cystic duct and enter the cystic duct 92 through appropriate manipulation, and then enter the common bile duct.
  • a clear image of the common bile duct 91, the cystic duct 92, and the like can be obtained by the multi-CCD array provided at the tip end portion 111.
  • the soft electronic choledochoscope 1 is first fixed on the fixing fixture 23 of the external fixation bracket 2, and the gallbladder 9 and the soft electronic choledochoscope 1 are kept as much as possible during the scanning process.
  • Stabilization between simultaneously launching the soft choledochoscope 1 of the multi-CCD array module (131, 132, 134, 135) and the external fixation bracket 2, in the multi-CCD array module (131, 132, 134, 135) to the common bile duct 91 and the cystic duct 92 perform linear and rotational scanning, while the external fixing bracket 2 moves at a hook speed, the speed of which is proportional to the rotation of the second CCD array 134, and the range 135 measures the first portion of the tip end in real time.
  • the precise distance between the CCD array 131 and the wall of the common bile duct 91 or the cystic duct 92, the data packets of the multi-CCD array module (131, 132, 134, 135) and the range finder are transmitted to the processing host 3 and the workstation host 4 through the data line for calculation. Processing, the monitor 7 transmitted to the workstation component performs display of a three-dimensional stereoscopic image.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Surgery (AREA)
  • Biomedical Technology (AREA)
  • Medical Informatics (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biophysics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Urology & Nephrology (AREA)
  • Endoscopes (AREA)
  • Instruments For Viewing The Inside Of Hollow Bodies (AREA)

Description

一种新型三维立体电子胆道镜系统及其使用方法 技术领域
本发明属于医用器械, 具体涉及一种利用多 CCD阵列进行立体影像重构的新型三维立体 电子胆道镜系统。
背景技术
CCD ( Charge-Coupled Device , 电荷耦合器件) 是可用于立体相机的一种重要组成部分。 它是一种光敏半导体器件, 其上的感光单元将接收到的光线转换为电荷量, 而且电荷量大小 与入射光的强度成正比。 CCD 图像传感器的技术极为成熟, 可以根据需要拼接成任何形状的 阵列。 1999年富士公司推出超级 CCD技术,在与普通 CCD相同面积和感光单元数目的情况下, 其分辨率提高 60%, 动态范围提高 130%, 色彩再现能力提高 40%, 能耗下降 40%, 进一步提高 了 CCD的功能。 CCD的感光单元尺寸不断在减少,目前已经有报道的感光单元尺寸仅为 0. δμιιι, 进入了亚微米时代, CCD 将会围绕着高分辨率、 高读出速度、 低成本、 微型化、 结构优化、 多光谱应用和 3D照相等方面进一步发展。 矩阵排列的感光单元构成的面阵 CCD可传感图像。
CCD 现在被广泛应用于数码相机和数码摄像机中, 同时也在天文望远镜、 扫描仪和条形码读 取器中有应用。 "嫦娥二号"使用 96条线 CCD阵列对同一目标采样, 最后把信号全都累加。 很暗的目标、 分辨率很高的目标, "嫦娥二号"都能照出来, 其分辨率能达到 1米。
目前所使用的内窥镜, 可以分为单目和双目镜, 单目内窥镜是由一个光学系统成像, 医 生可以通过目镜端直接使用眼睛进行观察, 但是由于是单目镜, 只能获得物体一个角度的影 像, 就像使用单个眼睛看物体一样的效果, 物体缺乏立体感和距离感。 医生使用单目内窥镜 进行手术, 由于单目镜成平面的图像, 缺乏立体的感知, 所以需依赖医生的技术水平。
一些体视内窥镜, 使用的是双目镜结构, 其内窥镜前端可以是一个镜头或者两个镜头, 物体的影像通过两个目镜输出, 医生通过双目镜可以观察到与人眼类似物体的立体影像, 也 可以通过连接特殊的处理主机和显示器, 通过处理主机的处理, 可以在显示器中显示立体的 影像, 但是这种影像也是单角度的, 具有一定的局限性。 双目镜立体内窥镜虽然能得到类似 人眼观察物体的立体感觉, 但由于人体腔体的局限, 也不能立体地反映出整个手术区域的立 体全貌, 所以医生在使用现行的内镜进行手术时, 都要受到视觉上的制约, 对于手术的开展 和提高病症的治愈率有一定的限制。
现有技术中, 还没有将 CCD阵列概念与软质胆道镜结合起来一起应用, 因此, 为了得到 胆管内清晰的三维立体影像, 设计一种将多 CCD阵列技术与纤维胆道镜结合的内镜技术迫在 眉睫。
发明内容
本发明克服了现有胆道镜现有技术中的一些缺点, 提供了一种新型三维立体电子胆道镜 系统,使得软质胆道镜能进入胆囊管、胆总管甚至肝内胆管,利用其工作端部先端部的多 CCD 阵列模块对胆管进行三维立体扫描, 得到立体的影像。
为了解决上述技术问题, 本发明是通过以下技术方案实现的:
一种新型三维立体电子胆道镜系统, 包括软质电子胆道镜, 以及与其连接的处理主机、 光源主机、 工作站组件, 所述软质电子胆道镜包括软质工作端部, 操作部及与外部连接的数 据端口, 该软质工作端部包括可控弯曲的先端部, 该先端部与所述操作部连接, 所述先端部 设有进行三维立体扫描拍摄、显示全景三维立体图像,并对胆道腔进行立体影像重构的多 CCD 阵列模块, 所述多 CCD阵列模块包括至少一设于该先端部前端面的第一 CCD阵列, 以及至少 一设于先端部外圆表面的第二 CCD阵列, 所述先端部的前端面和先端部外圆表面上对应设有 测距器。
进一步, 所述软质工作端部的直径小于等于 6. Omm, 长度小于等于 500mm, 所述先端部长 度为至少 20mm。
进一步, 所述软质工作端部先端部外圆表面设有旋转圆环载体, 所述第二 CCD阵列设于 该旋转圆环载体上, 所述测距器设于先端部的前端面和旋转圆环载体上。
进一步, 所述操作部设有控制上述先端部弯曲的控制轮, 控制影像微调的按钮和器械通 道。
进一步, 所述软质工作端部内设有驱动旋转圆环载体旋转的微型马达。
进一步, 所述第一 CCD阵列至少包括 2个 CCD元件, 每个 CCD元件对应一组镜头。
进一步, 所述 CCD元件线性排列, 每组镜头的视场角至少 90 ° 。
进一步, 所述第二 CCD阵列包括至少一组 CCD阵列, 一组 CCD阵列包括至少 2个 CCD元 件及对应的镜头。
进一步, 还包括外部固定支架, 该外部固定支架包括精密移动装置、 支架和固定夹具, 该精密移动装置通过电机驱动, 该精密移动装置通过支架、 固定夹具和所述软质工作端部固 接。
进一步, 所述处理主机的核心部分采用高速的中央处理器和高性能显卡, 用于接收和处 理软质电子胆道镜返回的图像信息和测距器的数据组成的数据包, 通过分析数据包的各种数 据, 对腔体图像进行立体重构, 还原腔体的立体三维图像。
进一步, 三维立体胆道镜系统的使用方法:
( 1 )将软质电子胆道镜经由胆囊底部的微小切口进入胆囊腔内, 通过软质电子胆道镜工 作端部先端部的主动受控弯曲的导引作用, 可以方便找到胆囊管并通过适当的操作手法进入 胆囊管, 进而进入胆总管;
( 2 )通过先端部设置的多 CCD阵列模块即对胆总管、胆囊管进行三维立体扫描拍摄、 显 示全景三维立体图像、 并对胆总管、 胆囊管进行立体影像重构。
与现有技术相比, 本发明的有益效果是:
本发明对胆管进行环形和线性的影像拍摄, 得到的数据经处理主机的综合处理, 得到胆 囊管、 胆总管或者肝内胆管的三维立体影像, 胆管的立体图像对于医生以多角度观察其内在 的病变及研究其环境, 制定最合理有效的处理方案, 具有实际意义。
附图说明
下面结合附图和具体实施方式对本发明作进一步详细的说明。
图 1是本发明的系统及临床手术示意图;
图 2是本发明的软质电子胆道镜的结构示意图;
图 3是本发明的软质电子胆道镜的先端部示意图;
图 4是本发明的软质电子胆道镜的先端部多 CCD阵列模块剖面示意图;
图 5是本发明的外部固定支架结构示意图。
具体实施方式
如图 1所示, 本发明所述新型三维立体电子胆道镜系统包括软质电子胆道镜 1, 外部固 定支架 2, 以及与其连接的处理主机 3、 光源主机 5、 工作站组件, 工作站组件包括工作站主 机 4, 控制部件 6 (键盘鼠标等), 监视器 7和外部设备 8 (外部储存器、 打印机等) 等。 所 述的工作站组件与处理主机通过数据线连接, 工作站组件的功能是显示处理主机 3输出的三 维立体图像, 分析、 储存数据和打印相关资料等。 处理主机 3的核心部分采用高速的中央处 理器和高性能显卡, 用于接收和处理软质电子胆道镜 1返回的图像信息和测距器的数据组成 的数据包, 通过分析数据包的各种数据, 对腔体图像进行立体重构, 还原腔体的立体三维图 像。 内部的运动控制卡用于精确控制外部固定支架运动。
如图 2所示为本发明的软质电子胆道镜 1的结构示意图。 软质电子胆道镜 1的结构至少 包括软质工作端部 11, 操作部 12和连接外部处理主机 3和光源主机 5的数据端口 13。 其软 质工作端部 11的直径小于等于 6. Omm, 有效长度小于等于 500mm, 其软质工作端部 11前至少 20mm为可控弯曲部分, 称为先端部, 先端部 111同时设有进行三维立体扫描拍摄、 显示全景 三维立体图像的多 CCD阵列模块(131, 132, 134, 135); 其操作部 12是提供医生握持操作的部 分, 设置有控制先端部弯曲的控制轮 123, 控制内镜状态的按钮 122和器械通道 121等; 数 据端口 13外接处理主机 3和光源主机 5, 为多 CCD阵列模块 (131, 132, 134, 135 ) 的数据提 供输出的通道。
如图 3所示为本发明所述新型的三维立体胆道镜 1的先端部示意图。 软质电子胆道镜 1 的先端部设计有多 CCD阵列模块 (131, 132, 134, 135)、 光导纤维部分 133和器械通道出口 1211 , 光导纤维部分 133提供软质电子胆道镜 1前端和圆形端面观察必要的亮度。
如图 4, 结合图 3所示的是软质电子胆道镜 1的先端部示意图和剖面图, 多 CCD阵列模 块包括先端部前端面的第一 CCD阵列 131和测距器 132,先端部外圆表面的第二 CCD阵列 134 及其测距器 135。先端部前端面的第一 CCD阵列 131,其内部结构最少包括 2个 CCD元件, CCD 元件线性排列, 每个 CCD对应一组镜头, 能同时对同一个腔内部分成像, 每组镜头的视场角 至少 90 ° , CCD阵列至少具有每秒拍摄 5张的速度。 测距器 132利用激光或者声波等的反射 原理, 对腔体距离、 深度进行距离的测定。 测距器 132的工作频率与 CCD阵列的工作频率一 致, 保证数据同步, 利于进行立体重建。 先端部外圆表面的第二 CCD阵列 134, 至少包括一 组 CCD阵列, 一组 CCD阵列包括至少 2个 CCD元件及对应的镜头, 能同时对同一个腔内部分 成像, 每组镜头的视场角至少 90 ° , CCD阵列至少具有每秒拍摄 5张的速度。 一组 CCD阵列 的适当位置配置一个测距器 1325, 其工作频率与 CCD阵列的工作频率一致, 保证数据同步, 以利于进行立体重建。第二 CCD阵列 134安装在能以软质工作端部 11的先端部 111主轴做旋 转运动的旋转圆环载体 136上, 能对腔体进行旋转的 CCD影像拍摄, 旋转圆环载体 136旋转 的速度与外部固定支架 2的运动速度成比例,以保证腔体内的影像能进行多角度的无缝结合。 先端部前端面的第一 CCD阵列 131和测距器 132为固定形式, 第一 CCD阵列 131的视场角最 少 90 ° ,其作用主要是拍摄内镜前端的三维图像;所述的先端部外圆表面的第二 CCD阵列 134 和测距器 135安装在内镜先端部的可以绕内镜工作端部 11先端部 111主轴旋转的旋转圆环载 体 136上, 旋转圆环载体 136通过配合固定在内镜内部的固定机构 138, 可以与固定机构 138 进行平滑的相对旋转运动, 第二 CCD阵列 134和测距器 135的数据也通过适当传输方式经数 据线 137传输至处理主机, 旋转圆环载体 136的动力来自于内镜先端部的微型马达 139, 通 过传动结构提供旋转圆环载体 136绕固定机构 138旋转的能量。
如图 5所示为本发明所述的外部固定支架 2的结构简图。 外部固定支架 2的作用是配合 软质电子胆道镜 1进行腔体的 CCD阵列扫描, 其移动速度与三维立体软质电子胆道镜 1先端 部的多 CCD阵列模块(131, 132, 134, 135 )旋转扫描拍摄速度成比例。 其结构包括固定夹具 23、 支架 22、 精密移动装置 21。 固定夹具 23用于紧密固定软质电子胆道镜 1的内镜主体部 分, 支架 22连接固定夹具 23与精密移动装置 21, 精密移动装置 21使用高性能的电机驱动, 电机的运动速度由工作站主机 4统一控制。精密移动装置 21传动方式不限, 可以采用丝杆传 动或者导轨传动, 精密移动装置 21固定在刚性平台之上。
如图 1所示为本发明所述新型三维立体电子胆道镜系统的临床应用示意图。 新型三维立 体电子胆道镜系统连接如图 1所示, 其临床应用方法为: 医生使用软质电子胆道镜 1经由胆 囊 9底部的微小切口进入胆囊腔内, 也可以在术中通过胆管壁上的小切口进入胆道, 通过软 质电子胆道镜 1工作端部 11的先端部 111的主动受控弯曲的导引作用,可以方便找到胆囊管 并通过适当的操作手法进入胆囊管 92, 进而进入胆总管 91, 通过先端部 111设置的多 CCD阵 列可以得到胆总管 91、 胆囊管 92等的清晰图像。 要对胆总管 91或者胆囊管 92进行三维立 体的扫描, 则首先需要把软质电子胆道镜 1固定在外部固定支架 2的固定夹具 23上, 扫描过 程尽量保持胆囊 9与软质电子胆道镜 1之间的稳定, 同时启动软质电子胆道镜 1的多 CCD阵 列模块 ( 131、 132、 134、 135 )和外部固定支架 2, 在多 CCD阵列模块 ( 131、 132、 134、 135 ) 对胆总管 91和胆囊管 92进行直线和旋转的扫描拍摄的同时,外部固定支架 2做勾速的移动, 其速度与第二 CCD阵列 134的旋转成比例,测距器 135将实时测量先端部的第一 CCD阵列 131 与胆总管 91或者胆囊管 92壁的精确距离, 多 CCD阵列模块 (131、 132、 134、 135 ) 和测距 器的数据包通过数据线传输至处理主机 3、 工作站主机 4进行计算处理, 传输至工作站组件 的监视器 7进行三维立体图像的显示。
本发明并不局限于上述实施方式, 如果对本发明的各种改动或变形不脱离本发明的精神 和范围, 倘若这些改动和变形属于本发明的权利要求和等同技术范围之内, 则本发明也意图 包含这些改动和变形。

Claims

^ ^tl ¾ ^ ^
1、 一种新型三维立体电子胆道镜系统, 包括软质电子胆道镜, 以及与其连接的处理主机、 光 源主机、 工作站组件, 所述软质电子胆道镜包括软质工作端部, 操作部及与外部连接的数据 端口, 该软质工作端部包括可控弯曲的先端部, 该先端部与所述操作部连接, 其特征在于: 所述先端部设有进行三维立体扫描拍摄、 显示全景三维立体图像, 并对胆道腔进行立体影像 重构的多 CCD阵列模块, 所述多 CCD阵列模块包括至少一设于该先端部前端面的第一 CCD阵 列, 以及至少一设于先端部外圆表面的第二 CCD阵列, 所述先端部的前端面和先端部外圆表 面上对应设有测距器。
2、 根据权利要求 1所述新型三维立体电子胆道镜系统, 其特征在于: 所述软质工作端部的直 径小于等于 6. Omm, 长度小于等于 500mm, 所述先端部长度为至少 20mm。
3、 根据权利要求 1所述新型三维立体电子胆道镜系统, 其特征在于: 所述软质工作端部先端 部外圆表面设有旋转圆环载体, 所述第二 CCD阵列设于该旋转圆环载体上, 所述测距器设于 先端部的前端面和旋转圆环载体上。
4、 根据权利要求 1所述新型三维立体电子胆道镜系统, 其特征在于: 所述操作部设有控制上 述先端部弯曲的控制轮, 控制影像微调的按钮和器械通道。
5、 根据权利要求 3所述新型三维立体电子胆道镜系统, 其特征在于: 所述软质工作端部内设 有驱动旋转圆环载体旋转的微型马达。
6、 根据权利要求 1至 5任一项所述新型三维立体电子胆道镜系统, 其特征在于: 所述第一 CCD阵列至少包括 2个 CCD元件, 每个 CCD元件对应一组镜头。
7、根据权利要求 6所述新型三维立体电子胆道镜系统,其特征在于:所述 CCD元件线性排列, 每组镜头的视场角至少 90 ° 。
8、 根据权利要求 1至 5任一项所述新型三维立体电子胆道镜系统, 其特征在于: 所述第二 CCD阵列包括至少一组 CCD阵列, 一组 CCD阵列包括至少 2个 CCD元件及对应的镜头。
9、 根据权利要求 1所述新型三维立体电子胆道镜系统, 其特征在于: 还包括外部固定支架, 该外部固定支架包括精密移动装置、 支架和固定夹具, 该精密移动装置通过电机驱动, 该精 密移动装置通过支架、 固定夹具和所述软质工作端部固接。
10、 根据权利要求 1所述新型三维立体电子胆道镜系统, 其特征在于: 所述处理主机的核心 部分采用高速的中央处理器和高性能显卡, 用于接收和处理软质电子胆道镜返回的图像信息 和测距器的数据组成的数据包, 通过分析数据包的各种数据, 对腔体图像进行立体重构, 还 原腔体的立体三维图像。
11、 根据权利要求 1所述新型三维立体电子胆道镜系统的使用方法, 其特征在于:
( 1 )将软质电子胆道镜经由胆囊底部的微小切口进入胆囊腔内, 通过软质电子胆道镜工 作端部先端部的主动受控弯曲的导引作用, 可以方便找到胆囊管并通过适当的操作手法进入 胆囊管, 进而进入胆总管;
( 2)通过先端部设置的多 CCD阵列模块即对胆总管、胆囊管进行三维立体扫描拍摄、 显 示全景三维立体图像、 并对胆总管、 胆囊管进行立体影像重构。
PCT/CN2011/083124 2011-01-31 2011-11-29 一种新型三维立体电子胆道镜系统及其使用方法 WO2012103767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110033441.8 2011-01-31
CN2011100334418A CN102058387B (zh) 2011-01-31 2011-01-31 一种新型三维立体电子胆道镜系统及其使用方法

Publications (1)

Publication Number Publication Date
WO2012103767A1 true WO2012103767A1 (zh) 2012-08-09

Family

ID=43994039

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/083124 WO2012103767A1 (zh) 2011-01-31 2011-11-29 一种新型三维立体电子胆道镜系统及其使用方法

Country Status (2)

Country Link
CN (1) CN102058387B (zh)
WO (1) WO2012103767A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102058387B (zh) * 2011-01-31 2012-05-30 广州宝胆医疗器械科技有限公司 一种新型三维立体电子胆道镜系统及其使用方法
CN104757931B (zh) * 2015-04-13 2017-03-22 周宁新 一种微创手术机器人用胆道镜
CN105105852A (zh) * 2015-09-16 2015-12-02 广州乔铁医疗科技有限公司 具有测距功能的3d胆道镜系统
WO2018179979A1 (ja) * 2017-03-29 2018-10-04 ソニー・オリンパスメディカルソリューションズ株式会社 制御装置、外部機器、医療用観察システム、制御方法、表示方法およびプログラム
CN113951809B (zh) * 2021-12-22 2022-03-22 广州乔铁医疗科技有限公司 电子胆道镜及电子胆道镜系统

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088558A (ja) * 1998-09-17 2000-03-31 Shiseido Co Ltd 肌観察記録システム及び観察対象面の凹凸解析システム
JP2005040205A (ja) * 2003-07-23 2005-02-17 Olympus Corp 立体内視鏡装置
US6933962B2 (en) * 2000-12-26 2005-08-23 Pentax Corporation Electronic endoscope with three-dimensional image capturing device
CN101700182A (zh) * 2009-11-18 2010-05-05 广州宝胆医疗器械科技有限公司 硬质多通道电子胆囊镜系统
CN101732082A (zh) * 2009-11-06 2010-06-16 广州宝胆医疗器械科技有限公司 软、硬子母胆囊、胆管镜系统及其使用方法
CN102058382A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 三维立体电子胃镜系统及其使用方法
CN102058383A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 三维立体电子十二指肠镜系统及其使用方法
CN102058384A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 一种新型三维立体电子膀胱镜系统及其使用方法
CN102058387A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 一种新型三维立体电子胆道镜系统及其使用方法
CN102058376A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 一种新型三维立体电子宫腔镜系统及其使用方法
CN102058381A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 三维立体电子支气管镜系统及其使用方法
CN102078179A (zh) * 2011-01-31 2011-06-01 广州宝胆医疗器械科技有限公司 三维立体电子结肠镜系统及其使用方法
CN102085087A (zh) * 2011-01-31 2011-06-08 广州宝胆医疗器械科技有限公司 三维立体电子食管镜系统及其使用方法
CN202015157U (zh) * 2011-01-31 2011-10-26 广州宝胆医疗器械科技有限公司 一种新型三维立体电子胆道镜系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001060076A1 (en) * 1998-11-04 2001-08-16 Forte Visio Medica Ab Design, function, and utilisation of an equipment for capturing of three-dimensional images
CN201171665Y (zh) * 2008-02-04 2008-12-31 长春理工大学 立体电子内窥镜双路视频信号获得装置
CN101703415B (zh) * 2008-10-10 2011-04-06 广州宝胆医疗器械科技有限公司 硬质超声胆囊内镜系统
CN101518438A (zh) * 2009-03-27 2009-09-02 南开大学 双目内窥镜手术视觉系统

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000088558A (ja) * 1998-09-17 2000-03-31 Shiseido Co Ltd 肌観察記録システム及び観察対象面の凹凸解析システム
US6933962B2 (en) * 2000-12-26 2005-08-23 Pentax Corporation Electronic endoscope with three-dimensional image capturing device
JP2005040205A (ja) * 2003-07-23 2005-02-17 Olympus Corp 立体内視鏡装置
CN101732082A (zh) * 2009-11-06 2010-06-16 广州宝胆医疗器械科技有限公司 软、硬子母胆囊、胆管镜系统及其使用方法
CN101700182A (zh) * 2009-11-18 2010-05-05 广州宝胆医疗器械科技有限公司 硬质多通道电子胆囊镜系统
CN102058383A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 三维立体电子十二指肠镜系统及其使用方法
CN102058382A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 三维立体电子胃镜系统及其使用方法
CN102058384A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 一种新型三维立体电子膀胱镜系统及其使用方法
CN102058387A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 一种新型三维立体电子胆道镜系统及其使用方法
CN102058376A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 一种新型三维立体电子宫腔镜系统及其使用方法
CN102058381A (zh) * 2011-01-31 2011-05-18 广州宝胆医疗器械科技有限公司 三维立体电子支气管镜系统及其使用方法
CN102078179A (zh) * 2011-01-31 2011-06-01 广州宝胆医疗器械科技有限公司 三维立体电子结肠镜系统及其使用方法
CN102085087A (zh) * 2011-01-31 2011-06-08 广州宝胆医疗器械科技有限公司 三维立体电子食管镜系统及其使用方法
CN202015157U (zh) * 2011-01-31 2011-10-26 广州宝胆医疗器械科技有限公司 一种新型三维立体电子胆道镜系统

Also Published As

Publication number Publication date
CN102058387B (zh) 2012-05-30
CN102058387A (zh) 2011-05-18

Similar Documents

Publication Publication Date Title
CN102058375B (zh) 三维立体硬质电子宫腔镜系统
CN102058380B (zh) 三维立体硬质电子喉镜系统
CN102058381B (zh) 三维立体电子支气管镜系统及其使用方法
CN102078176B (zh) 三维立体硬质电子阴道镜系统及其使用方法
WO2012103767A1 (zh) 一种新型三维立体电子胆道镜系统及其使用方法
CN102090881B (zh) 三维立体硬质电子肛肠镜系统
CN201968655U (zh) 三维立体硬质电子阴道镜系统
WO2012103766A1 (zh) 三维立体硬质电子胆囊镜系统及其使用方法
CN102058382B (zh) 三维立体电子胃镜系统及其使用方法
CN102090880B (zh) 三维立体硬质电子关节镜系统
CN102058384B (zh) 一种三维立体电子膀胱镜系统
CN102078179B (zh) 三维立体电子结肠镜系统
CN102090878B (zh) 三维立体硬质电子膀胱镜系统
CN202015157U (zh) 一种新型三维立体电子胆道镜系统
CN201968659U (zh) 三维立体硬质电子肛肠镜系统
CN102085087B (zh) 三维立体电子食管镜系统及其使用方法
CN201968658U (zh) 三维立体电子结肠镜系统
CN201968652U (zh) 三维立体电子支气管镜系统
CN201968653U (zh) 三维立体硬质电子喉镜系统
CN201968662U (zh) 三维立体硬质电子关节镜系统
CN102058383B (zh) 三维立体电子十二指肠镜系统及其使用方法
CN201948989U (zh) 三维立体硬质电子膀胱镜系统
CN102058388B (zh) 三维立体硬质电子脑室镜系统及其使用方法
CN102058376B (zh) 一种新型三维立体电子宫腔镜系统及其使用方法
CN201968657U (zh) 一种新型三维立体电子膀胱镜系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857493

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/12/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11857493

Country of ref document: EP

Kind code of ref document: A1