WO2012103718A1 - 网络节能方法及网络设备 - Google Patents

网络节能方法及网络设备 Download PDF

Info

Publication number
WO2012103718A1
WO2012103718A1 PCT/CN2011/076493 CN2011076493W WO2012103718A1 WO 2012103718 A1 WO2012103718 A1 WO 2012103718A1 CN 2011076493 W CN2011076493 W CN 2011076493W WO 2012103718 A1 WO2012103718 A1 WO 2012103718A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
network
module
service
energy saving
Prior art date
Application number
PCT/CN2011/076493
Other languages
English (en)
French (fr)
Inventor
常天海
刘治国
唐石平
阎君
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2011/076493 priority Critical patent/WO2012103718A1/zh
Priority to CN201180001407.0A priority patent/CN102726001B/zh
Publication of WO2012103718A1 publication Critical patent/WO2012103718A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/03Arrangements for fault recovery
    • H04B10/032Arrangements for fault recovery using working and protection systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B10/00Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
    • H04B10/27Arrangements for networking
    • H04B10/275Ring-type networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/50Reducing energy consumption in communication networks in wire-line communication networks, e.g. low power modes or reduced link rate

Definitions

  • the invention relates to no energy saving technology, in particular to a network energy saving method and a network device. Background technique
  • the actual network application is usually provided with a backup device, that is, a redundant unit, to ensure that the standby device is enabled in the event of a malfunction of the working device, so that the service operation is not affected.
  • a backup device that is, a redundant unit
  • the optical transmission network (OTN) is widely configured with network redundancy protection such as 1+1, 1 : 1, and M:N. If the redundant unit can be designed for "warm backup” or even “cold backup” and the reliability of network protection switching, the network energy consumption will be greatly reduced and the network level energy efficiency will be improved.
  • the backup nodes in the network are hot backups, which makes the network consume more energy.
  • an OTN network with 1+1 network protection is configured.
  • the backup node uses hot backup, dual-issue, and selective services to implement equipment and fiber-optic route protection.
  • the receiving end is switched.
  • the protocol is simple and reliable. The switching is fast, but the primary and backup routes are hot backup.
  • the power consumption is the same, resulting in a large network energy consumption. Summary of the invention
  • Embodiments of the present invention provide a network energy saving method and a network device, so as to complete fast switching of a channel while reducing network energy consumption.
  • the embodiment of the invention provides a network energy saving method, including:
  • the service modules of each node in the standby channel are powered on and configured under the control of the communication module, and each node on the standby channel enters an operable state.
  • the embodiment of the invention further provides a network node device for network energy saving, which comprises a communication module and a service module, wherein the method further includes:
  • a communication power supply module connected to the communication module, for supplying power to the communication module
  • a service power supply module connected to the communication module and the service module, configured to be the service module under the control of the communication power supply module powered by
  • the communication module is configured to control the service power supply module to stop supplying power to the service module when the working channel of the service protected by the backup channel where the network node device is located is normal, and is also used when the working channel is faulty. And controlling the service power supply module to power on the service module, and configured to complete configuration of the service module, so that the network node device for network energy saving on the standby channel enters an operable state.
  • the network energy-saving method and the network device control the power failure of each node service module on the standby channel in the case that the working channel works normally, and control each node on the standby channel through the communication module in the case of a working channel failure.
  • the service module is powered on and configured to enable the standby channel to enter a working state. This not only reduces the energy consumed by the network under the normal working channel, but also controls the power module to be powered and configured through the communication module to achieve rapid recovery of the standby channel. Fast switching of working channels in the network.
  • FIG. 1 is a flowchart of a network energy saving method according to an embodiment of the present invention
  • FIG. 2 is a flowchart of another network energy saving method according to an embodiment of the present invention.
  • FIG. 3a is a schematic diagram of an OTN network applied to the network energy saving method in the embodiment shown in FIG. 2;
  • FIG. 3b is a schematic diagram of the energy-saving enable flag inserted in the alternate channel of the OTN network shown in FIG. 3a;
  • FIG. 3c is a schematic diagram of the alarm shielding ready for the OTN network shown in FIG. 3a;
  • FIG. 3d is a schematic diagram of the OTN network entering the network energy saving state shown in FIG. 3a;
  • Figure 3e is a schematic diagram of the failure of the OTN network shown in Figure 3a;
  • Figure 3f is a schematic diagram of the energy saving of the OTN network shown in Figure 3a;
  • FIG. 3g is a schematic diagram of activation of a service module on an alternate channel in the OTN network shown in FIG. 3a
  • FIG. 3h is a schematic diagram of recovery of an alternate channel of the OTN network shown in FIG. 3a;
  • FIG. 4 is a schematic structural diagram of a network node device for network energy saving according to an embodiment of the present invention. detailed description
  • FIG. 1 is a flowchart of a network energy saving method according to an embodiment of the present invention. As shown in Figure 1, network energy saving methods include:
  • Step 11 When the working channel of the service is normal, the service modules of each node in the standby channel where the service is located are powered down under the control of the communication module.
  • the source node may send an energy saving enable flag for indicating energy saving on the standby channel.
  • the source node can send an energy-saving enable flag through an optical supervisory channel (OSC) protocol.
  • OSC optical supervisory channel
  • a field in the OSC message can be used to identify whether the energy saving is enabled, such as setting the field to "0" to indicate energy saving.
  • the communication module receives an energy saving enable flag sent by a source end node of the working channel for indicating energy saving
  • the communication module controls the service module to be powered down according to the energy saving enable flag at the node.
  • the communication module may further receive an alarm shielding signal returned by the sink node of the working channel, To shield the alarm signal generated by the power failure of the service module on the standby channel.
  • Step 12 When the working channel is faulty, the service modules of each node in the standby channel are powered on and configured according to the control of the communication module, and each node on the standby channel enters an operable state.
  • the communication module receives the energy saving disable flag for indicating the enable of the standby channel from the sink node of the working channel where the fault is located. Specifically, when the working channel fails, the faulty downstream node sends a service alarm to the working channel of the fault. After receiving the service alarm, the sink node generates a power saving disable flag to restore the service module in the standby channel.
  • the communication module controls the service module to be powered on according to the energy saving disable flag and completes the configuration.
  • the configuration of the service module of each node in the standby channel under the control of the communication module includes:
  • the communication module directly sends the configuration file stored in the bridge sub-module to the service module to complete the configuration of the service module.
  • the bridge sub-module is used for bridging between the service module and the CPU in the communication module, and the bridge sub-module can be implemented by a Field Programmable Gate Array (FPGA). In the embodiment of the present invention, the bridge submodule can also be used to save the configuration of the service module.
  • FPGA Field Programmable Gate Array
  • the standby channel recovery flag is sent; after receiving the standby channel recovery flag, the sink node of the working channel selects one of the standby channels according to the service quality.
  • the alternate channel acts as a new working channel.
  • the backup unit of the source end node is the backup service board of the source end node, and is a node of the standby channel.
  • the service module in the standby unit of the source end node is also powered down under the control of the communication module. .
  • the service module in the standby unit of the source node is powered on and configured under the control of the communication module, and enters the operable state, that is, the standby unit of the source node completes recovery.
  • the network may be an Optical Transmission Network (OTN), or Coaxial cable transmission network, twisted pair transmission network and other transmission networks.
  • OTN Optical Transmission Network
  • Coaxial cable transmission network twisted pair transmission network and other transmission networks.
  • the energy-saving enable flag, the alarm mask signal, the energy-saving disable flag, and the alternate channel recovery flag are transmitted through the optical monitoring channel OSC protocol.
  • the network energy-saving method controls the service modules of each node on the standby channel to be powered down when the working channel is working normally, and controls the service modules of the nodes on the standby channel to be powered by the communication module when the working channel is faulty.
  • the configuration enables the standby channel to enter a working state, which not only reduces the energy consumed by the network under the normal working channel, but also controls the power module to be powered and configured through the communication module, thereby realizing the rapid recovery of the standby channel and satisfying the working channel in the network. Fast switching. Further, by saving the configuration file of the power-down service module in the bridge sub-module of the communication module, the configuration of the service module is realized more quickly, so that the backup channel is recovered more quickly, and the working channel is also completed more quickly. .
  • FIG. 2 is a flowchart of another network energy saving method according to an embodiment of the present invention.
  • the application environment of this embodiment is an OTN network, and the OTN network adopts a 1+1 network redundancy protection scheme.
  • the node A and the node D are both configured with the main service board and the backup service board.
  • the main service boards of the node A, the node C and the node B are located on the working channel, and the node A and the node B are configured with the SNCP service.
  • the backup service board of node B and node D are located on the standby channel.
  • the ACB path is the working channel and the ADB path is the alternate channel.
  • the service source is dual-issue, the sink is selected, and the intermediate node is service-through.
  • the source node service is sent to the working channel and the standby channel.
  • the sink node selects one of the working channel and the standby channel.
  • the intermediate node is not the source and the sink of the service.
  • the transparent transmission of the service means that the service is passed through and is not processed.
  • the network energy saving is reflected in the fact that the power consumption of the backup channel is as low as possible when the standby channel is not used, and the time when the backup channel is switched to the working channel is as short as possible, that is, when the working channel is faulty, the power-to-service recovery time of the backup service board can satisfy the network switching. Time ( ⁇ 50 ms). Specific methods include:
  • Step 21 Both the working channel and the standby channel work normally, and there is no fault. After 5 minutes, the source node continuously inserts the “energy saving enable” flag on the alternate channel through the OSC information, as shown in Figure 3b.
  • Step 22 After detecting the "energy saving enable” flag, the working channel sink node returns the "alarm screen" The ready signal is shown in Figure 3c.
  • Step 23 After the working channel source node detects the "alarm shielding ready" signal for a preset time, for example, the time can be set to 1 minute according to the actual situation, as shown in FIG. 3d, the gray block shown in FIG. Power-down, that is, the backup service boards of node A and node B, that is, the service modules of node A and node B on the standby channel, enter the power-down mode under the control of the communication modules of node A and node B on the standby channel, respectively. Because the main service board and the backup service board of the node D are on the standby channel, the service modules on the two service boards enter the power-down mode under the control of their respective communication modules to enter the network energy-saving state.
  • Step 24 After the one-way line fault between the node A and the node C on the working channel, the downstream node C detects a service failure. As shown in Figure 3e, the downstream node C sends a "service alarm" signal to the node B.
  • Step 25 After detecting the service fault, Node B changes the "Energy Save Enable” flag of the OSC overhead information to "Energy Saver Disabled” and sends it to the alternate channel, as shown in Figure 3f.
  • Step 26 After each node of the standby channel detects the "energy saving not enabled" flag, as shown in FIG. 3g, the service module or chip is powered on under the control of the communication module, and the communication module sends the configuration file stored in the bridge submodule to A business module or chip that quickly configures a business module or chip to enable rapid activation of a business module or chip. By verifying, it is possible to activate the service module or chip within 10 milliseconds (ms).
  • Step 27 After the source node recovers the service module on the standby channel, send the "alternate channel recovery" flag, as shown in Figure 3h.
  • Step 28 The sink node selects an alternate channel according to the "alternate channel recovery" flag of the source node, and then selects an alternate channel according to the received service quality. If the service received from the backup channel is intact, the standby channel is selected, and the switching is completed. , as shown in Figure 3f; otherwise, it does not switch.
  • the communication module mainly composed of the CPU and the FPGA works normally, and does not affect existing software architectures such as packet loading, performance, and alarm.
  • the service module is independently powered. In the standby state, the power-consuming modules such as the service processing chip and the optical module in the service module have zero power consumption.
  • the communication module controls the service module to be powered on, and the service module is configured to quickly turn hot.
  • the "energy-saving not enabled" flag comes from the OSC Time Division Multiplexing (TDM) overhead time slot, which is simple, reliable, and fast.
  • TDM Time Division Multiplexing
  • FIG. 4 is a schematic structural diagram of a network node device used for network energy saving according to an embodiment of the present invention.
  • the network node device used for network energy saving includes a communication module 41, a service module 42, a communication power supply module 43, and a service power supply module 44.
  • the communication power supply module 43 is connected to the communication module 41 for supplying power to the communication module 41.
  • the service power module 44 is connected to the communication module 41 and the service module 42 for supplying power to the service module 42 under the control of the communication power supply module 43.
  • the communication module 41 is configured to control the service power supply module 44 to stop powering the service module 42 when the working channel of the service protected by the backup channel where the network node device is located is normal, and is also used to be in the working channel.
  • the service power supply module 44 is controlled to power up the service module 42 and is configured to complete the configuration of the service module 42 to enable the The network node device used for network energy saving enters a working state.
  • the communication module 41 may be specifically configured to directly send the configuration file stored in the bridge sub-module to the service module to complete configuration of the service module.
  • the bridge sub-module refer to the description of the bridge sub-module in the above method embodiment.
  • the communication module may include: a first receiving submodule and a first control submodule.
  • the first receiving submodule is configured to: before the control of the service module is powered off, the service module of each node in the standby channel receives an energy saving enable flag sent by the source end node of the working channel for indicating energy saving, and The alarm mask signal returned by the sink node of the working channel;
  • the first control submodule is configured to control the service module to be powered down according to the alarm masking signal.
  • the communication module may include: a second receiving submodule and a second control submodule.
  • the second receiving submodule is configured to receive, after the power module is powered on and complete the configuration, an energy saving disable flag for indicating that the standby channel is enabled from the downstream node at the fault;
  • the second control submodule is configured to control the service module to be powered on according to the energy saving disable flag and complete the configuration.
  • the communication module may further include: an energy saving indication sending submodule and an alternate channel recovery indicating sending submodule.
  • the energy saving indication sending submodule is configured to send, to the standby channel, an energy saving enabling flag for indicating energy saving when the working channel is working normally;
  • the alternate channel recovery indication sending submodule is configured to send an alternate channel recovery flag to the sink node of the working channel after the second control submodule controls the service module to power up and complete the configuration.
  • the communication module may further include: a return notification submodule and an alternate recovery receiving submodule.
  • the reply sub-module is configured to return an alarm mask signal after the first receiving sub-module receives the energy-saving enable flag sent by the working channel source node;
  • the standby recovery receiving submodule is configured to receive an alternate channel recovery flag sent by the source end node of the working channel;
  • the network node device may further include: a switching module, configured to select, according to the service quality, an alternate channel from the standby channel as a new work after the standby recovery receiving submodule receives the standby channel recovery flag aisle.
  • the communication module is further configured to send, when the working channel is faulty, the standby channel to indicate that the standby channel is enabled. Energy saving does not enable the sign.
  • the network node device for network energy saving is an optical transmission network OTN, and the communication module is configured to transmit the energy saving enable flag, the alarm shielding signal, the energy saving disable flag, and the standby channel recovery flag by using an optical monitoring channel OSC protocol. .
  • the communication module controls the power failure of the service module through the working channel when the working channel works normally, and controls the service through the communication module when the working channel is faulty.
  • the power-on and configuration of the module enables the network device to enter a working state, which not only reduces the energy consumed by the network device under the normal working channel, but also controls the power-on and configuration of the service module through the communication module, thereby achieving rapid recovery and satisfying the network. Quick switching of working channels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Computing Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Description

网络节能方法及网络设备 技术领域
本发明涉及无节能技术, 尤其涉及一种网络节能方法及网络设备。 背景技术
随着节能技术的发展, 风扇多风区无级调速、 单板安装态节能、 未用端 口节能、 交叉 1+1备份单元的温备份、 电源转换效率提升、 芯片工艺提升带 来的单位能耗降低等网络单节点、 部件级节能技术, 也逐步改进, 向系统级 功耗管理、 网络级能效优化发展。
网络技术中, 为了确保可靠性, 实际网络应用通常设置有备用设备即冗 余单元, 以确保工作设备故障的情况下启用备用设备, 使业务运行不受影响。 如光传输网 ( Optical Transmission Network, OTN )大量配置 1+1、 1 : 1、 M:N 等网络冗余保护设计。 若能将冗余单元进行 "温备份" 甚至 "冷备份" 设计, 同时兼顾网络保护倒换的可靠性, 将大幅度降低网络能耗, 提升网络级能效。
目前, 网络中备用设备与工作设备都处于上电状态, 以在工作设备故障 的情况下能够迅速切换到备用设备, 继续运行业务。 换句话说, 网络中备份 节点属于热备份, 使得网络能耗较大。 如配置 1+1网络保护的 OTN网络, 备 份节点采用热备份, 业务双发、 选收, 实现设备、 光纤路由保护, 收端倒换, 协议简单、 可靠, 倒换迅速, 但是主、 备路由热备份, 功耗消耗相同, 导致 网络能耗较大。 发明内容
本发明实施例提出一种网络节能方法及网络设备, 以在降低网络能耗的 同时完成通道的快速倒换。 本发明实施例提供了一种网络节能方法, 包括:
当业务所在工作通道正常时, 所述业务所在的备用通道中各节点的业务 模块在通讯模块的控制下掉电;
当所述工作通道故障时, 所述备用通道中各节点的业务模块在所述通讯 模块的控制下上电并完成配置, 所述备用通道上的各节点进入可工作状态。
本发明实施例还提供了一种用于网络节能的网络节点设备, 包括通讯模 块及业务模块, 其中, 还包括:
通讯供电模块, 与所述通讯模块连接, 用于为所述通讯模块供电; 业务供电模块, 与所述通讯模块及业务模块连接, 用于在所述通讯供电 模块的控制下为所述业务模块供电;
所述通讯模块, 用于在所述网络节点设备所在的备用通道保护的业务所 在工作通道正常时, 控制所述业务供电模块停止为所述业务模块供电, 还用 于在所述工作通道故障时, 控制所述业务供电模块为所述业务模块上电, 并 用于完成所述业务模块的配置, 以使所述备用通道上的所述用于网络节能的 网络节点设备进入可工作状态。
本发明实施例提供的网络节能方法及网络设备, 通过在工作通道正常工 作的情况下控制备用通道上各节点业务模块掉电, 及在工作通道故障的情况 下通过通讯模块控制备用通道上各节点业务模块上电、 配置, 使备用通道进 入可工作状态, 不仅减少了网络在工作通道正常工作下消耗的能源, 并且通 过通讯模块控制业务模块上电、 配置, 实现了备用通道的快速恢复, 满足了 网络中工作通道的快速倒换。 附图说明
图 1为本发明实施例提供的一种网络节能方法的流程图;
图 2为本发明实施例提供的另一种网络节能方法的流程图;
图 3a为图 2所示实施例中网络节能方法所应用的 OTN网络示意图; 图 3b为图 3a所示 OTN网络的备用通道中下插节能使能标志的示意图; 图 3c为图 3a所示 OTN网络的告警屏蔽就绪的示意图;
图 3d为图 3a所示 OTN网络进入网络节能状态的示意图;
图 3e为图 3a所示 OTN网络发生故障的示意图;
图 3f为图 3a所示 OTN网络节能不使能的示意图;
图 3g为图 3a所示 OTN网络中备用通道上业务模块激活的示意图; 图 3h为图 3a所示 OTN网络备用通道恢复的示意图;
图 4 为本发明实施例提供的用于网络节能的网络节点设备的结构示意 图。 具体实施方式
为使本发明的目的、 技术方案和优点更加清楚, 下面将结合附图对本发 明作进一步地详细描述。
图 1为本发明实施例提供的一种网络节能方法的流程图。 如图 1所示, 网络节能方法包括:
步骤 11、 当业务所在工作通道正常时, 所述业务所在的备用通道中各节 点的业务模块在通讯模块的控制下掉电。
具体地, 在工作通道正常工作的情况下, 源端节点可在备用通道发送用 于指示节能的节能使能标志。 如对于 OTN网络, 源端节点可通过光监控信道 ( optical supervisory channel, OSC )协议发送节能使能标志。 换句话说, 可 将 OSC消息中的某个字段用来标识是否节能使能, 如将该字段设置为 "0" 以表示节能使能。
所述通讯模块接收所述工作通道的源端节点发送的用于指示节能的节能 使能标志;
所述通讯模块在节点根据所述节能使能标志, 控制所述业务模块掉电。 所述通讯模块还可接收所述工作通道的宿端节点返回的告警屏蔽信号, 以屏蔽由于备用通道上的业务模块掉电产生的告警信号。
步骤 12、 当所述工作通道故障时, 所述备用通道中各节点的业务模块在 所述通讯模块的控制下上电并完成配置, 所述备用通道上的各节点进入可工 作状态。
所述通讯模块接收来自故障所在工作通道的宿端节点的用于指示启用备 用通道的节能不使能标志, 具体地, 工作通道发生故障时, 故障的下游节点 发送业务告警给故障所在工作通道的宿端节点,宿端节点接收到业务告警后, 生成节能不使能标志, 以恢复备用通道中的业务模块;
所述通讯模块根据所述节能不使能标志控制所述业务模块上电并完成配 置。
所述备用通道中各节点的业务模块在所述通讯模块的控制下完成配置包 括:
所述通讯模块将存储在桥接子模块中的配置文件直接发送到所述业务模 块中, 完成所述业务模块的配置。 其中桥接子模块用于在业务模块和通讯模 块中的 CPU之间起到桥接作用, 桥接子模块可采用现场可编程门阵列(Field Programmable Gate Array, FPGA )来实现。 本发明实施例中, 桥接子模块还 可以用来保存业务模块的配置。
所述工作通道的源端节点的备用单元恢复后, 发送备用通道恢复标志; 所述工作通道的宿端节点接收到所述备用通道恢复标志后, 根据业务好 坏从所述备用通道中选择一个备用通道作为新的工作通道。
其中, 源端节点的备用单元即源端节点的备份业务板, 作为备用通道的 一个节点, 当业务所在工作通道正常时, 源端节点的备用单元中业务模块同 样在通讯模块的控制下掉电。 当业务所在工作通道故障时, 源端节点的备用 单元中业务模块在通讯模块的控制下上电并完成配置, 进入可工作状态, 即 源端节点的备用单元完成恢复。
所述网络可为光传输网络 ( Optical Transmission Network, OTN ), 也可为 同轴电缆传输网络、 双绞线传输网络等其他传输网络。
所述节能使能标志、 告警屏蔽信号、 节能不使能标志及备用通道恢复标 志通过光监控信道 OSC协议进行传输。
本实施例中, 网络节能方法通过在工作通道正常工作的情况下控制备用 通道上各节点业务模块掉电, 及在工作通道故障的情况下通过通讯模块控制 备用通道上各节点业务模块上电、 配置, 使备用通道进入可工作状态, 不仅 减少了网络在工作通道正常工作下消耗的能源, 并且通过通讯模块控制业务 模块上电、 配置, 实现了备用通道的快速恢复, 满足了网络中工作通道的快 速倒换。 进一步地, 通过将掉电的业务模块的配置文件保存在通讯模块的桥 接子模块中, 更快速地实现了业务模块的配置, 使得备用通道更快的得到恢 复, 工作通道也更快速的完成倒换。
图 2为本发明实施例提供的另一种网络节能方法的流程图。 本实施例的 应用环境为 OTN网络, 该 OTN网络采用 1+1 网络冗余保护方案。 如图 3a 所示, 节点 A〜节点 D均设置有主业务板和备份业务板, 节点 A、 节点 C及 节点 B的主业务板位于工作通道上, 节点 A、 节点 B配置 SNCP业务, 节点 A及节点 B的备份业务板与节点 D位于备用通道上。换句话说, ACB路径为 工作通道, ADB路径为备用通道。 业务源端双发, 宿端选收, 中间节点业务 穿通, 换句话说, 是指源端节点业务发往工作通道和备用通道两个方向, 宿 端节点从工作通道和备用通道中选择一路作为宿端业务, 中间节点不是业务 的源宿端, 对业务进行透传即把业务穿通过去, 不做处理。 网络节能体现在 备用通道不用时耗电量尽可能低, 又要保证备用通道倒换为工作通道时的时 间尽可能短, 即工作通道故障时, 备份业务板上电到业务恢复时间能够满足 网络倒换时间 (<50毫秒)。 具体方法包括:
步骤 21、 工作通道和备用通道均正常工作, 都无故障, 5分钟后, 源端 节点在备用通道通过 OSC信息连续下插 "节能使能" 标志, 如图 3b所示。
步骤 22、 工作通道宿端节点检测到 "节能使能" 标志后, 回告 "告警屏 蔽就绪" 信号, 如图 3c所示。
步骤 23、 工作通道源端节点检测到 "告警屏蔽就绪" 信号预设时间后, 如: 可根据实际情况将该时间设定为 1分钟, 如图 3d所示, 图 3中所示的灰 色块均掉电, 即节点 A、 节点 B的备份业务板即节点 A、 节点 B在备用通道 上的业务模块, 分别在节点 A、 节点 B在备用通道上的通讯模块的控制下进 入掉电模式, 由于节点 D的主业务板及备份业务板均在备用通道上, 因此两 块业务板上的业务模块在各自通讯模块的控制下进入掉电模式, 进入网络节 能状态。
当工作通道发生故障时, 网路节能倒换过程如下:
步骤 24、 工作通道上节点 A到节点 C之间的单向线路故障后, 下游节点 C检测到业务故障, 如图 3e所示, 下游节点 C发送 "业务告警"信号到节点 B。
步骤 25、 检测到业务故障后, 节点 B将 OSC开销信息的 "节能使能" 标志指示改为 "节能不使能", 发送到备用通道上, 如图 3f所示。
步骤 26、 备用通道各节点检测到 "节能不使能" 标志后, 如图 3g所示, 业务模块或芯片在通讯模块控制下上电, 通讯模块将存储在桥接子模块中的 配置文件发送到业务模块或芯片, 快速配置业务模块或芯片, 使得业务模块 或芯片快速激活。 通过验证, 可以做到在 10毫秒(ms )以内激活业务模块或 芯片。
步骤 27、 源端节点在备用通道上的业务模块恢复后, 发送 "备用通道恢 复" 标志, 如图 3h所示。
步骤 28、 宿端节点根据源端节点的 "备用通道恢复" 标志, 再根据接收 到的业务好坏, 选收备用通道, 如果从备用通道接收的业务完好, 则选收该 备用通道, 倒换完成, 如图 3f所示; 否则, 不倒换。
假设工作通道 BCA上,节点 C到节点 A之间的单向线路故障,则节点 B 为源端节点, 节点 A为端点节点, 节能方法与上述方法类似, 只是执行主体 故适应性改变。
本实施例中, 主要由 CPU与 FPGA构成的通讯模块正常工作, 不影响现 有如包加载、 性能、 告警等软件架构。
业务模块独立供电, 在待机状态下, 业务模块中的业务处理芯片、 光模 块等耗电大的模块零功耗。 转热时即业务模块恢复时, 通讯模块控制业务模 块上电, 并配置好业务模块, 快速转热。 并且 "节能不使能" 标志即转热指 令来自 OSC时分复用 ( Time Division Multiplexing, TDM )开销时隙, 这样 的处理简单、 可靠、 快速。
假设一个满配置的 OTN设备子架, 一半线卡为冗余保护单板, 若实现冗 余线卡的温备份即备用通道上的业务模块节能, 节能效果较为明显, 子架能 耗可降低 25 %左右。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分步骤 可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计算机可读 取存储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述 的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介 质。
图 4为本发明实施例提供的用于网络节能的网络节点设备的结构示意图。 如图 4所示, 用于网络节能的网络节点设备包括通讯模块 41、 业务模块 42、 通讯供电模块 43及业务供电模块 44,
通讯供电模块 43与所述通讯模块 41连接,用于为所述通讯模块 41供电。 业务供电模块 44与所述通讯模块 41及业务模块 42连接, 用于在所述通 讯供电模块 43的控制下为所述业务模块 42供电。
所述通讯模块 41用于在所述网络节点设备所在的备用通道保护的业务所 在工作通道正常时,控制所述业务供电模块 44停止为所述业务模块 42供电, 还用于在所述工作通道故障时, 控制所述业务供电模块 44 为所述业务模块 42上电, 并用于完成所述业务模块 42的配置, 以使所述备用通道上的所述 用于网络节能的网络节点设备进入可工作状态。
完成所述业务模块 42的配置时, 所述通讯模块 41可具体用于将存储在 桥接子模块中的配置文件直接发送到所述业务模块中, 完成所述业务模块的 配置。 桥接子模块详见上述方法实施例中桥接子模块的说明。
所述通讯模块可包括: 第一接收子模块及第一控制子模块。
第一接收子模块用于在控制所述业务模块掉电之前, 所述备用通道中各 节点的业务模块接收所述工作通道的源端节点发送的用于指示节能的节能使 能标志, 及所述工作通道的宿端节点返回的告警屏蔽信号;
第一控制子模块用于根据所述告警屏蔽信号, 控制所述业务模块掉电。 进一步地, 所述通讯模块可包括: 第二接收子模块及第二控制子模块。 第二接收子模块用于在控制所述业务模块上电并完成配置之前, 接收来 自故障处的下游节点的用于指示启用备用通道的节能不使能标志;
第二控制子模块用于根据所述节能不使能标志控制所述业务模块上电并 完成配置。
在所述网络节点设备作为网络的工作通道源端节点的情况下, 所述通讯 模块还可包括: 节能指示发送子模块及备用通道恢复指示发送子模块。
节能指示发送子模块用于在所述工作通道工作正常的情况下, 向所述备 用通道发送用于指示节能的节能使能标志;
备用通道恢复指示发送子模块用于在所述第二控制子模块控制所述业务 模块上电并完成配置后,向所述工作通道的宿端节点发送备用通道恢复标志。
在所述网络节点设备作为网络的工作通道宿端节点的情况下, 所述通讯 模块还可包括: 回告子模块及备用恢复接收子模块。
回告子模块用于在所述第一接收子模块接收到所述工作通道源端节点发 送的节能使能标志后, 返回告警屏蔽信号;
备用恢复接收子模块用于接收所述工作通道源端节点发送的备用通道恢 复标志; 所述网络节点设备还可包括: 倒换模块, 用于在所述备用恢复接收子模 块接收到所述备用通道恢复标志后, 根据业务好坏从所述备用通道中选择一 个备用通道作为新的工作通道。
在所述网络节点设备作为所述工作通道的宿端节点设备的情况下, 所述 通讯模块还用于在所述工作通道故障的情况下, 向所述备用通道发送用于指 示启用备用通道的节能不使能标志。
所述用于网络节能的网络节点设备为光传输网络 OTN, 所述通讯模块用 于通过光监控信道 OSC协议传输所述节能使能标志、 告警屏蔽信号、 节能不 使能标志及备用通道恢复标志。
本实施例中, 用于网络节能的网络设备当处于备用通道上时, 通过通讯 模块在工作通道正常工作的情况下控制自身业务模块掉电, 及在工作通道故 障的情况下通过通讯模块控制业务模块上电、 配置, 使得网络设备进入可工 作状态, 不仅减少了网络设备在工作通道正常工作下消耗的能源, 并且通过 通讯模块控制业务模块上电、 配置, 实现了快速恢复, 满足了网络中工作通 道的快速倒换。
最后应说明的是: 以上实施例仅用以说明本发明的技术方案, 而非对其 限制; 尽管参照前述实施例对本发明进行了详细的说明, 本领域的普通技术 人员应当理解: 其依然可以对前述各实施例所记载的技术方案进行修改, 或 者对其中部分技术特征进行等同替换; 而这些修改或者替换, 并不使相应技 术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims

权 利 要求 书
1、 一种网络节能方法, 其特征在于, 包括:
当业务所在工作通道正常时, 所述业务所在的备用通道中各节点的业务 模块在通讯模块的控制下掉电;
当所述工作通道故障时, 所述备用通道中各节点的业务模块在所述通讯 模块的控制下上电并完成配置, 所述备用通道上的各节点进入可工作状态。
2、 根据权利要求 1所述的网络节能方法, 其特征在于, 所述备用通道中 各节点的业务模块在所述通讯模块的控制下完成配置包括:
所述通讯模块将存储在桥接子模块中的配置文件直接发送到所述业务模 块中, 完成所述业务模块的配置。
3、 根据权利要求 1或 2所述的网络节能方法, 其特征在于, 网络的备用 通道中各节点的业务模块在通讯模块的控制下掉电之前包括:
所述通讯模块接收所述工作通道的源端节点发送的用于指示节能的节能 使能标志;
网络的备用通道中各节点的业务模块在通讯模块的控制下掉电包括: 所 述通讯模块在节点根据所述节能使能标志控制所述业务模块掉电。
4、 根据权利要求 1或 2所述的网络节能方法, 其特征在于, 所述备用通 道中各节点的业务模块在所述通讯模块的控制下上电并完成配置之前包括: 所述通讯模块接收来自故障所在工作通道的宿端节点的用于指示启用备 用通道的节能不使能标志;
所述备用通道中各节点的业务模块在所述通讯模块的控制下上电并完成 配置包括: 所述通讯模块根据所述节能不使能标志控制所述业务模块上电并 完成配置。
5、 根据权利要求 1或 2所述的网络节能方法, 其特征在于, 所述工作通 道的源端节点的备用单元恢复后, 发送备用通道恢复标志;
所述工作通道的宿端节点接收到所述备用通道恢复标志后, 从所述备用 通道中选择一个备用通道作为新的工作通道。
6、 根据权利要求 1或 2所述的网络节能方法, 其特征在于, 所述网络为 光传输网络。
7、 根据权利要求 3或 4或 5所述的网络节能方法, 其特征在于, 所述节 能使能标志、 节能不使能标志及备用通道恢复标志通过光监控信道协议进行 传输。
8、 一种用于网络节能的网络节点设备, 包括通讯模块及业务模块, 其特 征在于, 还包括:
通讯供电模块, 与所述通讯模块连接, 用于为所述通讯模块供电; 业务供电模块, 与所述通讯模块及业务模块连接, 用于在所述通讯供电 模块的控制下为所述业务模块供电;
所述通讯模块, 用于在所述网络节点设备所在的备用通道保护的业务所 在工作通道正常时, 控制所述业务供电模块停止为所述业务模块供电, 还用 于在所述工作通道故障时, 控制所述业务供电模块为所述业务模块上电, 并 用于完成所述业务模块的配置, 以使所述备用通道上的所述用于网络节能的 网络节点设备进入可工作状态。
9、 根据权利要求 8所述的用于网络节能的网络节点设备, 其特征在于, 所述通讯模块具体用于将存储在桥接子模块中的配置文件直接发送到所述业 务模块中, 完成所述业务模块的配置。
10、 根据权利要求 8或 9所述的用于网络节能的网络节点设备, 其特征 在于, 所述通讯模块包括:
第一接收子模块, 用于在控制所述业务模块掉电之前, 所述备用通道中 各节点的业务模块接收所述工作通道的源端节点发送的用于指示节能的节能 使能标志, 及所述工作通道的宿端节点返回的告警屏蔽信号;
第一控制子模块, 用于根据所述告警屏蔽信号, 控制所述业务模块掉电。
11、 根据权利要求 8或 9所述的用于网络节能的网络节点设备, 其特征 在于, 所述通讯模块包括:
第二接收子模块, 用于在控制所述业务模块上电并完成配置之前, 接收 来自故障处的下游节点的用于指示启用备用通道的节能不使能标志;
第二控制子模块, 用于根据所述节能不使能标志控制所述业务模块上电 并完成配置。
12、根据权利要求 11所述的用于网络节能的网络节点设备,其特征在于, 在所述网络节点设备作为网络的工作通道源端节点的情况下, 所述通讯模块 还包括:
节能指示发送子模块, 用于在所述工作通道工作正常的情况下, 向所述 备用通道发送用于指示节能的节能使能标志;
备用通道恢复指示发送子模块, 用于在所述第二控制子模块控制所述业 务模块上电并完成配置后, 向所述工作通道的宿端节点发送备用通道恢复标 士
13、根据权利要求 10所述的用于网络节能的网络节点设备,其特征在于, 在所述网络节点设备作为网络的工作通道宿端节点的情况下, 所述通讯模块 还包括:
回告子模块, 用于在所述第一接收子模块接收到所述工作通道源端节点 发送的节能使能标志后, 返回告警屏蔽信号;
备用恢复接收子模块, 用于接收所述工作通道源端节点发送的备用通道 恢复标志;
所述网络节点设备还包括:
倒换模块, 用于在所述备用恢复接收子模块接收到所述备用通道恢复标 志后 ,根据业务好坏从所述备用通道中选择一个备用通道作为新的工作通道。
14、 根据权利要求 8或 9所述的用于网络节能的网络节点设备, 其特征 在于, 在所述网络节点设备作为所述工作通道的宿端节点设备的情况下, 所 述通讯模块还用于在所述工作通道故障的情况下, 向所述备用通道发送用于 指示启用备用通道的节能不使能标志。
15、根据权利要求 10-13任一项所述的用于网络节能的网络节点设备,其 特征在于, 所述用于网络节能的网络节点设备为光传输网络, 所述通讯模块 用于通过光监控信道协议传输所述节能使能标志、 节能不使能标志及备用通 道恢复标志。
PCT/CN2011/076493 2011-06-28 2011-06-28 网络节能方法及网络设备 WO2012103718A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2011/076493 WO2012103718A1 (zh) 2011-06-28 2011-06-28 网络节能方法及网络设备
CN201180001407.0A CN102726001B (zh) 2011-06-28 2011-06-28 网络节能方法及网络设备

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2011/076493 WO2012103718A1 (zh) 2011-06-28 2011-06-28 网络节能方法及网络设备

Publications (1)

Publication Number Publication Date
WO2012103718A1 true WO2012103718A1 (zh) 2012-08-09

Family

ID=46602071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/076493 WO2012103718A1 (zh) 2011-06-28 2011-06-28 网络节能方法及网络设备

Country Status (2)

Country Link
CN (1) CN102726001B (zh)
WO (1) WO2012103718A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776076B2 (ja) * 2002-10-15 2006-05-17 京セラミタ株式会社 電子装置および該電子装置のリモート制御方式
CN101742707A (zh) * 2008-11-25 2010-06-16 中兴通讯股份有限公司 一种lte系统下网络节能的方法
CN101803449A (zh) * 2007-09-17 2010-08-11 Nxp股份有限公司 多连接无线接口

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3776076B2 (ja) * 2002-10-15 2006-05-17 京セラミタ株式会社 電子装置および該電子装置のリモート制御方式
CN101803449A (zh) * 2007-09-17 2010-08-11 Nxp股份有限公司 多连接无线接口
CN101742707A (zh) * 2008-11-25 2010-06-16 中兴通讯股份有限公司 一种lte系统下网络节能的方法

Also Published As

Publication number Publication date
CN102726001B (zh) 2015-06-03
CN102726001A (zh) 2012-10-10

Similar Documents

Publication Publication Date Title
US8346082B2 (en) Method of saving power in optical access network
JP4903276B2 (ja) Ieee802標準のネットワークにおけるパワー・セービング
US9264161B2 (en) Wireless fire system with idle mode and gateway redundancy
CN101159649B (zh) 一种pci快速总线系统及其能量管理方法
CN101132314B (zh) 实现冗余备份的方法
CN101860492A (zh) 快速切换的方法、装置和系统
CN104035831A (zh) 一种高端容错计算机管理系统及方法
CN102339122B (zh) 可实现节电的数通设备及其节电控制装置和方法
KR20110129872A (ko) 중앙집중형 이더넷 네트워크 셧다운 방법
CN101436975B (zh) 一种在环网中实现快速收敛的方法、装置及系统
CN103209099A (zh) 一种节点间的网络通信线路的自动切换保护方法
WO2009082894A1 (fr) Procédé, système et équipement pour la mise en œuvre d&#39;une commutation automatique de protection entre cartes principales et de réserve
US20130242977A1 (en) Apparatus and method for transferring a data signal by bypassing a power-saving segment in a communication network
WO2015007134A1 (zh) 光突发交换环网中实现自动保护倒换的方法、系统及节点
WO2011097893A1 (zh) 一种e1双向环网络的数据传输方法、装置及系统
CN101183901A (zh) 传输设备断电告警及告警恢复的实现方法
JP5355534B2 (ja) ネットワーク集線装置及び電力制御方法
CN101499910B (zh) 模块化交换机及其通信方法
CN106330699B (zh) 一种组播链路的切换方法、装置及路由设备
CN107623597B (zh) 一种小型化potn设备及远程掉电提示方法
CN108808714A (zh) 一种高压柔性直流输电阀控保护系统及保护控制方法
CN101515835A (zh) 一种跨单板光口备份方法及装置
WO2012103718A1 (zh) 网络节能方法及网络设备
CN102045600A (zh) 以太网接入sdh光网络的链路保护方法及装置
WO2017181778A1 (zh) 一种双主控设备主控之间链路扩展方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201180001407.0

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857530

Country of ref document: EP

Kind code of ref document: A1