WO2012102238A1 - Polyester film, method for producing same, backsheet for solar cell, and solar cell power generation module - Google Patents

Polyester film, method for producing same, backsheet for solar cell, and solar cell power generation module Download PDF

Info

Publication number
WO2012102238A1
WO2012102238A1 PCT/JP2012/051350 JP2012051350W WO2012102238A1 WO 2012102238 A1 WO2012102238 A1 WO 2012102238A1 JP 2012051350 W JP2012051350 W JP 2012051350W WO 2012102238 A1 WO2012102238 A1 WO 2012102238A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyester
stretching
polyester film
sheet
polyester sheet
Prior art date
Application number
PCT/JP2012/051350
Other languages
French (fr)
Japanese (ja)
Inventor
橋本 斉和
山田 晃
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2012102238A1 publication Critical patent/WO2012102238A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/001Combinations of extrusion moulding with other shaping operations
    • B29C48/0018Combinations of extrusion moulding with other shaping operations combined with shaping by orienting, stretching or shrinking, e.g. film blowing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/55Screws having reverse-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/90Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article
    • B29C48/901Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies
    • B29C48/902Thermal treatment of the stream of extruded material, e.g. cooling with calibration or sizing, i.e. combined with fixing or setting of the final dimensions of the extruded article of hollow bodies internally
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/88Thermal treatment of the stream of extruded material, e.g. cooling
    • B29C48/911Cooling
    • B29C48/9135Cooling of flat articles, e.g. using specially adapted supporting means
    • B29C48/914Cooling of flat articles, e.g. using specially adapted supporting means cooling drums
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/02Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets
    • B29C55/10Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial
    • B29C55/12Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial
    • B29C55/14Shaping by stretching, e.g. drawing through a die; Apparatus therefor of plates or sheets multiaxial biaxial successively
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/9259Angular velocity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/9258Velocity
    • B29C2948/926Flow or feed rate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92819Location or phase of control
    • B29C2948/92857Extrusion unit
    • B29C2948/92876Feeding, melting, plasticising or pumping zones, e.g. the melt itself
    • B29C2948/92885Screw or gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/09Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels
    • B29C48/10Articles with cross-sections having partially or fully enclosed cavities, e.g. pipes or channels flexible, e.g. blown foils
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/76Venting, drying means; Degassing means
    • B29C48/765Venting, drying means; Degassing means in the extruder apparatus
    • B29C48/766Venting, drying means; Degassing means in the extruder apparatus in screw extruders
    • B29C48/767Venting, drying means; Degassing means in the extruder apparatus in screw extruders through a degassing opening of a barrel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a polyester film, a manufacturing method thereof, a solar cell backsheet, and a solar cell power generation module.
  • Polyester is used in various applications such as electrical insulation and optical applications.
  • solar cell applications such as solar cell backsheets have attracted attention as electrical insulation applications.
  • polyester usually has many carboxyl groups and hydroxyl groups on its surface, and tends to be hydrolyzed in an environment where moisture exists, and tends to deteriorate over time.
  • the environment in which solar cell modules are generally used is an environment that is constantly exposed to wind and rain, such as outdoors, and is an environment that is prone to hydrolysis. one of.
  • the polyester film is produced by stretching an extruded polyester sheet.
  • the polyester sheet is formed by extruding a polyester molten sheet onto a casting drum surface and cooling and solidifying.
  • a vent type twin-screw extruder may be used as an extruder (molding machine) (for example, JP-A-10-95042).
  • the vent type twin screw extruder is an extruder having a vent hole for degassing by depressurizing action. When the raw material polyester is put into the extruder, air and volatile components taken together are introduced from the vent hole. Can be removed.
  • the present invention aims to provide a polyester film in which stretching unevenness is suppressed, a method for producing the same, and a solar cell backsheet in which weather resistance unevenness is suppressed, and to achieve the object.
  • the raw material polyester is supplied to a vent type twin screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, the cylinder inner diameter D, the extrusion amount Q (kg / hr.) Per unit time, and the screw rotation speed.
  • the half-value width of the peak representing the rotational speed that is ⁇ 0.1% to ⁇ 3% of the average value of the screw rotational speed N is the screw rotational speed. It is a manufacturing method of the polyester film as described in said ⁇ 1> which is 1/100 or more and 1/4 or less of the reciprocal number of the average value of N.
  • the extrusion process is the method for producing a polyester film according to any one of ⁇ 1> to ⁇ 3>, wherein the polyester sheet further gives a thickness variation of 1% to 30% to the melt-extruded polyester sheet. .
  • a melt-extruded polyester sheet is conveyed, and includes a stretching step in which a polyester film is obtained by longitudinal stretching and lateral stretching,
  • the transport speed of the polyester sheet is set to 30 m / min to 100 m / min, and the transport speed is varied by 0.01% to 1%.
  • the half width of the peak representing the transport speed that is ⁇ 0.1% to ⁇ 1% of the average value of the transport speed is the reciprocal of the average value of the transport speed. It is a manufacturing method of the polyester film as described in ⁇ 5> which is 1/100 or more and 1/4 or less.
  • ⁇ 7> The longitudinal stretching is performed by giving a temperature distribution of 0.1 ° C. to 30 ° C. in the thickness direction of the polyester sheet to the polyester sheet when stretching of the polyester sheet is started.
  • ⁇ 6> A method for producing a polyester film according to ⁇ 6>.
  • ⁇ 8> The lateral stretching is performed by grasping an end portion of the polyester sheet, widening the polyester sheet in a direction orthogonal to the conveying method, and 0.1% to 5% in the conveying speed of the polyester sheet. %.
  • the half width of the peak representing the conveyance speed that is ⁇ 0.1% to ⁇ 5% of the average value of the conveyance speed is the reciprocal of the average value of the conveyance speed. It is a manufacturing method of the polyester film as described in said ⁇ 8> which is 1/100 or more and 1/4 or less.
  • ⁇ 11> The method for producing a polyester film according to any one of ⁇ 1> to ⁇ 10>, wherein the raw material polyester contains 1 ppm to 50 ppm of titanium element.
  • the temperature of the raw material polyester in the vented twin-screw extruder is set to 300 ° C. to 350 ° C. for 1 second to 10 minutes, and then cooled to 290 ° C. or lower.
  • ⁇ 13> The method for producing a polyester film according to any one of ⁇ 1> to ⁇ 12>, wherein the occurrence frequency of fluctuation in the screw rotation speed N is 0.01 times / second to 50 times / second.
  • ⁇ 14> The method for producing a polyester film according to ⁇ 8>, wherein the occurrence frequency of fluctuation in the polyester sheet conveying speed is 0.01 times / second to 50 times / second.
  • ⁇ 15> A polyester film produced by the method for producing a polyester film according to any one of ⁇ 1> to ⁇ 14>.
  • a solar cell power generation module including a laminate in which a transparent substrate and the solar cell backsheet described in ⁇ 16> are bonded to each other with a solar cell element interposed therebetween.
  • the present invention it is possible to provide a polyester film in which stretch unevenness is suppressed, a method for producing the same, and a solar cell backsheet in which weather resistance unevenness is suppressed.
  • the production method of the polyester film of the present invention is such that the raw material polyester is supplied to a vent type twin-screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, and the cylinder inner diameter D and the extrusion amount Q (kg / hr per unit time). .) And the screw rotation speed N (rpm) satisfy the following formula (I) to give a fluctuation of 0.01% to 5% to the screw rotation speed N to melt the polyester sheet
  • the composition includes an extruding step of extruding and a cooling and solidifying step of cooling and solidifying the polyester sheet.
  • the screw rotation speed N is 0.01% to
  • vent type twin-screw extruder is provided with a vent hole 10 for deaeration by depressurization in a cylinder having a screw, and the inside of the cylinder and the outside of the cylinder are connected via the vent hole. Communicates.
  • the vent hole is also referred to as “vent port” [JIS B8650: 2006, a) Extruder, see number 115].
  • the raw material polyester put into the extruder is heated and melted by being kneaded by the screw 6 and gradually becomes a melt.
  • the melt is pushed to the vicinity of the vent hole and the pressure is reduced from the vent hole, the melt is sucked to the vent hole, so that the melt flow is poor in the vicinity of the vent hole, and the melt tends to stay. For this reason, the melt sticks in the vicinity of the vent and is heated as it is, so that thermal decomposition easily occurs. It is considered that the thermal decomposition component adhering to the vicinity of the vent is peeled off by the melt that is sequentially washed away and is taken into the melt as “foreign matter”.
  • This stretching unevenness can be measured from the non-uniformity of the size of the mesh after the polyester sheet is stretched and the polyester sheet is stretched.
  • the foreign material which causes the stretching unevenness is not only a thermal decomposition component of the polyester generated in the above-described extruder, but also a polyester crystal (spherulite). The method for suppressing the spherulite will be described later.
  • the polyester to be fed into the extruder is “raw polyester”, the polyester after being extruded from the extruder, and the polyester to be stretched is “polyester sheet”.
  • This polyester is called “polyester film”. Therefore, even if the polyester has been subjected to longitudinal stretching and lateral stretching, the polyester to be further stretched is referred to as a polyester sheet in the present specification.
  • the detail of the manufacturing method of the polyester film of this invention is divided and demonstrated to each item of an extrusion process, a vent type biaxial extruder, raw material polyester, and an extending process.
  • the raw material polyester is supplied to a vent type twin screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, the cylinder inner diameter D, the extrusion amount Q (kg / hr.) Per unit time, and screw rotation.
  • the number N (rpm) is a step of melt-extruding the polyester sheet by imparting a variation of 0.01% to 5% to the screw rotational speed N under the condition satisfying the following formula (I).
  • the raw material polyester is melt-kneaded using an extruder that operates a screw under specific conditions.
  • the extrusion process may further include a cooling process for cooling the temperature of the polyester in the extruder.
  • the vent type twin-screw extruder according to the present invention includes at least a cylinder having an inner diameter D of 140 mm or more and 300 mm or less and two screws. Further, the cylinder inner diameter D, the extrusion amount Q (kg / hr.) Per unit time, and the screw rotation speed N (rpm) operate under the conditions satisfying the above formula (I), and further the screw rotation speed. N is given a variation of 0.01% to 5%.
  • FIG. 1 shows an example (side view) of a vent type twin screw extruder. As shown in FIG. 1, the vent type twin screw extruder 100 (extruder 100) has at least a hopper 2, a cylinder 4, a screw 6, a reverse screw screw 8, a vent hole 10, and an extrusion port 12. The screw 6 is rotated by the driving device M.
  • the hopper 2 is an inlet for raw material polyester, and the raw material polyester charged into the extruder 100 from the hopper 2 is transferred toward the extrusion port 12 while being kneaded by the cylinder 4.
  • the raw material polyester is heated by a temperature control device (not shown) of the extruder 100 and is sheared by the screw 6 and the reverse screw screw 8, so that the cylinder 4 and the screw 6 among the supplied raw material polyesters. It gradually plasticizes from the part in contact with etc. and melts into a melt (molten resin).
  • the vent hole 10 is connected to a decompression device (decompression pump or the like) (not shown), and the air taken into the extruder 100 when the raw material polyester is charged, the moisture generated during the melt kneading of the raw material polyester, etc. Removed from 10.
  • a decompression device decompression pump or the like
  • the melt is extruded out of the extruder 100 from the extrusion port 12, and is formed into a sheet shape by a casting drum or the like (not shown), and is cooled and solidified.
  • description will be made with the number omitted.
  • the cylinder is also referred to as a barrel (see JIS B8650: 2006, a) Extruder, No. 110), and may be provided with a temperature control device for heating or cooling the raw material polyester flowing in the cylinder.
  • the inner diameter (diameter) D of the cylinder is 140 mm or more.
  • the inner diameter D of the cylinder is preferably 150 mm to 300 mm, more preferably 160 mm to 260 mm. If the inner diameter D of the cylinder exceeds 300 mm, the resin tends to stay in the gap between the screw and the barrel, which increases with the screw diameter, and easily becomes a foreign matter.
  • the vent hole is located on the downstream side (extrusion port side) from the position where the reverse screw is provided, and only one is provided in the extruder, but is located on the more upstream side.
  • one or more vent holes may be provided between the vent hole and the extrusion port.
  • the vent hole is preferably installed at a position 1/3 of the total length L of the cylinder as measured from the inlet side 14 of the cylinder.
  • the total length L of the cylinder refers to the length inside the cylinder, and refers to the distance between the end portion (entrance side 14) where the raw material polyester enters and the end portion on the extrusion port 12 side.
  • the extruder includes two screws (two axes), and the screws may rotate in the same direction or in different directions. Further, a meshing type in which two screws are close to each other and the teeth of the screw mesh with each other may be used, or a non-meshing type in which the teeth are not meshed with each other may be used.
  • the screw may be composed of only a forward screw for transferring the raw material polyester to the extrusion port, or as shown in FIG. May be.
  • the screw transfers the raw polyester according to the rotational speed N (rpm), and the extrusion amount Q (kg / hr.) Per unit time of the polyester sheet melt-extruded from the extruder changes.
  • N rotational speed
  • Q extrusion amount
  • the inner diameter D of the cylinder, the screw rotation speed N, and the extrusion amount Q per unit time of the melt satisfy the following formula (I).
  • Q / N is the extrusion amount (discharge amount) per one screw rotation, and it is preferable to increase this value in proportion to the 2.8th power of the inner diameter D of the cylinder. That is, it is preferable to increase the Q / N within a range that is proportional to the 2.8th power of the inner diameter D of the cylinder, because shear heat generation can be suppressed.
  • the volume in which the polyester (melt) in the extruder is conveyed as the cylinder inner diameter D increases is proportional to the cube of D. Since it was found empirically, the amount of Q / N is specified in a range proportional to D to the 2.8th power.
  • the coefficient of “D 2.8 ” shown in the formula (I) is a boundary value obtained from experiments and the occurrence of foreign matter.
  • Q / N preferably satisfies the following formula (II), and more preferably satisfies the following formula (III).
  • the screw is driven within the range satisfying the above formula (I), and a fluctuation of 0.01% to 5% is given to the screw rotation speed N.
  • a fluctuation of 0.01% to 5% is given to the screw rotation speed N.
  • “adding a fluctuation of 0.01% to 5% to the screw rotation speed N” specifically means that the screw rotation speed is set to 0.01 than the screw rotation speed satisfying the formula (I). % To 5% higher (accelerating the melt transfer speed) and the screw speed to 0.01% to 5% smaller than the screw speed satisfying the formula (I) ( Reducing the melt transfer speed).
  • the screw rotation speed is set to 0.01% to 5% higher than the screw rotation speed satisfying the formula (I) (the melt transfer speed is accelerated). It is more preferable.
  • the fluctuation of the screw speed N can be achieved by giving a fluctuation to the current value of the screw driving device.
  • the fluctuation is the difference between the maximum speed and the minimum speed during one minute divided by the average value and expressed as a percentage, and the fluctuation occurrence frequency [times / second] may be in the range of 0.01-50.
  • 0.1 to 10 is more preferable.
  • the fluctuation of the screw rotation speed N is preferably 0.1% to 3%, and more preferably 0.3% to 1%.
  • the fluctuation of the screw rotation speed N indicates that the half width of the peak representing the screw rotation speed that is ⁇ 0.1% or more of the average value of the screw rotation speed N in the waveform representing the screw rotation speed N with respect to time is the screw rotation speed N. It is preferable to give so that it may become 1/4 or less of the reciprocal number of the average value.
  • the “peak” means a maximum waveform or a minimum waveform having a rotation speed that is ⁇ 0.1% or more of the average value (Nave) of the screw rotation speed N. Point to.
  • the peak representing the screw rotation number that is ⁇ 0.1% or more of the average value of the screw rotation number N specifically means “+ 0.1% or more of the average value of the screw rotation number N”. It represents at least one of a peak representing the screw rotation speed (maximum peak) and a “peak representing the screw rotation speed that is ⁇ 0.1% or more of the average value of the screw rotation speed N (minimum peak)”. Further, the average value of the screw rotation speed N refers to “an average value of the screw rotation speed N in an arbitrary 10 minutes”.
  • the reciprocal of the screw rotation speed N [rpm] means the time [minute] required for one screw rotation. Accordingly, when the half-width of the peak is ⁇ t and the time [minute] required for one rotation of the screw is t, “less than 1/4 of the reciprocal of the average value of the screw rotation speed N” is ⁇ t ⁇ t ⁇ 1/4. That is, it can be approximated as ⁇ t / t ⁇ 1/4.
  • FIG. 4 shows an example of a waveform in which the vertical axis represents the screw rotation speed and the horizontal axis represents time.
  • the shape of the waveform shows a locus (plot group) when the screw rotation speed is plotted against time, in other words, the fluctuation of the screw rotation speed. If the trajectory when the screw rotation speed is plotted against time is a straight line parallel to the time axis (horizontal axis), it means that the screw rotation speed is constant and does not vary.
  • the locus of the plot goes up and down in a wave shape, it means that the screw rotation speed fluctuates.
  • the screw rotation speed suddenly increases and decreases rapidly like a pulse wave represented as a maximal waveform, the screw rotation speed must be rapidly increased and returned to its original value rapidly. means.
  • the waveform shown in FIG. 4 is a waveform that rises and falls in the vicinity of the average value (Nave) of the screw rotation speed, and the screw rotation speed increases abruptly, and abruptly reaches the maximum value (Nmax) as a boundary.
  • a reduced protuberance maximum waveform is shown.
  • Such a waveform is also referred to as “spike”.
  • FIG. 4 shows a maximum peak in which the maximum rotation speed is + 0.1% or more than the average value of the screw rotation speed. In the present invention, it is lower than the average rotation speed of the screw.
  • a peak (minimum peak) protruding 0.1% or more on the side (minus side) is also included in the “peak”.
  • FIG. 5 shows an example of a waveform in which the vertical axis represents the screw speed and the horizontal axis represents time, as in FIG. Two types of waveforms are shown.
  • One (left side) shows a minimum peak P1
  • the other (right side) shows a waveform in which a minimum peak P2 and a maximum peak P3 are continuous.
  • the minimum peak is a waveform protruding 0.1% or more below (minus side) the average value (Nave) of the number of screw rotations as indicated by P1 on the left side of FIG. It is shown as a projection-like minimal waveform that rapidly decreases with the minimum value (Nmin) as the rotational speed decreases rapidly.
  • the maximum value (Nmax) of the maximum peak is preferably + 0.1% to + 0.3% of the average value (Nave) of the screw rotation speed, and the minimum value (Nmin) of the minimum peak is the average value of the screw rotation speed.
  • the value (Nave) is preferably -0.1% to -0.3%.
  • the fluctuation of the screw rotation speed gives the fluctuation on the deceleration side that becomes the minimum waveform, or on the contrary, immediately after giving the fluctuation on the deceleration side that becomes the minimum waveform, You may give the acceleration side fluctuation
  • the half-value width of the maximum waveform is ⁇ t1 and the half-value width of the minimum waveform is ⁇ t2, ( ⁇ t1 + ⁇ t2) may be equal to or less than 1 ⁇ 4 of the reciprocal of the average value of the screw rotation speed.
  • the sum ( ⁇ t) of each half-value width ⁇ t of the continuous maximal waveform or the minimal waveform is 1 ⁇ 4 or less of the reciprocal of the average value of the screw rotation speed. It only has to be.
  • ⁇ t2 that is the half-value width of the minimum peak P2
  • ⁇ t3 that is the half-value width of the maximum peak P3 ( ⁇ t2 + ⁇ t3). May be 1 ⁇ 4 or less of the reciprocal of the average value of the screw rotation speed.
  • the half-value width ⁇ t of the peak of the waveform representing the screw rotation speed N with respect to time be 1 ⁇ 4 or less of the inverse of the average value of the screw rotation speed N.
  • the half width ⁇ t of the peak is more preferably 1/10 or less of the inverse of the average value of the screw rotation speed N.
  • vibration can be applied to the melt more efficiently by intermittently applying vibration to the screw rotation speed N.
  • the melting temperature of the raw material polyester may be a temperature equal to or higher than the melting point (Tm) of the raw material polyester, for example, Tm + 10 ° C. or higher.
  • Tm melting point
  • the extrusion process is preferably performed under the following temperature conditions. That is, the extrusion step is preferably performed under a temperature condition in which the temperature of the raw material polyester in the vent type twin screw extruder is set to 300 ° C. to 350 ° C. for 1 second to 10 minutes and then lowered to 290 ° C. or less. .
  • the heating time is more preferably 2 seconds or more and 5 minutes or less, and further preferably 3 seconds or more and 3 minutes or less.
  • the melt melt-extruded from the extruder onto a cooling member such as a cast drum is cooled, solidified, and formed into a sheet, but with a thick polyester sheet, the cast thickness is thick and cooling is delayed due to large heat storage. .
  • crystals (spherulites) in the polyester sheet grow and contribute to stretching unevenness when the polyester sheet is stretched.
  • the spherulites present in the raw material polyester can be completely melted at the molecular level, or the crystals can be made smaller.
  • PET polyethylene terephthalate
  • Such raw material polyester crystals are usually produced during the drying step of drying the raw material polyester before the raw material polyester is put into the hopper. However, even if the raw material polyester is not dried, the crystals are formed in the polyester. May be generated. The raw material polyester charged into the extruder through the hopper is heated in the extruder and passes through the crystallization temperature while the temperature of the raw material polyester is rising. Spherulites) may form.
  • the polyester containing spherulites formed as described above is heated at 300 ° C. to 350 ° C. for 1 second to 10 minutes, the crystals melt or the crystals can be reduced. During cooling, it is possible to suppress the growth of spherulites due to the remaining structure of spherulites. If the heating time of the raw material polyester is less than the above time, melting will be insufficient, and spherulites will easily grow due to the residual structure of the spherulites in the polyester. Both are easy to cause unevenness in stretching.
  • the raw material polyester heated at the above heating time (1 second to 10 minutes) and at the above heating temperature (300 ° C. to 350 ° C.) can then be cooled under a temperature decreasing condition of 290 ° C. or less, more preferably 280 ° C. or less. preferable. Thereby, generation
  • the temperature of the raw material polyester may be controlled by, for example, installing a heater or a refrigerant pipe covering a part or all of the outside of the cylinder in the cylinder of the extruder.
  • melt extrusion of the raw material polyester by replacing the inside of the extruder with nitrogen.
  • the melted raw material polyester (melt) is extruded from an extrusion die through a gear pump, a filter or the like.
  • the extrusion die is also simply referred to as “die” (see JIS B 8650: 2006, a) extrusion molding machine, number 134).
  • the melt may be extruded as a single layer or may be extruded as a multilayer.
  • the melt (polyester) extruded from the die is formed into a sheet having a thickness of 3 mm to 5 mm, preferably 3.2 mm to 4.7 mm, more preferably 3.4 mm to 4.6 mm.
  • a thickness of the polyester sheet By setting the thickness of the polyester sheet to 5 mm or less, it is possible to avoid a cooling delay due to heat storage of the melt and to suppress the formation of spherulites due to the cooling delay.
  • OH groups and COOH groups in the polyester are diffused into the polyester during the period from extrusion to cooling, and OH groups and COOH cause hydrolysis. Suppresses exposure of the group to the polyester surface.
  • polyester sheet when the polyester sheet is stretched to obtain a polyester film, a biaxially stretched polyester film having a thickness of 100 ⁇ m or more can be obtained even if the stretching ratio is increased. Moreover, when the thickness of the polyester sheet is 3 mm or more, it is easy to express electrical insulation, and it is suitable for solar cell backsheet applications.
  • the extrusion step it is further preferable to give a thickness variation of 1% to 30% to the melt-extruded polyester sheet.
  • a thickness variation (thickness unevenness) of 1% to 30% to the polyester sheet melt-extruded from the extruder by the above-described method, the stretching stress fluctuates and increases when the polyester sheet is stretched. Decrease.
  • stress concentration occurs around the foreign material (residues of pyrolysis components generated in the extruder or grown spherulites), and the vicinity of the foreign material is also stretched to reduce stretching unevenness.
  • Such thickness variation may be in the conveyance direction (MD) of the polyester sheet or in any direction of the direction (TD) orthogonal to the conveyance direction.
  • the thickness variation can be imparted by varying the number of rotations of the screw of the extruder or by vibrating the extrusion die.
  • thickness fluctuation can be given to MD direction of a polyester sheet by giving fluctuation to the number of rotations of the screw of an extruder.
  • the thickness variation in the TD direction of the polyester sheet can be imparted by vibrating the extrusion die after the melt is extruded from the extruder.
  • the variation amount of the thickness (cast thickness) of the polyester sheet is more preferably 2% to 25%, and further preferably 3% to 20%.
  • the cooling and solidifying step is a step of cooling and solidifying the polyester sheet melt-extruded by the extrusion step.
  • the means for cooling the melt extruded from the extrusion die is not particularly limited, and it is sufficient to apply cold air to the melt, bring it into contact with a cast drum (cooled cast drum), or spray water. Only one cooling means may be performed, or two or more cooling means may be combined.
  • the cooling means is preferably at least one of cooling by cold air and cooling using a cast drum from the viewpoint of preventing oligomer adhesion to the sheet surface during continuous operation.
  • it is particularly preferable that the melt extruded from the extruder is cooled with cold air, and the melt is brought into contact with the cast drum and cooled.
  • the polyester cooled using the cast drum etc. is peeled off from cooling members, such as a cast drum, using peeling members, such as a peeling roll.
  • cooling members such as a cast drum
  • peeling members such as a peeling roll.
  • the raw material polyester is not particularly limited as long as it is a raw material for the polyester sheet and the polyester film and contains polyester, and may contain a slurry of inorganic particles or organic particles in addition to the polyester.
  • the raw material polyester may contain a titanium element derived from the catalyst.
  • the form of the raw material polyester to be fed into the extruder is preferably a pellet from the viewpoint of ease of plasticization and melting.
  • 2 or more types of polyester which has a different bulk density can also be used for polyester contained in raw material polyester.
  • recycled polyester can be used for a part of the polyester.
  • At least one polyester has a bulk density of 0.01 to 0.60, and two or more polyesters having different bulk densities can be melt-extruded without any problem. it can. That is, according to the present invention, the pressure fluctuation at the tip of the extruder is ⁇ 5 kg / cm 2 or less, and the surface area of the melt at the vent hole is increased, so that the deaeration efficiency is improved, especially the intrinsic viscosity of the polyester. The retention rate is improved, and the decrease in intrinsic viscosity after melt extrusion can be suppressed to 10% or less.
  • the conditions shown in the above-described formula (I) are particularly effective when the intrinsic viscosity of the polyester having the smallest bulk density is smaller than the intrinsic viscosity of other polyesters.
  • the bulk density at that time is preferably 0.6 or less.
  • the bulk density is larger than 0.6, the effect of improving the retention rate of intrinsic viscosity becomes poor.
  • the bulk density is less than 0.01, the volume of the polyester increases, so that it is difficult to ensure a sufficient amount of raw material supply, and problems such as raw material blockage occur in the supply pipe. It becomes easy.
  • the blending amount of the polyester having a bulk density of 0.01 to 0.60 is usually 60% or less, preferably 55% or less, more preferably 50% or less based on the total polyester.
  • the bulk density of the polyester can be measured by a method in accordance with JIS K7365: 1999 “Plastics—Determination of apparent density of material that can be poured from specified funnel”.
  • the polyester powder in order to suppress the generation of foreign matters in the extruder, it is preferable to mix the polyester powder together with the pellets in the raw material polyester.
  • the torque of the screw fluctuates when the screw bites into the raw material polyester.
  • the polyester in contact with the screw vibrates and suppresses the stagnation of the melt in the vicinity of the vent hole.
  • Such a polyester powder can be obtained by crushing raw material polyester pellets to be used and then sieving them, and it is preferable to use a 30-300 mesh one.
  • the polyester powder used together with the pellets is preferably 0.01% by mass to 5% by mass, more preferably 0.03% by mass to 3% by mass with respect to the total mass of the raw material polyester pellets. More preferably, it is 0.05 mass% to 1 mass%.
  • recycled polyester obtained by regenerating used polyester may be used as the raw material polyester.
  • the pelletized polyester may be a regenerated polyester, or the polyester on the powder may be a regenerated polyester.
  • the amount of recycled polyester used is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 45% by mass, and more preferably 20% by mass to 40% by mass with respect to the total mass of the raw material polyester. It is more preferable.
  • raw material polyester is demonstrated from a viewpoint of a component.
  • the kind of polyester contained in the raw material polyester is not particularly limited. It may be synthesized using a dicarboxylic acid component and a diol component, or a commercially available polyester may be used.
  • the polyester when the polyester is synthesized, for example, it can be obtained by subjecting (A) a dicarboxylic acid component and (B) a diol component to an esterification reaction and / or a transesterification reaction by a known method.
  • the dicarboxylic acid component include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid Aliphatic dicarboxylic acids such as ethylmalonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, and the like, terephthalic acid, isophthalic acid, phthalic acid, 1,4- Naphthalene dicarboxylic
  • diol component examples include fats such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Diols cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl)
  • Diol compounds such as aromatic diols such as fluorene.
  • the dicarboxylic acid component contains an aromatic dicarboxylic acid as a main component.
  • the “main component” means that the proportion of aromatic dicarboxylic acid in the dicarboxylic acid component is 80% by mass or more.
  • a dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such a dicarboxylic acid component include ester derivatives such as aromatic dicarboxylic acids.
  • at least one aliphatic diol is used as the (B) diol component.
  • the aliphatic diol can contain ethylene glycol, and preferably contains ethylene glycol as a main component.
  • the main component means that the proportion of ethylene glycol in the diol component is 80% by mass or more.
  • the amount of the aliphatic diol (for example, ethylene glycol) used is in the range of 1.015 to 1.50 mol with respect to 1 mol of the aromatic dicarboxylic acid (for example, terephthalic acid) and, if necessary, its ester derivative. Is preferred.
  • the amount used is more preferably in the range of 1.02 to 1.30 mol, and still more preferably in the range of 1.025 to 1.10 mol.
  • the esterification reaction proceeds favorably, and if it is in the range of 1.50 mol or less, for example, by-production of diethylene glycol due to dimerization of ethylene glycol is suppressed, Many characteristics such as melting point, glass transition temperature, crystallinity, heat resistance, hydrolysis resistance, and weather resistance can be kept good.
  • a conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction.
  • the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed.
  • a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • an aromatic dicarboxylic acid and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound.
  • an organic chelate titanium complex having an organic acid as a ligand is used as a catalyst titanium compound, and at least an organic chelate titanium complex, a magnesium compound, and an aromatic ring as a substituent in the step.
  • a process of adding a pentavalent phosphate ester having no sulfite in this order is
  • an aromatic dicarboxylic acid and an aliphatic diol are mixed with a catalyst containing an organic chelate titanium complex, which is a titanium compound, prior to addition of a magnesium compound and a phosphorus compound.
  • Titanium compounds such as organic chelate titanium complexes have high catalytic activity for esterification reactions, so that esterification reactions can be performed satisfactorily.
  • the titanium compound may be added to the mixture of the dicarboxylic acid component and the diol component, or after mixing the dicarboxylic acid component (or diol component) and the titanium compound, the diol component (or dicarboxylic acid component) is mixed. May be. Further, the dicarboxylic acid component, the diol component, and the titanium compound may be mixed at the same time.
  • the mixing is not particularly limited, and can be performed by a conventionally known method.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • PET has a germanium (Ge) compound (Ge-based catalyst), an antimony (Sb) compound (Sb-based catalyst), an aluminum (Al) compound (Al-based catalyst), and a titanium (Ti) compound (Ti-based catalyst) as catalyst components.
  • germanium (Ge) compound Ge-based catalyst
  • Sb antimony
  • Al aluminum
  • Ti titanium
  • titanium compounds are more preferred.
  • the titanium compound has high reaction activity and can lower the polymerization temperature. Therefore, it is possible to suppress the polyester from being thermally decomposed during the polymerization reaction and generating COOH. That is, by using a titanium compound, the amount of terminal carboxylic acid of polyester that causes thermal decomposition can be reduced, and foreign matter formation can be suppressed. By reducing the amount of the terminal carboxylic acid of the polyester, it is possible to suppress thermal decomposition of the polyester film after the production of the polyester film. Of the titanium compounds, titanium oxide used as a whitening agent cannot provide such an effect.
  • the titanium compound used as the catalyst is preferably at least one of organic chelate titanium complexes having an organic acid as a ligand.
  • organic acid include citric acid, lactic acid, trimellitic acid, malic acid and the like.
  • an organic chelate complex having citric acid or citrate as a ligand is preferable.
  • the titanium-based catalyst also has a catalytic effect on the esterification reaction. By adding it at the esterification stage, the oligomer acid value at the end of the esterification reaction is lowered, and the subsequent polycondensation reaction is performed more efficiently.
  • complexes with citric acid as a ligand are more resistant to hydrolysis than titanium alkoxides, etc., and are not hydrolyzed during the esterification reaction process. It is presumed to function effectively as a catalyst. In general, it is known that hydrolysis resistance deteriorates as the amount of terminal carboxyl groups increases, and the hydrolysis resistance is expected to be improved by decreasing the amount of terminal carboxyl groups by the above addition method. .
  • citrate chelate titanium complex for example, VERTEC® AC-420 manufactured by Johnson Matthey can be easily obtained as a commercial product.
  • the aromatic dicarboxylic acid and the aliphatic diol can be introduced by preparing a slurry containing them and continuously supplying it to the esterification reaction step.
  • titanium compounds In addition to the organic chelate titanium complex, titanium compounds generally include oxides, hydroxides, alkoxides, carboxylates, carbonates, oxalates, and halides. Other titanium compounds may be used in combination with the organic chelate titanium complex as long as the effects of the present invention are not impaired.
  • titanium compounds examples include tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, tetra-n-butyl titanate tetramer, tetra-t-butyl titanate, tetracyclohexyl titanate, Titanium alkoxide such as tetraphenyl titanate and tetrabenzyl titanate, titanium oxide obtained by hydrolysis of titanium alkoxide, titanium-silicon or zirconium composite oxide obtained by hydrolysis of a mixture of titanium alkoxide and silicon alkoxide or zirconium alkoxide, Titanium acetate, titanium oxalate, potassium potassium oxalate, sodium titanium oxalate, potassium titanate, sodium titanate, titanium titanate-aluminum hydroxide mixture, titanium chloride, titanium chloride Down - aluminum chloride mixture, and titanium acetylacetonate.
  • Titanium alkoxide such
  • the polyester When the polyester is polymerized, it is preferable to use a titanium compound (including a titanium-based catalyst) in the range of 1 ppm to 50 ppm, more preferably 2 ppm to 30 ppm, and still more preferably 3 ppm to 15 ppm.
  • the raw material polyester contains 1 ppm or more and 50 ppm or less of titanium element. If the amount of titanium compound (including titanium-based catalyst) contained in the raw material polyester is less than 1 ppm, the weight average molecular weight (Mw) of the polyester cannot be increased, and thermal decomposition tends to occur, so foreign matter increases in the extruder. It is easy to do and is not preferable. When the amount of the titanium compound (including the titanium-based catalyst) contained in the raw material polyester exceeds 50 ppmm, the titanium compound (including the titanium-based catalyst) becomes a foreign substance, and causes uneven stretching when the polyester sheet is stretched. Absent.
  • an aromatic dicarboxylic acid and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound, and at least one of the titanium compounds is an organic chelate titanium complex having an organic acid as a ligand.
  • An esterification reaction step including at least a step of adding an organic chelate titanium complex, a magnesium compound, and a pentavalent phosphate ester having no aromatic ring as a substituent in this order, and an ester formed in the esterification reaction step
  • a polycondensation step in which a polycondensation product is produced by a polycondensation reaction of the chemical reaction product, and is preferably produced by a polyester production method.
  • polyesters that have a color tone and transparency that are inferior to those of other polyesters and that have excellent heat resistance. Moreover, polyester which has high transparency and few yellowishness is obtained, without using color tone adjusting materials, such as a cobalt compound and a pigment
  • This polyester can be used for applications requiring high transparency (for example, optical film, industrial squirrel, etc.), and it is not necessary to use an expensive germanium-based catalyst, so that the cost can be greatly reduced.
  • the occurrence of failures and quality defects in the film forming process can be reduced, and the cost can be reduced by improving the yield.
  • esterification reaction a process of adding an organic chelate titanium complex which is a titanium compound and a magnesium compound and a pentavalent phosphorus compound as additives in this order is provided. At this time, the esterification reaction proceeds in the presence of the organic chelate titanium complex, and thereafter, the addition of the magnesium compound is started before the addition of the phosphorus compound.
  • pentavalent phosphorus compound at least one pentavalent phosphate having no aromatic ring as a substituent is used.
  • pentavalent phosphate having no aromatic ring as a substituent
  • phosphoric acid esters having a lower alkyl group having 2 or less carbon atoms as a substituent [(OR) 3 —P ⁇ O; R an alkyl group having 1 or 2 carbon atoms]
  • phosphoric acid Trimethyl and triethyl phosphate are particularly preferable.
  • the amount of phosphorus compound added is preferably such that the P element conversion value is in the range of 50 ppm to 90 ppm.
  • the amount of the phosphorus compound is more preferably 60 ppm or more and 80 ppm or less, and still more preferably 60 ppm or more and 75 ppm or less.
  • magnesium compound By including a magnesium compound in the polyester, the electrostatic applicability of the polyester is improved. In this case, although it is easy to color, in this invention, coloring is suppressed and the outstanding color tone and heat resistance are obtained.
  • the magnesium compound include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate. Among these, magnesium acetate is most preferable from the viewpoint of solubility in ethylene glycol.
  • the Mg element conversion value is preferably 50 ppm or more, and more preferably 50 ppm or more and 100 ppm or less.
  • the addition amount of the magnesium compound is preferably an amount that is in the range of 60 ppm to 90 ppm, more preferably 70 ppm to 80 ppm in terms of imparting electrostatic applicability.
  • the value Z calculated from the following formula (i) for the titanium compound as the catalyst component and the magnesium compound and phosphorus compound as the additive satisfies the following relational expression (ii).
  • the P content is the amount of phosphorus derived from the entire phosphorus compound including the pentavalent phosphate ester having no aromatic ring
  • the Ti content is the amount of titanium derived from the entire Ti compound including the organic chelate titanium complex. It is.
  • (I) Z 5 ⁇ (P content [ppm] / P atomic weight) ⁇ 2 ⁇ (Mg content [ppm] / Mg atomic weight) ⁇ 4 ⁇ (Ti content [ppm] / Ti atomic weight) (Ii) 0 ⁇ Z ⁇ 5.0
  • the formula (i) expresses the amount of phosphorus that can act on titanium by excluding the phosphorus content that acts on magnesium from the total amount of phosphorus that can be reacted.
  • the titanium compound, phosphorus compound, and magnesium compound which are inexpensive and easily available, are used for color tone and heat while having the reaction activity required for the reaction.
  • a polyester excellent in coloring resistance can be obtained.
  • a chelate titanium complex having 1 ppm or more and 30 ppm or less of citric acid or citrate as a ligand to the aromatic dicarboxylic acid and the aliphatic diol
  • a magnesium salt of weak acid of 60 ppm to 90 ppm (more preferably 70 ppm to 80 ppm) is added, and after the addition, 60 ppm to 80 ppm (more preferably 65 ppm to 75 ppm).
  • 60 ppm to 80 ppm more preferably 65 ppm to 75 ppm.
  • a pentavalent phosphate having no aromatic ring as a substituent is added.
  • the esterification reaction may be carried out using a multistage apparatus in which at least two reactors are connected in series under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction from the system. it can.
  • the esterification reaction described above may be performed in one stage or may be performed in multiple stages.
  • the esterification reaction temperature is preferably 230 to 260 ° C, more preferably 240 to 250 ° C.
  • the temperature of the esterification reaction in the first reaction tank is preferably 230 to 260 ° C, more preferably 240 to 250 ° C, and the pressure is 1.0 to 5.0 kg / cm 2 is preferable, and 2.0 to 3.0 kg / cm 2 is more preferable.
  • the temperature of the esterification reaction in the second reaction tank is preferably 230 to 260 ° C., more preferably 245 to 255 ° C., and the pressure is 0.5 to 5.0 kg / cm 2 , more preferably 1.0 to 3. 0 kg / cm 2 . Furthermore, when carrying out by dividing into three or more stages, it is preferable to set the conditions for the esterification reaction in the intermediate stage to the conditions between the first reaction tank and the final reaction tank.
  • a polycondensation product is produced by subjecting an esterification reaction product produced by the esterification reaction to a polycondensation reaction.
  • the polycondensation reaction may be performed in one stage or may be performed in multiple stages.
  • the esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction.
  • This polycondensation reaction can be suitably performed by supplying it to a multistage polycondensation reaction tank.
  • the polycondensation reaction conditions in a three-stage reaction tank are as follows: the first reaction tank has a reaction temperature of 255 to 280 ° C., more preferably 265 to 275 ° C., and a pressure of 100 to 10 torr (13.3). ⁇ 10 ⁇ 3 to 1.3 ⁇ 10 ⁇ 3 MPa), more preferably 50 to 20 torr (6.67 ⁇ 10 ⁇ 3 to 2.67 ⁇ 10 ⁇ 3 MPa). The temperature is 265 to 285 ° C., more preferably 270 to 280 ° C., and the pressure is 20 to 1 torr (2.67 ⁇ 10 ⁇ 3 to 1.33 ⁇ 10 ⁇ 4 MPa), more preferably 10 to 3 torr (1.
  • the third reaction vessel in the final reaction vessel has a reaction temperature of 270 to 290 ° C., more preferably 275 to 285 ° C., and a pressure of 10-0.1tor (1.33 ⁇ 10 -3 ⁇ 1.33 ⁇ 10 -5 MPa), aspect is preferably more preferably 5 ⁇ 0.5torr (6.67 ⁇ 10 -4 ⁇ 6.67 ⁇ 10 -5 MPa) .
  • Additives such as light stabilizers, antioxidants, UV absorbers, flame retardants, lubricants (fine particles), nucleating agents (crystallization agents), crystallization inhibitors, etc. to the polyester synthesized as described above May further be included.
  • the polyester that is the raw material of the polyester sheet is preferably a solid-phase polymerized pellet. After polymerization by the esterification reaction, solid phase polymerization is further performed, whereby the moisture content of the polyester film, the crystallinity, the acid value of the polyester, that is, the concentration of the terminal carboxyl group of the polyester (Acid Value; AV, unit: equivalent / T) and intrinsic viscosity (Intrinsic Viscosity; IV, unit: dl / g).
  • “equivalent / ton” represents a molar equivalent per ton.
  • the intrinsic viscosity (IV) of the polyester is preferably 0.7 or more and 0.9 or less.
  • the intrinsic viscosity When the intrinsic viscosity is 0.7 or more, the molecular motion of the polyester is hindered and it is difficult to crystallize. When the intrinsic viscosity is 0.9 or less, thermal decomposition of the polyester due to shear heat generation in the extruder does not occur too much, Crystallization can be suppressed and the acid value (AV) can be kept low. IV is more preferably 0.75 or more and 0.85 or less.
  • the polyester that is a raw material of the polyester sheet preferably has an intrinsic viscosity of 0.7 or more and 0.9 or less.
  • a polyester obtained by the esterification reaction described above or a commercially available polyester in the form of a small piece such as a pellet may be used as a starting material.
  • the solid phase polymerization of polyester may be a continuous method (a method in which a tower is filled with a resin, and this is slowly heated for a predetermined period of time while being heated and then sequentially fed out), or a batch method (a resin is placed in a container). Or a method of heating for a predetermined time).
  • the solid phase polymerization is preferably performed in a vacuum or a nitrogen stream.
  • the temperature of the solid phase polymerization is preferably 170 ° C. or higher and 240 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower, and further preferably 190 ° C. or higher and 220 ° C. or lower.
  • the acid value (AV) of the polyester is further reduced.
  • the solid phase polymerization time is preferably 5 hours to 100 hours, more preferably 10 hours to 75 hours, and still more preferably 15 hours to 50 hours. It is preferable that the time is within the above range in that the acid value (AV) and intrinsic viscosity (IV) of the polyester can be easily controlled within the preferable ranges of the present invention.
  • the solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
  • the manufacturing method of the polyester film of this invention includes the extending process of extending
  • the polyester sheet refers to a polyester molded body obtained from the polyester obtained by the extrusion process, which is the object of stretching.
  • the polyester film refers to a polyester molded body that is a target of collection after the stretching of the polyester sheet is completed.
  • the thickness of the polyester sheet that has not been stretched is preferably 3 mm to 5 mm, and the thickness of the polyester film that has been stretched is thinner than the polyester sheet (for example, less than 1 mm).
  • the method for stretching the polyester sheet may be uniaxial stretching or biaxial or multiaxial stretching.
  • Biaxial stretching refers to stretching at least once each in different directions.
  • the polyester sheet is stretched in the transport direction (MD), that is, longitudinal stretching, and stretched in the direction (TD) orthogonal to the transport direction, that is, lateral stretching.
  • MD transport direction
  • TD direction orthogonal to the transport direction
  • Axial stretching is preferred.
  • the biaxial stretching method may be any of a sequential biaxial stretching method in which longitudinal stretching and lateral stretching are separated and a simultaneous biaxial stretching method in which longitudinal stretching and lateral stretching are simultaneously performed.
  • the longitudinal stretching and the lateral stretching may be independently performed twice or more, and the order of the longitudinal stretching and the lateral stretching is not limited.
  • stretching modes such as longitudinal stretching ⁇ transverse stretching, longitudinal stretching ⁇ transverse stretching ⁇ longitudinal stretching, longitudinal stretching ⁇ longitudinal stretching ⁇ transverse stretching, transverse stretching ⁇ longitudinal stretching can be mentioned. Of these, longitudinal stretching ⁇ transverse stretching is preferred.
  • the direction (TD) orthogonal to the conveyance direction (MD) of a polyester sheet means the direction of an angle (90 degrees) perpendicular to the conveyance direction (MD) of polyester, and the conveyance direction of polyester ( MD) and an angle (90 ° ⁇ 5 °) that can be regarded as vertical.
  • the area stretch ratio of the polyester sheet is preferably 6 to 18 times, more preferably 8 to 16 times the area of the polyester sheet before stretching, More preferably, it is 10 to 15 times.
  • the temperature during stretching of the polyester sheet is preferably Tg ⁇ 20 ° C. or more and Tg + 50 ° C., more preferably Tg ⁇ , when the glass transition temperature of the polyester sheet is Tg. It is 10 degreeC or more and Tg + 40 degrees C or less, More preferably, it is Tg or more and Tg + 30 degreeC.
  • the polyester sheet it is preferable to perform heat setting after biaxial stretching by a combination of longitudinal stretching and lateral stretching.
  • the heat setting temperature is preferably 160 ° C to 250 ° C, more preferably 180 ° C to 240 ° C, and further preferably 200 ° C to 240 ° C.
  • After heat setting it is preferable to apply relaxation of 1% to 20%, more preferably 3% to 15%, and still more preferably 4% to 10% in at least one direction of longitudinal stretching and lateral stretching.
  • a polyester sheet in contact with the roll is provided by providing a pipe through which a heater or a hot solvent can flow inside the roll. Can be heated. Even when a roll is not used, the polyester sheet can be heated by blowing warm air on the polyester sheet, contacting the polyester sheet with a heat source such as a heater, or passing the vicinity of the heat source.
  • the longitudinal stretching of the polyester sheet can be performed, for example, by using two or more pairs of nip rolls that are sandwiched between the polyester sheets and arranged in the conveying direction of the polyester sheet.
  • a pair of nip rolls A is installed on the upstream side in the conveyance direction of the polyester sheet and a pair of nip rolls B is installed on the downstream side
  • the rotational speed of the nip roll B on the downstream side Is made faster than the rotational speed of the nip roll A on the upstream side, whereby the polyester sheet is stretched in the conveying direction (MD).
  • Two or more pairs of nip rolls may be installed independently on the upstream side and the downstream side, respectively.
  • the polyester sheet transport speed when starting to stretch the polyester sheet is 30 m / min to 100 m / min, and the transport speed is 0.01% to 1%. % Variation is preferred.
  • longitudinal stretching when the conveyance speed is changed by 0.01% to 1%, the stretching stress varies, and the stretching stress increases or decreases.
  • stress concentration occurs around the foreign material (residues of pyrolysis components generated in the extruder or grown spherulites), and the vicinity of the foreign material is also stretched to reduce stretching unevenness.
  • the fluctuation amount of the conveyance speed is more preferably 0.05% to 0.7%, and further preferably 0.1% to 0.5%.
  • a longitudinal stretching apparatus in which a pair of nip rolls A is installed on the upstream side in the conveyance direction of the polyester sheet and a pair of nip rolls B is installed on the downstream side, driving for driving the nip roll B occurs.
  • This can be achieved by giving a variation to the current value of the motor.
  • the fluctuation amount of the conveyance speed is expressed as a percentage by dividing the difference between the maximum speed and the minimum speed per minute by the average value.
  • the frequency of occurrence of fluctuations that vary the transport speed [times / second] is preferably in the range of 0.01 to 50, and more preferably 0.1 to 10.
  • the half width of the peak representing the conveyance speed that is ⁇ 0.1% or more of the average value of the conveyance speed is 1 ⁇ 4 or less of the reciprocal of the average value of the conveyance speed. Further, it is preferable to give a variation to the conveyance speed.
  • the “waveform representing the conveyance speed with respect to time” in the present invention may be considered in the same manner as the “waveform representing the screw rotation speed N with respect to time” described with reference to FIGS. 4 and 5. That is, with the horizontal axis representing time and the vertical axis representing the conveyance speed in longitudinal stretching, the locus when plotting the conveyance speed against time is a spike-like shape in which peaks appear irregularly as shown in FIG. 4 or FIG. A waveform is preferred.
  • the peak indicates a maximum waveform or a minimum waveform having a conveyance speed that is greater than ⁇ 0.1% of the average value of the conveyance speed.
  • a maximal waveform having a conveyance speed that is greater than + 0.1% of the average value of the conveyance speed indicates a fluctuation in which the conveyance speed accelerates from the average value of the conveyance speed and decelerates from the maximum value.
  • a minimal waveform having a conveyance speed that is greater than or equal to -0.1% of the value indicates a fluctuation in which the conveyance speed is decelerated from the average value of the conveyance speed and accelerated from the minimum value.
  • the half width of the peak is 1 ⁇ 4 or less of the reciprocal of the average value of the conveyance speed.
  • the “reciprocal of the conveyance speed [m / min]” is the time [minute] required to convey the polyester sheet by 1 m. Therefore, when the time [minute] required to convey the polyester sheet 1 m is t, and the half-value width of the maximum peak or the minimum peak in the waveform representing the conveyance speed with respect to time is ⁇ t, “the half-value width ⁇ t is the average of the conveyance speed.
  • “Less than 1/4 of the reciprocal of the value” can be approximated as ⁇ t ⁇ t ⁇ 1/4, that is, ⁇ t / t ⁇ 1/4.
  • the half width of the peak is more preferably 1/10 or less of the reciprocal of the average value of the conveyance speed.
  • the sum of the half-value widths ⁇ t of the continuous maximum waveform or the minimum waveform ( ⁇ t) is the reciprocal of the average value of the conveyance speed. What is necessary is just to become 1/4 or less.
  • the unevenness in stretching can be more efficiently suppressed by intermittently changing the conveyance speed.
  • the conveyance speed of the polyester sheet when starting the stretching of the polyester sheet is, for example, a pair of nip rolls A on the upstream side in the conveyance direction of the polyester sheet and a pair of nip rolls on the downstream side.
  • the polyester sheet transport speed when starting the stretching of the polyester sheet is 30 m / min to 100 m / min, so that the effect due to the variation of the stretching stress can be easily obtained.
  • the conveying speed of the polyester sheet when starting the stretching of the polyester sheet is more preferably 35 m / min to 80 m / min, and further preferably 40 m / min to 70 m / min.
  • Temperature distribution of polyester sheet In the longitudinal stretching, it is preferable to give a temperature distribution of 0.1 ° C. to 30 ° C. in the thickness direction of the polyester sheet to the polyester sheet when stretching of the polyester sheet is started.
  • the temperature distribution in the thickness direction of the polyester sheet is such that the temperature is high or low from one side of the polyester sheet to the other, or the temperature is high or low from the inside to the surface of the polyester sheet.
  • “there is a temperature distribution” means a state in which the polyester sheet has a so-called temperature unevenness in which two or more different temperatures are present on the surface and inside.
  • temperature distribution from 0.1 ° C. to 30 ° C.” means that the difference between the lowest temperature and the highest temperature on the surface and inside of the polyester sheet is 0.1 ° C. to 30 ° C.
  • the temperature distribution in the thickness direction of the polyester sheet is preferably in a state where the inside is at a lower temperature than the surface of the polyester sheet. That is, it is preferable to have a temperature distribution in which the temperature increases from the inside to the surface of the polyester sheet.
  • the foreign material remaining in the polyester as a thermal decomposition component of the melt in the extruder and the spherulite (foreign material) which has grown in the spherulite and remained in the polyester are separated from the polyester sheet by a cast drum or a peeling roll. Since it tends to be pushed into the inside, it often exists inside the thickness direction of the polyester sheet.
  • the polyester sheet conveyance speed is preferably set to the above speed (30 m / min to 100 m / min).
  • the temperature distribution in the thickness direction of the polyester sheet is more preferably 0.5 ° C. to 25 ° C., and further preferably 1 ° C. to 20 ° C.
  • the thickness of the polyester sheet is preferably 300 ⁇ m or more and 6000 ⁇ m, more preferably 500 ⁇ m or more and 5000 ⁇ m or less, and still more preferably 1000 ⁇ m or more and 4000 ⁇ m or less.
  • fever to the inside of a polyester sheet can be suppressed, and the said temperature distribution can be achieved.
  • the increase in the stretching tension accompanying the increase in thickness of the polyester sheet has the effect of further increasing the stretching stress applied to the vicinity of foreign matter that may be present in the polyester sheet and reducing stretching unevenness.
  • the lateral stretching of the polyester sheet is performed by widening the polyester sheet in a direction (TD) perpendicular to the conveying direction (MD) of the polyester sheet.
  • TD direction
  • MD conveying direction
  • the lateral stretching of the polyester sheet is performed by using a lateral stretching apparatus or a biaxial stretching machine having a preheating portion, a stretching portion, and a heat treatment portion in this order, and gripping an end portion of the polyester sheet, It is preferable to laterally stretch the polyester sheet while transporting it to the stretching section and the heat treatment section.
  • a biaxial stretching machine will be described.
  • FIG. 2 shows an example (top view) of a biaxial stretching machine.
  • FIG. 2 shows a biaxial stretching machine 200 and a polyester sheet 220 attached to the biaxial stretching machine 200.
  • the biaxial stretching machine 200 includes a pair of annular rails 21 a and 21 b and is arranged symmetrically with the polyester sheet 220 interposed therebetween.
  • the biaxial stretching machine 200 includes a preheating unit 22 that preheats the polyester sheet 220 before stretching, a stretching unit 24 that stretches the polyester sheet 220 in the arrow TD direction, which is a direction orthogonal to the arrow MD direction, and after stretching.
  • the heat treatment part 26 heat-treats the polyester film.
  • a heat-fixing process in which the stretched and tensioned polyester film is heated with tension applied, or heat that releases the tension and relaxes the polyester film after the heat-fixing process. Examples include relaxation treatment.
  • the annular rail 20a includes at least gripping members 21a, 21b, 21e, and 21f that can move the edge of the annular rail 21a
  • the annular rail 21b includes gripping members 21c, 21d, and 21g that can move the edge of the annular rail 20b.
  • And 21h The grip members 21a, 21b, 21e, and 21f grip one end of the polyester sheet 220 in the TD direction
  • the grip members 21c, 21d, 21g, and 21h are the other end of the polyester sheet 220 in the TD direction. Hold the end.
  • the gripping members 21a to 21h are generally called chucks, clips, and the like.
  • the gripping members 21a, 21b, 21e, and 21f move counterclockwise along the edge of the annular rail 20a, and the gripping members 21c, 21d, 21g, and 21h are clocked along the edge of the annular rail 20b. Move around.
  • the gripping members 21a to 21d grip the end portion of the polyester sheet 220 in the preheating unit 22, move the edge of the annular rail 20a or 20b as it is, and proceed to the heat treatment unit 26 where the gripping members 21e to 21h are shown.
  • the gripping members 21a to 21d moved from the preheating unit 22 to the heat treatment unit 26 separate the end of the polyester sheet 220 at the downstream side in the MD direction of the heat treatment unit 26, for example, at positions where the gripping members 21f and 21h are shown, It advances along the edge of the annular rail 20a or 20b as it is, and returns to the preheating part 22.
  • the polyester sheet 220 moves in the direction of the arrow MD, and is sequentially conveyed to the preheating unit 22, the stretching unit 24, and the heat treatment unit 26.
  • the biaxial stretching machine 200 supports 21a to 21h to support the polyester sheet 220. In addition, it has a gripping member (not shown).
  • heating for example, 210 ° C.
  • the tension for example, tension of 1 kg / m to 10 kg / m
  • the crystal of the polyester film can be oriented to give flatness and dimensional stability. If necessary, it can be heated (eg, 210 ° C. to 230 ° C.) while being in the TD direction or MD direction.
  • Thermal relaxation treatment (relaxation treatment) that relaxes 1% to 12% may be performed.
  • the heat-set polyester film is usually cooled to Tg or less, and the grip portions at both ends of the polyester film are cut and wound into a roll. At this time, it is preferable to perform a treatment that relaxes 1% to 12% in the TD direction and / or MD direction within a temperature range not higher than the final heat setting temperature and not lower than Tg.
  • the biaxial stretching machine 200 is capable of lateral stretching in which the polyester sheet 220 is stretched in the TD direction in the stretching unit 24.
  • the biaxial stretching machine 200 increases the moving speed of the gripping members 21a to 21d, It is possible to extend in the MD direction by increasing the distance between and the distance between the gripping members 21c and 21d. That is, simultaneous biaxial stretching can be performed using the biaxial stretching machine 200.
  • the transverse stretching apparatus is not shown, it has the same structure as the biaxial stretching machine except that it does not stretch in the MD direction (longitudinal stretching), and a gripping member that grips the polyester sheet, and A rail having a gripping member is provided.
  • the horizontal stretching apparatus is comprised at least by the preheating part, the extending
  • variation of the conveyance speed of the polyester sheet 220 is demonstrated. Note that the reference numerals in the drawings are omitted.
  • the polyester sheet conveyance speed As described above, the polyester sheet is conveyed from the preheating portion to the heat treatment portion by moving the edge of the annular rail by the gripping member that holds the end of the polyester sheet in the TD direction. Therefore, the moving speed of the gripping member becomes the conveying speed of the polyester sheet.
  • the polyester sheet conveyance speed that is, the gripping member moving speed
  • the polyester sheet conveyance speed is 0.1% to 5%. It is preferable to give a variation of%. If foreign matter remains in the polyester sheet, the portion where the foreign matter exists and the vicinity thereof are difficult to stretch, and as described above, stretching unevenness is likely to occur during stretching.
  • variation of the conveyance speed of a polyester sheet divides the difference of the maximum speed and minimum speed of 1 minute by an average value, and was described with the percentage.
  • the frequency of occurrence of fluctuations in the conveyance speed of the polyester sheet [times / second] is preferably in the range of 0.01 to 50, and more preferably 0.1 to 10.
  • the fluctuation amount of the conveyance speed of the polyester sheet is more preferably 0.3% to 3.5%, and further preferably 0.5% to 2%.
  • the half width of the peak representing the conveyance speed that is ⁇ 0.1% or more of the average value of the conveyance speed is 1 ⁇ 4 or less of the reciprocal of the average value of the conveyance speed. Further, it is preferable to give a variation to the conveyance speed.
  • the “waveform representing the conveyance speed with respect to time” in the present invention may be considered in the same manner as the “waveform representing the screw rotation speed N with respect to time” described with reference to FIGS. 4 and 5. That is, with the horizontal axis representing time and the vertical axis representing the conveyance speed in longitudinal stretching, the locus when plotting the conveyance speed against time is a spike-like shape in which peaks appear irregularly as shown in FIG. 4 or FIG. A waveform is preferred.
  • the peak indicates a maximum waveform or a minimum waveform having a conveyance speed that is greater than ⁇ 0.1% of the average value of the conveyance speed.
  • a maximal waveform having a conveyance speed that is greater than + 0.1% of the average value of the conveyance speed indicates a fluctuation in which the conveyance speed accelerates from the average value of the conveyance speed and decelerates from the maximum value.
  • a minimal waveform having a conveyance speed that is greater than or equal to -0.1% of the value indicates a fluctuation in which the conveyance speed is decelerated from the average value of the conveyance speed and accelerated from the minimum value.
  • the half width of the peak is 1 ⁇ 4 or less of the reciprocal of the average value of the conveyance speed.
  • the “reciprocal of the conveyance speed [m / min]” is the time [minute] required to convey the polyester sheet by 1 m. Therefore, when the time [minute] required to convey the polyester sheet 1 m is t, and the half-value width of the maximum peak or the minimum peak in the waveform representing the conveyance speed with respect to time is ⁇ t, “the half-value width ⁇ t is the average of the conveyance speed.
  • “Less than 1/4 of the reciprocal of the value” can be approximated as ⁇ t ⁇ t ⁇ 1/4, that is, ⁇ t / t ⁇ 1/4.
  • the half width of the peak is more preferably 1/10 or less of the reciprocal of the average value of the conveyance speed.
  • the sum of the half-value widths ⁇ t of the continuous maximum waveform or the minimum waveform ( ⁇ t) is the reciprocal of the average value of the conveyance speed. What is necessary is just to become 1/4 or less.
  • the unevenness in stretching can be more efficiently suppressed by intermittently changing the conveyance speed.
  • FIG. 3 shows a top view (FIG. 3A) and a side view ((FIG. 3B) of a biaxial stretching machine in which a bent type biaxial extruder, a longitudinal stretching apparatus, and a transverse stretching apparatus are connected in series.
  • a biaxial stretching machine 300 shown in FIGS. 3A and 3B includes a bent biaxial extruder 30, a longitudinal stretching device 50, a lateral stretching device 60, and a polyester film winder 70 connected in series in this order. Has been.
  • the vent type biaxial extruder 30 includes at least a hopper 32 and a vent hole 34, and an extrusion die 42 and a cooling device 44 are installed adjacent to the vent type biaxial extruder 30.
  • the cooling device 44 includes a cast drum.
  • the longitudinal stretching device 50 is located downstream of the cooling device 44 in the MD direction (arrow direction), and is installed between the cooling device 44 and the lateral stretching device 60.
  • the transverse stretching device 60 is located downstream of the longitudinal stretching device 50 in the MD direction, and is installed between the longitudinal stretching device 50 and the winder 70.
  • the transverse stretching device 60 includes a preheating unit 62, a stretching unit 64, a heat treatment unit 66, and a cooling unit 68 from the upstream side to the downstream side in the MD direction.
  • the winding unit 70 is located downstream of the transverse stretching device 60 in the MD direction.
  • the transverse stretching apparatus 60 shown in FIG. 3 may be replaced with a biaxial stretching machine capable of stretching in the MD direction, such as the biaxial stretching machine 200 shown
  • the raw material polyester put into the hopper 32 is melt-kneaded by a screw (not shown) provided in the vent type twin-screw extruder 30, and then extruded from an extrusion port (not shown) to an extrusion die 42, and a cooling device 44.
  • the polyester sheet is manufactured by being cooled and solidified by a cooling member such as a cast drum provided in the above.
  • the polyester sheet is conveyed to the longitudinal stretching device 50 and stretched (longitudinal stretching) in the MD direction to become a polyester film.
  • the longitudinally stretched polyester film is subsequently transported to the transverse stretching device 60, heated by the preheating unit 62, widened in the direction perpendicular to the MD direction (TD direction) by the stretching unit 64, and heat set by the heat treatment unit 66. And heat relaxation treatment is performed. Thereafter, the polyester film is cooled in the cooling unit 68 to produce a biaxially stretched polyester film.
  • the produced biaxially stretched polyester film is wound up by the winder 70 and collected.
  • the polyester film of the present invention is a polyester film manufactured by the above-described method for manufacturing a polyester film of the present invention. It is preferable to produce a polyester film having a thickness of 30 ⁇ m to 400 ⁇ m by the method for producing a polyester film of the present invention. That is, the thickness after biaxial stretching through longitudinal stretching and lateral stretching is preferably 30 ⁇ m to 400 ⁇ m.
  • the thickness of the polyester film is preferably 40 ⁇ m to 350 ⁇ m, more preferably 50 ⁇ m to 300 ⁇ m, from the viewpoint of electrical insulation.
  • the obtained polyester film is suitable for uses such as a solar cell backsheet and a barrier film substrate.
  • the above-described polyester film of the present invention is used for the solar cell backsheet of the present invention.
  • the solar cell backsheet is a back surface protection sheet disposed on the back surface of the solar cell power generation module opposite to the sunlight incident side.
  • the back sheet for solar cell of the present invention uses the polyester film of the present invention in which stretching unevenness is suppressed. Therefore, the function of the back sheet for solar cells is unlikely to vary depending on the thickness of the sheet, and the function can be expressed without unevenness. In particular, uneven weather resistance is suppressed.
  • the power generation element (solar cell element) connected by the lead wiring for taking out electricity is sealed with a sealing agent such as ethylene / vinyl acetate copolymer system (EVA system) resin,
  • EVA system ethylene / vinyl acetate copolymer system
  • solar cell elements include silicon-based materials such as monocrystalline silicon, polycrystalline silicon, and amorphous silicon, and copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, etc.
  • III- Various known solar cell elements such as Group V and II-VI compound semiconductor systems can be applied.
  • the reaction product was transferred to a second esterification reaction vessel and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours to obtain an oligomer having an acid value of 200 equivalents / ton.
  • the inside of the second esterification reaction tank is partitioned into three zones, and an ethylene glycol solution of magnesium acetate is continuously supplied from the second zone so that the amount of Mg added is 75 ppm in terms of element, From the third zone, an ethylene glycol solution of trimethyl phosphate was continuously supplied so that the added amount of P was 65 ppm in terms of element.
  • reaction tank temperature was 276 ° C.
  • reaction tank pressure was 5 torr (6.67 ⁇ 10 ⁇ 4 MPa)
  • residence time was about 1.2 hours.
  • the reaction (polycondensation) was performed under the conditions.
  • the reaction product 1 (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
  • the obtained reaction product 1 was measured using a high resolution high frequency inductively coupled plasma-mass spectrometry (HR-ICP-MS; AttoM manufactured by SII Nanotechnology) as shown below.
  • HR-ICP-MS high frequency inductively coupled plasma-mass spectrometry
  • Ti 9 ppm
  • Mg It was 75 ppm
  • P 60 ppm.
  • P is slightly reduced with respect to the initial addition amount, but is estimated to have volatilized during the polymerization process.
  • the reaction product 1 obtained as described above was subjected to solid phase polymerization by a batch method. That is, after putting the reaction product 1 into a container, it was subjected to solid phase polymerization under the following conditions while stirring under vacuum. After precrystallization at 150 ° C., a solid state polymerization reaction was performed at 190 ° C. for 30 hours.
  • a recycled polyester 1 was prepared by regenerating a used resin of a polyester produced using a Ti catalyst. Moreover, the reproduction
  • the raw material polyester 1 pellets were placed in a Henschel mixer and crushed by operating at 300 rpm at room temperature. This was passed through a 30-mesh sieve and a 300-mesh sieve, and the remaining polyester was used as a powder.
  • the raw material polyester 2, regenerated polyester 1 and regenerated polyester 2 were also crushed by the same method and sieved to obtain a powder.
  • powders having amounts shown in Tables 1 to 5 were mixed with the total mass of the raw material polyester pellets. At this time, the ratio of the raw material polyester and the regenerated polyester in the powder was adjusted so that the amount of the regenerated polyester powder was 30% with respect to the total mass of the raw material polyester powder.
  • a vent type twin-screw extruder having the configuration shown in FIG. 1 was prepared, and the pellets and powder prepared as described above were put into a hopper of the extruder.
  • the amount of titanium-based catalyst contained in the raw material polyester charged into the extruder is shown in “Raw material polyester” and “Ti-based catalyst” in Tables 1 to 5.
  • Those having a catalyst amount of 0 ppm are raw material polyesters of an antimony catalyst system.
  • the amount of the catalyst was obtained by dissolving the raw material polyester in HFIP (hexafluoroisopropanol) so as to have a concentration of 5%, and further centrifuging at 1000 rpm.
  • the amount of Ti was measured by atomic absorption spectrometry using the obtained supernatant. By this centrifuge treatment, the solid matter of TiO 2 which is a titanium compound was removed, and only the titanium catalyst was measured.
  • Tables 1 to 5 show the cylinder inner diameter D of the extruder, the extrusion amount Q per unit time, and the screw rotation speed N. However, screw rotation speed N is an average value in 10 minutes. (Q / N) / (D 2.8 ⁇ 10 ⁇ 6 ) obtained from these are also shown in Tables 1 to 5.
  • the polyester charged in the extruder was extruded at 280 ° C., the temperature at the center of the cylinder was raised to 300 ° C., held for the time indicated in the “heating conditions” column of Tables 1 to 5, and then the heat was removed. The temperature was lowered to ° C.
  • the screw rotation speed N was given a fluctuation of the magnitude shown in “N fluctuation” and “variation amount” in Tables 1 to 5.
  • the fluctuation of the screw rotation speed N is observed by an oscilloscope that can display a waveform representing the screw rotation speed with respect to time, and the value ( ⁇ t / t) of the peak half-value width ⁇ t with respect to the reciprocal t of the screw rotation speed N (average value). This was carried out by adjusting the current of the motor of the screw drive device so that the magnitudes shown in “N fluctuation” and “ ⁇ t / t” in Tables 1 to 5 were obtained.
  • vent hole of the extruder was measured from the inlet side of the cylinder and installed at a position of 1/3 of the total length of the cylinder.
  • a gear pump, a filter, and an extrusion die were connected in this order to the exit (extrusion port) of the extruder. These temperatures were set at 280 ° C.
  • the polyester extruded from the die was cooled and solidified as a sheet on a 10 ° C. cast drum. At this time, an electrostatic application method was used.
  • the extruded polyester was cooled by blowing air at 20 ° C. at a wind speed of 50 m / sec.
  • the polyester sheet was peeled off to obtain a polyester sheet.
  • thickness fluctuation was given to MD direction of a polyester sheet by the fluctuation
  • the thickness variation in the TD direction is determined by measuring the thickness of the portion (80% of the total width) excluding the region of 10% of the total length in the TD direction (the width of the polyester sheet) from both ends of the polyester sheet in the TD direction. The difference between the thickness and the minimum thickness is divided by the average value and expressed as a percentage.
  • the thickness variation in the MD direction refers to a value obtained by measuring the thickness over 3 m at the center in the TD direction (width direction), dividing the difference between the maximum thickness and the minimum thickness by the average value, and displaying the percentage.
  • These average values [(“average value of thickness variation in TD direction” + “average value of thickness variation in MD direction”) / 2] are defined as thickness variations and are shown in Tables 1 to 5.
  • the obtained polyester sheet (unstretched polyester sheet) was biaxially stretched by performing longitudinal stretching and lateral stretching in this order. Prior to the longitudinal stretching, 1 cm squares were formed on the surface of the polyester sheet. The grids were printed on a region having a length of 0.2 m in the MD direction excluding a 10% region from both ends in the TD direction of the polyester sheet.
  • the conveyance speeds shown in Tables 1 to 5 represent average values of speeds when the polyester sheet passes through the nip roll on the upstream side in the MD direction.
  • the fluctuation of the conveyance speed is observed with an oscilloscope capable of displaying a waveform representing the conveyance speed with respect to time. It was carried out by adjusting the current of the drive motor that drives the nip roll on the downstream side in the MD direction so as to have the sizes indicated by “longitudinal stretching”, “conveyance speed fluctuation”, and “ ⁇ t / t”.
  • Tg is the glass transition temperature of the polyester sheet.
  • the temperature distribution was determined by measuring the temperatures of the following three points (a) to (c) for the polyester sheet immediately before the polyester sheet during longitudinal stretching passes through the nip roll on the downstream side. The difference between the temperature and the average of the temperature in (c) and the temperature in (a) was determined to obtain a temperature distribution. In addition, these temperature measurement was measured in the center part of the width direction (TD direction) of a polyester sheet.
  • thermocouple embedded in the polyester sheet (A) to (c) The position at which the temperature was measured and the measuring method (a) The temperature at the center of the polyester sheet in the thickness direction The temperature was measured with a thermocouple embedded in the polyester sheet. (B) One surface of the polyester sheet surface It measured with the thermocouple affixed on one surface of the polyester sheet surface. (C) The other surface of the polyester sheet surface It measured with the thermocouple affixed on the other surface of the polyester sheet surface.
  • Tg is the glass transition temperature of the polyester film.
  • the moving speed of the chuck (gripping member) that grips both ends of the uniaxially stretched polyester film in the TD direction is changed to change the transport speed of the uniaxially stretched polyester film to “Transverse Stretching” in Tables 1 to 5.
  • the fluctuation amount indicated by “Variation speed fluctuation” and “Variation amount” was given.
  • the fluctuation of the conveyance speed is observed with an oscilloscope capable of displaying a waveform representing the conveyance speed with respect to time, and the value ( ⁇ t / t) with respect to the reciprocal t of the average value of the conveyance speed of the peak half-value width ⁇ t is expressed in Table 1. This was carried out by adjusting the current of the drive motor that moves the chuck so that the magnitudes shown in “lateral stretching”, “conveyance speed fluctuation”, and “ ⁇ t / t” in Table 5 were obtained.
  • heat relaxation treatment is carried out at 220 ° C. in the width direction (TD direction) and the longitudinal direction (MD direction) by 5% each.
  • a biaxially stretched polyester film was obtained. Thereafter, both ends of the biaxially stretched polyester film were trimmed, and the biaxially stretched polyester film was removed from the chuck. Further, the both sides of the biaxially stretched polyester film were subjected to thicknessing (knurling), and the biaxially stretched polyester film was wound up.
  • the width (total length in the TD direction) of the biaxially stretched polyester film at this time was 3.5 m, and the thickness was the thickness described in the “Biaxially stretched film” and “Thickness” columns of Tables 1 to 5. This was wound up 3000 m long.
  • polyester sheet peeled off from the cast drum was collected, and the presence or absence of foreign matter in the polyester sheet before longitudinal and lateral stretching was confirmed. Specifically, the polyester sheet is cut into 20 cm ⁇ 20 cm, the obtained sample is sandwiched between two polarizing plates, the polarizing axes are observed in a parallel arrangement and an orthogonal arrangement, and each is observed with a magnifying glass 5 times, and the location of the foreign matter Marked. The marked locations were counted and the average value per cm 2 was calculated. The evaluation results are shown in the “cast” and “foreign matter” columns of Tables 1 to 5. The allowable range is 15 pieces / cm 2 or less.
  • the polyester sheet of the example has a small amount of foreign matter remaining compared to the comparative example. Therefore, it is considered that the amount of foreign matter in the polyester was reduced and the foreign matter was eliminated by the extrusion process of the raw material polyester in the present invention. Moreover, it turns out that the biaxially stretched polyester film of an Example has a small ratio (30% or less) of a deformed mesh compared with a comparative example, and the stretching nonuniformity is suppressed. This is because the polyester sheet before stretching contains almost no foreign matter that causes stretching unevenness, and further, by imparting a temperature distribution to the polyester sheet or by varying the transport speed of the polyester sheet in longitudinal stretching or lateral stretching.

Abstract

A method for producing a polyester film comprises: an extrusion step wherein polyester as a raw material is supplied to a venting type twin-screw extruder in which the inner diameter (D) of a cylinder is 140 mm to 300 mm inclusive, and under the conditions that an extrusion amount (Q) (kg/hr.) per unit time and a revolution number of screw (N) (rpm) satisfy the following formula (I), 0.01% to 5% of fluctuation is applied to the revolution number of screw (N) and a polyester sheet is melt-extruded; and a cooling/solidification step for cooling and solidifying the polyester sheet.

Description

ポリエステルフィルム、及びその製造方法、太陽電池用バックシート、並びに太陽電池発電モジュールPOLYESTER FILM, ITS MANUFACTURING METHOD, SOLAR CELL BACK SHEET, AND SOLAR CELL POWER GENERATION MODULE
 ポリエステルフィルム、及びその製造方法、太陽電池用バックシート、並びに太陽電池発電モジュールに関する。 The present invention relates to a polyester film, a manufacturing method thereof, a solar cell backsheet, and a solar cell power generation module.
 ポリエステルは、電気絶縁用途や、光学用途等、種々の用途で用いられている。電気絶縁用途としては、近年、特に、太陽電池バックシート等の太陽電池用途が注目されている。
 ところで、ポリエステルは、通常は、その表面にカルボキシル基や水酸基が多く存在しており、水分が存在する環境では加水分解を起こしやすく、経時で劣化する傾向がある。太陽電池モジュールが一般に用いられる環境は、屋外等の常に風雨に曝されるような環境であり、加水分解を起こし易い環境であるため、太陽電池用途においては、ポリエステルの加水分解抑制は重要な課題の一つである。
Polyester is used in various applications such as electrical insulation and optical applications. In recent years, solar cell applications such as solar cell backsheets have attracted attention as electrical insulation applications.
By the way, polyester usually has many carboxyl groups and hydroxyl groups on its surface, and tends to be hydrolyzed in an environment where moisture exists, and tends to deteriorate over time. The environment in which solar cell modules are generally used is an environment that is constantly exposed to wind and rain, such as outdoors, and is an environment that is prone to hydrolysis. one of.
 ポリエステルフイルムは、押出成形されたポリエステルシートを延伸することにより製造される。ポリエステルシートの成形は、一般に、キャスティングドラム表面にポリエステルの溶融シートを押し出して冷却固化して行われるが、押出機(成形機)として、ベント式2軸押出機が使用されることがある(例えば、特開平10-95042号公報参照)。ベント式2軸押出機は、減圧作用による脱気のためのベント孔を備えた押出機であり、原料ポリエステルを押出機に投入する際に、一緒に取り込まれた空気や揮発成分をベント孔より取り除くことができる。 The polyester film is produced by stretching an extruded polyester sheet. In general, the polyester sheet is formed by extruding a polyester molten sheet onto a casting drum surface and cooling and solidifying. However, a vent type twin-screw extruder may be used as an extruder (molding machine) (for example, JP-A-10-95042). The vent type twin screw extruder is an extruder having a vent hole for degassing by depressurizing action. When the raw material polyester is put into the extruder, air and volatile components taken together are introduced from the vent hole. Can be removed.
 しかし、特開平10-95042号公報では、ベント孔で真空排気をしているため、押出機中の溶融したポリエステル(「メルト」ともいう)が、押出機中で滞留し易く、また、ポリエステルの熱劣化による異物が、ポリエステルに発生し易かった。押出機からポリエステルを押出した後、ポリエステルを延伸するときにポリエステル中に異物が残存していると、延伸ムラが生じ易い。 However, in Japanese Patent Application Laid-Open No. 10-95042, since the exhaust is evacuated through the vent hole, the melted polyester (also referred to as “melt”) in the extruder tends to stay in the extruder, and the polyester Foreign matter due to thermal deterioration was easily generated in the polyester. If the foreign matter remains in the polyester when the polyester is stretched after the polyester is extruded from the extruder, stretching unevenness is likely to occur.
 本発明は、延伸ムラが抑制されたポリエステルフィルム及びその製造方法、並びに、耐候性ムラが抑制された太陽電池用バックシートを提供することを目的とし、該目的を達成することを課題とする。 The present invention aims to provide a polyester film in which stretching unevenness is suppressed, a method for producing the same, and a solar cell backsheet in which weather resistance unevenness is suppressed, and to achieve the object.
 前記課題を達成するための具体的手段は以下の通りである。
<1> シリンダー内径Dが140mm以上300mm以下のベント式2軸押出機に、原料ポリエステルを供給し、前記シリンダー内径Dと、単位時間当たりの押出量Q(kg/hr.)と、スクリュー回転数N(rpm)とが、次の式(I)を満足する条件下、前記スクリュー回転数Nに0.01%~5%の変動を付与して、ポリエステルシートを溶融押出する押出工程、及び前記ポリエステルシートを冷却し、固化する冷却固化工程を含むポリエステルフィルムの製造方法である。
Specific means for achieving the above object are as follows.
<1> The raw material polyester is supplied to a vent type twin screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, the cylinder inner diameter D, the extrusion amount Q (kg / hr.) Per unit time, and the screw rotation speed. Extrusion step of melt-extruding a polyester sheet by giving a fluctuation of 0.01% to 5% to the screw rotation speed N under the condition that N (rpm) satisfies the following formula (I); It is the manufacturing method of the polyester film including the cooling solidification process which cools and solidifies a polyester sheet.
Figure JPOXMLDOC01-appb-M000002

 
Figure JPOXMLDOC01-appb-M000002

 
<2> 時間に対する前記スクリュー回転数Nを表す波形において、前記スクリュー回転数Nの平均値の±0.1%以上±3%以下となる回転数を表すピークの半値幅が、前記スクリュー回転数Nの平均値の逆数の1/100以上1/4以下である前記<1>に記載のポリエステルフィルムの製造方法である。 <2> In the waveform representing the screw rotational speed N with respect to time, the half-value width of the peak representing the rotational speed that is ± 0.1% to ± 3% of the average value of the screw rotational speed N is the screw rotational speed. It is a manufacturing method of the polyester film as described in said <1> which is 1/100 or more and 1/4 or less of the reciprocal number of the average value of N.
<3> 前記原料ポリエステルは、ポリエステルペレット及び前記ポリエステルペレットの全質量に対して0.01質量%~5質量%のポリエステル粉体を含む前記<1>または前記<2>に記載のポリエステルフィルムの製造方法である。 <3> The polyester film according to <1> or <2>, wherein the raw material polyester includes 0.01% by mass to 5% by mass of polyester powder with respect to the total mass of the polyester pellets and the polyester pellets. It is a manufacturing method.
<4> 前記押出工程は、さらに、溶融押出したポリエステルシートに1%~30%の厚み変動を与える前記<1>~前記<3>のいずれか1項に記載のポリエステルフィルムの製造方法である。 <4> The extrusion process is the method for producing a polyester film according to any one of <1> to <3>, wherein the polyester sheet further gives a thickness variation of 1% to 30% to the melt-extruded polyester sheet. .
<5> さらに、溶融押出されたポリエステルシートを搬送して、縦延伸及び横延伸してポリエステルフィルムを得る延伸工程を含み、
 前記縦延伸は、前記ポリエステルシートの延伸を開始するときの、前記ポリエステルシートの搬送速度を30m/分~100m/分とし、かつ、前記搬送速度に0.01%~1%の変動を与えて行なう前記<1>~前記<4>のいずれか1項に記載のポリエステルフィルムの製造方法である。
<5> In addition, a melt-extruded polyester sheet is conveyed, and includes a stretching step in which a polyester film is obtained by longitudinal stretching and lateral stretching,
In the longitudinal stretching, when the stretching of the polyester sheet is started, the transport speed of the polyester sheet is set to 30 m / min to 100 m / min, and the transport speed is varied by 0.01% to 1%. The method for producing a polyester film as described in any one of <1> to <4>.
<6> 時間に対する前記搬送速度を表す波形において、前記搬送速度の平均値の±0.1%以上±1%以下となる搬送速度を表すピークの半値幅が、前記搬送速度の平均値の逆数の1/100以上1/4以下である<5>に記載のポリエステルフィルムの製造方法である。 <6> In the waveform representing the transport speed with respect to time, the half width of the peak representing the transport speed that is ± 0.1% to ± 1% of the average value of the transport speed is the reciprocal of the average value of the transport speed. It is a manufacturing method of the polyester film as described in <5> which is 1/100 or more and 1/4 or less.
<7> 前記縦延伸は、前記ポリエステルシートの延伸を開始したときのポリエステルシートに、前記ポリエステルシートの厚み方向に、0.1℃~30℃の温度分布を与えて行なう前記<5>または前記<6>に記載のポリエステルフィルムの製造方法である。 <7> The longitudinal stretching is performed by giving a temperature distribution of 0.1 ° C. to 30 ° C. in the thickness direction of the polyester sheet to the polyester sheet when stretching of the polyester sheet is started. <6> A method for producing a polyester film according to <6>.
<8> 前記横延伸は、前記ポリエステルシートの端部を把持して、前記ポリエステルシートを、前記搬送方法と直交する方向に拡幅し、かつ、前記ポリエステルシートの搬送速度に0.1%~5%の変動を付与して行なう前記<5>~前記<7>のいずれか1つに記載のポリエステルフィルムの製造方法である。 <8> The lateral stretching is performed by grasping an end portion of the polyester sheet, widening the polyester sheet in a direction orthogonal to the conveying method, and 0.1% to 5% in the conveying speed of the polyester sheet. %. The method for producing a polyester film according to any one of <5> to <7>, wherein the production is performed with a variation of%.
<9> 時間に対する前記搬送速度を表す波形において、前記搬送速度の平均値の±0.1%以上±5%以下となる搬送速度を表すピークの半値幅が、前記搬送速度の平均値の逆数の1/100以上1/4以下である前記<8>に記載のポリエステルフィルムの製造方法である。 <9> In the waveform representing the conveyance speed with respect to time, the half width of the peak representing the conveyance speed that is ± 0.1% to ± 5% of the average value of the conveyance speed is the reciprocal of the average value of the conveyance speed. It is a manufacturing method of the polyester film as described in said <8> which is 1/100 or more and 1/4 or less.
<10> 前記縦延伸と前記横延伸とがなされた2軸延伸後のポリエステルフィルムの厚みが、30μm~400μmである前記<5>~前記<9>のいずれか1つに記載のポリエステルフィルムの製造方法である。 <10> The polyester film according to any one of <5> to <9>, wherein the thickness of the biaxially stretched polyester film subjected to the longitudinal stretching and the lateral stretching is 30 μm to 400 μm. It is a manufacturing method.
<11> 前記原料ポリエステルは、1ppm~50ppmのチタン元素を含む前記<1>~前記<10>のいずれか1つに記載のポリエステルフィルムの製造方法である。 <11> The method for producing a polyester film according to any one of <1> to <10>, wherein the raw material polyester contains 1 ppm to 50 ppm of titanium element.
<12> 前記押出工程は、前記ベント式2軸押出機内の原料ポリエステルの温度を、1秒~10分の間、300℃~350℃にした後、290℃以下に降温する温度条件下で、ポリエステルシートを溶融押出する前記<1>~前記<11>のいずれか1つに記載のポリエステルフィルムの製造方法である。 <12> In the extrusion step, the temperature of the raw material polyester in the vented twin-screw extruder is set to 300 ° C. to 350 ° C. for 1 second to 10 minutes, and then cooled to 290 ° C. or lower. The method for producing a polyester film according to any one of <1> to <11>, wherein the polyester sheet is melt-extruded.
<13>
 前記スクリュー回転数Nにおける変動の発生頻度が0.01回/秒~50回/秒である前記<1>~前記<12>のいずれか1つに記載のポリエステルフィルムの製造方法である。
<14>
 前記ポリエステルシート搬送速度における変動の発生頻度が0.01回/秒~50回/秒である前記<8>に記載のポリエステルフィルムの製造方法である。
<15>
 前記<1>~前記<14>のいずれか1つに記載のポリエステルフィルムの製造方法で製造されたポリエステルフィルムである。
<13>
The method for producing a polyester film according to any one of <1> to <12>, wherein the occurrence frequency of fluctuation in the screw rotation speed N is 0.01 times / second to 50 times / second.
<14>
The method for producing a polyester film according to <8>, wherein the occurrence frequency of fluctuation in the polyester sheet conveying speed is 0.01 times / second to 50 times / second.
<15>
A polyester film produced by the method for producing a polyester film according to any one of <1> to <14>.
<16>
 前記<15>に記載のポリエステルフィルムを用いた太陽電池用バックシートである。
<17>
 透明基板と、前記<16>に記載の太陽電池用バックシートとが、太陽電池素子を挟んで互いに張り合われた積層体を含む、太陽電池発電モジュールである。
<16>
It is a solar cell backsheet using the polyester film as described in said <15>.
<17>
A solar cell power generation module including a laminate in which a transparent substrate and the solar cell backsheet described in <16> are bonded to each other with a solar cell element interposed therebetween.
 本発明によれば、延伸ムラが抑制されたポリエステルフィルム及びその製造方法、並びに、耐候性ムラが抑制された太陽電池用バックシートを提供することができる。 According to the present invention, it is possible to provide a polyester film in which stretch unevenness is suppressed, a method for producing the same, and a solar cell backsheet in which weather resistance unevenness is suppressed.
ベント式2軸押出機の側面図である。It is a side view of a vent type twin screw extruder. 2軸延伸機の上面図である。It is a top view of a biaxial stretching machine. ベント式2軸押出機と、縦延伸装置と、横延伸装置とを直列に接続した2軸延伸機の上面図である。It is a top view of the biaxial stretching machine which connected the vent type biaxial extruder, the longitudinal stretching apparatus, and the transverse stretching apparatus in series. ベント式2軸押出機と、縦延伸装置と、横延伸装置とを直列に接続した2軸延伸機の側面図である。It is a side view of the biaxial stretching machine which connected the bent type biaxial extruder, the longitudinal stretching apparatus, and the horizontal stretching apparatus in series. 本発明の時間に対するスクリュー回転数Nを表す波形の一例である。It is an example of the waveform showing the screw speed N with respect to the time of this invention. 本発明の時間に対するスクリュー回転数Nを表す波形の他の例である。It is another example of the waveform showing the screw speed N with respect to the time of this invention.
<ポリエステルフィルムの製造方法>
 本発明のポリエステルフィルムの製造方法は、シリンダー内径Dが140mm以上300mm以下のベント式2軸押出機に、原料ポリエステルを供給し、前記シリンダー内径Dと、単位時間当たりの押出量Q(kg/hr.)と、スクリュー回転数N(rpm)とが、次の式(I)を満足する条件下、前記スクリュー回転数Nに0.01%~5%の変動を付与して、ポリエステルシートを溶融押出する押出工程、及び前記ポリエステルシートを冷却し、固化する冷却固化工程を含む構成としたものである。
<Production method of polyester film>
The production method of the polyester film of the present invention is such that the raw material polyester is supplied to a vent type twin-screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, and the cylinder inner diameter D and the extrusion amount Q (kg / hr per unit time). .) And the screw rotation speed N (rpm) satisfy the following formula (I) to give a fluctuation of 0.01% to 5% to the screw rotation speed N to melt the polyester sheet The composition includes an extruding step of extruding and a cooling and solidifying step of cooling and solidifying the polyester sheet.
Figure JPOXMLDOC01-appb-M000003

 
Figure JPOXMLDOC01-appb-M000003

 
 本発明では、シリンダー内径Dが140mm以上300mm以下であるベント式2軸押出機を用いて、上記式(1)を満たす条件で原料ポリエステルを供給したとき、スクリュー回転数Nに0.01%~5%の変動を付与して、ポリエステルシートを溶融押出することで、ポリエステル中の異物の残存を抑えてポリエステルフィルムを製造することができる。
 本発明のポリエステルフィルムの製造方法を上記構成とすることで、ポリエステルフィルム中の異物の発生が抑制される理由は定かではないが、次の理由によるものと推察される。なお、ベント式2軸押出機を、単に「押出機」と称することもある。
In the present invention, when the raw material polyester is supplied under the condition satisfying the above formula (1) using a vent type twin screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, the screw rotation speed N is 0.01% to By giving a 5% variation and melt-extruding the polyester sheet, it is possible to produce a polyester film while suppressing the remaining foreign matter in the polyester.
Although it is not certain why the production of the polyester film of the present invention has the above configuration, the generation of foreign matters in the polyester film is not clear, but it is presumed to be due to the following reason. The vent type twin-screw extruder may be simply referred to as “extruder”.
 ベント式2軸押出機は、既述のように、スクリューを備えるシリンダーに、減圧作用による脱気のためのベント孔10を備えており、シリンダー内部と、シリンダー外部とが、ベント孔を介して通じている。ベント孔は、「ベント口」とも称する〔JIS B8650:2006、a)押出成形機、番号115参照〕。 As described above, the vent type twin-screw extruder is provided with a vent hole 10 for deaeration by depressurization in a cylinder having a screw, and the inside of the cylinder and the outside of the cylinder are connected via the vent hole. Communicates. The vent hole is also referred to as “vent port” [JIS B8650: 2006, a) Extruder, see number 115].
 押出機に投入された原料ポリエステルは、加熱され、スクリュー6によって混練されることにより溶融し、次第にメルトとなる。メルトが、ベント孔の近傍まで押し流されたとき、ベント孔から減圧されると、メルトがベント孔に吸い寄せられるため、ベント孔付近はメルトの流れが悪く、メルトが滞留し易い。そのため、ベント付近にメルトがこびりつき、そのまま加熱されるため熱分解が発生し易かった。ベント付近に付着した熱分解成分は、順次押し流されてくるメルトによって剥がれ落ち、メルト中に「異物」となって取り込まれると考えられる。
 かかる異物がメルトに取り込まれたまま、押出機から押出され、ポリエステルシートとなると、異物を含んでいるポリエステルシートを延伸したときに、異物に起因して延伸ムラが発生した。異物に起因する延伸ムラとは、より具体的には、ポリエステルシートのうち、異物が存在していない部分については延伸され易く、異物が存在する部分及びその近傍は延伸されにくくなることにより、ポリエステルフィルムが、場所によって厚みの異なるポリエステルフィルムとなる現象をいう。
The raw material polyester put into the extruder is heated and melted by being kneaded by the screw 6 and gradually becomes a melt. When the melt is pushed to the vicinity of the vent hole and the pressure is reduced from the vent hole, the melt is sucked to the vent hole, so that the melt flow is poor in the vicinity of the vent hole, and the melt tends to stay. For this reason, the melt sticks in the vicinity of the vent and is heated as it is, so that thermal decomposition easily occurs. It is considered that the thermal decomposition component adhering to the vicinity of the vent is peeled off by the melt that is sequentially washed away and is taken into the melt as “foreign matter”.
When such a foreign material was taken into the melt and extruded from an extruder to become a polyester sheet, uneven stretching occurred due to the foreign material when the polyester sheet containing the foreign material was stretched. More specifically, stretching unevenness caused by foreign matter is more easily stretched in a portion of the polyester sheet where no foreign matter is present, and the portion where the foreign matter is present and the vicinity thereof are less likely to be stretched. A phenomenon in which a film becomes a polyester film having a different thickness depending on the location.
 この延伸ムラは、延伸前のポリエステルシートの表面に升目をつけておき、ポリエステルシートを延伸した後の、当該升目の大きさの不均一性から計測することができる。
 なお、延伸ムラの原因となる異物は、既述の押出機内で発生するポリエステルの熱分解成分であるほか、ポリエステルの結晶(球晶)であることもある。当該球晶の抑制手法については後述する。
This stretching unevenness can be measured from the non-uniformity of the size of the mesh after the polyester sheet is stretched and the polyester sheet is stretched.
In addition, the foreign material which causes the stretching unevenness is not only a thermal decomposition component of the polyester generated in the above-described extruder, but also a polyester crystal (spherulite). The method for suppressing the spherulite will be described later.
 これに対し、本発明では、スクリューによるメルトの混練において、スクリュー回転数(N)に0.01%~5%の変動を付与する。すなわち、スクリュー回転数を一定に保ったまま押し出しを続けるのではなく、スクリュー回転数を、0.01%~5%の範囲で、大きくしたり、小さくする。スクリュー回転数に変動を与えることで、シリンダー中のメルトの流れが速まったり、抑制されるため、メルトに振動が与えられると考えられる。そして、かかる振動により、メルト中の異物や、ベント孔付近に付着した異物が粉砕されると考えられる。
 従って、本発明のポリエステルフィルムの製造方法によれば、溶融押出されたポリエステル中には異物が残存しにくく、溶融押出されたポリエステル(シート)を延伸したときに、異物に起因する延伸ムラを抑制することができるものと考えられる。
On the other hand, in the present invention, in melt kneading with a screw, a fluctuation of 0.01% to 5% is imparted to the screw rotation speed (N). That is, the extrusion is not continued while keeping the screw speed constant, but the screw speed is increased or decreased within a range of 0.01% to 5%. It is considered that the vibration is given to the melt because the flow of the melt in the cylinder is accelerated or suppressed by changing the screw rotation speed. And it is thought that the foreign material in a melt and the foreign material adhering to vent-hole vicinity are grind | pulverized by this vibration.
Therefore, according to the method for producing a polyester film of the present invention, foreign matter hardly remains in the melt-extruded polyester, and when the melt-extruded polyester (sheet) is stretched, uneven stretching due to the foreign matter is suppressed. It is thought that it can be done.
 なお、本発明では、押出機に投入されるポリエステルを「原料ポリエステル」、押出機から押出された後のポリエステルであって、延伸の対象となるポリエステルを「ポリエステルシート」、延伸が完了し、回収されるポリエステルを「ポリエステルフィルム」と称する。従って、縦延伸と横延伸とが行なわれた後のポリエステルであっても、さらに延伸の対象となるポリエステルは、本明細書では、ポリエステルシートと称する。
 以下、本発明のポリエステルフィルムの製造方法の詳細を、押出工程、ベント式2軸押出機、原料ポリエステル、および延伸工程の各項目に分けて説明する。
In the present invention, the polyester to be fed into the extruder is “raw polyester”, the polyester after being extruded from the extruder, and the polyester to be stretched is “polyester sheet”. This polyester is called “polyester film”. Therefore, even if the polyester has been subjected to longitudinal stretching and lateral stretching, the polyester to be further stretched is referred to as a polyester sheet in the present specification.
Hereafter, the detail of the manufacturing method of the polyester film of this invention is divided and demonstrated to each item of an extrusion process, a vent type biaxial extruder, raw material polyester, and an extending process.
〔押出工程〕
 押出工程は、シリンダー内径Dが140mm以上300mm以下のベント式2軸押出機に、原料ポリエステルを供給し、前記シリンダー内径Dと、単位時間当たりの押出量Q(kg/hr.)と、スクリュー回転数N(rpm)とが、次の式(I)を満足する条件下、前記スクリュー回転数Nに0.01%~5%の変動を付与して、ポリエステルシートを溶融押出する工程である。
[Extrusion process]
In the extrusion process, the raw material polyester is supplied to a vent type twin screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, the cylinder inner diameter D, the extrusion amount Q (kg / hr.) Per unit time, and screw rotation. The number N (rpm) is a step of melt-extruding the polyester sheet by imparting a variation of 0.01% to 5% to the screw rotational speed N under the condition satisfying the following formula (I).
Figure JPOXMLDOC01-appb-M000004

 
Figure JPOXMLDOC01-appb-M000004

 
 上記のように、押出工程では、特定の条件でスクリューを動作させる押出機を用いて、原料ポリエステルを溶融混練する。
 また、押出工程は、さらに、押出機内のポリエステルの温度を冷却する冷却工程を有していてもよい。
As described above, in the extrusion step, the raw material polyester is melt-kneaded using an extruder that operates a screw under specific conditions.
The extrusion process may further include a cooling process for cooling the temperature of the polyester in the extruder.
(ベント式2軸押出機)
 本発明におけるベント式2軸押出機は、内径Dが140mm以上300mm以下のシリンダーと、2本のスクリューとを、少なくとも備える。また、シリンダー内径Dと、単位時間当たりの押出量Q(kg/hr.)と、スクリュー回転数N(rpm)とは、前記式(I)を満足する条件で動作し、さらに、スクリュー回転数Nに0.01%~5%の変動が付与される。
 図1に、ベント式2軸押出機の一例(側面図)を示す。
 図1に示すように、ベント式2軸押出機100(押出機100)は、少なくとも、ホッパー2、シリンダー4、スクリュー6、逆ネジスクリュー8、ベント孔10、及び、押出口12を有し、スクリュー6は、駆動装置Mによって回転する。
(Bent type twin screw extruder)
The vent type twin-screw extruder according to the present invention includes at least a cylinder having an inner diameter D of 140 mm or more and 300 mm or less and two screws. Further, the cylinder inner diameter D, the extrusion amount Q (kg / hr.) Per unit time, and the screw rotation speed N (rpm) operate under the conditions satisfying the above formula (I), and further the screw rotation speed. N is given a variation of 0.01% to 5%.
FIG. 1 shows an example (side view) of a vent type twin screw extruder.
As shown in FIG. 1, the vent type twin screw extruder 100 (extruder 100) has at least a hopper 2, a cylinder 4, a screw 6, a reverse screw screw 8, a vent hole 10, and an extrusion port 12. The screw 6 is rotated by the driving device M.
 ホッパー2は、原料ポリエステルの投入口であり、ホッパー2から押出機100に投入された原料ポリエステルは、シリンダー4によって混練されながら、押出口12に向って移送される。
 原料ポリエステルは、押出機100の温度制御装置(図示せず)によって加熱され、また、スクリュー6や逆ネジスクリュー8によって剪断されることによって、投入された原料ポリエステルのうち、シリンダー4や、スクリュー6等に接触する部分から徐々に可塑化し、溶融してメルト(溶融樹脂)となる。ベント孔10には、図示しない減圧装置(減圧ポンプ等)が接続され、原料ポリエステルの投入と共に押出機100に取り込まれた空気や、原料ポリエステルの溶融混練の際に発生した水分等が、ベント孔10から取り除かれる。
 最終的には、メルトは、押出口12から押出機100の外に押出され、図示しないキャスティングドラム等によって、シート状に成形されると共に、冷却され固化する。
 以下、番号を省略して説明する。
The hopper 2 is an inlet for raw material polyester, and the raw material polyester charged into the extruder 100 from the hopper 2 is transferred toward the extrusion port 12 while being kneaded by the cylinder 4.
The raw material polyester is heated by a temperature control device (not shown) of the extruder 100 and is sheared by the screw 6 and the reverse screw screw 8, so that the cylinder 4 and the screw 6 among the supplied raw material polyesters. It gradually plasticizes from the part in contact with etc. and melts into a melt (molten resin). The vent hole 10 is connected to a decompression device (decompression pump or the like) (not shown), and the air taken into the extruder 100 when the raw material polyester is charged, the moisture generated during the melt kneading of the raw material polyester, etc. Removed from 10.
Eventually, the melt is extruded out of the extruder 100 from the extrusion port 12, and is formed into a sheet shape by a casting drum or the like (not shown), and is cooled and solidified.
Hereinafter, description will be made with the number omitted.
 シリンダーは、バレルとも称し〔JIS B8650:2006、a)押出成形機、番号110参照〕、シリンダー中を流れる原料ポリエステルを加熱または冷却する温度制御装置を備えていてもよい。
 本発明において、シリンダーの内径(直径)Dは、140mm以上である。シリンダーの内径Dが140mmよりも小さいと、押出機100中でのメルトの表面積が増加する。すなわち、スクリューやシリンダーに接する原料ポリエステルの量が増大し、剪断発熱を受け易くなるため、熱分解による異物が発生し易い。
 シリンダーの内径Dは、150mm~300mmが好ましく、より好ましくは、160mm~260mmである。シリンダーの内径Dが300mmを超えると、スクリュー径と共に増大するスクリューとバレルの間の隙間に樹脂が滞留し易く異物となり易い。
The cylinder is also referred to as a barrel (see JIS B8650: 2006, a) Extruder, No. 110), and may be provided with a temperature control device for heating or cooling the raw material polyester flowing in the cylinder.
In the present invention, the inner diameter (diameter) D of the cylinder is 140 mm or more. When the inner diameter D of the cylinder is smaller than 140 mm, the surface area of the melt in the extruder 100 increases. That is, since the amount of the raw material polyester that comes into contact with the screw or the cylinder increases and it becomes easy to receive shearing heat generation, foreign matters are easily generated due to thermal decomposition.
The inner diameter D of the cylinder is preferably 150 mm to 300 mm, more preferably 160 mm to 260 mm. If the inner diameter D of the cylinder exceeds 300 mm, the resin tends to stay in the gap between the screw and the barrel, which increases with the screw diameter, and easily becomes a foreign matter.
 ベント孔は、図1においては、逆ネジスクリューが備えられている位置よりも下流側(押出口側)に位置し、押出機に1つのみ備えられているが、より上流側に位置していてもよいし、図1に示すベント孔の他に、当該ベント孔と、押出口との間に1つ以上のベント孔を有していてもよい。
 本発明においては、ベント孔はシリンダーの入り口側14から計測して、シリンダーの全長Lの1/3の位置に設置することが好ましい。なお、シリンダーの全長Lは、シリンダー内部の長さをいい、原料ポリエステルが入る側の端部(入り口側14)と、押出口12側の端部との距離を指す。
In FIG. 1, the vent hole is located on the downstream side (extrusion port side) from the position where the reverse screw is provided, and only one is provided in the extruder, but is located on the more upstream side. In addition to the vent hole shown in FIG. 1, one or more vent holes may be provided between the vent hole and the extrusion port.
In the present invention, the vent hole is preferably installed at a position 1/3 of the total length L of the cylinder as measured from the inlet side 14 of the cylinder. The total length L of the cylinder refers to the length inside the cylinder, and refers to the distance between the end portion (entrance side 14) where the raw material polyester enters and the end portion on the extrusion port 12 side.
 押出機は、スクリューを2本(2軸)備えており、スクリューは、2本が同じ方向に回転するものであっても、異なる方向に回転するものであってもよい。また、2本のスクリューが近接し、スクリューの歯が噛み合う噛み合い型であってもよいし、歯が噛み合わない非噛み合い型であってもよい。
 スクリューは、原料ポリエステルを押出口に移送する順方向のスクリューのみで構成されていてもよいし、図1に示すように、スクリューの一部に、原料ポリエステルを押し戻す構造の逆ネジスクリューを備えていてもよい。
The extruder includes two screws (two axes), and the screws may rotate in the same direction or in different directions. Further, a meshing type in which two screws are close to each other and the teeth of the screw mesh with each other may be used, or a non-meshing type in which the teeth are not meshed with each other may be used.
The screw may be composed of only a forward screw for transferring the raw material polyester to the extrusion port, or as shown in FIG. May be.
 スクリューは、回転数N(rpm)に応じて、原料ポリエステルの移送量が制御され、押出機から溶融押出されるポリエステルシートの単位時間当たりの押出量Q(kg/hr.)が変化する。ここで、本発明においては、シリンダーの内径Dと、スクリュー回転数Nと、メルトの単位時間当たりの押出量Qとが、下記式(I)を満たす。 The screw transfers the raw polyester according to the rotational speed N (rpm), and the extrusion amount Q (kg / hr.) Per unit time of the polyester sheet melt-extruded from the extruder changes. Here, in the present invention, the inner diameter D of the cylinder, the screw rotation speed N, and the extrusion amount Q per unit time of the melt satisfy the following formula (I).
Figure JPOXMLDOC01-appb-M000005

 
Figure JPOXMLDOC01-appb-M000005

 
 ここで、Q/Nはスクリュー1回転あたりの押出量(吐出量)であり、この値を、シリンダーの内径Dの2.8乗に比例させて大きくすることが好ましいことを示す。即ち、シリンダーの内径Dの2.8乗に比例する範囲でQ/Nを大きくすることで、剪断発熱を抑制することができ好ましい。
 シリンダーの内径Dの増大に伴う押出機内のポリエステル(メルト)が搬送される体積は、Dの3乗に比例するが、現実にはこの値より多少低めにするのが剪断抑制に有効なことを経験的に見つけたことから、Dの2.8乗に比例する範囲でQ/Nの量を規定している。式(I)に示す「D2.8」の係数は、実験を行い異物の発生状況から求めた境界値である。
Here, Q / N is the extrusion amount (discharge amount) per one screw rotation, and it is preferable to increase this value in proportion to the 2.8th power of the inner diameter D of the cylinder. That is, it is preferable to increase the Q / N within a range that is proportional to the 2.8th power of the inner diameter D of the cylinder, because shear heat generation can be suppressed.
The volume in which the polyester (melt) in the extruder is conveyed as the cylinder inner diameter D increases is proportional to the cube of D. Since it was found empirically, the amount of Q / N is specified in a range proportional to D to the 2.8th power. The coefficient of “D 2.8 ” shown in the formula (I) is a boundary value obtained from experiments and the occurrence of foreign matter.
 前記式(I)を満足することで、スクリューの剪断作用による過度の発熱を抑制しつつ脱気効率を高め、ポリエステルの固有粘度(Intrinsic Viscosity;IV)の低下を防止することができる。
 Q/Nが、「15.8×10-6×D2.8」を超えると、低回転数かつ低剪断となり、シリンダー内のメルトが、ベント孔付近に滞留し易く、メルト、すなわち溶融したポリエステルの熱分解が発生するため、異物が増加する。一方、Q/Nが、「5.2×10-6×D2.8」を下回ると、高回転数かつ高剪断となり、メルトが剪断発熱を受け、熱分解し易く異物が増加する。
 Q/Nは、下記式(II)を満たすことが好ましく、さらに下記式(III)を満たすことが好ましい。
By satisfying the formula (I), it is possible to increase the deaeration efficiency while suppressing excessive heat generation due to the shearing action of the screw, and to prevent a decrease in intrinsic viscosity (IV) of the polyester.
When Q / N exceeds “15.8 × 10 −6 × D 2.8 ”, the rotation speed is low and the shear is low, and the melt in the cylinder tends to stay near the vent hole and melts, that is, melts. Since thermal decomposition of polyester occurs, foreign matter increases. On the other hand, when the Q / N is less than “5.2 × 10 −6 × D 2.8 ”, the high rotational speed and the high shear are generated, the melt is subjected to shearing heat generation, and is easily thermally decomposed to increase foreign matters.
Q / N preferably satisfies the following formula (II), and more preferably satisfies the following formula (III).
Figure JPOXMLDOC01-appb-M000006

 
Figure JPOXMLDOC01-appb-M000006

 
 さらに、本発明では、上記式(I)を満足する範囲でスクリューを駆動すると共に、スクリュー回転数Nに0.01%~5%の変動を付与する。
 スクリュー回転数Nに変動を与えることにより、ベント孔に付着するメルトに振動を与え、メルトの滞留を抑止することができる。その結果、メルトの熱分解を抑制することができるため、異物の発生を抑制することができる。また、メルト中に異物が取り込まれてしまった場合でも、スクリュー回転数Nに変動を与えることにより、メルト中の異物に振動を与えるので、異物を破砕することができる。
 従って、押出機からメルトが押出され、シート状に成形されたポリエステルを延伸した場合にも、異物に起因する延伸ムラを抑制することができる。
Further, in the present invention, the screw is driven within the range satisfying the above formula (I), and a fluctuation of 0.01% to 5% is given to the screw rotation speed N.
By giving fluctuation to the screw rotation speed N, it is possible to vibrate the melt adhering to the vent hole and to suppress the stagnation of the melt. As a result, since the thermal decomposition of the melt can be suppressed, the generation of foreign matters can be suppressed. Even when foreign matter is taken into the melt, the foreign matter in the melt is vibrated by changing the screw rotational speed N, so that the foreign matter can be crushed.
Therefore, even when the melt is extruded from the extruder and the polyester molded into a sheet is stretched, stretching unevenness due to foreign matters can be suppressed.
 本発明において、「スクリュー回転数Nに0.01%~5%の変動を付与する」としては、具体的には、スクリュー回転数を、式(I)を満たすスクリュー回転数よりも0.01%~5%大きい回転数にする(メルトの移送速度を加速する)ことと、スクリュー回転数を、式(I)を満たすスクリュー回転数よりも0.01%~5%小さい回転数にする(メルトの移送速度を減速する)ことが挙げられる。本発明においては、異物の破砕力の観点から、スクリュー回転数を、式(I)を満たすスクリュー回転数よりも0.01%~5%大きい回転数にする(メルトの移送速度を加速する)ことがより好ましい。 In the present invention, “adding a fluctuation of 0.01% to 5% to the screw rotation speed N” specifically means that the screw rotation speed is set to 0.01 than the screw rotation speed satisfying the formula (I). % To 5% higher (accelerating the melt transfer speed) and the screw speed to 0.01% to 5% smaller than the screw speed satisfying the formula (I) ( Reducing the melt transfer speed). In the present invention, from the viewpoint of the crushing force of foreign matter, the screw rotation speed is set to 0.01% to 5% higher than the screw rotation speed satisfying the formula (I) (the melt transfer speed is accelerated). It is more preferable.
 スクリュー回転数Nの変動は、スクリューの駆動装置の電流値に変動を与えることで達成することができる。変動は、1分間の間の最大速度と最低速度の差を平均値で割り百分率で表記したものであり、変動の発生頻度〔回/秒〕は、0.01~50の範囲であることが好ましく、0.1~10がより好ましい。
 なお、スクリュー回転数Nの変動は、スパイク状に加えるのが好ましく、不連続に与えることが好ましい。
 スクリュー回転数Nの変動は、0.1%~3%であることが好ましく、0.3%~1%であることがより好ましい。
The fluctuation of the screw speed N can be achieved by giving a fluctuation to the current value of the screw driving device. The fluctuation is the difference between the maximum speed and the minimum speed during one minute divided by the average value and expressed as a percentage, and the fluctuation occurrence frequency [times / second] may be in the range of 0.01-50. Preferably, 0.1 to 10 is more preferable.
In addition, it is preferable to add the fluctuation | variation of the screw speed N to a spike shape, and to give discontinuously.
The fluctuation of the screw rotation speed N is preferably 0.1% to 3%, and more preferably 0.3% to 1%.
 スクリュー回転数Nの変動は、時間に対するスクリュー回転数Nを表す波形において、スクリュー回転数Nの平均値の±0.1%以上となるスクリュー回転数を表すピークの半値幅が、スクリュー回転数Nの平均値の逆数の1/4以下となるように、付与することが好ましい。
 ここで、「時間に対するスクリュー回転数を表す波形」において、「ピーク」とは、スクリュー回転数Nの平均値(Nave)の±0.1%以上となる回転数を有する極大波形ないし極小波形を指す。
 従って、『スクリュー回転数Nの平均値の±0.1%以上となるスクリュー回転数を表すピーク』とは、具体的には、「スクリュー回転数Nの平均値の+0.1%以上となるスクリュー回転数を表すピーク(極大ピーク)」および「スクリュー回転数Nの平均値の-0.1%以上となるスクリュー回転数を表すピーク(極小ピーク)」の少なくとも一方を表す。
 また、スクリュー回転数Nの平均値とは、「任意の10分間におけるスクリュー回転数Nの平均値」をいう。
The fluctuation of the screw rotation speed N indicates that the half width of the peak representing the screw rotation speed that is ± 0.1% or more of the average value of the screw rotation speed N in the waveform representing the screw rotation speed N with respect to time is the screw rotation speed N. It is preferable to give so that it may become 1/4 or less of the reciprocal number of the average value.
Here, in the “waveform representing the screw rotation speed with respect to time”, the “peak” means a maximum waveform or a minimum waveform having a rotation speed that is ± 0.1% or more of the average value (Nave) of the screw rotation speed N. Point to.
Therefore, “the peak representing the screw rotation number that is ± 0.1% or more of the average value of the screw rotation number N” specifically means “+ 0.1% or more of the average value of the screw rotation number N”. It represents at least one of a peak representing the screw rotation speed (maximum peak) and a “peak representing the screw rotation speed that is −0.1% or more of the average value of the screw rotation speed N (minimum peak)”.
Further, the average value of the screw rotation speed N refers to “an average value of the screw rotation speed N in an arbitrary 10 minutes”.
 スクリュー回転数N〔rpm〕の逆数は、換言すれば、スクリュー1回転に要する時間〔分〕を意味する。従って、前記ピークの半値幅をΔt、スクリュー1回転に要する時間〔分〕をtとしたとき、「スクリュー回転数Nの平均値の逆数の1/4以下」は、Δt≦t×1/4、すなわち、Δt/t≦1/4と近似することができる。 In other words, the reciprocal of the screw rotation speed N [rpm] means the time [minute] required for one screw rotation. Accordingly, when the half-width of the peak is Δt and the time [minute] required for one rotation of the screw is t, “less than 1/4 of the reciprocal of the average value of the screw rotation speed N” is Δt ≦ t × 1/4. That is, it can be approximated as Δt / t ≦ 1/4.
 スクリュー回転数に変動を付与するタイミングを、図4を用いて説明する。
 図4には、縦軸にスクリュー回転数、横軸に時間をとった波形の例が示されている。波形の形状は、時間に対するスクリュー回転数をプロットしたときの軌跡(プロット群)を示し、換言すれば、スクリュー回転数の変動を表している。時間に対するスクリュー回転数をプロットしたときの軌跡が、時間軸(横軸)と平行する一直線であれば、スクリュー回転数が一定であり、変動しないことを意味する。一方、プロットの軌跡が波状に上下する場合は、スクリュー回転数が変動することを意味する。さらに、例えば、極大波形として表されるパルス波の如く、スクリュー回転数が急激に大きくなり、かつ、急激に小さくなる場合には、スクリュー回転数を急激に早めると共に、急激に元に戻すことを意味する。
The timing which gives a fluctuation | variation to screw rotation speed is demonstrated using FIG.
FIG. 4 shows an example of a waveform in which the vertical axis represents the screw rotation speed and the horizontal axis represents time. The shape of the waveform shows a locus (plot group) when the screw rotation speed is plotted against time, in other words, the fluctuation of the screw rotation speed. If the trajectory when the screw rotation speed is plotted against time is a straight line parallel to the time axis (horizontal axis), it means that the screw rotation speed is constant and does not vary. On the other hand, when the locus of the plot goes up and down in a wave shape, it means that the screw rotation speed fluctuates. Furthermore, for example, when the screw rotation speed suddenly increases and decreases rapidly like a pulse wave represented as a maximal waveform, the screw rotation speed must be rapidly increased and returned to its original value rapidly. means.
 ここで、図4に示される波形は、スクリュー回転数の平均値(Nave)付近にて上下している波形と、スクリュー回転数が急激に増大すると共に、極大値(Nmax)を境に急激に減少した突起状の極大波形が示されている。このような波形を「スパイク状」とも称する。なお、図4には、スクリュー回転数の平均値よりも+0.1%以上大きな回転数を極大値とする極大ピークが示されているが、本発明においては、スクリュー回転数の平均値より下側(マイナス側)に、0.1%以上突出したピーク(極小ピーク)も、「ピーク」に含まれる。 Here, the waveform shown in FIG. 4 is a waveform that rises and falls in the vicinity of the average value (Nave) of the screw rotation speed, and the screw rotation speed increases abruptly, and abruptly reaches the maximum value (Nmax) as a boundary. A reduced protuberance maximum waveform is shown. Such a waveform is also referred to as “spike”. FIG. 4 shows a maximum peak in which the maximum rotation speed is + 0.1% or more than the average value of the screw rotation speed. In the present invention, it is lower than the average rotation speed of the screw. A peak (minimum peak) protruding 0.1% or more on the side (minus side) is also included in the “peak”.
 極小ピークを、図5を用いて説明する。
 図5には、図4と同様に、縦軸にスクリュー回転数、横軸に時間をとった波形の例が示されている。波形は2種類示されており、1つ(左側)は極小ピークP1を示し、もう1つ(右側)は極小ピークP2と極大ピークP3とが連続している波形を示す。
 極小ピークは、図5の左側の波形であるP1に示すように、スクリュー回転数の平均値(Nave)よりも下側(マイナス側)に、0.1%以上突出した波形であって、スクリュー回転数が急激に減少すると共に、極小値(Nmin)を境に急激に増大した突起状の極小波形として示される。
 図5に示される極小ピークP1の半値幅をΔt1としたとき、Δt1は、スクリュー回転数の平均値の逆数の1/4以下となればよい。
 図5の右側の波形(P2とP3)については、後述する。
The minimum peak will be described with reference to FIG.
FIG. 5 shows an example of a waveform in which the vertical axis represents the screw speed and the horizontal axis represents time, as in FIG. Two types of waveforms are shown. One (left side) shows a minimum peak P1, and the other (right side) shows a waveform in which a minimum peak P2 and a maximum peak P3 are continuous.
The minimum peak is a waveform protruding 0.1% or more below (minus side) the average value (Nave) of the number of screw rotations as indicated by P1 on the left side of FIG. It is shown as a projection-like minimal waveform that rapidly decreases with the minimum value (Nmin) as the rotational speed decreases rapidly.
When the half-value width of the minimum peak P1 shown in FIG.
The waveforms on the right side of FIG. 5 (P2 and P3) will be described later.
 極大ピークの極大値(Nmax)は、スクリュー回転数の平均値(Nave)の+0.1%~+0.3%であることが好ましく、極小ピークの極小値(Nmin)は、スクリュー回転数の平均値(Nave)の-0.1%~-0.3%であることが好ましい。 The maximum value (Nmax) of the maximum peak is preferably + 0.1% to + 0.3% of the average value (Nave) of the screw rotation speed, and the minimum value (Nmin) of the minimum peak is the average value of the screw rotation speed. The value (Nave) is preferably -0.1% to -0.3%.
 スクリュー回転数の変動は、極大波形となる加速側の変動を与えた直後に、極小波形となる減速側の変動を与えたり、反対に、極小波形となる減速側の変動を与えた直後に、極大波形となる加速側の変動を与えてもよい。この場合、極大波形の半値幅をΔt1、極小波形の半値幅をΔt2としたとき、(Δt1+Δt2)が、スクリュー回転数の平均値の逆数の1/4以下となればよい。
 このように、極大波形ないし極小波形を連続させる変動を与える場合は、連続する極大波形ないし極小波形の各半値幅Δtの合計(ΣΔt)がスクリュー回転数の平均値の逆数の1/4以下となればよい。
Immediately after giving the fluctuation on the acceleration side that becomes the maximum waveform, the fluctuation of the screw rotation speed gives the fluctuation on the deceleration side that becomes the minimum waveform, or on the contrary, immediately after giving the fluctuation on the deceleration side that becomes the minimum waveform, You may give the acceleration side fluctuation | variation used as a maximum waveform. In this case, when the half-value width of the maximum waveform is Δt1 and the half-value width of the minimum waveform is Δt2, (Δt1 + Δt2) may be equal to or less than ¼ of the reciprocal of the average value of the screw rotation speed.
Thus, in the case of giving a variation in which the maximal waveform or the minimal waveform is made continuous, the sum (ΣΔt) of each half-value width Δt of the continuous maximal waveform or the minimal waveform is ¼ or less of the reciprocal of the average value of the screw rotation speed. It only has to be.
 極小波形となる減速側の変動を与えた直後に、極大波形となる加速側の変動を与えた場合の、スクリュー回転数の波形の変化を、前記図5を用いて説明する。
 図5の右側に、極小波形である極小ピークP2と、極大波形である極大ピークP3とが隣接している波形の例が示されている。このように、極小波形となる減速側の変動を与えた直後に、極大波形となる加速側の変動を与えた場合、極小ピークP2と極大ピークP3とが連続して表れる。
 スクリュー回転数に、図5の右側に示す波形で表される変動を与える場合は、極小ピークP2の半値幅であるΔt2と、極大ピークP3の半値幅であるΔt3との和である(Δt2+Δt3)がスクリュー回転数の平均値の逆数の1/4以下となればよい。
The change in the screw rotation speed waveform in the case where the acceleration-side variation having the maximum waveform is applied immediately after the deceleration-side variation having the minimum waveform will be described with reference to FIG.
On the right side of FIG. 5, an example of a waveform in which a minimum peak P2 that is a minimum waveform and a maximum peak P3 that is a maximum waveform are adjacent to each other is shown. As described above, when the acceleration-side variation having the maximum waveform is applied immediately after the deceleration-side variation having the minimum waveform is applied, the minimum peak P2 and the maximum peak P3 appear continuously.
When the fluctuation represented by the waveform shown on the right side of FIG. 5 is given to the screw rotation speed, it is the sum of Δt2 that is the half-value width of the minimum peak P2 and Δt3 that is the half-value width of the maximum peak P3 (Δt2 + Δt3). May be ¼ or less of the reciprocal of the average value of the screw rotation speed.
 スクリュー回転数Nを急激に上げ下げするには、時間に対するスクリュー回転数Nを表す波形のピークの半値幅Δtを、スクリュー回転数Nの平均値の逆数の1/4以下とすることが好ましい。前記ピークの半値幅Δtは、スクリュー回転数Nの平均値の逆数の1/10以下であることがより好ましい。
 図4または図5で示されるスパイク状の波形のように、間欠的にスクリュー回転数Nに振動を与えることで、より効率的にメルトに振動を与えることができ、好ましい。
In order to rapidly increase or decrease the screw rotation speed N, it is preferable that the half-value width Δt of the peak of the waveform representing the screw rotation speed N with respect to time be ¼ or less of the inverse of the average value of the screw rotation speed N. The half width Δt of the peak is more preferably 1/10 or less of the inverse of the average value of the screw rotation speed N.
As shown in the spike-like waveform shown in FIG. 4 or FIG. 5, it is preferable that vibration can be applied to the melt more efficiently by intermittently applying vibration to the screw rotation speed N.
 次いで、押出工程における原料ポリエステルの温度条件、その他好ましい態様について説明する。 Next, the temperature conditions of the raw material polyester in the extrusion process and other preferred embodiments will be described.
(温度条件)
 原料ポリエステルの溶融温度は、原料ポリエステルの融点(Tm)以上の温度、例えば、Tm+10℃以上とすればよいが、押出工程を経て製造されるポリエステルシートを厚手(例えば、3mm以上)とするには、押出工程を次の温度条件下で行なうことが好ましい。
 すなわち、押出工程は、ベント式2軸押出機内の原料ポリエステルの温度を、1秒~10分の間、300℃~350℃にした後、290℃以下に降温する温度条件下で行なうことが好ましい。
 加熱時間は、より好ましくは2秒以上5分以下、さらに好ましくは3秒以上3分以下である。
(Temperature conditions)
The melting temperature of the raw material polyester may be a temperature equal to or higher than the melting point (Tm) of the raw material polyester, for example, Tm + 10 ° C. or higher. To make the polyester sheet produced through the extrusion process thick (for example, 3 mm or higher) The extrusion process is preferably performed under the following temperature conditions.
That is, the extrusion step is preferably performed under a temperature condition in which the temperature of the raw material polyester in the vent type twin screw extruder is set to 300 ° C. to 350 ° C. for 1 second to 10 minutes and then lowered to 290 ° C. or less. .
The heating time is more preferably 2 seconds or more and 5 minutes or less, and further preferably 3 seconds or more and 3 minutes or less.
 押出し機からキャストドラム等の冷却部材上に溶融押出されたメルトは、冷却され、固化されてシート状に成形されるが、厚手のポリエステルシートではキャスト厚が厚くなり、蓄熱が大きいため冷却が遅れる。この結果、ポリエステルシート中の結晶(球晶)が成長し、ポリエステルシートを延伸する際に、延伸ムラの一因となる。
 成長した球晶の存在に起因する延伸ムラを抑制するために、上記のように、原料ポリエステルを300℃以上に曝すことが有効である。これにより原料ポリエステル中に存在する球晶を分子レベルで完全に融解し、または結晶を小さくすることができる。そのため、キャストドラム上に押出されたポリエステルシートが厚手であっても、延伸工程において延伸ムラを発生し難い。
 通常、ポリエチレンテレフタラート(PET)の結晶の融解は、250℃~260℃で起こるが、結晶を分子レベルまで完全に融解するには、少なくとも300℃が必要であることを本発明で見出した。
 なお、このような原料ポリエステルの結晶は、通常、原料ポリエステルをホッパーに投入する前の、原料ポリエステルを乾燥させる乾燥工程中に生成するが、原料ポリエステルを乾燥しなくても、ポリエステル中に結晶が生成する場合がある。ホッパーを介して押出機に投入された原料ポリエステルは、押出機中で加熱され、原料ポリエステルの温度が昇温していく最中に、結晶化温度を経由するため、その昇温過程で結晶(球晶)が生成することがある。
The melt melt-extruded from the extruder onto a cooling member such as a cast drum is cooled, solidified, and formed into a sheet, but with a thick polyester sheet, the cast thickness is thick and cooling is delayed due to large heat storage. . As a result, crystals (spherulites) in the polyester sheet grow and contribute to stretching unevenness when the polyester sheet is stretched.
In order to suppress stretching unevenness due to the presence of grown spherulites, it is effective to expose the raw material polyester to 300 ° C. or higher as described above. As a result, the spherulites present in the raw material polyester can be completely melted at the molecular level, or the crystals can be made smaller. Therefore, even if the polyester sheet extruded on the cast drum is thick, it is difficult to generate stretching unevenness in the stretching process.
Usually, melting of polyethylene terephthalate (PET) crystals occurs at 250 ° C. to 260 ° C., but it has been found in the present invention that at least 300 ° C. is required to completely melt the crystals to the molecular level.
Such raw material polyester crystals are usually produced during the drying step of drying the raw material polyester before the raw material polyester is put into the hopper. However, even if the raw material polyester is not dried, the crystals are formed in the polyester. May be generated. The raw material polyester charged into the extruder through the hopper is heated in the extruder and passes through the crystallization temperature while the temperature of the raw material polyester is rising. Spherulites) may form.
 上記のようにして生成した球晶を含むポリエステルを、1秒~10分の間、300℃~350℃加熱すると、結晶が融解し、または結晶を小さくすることができるので、キャストドラム上での冷却中に、球晶の残存構造により球晶が成長するのを抑制することができる。原料ポリエステルの加熱時間が上記時間未満では融解不足となり、ポリエステル中の球晶の残留構造をきっかけにして球晶が成長し易く、上記時間を越えると、メルトの過熱による熱分解により、異物が発生し易く、いずれも延伸ムラの原因となり易い。 When the polyester containing spherulites formed as described above is heated at 300 ° C. to 350 ° C. for 1 second to 10 minutes, the crystals melt or the crystals can be reduced. During cooling, it is possible to suppress the growth of spherulites due to the remaining structure of spherulites. If the heating time of the raw material polyester is less than the above time, melting will be insufficient, and spherulites will easily grow due to the residual structure of the spherulites in the polyester. Both are easy to cause unevenness in stretching.
 上記の加熱時間(1秒~10分間)、かつ上記加熱温度(300℃~350℃)で加熱した原料ポリエステルは、その後、290℃以下、より好ましくは280℃以下の降温条件で降温することが好ましい。これによりメルトの熱分解による異物の発生を抑制することができる。原料ポリエステルの降温は、具体的には、例えば、押出機のシリンダーに、シリンダーの外部の一部又は全部を覆うヒーターや冷媒を流す配管を設置して温度制御すればよい。 The raw material polyester heated at the above heating time (1 second to 10 minutes) and at the above heating temperature (300 ° C. to 350 ° C.) can then be cooled under a temperature decreasing condition of 290 ° C. or less, more preferably 280 ° C. or less. preferable. Thereby, generation | occurrence | production of the foreign material by thermal decomposition of a melt can be suppressed. Specifically, the temperature of the raw material polyester may be controlled by, for example, installing a heater or a refrigerant pipe covering a part or all of the outside of the cylinder in the cylinder of the extruder.
 また、押出機内での熱分解(ポリエステルの加水分解)を抑制する観点から、押出機内を窒素置換して、原料ポリエステルの溶融押出しを行なうことが好ましい。 Also, from the viewpoint of suppressing thermal decomposition (polyester hydrolysis) in the extruder, it is preferable to perform melt extrusion of the raw material polyester by replacing the inside of the extruder with nitrogen.
 溶融された原料ポリエステル(メルト)は、ギアポンプ、濾過器等を通して、押出ダイから押出す。押出ダイは、単に「ダイ」とも称する〔JIS B8650:2006、a)押出成形機、番号134参照〕。
 このとき、メルトは、単層で押出してもよいし、多層で押出してもよい。
The melted raw material polyester (melt) is extruded from an extrusion die through a gear pump, a filter or the like. The extrusion die is also simply referred to as “die” (see JIS B 8650: 2006, a) extrusion molding machine, number 134).
At this time, the melt may be extruded as a single layer or may be extruded as a multilayer.
 ダイから押出されたメルト(ポリエステル)は、厚みが3mm~5mm、好ましくは3.2mm~4.7mm、より好ましくは3.4mm~4.6mmのシート状にする。ポリエステルシートの厚さを5mm以下とすることで、メルトの蓄熱による冷却遅延を回避し、冷却遅延による球晶の生成を抑制することができる。また、押出すメルトの厚さを3mm以上とすることで、押出しから冷却までの間に、ポリエステル中のOH基やCOOH基がポリエステル内部に拡散され、加水分解発生の要因となるOH基及びCOOH基がポリエステル表面に露出することを抑制する。また、ポリエステルシートを延伸してポリエステルフィルムにするときに、延伸倍率を高くしても100μm以上の厚みを有する2軸延伸ポリエステルフィルムが得られる。また、ポリエステルシートの厚さが3mm以上であると、電気絶縁性を発現し易く、太陽電池バックシート用途に好適である。 The melt (polyester) extruded from the die is formed into a sheet having a thickness of 3 mm to 5 mm, preferably 3.2 mm to 4.7 mm, more preferably 3.4 mm to 4.6 mm. By setting the thickness of the polyester sheet to 5 mm or less, it is possible to avoid a cooling delay due to heat storage of the melt and to suppress the formation of spherulites due to the cooling delay. Moreover, by setting the thickness of the melt to be extruded to 3 mm or more, OH groups and COOH groups in the polyester are diffused into the polyester during the period from extrusion to cooling, and OH groups and COOH cause hydrolysis. Suppresses exposure of the group to the polyester surface. Further, when the polyester sheet is stretched to obtain a polyester film, a biaxially stretched polyester film having a thickness of 100 μm or more can be obtained even if the stretching ratio is increased. Moreover, when the thickness of the polyester sheet is 3 mm or more, it is easy to express electrical insulation, and it is suitable for solar cell backsheet applications.
(厚み変動)
 押出工程では、さらに、溶融押出したポリエステルシートに1%~30%の厚み変動を与えることが好ましい。
 既述の方法により、押出機から溶融押出されたポリエステルシートに、1%~30%の厚み変動(厚みムラ)を与えることで、ポリエステルシートを延伸する際に、延伸応力が変動し、増加または減少する。延伸応力が増加した際に、異物(押出機内で発生した熱分解成分の残存物、または成長した球晶)の周囲に応力集中が発生し、異物近傍も延伸され、延伸ムラが低減する。
(Thickness variation)
In the extrusion step, it is further preferable to give a thickness variation of 1% to 30% to the melt-extruded polyester sheet.
By giving a thickness variation (thickness unevenness) of 1% to 30% to the polyester sheet melt-extruded from the extruder by the above-described method, the stretching stress fluctuates and increases when the polyester sheet is stretched. Decrease. When the stretching stress increases, stress concentration occurs around the foreign material (residues of pyrolysis components generated in the extruder or grown spherulites), and the vicinity of the foreign material is also stretched to reduce stretching unevenness.
 このような厚み変動は、ポリエステルシートの搬送方向(MD)であってもよいし、当該搬送方向と直交する方向(TD)のいずれの方向にあってもよい。
 厚み変動は、押出機のスクリューの回転数に変動を与えたり、押出ダイに振動を与えることで、付与することができる。例えば、押出機のスクリューの回転数に変動を与えることによって、ポリエステルシートのMD方向に厚み変動を与えることができる。一方、ポリエステルシートのTD方向の厚み変動は、メルトを押出機から押出した後に、押出ダイを振動させることで付与することができる。
 ポリエステルシートの厚み(キャスト厚み)の変動量は、2%~25%であることがより好ましく、3%~20%であることがさらに好ましい。
Such thickness variation may be in the conveyance direction (MD) of the polyester sheet or in any direction of the direction (TD) orthogonal to the conveyance direction.
The thickness variation can be imparted by varying the number of rotations of the screw of the extruder or by vibrating the extrusion die. For example, thickness fluctuation can be given to MD direction of a polyester sheet by giving fluctuation to the number of rotations of the screw of an extruder. On the other hand, the thickness variation in the TD direction of the polyester sheet can be imparted by vibrating the extrusion die after the melt is extruded from the extruder.
The variation amount of the thickness (cast thickness) of the polyester sheet is more preferably 2% to 25%, and further preferably 3% to 20%.
〔冷却固化工程〕
 冷却固化工程は、押出工程により溶融押出されたポリエステルシートを冷却し、固化する工程である。
 押出ダイから押出されたメルトを冷却する手段は、特に制限されず、メルトに冷風を当てたり、キャストドラム(冷却キャストドラム)に接触させたり、水を霧吹きすればよい。冷却手段は、1つのみ行なってもよいし、2つ以上を組み合わせて行なってもよい。
 冷却手段は、上記の中でも、連続運転時のシート表面へのオリゴマー付着防止の観点から、冷風による冷却及びキャストドラムを用いた冷却の少なくとも一方が好ましい。さらには、押出機から押出されたメルトを冷風で冷却すると共に、メルトをキャストドラムに接触させて冷却することが特に好ましい。
[Cooling and solidification process]
The cooling and solidifying step is a step of cooling and solidifying the polyester sheet melt-extruded by the extrusion step.
The means for cooling the melt extruded from the extrusion die is not particularly limited, and it is sufficient to apply cold air to the melt, bring it into contact with a cast drum (cooled cast drum), or spray water. Only one cooling means may be performed, or two or more cooling means may be combined.
Among the above, the cooling means is preferably at least one of cooling by cold air and cooling using a cast drum from the viewpoint of preventing oligomer adhesion to the sheet surface during continuous operation. Furthermore, it is particularly preferable that the melt extruded from the extruder is cooled with cold air, and the melt is brought into contact with the cast drum and cooled.
 また、キャストドラム等を用いて冷却されたポリエステルは、剥ぎ取りロール等の剥ぎ取り部材を用いて、キャストドラム等の冷却部材から剥ぎ取られる。
 次に、原料ポリエステルの詳細を説明する。
Moreover, the polyester cooled using the cast drum etc. is peeled off from cooling members, such as a cast drum, using peeling members, such as a peeling roll.
Next, the detail of raw material polyester is demonstrated.
(原料ポリエステル)
 原料ポリエステルは、ポリエステルシート及びポリエステルフィルムの原料となり、ポリエステルを含んでいる材料であれば、特に制限されず、ポリエステルの他に、無機粒子や有機粒子のスラリーを含んでいてもよい。また、原料ポリエステルは、触媒由来のチタン元素を含んでいてもよい。
 まず、原料ポリエステルを、押出機に投入する際の形態の観点から説明し、次いで、ポリエステル及び添加物等の成分の観点から説明する。
(Raw material polyester)
The raw material polyester is not particularly limited as long as it is a raw material for the polyester sheet and the polyester film and contains polyester, and may contain a slurry of inorganic particles or organic particles in addition to the polyester. The raw material polyester may contain a titanium element derived from the catalyst.
First, the raw material polyester will be described from the viewpoint of the form when it is put into an extruder, and then will be described from the viewpoint of components such as polyester and additives.
 押出機に投入される原料ポリエステルの形態は、可塑化および溶融化のし易さの観点から、ペレット状であることが好ましい。
 また、原料ポリエステルに含まれるポリエステルには、異なる嵩密度を有する2種以上のポリエステルを使用することもできる。具体的には、ポリエステルの一部に再生ポリエステルを使用することが出来る。
 ところで、再生ポリエステルの中でもフィルムの端部を小片に粉砕した所謂フラフは、嵩密度が0.01~0.60の範囲であり、スクリューに上手く噛み込まずに供給口へ滞留すると言う問題がある。しかも、上記の様に嵩密度の低い材料の場合は、スクリューの輸送部でペレットとの輸送効率が異なる故に押出機先端での圧力変動が大きくなり、その結果、押出量の変動も増大する。従って、上記の様な嵩密度の低いフラフは、フラフ専用のチップ製造ラインで使用するのが困難である。
The form of the raw material polyester to be fed into the extruder is preferably a pellet from the viewpoint of ease of plasticization and melting.
Moreover, 2 or more types of polyester which has a different bulk density can also be used for polyester contained in raw material polyester. Specifically, recycled polyester can be used for a part of the polyester.
By the way, the so-called fluff obtained by pulverizing the end of the film into small pieces among the recycled polyester has a bulk density in the range of 0.01 to 0.60, and has a problem that it stays in the supply port without being well bitten by the screw. . In addition, in the case of a material having a low bulk density as described above, the pressure fluctuation at the tip of the extruder becomes large because the transportation efficiency with the pellet differs in the screw transportation section, and as a result, the fluctuation in the amount of extrusion also increases. Therefore, it is difficult to use a fluff having a low bulk density as described above on a chip production line dedicated to the fluff.
 しかしながら、本発明によれば、少なくとも一方のポリエステルの嵩密度が0.01~0.60であって、異なる嵩密度を有する2種以上のポリエステルであっても何ら問題なく溶融押出しを行うことができる。すなわち、本発明によれば、押出機先端の圧力変動は±5kg/cm2 以下となり、しかも、ベント孔でのメルトの表面積が増大するため、脱気能率が向上し、特にポリエステルの固有粘度の保持率が向上し、溶融押出後の固有粘度の低下を10%以下に抑えることができる。 However, according to the present invention, at least one polyester has a bulk density of 0.01 to 0.60, and two or more polyesters having different bulk densities can be melt-extruded without any problem. it can. That is, according to the present invention, the pressure fluctuation at the tip of the extruder is ± 5 kg / cm 2 or less, and the surface area of the melt at the vent hole is increased, so that the deaeration efficiency is improved, especially the intrinsic viscosity of the polyester. The retention rate is improved, and the decrease in intrinsic viscosity after melt extrusion can be suppressed to 10% or less.
 既述の式(I)に示す条件は、嵩密度の最も小さいポリエステルの固有粘度が、他のポリエステルの固有粘度よりも小さい場合に特に効果的である。その際の嵩密度は好ましくは0.6以下である。嵩密度が0.6より大きい場合は、固有粘度の保持率の改善効果が乏しくなる。逆に、嵩密度が0.01未満の場合は、当該ポリエステルの容積が増大するため、十分な原料供給量を確保するのが困難となり、また、供給配管中で原料閉塞などの問題が発生し易くなる。嵩密度が0.01~0.60のポリエステルの配合量は、全ポリエステルに対し、通常60%以下、好ましくは55%以下、更に好ましくは50%以下である。 The conditions shown in the above-described formula (I) are particularly effective when the intrinsic viscosity of the polyester having the smallest bulk density is smaller than the intrinsic viscosity of other polyesters. The bulk density at that time is preferably 0.6 or less. When the bulk density is larger than 0.6, the effect of improving the retention rate of intrinsic viscosity becomes poor. On the contrary, when the bulk density is less than 0.01, the volume of the polyester increases, so that it is difficult to ensure a sufficient amount of raw material supply, and problems such as raw material blockage occur in the supply pipe. It becomes easy. The blending amount of the polyester having a bulk density of 0.01 to 0.60 is usually 60% or less, preferably 55% or less, more preferably 50% or less based on the total polyester.
 なお、ポリエステルの嵩密度は、JIS K7365:1999の「プラスチック-規定漏斗から注ぐことができる材料の見掛け密度の求め方」に準拠した方法により測定することができる。 The bulk density of the polyester can be measured by a method in accordance with JIS K7365: 1999 “Plastics—Determination of apparent density of material that can be poured from specified funnel”.
 一般に、押出機内には、ペレットのみを投入するが、本発明においては、押出機内における異物の発生を抑制するため、原料ポリエステルには、ペレットと共に、ポリエステルの粉体を混入することが好ましい。このような粉体が加わることで、スクリューが原料ポリエステルに喰い込む際に、スクリューのトルクに変動が発生する。その結果、スクリューに接触するポリエステルが振動し、ベント孔付近におけるメルトの滞留を抑制する。このようなポリエステルの粉体は、使用する原料ポリエステルのペレットを破砕した後、篩に掛けることで入手することができ、30~300メッシュのものを使用するのが好ましい。
 ペレットと共に用いるポリエステルの粉体は、原料ポリエステルペレットの全質量に対して、0.01質量%~5質量%であることが好ましく、0.03質量%~3質量%であることがより好ましく、0.05質量%~1質量%であることがさらに好ましい。
In general, only the pellets are charged into the extruder. In the present invention, in order to suppress the generation of foreign matters in the extruder, it is preferable to mix the polyester powder together with the pellets in the raw material polyester. When such a powder is added, the torque of the screw fluctuates when the screw bites into the raw material polyester. As a result, the polyester in contact with the screw vibrates and suppresses the stagnation of the melt in the vicinity of the vent hole. Such a polyester powder can be obtained by crushing raw material polyester pellets to be used and then sieving them, and it is preferable to use a 30-300 mesh one.
The polyester powder used together with the pellets is preferably 0.01% by mass to 5% by mass, more preferably 0.03% by mass to 3% by mass with respect to the total mass of the raw material polyester pellets. More preferably, it is 0.05 mass% to 1 mass%.
 なお、既述のように、原料ポリエステルには、使用済みのポリエステルを再生した再生ポリエステルを用いてもよい。ペレット状のポリエステルが再生ポリエステルでもよいし、粉体上のポリエステルが再生ポリエステルであってもよい。再生ポリエステルの使用量は、原料ポリエステルの全質量に対して、5質量%~50質量%であることが好ましく、10質量%~45質量%であることがより好ましく、20質量%~40質量%であるがさらに好ましい。
 次に、原料ポリエステルを、成分の観点から説明する。
As described above, recycled polyester obtained by regenerating used polyester may be used as the raw material polyester. The pelletized polyester may be a regenerated polyester, or the polyester on the powder may be a regenerated polyester. The amount of recycled polyester used is preferably 5% by mass to 50% by mass, more preferably 10% by mass to 45% by mass, and more preferably 20% by mass to 40% by mass with respect to the total mass of the raw material polyester. It is more preferable.
Next, raw material polyester is demonstrated from a viewpoint of a component.
 原料ポリエステルに含まれるポリエステルの種類は特に制限されない。
 ジカルボン酸成分と、ジオール成分とを用いて合成してもよいし、市販のポリエステルを用いてもよい。
The kind of polyester contained in the raw material polyester is not particularly limited.
It may be synthesized using a dicarboxylic acid component and a diol component, or a commercially available polyester may be used.
 ポリエステルを合成する場合は、例えば、(A)ジカルボン酸成分と、(B)ジオール成分とを、周知の方法でエステル化反応及び/又はエステル交換反応させることによって得ることができる。
 (A)ジカルボン酸成分としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、イソソルビド、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルエンダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸などのジカルボン酸もしくはそのエステル誘導体が挙げられる。
When the polyester is synthesized, for example, it can be obtained by subjecting (A) a dicarboxylic acid component and (B) a diol component to an esterification reaction and / or a transesterification reaction by a known method.
(A) Examples of the dicarboxylic acid component include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalonic acid Aliphatic dicarboxylic acids such as ethylmalonic acid, adamantane dicarboxylic acid, norbornene dicarboxylic acid, isosorbide, cyclohexanedicarboxylic acid, decalin dicarboxylic acid, and the like, terephthalic acid, isophthalic acid, phthalic acid, 1,4- Naphthalene dicarboxylic acid, 1,5-naphthalene dicarboxylic acid, 2,6-naphthalene dicarboxylic acid, 1,8-naphthalene dicarboxylic acid, 4,4′-diphenyl dicarboxylic acid, 4,4′-diphenyl ether dicarboxylic acid, 5-sodium sulfo Isophthalic acid, phenyl ether Boy carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic, 9,9'-bis (4-carboxyphenyl) a dicarboxylic acid or its ester derivatives such as aromatic dicarboxylic acids such as fluorene acid.
(B)ジオール成分としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、などの芳香族ジオール類等のジオール化合物が挙げられる。 (B) Examples of the diol component include fats such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. Diols, cycloaliphatic dimethanol, spiroglycol, isosorbide and other alicyclic diols, bisphenol A, 1,3-benzenedimethanol, 1,4-benzenedimethanol, 9,9'-bis (4-hydroxyphenyl) ) Diol compounds such as aromatic diols such as fluorene.
 (A)ジカルボン酸成分として、芳香族ジカルボン酸の少なくとも1種が用いられる場合が好ましい。より好ましくは、ジカルボン酸成分のうち、芳香族ジカルボン酸を主成分として含有する。なお、「主成分」とは、ジカルボン酸成分に占める芳香族ジカルボン酸の割合が80質量%以上であることをいう。芳香族ジカルボン酸以外のジカルボン酸成分を含んでもよい。このようなジカルボン酸成分としては、芳香族ジカルボン酸などのエステル誘導体等である。
 また、(B)ジオール成分として、脂肪族ジオールの少なくとも1種が用いられる場合が好ましい。脂肪族ジオールとして、エチレングリコールを含むことができ、好ましくはエチレングリコールを主成分として含有する。なお、主成分とは、ジオール成分に占めるエチレングリコールの割合が80質量%以上であることをいう。
(A) As a dicarboxylic acid component, the case where at least 1 sort of aromatic dicarboxylic acid is used is preferable. More preferably, the dicarboxylic acid component contains an aromatic dicarboxylic acid as a main component. The “main component” means that the proportion of aromatic dicarboxylic acid in the dicarboxylic acid component is 80% by mass or more. A dicarboxylic acid component other than the aromatic dicarboxylic acid may be included. Examples of such a dicarboxylic acid component include ester derivatives such as aromatic dicarboxylic acids.
Moreover, it is preferable that at least one aliphatic diol is used as the (B) diol component. The aliphatic diol can contain ethylene glycol, and preferably contains ethylene glycol as a main component. The main component means that the proportion of ethylene glycol in the diol component is 80% by mass or more.
 脂肪族ジオール(例えばエチレングリコール)の使用量は、前記芳香族ジカルボン酸(例えばテレフタル酸)及び必要に応じそのエステル誘導体の1モルに対して、1.015~1.50モルの範囲であるのが好ましい。該使用量は、より好ましくは1.02~1.30モルの範囲であり、更に好ましくは1.025~1.10モルの範囲である。該使用量は、1.015以上の範囲であると、エステル化反応が良好に進行し、1.50モル以下の範囲であると、例えばエチレングリコールの2量化によるジエチレングリコールの副生が抑えられ、融点やガラス転移温度、結晶性、耐熱性、耐加水分解性、耐候性など多くの特性を良好に保つことができる。 The amount of the aliphatic diol (for example, ethylene glycol) used is in the range of 1.015 to 1.50 mol with respect to 1 mol of the aromatic dicarboxylic acid (for example, terephthalic acid) and, if necessary, its ester derivative. Is preferred. The amount used is more preferably in the range of 1.02 to 1.30 mol, and still more preferably in the range of 1.025 to 1.10 mol. If the amount used is in the range of 1.015 or more, the esterification reaction proceeds favorably, and if it is in the range of 1.50 mol or less, for example, by-production of diethylene glycol due to dimerization of ethylene glycol is suppressed, Many characteristics such as melting point, glass transition temperature, crystallinity, heat resistance, hydrolysis resistance, and weather resistance can be kept good.
 エステル化反応及び/又はエステル交換反応には、従来から公知の反応触媒を用いることができる。該反応触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などを挙げることができる。通常、ポリエステルの製造方法が完結する以前の任意の段階において、重合触媒としてアンチモン化合物、ゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては、例えば、ゲルマニウム化合物を例に取ると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。 A conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction. Examples of the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds. Usually, it is preferable to add an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed. As such a method, for example, when a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
 例えば、エステル化反応工程は、芳香族ジカルボン酸と脂肪族ジオールとを、チタン化合物を含有する触媒の存在下で重合する。このエステル化反応工程では、触媒であるチタン化合物として、有機酸を配位子とする有機キレートチタン錯体を用いると共に、工程中に少なくとも、有機キレートチタン錯体と、マグネシウム化合物と、置換基として芳香環を有しない5価のリン酸エステルとをこの順序で添加する過程を設けて構成される。 For example, in the esterification reaction step, an aromatic dicarboxylic acid and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound. In this esterification reaction step, an organic chelate titanium complex having an organic acid as a ligand is used as a catalyst titanium compound, and at least an organic chelate titanium complex, a magnesium compound, and an aromatic ring as a substituent in the step. And a process of adding a pentavalent phosphate ester having no sulfite in this order.
 まず初めに、芳香族ジカルボン酸及び脂肪族ジオールを、マグネシウム化合物及びリン化合物の添加に先立って、チタン化合物である有機キレートチタン錯体を含有する触媒と混合する。有機キレートチタン錯体等のチタン化合物は、エステル化反応に対しても高い触媒活性を持つので、エステル化反応を良好に行なわせることができる。このとき、ジカルボン酸成分及びジオール成分を混合した中にチタン化合物を加えてもよいし、ジカルボン酸成分(又はジオール成分)とチタン化合物を混合してからジオール成分(又はジカルボン酸成分)を混合してもよい。また、ジカルボン酸成分とジオール成分とチタン化合物とを同時に混合するようにしてもよい。混合は、その方法に特に制限はなく、従来公知の方法により行なうことが可能である。 First, an aromatic dicarboxylic acid and an aliphatic diol are mixed with a catalyst containing an organic chelate titanium complex, which is a titanium compound, prior to addition of a magnesium compound and a phosphorus compound. Titanium compounds such as organic chelate titanium complexes have high catalytic activity for esterification reactions, so that esterification reactions can be performed satisfactorily. At this time, the titanium compound may be added to the mixture of the dicarboxylic acid component and the diol component, or after mixing the dicarboxylic acid component (or diol component) and the titanium compound, the diol component (or dicarboxylic acid component) is mixed. May be. Further, the dicarboxylic acid component, the diol component, and the titanium compound may be mixed at the same time. The mixing is not particularly limited, and can be performed by a conventionally known method.
 より好ましいポリエステルは、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)であり、さらに好ましいのはPETである。さらに、PETは、触媒成分としてゲルマニウム(Ge)化合物(Ge系触媒)、アンチモン(Sb)化合物(Sb系触媒)、アルミニウム(Al)化合物(Al系触媒)、及びチタン(Ti)化合物(Ti系触媒)から選ばれる1種又は2種以上を用いて重合されるものが好ましく、より好ましくはチタン化合物である。 More preferred polyesters are polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN), and more preferred is PET. Further, PET has a germanium (Ge) compound (Ge-based catalyst), an antimony (Sb) compound (Sb-based catalyst), an aluminum (Al) compound (Al-based catalyst), and a titanium (Ti) compound (Ti-based catalyst) as catalyst components. Those which are polymerized using one or more selected from (catalyst) are preferred, and titanium compounds are more preferred.
 前記チタン化合物は、反応活性が高く、重合温度を低くすることができる。そのため、特に重合反応中にポリエステルが熱分解し、COOHが発生するのを抑制することが可能である。すなわち、チタン化合物を用いることで、熱分解の原因となるポリエステルの末端カルボン酸の量を低減することができ、異物形成を抑制することができる。ポリエステルの末端カルボン酸の量を低減しておくことで、ポリエステルフィルムを製造した後に、ポリエステルフィルムが熱分解することを抑制することもできる。
 なお、チタン化合物の中でも、白色化剤として使用する酸化チタンではこのような効果は得られない。
The titanium compound has high reaction activity and can lower the polymerization temperature. Therefore, it is possible to suppress the polyester from being thermally decomposed during the polymerization reaction and generating COOH. That is, by using a titanium compound, the amount of terminal carboxylic acid of polyester that causes thermal decomposition can be reduced, and foreign matter formation can be suppressed. By reducing the amount of the terminal carboxylic acid of the polyester, it is possible to suppress thermal decomposition of the polyester film after the production of the polyester film.
Of the titanium compounds, titanium oxide used as a whitening agent cannot provide such an effect.
[チタン系触媒]
 触媒として用いられるチタン化合物、すなわち、チタン系触媒は、有機酸を配位子とする有機キレートチタン錯体の少なくとも1種であることが好ましい。有機酸としては、例えば、クエン酸、乳酸、トリメリット酸、リンゴ酸等を挙げることができる。中でも、クエン酸又はクエン酸塩を配位子とする有機キレート錯体が好ましい。
[Titanium catalyst]
The titanium compound used as the catalyst, that is, the titanium-based catalyst is preferably at least one of organic chelate titanium complexes having an organic acid as a ligand. Examples of the organic acid include citric acid, lactic acid, trimellitic acid, malic acid and the like. Among them, an organic chelate complex having citric acid or citrate as a ligand is preferable.
 例えばクエン酸を配位子とするキレートチタン錯体を用いた場合、微細粒子等の異物の発生が少なく、他のチタン化合物に比べ、重合活性と色調の良好なポリエステルが得られる。更に、クエン酸キレートチタン錯体を用いる場合でも、エステル化反応の段階で添加する方法により、エステル化反応後に添加する場合に比べ、重合活性と色調が良好で、末端カルボキシル基の少ないポリエステルが得られる。この点については、チタン系触媒はエステル化反応の触媒効果もあり、エステル化段階で添加することでエステル化反応終了時におけるオリゴマー酸価が低くなり、以降の重縮合反応がより効率的に行なわれること、またクエン酸を配位子とする錯体はチタンアルコキシド等に比べて加水分解耐性が高く、エステル化反応過程において加水分解せず、本来の活性を維持したままエステル化及び重縮合反応の触媒として効果的に機能するものと推定される。
 また、一般に、末端カルボキシル基量が多いほど耐加水分解性が悪化することが知られており、上記の添加方法によって末端カルボキシル基量が少なくなることで、耐加水分解性の向上が期待される。
For example, when a chelate titanium complex having citric acid as a ligand is used, there is little generation of foreign matters such as fine particles, and a polyester having good polymerization activity and color tone can be obtained as compared with other titanium compounds. Furthermore, even when a citric acid chelate titanium complex is used, a method of adding at the stage of esterification reaction gives a polyester having better polymerization activity and color tone and less terminal carboxyl groups than when added after the esterification reaction. . In this regard, the titanium-based catalyst also has a catalytic effect on the esterification reaction. By adding it at the esterification stage, the oligomer acid value at the end of the esterification reaction is lowered, and the subsequent polycondensation reaction is performed more efficiently. In addition, complexes with citric acid as a ligand are more resistant to hydrolysis than titanium alkoxides, etc., and are not hydrolyzed during the esterification reaction process. It is presumed to function effectively as a catalyst.
In general, it is known that hydrolysis resistance deteriorates as the amount of terminal carboxyl groups increases, and the hydrolysis resistance is expected to be improved by decreasing the amount of terminal carboxyl groups by the above addition method. .
 前記クエン酸キレートチタン錯体としては、例えば、ジョンソン・マッセイ社製のVERTEC AC-420など市販品として容易に入手可能である。 As the citrate chelate titanium complex, for example, VERTEC® AC-420 manufactured by Johnson Matthey can be easily obtained as a commercial product.
 芳香族ジカルボン酸と脂肪族ジオールは、これらが含まれたスラリーを調製し、これをエステル化反応工程に連続的に供給することにより導入することができる。 The aromatic dicarboxylic acid and the aliphatic diol can be introduced by preparing a slurry containing them and continuously supplying it to the esterification reaction step.
 また、チタン化合物としては、有機キレートチタン錯体以外には一般に、酸化物、水酸化物、アルコキシド、カルボン酸塩、炭酸塩、蓚酸塩、及びハロゲン化物等が挙げられる。本発明の効果を損なわない範囲であれば、有機キレートチタン錯体に加えて、他のチタン化合物を併用してもよい。
 このようなチタン化合物の例としては、テトラ-n-プロピルチタネート、テトラ-i-プロピルチタネート、テトラ-n-ブチルチタネート、テトラ-n-ブチルチタネートテトラマー、テトラ-t-ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェニルチタネート、テトラベンジルチタネート等のチタンアルコキシド、チタンアルコキシドの加水分解により得られるチタン酸化物、チタンアルコキシドと珪素アルコキシドもしくはジルコニウムアルコキシドとの混合物の加水分解により得られるチタン-珪素もしくはジルコニウム複合酸化物、酢酸チタン、蓚酸チタン、蓚酸チタンカリウム、蓚酸チタンナトリウム、チタン酸カリウム、チタン酸ナトリウム、チタン酸-水酸化アルミニウム混合物、塩化チタン、塩化チタン-塩化アルミニウム混合物、チタンアセチルアセトナート等が挙げられる。
In addition to the organic chelate titanium complex, titanium compounds generally include oxides, hydroxides, alkoxides, carboxylates, carbonates, oxalates, and halides. Other titanium compounds may be used in combination with the organic chelate titanium complex as long as the effects of the present invention are not impaired.
Examples of such titanium compounds include tetra-n-propyl titanate, tetra-i-propyl titanate, tetra-n-butyl titanate, tetra-n-butyl titanate tetramer, tetra-t-butyl titanate, tetracyclohexyl titanate, Titanium alkoxide such as tetraphenyl titanate and tetrabenzyl titanate, titanium oxide obtained by hydrolysis of titanium alkoxide, titanium-silicon or zirconium composite oxide obtained by hydrolysis of a mixture of titanium alkoxide and silicon alkoxide or zirconium alkoxide, Titanium acetate, titanium oxalate, potassium potassium oxalate, sodium titanium oxalate, potassium titanate, sodium titanate, titanium titanate-aluminum hydroxide mixture, titanium chloride, titanium chloride Down - aluminum chloride mixture, and titanium acetylacetonate.
 ポリエステルの重合する際には、チタン化合物(チタン系触媒を含む)を、1ppm以上50ppm以下、より好ましくは2ppm以上30ppm以下、さらに好ましくは3ppm以上15ppm以下の範囲で用いることが好ましい。この場合、原料ポリエステルには、1ppm以上50ppm以下のチタン元素が含まれる。
 原料ポリエステルに含まれるチタン化合物(チタン系触媒を含む)の量が1ppmよりも少ないと、ポリエステルの重量平均分子量(Mw)を上げることができず、熱分解し易いため、押出機内で異物が増加し易く、好ましくない。原料ポリエステルに含まれるチタン化合物(チタン系触媒を含む)の量が50ppmmを超えると、チタン化合物(チタン系触媒を含む)が異物となり、ポリエステルシートの延伸の際に、延伸むらを引き起こすため、好ましくない。
When the polyester is polymerized, it is preferable to use a titanium compound (including a titanium-based catalyst) in the range of 1 ppm to 50 ppm, more preferably 2 ppm to 30 ppm, and still more preferably 3 ppm to 15 ppm. In this case, the raw material polyester contains 1 ppm or more and 50 ppm or less of titanium element.
If the amount of titanium compound (including titanium-based catalyst) contained in the raw material polyester is less than 1 ppm, the weight average molecular weight (Mw) of the polyester cannot be increased, and thermal decomposition tends to occur, so foreign matter increases in the extruder. It is easy to do and is not preferable. When the amount of the titanium compound (including the titanium-based catalyst) contained in the raw material polyester exceeds 50 ppmm, the titanium compound (including the titanium-based catalyst) becomes a foreign substance, and causes uneven stretching when the polyester sheet is stretched. Absent.
 本発明においては、芳香族ジカルボン酸と脂肪族ジオールとを、チタン化合物を含有する触媒の存在下で重合するとともに、チタン化合物の少なくとも一種が有機酸を配位子とする有機キレートチタン錯体であって、有機キレートチタン錯体とマグネシウム化合物と置換基として芳香環を有しない5価のリン酸エステルとをこの順序で添加する過程を少なくとも含むエステル化反応工程と、エステル化反応工程で生成されたエステル化反応生成物を重縮合反応させて重縮合物を生成する重縮合工程と、を設けて構成されているポリエステルの製造方法により作製されるのが好ましい。 In the present invention, an aromatic dicarboxylic acid and an aliphatic diol are polymerized in the presence of a catalyst containing a titanium compound, and at least one of the titanium compounds is an organic chelate titanium complex having an organic acid as a ligand. An esterification reaction step including at least a step of adding an organic chelate titanium complex, a magnesium compound, and a pentavalent phosphate ester having no aromatic ring as a substituent in this order, and an ester formed in the esterification reaction step And a polycondensation step in which a polycondensation product is produced by a polycondensation reaction of the chemical reaction product, and is preferably produced by a polyester production method.
 この場合、エステル化反応の過程において、チタン化合物として有機キレートチタン錯体を存在させた中に、マグネシウム化合物を添加し、次いで特定の5価のリン化合物を添加する添加順とすることで、チタン系触媒の反応活性を適度に高く保ち、マグネシウムによる静電印加特性を付与しつつ、かつ重縮合における分解反応を効果的に抑制することができるため、結果として着色が少なく、高い静電印加特性を有するとともに高温下に曝された際の黄変色が改善されたポリエステルが得られる。
 これにより、重合時の着色及びその後の溶融製膜時における着色が少なくなり、従来のアンチモン(Sb)触媒系のポリエステルに比べて黄色味が軽減され、また、透明性の比較的高いゲルマニウム触媒系のポリエステルに比べて遜色のない色調、透明性を持ち、しかも耐熱性に優れたポリエステルを提供できる。また、コバルト化合物や色素などの色調調整材を用いずに高い透明性を有し、黄色味の少ないポリエステルが得られる。
In this case, in the course of the esterification reaction, the addition of a magnesium compound to the presence of an organic chelate titanium complex as a titanium compound, followed by the addition order of adding a specific pentavalent phosphorus compound, thereby adding a titanium series. Since the reaction activity of the catalyst is kept moderately high, the electrostatic application characteristics due to magnesium can be imparted, and the decomposition reaction in the polycondensation can be effectively suppressed, resulting in less coloring and high electrostatic application characteristics. A polyester with improved yellowing when exposed to high temperatures is obtained.
As a result, coloring during polymerization and subsequent coloring during melt film formation are reduced, yellowness is reduced as compared with conventional antimony (Sb) catalyst-based polyester, and germanium catalyst system with relatively high transparency. Compared with other polyesters, it is possible to provide polyesters that have a color tone and transparency that are inferior to those of other polyesters and that have excellent heat resistance. Moreover, polyester which has high transparency and few yellowishness is obtained, without using color tone adjusting materials, such as a cobalt compound and a pigment | dye.
 このポリエステルは、透明性に関する要求の高い用途(例えば、光学用フィルム、工業用リス等)に利用が可能であり、高価なゲルマニウム系触媒を用いる必要がないため、大幅なコスト低減が図れる。加えて、Sb触媒系で生じやすい触媒起因の異物の混入も回避されるため、製膜過程での故障の発生や品質不良が軽減され、得率向上による低コスト化も図ることができる。 This polyester can be used for applications requiring high transparency (for example, optical film, industrial squirrel, etc.), and it is not necessary to use an expensive germanium-based catalyst, so that the cost can be greatly reduced. In addition, since foreign matters caused by the catalyst that are likely to occur in the Sb catalyst system are also avoided, the occurrence of failures and quality defects in the film forming process can be reduced, and the cost can be reduced by improving the yield.
 エステル化反応させるにあたり、チタン化合物である有機キレートチタン錯体と添加剤としてマグネシウム化合物と5価のリン化合物とをこの順に添加する過程を設ける。このとき、有機キレートチタン錯体の存在下、エステル化反応を進め、その後はマグネシウム化合物の添加を、リン化合物の添加前に開始する。 In the esterification reaction, a process of adding an organic chelate titanium complex which is a titanium compound and a magnesium compound and a pentavalent phosphorus compound as additives in this order is provided. At this time, the esterification reaction proceeds in the presence of the organic chelate titanium complex, and thereafter, the addition of the magnesium compound is started before the addition of the phosphorus compound.
[リン化合物]
 5価のリン化合物として、置換基として芳香環を有しない5価のリン酸エステルの少なくとも一種が用いられる。例えば、炭素数2以下の低級アルキル基を置換基として有するリン酸エステル〔(OR)-P=O;R=炭素数1又は2のアルキル基〕が挙げられ、具体的には、リン酸トリメチル、リン酸トリエチルが特に好ましい。
[Phosphorus compounds]
As the pentavalent phosphorus compound, at least one pentavalent phosphate having no aromatic ring as a substituent is used. For example, phosphoric acid esters having a lower alkyl group having 2 or less carbon atoms as a substituent [(OR) 3 —P═O; R = an alkyl group having 1 or 2 carbon atoms], specifically, phosphoric acid Trimethyl and triethyl phosphate are particularly preferable.
 リン化合物の添加量としては、P元素換算値が50ppm以上90ppm以下の範囲となる量が好ましい。リン化合物の量は、より好ましくは60ppm以上80ppm以下となる量であり、さらに好ましくは60ppm以上75ppm以下となる量である。 The amount of phosphorus compound added is preferably such that the P element conversion value is in the range of 50 ppm to 90 ppm. The amount of the phosphorus compound is more preferably 60 ppm or more and 80 ppm or less, and still more preferably 60 ppm or more and 75 ppm or less.
[マグネシウム化合物]
 ポリエステルにマグネシウム化合物を含めることにより、ポリエステルの静電印加性が向上する。この場合に着色がおきやすいが、本発明においては、着色を抑え、優れた色調、耐熱性が得られる。
 マグネシウム化合物としては、例えば、酸化マグネシウム、水酸化マグネシウム、マグネシウムアルコキシド、酢酸マグネシウム、炭酸マグネシウム等のマグネシウム塩が挙げられる。中でも、エチレングリコールへの溶解性の観点から、酢酸マグネシウムが最も好ましい。
[Magnesium compound]
By including a magnesium compound in the polyester, the electrostatic applicability of the polyester is improved. In this case, although it is easy to color, in this invention, coloring is suppressed and the outstanding color tone and heat resistance are obtained.
Examples of the magnesium compound include magnesium salts such as magnesium oxide, magnesium hydroxide, magnesium alkoxide, magnesium acetate, and magnesium carbonate. Among these, magnesium acetate is most preferable from the viewpoint of solubility in ethylene glycol.
 マグネシウム化合物の添加量としては、高い静電印加性を付与するためには、Mg元素換算値が50ppm以上となる量が好ましく、50ppm以上100ppm以下の範囲となる量がより好ましい。マグネシウム化合物の添加量は、静電印加性の付与の点で、好ましくは60ppm以上90ppm以下の範囲となる量であり、さらに好ましくは70ppm以上80ppm以下の範囲となる量である。 As the addition amount of the magnesium compound, in order to impart high electrostatic applicability, the Mg element conversion value is preferably 50 ppm or more, and more preferably 50 ppm or more and 100 ppm or less. The addition amount of the magnesium compound is preferably an amount that is in the range of 60 ppm to 90 ppm, more preferably 70 ppm to 80 ppm in terms of imparting electrostatic applicability.
 エステル化反応工程においては、触媒成分である前記チタン化合物と、添加剤である前記マグネシウム化合物及びリン化合物とを、下記式(i)から算出される値Zが下記の関係式(ii)を満たすように、添加して溶融重合させる場合が特に好ましい。ここで、P含有量は芳香環を有しない5価のリン酸エステルを含むリン化合物全体に由来するリン量であり、Ti含有量は、有機キレートチタン錯体を含むTi化合物全体に由来するチタン量である。このように、チタン化合物を含む触媒系でのマグネシウム化合物及びリン化合物の併用を選択し、その添加タイミング及び添加割合を制御することによって、チタン化合物の触媒活性を適度に高く維持しつつも、黄色味の少ない色調が得られ、重合反応時やその後の製膜時(溶融時)などで高温下に曝されても黄着色を生じ難い耐熱性を付与することができる。
 (i)Z=5×(P含有量[ppm]/P原子量)-2×(Mg含有量[ppm]/Mg原子量)-4×(Ti含有量[ppm]/Ti原子量)
 (ii)0≦Z≦5.0
 これは、リン化合物はチタンに作用のみならずマグネシウム化合物とも相互作用することから、3者のバランスを定量的に表現する指標となるものである。
 前記式(i)は、反応可能な全リン量から、マグネシウムに作用するリン分を除き、チタンに作用可能なリンの量を表現したものである。値Zが正の場合は、チタンを阻害するリンが余剰な状況にあり、逆に負の場合はチタンを阻害するために必要なリンが不足する状況にあるといえる。反応においては、Ti、Mg、Pの各原子1個は等価ではないことから、式中の各々のモル数に価数を乗じて重み付けを施してある。
In the esterification reaction step, the value Z calculated from the following formula (i) for the titanium compound as the catalyst component and the magnesium compound and phosphorus compound as the additive satisfies the following relational expression (ii). Thus, the case where it is added and melt polymerized is particularly preferred. Here, the P content is the amount of phosphorus derived from the entire phosphorus compound including the pentavalent phosphate ester having no aromatic ring, and the Ti content is the amount of titanium derived from the entire Ti compound including the organic chelate titanium complex. It is. As described above, by selecting the combined use of the magnesium compound and the phosphorus compound in the catalyst system containing the titanium compound and controlling the addition timing and the addition ratio, while maintaining the catalyst activity of the titanium compound moderately high, yellow A color tone with less taste can be obtained, and heat resistance that hardly causes yellowing can be imparted even when exposed to high temperatures during polymerization reaction or subsequent film formation (during melting).
(I) Z = 5 × (P content [ppm] / P atomic weight) −2 × (Mg content [ppm] / Mg atomic weight) −4 × (Ti content [ppm] / Ti atomic weight)
(Ii) 0 ≦ Z ≦ 5.0
This is an index for quantitatively expressing the balance between the three because the phosphorus compound interacts not only with titanium but also with the magnesium compound.
The formula (i) expresses the amount of phosphorus that can act on titanium by excluding the phosphorus content that acts on magnesium from the total amount of phosphorus that can be reacted. When the value Z is positive, it can be said that there is an excess of phosphorus that inhibits titanium, and conversely, when it is negative, there is a shortage of phosphorus necessary to inhibit titanium. In the reaction, since each atom of Ti, Mg, and P is not equivalent, each mole number in the formula is weighted by multiplying by a valence.
 本発明においては、特殊な合成等が不要であり、安価でかつ容易に入手可能なチタン化合物、リン化合物、マグネシウム化合物を用いて、反応に必要とされる反応活性を持ちながら、色調及び熱に対する着色耐性に優れたポリエステルを得ることができる。 In the present invention, no special synthesis or the like is required, and the titanium compound, phosphorus compound, and magnesium compound, which are inexpensive and easily available, are used for color tone and heat while having the reaction activity required for the reaction. A polyester excellent in coloring resistance can be obtained.
 前記式(ii)において、重合反応性を保った状態で、色調及び熱に対する着色耐性をより高める観点から、1.0≦Z≦4.0を満たす場合が好ましく、1.5≦Z≦3.0を満たす場合がより好ましい。 In the formula (ii), it is preferable that 1.0 ≦ Z ≦ 4.0 is satisfied and 1.5 ≦ Z ≦ 3 from the viewpoint of further increasing the color tone and the coloration resistance to heat while maintaining the polymerization reactivity. Is more preferable.
 本発明における好ましい態様として、エステル化反応が終了する前に、芳香族ジカルボン酸及び脂肪族ジオールに、1ppm以上30ppm以下のクエン酸又はクエン酸塩を配位子とするキレートチタン錯体を添加後、該キレートチタン錯体の存在下に、60ppm以上90ppm以下(より好ましくは70ppm以上80ppm以下)の弱酸のマグネシウム塩を添加し、該添加後にさらに、60ppm以上80ppm以下(より好ましくは65ppm以上75ppm以下)の、芳香環を置換基として有しない5価のリン酸エステルを添加する態様が挙げられる。 As a preferred embodiment in the present invention, before the esterification reaction is completed, after adding a chelate titanium complex having 1 ppm or more and 30 ppm or less of citric acid or citrate as a ligand to the aromatic dicarboxylic acid and the aliphatic diol, In the presence of the chelate titanium complex, a magnesium salt of weak acid of 60 ppm to 90 ppm (more preferably 70 ppm to 80 ppm) is added, and after the addition, 60 ppm to 80 ppm (more preferably 65 ppm to 75 ppm). And an embodiment in which a pentavalent phosphate having no aromatic ring as a substituent is added.
 エステル化反応は、少なくとも2個の反応器を直列に連結した多段式装置を用いて、エチレングリコールが還流する条件下で、反応によって生成した水又はアルコールを系外に除去しながら実施することができる。 The esterification reaction may be carried out using a multistage apparatus in which at least two reactors are connected in series under conditions where ethylene glycol is refluxed while removing water or alcohol produced by the reaction from the system. it can.
 また、上記したエステル化反応は、一段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
 エステル化反応を一段階で行なう場合、エステル化反応温度は230~260℃が好ましく、240~250℃がより好ましい。
 エステル化反応を多段階に分けて行なう場合、第一反応槽のエステル化反応の温度は230~260℃が好ましく、より好ましくは240~250℃であり、圧力は1.0~5.0kg/cmが好ましく、より好ましくは2.0~3.0kg/cmである。第二反応槽のエステル化反応の温度は230~260℃が好ましく、より好ましくは245~255℃であり、圧力は0.5~5.0kg/cm、より好ましくは1.0~3.0kg/cmである。さらに3段階以上に分けて実施する場合は、中間段階のエステル化反応の条件は、前記第一反応槽と最終反応槽の間の条件に設定するのが好ましい。
The esterification reaction described above may be performed in one stage or may be performed in multiple stages.
When the esterification reaction is carried out in one stage, the esterification reaction temperature is preferably 230 to 260 ° C, more preferably 240 to 250 ° C.
When the esterification reaction is carried out in multiple stages, the temperature of the esterification reaction in the first reaction tank is preferably 230 to 260 ° C, more preferably 240 to 250 ° C, and the pressure is 1.0 to 5.0 kg / cm 2 is preferable, and 2.0 to 3.0 kg / cm 2 is more preferable. The temperature of the esterification reaction in the second reaction tank is preferably 230 to 260 ° C., more preferably 245 to 255 ° C., and the pressure is 0.5 to 5.0 kg / cm 2 , more preferably 1.0 to 3. 0 kg / cm 2 . Furthermore, when carrying out by dividing into three or more stages, it is preferable to set the conditions for the esterification reaction in the intermediate stage to the conditions between the first reaction tank and the final reaction tank.
-重縮合-
 重縮合は、エステル化反応で生成されたエステル化反応生成物を重縮合反応させて重縮合物を生成する。重縮合反応は、1段階で行なってもよいし、多段階に分けて行なうようにしてもよい。
-Polycondensation-
In polycondensation, a polycondensation product is produced by subjecting an esterification reaction product produced by the esterification reaction to a polycondensation reaction. The polycondensation reaction may be performed in one stage or may be performed in multiple stages.
 エステル化反応で生成したオリゴマー等のエステル化反応生成物は、引き続いて重縮合反応に供される。この重縮合反応は、多段階の重縮合反応槽に供給することにより好適に行なうことが可能である。 The esterification reaction product such as an oligomer generated by the esterification reaction is subsequently subjected to a polycondensation reaction. This polycondensation reaction can be suitably performed by supplying it to a multistage polycondensation reaction tank.
 例えば、3段階の反応槽で行なう場合の重縮合反応条件は、第一反応槽は、反応温度が255~280℃、より好ましくは265~275℃であり、圧力が100~10torr(13.3×10-3~1.3×10-3MPa)、より好ましくは50~20torr(6.67×10-3~2.67×10-3MPa)であって、第二反応槽は、反応温度が265~285℃、より好ましくは270~280℃であり、圧力が20~1torr(2.67×10-3~1.33×10-4MPa)、より好ましくは10~3torr(1.33×10-3~4.0×10-4MPa)であって、最終反応槽内における第三反応槽は、反応温度が270~290℃、より好ましくは275~285℃であり、圧力が10~0.1torr(1.33×10-3~1.33×10-5MPa)、より好ましくは5~0.5torr(6.67×10-4~6.67×10-5MPa)である態様が好ましい。 For example, the polycondensation reaction conditions in a three-stage reaction tank are as follows: the first reaction tank has a reaction temperature of 255 to 280 ° C., more preferably 265 to 275 ° C., and a pressure of 100 to 10 torr (13.3). × 10 −3 to 1.3 × 10 −3 MPa), more preferably 50 to 20 torr (6.67 × 10 −3 to 2.67 × 10 −3 MPa). The temperature is 265 to 285 ° C., more preferably 270 to 280 ° C., and the pressure is 20 to 1 torr (2.67 × 10 −3 to 1.33 × 10 −4 MPa), more preferably 10 to 3 torr (1. 33 × 10 −3 to 4.0 × 10 −4 MPa), and the third reaction vessel in the final reaction vessel has a reaction temperature of 270 to 290 ° C., more preferably 275 to 285 ° C., and a pressure of 10-0.1tor (1.33 × 10 -3 ~ 1.33 × 10 -5 MPa), aspect is preferably more preferably 5 ~ 0.5torr (6.67 × 10 -4 ~ 6.67 × 10 -5 MPa) .
 上記のようにして合成されたポリエステルには、光安定化剤、酸化防止剤、紫外線吸収剤、難燃剤、易滑剤(微粒子)、核剤(結晶化剤)、結晶化阻害剤などの添加剤を更に含有させてもよい。 Additives such as light stabilizers, antioxidants, UV absorbers, flame retardants, lubricants (fine particles), nucleating agents (crystallization agents), crystallization inhibitors, etc. to the polyester synthesized as described above May further be included.
 ポリエステルシートの原料であるポリエステルは、固相重合したペレットであることが好ましい。
 エステル化反応により重合した後に、さらに固相重合することにより、ポリエステルフィルムの含水率、結晶化度、ポリエステルの酸価、すなわち、ポリエステルの末端カルボキシル基の濃度(Acid Value;AV、単位:当量/トン)、固有粘度(Intrinsic Viscosity;IV、単位:dl/g)を制御することができる。尚、本明細書中において、「当量/トン」は1トン当たりのモル当量を表す。
 ポリエステルの固有粘度(IV)は、0.7以上0.9以下であることが好ましい。
 固有粘度が0.7以上であると、ポリエステルの分子運動が阻害されて結晶化しにくくすることができ、0.9以下であると、押出機内の剪断発熱によるポリエステルの熱分解が起こり過ぎず、結晶化を抑制し、また、酸価(AV)を低く抑えることができる。
 IVは、0.75以上0.85以下であることがより好ましい。
The polyester that is the raw material of the polyester sheet is preferably a solid-phase polymerized pellet.
After polymerization by the esterification reaction, solid phase polymerization is further performed, whereby the moisture content of the polyester film, the crystallinity, the acid value of the polyester, that is, the concentration of the terminal carboxyl group of the polyester (Acid Value; AV, unit: equivalent / T) and intrinsic viscosity (Intrinsic Viscosity; IV, unit: dl / g). In the present specification, “equivalent / ton” represents a molar equivalent per ton.
The intrinsic viscosity (IV) of the polyester is preferably 0.7 or more and 0.9 or less.
When the intrinsic viscosity is 0.7 or more, the molecular motion of the polyester is hindered and it is difficult to crystallize. When the intrinsic viscosity is 0.9 or less, thermal decomposition of the polyester due to shear heat generation in the extruder does not occur too much, Crystallization can be suppressed and the acid value (AV) can be kept low.
IV is more preferably 0.75 or more and 0.85 or less.
 特に、エステル化反応において、Ti触媒を使用し、さらに固相重合して、ポリエステルの固有粘度(IV)を、0.7以上0.9以下とすることで、ポリエステルシートの製造工程における溶融樹脂の冷却工程において、ポリエステルが結晶化することを抑制し易い。
 従って、ポリエステルシートの原料であるポリエステルは、固有粘度が0.7以上0.9以下であることが好ましい。
In particular, in the esterification reaction, a Ti catalyst is used, and further, solid-phase polymerization is performed so that the intrinsic viscosity (IV) of the polyester is 0.7 or more and 0.9 or less. In the cooling step, it is easy to suppress the crystallization of the polyester.
Therefore, the polyester that is a raw material of the polyester sheet preferably has an intrinsic viscosity of 0.7 or more and 0.9 or less.
 固有粘度(IV)は、溶液粘度(η)と溶媒粘度(η0)の比ηr(=η/η0;相対粘度)から1を引いた比粘度(ηsp=ηr-1)を濃度で割った値を濃度がゼロの状態に外挿した値である。IVは、ウベローデ型粘度計を用い、ポリエステルを1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解させ、25℃の溶液粘度から求められる。 The intrinsic viscosity (IV) is obtained by subtracting 1 from the ratio η r (= η / η 0 ; relative viscosity) of the solution viscosity (η) and the solvent viscosity (η 0 ) (η sp = η r −1). It is a value obtained by extrapolating the value divided by the density to a state where the density is zero. IV is obtained from a solution viscosity at 25 ° C. by using a Ubbelohde viscometer, dissolving polyester in a 1,1,2,2-tetrachloroethane / phenol (= 2/3 [mass ratio]) mixed solvent.
 ポリエステルの固相重合には、既述のエステル化反応により重合したポリエステル又は市販のポリエステルを、ペレット状などの小片形状にしたものを、出発物質として用いればよい。
 ポリエステルの固相重合は、連続法(タワーの中に樹脂を充満させ、これを加熱しながらゆっくり所定の時間滞流させた後、順次送り出す方法)でもよく、バッチ法(容器の中に樹脂を投入し、所定の時間加熱する方法)でもよい。
 また、固相重合は、真空中あるいは窒素気流中で行なうことが好ましい。
In the solid phase polymerization of polyester, a polyester obtained by the esterification reaction described above or a commercially available polyester in the form of a small piece such as a pellet may be used as a starting material.
The solid phase polymerization of polyester may be a continuous method (a method in which a tower is filled with a resin, and this is slowly heated for a predetermined period of time while being heated and then sequentially fed out), or a batch method (a resin is placed in a container). Or a method of heating for a predetermined time).
The solid phase polymerization is preferably performed in a vacuum or a nitrogen stream.
 固相重合の温度は、170℃以上240℃以下が好ましく、より好ましくは180℃以上230℃以下であり、さらに好ましくは190℃以上220℃以下である。温度が上記範囲内であると、ポリエステルの酸価(AV)がより大きく低減することの点で好ましい。また、固相重合時間は、5時間以上100時間以下が好ましく、より好ましくは10時間以上75時間以下であり、さらに好ましくは15時間以上50時間以下である。時間が上記範囲内であると、ポリエステルの酸価(AV)と固有粘度(IV)の本発明の好ましい範囲に容易に制御できる点で好ましい。固相重合は、真空中あるいは窒素雰囲気下で行なうことが好ましい。 The temperature of the solid phase polymerization is preferably 170 ° C. or higher and 240 ° C. or lower, more preferably 180 ° C. or higher and 230 ° C. or lower, and further preferably 190 ° C. or higher and 220 ° C. or lower. When the temperature is within the above range, it is preferable in that the acid value (AV) of the polyester is further reduced. The solid phase polymerization time is preferably 5 hours to 100 hours, more preferably 10 hours to 75 hours, and still more preferably 15 hours to 50 hours. It is preferable that the time is within the above range in that the acid value (AV) and intrinsic viscosity (IV) of the polyester can be easily controlled within the preferable ranges of the present invention. The solid phase polymerization is preferably performed in a vacuum or in a nitrogen atmosphere.
〔延伸工程〕
 本発明のポリエステルフィルムの製造方法は、既述の押出工程のほか、押出工程により得られたポリエステルシートを延伸する延伸工程を含むことが好ましい。
 本発明において、ポリエステルシートとは、押出工程により得られたポリエステルによって得られたポリエステル成形体であって、延伸の対象となるものを指す。一方、ポリエステルフィルムとは、ポリエステルシートの延伸が完了し、回収の対象となるポリエステル成形体を指す。
[Stretching process]
It is preferable that the manufacturing method of the polyester film of this invention includes the extending process of extending | stretching the polyester sheet obtained by the extrusion process other than the already described extrusion process.
In the present invention, the polyester sheet refers to a polyester molded body obtained from the polyester obtained by the extrusion process, which is the object of stretching. On the other hand, the polyester film refers to a polyester molded body that is a target of collection after the stretching of the polyester sheet is completed.
 なお、延伸を行なっていないポリエステルシートの厚みは、3mm~5mmであることが好ましく、延伸が完了したポリエステルフィルムの厚みは、ポリエステルシートよりも厚みが薄い(例えば、1mm未満)。 The thickness of the polyester sheet that has not been stretched is preferably 3 mm to 5 mm, and the thickness of the polyester film that has been stretched is thinner than the polyester sheet (for example, less than 1 mm).
 ポリエステルシートの延伸方法は、単軸延伸であっても、2軸以上の多軸延伸であってもよい。2軸延伸とは、互いに異なる方向に、各々、少なくとも1回ずつ延伸することをいう。
 得られるポリエステルフィルムの強度、形状安定性の観点から、ポリエステルシートの搬送方向(MD)の延伸、すなわち縦延伸と、搬送方向と直交する方向(TD)の延伸、すなわち横延伸と、を行なう2軸延伸であることが好ましい。
The method for stretching the polyester sheet may be uniaxial stretching or biaxial or multiaxial stretching. Biaxial stretching refers to stretching at least once each in different directions.
From the viewpoint of strength and shape stability of the obtained polyester film, the polyester sheet is stretched in the transport direction (MD), that is, longitudinal stretching, and stretched in the direction (TD) orthogonal to the transport direction, that is, lateral stretching. Axial stretching is preferred.
 2軸延伸する方法としては、縦延伸と横延伸とを分離して行なう逐次2軸延伸方法のほか、縦延伸と横延伸を同時に行なう同時2軸延伸方法のいずれであってもよい。
 縦延伸と横延伸とは、各々独立に2回以上行なってもよく、縦延伸と横延伸の順序は問わない。例えば、縦延伸→横延伸、縦延伸→横延伸→縦延伸、縦延伸→縦延伸→横延伸、横延伸→縦延伸などの延伸態様が挙げられる。中でも縦延伸→横延伸が好ましい。
 なお、横延伸について、「ポリエステルシートの搬送方向(MD)と直交する方向(TD)」とは、ポリエステルの搬送方向(MD)と垂直(90°)の角度の方向及び、ポリエステルの搬送方向(MD)と垂直とみなせる角度(90°±5°)の方向をいう。
The biaxial stretching method may be any of a sequential biaxial stretching method in which longitudinal stretching and lateral stretching are separated and a simultaneous biaxial stretching method in which longitudinal stretching and lateral stretching are simultaneously performed.
The longitudinal stretching and the lateral stretching may be independently performed twice or more, and the order of the longitudinal stretching and the lateral stretching is not limited. For example, stretching modes such as longitudinal stretching → transverse stretching, longitudinal stretching → transverse stretching → longitudinal stretching, longitudinal stretching → longitudinal stretching → transverse stretching, transverse stretching → longitudinal stretching can be mentioned. Of these, longitudinal stretching → transverse stretching is preferred.
In addition, about transverse stretch, "the direction (TD) orthogonal to the conveyance direction (MD) of a polyester sheet" means the direction of an angle (90 degrees) perpendicular to the conveyance direction (MD) of polyester, and the conveyance direction of polyester ( MD) and an angle (90 ° ± 5 °) that can be regarded as vertical.
 縦延伸および横延伸において、ポリエステルシートの面積延伸倍率(各延伸倍率の積)は、延伸前のポリエステルシートの面積の6倍~18倍が好ましく、8倍~16倍であることがより好ましく、10倍~15倍であることがさらに好ましい。
 縦延伸および横延伸において、ポリエステルシートの延伸時の温度(延伸温度)は、ポリエステルシートのガラス転移温度をTgとするとき、Tg-20℃以上Tg+50℃であることが好ましく、より好ましくはTg-10℃以上Tg+40℃以下、さらに好ましくはTg以上Tg+30℃である。
In the longitudinal stretching and lateral stretching, the area stretch ratio of the polyester sheet (the product of the stretch ratios) is preferably 6 to 18 times, more preferably 8 to 16 times the area of the polyester sheet before stretching, More preferably, it is 10 to 15 times.
In longitudinal stretching and lateral stretching, the temperature during stretching of the polyester sheet (stretching temperature) is preferably Tg−20 ° C. or more and Tg + 50 ° C., more preferably Tg−, when the glass transition temperature of the polyester sheet is Tg. It is 10 degreeC or more and Tg + 40 degrees C or less, More preferably, it is Tg or more and Tg + 30 degreeC.
 ポリエステルシートの延伸においては、縦延伸および横延伸の組合せによる2軸延伸の後に、熱固定を行うことが好ましい。熱固定温度は、160℃~250℃であることが好ましく、180℃~240℃であることがより好ましく、200℃~240℃であることがさらに好ましい。
 熱固定後は、縦延伸および横延伸の少なくとも一方向に、1%~20%、より好ましくは3%~15%、さらに好ましくは4%~10%の緩和を施すことが好ましい。
In stretching the polyester sheet, it is preferable to perform heat setting after biaxial stretching by a combination of longitudinal stretching and lateral stretching. The heat setting temperature is preferably 160 ° C to 250 ° C, more preferably 180 ° C to 240 ° C, and further preferably 200 ° C to 240 ° C.
After heat setting, it is preferable to apply relaxation of 1% to 20%, more preferably 3% to 15%, and still more preferably 4% to 10% in at least one direction of longitudinal stretching and lateral stretching.
 なお、延伸工程において、ポリエステルシートを加熱する手段としては、ニップロール等のロールを用いて延伸する場合は、ロール内部にヒーターや温溶媒を流すことのできる配管を設けることで、ロールに接するポリエステルシートを加熱することができる。また、ロールを用いない場合においても、ポリエステルシートに温風を吹きかけたり、ヒーター等の熱源に接触させ、又は熱源の近傍を通過させることにより、ポリエステルシートを加熱することができる。 In the stretching process, as a means for heating the polyester sheet, when stretching using a roll such as a nip roll, a polyester sheet in contact with the roll is provided by providing a pipe through which a heater or a hot solvent can flow inside the roll. Can be heated. Even when a roll is not used, the polyester sheet can be heated by blowing warm air on the polyester sheet, contacting the polyester sheet with a heat source such as a heater, or passing the vicinity of the heat source.
 以上、縦延伸および横延伸の両方に共通する条件について説明した。
 次に、縦延伸、及び、横延伸における延伸条件の詳細を説明する。
The conditions common to both the longitudinal stretching and the lateral stretching have been described above.
Next, details of stretching conditions in longitudinal stretching and lateral stretching will be described.
-縦延伸-
 ポリエステルシートの縦延伸は、例えば、ポリエステルシートを挟み、ポリエステルシートの搬送方向に並べた2対以上のニップロールを用いて行なうことができる。
 具体的には、例えば、ポリエステルシートの搬送方向上流側に1対のニップロールA、下流側に1対のニップロールBを設置したとき、ポリエステルシートを搬送する際に、下流側のニップロールBの回転速度を、上流側のニップロールAの回転速度より速くすることで、ポリエステルシートが搬送方向(MD)に延伸される。
 なお、上流側、下流側、それぞれに、各々独立に、2対以上のニップロールを設置してもよい。
 また、ポリエステルシートの縦延伸は、上記ニップロールを備えた縦延伸装置を用いて行なってもよい。
-Longitudinal stretching-
The longitudinal stretching of the polyester sheet can be performed, for example, by using two or more pairs of nip rolls that are sandwiched between the polyester sheets and arranged in the conveying direction of the polyester sheet.
Specifically, for example, when a pair of nip rolls A is installed on the upstream side in the conveyance direction of the polyester sheet and a pair of nip rolls B is installed on the downstream side, when the polyester sheet is conveyed, the rotational speed of the nip roll B on the downstream side Is made faster than the rotational speed of the nip roll A on the upstream side, whereby the polyester sheet is stretched in the conveying direction (MD).
Two or more pairs of nip rolls may be installed independently on the upstream side and the downstream side, respectively.
Moreover, you may perform the longitudinal stretch of a polyester sheet using the longitudinal stretch apparatus provided with the said nip roll.
(ポリエステルシートの搬送速度)
 本発明においては、延伸ムラを抑制するため、ポリエステルシートの延伸を開始するときの、前記ポリエステルシートの搬送速度を、30m/分~100m/分とし、かつ、搬送速度に0.01%~1%の変動を与えることが好ましい。
 縦延伸において、搬送速度に0.01%~1%の変動を与えることで、延伸応力が変動し、延伸応力が増加または減少する。延伸応力が増加した際に、異物(押出機内で発生した熱分解成分の残存物、または成長した球晶)の周囲に応力集中が発生し異物近傍も延伸され、延伸ムラが低減する。
 搬送速度の変動量は、0.05%~0.7%とすることがより好ましく、0.1%~0.5%とすることがさらに好ましい。
(Conveying speed of polyester sheet)
In the present invention, in order to suppress stretching unevenness, the polyester sheet transport speed when starting to stretch the polyester sheet is 30 m / min to 100 m / min, and the transport speed is 0.01% to 1%. % Variation is preferred.
In longitudinal stretching, when the conveyance speed is changed by 0.01% to 1%, the stretching stress varies, and the stretching stress increases or decreases. When the stretching stress increases, stress concentration occurs around the foreign material (residues of pyrolysis components generated in the extruder or grown spherulites), and the vicinity of the foreign material is also stretched to reduce stretching unevenness.
The fluctuation amount of the conveyance speed is more preferably 0.05% to 0.7%, and further preferably 0.1% to 0.5%.
 このような搬送速度の変動は、例えば、ポリエステルシートの搬送方向上流側に1対のニップロールA、下流側に1対のニップロールBを設置した縦延伸装置においては、ニップロールBを駆動するための駆動モーターの電流値に変動を付与することで達成することができる。
 なお、搬送速度の変動量は、1分間の最大速度と最低速度との差を平均値で割り、百分率で表記したものである。搬送速度に変動を与える変動の発生頻度〔回/秒〕は、0.01~50の範囲であることが好ましく、0.1~10がより好ましい。
For example, in a longitudinal stretching apparatus in which a pair of nip rolls A is installed on the upstream side in the conveyance direction of the polyester sheet and a pair of nip rolls B is installed on the downstream side, driving for driving the nip roll B occurs. This can be achieved by giving a variation to the current value of the motor.
In addition, the fluctuation amount of the conveyance speed is expressed as a percentage by dividing the difference between the maximum speed and the minimum speed per minute by the average value. The frequency of occurrence of fluctuations that vary the transport speed [times / second] is preferably in the range of 0.01 to 50, and more preferably 0.1 to 10.
 さらに、時間に対する搬送速度を表す波形において、搬送速度の平均値の±0.1%以上となる搬送速度を表すピークの半値幅が、搬送速度の平均値の逆数の1/4以下となるように、搬送速度に変動を付与することが好ましい。
 本発明における「時間に対する搬送速度を表す波形」は、図4及び図5を用いて説明した既述の「時間に対する前記スクリュー回転数Nを表す波形」と同様に考えればよい。すなわち、時間を横軸に、縦延伸における搬送速度を縦軸にとって、時間に対する搬送速度をプロットしたときの軌跡が、図4または図5に示されるような、ピークが不規則に現れるスパイク状の波形となることが好ましい。なお、時間に対する搬送速度を表す波形において、ピークとは、搬送速度の平均値の±0.1%以上大きい搬送速度を有する極大波形ないし極小波形を指す。
Further, in the waveform representing the conveyance speed with respect to time, the half width of the peak representing the conveyance speed that is ± 0.1% or more of the average value of the conveyance speed is ¼ or less of the reciprocal of the average value of the conveyance speed. Further, it is preferable to give a variation to the conveyance speed.
The “waveform representing the conveyance speed with respect to time” in the present invention may be considered in the same manner as the “waveform representing the screw rotation speed N with respect to time” described with reference to FIGS. 4 and 5. That is, with the horizontal axis representing time and the vertical axis representing the conveyance speed in longitudinal stretching, the locus when plotting the conveyance speed against time is a spike-like shape in which peaks appear irregularly as shown in FIG. 4 or FIG. A waveform is preferred. In the waveform representing the conveyance speed with respect to time, the peak indicates a maximum waveform or a minimum waveform having a conveyance speed that is greater than ± 0.1% of the average value of the conveyance speed.
 搬送速度の平均値の+0.1%以上大きい搬送速度を有する極大波形は、搬送速度が、搬送速度の平均値よりも加速して、極大値を境に減速する変動を示し、搬送速度の平均値の-0.1%以上大きい搬送速度を有する極小波形は、搬送速度が、搬送速度の平均値よりも減速して、極小値を境に加速する変動を示す。 A maximal waveform having a conveyance speed that is greater than + 0.1% of the average value of the conveyance speed indicates a fluctuation in which the conveyance speed accelerates from the average value of the conveyance speed and decelerates from the maximum value. A minimal waveform having a conveyance speed that is greater than or equal to -0.1% of the value indicates a fluctuation in which the conveyance speed is decelerated from the average value of the conveyance speed and accelerated from the minimum value.
 かかるスパイク状の波形において、ピークの半値幅が、搬送速度の平均値の逆数の1/4以下となるように、縦延伸における搬送速度を上げ下げして、変動を付与することが好ましい。「搬送速度〔m/分〕の逆数」は、換言すれば、ポリエステルシートを1m搬送するのに要する時間〔分〕である。従って、ポリエステルシートを1m搬送するのに要する時間〔分〕をt、時間に対する搬送速度を表す波形における極大ピークないし極小ピークの半値幅をΔtとしたとき、「半値幅Δtが、搬送速度の平均値の逆数の1/4以下」は、Δt≦t×1/4、すなわち、Δt/t≦1/4と近似することができる。
 また、時間に対する搬送速度を表す波形において、ピークの半値幅は、搬送速度の平均値の逆数の1/10以下であることがより好ましい。
In such a spike-like waveform, it is preferable to increase or decrease the conveyance speed in the longitudinal stretching so that the half width of the peak is ¼ or less of the reciprocal of the average value of the conveyance speed. In other words, the “reciprocal of the conveyance speed [m / min]” is the time [minute] required to convey the polyester sheet by 1 m. Therefore, when the time [minute] required to convey the polyester sheet 1 m is t, and the half-value width of the maximum peak or the minimum peak in the waveform representing the conveyance speed with respect to time is Δt, “the half-value width Δt is the average of the conveyance speed. “Less than 1/4 of the reciprocal of the value” can be approximated as Δt ≦ t × 1/4, that is, Δt / t ≦ 1/4.
In the waveform representing the conveyance speed with respect to time, the half width of the peak is more preferably 1/10 or less of the reciprocal of the average value of the conveyance speed.
 時間に対する搬送速度を表す波形において、極大波形ないし極小波形を連続させる変動を与える場合は、連続する極大波形ないし極小波形の各半値幅Δtの合計(ΣΔt)が、搬送速度の平均値の逆数の1/4以下となればよい。 In the waveform representing the conveyance speed with respect to time, when a variation in which the maximum waveform or the minimum waveform is made continuous is given, the sum of the half-value widths Δt of the continuous maximum waveform or the minimum waveform (ΣΔt) is the reciprocal of the average value of the conveyance speed. What is necessary is just to become 1/4 or less.
 このように、間欠的に搬送速度に変動を与えることで、より効率的に延伸ムラを抑制することができ、好ましい。 As described above, it is preferable that the unevenness in stretching can be more efficiently suppressed by intermittently changing the conveyance speed.
 また、「ポリエステルシートの延伸を開始するとき」とは、ポリエステルシートに延伸のための張力を付与するときをいう。
 従って、「ポリエステルシートの延伸を開始するときの、前記ポリエステルシートの搬送速度」は、具体的には、例えば、ポリエステルシートの搬送方向上流側に1対のニップロールA、下流側に1対のニップロールBを設置した縦延伸装置においては、ポリエステルシートが、搬送方向上流側に設置されているニップロールAを通過するときの搬送速度をいう。
 縦延伸において、ポリエステルシートの延伸を開始するときのポリエステルシートの搬送速度が30m/分~100m/分であることで、上記延伸応力の変動による効果を得易い。ポリエステルシートの延伸を開始するときのポリエステルシートの搬送速度は、35m/分~80m/分であることがより好ましく、40m/分~70m/分であることがさらに好ましい。
Further, “when starting to stretch the polyester sheet” refers to when a tension for stretching is applied to the polyester sheet.
Therefore, specifically, “the conveyance speed of the polyester sheet when starting the stretching of the polyester sheet” is, for example, a pair of nip rolls A on the upstream side in the conveyance direction of the polyester sheet and a pair of nip rolls on the downstream side. In the longitudinal stretching apparatus in which B is installed, it refers to the conveyance speed when the polyester sheet passes through the nip roll A installed on the upstream side in the conveyance direction.
In the longitudinal stretching, the polyester sheet transport speed when starting the stretching of the polyester sheet is 30 m / min to 100 m / min, so that the effect due to the variation of the stretching stress can be easily obtained. The conveying speed of the polyester sheet when starting the stretching of the polyester sheet is more preferably 35 m / min to 80 m / min, and further preferably 40 m / min to 70 m / min.
(ポリエステルシートの温度分布)
 また、縦延伸では、ポリエステルシートの延伸を開始したときのポリエステルシートに、ポリエステルシートの厚み方向に、0.1℃~30℃の温度分布を与えることが好ましい。
 ポリエステルシートの厚み方向に温度分布がある状態としては、ポリエステルシートの一方の面から他方の面にかけて温度が高く、または低くなっている状態や、ポリエステルシートの内部から表面にかけて、温度が高くまたは低くなっている状態が挙げられる。
 また、「温度分布がある」とは、ポリエステルシートが、表面および内部に2つ以上の異なる温度を有する、いわゆる温度ムラがある状態をいう。また、「0.1℃~30℃の温度分布」とは、ポリエステルシートの表面及び内部における最低温度と最高温度との差が0.1℃~30℃であることをいう。
(Temperature distribution of polyester sheet)
In the longitudinal stretching, it is preferable to give a temperature distribution of 0.1 ° C. to 30 ° C. in the thickness direction of the polyester sheet to the polyester sheet when stretching of the polyester sheet is started.
The temperature distribution in the thickness direction of the polyester sheet is such that the temperature is high or low from one side of the polyester sheet to the other, or the temperature is high or low from the inside to the surface of the polyester sheet. The state that has become.
Further, “there is a temperature distribution” means a state in which the polyester sheet has a so-called temperature unevenness in which two or more different temperatures are present on the surface and inside. Further, “temperature distribution from 0.1 ° C. to 30 ° C.” means that the difference between the lowest temperature and the highest temperature on the surface and inside of the polyester sheet is 0.1 ° C. to 30 ° C.
 ポリエステルシートの厚み方向の温度分布は、上記の中でも、ポリエステルシートの表面より内部が低温である状態が好ましい。すなわち、ポリエステルシートの内部から表面にかけて、温度が高くなる温度分布を有することが好ましい。
 これは、押出機内にてメルトの熱分解成分としてポリエステル中に残存した異物や、球晶が成長してポリエステル中に残存した球晶(異物)は、キャストドラムや剥ぎ取りロールによって、ポリエステルシートの内部に押し込まれ易いため、ポリエステルシートの厚み方向の内部に存在することが多い。
Among the above, the temperature distribution in the thickness direction of the polyester sheet is preferably in a state where the inside is at a lower temperature than the surface of the polyester sheet. That is, it is preferable to have a temperature distribution in which the temperature increases from the inside to the surface of the polyester sheet.
This is because the foreign material remaining in the polyester as a thermal decomposition component of the melt in the extruder and the spherulite (foreign material) which has grown in the spherulite and remained in the polyester are separated from the polyester sheet by a cast drum or a peeling roll. Since it tends to be pushed into the inside, it often exists inside the thickness direction of the polyester sheet.
 ここで、ポリエステルシートの内部の温度を、ポリエステルシートの表面の温度よりも小さくすることで、延伸応力が増加し、異物近傍の延伸ムラを低減することができる。このようなポリエステルシートの厚み方向に温度分布を与えることは、加熱ロール(例えば、ヒーターを有するニップロール)へのポリエステルシートの接触時間を短くすることで達成できる。より具体的には、ポリエステルシートの搬送速度を上記速度(30m/分~100m/分)にすることが好ましい。
 ポリエステルシートの厚み方向の温度分布は、0.5℃~25℃であることがより好ましく、1℃~20℃であることがさらに好ましい。
Here, by making the temperature inside the polyester sheet smaller than the temperature of the surface of the polyester sheet, the stretching stress increases, and stretching unevenness in the vicinity of the foreign matter can be reduced. Giving such a temperature distribution in the thickness direction of the polyester sheet can be achieved by shortening the contact time of the polyester sheet with a heating roll (for example, a nip roll having a heater). More specifically, the polyester sheet conveyance speed is preferably set to the above speed (30 m / min to 100 m / min).
The temperature distribution in the thickness direction of the polyester sheet is more preferably 0.5 ° C. to 25 ° C., and further preferably 1 ° C. to 20 ° C.
 さらに、ポリエステルシートの厚みを300μm以上6000μmにすることが好ましく、より好ましくは500μm以上5000μm以下、さらに好ましくは1000μm以上4000μm以下である。これにより、ポリエステルシートの内部への熱の拡散を抑制し、上記温度分布を達成することができる。
 上記範囲とすることで、縦延伸におけるポリエステルシートの厚み方向に温度分布を与え易くなる。さらに、ポリエステルシートの厚手化に伴う延伸張力の増加により、ポリエステルシートの中に存在し得る異物の近傍に加わる延伸応力をより増大し、延伸ムラを低減することができる効果も有する。
Furthermore, the thickness of the polyester sheet is preferably 300 μm or more and 6000 μm, more preferably 500 μm or more and 5000 μm or less, and still more preferably 1000 μm or more and 4000 μm or less. Thereby, the spreading | diffusion of the heat | fever to the inside of a polyester sheet can be suppressed, and the said temperature distribution can be achieved.
By setting it as the said range, it becomes easy to give temperature distribution to the thickness direction of the polyester sheet in longitudinal stretch. Furthermore, the increase in the stretching tension accompanying the increase in thickness of the polyester sheet has the effect of further increasing the stretching stress applied to the vicinity of foreign matter that may be present in the polyester sheet and reducing stretching unevenness.
-横延伸-
 ポリエステルシートの横延伸は、ポリエステルシートを、ポリエステルシートの搬送方向(MD)と直交する方向(TD)に拡幅することにより行なう。横延伸は、一般的には、ポリエステルシートのTD方向の両端部を把持部材で把持して、拡幅する。
 また、ポリエステルシートの横延伸は、予熱部と、延伸部と、熱処理部と、をこの順に有する横延伸装置または2軸延伸機を用い、ポリエステルシートの端部を把持して、予熱部と、延伸部と、熱処理部と、に搬送しながら、ポリエステルシートを横延伸することが好ましい。
 まず、2軸延伸機について説明する。
-Transverse stretching-
The lateral stretching of the polyester sheet is performed by widening the polyester sheet in a direction (TD) perpendicular to the conveying direction (MD) of the polyester sheet. In the transverse stretching, generally, both ends of the polyester sheet in the TD direction are gripped by a gripping member and widened.
Further, the lateral stretching of the polyester sheet is performed by using a lateral stretching apparatus or a biaxial stretching machine having a preheating portion, a stretching portion, and a heat treatment portion in this order, and gripping an end portion of the polyester sheet, It is preferable to laterally stretch the polyester sheet while transporting it to the stretching section and the heat treatment section.
First, a biaxial stretching machine will be described.
(2軸延伸機)
 図2に、2軸延伸機の一例(上面図)を示す。
 図2には、2軸延伸機200と、2軸延伸機200に装着されたポリエステルシート220とが示されている。2軸延伸機200は、1対の環状レール21aおよび21bを備え、ポリエステルシート220を挟んで対称に並んでいる。
(Biaxial stretching machine)
FIG. 2 shows an example (top view) of a biaxial stretching machine.
FIG. 2 shows a biaxial stretching machine 200 and a polyester sheet 220 attached to the biaxial stretching machine 200. The biaxial stretching machine 200 includes a pair of annular rails 21 a and 21 b and is arranged symmetrically with the polyester sheet 220 interposed therebetween.
 2軸延伸機200は、ポリエステルシート220を延伸する前に予め加熱する予熱部22と、ポリエステルシート220を、矢印MD方向と直交する方向である矢印TD方向に延伸する延伸部24と、延伸後のポリエステルフィルムを熱処理する熱処理部26と、に少なくとも分けられる。延伸後のポリエステルフィルムを熱処理する方法としては、延伸して緊張を与えたポリエステルフィルムに、緊張を与えたまま加熱する熱固定処理や、熱固定処理後に、緊張を解いてポリエステルフィルムを緩和する熱緩和処理等が挙げられる。 The biaxial stretching machine 200 includes a preheating unit 22 that preheats the polyester sheet 220 before stretching, a stretching unit 24 that stretches the polyester sheet 220 in the arrow TD direction, which is a direction orthogonal to the arrow MD direction, and after stretching. The heat treatment part 26 heat-treats the polyester film. As a method of heat-treating the stretched polyester film, a heat-fixing process in which the stretched and tensioned polyester film is heated with tension applied, or heat that releases the tension and relaxes the polyester film after the heat-fixing process. Examples include relaxation treatment.
 環状レール20aは、環状レール21aの縁を移動可能な把持部材21a、21b、21e、及び、21fを少なくとも備え、環状レール21bは、環状レール20bの縁を移動可能な把持部材21c、21d、21g、及び、21hを少なくとも備えている。把持部材21a、21b、21e、及び、21fは、ポリエステルシート220のTD方向の一方の端部を把持し、把持部材21c、21d、21g、及び、21hは、ポリエステルシート220のTD方向の他方の端部を把持している。把持部材21a~21hは、一般に、チャック、クリップ等と称される。
 把持部材21a、21b、21e、及び、21fは、環状レール20aの縁に沿って反時計回りに移動し、把持部材21c、21d、21g、及び、21hは、環状レール20bの縁に沿って時計回りに移動する。
The annular rail 20a includes at least gripping members 21a, 21b, 21e, and 21f that can move the edge of the annular rail 21a, and the annular rail 21b includes gripping members 21c, 21d, and 21g that can move the edge of the annular rail 20b. , And 21h. The grip members 21a, 21b, 21e, and 21f grip one end of the polyester sheet 220 in the TD direction, and the grip members 21c, 21d, 21g, and 21h are the other end of the polyester sheet 220 in the TD direction. Hold the end. The gripping members 21a to 21h are generally called chucks, clips, and the like.
The gripping members 21a, 21b, 21e, and 21f move counterclockwise along the edge of the annular rail 20a, and the gripping members 21c, 21d, 21g, and 21h are clocked along the edge of the annular rail 20b. Move around.
 把持部材21a~21dは、予熱部22においてポリエステルシート220の端部を把持し、そのまま、環状レール20aまたは20bの縁を移動し、把持部材21e~21hが示される熱処理部26まで進む。予熱部22から熱処理部26まで移動した把持部材21a~21dは、熱処理部26のMD方向下流側、例えば、把持部材21fおよび21hが示されている位置で、ポリエステルシート220の端部を離し、そのまま、環状レール20aまたは20bの縁に沿って進行し、予熱部22に戻る。
 その結果、ポリエステルシート220は、矢印MD方向に移動し、予熱部22と、延伸部24と、熱処理部26とに、順に搬送される。
 なお、ポリエステルシート220のTD方向の端部を把持する把持部材は、21a~21hの8つのみを図示しているが、ポリエステルシート220を支えるため、2軸延伸機200は、21a~21hのほかにも、図示しない把持部材を有する。
The gripping members 21a to 21d grip the end portion of the polyester sheet 220 in the preheating unit 22, move the edge of the annular rail 20a or 20b as it is, and proceed to the heat treatment unit 26 where the gripping members 21e to 21h are shown. The gripping members 21a to 21d moved from the preheating unit 22 to the heat treatment unit 26 separate the end of the polyester sheet 220 at the downstream side in the MD direction of the heat treatment unit 26, for example, at positions where the gripping members 21f and 21h are shown, It advances along the edge of the annular rail 20a or 20b as it is, and returns to the preheating part 22.
As a result, the polyester sheet 220 moves in the direction of the arrow MD, and is sequentially conveyed to the preheating unit 22, the stretching unit 24, and the heat treatment unit 26.
Although only eight gripping members 21a to 21h are shown for gripping the end of the polyester sheet 220 in the TD direction, the biaxial stretching machine 200 supports 21a to 21h to support the polyester sheet 220. In addition, it has a gripping member (not shown).
 熱固定処理では、延伸部24において、既述の面積延伸倍率にすべくポリエステルシート220に与えられた緊張(例えば、1kg/m~10kg/mの張力)をそのままに、加熱(例えば、210℃~230℃)する。かかる処理により、ポリエステルフィルムの結晶を配向させて、平面性と寸法安定性を付与することができる
 また必要に応じて、加熱(例えば、210℃~230℃)したまま、TD方向またはMD方向に1%~12%緩和する熱緩和処理(弛緩処理)を行なってもよい。
 熱固定処理されたポリエステルフィルムは、通常、Tg以下まで冷却され、ポリエステルフィルム両端の把持部分をカットしロール状に巻き取られる。この際、最終熱固定処理温度以下、Tg以上の温度範囲内で、TD方向及び/またはMD方向に1%~12%弛緩する処理を行なうことが好ましい。
In the heat setting treatment, heating (for example, 210 ° C.) is performed while maintaining the tension (for example, tension of 1 kg / m to 10 kg / m) applied to the polyester sheet 220 in the stretching unit 24 to achieve the above-described area stretching ratio. ~ 230 ° C). By this treatment, the crystal of the polyester film can be oriented to give flatness and dimensional stability. If necessary, it can be heated (eg, 210 ° C. to 230 ° C.) while being in the TD direction or MD direction. Thermal relaxation treatment (relaxation treatment) that relaxes 1% to 12% may be performed.
The heat-set polyester film is usually cooled to Tg or less, and the grip portions at both ends of the polyester film are cut and wound into a roll. At this time, it is preferable to perform a treatment that relaxes 1% to 12% in the TD direction and / or MD direction within a temperature range not higher than the final heat setting temperature and not lower than Tg.
 2軸延伸機200は、延伸部24において、ポリエステルシート220をTD方向に延伸する横延伸を可能とするものであるが、把持部材21a~21dの移動速度を速めたり、把持部材21aと21bとの間隔、ならびに把持部材21cと21dとの間隔を広げることにより、MD方向にも延伸することができる。すなわち、2軸延伸機200を用いて同時2軸延伸を行なうことも可能である。
 なお、横延伸装置は、図示していないが、MD方向の延伸(縦延伸)をしない他は、2軸延伸機と同様の構造を有しており、ポリエステルシートを把持する把持部材、及び、把持部材を有するレールを備える。横延伸装置が少なくとも予熱部、延伸部、及び熱処理部で構成されていること、及びその機能についても、2軸延伸機と同様である。
 次に、ポリエステルシート220の搬送速度の変動について説明する。なお、図面の符号は省略して説明する。
The biaxial stretching machine 200 is capable of lateral stretching in which the polyester sheet 220 is stretched in the TD direction in the stretching unit 24. However, the biaxial stretching machine 200 increases the moving speed of the gripping members 21a to 21d, It is possible to extend in the MD direction by increasing the distance between and the distance between the gripping members 21c and 21d. That is, simultaneous biaxial stretching can be performed using the biaxial stretching machine 200.
Although the transverse stretching apparatus is not shown, it has the same structure as the biaxial stretching machine except that it does not stretch in the MD direction (longitudinal stretching), and a gripping member that grips the polyester sheet, and A rail having a gripping member is provided. It is the same as that of a biaxial stretching machine also about that the horizontal stretching apparatus is comprised at least by the preheating part, the extending | stretching part, and the heat processing part, and its function.
Next, the fluctuation | variation of the conveyance speed of the polyester sheet 220 is demonstrated. Note that the reference numerals in the drawings are omitted.
(ポリエステルシートの搬送速度の変動)
 既述のように、ポリエステルシートは、ポリエステルシートのTD方向端部を把持した把持部材が、環状レールの縁を移動することにより予熱部から熱処理部まで搬送される。従って、把持部材の移動速度が、ポリエステルシートの搬送速度となる。
 2軸延伸機において、ポリエステルシートを把持部材で把持して、延伸部にてTD方向に延伸する際に、ポリエステルシートの搬送速度(すなわち、把持部材の移動速度)に、0.1%~5%の変動を付与することが好ましい。
 ポリエステルシートに異物が残存していると、異物が存在する部分およびその近傍は延伸し難いため、延伸時に延伸ムラが発生し易いことは、記述のとおりである。ここで、上記のように、ポリエステルシートの搬送速度に変動を与えることで、延伸中に応力ムラが発生、即ち、瞬間的に大きな応力が発生する。このような大きな応力が、延伸し難い異物の近傍の延伸を促進し、延伸ムラを低減する。なお、ポリエステルシートの搬送速度の変動は、1分間の最大速度と最低速度との差を平均値で割り、百分率で表記したものである。ポリエステルシートの搬送速度の変動の発生頻度〔回/秒〕は、0.01~50の範囲であることが好ましく、0.1~10がより好ましい。
 ポリエステルシートの搬送速度の変動量は、0.3%~3.5%であることがより好ましく、0.5%~2%であることがさらに好ましい。
(Fluctuation of polyester sheet conveyance speed)
As described above, the polyester sheet is conveyed from the preheating portion to the heat treatment portion by moving the edge of the annular rail by the gripping member that holds the end of the polyester sheet in the TD direction. Therefore, the moving speed of the gripping member becomes the conveying speed of the polyester sheet.
In the biaxial stretching machine, when the polyester sheet is gripped by the gripping member and stretched in the TD direction at the stretching section, the polyester sheet conveyance speed (that is, the gripping member moving speed) is 0.1% to 5%. It is preferable to give a variation of%.
If foreign matter remains in the polyester sheet, the portion where the foreign matter exists and the vicinity thereof are difficult to stretch, and as described above, stretching unevenness is likely to occur during stretching. Here, as described above, by varying the conveyance speed of the polyester sheet, stress unevenness is generated during stretching, that is, a large stress is instantaneously generated. Such a large stress promotes stretching in the vicinity of a foreign object that is difficult to stretch, and reduces stretching unevenness. In addition, the fluctuation | variation of the conveyance speed of a polyester sheet divides the difference of the maximum speed and minimum speed of 1 minute by an average value, and was described with the percentage. The frequency of occurrence of fluctuations in the conveyance speed of the polyester sheet [times / second] is preferably in the range of 0.01 to 50, and more preferably 0.1 to 10.
The fluctuation amount of the conveyance speed of the polyester sheet is more preferably 0.3% to 3.5%, and further preferably 0.5% to 2%.
 さらに、時間に対する搬送速度を表す波形において、搬送速度の平均値の±0.1%以上となる搬送速度を表すピークの半値幅が、搬送速度の平均値の逆数の1/4以下となるように、搬送速度に変動を付与することが好ましい。
 本発明における「時間に対する搬送速度を表す波形」は、図4及び図5を用いて説明した既述の「時間に対する前記スクリュー回転数Nを表す波形」と同様に考えればよい。すなわち、時間を横軸に、縦延伸における搬送速度を縦軸にとって、時間に対する搬送速度をプロットしたときの軌跡が、図4または図5に示されるような、ピークが不規則に現れるスパイク状の波形となることが好ましい。なお、時間に対する搬送速度を表す波形において、ピークとは、搬送速度の平均値の±0.1%以上大きい搬送速度を有する極大波形ないし極小波形を指す。
Further, in the waveform representing the conveyance speed with respect to time, the half width of the peak representing the conveyance speed that is ± 0.1% or more of the average value of the conveyance speed is ¼ or less of the reciprocal of the average value of the conveyance speed. Further, it is preferable to give a variation to the conveyance speed.
The “waveform representing the conveyance speed with respect to time” in the present invention may be considered in the same manner as the “waveform representing the screw rotation speed N with respect to time” described with reference to FIGS. 4 and 5. That is, with the horizontal axis representing time and the vertical axis representing the conveyance speed in longitudinal stretching, the locus when plotting the conveyance speed against time is a spike-like shape in which peaks appear irregularly as shown in FIG. 4 or FIG. A waveform is preferred. In the waveform representing the conveyance speed with respect to time, the peak indicates a maximum waveform or a minimum waveform having a conveyance speed that is greater than ± 0.1% of the average value of the conveyance speed.
 搬送速度の平均値の+0.1%以上大きい搬送速度を有する極大波形は、搬送速度が、搬送速度の平均値よりも加速して、極大値を境に減速する変動を示し、搬送速度の平均値の-0.1%以上大きい搬送速度を有する極小波形は、搬送速度が、搬送速度の平均値よりも減速して、極小値を境に加速する変動を示す。 A maximal waveform having a conveyance speed that is greater than + 0.1% of the average value of the conveyance speed indicates a fluctuation in which the conveyance speed accelerates from the average value of the conveyance speed and decelerates from the maximum value. A minimal waveform having a conveyance speed that is greater than or equal to -0.1% of the value indicates a fluctuation in which the conveyance speed is decelerated from the average value of the conveyance speed and accelerated from the minimum value.
 かかるスパイク状の波形において、ピークの半値幅が、搬送速度の平均値の逆数の1/4以下となるように、縦延伸における搬送速度を上げ下げして、変動を付与することが好ましい。「搬送速度〔m/分〕の逆数」は、換言すれば、ポリエステルシートを1m搬送するのに要する時間〔分〕である。従って、ポリエステルシートを1m搬送するのに要する時間〔分〕をt、時間に対する搬送速度を表す波形における極大ピークないし極小ピークの半値幅をΔtとしたとき、「半値幅Δtが、搬送速度の平均値の逆数の1/4以下」は、Δt≦t×1/4、すなわち、Δt/t≦1/4と近似することができる。
 また、時間に対する搬送速度を表す波形において、ピークの半値幅は、搬送速度の平均値の逆数の1/10以下であることがより好ましい。
In such a spike-like waveform, it is preferable to increase or decrease the conveyance speed in the longitudinal stretching so that the half width of the peak is ¼ or less of the reciprocal of the average value of the conveyance speed. In other words, the “reciprocal of the conveyance speed [m / min]” is the time [minute] required to convey the polyester sheet by 1 m. Therefore, when the time [minute] required to convey the polyester sheet 1 m is t, and the half-value width of the maximum peak or the minimum peak in the waveform representing the conveyance speed with respect to time is Δt, “the half-value width Δt is the average of the conveyance speed. “Less than 1/4 of the reciprocal of the value” can be approximated as Δt ≦ t × 1/4, that is, Δt / t ≦ 1/4.
In the waveform representing the conveyance speed with respect to time, the half width of the peak is more preferably 1/10 or less of the reciprocal of the average value of the conveyance speed.
 時間に対する搬送速度を表す波形において、極大波形ないし極小波形を連続させる変動を与える場合は、連続する極大波形ないし極小波形の各半値幅Δtの合計(ΣΔt)が、搬送速度の平均値の逆数の1/4以下となればよい。 In the waveform representing the conveyance speed with respect to time, when a variation in which the maximum waveform or the minimum waveform is made continuous is given, the sum of the half-value widths Δt of the continuous maximum waveform or the minimum waveform (ΣΔt) is the reciprocal of the average value of the conveyance speed. What is necessary is just to become 1/4 or less.
 このように、間欠的に搬送速度に変動を与えることで、より効率的に延伸ムラを抑制することができ、好ましい。 As described above, it is preferable that the unevenness in stretching can be more efficiently suppressed by intermittently changing the conveyance speed.
 本発明のポリエステルフィルムの製造方法は、ベント式2軸押出機と、縦延伸装置と、横延伸装置とを直列に接続した2軸延伸機を用いて行なってもよい。
 図3に、ベント式2軸押出機と、縦延伸装置と、横延伸装置とを直列に接続した2軸延伸機の上面図〔図3A〕および側面図〔(図3B〕を示す。
 図3Aと図3Bに示す2軸延伸機300は、ベント式2軸押出機30と、縦延伸装置50と、横延伸装置60と、ポリエステルフィルムの巻取機70とが、この順に直列に接続されている。
You may perform the manufacturing method of the polyester film of this invention using the biaxial stretching machine which connected the vent type biaxial extruder, the longitudinal stretch apparatus, and the horizontal stretch apparatus in series.
FIG. 3 shows a top view (FIG. 3A) and a side view ((FIG. 3B) of a biaxial stretching machine in which a bent type biaxial extruder, a longitudinal stretching apparatus, and a transverse stretching apparatus are connected in series.
A biaxial stretching machine 300 shown in FIGS. 3A and 3B includes a bent biaxial extruder 30, a longitudinal stretching device 50, a lateral stretching device 60, and a polyester film winder 70 connected in series in this order. Has been.
 ベント式2軸押出機30は、ホッパー32と、ベント孔34とを少なくとも備え、ベント式2軸押出機30に隣接して押出ダイ42と、冷却装置44が設置されている。
 冷却装置44は、キャストドラムを備える。
 縦延伸装置50は、冷却装置44よりもMD方向(矢印方向)下流側に位置し、冷却装置44と横延伸装置60との間に設置されている。
 横延伸装置60は、縦延伸装置50よりもMD方向下流側に位置し、縦延伸装置50と巻取機70との間に設置されている。また、横延伸装置60は、MD方向の上流側から下流側にかけて、予熱部62、延伸部64、熱処理部66、及び冷却部68を備えている。
 巻取部70は、横延伸装置60よりもMD方向下流側に位置している。
 図3に示す横延伸装置60は、図2に示す2軸延伸機200のような、MD方向の延伸も可能な2軸延伸機に代えてもよい。
The vent type biaxial extruder 30 includes at least a hopper 32 and a vent hole 34, and an extrusion die 42 and a cooling device 44 are installed adjacent to the vent type biaxial extruder 30.
The cooling device 44 includes a cast drum.
The longitudinal stretching device 50 is located downstream of the cooling device 44 in the MD direction (arrow direction), and is installed between the cooling device 44 and the lateral stretching device 60.
The transverse stretching device 60 is located downstream of the longitudinal stretching device 50 in the MD direction, and is installed between the longitudinal stretching device 50 and the winder 70. The transverse stretching device 60 includes a preheating unit 62, a stretching unit 64, a heat treatment unit 66, and a cooling unit 68 from the upstream side to the downstream side in the MD direction.
The winding unit 70 is located downstream of the transverse stretching device 60 in the MD direction.
The transverse stretching apparatus 60 shown in FIG. 3 may be replaced with a biaxial stretching machine capable of stretching in the MD direction, such as the biaxial stretching machine 200 shown in FIG.
 原料ポリエステルが、2軸延伸機300によってポリエステルフィルムとなって回収されるまでを概説する。
 ホッパー32に投入された原料ポリエステルは、ベント式2軸押出機30が備えるスクリュー(図示せず)によって溶融混練された後、押出口(図示せず)から押出ダイ42に押出され、冷却装置44に備えられたキャストドラム等の冷却部材によって冷却され、固化して、ポリエステルシートが製造される。
 ポリエステルシートは、縦延伸装置50に搬送され、MD方向に延伸(縦延伸)されてポリエステルフィルムになる。縦延伸されたポリエステルフィルムは、引き続き、横延伸装置60に搬送され、予熱部62で加熱され、延伸部64でMD方向と直交する方向(TD方向)に拡幅され、熱処理部66で熱固定処理および熱緩和処理が施される。その後、冷却部68にてポリエステルフィルムが冷却されて、2軸延伸ポリエステルフィルムが製造される。製造された2軸延伸ポリエステルフィルムは、巻取機70によって巻き取られ、回収される。
An outline will be given until the raw material polyester is recovered as a polyester film by the biaxial stretching machine 300.
The raw material polyester put into the hopper 32 is melt-kneaded by a screw (not shown) provided in the vent type twin-screw extruder 30, and then extruded from an extrusion port (not shown) to an extrusion die 42, and a cooling device 44. The polyester sheet is manufactured by being cooled and solidified by a cooling member such as a cast drum provided in the above.
The polyester sheet is conveyed to the longitudinal stretching device 50 and stretched (longitudinal stretching) in the MD direction to become a polyester film. The longitudinally stretched polyester film is subsequently transported to the transverse stretching device 60, heated by the preheating unit 62, widened in the direction perpendicular to the MD direction (TD direction) by the stretching unit 64, and heat set by the heat treatment unit 66. And heat relaxation treatment is performed. Thereafter, the polyester film is cooled in the cooling unit 68 to produce a biaxially stretched polyester film. The produced biaxially stretched polyester film is wound up by the winder 70 and collected.
<ポリエステルフィルム>
 本発明のポリエステルフィルムは、既述の本発明のポリエステルフィルムの製造方法で製造されたポリエステルフィルムである。
 上記の本発明のポリエステルフィルムの製造方法により、厚さ30μm~400μmのポリエステルフィルムを製造することが好ましい。すなわち、縦延伸と横延伸を経た2軸延伸後の厚みを30μm~400μmとすることが好ましい。
 ポリエステルフィルムの厚みは、電気絶縁性の観点から、40μm~350μmであることが好ましく、50μm~300μmであることがより好ましい。
 得られたポリエステルフィルムは、太陽電池用バックシート、バリアフィルム基材等の用途に好適である。
<Polyester film>
The polyester film of the present invention is a polyester film manufactured by the above-described method for manufacturing a polyester film of the present invention.
It is preferable to produce a polyester film having a thickness of 30 μm to 400 μm by the method for producing a polyester film of the present invention. That is, the thickness after biaxial stretching through longitudinal stretching and lateral stretching is preferably 30 μm to 400 μm.
The thickness of the polyester film is preferably 40 μm to 350 μm, more preferably 50 μm to 300 μm, from the viewpoint of electrical insulation.
The obtained polyester film is suitable for uses such as a solar cell backsheet and a barrier film substrate.
<太陽電池用バックシート>
 本発明の太陽電池用バックシートは、既述の本発明のポリエステルフィルムを用いている。
 太陽電池用バックシートは、太陽電池発電モジュールの太陽光入射側とは反対側の裏面に配置される裏面保護シートである。
 本発明の太陽電池用バックシートは、延伸ムラが抑制された本発明のポリエステルフィルムを用いている。従って、太陽電池用バックシートの有する機能が、シートの厚みに応じて異なりにくく、該機能をムラ無く発現することができ、特に耐候性ムラが抑制されている。
<Back sheet for solar cell>
The above-described polyester film of the present invention is used for the solar cell backsheet of the present invention.
The solar cell backsheet is a back surface protection sheet disposed on the back surface of the solar cell power generation module opposite to the sunlight incident side.
The back sheet for solar cell of the present invention uses the polyester film of the present invention in which stretching unevenness is suppressed. Therefore, the function of the back sheet for solar cells is unlikely to vary depending on the thickness of the sheet, and the function can be expressed without unevenness. In particular, uneven weather resistance is suppressed.
 太陽電池発電モジュールの用途では、電気を取り出すリード配線で接続された発電素子(太陽電池素子)をエチレン・酢酸ビニル共重合体系(EVA系)樹脂等の封止剤で封止し、これを、ガラス等の透明基板と、本発明のポリエステルフィルム(バックシート)との間に挟んで互いに張り合わせることによって構成される態様が挙げられる。なお、太陽電池素子の例としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。 In the application of the solar cell power generation module, the power generation element (solar cell element) connected by the lead wiring for taking out electricity is sealed with a sealing agent such as ethylene / vinyl acetate copolymer system (EVA system) resin, The aspect comprised by sticking together between transparent substrates, such as glass, and the polyester film (back sheet | seat) of this invention is mentioned. Examples of solar cell elements include silicon-based materials such as monocrystalline silicon, polycrystalline silicon, and amorphous silicon, and copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, gallium-arsenic, etc. III- Various known solar cell elements such as Group V and II-VI compound semiconductor systems can be applied.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。なお、「部」、「%」は、特に記載しない限り、質量基準である。
 以下に記載する原料ポリエステルの合成、押出工程および延伸工程等を行い、以下の表1~5に記載のポリエステルフィルムを製造した(実施例1~88及び比較例1~8)。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples unless it exceeds the gist thereof. “Parts” and “%” are based on mass unless otherwise specified.
The raw material polyesters described below were synthesized, extruded, stretched, etc. to produce polyester films described in Tables 1 to 5 below (Examples 1 to 88 and Comparative Examples 1 to 8).
<原料ポリエステルの合成>
〔原料ポリエステル1-チタン系触媒(Ti触媒)を使用-〕
 以下に示すように、テレフタル酸及びエチレングリコールを直接反応させて水を留去し、エステル化した後、減圧下で重縮合を行なう直接エステル化法を用いて、連続重合装置によりポリエステル(Ti触媒系PET)を得た。
<Synthesis of raw material polyester>
[Raw material polyester 1-Titanium catalyst (Ti catalyst) used]
As shown below, terephthalic acid and ethylene glycol are directly reacted to distill off water, esterify, and then use a direct esterification method in which polycondensation is performed under reduced pressure, and polyester (Ti catalyst) by a continuous polymerization apparatus. System PET) was obtained.
(1)エステル化反応
 第一エステル化反応槽で、高純度テレフタル酸4.7トンとエチレングリコール1.8トンを90分かけて混合してスラリーを形成した。更にクエン酸がTi金属に配位したクエン酸キレートチタン錯体(VERTEC AC-420、ジョンソン・マッセイ社製)のエチレングリコール溶液を連続的に供給し、反応槽内温度250℃、攪拌下、平均滞留時間約4.3時間で反応を行なった。このとき、クエン酸キレートチタン錯体は、Ti添加量が元素換算値で9ppmとなるように連続的に添加した。このとき、得られたオリゴマーの酸価は600当量/トンであった。
(1) Esterification reaction In the first esterification reaction tank, 4.7 tons of high-purity terephthalic acid and 1.8 tons of ethylene glycol were mixed over 90 minutes to form a slurry. Furthermore, an ethylene glycol solution of a citrate chelate titanium complex (VERTEC AC-420, manufactured by Johnson Matthey) in which citric acid is coordinated to Ti metal is continuously supplied, and the average residence time is maintained at 250 ° C. with stirring in the reaction vessel. The reaction was carried out for about 4.3 hours. At this time, the citric acid chelate titanium complex was continuously added so that the amount of Ti added was 9 ppm in terms of element. At this time, the acid value of the obtained oligomer was 600 equivalent / ton.
 この反応物を第二エステル化反応槽に移送し、攪拌下、反応槽内温度250℃、平均滞留時間1.2時間で反応させ、酸価が200当量/トンのオリゴマーを得た。第二エステル化反応槽は内部が3ゾーンに仕切られており、第2ゾーンから酢酸マグネシウムのエチレングリコール溶液を、Mg添加量が元素換算値で75ppmになるように連続的に供給し、続いて第3ゾーンから、リン酸トリメチルのエチレングリコール溶液を、P添加量が元素換算値で65ppmになるように連続的に供給した。 The reaction product was transferred to a second esterification reaction vessel and reacted with stirring at a temperature in the reaction vessel of 250 ° C. and an average residence time of 1.2 hours to obtain an oligomer having an acid value of 200 equivalents / ton. The inside of the second esterification reaction tank is partitioned into three zones, and an ethylene glycol solution of magnesium acetate is continuously supplied from the second zone so that the amount of Mg added is 75 ppm in terms of element, From the third zone, an ethylene glycol solution of trimethyl phosphate was continuously supplied so that the added amount of P was 65 ppm in terms of element.
(2)重縮合反応
 上記で得られたエステル化反応生成物を連続的に第一重縮合反応槽に供給し、攪拌下、反応温度270℃、反応槽内圧力20torr(2.67×10-3MPa)で、平均滞留時間約1.8時間で重縮合させた。
(2) the polycondensation reaction above-obtained esterification reaction product supplied to the first polycondensation reaction vessel continuously stirring, the reaction temperature 270 ° C., the reaction vessel pressure 20 torr (2.67 × 10 - 3 MPa) and polycondensation with an average residence time of about 1.8 hours.
 更に、第二重縮合反応槽に移送し、この反応槽において攪拌下、反応槽内温度276℃、反応槽内圧力5torr(6.67×10-4MPa)で滞留時間約1.2時間の条件で反応(重縮合)させた。 Further, it was transferred to the second double condensation reaction tank, and while stirring in this reaction tank, the reaction tank temperature was 276 ° C., the reaction tank pressure was 5 torr (6.67 × 10 −4 MPa), and the residence time was about 1.2 hours. The reaction (polycondensation) was performed under the conditions.
 次いで、更に第三重縮合反応槽に移送し、この反応槽では、反応槽内温度278℃、反応槽内圧力1.5torr(2.0×10-4MPa)で、滞留時間1.5時間の条件で反応(重縮合)させ、反応物1(ポリエチレンテレフタレート(PET))を得た。 Subsequently, it was further transferred to the third triple condensation reaction tank, in which the temperature in the reaction tank was 278 ° C., the pressure in the reaction tank was 1.5 torr (2.0 × 10 −4 MPa), and the residence time was 1.5 hours. The reaction product 1 (polyethylene terephthalate (PET)) was obtained by reaction (polycondensation) under the following conditions.
 得られた反応物1について、高分解能型高周波誘導結合プラズマ-質量分析(HR-ICP-MS;SIIナノテクノロジー社製AttoM)を用いて以下に示すように測定した結果、Ti=9ppm、Mg=75ppm、P=60ppmであった。Pは当初の添加量に対して僅かに減少しているが、重合過程において揮発したものと推定される。
 得られたポリマーは、IV=0.65、末端カルボキシル基濃度AV=22当量/トン、融点=257℃、溶液ヘイズ=0.3%であった。
The obtained reaction product 1 was measured using a high resolution high frequency inductively coupled plasma-mass spectrometry (HR-ICP-MS; AttoM manufactured by SII Nanotechnology) as shown below. As a result, Ti = 9 ppm, Mg = It was 75 ppm and P = 60 ppm. P is slightly reduced with respect to the initial addition amount, but is estimated to have volatilized during the polymerization process.
The obtained polymer had IV = 0.65, terminal carboxyl group concentration AV = 22 eq / ton, melting point = 257 ° C., and solution haze = 0.3%.
-固相重合-
 また、上記のようにして得た反応物1について、バッチ法で固相重合を実施した。すなわち、反応物1を容器に投入した後、真空にして撹拌しながら、以下の条件で固相重合した。
 150℃で予備結晶化処理した後、190℃で30時間の固相重合反応を行った。
 得られた原料ポリエステル1は、固有粘度IV=0.78、末端カルボキシル基濃度AV=15当量/トンであった。
-Solid state polymerization-
Further, the reaction product 1 obtained as described above was subjected to solid phase polymerization by a batch method. That is, after putting the reaction product 1 into a container, it was subjected to solid phase polymerization under the following conditions while stirring under vacuum.
After precrystallization at 150 ° C., a solid state polymerization reaction was performed at 190 ° C. for 30 hours.
The obtained raw material polyester 1 had an intrinsic viscosity IV = 0.78 and a terminal carboxyl group concentration AV = 15 equivalents / ton.
〔原料ポリエステル2-アンチモン系触媒(Sb触媒)を使用-〕
 以下に示す方法で、添加するTi触媒(チタンアルコキシド化合物)の量を変えて重合を行なうことにより、アンチモン(Sb)量を含み、チタン(Ti)量の異なる原料ポリエステルを得た。具体的な方法は、次の通りである。
 ジメチルテレフタレート100トンとエチレングリコール70トンとを、エステル交換触媒として酢酸カルシウム1水塩及び酢酸マグネシウム4水塩を使用して、常法にしたがってエステル交換反応させた後、トリメチルフォスフェートを添加し、実質的にエステル交換反応を終了させた。更に、チタニウムテトラブトキサイドと三酸化アンチモンとを添加し、高温高真空下で常法にしたがって重縮合反応を行ない、反応物2を得た。
 得られた反応物2について、高分解能型高周波誘導結合プラズマ-質量分析(HR-ICP-MS;SIIナノテクノロジー社製AttoM)を用いて以下に示すように測定した。このようにして実施したものが、表中の実施例33、34,78,79、80であり、実施例33,78,79、80は、いずれもTi=0ppm、Sb=9ppmとなるように調製し(Tiを添加せずSbだけで重合)、実施例34は、Ti=1ppm、Sb=9ppmとなるように調製した。
 次いで、反応物2を容器に投入し、150℃で予備結晶化処理した後、真空にして撹拌しながら、190℃で30時間の固相重合反応を行って、固有粘度IV=0.78、末端カルボキシルキ濃度AV=27当量/トンの原料ポリエステル2を得た。
[Using raw material polyester 2-antimony catalyst (Sb catalyst)]
Polymerization was carried out by changing the amount of Ti catalyst (titanium alkoxide compound) to be added by the method shown below, thereby obtaining raw material polyesters containing different amounts of antimony (Sb) and different amounts of titanium (Ti). A specific method is as follows.
After transesterification of 100 tons of dimethyl terephthalate and 70 tons of ethylene glycol using calcium acetate monohydrate and magnesium acetate tetrahydrate as a transesterification catalyst according to a conventional method, trimethyl phosphate was added, The transesterification reaction was substantially terminated. Further, titanium tetrabutoxide and antimony trioxide were added, and a polycondensation reaction was performed according to a conventional method under high temperature and high vacuum to obtain a reaction product 2.
The obtained reaction product 2 was measured as described below using high-resolution high frequency inductively coupled plasma-mass spectrometry (HR-ICP-MS; AttoM manufactured by SII Nanotechnology). What was carried out in this way was Examples 33, 34, 78, 79, and 80 in the table, and Examples 33, 78, 79, and 80 all had Ti = 0 ppm and Sb = 9 ppm. Example 34 was prepared so that Ti = 1 ppm and Sb = 9 ppm.
Next, the reaction product 2 was put into a container, subjected to a precrystallization treatment at 150 ° C., and then subjected to a solid-phase polymerization reaction at 190 ° C. for 30 hours while being vacuumed and stirred, so that an intrinsic viscosity IV = 0.78, A raw material polyester 2 having a terminal carboxyl concentration AV = 27 equivalents / ton was obtained.
<再生ポリエステルの用意>
 Ti触媒を用いて製造されたポリエステルの使用済み樹脂を再生した再生ポリエステル1を用意した。また、Sb触媒を用いて製造されたポリエステルの使用済み樹脂を再生した再生ポリエステル2を用意した。
<Preparation of recycled polyester>
A recycled polyester 1 was prepared by regenerating a used resin of a polyester produced using a Ti catalyst. Moreover, the reproduction | regeneration polyester 2 which reproduced | regenerated the used resin of the polyester manufactured using Sb catalyst was prepared.
<ペレットおよび粉体の用意>
-ペレット-
 得られた原料ポリエステル1を溶融し、冷水にストランド状に吐出し、直ちにカッティングして、円柱状のペレット<断面:直径3mm、長さ:5mm>を作製した。原料ポリエステル2についても同様にして、円柱状のペレット<断面:直径3mm、長さ:5mm>を作製した。
 また、再生ポリエステル1および再生ポリエステル2についても、円柱状のペレット<断面:直径3mm、長さ:5mm>を作製した。
<Preparation of pellets and powder>
-pellet-
The obtained raw material polyester 1 was melted, discharged into cold water in a strand form, and immediately cut to prepare cylindrical pellets <cross section: diameter 3 mm, length: 5 mm>. Similarly, for the raw material polyester 2, cylindrical pellets <cross-section: diameter 3 mm, length: 5 mm> were prepared.
Moreover, also about the reproduction | regeneration polyester 1 and the reproduction | regeneration polyester 2, the cylindrical pellet <cross section: diameter 3mm, length: 5mm> was produced.
-粉体-
 原料ポリエステル1のペレットをヘンシェルミキサーに入れ、室温にて300rpmで運転し、破砕した。これを、30メッシュの篩および300メッシュの篩に掛け、この間に残ったポリエステルを粉体として使用した。
 原料ポリエステル2、再生ポリエステル1、及び再生ポリエステル2についても、同様の方法で破砕し、篩にかけて粉体を得た。
-powder-
The raw material polyester 1 pellets were placed in a Henschel mixer and crushed by operating at 300 rpm at room temperature. This was passed through a 30-mesh sieve and a 300-mesh sieve, and the remaining polyester was used as a powder.
The raw material polyester 2, regenerated polyester 1 and regenerated polyester 2 were also crushed by the same method and sieved to obtain a powder.
<ポリエステルシートの製造>
-押出工程-
 押出機には、原料ポリエステルと再生ポリエステルとを混合して投入した。このとき、再生ポリエステルの量は、原料ポリエステルの全質量に対して30%となるように調整した。また、原料ポリエステルと再生ポリエステルとは、触媒種が同じものを組み合わせて用いた。すなわち、原料ポリエステル1と再生ポリエステル1とを組合せ、原料ポリエステル2と再生ポリエステル2とを組合せて用いた。
<Manufacture of polyester sheet>
-Extrusion process-
The raw material polyester and recycled polyester were mixed and introduced into the extruder. At this time, the amount of the recycled polyester was adjusted to be 30% with respect to the total mass of the raw material polyester. The raw material polyester and the recycled polyester were used in combination with the same catalyst type. That is, raw material polyester 1 and regenerated polyester 1 were combined, and raw material polyester 2 and regenerated polyester 2 were used in combination.
 また、原料ポリエステルのペレット全質量に対して、表1~表5に示す量となる粉体を混ぜ合わせて用いた。このとき、粉体中の原料ポリエステルと再生ポリエステルとの割合は、再生ポリエステル粉体の量が、原料ポリエステル粉体の全質量に対して30%となるように調整した。 Further, powders having amounts shown in Tables 1 to 5 were mixed with the total mass of the raw material polyester pellets. At this time, the ratio of the raw material polyester and the regenerated polyester in the powder was adjusted so that the amount of the regenerated polyester powder was 30% with respect to the total mass of the raw material polyester powder.
 押出機として、図1に示す構成のベント式2軸押出機を用意し、以上のようにして用意したペレットおよび粉体を、押出機のホッパーに入れた。
 押出機に投入された原料ポリエステルが含有するチタン系触媒量を、表1~表5の「原料ポリエステル」「Ti系触媒」に示した。触媒量が0ppmであるものは、アンチモン触媒系の原料ポリエステルである。
 なお、触媒の量は、原料ポリエステルをHFIP(ヘキサフルオルイソプロパノール)に濃度5%となるように溶解し、さらに1000rpmで遠沈した。得られた上澄み液を用いて、原子吸光法によりTi量を計測した。かかる遠沈処理により、チタン化合物であるTiOの固形物を取り除き、チタン系触媒のみを計測した。
As an extruder, a vent type twin-screw extruder having the configuration shown in FIG. 1 was prepared, and the pellets and powder prepared as described above were put into a hopper of the extruder.
The amount of titanium-based catalyst contained in the raw material polyester charged into the extruder is shown in “Raw material polyester” and “Ti-based catalyst” in Tables 1 to 5. Those having a catalyst amount of 0 ppm are raw material polyesters of an antimony catalyst system.
The amount of the catalyst was obtained by dissolving the raw material polyester in HFIP (hexafluoroisopropanol) so as to have a concentration of 5%, and further centrifuging at 1000 rpm. The amount of Ti was measured by atomic absorption spectrometry using the obtained supernatant. By this centrifuge treatment, the solid matter of TiO 2 which is a titanium compound was removed, and only the titanium catalyst was measured.
 押出機のシリンダー内径D、単位時間当たりの押出量Q、及びスクリュー回転数Nを表1~表5に記載した。ただし、スクリュー回転数Nは、10分間における平均値である。これらから求めた(Q/N)/(D2.8×10-6)も表1~表5に記載した。押出機に投入したポリエステルは、280℃で押出し、シリンダー長の中央部を300℃に昇温し、表1~表5の「加熱条件」欄に記載の時間だけ保持した後、除熱し、280℃に降温した。このとき、スクリュー回転数Nには、表1~表5の「N変動」「変動量」に示す大きさの変動を付与した。スクリュー回転数Nの変動は、時間に対するスクリュー回転数を表す波形を表示可能なオシロスコープを観察し、ピークの半値幅Δtのスクリュー回転数N(平均値)の逆数tに対する値(Δt/t)が、表1~表5の「N変動」「Δt/t」に示される大きさとなるように、スクリューの駆動装置のモーターの電流を調整することで実施した。
 なお、押出機のベント孔は、シリンダーの入り口側から計測して、シリンダーの全長の1/3の位置に設置した。
 押出機の出口(押出口)にギアポンプ、フィルター、及び、押出ダイをこの順に接続した。これらの温度は280℃に設定した。
Tables 1 to 5 show the cylinder inner diameter D of the extruder, the extrusion amount Q per unit time, and the screw rotation speed N. However, screw rotation speed N is an average value in 10 minutes. (Q / N) / (D 2.8 × 10 −6 ) obtained from these are also shown in Tables 1 to 5. The polyester charged in the extruder was extruded at 280 ° C., the temperature at the center of the cylinder was raised to 300 ° C., held for the time indicated in the “heating conditions” column of Tables 1 to 5, and then the heat was removed. The temperature was lowered to ° C. At this time, the screw rotation speed N was given a fluctuation of the magnitude shown in “N fluctuation” and “variation amount” in Tables 1 to 5. The fluctuation of the screw rotation speed N is observed by an oscilloscope that can display a waveform representing the screw rotation speed with respect to time, and the value (Δt / t) of the peak half-value width Δt with respect to the reciprocal t of the screw rotation speed N (average value). This was carried out by adjusting the current of the motor of the screw drive device so that the magnitudes shown in “N fluctuation” and “Δt / t” in Tables 1 to 5 were obtained.
In addition, the vent hole of the extruder was measured from the inlet side of the cylinder and installed at a position of 1/3 of the total length of the cylinder.
A gear pump, a filter, and an extrusion die were connected in this order to the exit (extrusion port) of the extruder. These temperatures were set at 280 ° C.
-キャスト-
 ダイから押出されたポリエステルは、冷却され、10℃のキャストドラム上で、シート状になって固化した。この時、静電印加法を用いた。なお、キャストドラムの前半半周では、押出されたポリエステルに20℃の空気を風速50m/秒で吹きつけ、冷却した。キャストドラムを3/4周したところで、ポリエステルシートを剥ぎ取り、ポリエステルシートを得た。
 このとき、押出機のスクリュー回転数Nの変動により、ポリエステルシートのMD方向に厚み変動を与え、押出ダイに振動を与えることでTD方向に厚み変動を付与した。
-cast-
The polyester extruded from the die was cooled and solidified as a sheet on a 10 ° C. cast drum. At this time, an electrostatic application method was used. In the first half of the cast drum, the extruded polyester was cooled by blowing air at 20 ° C. at a wind speed of 50 m / sec. When the cast drum was turned 3/4, the polyester sheet was peeled off to obtain a polyester sheet.
At this time, thickness fluctuation was given to MD direction of a polyester sheet by the fluctuation | variation of the screw speed N of an extruder, and thickness fluctuation | variation was provided to TD direction by giving a vibration to an extrusion die.
 ここで、TD方向の厚み変動は、ポリエステルシートのTD方向の両端から、TD方向の全長(ポリエステルシートの幅)の10%の領域を除く部分(全幅の80%)の厚みを測定し、最大厚みと最小厚みの差を平均値で割り、百分率表示したものをさす。
 一方、MD方向の厚み変動は、TD方向(幅方向)中央部について、3mに亘り厚みを測定し、最大厚みと最小厚みの差を平均値で割り、百分率表示したものをさす。これらの平均値〔(「TD方向の厚み変動の平均値」+「MD方向の厚み変動の平均値」)/2〕を厚み変動とし、表1~表5に記載した。
Here, the thickness variation in the TD direction is determined by measuring the thickness of the portion (80% of the total width) excluding the region of 10% of the total length in the TD direction (the width of the polyester sheet) from both ends of the polyester sheet in the TD direction. The difference between the thickness and the minimum thickness is divided by the average value and expressed as a percentage.
On the other hand, the thickness variation in the MD direction refers to a value obtained by measuring the thickness over 3 m at the center in the TD direction (width direction), dividing the difference between the maximum thickness and the minimum thickness by the average value, and displaying the percentage. These average values [(“average value of thickness variation in TD direction” + “average value of thickness variation in MD direction”) / 2] are defined as thickness variations and are shown in Tables 1 to 5.
-延伸工程-
 得られたポリエステルシート(未延伸ポリエステルシート)について、縦延伸と、横延伸とをこの順で行うことで2軸延伸を行った。なお、縦延伸に先立ち、ポリエステルシート表面に、1cm角の升目をつけた。升目は、ポリエステルシートのTD方向の両端から10%の領域を除く領域であって、MD方向に0.2mの長さの領域に印刷した。
-Stretching process-
The obtained polyester sheet (unstretched polyester sheet) was biaxially stretched by performing longitudinal stretching and lateral stretching in this order. Prior to the longitudinal stretching, 1 cm squares were formed on the surface of the polyester sheet. The grids were printed on a region having a length of 0.2 m in the MD direction excluding a 10% region from both ends in the TD direction of the polyester sheet.
1)縦延伸
 ポリエステルシートを、2対のニップロール間に通し、MD方向下流側のニップロールの回転速度を、上流側のニップロールの回転速度よりも速くすることで延伸した。なお縦延伸倍率はいずれの水準も3.4倍で実施した。
 この際、表1~表5の「縦延伸」「搬送速度」に示す搬送速度でポリエステルシートを搬送し、表1~表5の「縦延伸」「搬送速度変動」「変動量」に示される変動量で搬送速度に変動を与えた。なお、表1~表5に示す搬送速度は、ポリエステルシートがMD方向上流側のニップロールを通過するときの速度の平均値を表す。搬送速度の変動は、時間に対する搬送速度を表す波形を表示可能なオシロスコープを観察し、ピークの半値幅Δtの搬送速度の平均値の逆数tに対する値(Δt/t)が、表1~表5の「縦延伸」「搬送速度変動」「Δt/t」に示される大きさとなるように、MD方向下流側のニップロールを駆動する駆動モーターの電流を調整することで実施した。
1) Longitudinal Stretching The polyester sheet was stretched by passing it between two pairs of nip rolls so that the rotational speed of the nip roll on the downstream side in the MD direction was faster than the rotational speed of the nip roll on the upstream side. It should be noted that the longitudinal draw ratio was 3.4 times for all levels.
At this time, the polyester sheet is transported at the transport speeds indicated by “longitudinal stretching” and “conveyance speed” in Tables 1 to 5, and is indicated by “longitudinal stretching”, “conveyance speed fluctuation”, and “variation amount” in Tables 1 to 5. The transfer speed was changed by the amount of change. The conveyance speeds shown in Tables 1 to 5 represent average values of speeds when the polyester sheet passes through the nip roll on the upstream side in the MD direction. The fluctuation of the conveyance speed is observed with an oscilloscope capable of displaying a waveform representing the conveyance speed with respect to time. It was carried out by adjusting the current of the drive motor that drives the nip roll on the downstream side in the MD direction so as to have the sizes indicated by “longitudinal stretching”, “conveyance speed fluctuation”, and “Δt / t”.
 また、縦延伸前に、ポリエステルシートを、Tg+5℃まで昇温して、表1~表5に示す温度分布(厚み方向の温度分布)を与えた。なお、Tgはポリエステルシートのガラス転移温度である。
 この際、温度分布は、縦延伸中のポリエステルシートが、下流側のニップロールを通過する直前の、ポリエステルシートについて、下記(a)~(c)の3点の温度を測定し、(b)の温度および(c)の温度の平均と、(a)の温度と、の差を求めて、温度分布とした。なお、これらの温度測定はポリエステルシートの幅方向(TD方向)の中央部で測定した。
Further, before longitudinal stretching, the polyester sheet was heated to Tg + 5 ° C. to give the temperature distributions shown in Tables 1 to 5 (temperature distribution in the thickness direction). Tg is the glass transition temperature of the polyester sheet.
At this time, the temperature distribution was determined by measuring the temperatures of the following three points (a) to (c) for the polyester sheet immediately before the polyester sheet during longitudinal stretching passes through the nip roll on the downstream side. The difference between the temperature and the average of the temperature in (c) and the temperature in (a) was determined to obtain a temperature distribution. In addition, these temperature measurement was measured in the center part of the width direction (TD direction) of a polyester sheet.
(a)~(c)の温度を測定した位置と、測定方法
(a)ポリエステルシートの厚み方向中央部の温度
   ポリエステルシートに埋め込んだ熱電対で測定した。
(b)ポリエステルシート表面の一方の面
   ポリエステルシート表面の一方の面に貼り付けた熱電対で測定した。
(c)ポリエステルシート表面の他方の面
   ポリエステルシート表面の他方の面に貼り付けた熱電対で測定した。
(A) to (c) The position at which the temperature was measured and the measuring method (a) The temperature at the center of the polyester sheet in the thickness direction The temperature was measured with a thermocouple embedded in the polyester sheet.
(B) One surface of the polyester sheet surface It measured with the thermocouple affixed on one surface of the polyester sheet surface.
(C) The other surface of the polyester sheet surface It measured with the thermocouple affixed on the other surface of the polyester sheet surface.
2)横延伸、および巻取り
 縦延伸により得られた1軸ポリエステルフィルムについて、図2に示す構成の2軸延伸機を用い、Tg+10℃の温度条件下、延伸部にて3.8倍に横延伸した。なお、Tgはポリエステルフィルムのガラス転移温度である。
 横延伸にあたっては、1軸延伸ポリエステルフィルムのTD方向両端部を把持するチャック(把持部材)の移動速度を変動させて、1軸延伸ポリエステルフィルムの搬送速度に、表1~表5の「横延伸」「搬送速度変動」「変動量」に示される変動量の変動を与えた。この際、搬送速度の変動は、時間に対する搬送速度を表す波形を表示可能なオシロスコープを観察し、ピークの半値幅Δtの搬送速度の平均値の逆数tに対する値(Δt/t)が、表1~表5の「横延伸」「搬送速度変動」「Δt/t」に示される大きさとなるように、チャックを移動させる駆動モーターの電流を調整することで実施した。
2) Transverse stretching and winding With respect to the uniaxial polyester film obtained by longitudinal stretching, the biaxial stretching machine having the configuration shown in FIG. Stretched. Tg is the glass transition temperature of the polyester film.
In the transverse stretching, the moving speed of the chuck (gripping member) that grips both ends of the uniaxially stretched polyester film in the TD direction is changed to change the transport speed of the uniaxially stretched polyester film to “Transverse Stretching” in Tables 1 to 5. The fluctuation amount indicated by “Variation speed fluctuation” and “Variation amount” was given. At this time, the fluctuation of the conveyance speed is observed with an oscilloscope capable of displaying a waveform representing the conveyance speed with respect to time, and the value (Δt / t) with respect to the reciprocal t of the average value of the conveyance speed of the peak half-value width Δt is expressed in Table 1. This was carried out by adjusting the current of the drive motor that moves the chuck so that the magnitudes shown in “lateral stretching”, “conveyance speed fluctuation”, and “Δt / t” in Table 5 were obtained.
 次いで、熱処理部にて、230℃で30秒間、熱固定処理をした後、220℃で幅方向(TD方向)および縦方向(MD方向)に、それぞれ5%ずつ緩和させる熱緩和処理をして、2軸延伸ポリエステルフィルムを得た。
 その後、2軸延伸ポリエステルフィルムの両端部をトリミングし、2軸延伸ポリエステルフィルムをチャックから外した。さらに、2軸延伸ポリエステルフィルムの両端に、厚みだし加工(ナーリング)を付与し、2軸延伸ポリエステルフィルムを巻き取った。
 このときの2軸延伸ポリエステルフィルムの幅(TD方向の全長)は3.5mであり、厚みは表1~表5の「2軸延伸フィルム」「厚み」欄に記載した厚さであった。これを3000m長巻き取った。
Next, after heat-fixing treatment at 230 ° C. for 30 seconds in the heat treatment part, heat relaxation treatment is carried out at 220 ° C. in the width direction (TD direction) and the longitudinal direction (MD direction) by 5% each. A biaxially stretched polyester film was obtained.
Thereafter, both ends of the biaxially stretched polyester film were trimmed, and the biaxially stretched polyester film was removed from the chuck. Further, the both sides of the biaxially stretched polyester film were subjected to thicknessing (knurling), and the biaxially stretched polyester film was wound up.
The width (total length in the TD direction) of the biaxially stretched polyester film at this time was 3.5 m, and the thickness was the thickness described in the “Biaxially stretched film” and “Thickness” columns of Tables 1 to 5. This was wound up 3000 m long.
<2軸延伸ポリエステルフィルムの評価>
 上記押出工程および延伸工程を経て製造された2軸延伸ポリエステルフィルムの表面の升目の面積から、延伸ムラの程度を評価し、表1~表5に記載した。
 具体的には、2軸延伸ポリエステルフィルムの表面の升目の縦および横の長さを計測し、これらを掛け合わせ、升目1つずつの面積を求めた。求めたすべての升目の平均面積を算出し、当該平均面積から5%以上面積が異なる(平均面積より大きい又は小さい)升目(異形枡目と称する)の数を数えた。異形枡目の数を、全升目の数で割り、百分率で表した。この百分率で示される異形枡目の割合の大小によって延伸ムラを評価した。
 なお、許容範囲は、異形枡目の割合が30%以下である。
<Evaluation of biaxially stretched polyester film>
From the area of the mesh on the surface of the biaxially stretched polyester film produced through the extrusion process and the stretching process, the degree of stretching unevenness was evaluated and listed in Tables 1 to 5.
Specifically, the vertical and horizontal lengths of the meshes on the surface of the biaxially stretched polyester film were measured and multiplied to obtain the area of each mesh. The average area of all the obtained squares was calculated, and the number of squares (referred to as irregular squares) whose areas differed by 5% or more from the average area (larger or smaller than the average area) was counted. The number of variant cells was divided by the number of all cells and expressed as a percentage. Stretching unevenness was evaluated based on the size of the ratio of irregular shaped meshes expressed as a percentage.
The allowable range is that the ratio of irregular meshes is 30% or less.
<ポリエステルシートの異物残存確認評価>
 キャストドラムから剥ぎ取られたポリエステルシートを採取し、縦延伸および横延伸を行なう前のポリエステルシート中の異物の有無を確認した。
 具体的には、ポリエステルシートを20cm×20cmに裁断し、得られたサンプルを2枚の偏光板の間に挟み、偏光軸を平行配置、直行配置で、それぞれ5倍のルーペで観察し、異物の箇所にマークした。マークした箇所を数え、1cmあたりの平均値を算出した。
 評価結果を、表1~表5の「キャスト」「異物」欄に示す。許容範囲は15個/cm以下である。
 
 
 
 
 
 
 
<Confirmation of foreign matter remaining on polyester sheet>
The polyester sheet peeled off from the cast drum was collected, and the presence or absence of foreign matter in the polyester sheet before longitudinal and lateral stretching was confirmed.
Specifically, the polyester sheet is cut into 20 cm × 20 cm, the obtained sample is sandwiched between two polarizing plates, the polarizing axes are observed in a parallel arrangement and an orthogonal arrangement, and each is observed with a magnifying glass 5 times, and the location of the foreign matter Marked. The marked locations were counted and the average value per cm 2 was calculated.
The evaluation results are shown in the “cast” and “foreign matter” columns of Tables 1 to 5. The allowable range is 15 pieces / cm 2 or less.






Figure JPOXMLDOC01-appb-T000007

 
 
 
 
Figure JPOXMLDOC01-appb-T000007

 
 
 
 
Figure JPOXMLDOC01-appb-T000008

 
 
 
 
Figure JPOXMLDOC01-appb-T000008

 
 
 
 
Figure JPOXMLDOC01-appb-T000009

 
 
 
 
Figure JPOXMLDOC01-appb-T000009

 
 
 
 
Figure JPOXMLDOC01-appb-T000010

 
 
 
 
Figure JPOXMLDOC01-appb-T000010

 
 
 
 
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 表1~表5からわかるように、実施例のポリエステルシートは、比較例に比べ、異物の残存量が少ない。従って、本発明における原料ポリエステルの押出工程によりポリエステル中の異物の量を低減させ、異物を無くすことができたものと考えられる。また、実施例の2軸延伸ポリエステルフィルムは、比較例に比べ、異形枡目の割合が少なく(30%以下)、延伸ムラが抑制されていることがわかる。これは、延伸前のポリエステルシートに、延伸ムラの原因となる異物がほとんど含まれず、さらに、ポリエステルシートに温度分布を与えたり、縦延伸ないし横延伸でのポリエステルシートの搬送速度を変動させることにより、異物が存在する箇所も延伸することができたため、と考えられる。
 2011年01月27日に出願された日本国特許出願第2011-015656号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、および技術規格は、個々の文献、特許出願、および技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に援用されて取り込まれる
As can be seen from Tables 1 to 5, the polyester sheet of the example has a small amount of foreign matter remaining compared to the comparative example. Therefore, it is considered that the amount of foreign matter in the polyester was reduced and the foreign matter was eliminated by the extrusion process of the raw material polyester in the present invention. Moreover, it turns out that the biaxially stretched polyester film of an Example has a small ratio (30% or less) of a deformed mesh compared with a comparative example, and the stretching nonuniformity is suppressed. This is because the polyester sheet before stretching contains almost no foreign matter that causes stretching unevenness, and further, by imparting a temperature distribution to the polyester sheet or by varying the transport speed of the polyester sheet in longitudinal stretching or lateral stretching. This is probably because the portion where the foreign matter exists could be stretched.
The disclosure of Japanese Patent Application No. 2011-015656 filed on Jan. 27, 2011 is incorporated herein by reference in its entirety.
All documents, patent applications, and technical standards mentioned in this specification are to the same extent as if each individual document, patent application, and technical standard were specifically and individually described to be incorporated by reference, Incorporated herein by reference.

Claims (17)

  1.  シリンダー内径Dが140mm以上300mm以下のベント式2軸押出機に、原料ポリエステルを供給し、前記シリンダー内径Dと、単位時間当たりの押出量Q(kg/hr.)と、スクリュー回転数N(rpm)とが、次の式(I)を満足する条件下、前記スクリュー回転数Nに0.01%~5%の変動を付与して、ポリエステルシートを溶融押出する押出工程、及び前記ポリエステルシートを冷却し、固化する冷却固化工程を含むポリエステルフィルムの製造方法。
    Figure JPOXMLDOC01-appb-M000001
    The raw material polyester is supplied to a vent type twin-screw extruder having a cylinder inner diameter D of 140 mm or more and 300 mm or less, and the cylinder inner diameter D, the extrusion amount Q (kg / hr.) Per unit time, and the screw rotation speed N (rpm And an extrusion step of melt-extruding the polyester sheet by imparting a variation of 0.01% to 5% to the screw rotational speed N under the conditions satisfying the following formula (I): A method for producing a polyester film comprising a cooling and solidifying step of cooling and solidifying.
    Figure JPOXMLDOC01-appb-M000001
  2.  時間に対する前記スクリュー回転数Nを表す波形において、前記スクリュー回転数Nの平均値の±0.1%以上±3%以下となる回転数を表すピークの半値幅が、前記スクリュー回転数Nの平均値の逆数の1/100以上1/4以下である請求項1に記載のポリエステルフィルムの製造方法。 In the waveform representing the screw rotation speed N with respect to time, the half width of the peak representing the rotation speed that is ± 0.1% to ± 3% of the average value of the screw rotation speed N is the average of the screw rotation speed N The method for producing a polyester film according to claim 1, which is 1/100 or more and 1/4 or less of the reciprocal of the value.
  3.  前記原料ポリエステルは、ポリエステルペレット及び前記ポリエステルペレットの全質量に対して0.01質量%~5質量%のポリエステル粉体を含む請求項1または請求項2に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1 or 2, wherein the raw material polyester includes 0.01% by mass to 5% by mass of polyester powder based on the total mass of the polyester pellets and the polyester pellets.
  4.  前記押出工程は、さらに、溶融押出したポリエステルシートに1%~30%の厚み変動を与える請求項1~請求項3のいずれか1項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 1 to 3, wherein the extrusion step further gives a thickness variation of 1% to 30% to the melt-extruded polyester sheet.
  5.  さらに、溶融押出されたポリエステルシートを搬送して、縦延伸及び横延伸してポリエステルフィルムを得る延伸工程を含み、
     前記縦延伸は、前記ポリエステルシートの延伸を開始するときの、前記ポリエステルシートの搬送速度を30m/分~100m/分とし、かつ、前記搬送速度に0.01%~1%の変動を与えて行なう請求項1~請求項4のいずれか1項に記載のポリエステルフィルムの製造方法。
    Furthermore, it includes a stretching step of transporting the melt-extruded polyester sheet to obtain a polyester film by longitudinal stretching and lateral stretching,
    In the longitudinal stretching, when the polyester sheet starts to be stretched, the transport speed of the polyester sheet is set to 30 m / min to 100 m / min, and the transport speed is varied by 0.01% to 1%. The method for producing a polyester film according to any one of claims 1 to 4, which is carried out.
  6.  時間に対する前記搬送速度を表す波形において、前記搬送速度の平均値の±0.1%以上±1%以下となる搬送速度を表すピークの半値幅が、前記搬送速度の平均値の逆数の1/100以上1/4以下である請求項5に記載のポリエステルフィルムの製造方法。 In the waveform representing the conveyance speed with respect to time, the half width of the peak representing the conveyance speed that is ± 0.1% to ± 1% of the average value of the conveyance speed is 1 / of the reciprocal of the average value of the conveyance speed. It is 100 or more and 1/4 or less, The manufacturing method of the polyester film of Claim 5.
  7.  前記縦延伸は、前記ポリエステルシートの延伸を開始したときのポリエステルシートに、前記ポリエステルシートの厚み方向に、0.1℃~30℃の温度分布を与えて行なう請求項5または請求項6に記載のポリエステルフィルムの製造方法。 7. The longitudinal stretching is performed by giving a temperature distribution of 0.1 ° C. to 30 ° C. in the thickness direction of the polyester sheet to the polyester sheet when stretching of the polyester sheet is started. Of manufacturing polyester film.
  8.  前記横延伸は、前記ポリエステルシートの端部を把持して、前記ポリエステルシートを、前記搬送方法と直交する方向に拡幅し、かつ、前記ポリエステルシートの搬送速度に0.1%~5%の変動を付与して行なう請求項5~請求項7のいずれか1項に記載のポリエステルフィルムの製造方法。 In the transverse stretching, the end of the polyester sheet is gripped, the polyester sheet is widened in a direction orthogonal to the conveying method, and the conveying speed of the polyester sheet varies by 0.1% to 5%. The method for producing a polyester film according to any one of claims 5 to 7, which is carried out by imparting.
  9.  時間に対する前記搬送速度を表す波形において、前記搬送速度の平均値の±0.1%以上±5%以下となる搬送速度を表すピークの半値幅が、前記搬送速度の平均値の逆数の1/100以上1/4以下である請求項8に記載のポリエステルフィルムの製造方法。 In the waveform representing the conveyance speed with respect to time, the half width of the peak representing the conveyance speed that is ± 0.1% to ± 5% of the average value of the conveyance speed is 1 / of the reciprocal of the average value of the conveyance speed. It is 100 or more and 1/4 or less, The manufacturing method of the polyester film of Claim 8.
  10.  前記縦延伸と前記横延伸とがなされた2軸延伸後のポリエステルフィルムの厚みが、30μm~400μmである請求項5~請求項9のいずれか1項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 5 to 9, wherein a thickness of the polyester film after biaxial stretching in which the longitudinal stretching and the lateral stretching are performed is 30 μm to 400 μm.
  11.  前記原料ポリエステルは、1ppm~50ppmのチタン系触媒を含む請求項1~請求項10のいずれか1項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 1 to 10, wherein the raw material polyester contains 1 ppm to 50 ppm of a titanium-based catalyst.
  12.  前記押出工程は、前記ベント式2軸押出機内の原料ポリエステルの温度を、1秒~10分の間、300℃~350℃にした後、290℃以下に降温する温度条件下で、ポリエステルシートを溶融押出する請求項1~請求項11のいずれか1項に記載のポリエステルフィルムの製造方法。 In the extrusion step, the temperature of the raw material polyester in the bent type twin screw extruder is set to 300 ° C. to 350 ° C. for 1 second to 10 minutes, and then the polyester sheet is heated under a temperature condition of 290 ° C. or lower. The method for producing a polyester film according to any one of claims 1 to 11, wherein the polyester film is melt-extruded.
  13.  前記スクリュー回転数Nにおける変動の発生頻度が0.01回/秒~50回/秒である請求項1~請求項12のいずれか1項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 1 to 12, wherein the frequency of occurrence of fluctuations in the screw rotation speed N is 0.01 times / second to 50 times / second.
  14.  前記ポリエステルシート搬送速度における変動の発生頻度が0.01回/秒~50回/秒である請求項8に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 8, wherein the occurrence frequency of fluctuation in the polyester sheet conveying speed is 0.01 times / second to 50 times / second.
  15.  請求項1~請求項14のいずれか1つに記載のポリエステルフィルムの製造方法で製造されたポリエステルフィルム。 A polyester film produced by the method for producing a polyester film according to any one of claims 1 to 14.
  16.  請求項15に記載のポリエステルフィルムを用いた太陽電池用バックシート。 A solar cell backsheet using the polyester film according to claim 15.
  17.  透明基板と、請求項16に記載の太陽電池用バックシートとが、太陽電池素子を挟んで互いに張り合われた積層体を含む、太陽電池発電モジュール。
     
    The solar cell power generation module containing the laminated body on which the transparent substrate and the solar cell backsheet of Claim 16 were mutually bonded | interposed on both sides of the solar cell element.
PCT/JP2012/051350 2011-01-27 2012-01-23 Polyester film, method for producing same, backsheet for solar cell, and solar cell power generation module WO2012102238A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011015656 2011-01-27
JP2011-015656 2011-01-27

Publications (1)

Publication Number Publication Date
WO2012102238A1 true WO2012102238A1 (en) 2012-08-02

Family

ID=46580805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/051350 WO2012102238A1 (en) 2011-01-27 2012-01-23 Polyester film, method for producing same, backsheet for solar cell, and solar cell power generation module

Country Status (2)

Country Link
JP (1) JP5759908B2 (en)
WO (1) WO2012102238A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137167A1 (en) * 2012-03-12 2013-09-19 富士フイルム株式会社 Polyester film, method for producing same, back sheet for solar cell module, and solar cell module
JP2015199826A (en) * 2014-04-08 2015-11-12 三菱樹脂株式会社 polyester resin composition
CN107428060A (en) * 2015-03-25 2017-12-01 富士胶片株式会社 Polyester film and its manufacture method, backside protective sheet used for solar batteries and solar module
EP3804956A1 (en) * 2019-10-08 2021-04-14 REHAU AG + Co Method for monitoring signs of wear and / or contamination in a plastic extrusion system

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4299655A1 (en) * 2021-02-24 2024-01-03 Toyobo Co., Ltd. Heat-shrinkable polyester film
WO2023149181A1 (en) * 2022-02-03 2023-08-10 富士フイルム株式会社 Polyester film production method, polyester film, dry film resist, and release film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095042A (en) * 1996-09-20 1998-04-14 Diafoil Co Ltd Manufacture of polyester sheet
JP2009084311A (en) * 2007-09-27 2009-04-23 Fujifilm Corp Method for producing cyclic olefin-based resin film, cyclic olefin-based resin film, polarizing plate, optical compensation film for liquid crystal display panel, and antireflection film
JP2010083142A (en) * 2008-09-02 2010-04-15 Fujifilm Corp Method for producing film and optical film
JP2010167767A (en) * 2008-12-22 2010-08-05 Toyobo Co Ltd Biaxially stretched polyethylene terephthalate-based resin film and method of manufacturing the same

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05245907A (en) * 1992-03-05 1993-09-24 Sekisui Chem Co Ltd Extruding quantity-control method of extruder with gear pump and its apparatus
JPH0826452A (en) * 1994-07-20 1996-01-30 Toshiba Mach Co Ltd Raw material supply screw
JPH09220756A (en) * 1996-02-16 1997-08-26 Toray Ind Inc Method for controlling emission of resin and production of film
JPH09262894A (en) * 1996-03-27 1997-10-07 Toray Ind Inc Manufacture of thermoplastic resin film
JPH10249932A (en) * 1997-03-10 1998-09-22 Fuji Photo Film Co Ltd Manufacture of longitudinally oriented thermoplastic polymer film and longitudinaly orienting apparatus for thermoplastic polymer film
EP1390190B1 (en) * 2001-05-30 2005-03-02 Röhm GmbH & Co. KG Method and device for regulating pressure in a single-screw degassing extruder or in a cascade extruder
JP4996858B2 (en) * 2006-01-31 2012-08-08 三菱樹脂株式会社 Polyester film for solar cell backside sealing
JP5022780B2 (en) * 2007-05-31 2012-09-12 富士フイルム株式会社 Method and apparatus for producing stretched polyester film
JP2010167768A (en) * 2008-12-22 2010-08-05 Toyobo Co Ltd Biaxially stretched polyethylene terephthala-based resin film and method of manufacturing the same
JP2010241034A (en) * 2009-04-08 2010-10-28 Aisin Seiki Co Ltd Resin plasticizing device and method of operating the same
JP4944925B2 (en) * 2009-06-02 2012-06-06 株式会社神戸製鋼所 Twin-screw kneading extruder
JP5832733B2 (en) * 2010-09-17 2015-12-16 富士フイルム株式会社 Production method of polyester film

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1095042A (en) * 1996-09-20 1998-04-14 Diafoil Co Ltd Manufacture of polyester sheet
JP2009084311A (en) * 2007-09-27 2009-04-23 Fujifilm Corp Method for producing cyclic olefin-based resin film, cyclic olefin-based resin film, polarizing plate, optical compensation film for liquid crystal display panel, and antireflection film
JP2010083142A (en) * 2008-09-02 2010-04-15 Fujifilm Corp Method for producing film and optical film
JP2010167767A (en) * 2008-12-22 2010-08-05 Toyobo Co Ltd Biaxially stretched polyethylene terephthalate-based resin film and method of manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013137167A1 (en) * 2012-03-12 2013-09-19 富士フイルム株式会社 Polyester film, method for producing same, back sheet for solar cell module, and solar cell module
JP2015199826A (en) * 2014-04-08 2015-11-12 三菱樹脂株式会社 polyester resin composition
CN107428060A (en) * 2015-03-25 2017-12-01 富士胶片株式会社 Polyester film and its manufacture method, backside protective sheet used for solar batteries and solar module
EP3804956A1 (en) * 2019-10-08 2021-04-14 REHAU AG + Co Method for monitoring signs of wear and / or contamination in a plastic extrusion system

Also Published As

Publication number Publication date
JP5759908B2 (en) 2015-08-05
JP2012166547A (en) 2012-09-06

Similar Documents

Publication Publication Date Title
JP5676533B2 (en) Biaxially stretched polyester film, method for producing the same, and solar cell module
JP5759908B2 (en) POLYESTER FILM, ITS MANUFACTURING METHOD, SOLAR CELL BACK SHEET, AND SOLAR CELL POWER GENERATION MODULE
KR101630652B1 (en) Biaxial oriented polyester film, method for producing same, solar cell back sheet, and solar cell module
JP5905353B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP2011178866A (en) Polyester film and method for producing the same, polyester film for sealing back face of solar cell, protective film for back face of solar cell, and solar cell module
JP5518762B2 (en) Polyester film and method for producing the same, solar cell backsheet, and solar cell module
JP5738792B2 (en) Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module
JP2011162777A (en) Polymerization method for polyester resin, polyester resin composition, and polyester film
JP5797535B2 (en) Method for producing polyester resin and method for producing polyester film
JP5512749B2 (en) Production method of polyester film
WO2014157108A1 (en) Polyester film and method for producing same
JP5893277B2 (en) Production method of polyester film
JP5847629B2 (en) Production method of polyester film
US20120028019A1 (en) Method of producing polyester sheet, polyester film and method of producing polyester film
WO2014157109A1 (en) Polyester film and method for producing same
JP5547142B2 (en) Production method of polyester film
WO2012081500A1 (en) Polyester film, method of manufacturing polyester film, back sheet for solar cell, and solar cell module
JP5738539B2 (en) Production method of polyester resin
WO2012115167A1 (en) Method for producing polyester film, and polyester film for solar cells
JP5587267B2 (en) Production method of polyester resin
JP2012201107A (en) Method of manufacturing unstretched polyester sheet, protective sheet for solar cell, and solar cell module
JP2014193953A (en) Void-containing film, back sheet for solar cell, electronic device and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739385

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739385

Country of ref document: EP

Kind code of ref document: A1