WO2012115167A1 - Method for producing polyester film, and polyester film for solar cells - Google Patents

Method for producing polyester film, and polyester film for solar cells Download PDF

Info

Publication number
WO2012115167A1
WO2012115167A1 PCT/JP2012/054319 JP2012054319W WO2012115167A1 WO 2012115167 A1 WO2012115167 A1 WO 2012115167A1 JP 2012054319 W JP2012054319 W JP 2012054319W WO 2012115167 A1 WO2012115167 A1 WO 2012115167A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
extruder
polyester film
polyester
temperature
Prior art date
Application number
PCT/JP2012/054319
Other languages
French (fr)
Japanese (ja)
Inventor
山田 晃
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Priority to CN201280004576.4A priority Critical patent/CN103298595B/en
Publication of WO2012115167A1 publication Critical patent/WO2012115167A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/72Measuring, controlling or regulating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/823Temperature control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • B29B7/826Apparatus therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/84Venting or degassing ; Removing liquids, e.g. by evaporating components
    • B29B7/845Venting, degassing or removing evaporated components in devices with rotary stirrers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/30Extrusion nozzles or dies
    • B29C48/305Extrusion nozzles or dies having a wide opening, e.g. for forming sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/375Plasticisers, homogenisers or feeders comprising two or more stages
    • B29C48/387Plasticisers, homogenisers or feeders comprising two or more stages using a screw extruder and a gear pump
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/41Intermeshing counter-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/54Screws with additional forward-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/92Measuring, controlling or regulating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/042PV modules or arrays of single PV cells
    • H01L31/048Encapsulation of modules
    • H01L31/049Protective back sheets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92514Pressure
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92704Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C2948/00Indexing scheme relating to extrusion moulding
    • B29C2948/92Measuring, controlling or regulating
    • B29C2948/92504Controlled parameter
    • B29C2948/92723Content, e.g. percentage of humidity, volatiles, contaminants or degassing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a polyester film and a polyester film for a solar cell.
  • polyester In recent years, a resin material such as polyester has been used for the back sheet disposed on the side opposite to the sunlight incident side of the solar cell module. Polyester usually has many carboxyl groups and hydroxyl groups on its surface, and tends to undergo hydrolysis in an environment where moisture exists, and tends to deteriorate over time. For this reason, polyesters used in solar cell modules and the like that are constantly exposed to wind and rain, such as outdoors, are required to have reduced hydrolyzability.
  • terminal COOH is generated by heating at the time of melting, it is important to alleviate the thermal history at the time of melting when melt-forming with a plasticizing melt extruder. However, if the temperature of the extruder is simply lowered, an unmelted resin is generated due to temperature unevenness, which becomes a foreign substance when the film is formed in the subsequent stretching process, causing breakage.
  • a technique in which the thermal history is alleviated by placing the extruder in a tandem arrangement and cooling the resin with a second-stage extruder (see, for example, JP-A-10-119112). ).
  • a vent type twin screw extruder with an inner diameter of 140 mm or more is used, and the ratio Q / N between the extrusion amount Q per unit time and the screw rotation speed N is constant.
  • a method for producing a polyester sheet that is melt-extruded under the conditions within the above range is disclosed (for example, see Japanese Patent No. 3577178).
  • An object of the present invention is to provide a method for producing a polyester film having high hydrolysis resistance while suppressing generation of unmelted foreign matters during melt extrusion, and a polyester film for a solar cell produced thereby.
  • Polyester resin is supplied to a twin-screw extruder, and the maximum value in the range of 295 ° C. to 320 ° C. at a position where the resin temperature in the extruder is 40% to 80% of the total length of the extruder from the upstream end of the extruder And melt extrusion by controlling the resin temperature at the exit of the extruder to a range of 275 ° C. to 285 ° C .; Forming the melt-extruded polyester resin into a film; The manufacturing method of the polyester film which has this.
  • ⁇ 4> The method for producing a polyester film according to any one of ⁇ 1> to ⁇ 3>, further comprising a step of allowing the melt-extruded polyester resin to pass through a filter through a gear pump.
  • ⁇ 5> The method for producing a polyester film according to any one of ⁇ 1> to ⁇ 4>, further comprising a step of allowing the melt-extruded polyester resin to pass through a die before the step of forming the film.
  • ⁇ 6> The method for producing a polyester film according to any one of ⁇ 1> to ⁇ 5>, wherein pellets and fluff are supplied to the extruder as the polyester resin at a mass ratio of the fluff of 60% or less.
  • ⁇ 7> The method for producing a polyester film according to any one of ⁇ 1> to ⁇ 6>, wherein the raw material of the polyester resin has an intrinsic viscosity in the range of 0.6 to 0.8.
  • ⁇ 8> The method for producing a polyester film according to any one of ⁇ 1> to ⁇ 7>, wherein a melting point Tm of the polyester resin raw material obtained by differential scanning calorimetry is in a range of 250 ° C. to 260 ° C.
  • Polyester film in which the amount of terminal COOH of the polyester in the polyester film produced by the method for producing a polyester film according to any one of ⁇ 1> to ⁇ 8> is in the range of 2 eq / t to 20 eq / t. . ⁇ 10>
  • the present invention there is provided a method for producing a polyester film having high hydrolysis resistance while suppressing generation of unmelted foreign matter during melt extrusion. Moreover, according to this invention, the polyester film for solar cells suitable for a solar cell backsheet etc. is provided.
  • the manufacturing method of the polyester film of this invention is demonstrated in detail.
  • “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the present inventor conducted research to achieve both low-temperature extrusion and uniform melting.In a short time, using a twin-screw extruder, the resin temperature inside the extruder was maximized from the middle front to the latter half of the extruder. After raising the temperature to a specific temperature range above the melting temperature, the resin is cooled to the outlet of the extruder and the resin temperature at the outlet is controlled to a relatively low temperature so that unmelted foreign matter remains in the conventional method. Even at a high discharge temperature, the polyester resin can be uniformly melted and extruded, thereby suppressing the generation of unmelted resin and effectively suppressing the increase in terminal COOH, thereby producing a film having high hydrolysis resistance. Found that can be obtained.
  • a polyester resin is supplied to a twin-screw extruder, and the resin temperature in the extruder is from 295 ° C. to 40% to 80% of the total length of the extruder from the upstream end of the extruder.
  • a step of melt-extrusion having a maximum value in the range of 320 ° C. and controlling the resin temperature at the exit of the extruder to a range of 275 ° C. to 285 ° C., and molding the melt-extruded polyester resin into a film shape And a process.
  • each step will be described.
  • the raw material polyester resin is supplied to a twin screw extruder, and the resin temperature in the extruder is in the range of 295 to 320 ° C. at a position of 40% to 80% of the total length of the extruder from the upstream end of the extruder. And the resin temperature at the exit of the extruder is controlled to 275 ° C. to 285 ° C. to perform melt extrusion.
  • FIG. 1 schematically shows an example of the configuration of a twin-screw extruder used in carrying out the method for producing a polyester film according to the present invention.
  • FIG. 1 schematically shows an example of the configuration of a twin-screw extruder used in carrying out the method for producing a polyester film according to the present invention.
  • FIG. 2 shows an example of a flow for carrying out the method for producing a polyester film according to the present invention.
  • the twin screw extruder shown in FIG. 1 is disposed around a cylinder 10 (barrel) having a supply port 12 and an extruder outlet 14, two screws 20A and 20B rotating in the cylinder 10, and the cylinder 10.
  • Temperature control means 30 for controlling the temperature in the cylinder 10.
  • a raw material supply device 46 is provided in front of the supply port 12. Further, a gear pump 44, a filter 42, and a die 40 are provided at the tip of the extruder outlet 14 as shown in FIG.
  • the cylinder 10 has a supply port 12 for supplying the raw material resin and an extruder outlet 14 through which the heat-melted resin is extruded.
  • a material that is excellent in heat resistance, wear resistance, and corrosion resistance and that can ensure friction with the resin.
  • nitrided steel whose inner surface is nitrided is used, but chromium molybdenum steel, nickel chromium molybdenum steel, and stainless steel can also be nitrided and used.
  • a bimetallic cylinder in which a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten is lined on the inner wall surface of the cylinder 10 by centrifugal casting. It is effective to use or form a ceramic sprayed coating.
  • a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten
  • the cylinder 10 is provided with vents 16A and 16B for drawing a vacuum. By evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed.
  • volatile components such as moisture in the resin in the cylinder 10
  • the vents 16A and 16B are required to have an appropriate opening area and number of vents in relation to the deaeration efficiency.
  • the twin-screw extruder 100 used in the present invention desirably has one or more vents 16A and 16B.
  • vents 16A and 16B are too large, there is a concern that the molten resin may overflow from the vent and there is a concern that the staying deterioration foreign matter may increase. Therefore, it is preferable to provide one or two vents.
  • the resin staying on the wall surface near the vent or the deposited volatile component falls into the extruder 100 (cylinder 10), it may be manifested as a foreign substance in the product, so care must be taken.
  • optimization of the shape of the vent lid and appropriate selection of the upper vent and the side vent are effective, and precipitation of volatile components is generally performed by a method of preventing precipitation by heating the piping or the like.
  • oxidative decomposition can be suppressed by evacuating the resin supply port 12 or performing a nitrogen purge. Further, by providing the vents 16A and 16B at a plurality of locations, even when the raw material moisture content is about 2000 ppm, the same extrusion as when the resin dried to 50 ppm or less is extruded on a single axis is possible.
  • segments such as kneading are not provided as much as possible within a range in which extrusion and degassing can be compatible. Further, since the shear heat generation increases as the pressure at the screw outlet (extruder outlet) 14 increases, the pressure at the extruder outlet 14 is as much as possible within a range in which the degassing efficiency and the stability of the extrusion by the vents 16A and 16B can be secured. It is preferable to make it low.
  • the vent pressure is preferably 0.01 Torr to 5 Torr (1.333 Pa to 666.5 Pa). More preferably, the pressure is set at 01 Torr to 4 Torr (1.333 Pa to 533.2 Pa).
  • the screw diameter D is preferably 30 to 250 mm, more preferably 50 to 200 mm.
  • the twin screw extruder is roughly divided into a meshing type and a non-meshing type of the two screws 20A and 20B, and the meshing type has a larger kneading effect than the non-meshing type.
  • any of a meshing type and a non-meshing type may be used, but it is preferable to use a meshing type from the viewpoint of sufficiently kneading the raw material resin and suppressing melting unevenness.
  • the rotation directions of the two screws 20A and 20B are also divided into the same direction and different directions, respectively.
  • the different-direction rotating screws 20A and 20B have a higher kneading effect than the same-direction rotating type, and the same-direction rotating type has a self-cleaning effect, which is effective for preventing retention in the extruder. Furthermore, the axial direction is also parallel and oblique, and there is also a conical type shape used when applying strong shear.
  • screw segments having various shapes can be used.
  • As the shape of the screws 20 ⁇ / b> A and 20 ⁇ / b> B for example, a full flight screw provided with a single helical flight 22 having an equal pitch is used.
  • a segment that imparts shear such as a kneading disk or a rotor, in the heating and melting part, the raw material resin can be more reliably melted.
  • a reverse screw or a seal ring it is possible to dam the resin and form a melt seal when pulling the vents 16A and 16B. For example, as shown in FIG.
  • kneading parts 24A (plasticizing kneading parts) and 24B (degassing promoting kneading parts) for promoting melting of the raw material resin as described above can be provided in the vicinity of the vents 16A and 16B. .
  • a temperature control zone for cooling the molten resin is effective.
  • the heat transfer efficiency of the cylinder 10 is higher than the shear heat generation, for example, by providing a screw 28 with a short pitch in the temperature control zone (cooling section), the resin moving speed of the wall surface of the cylinder 10 is increased and the temperature control efficiency is increased. Can do.
  • a temperature control means 30 is provided around the cylinder 10.
  • heating / cooling devices C1 to C9 divided into nine pieces in the longitudinal direction from the raw material supply port 12 to the extruder outlet 14 constitute the temperature control means 30.
  • the heating / cooling devices C1 to C9 arranged separately around the cylinder 10 are divided into, for example, heating / melting parts C1 to C7 and cooling parts C8 and C9. Each region can be controlled to a desired temperature.
  • the heating is usually performed using a band heater or a sheathed wire aluminum cast heater, but is not limited thereto, and for example, a heating medium circulating heating method can also be used.
  • air cooling by a blower is generally used for cooling, but there is also a method of flowing water or oil through a pipe (water passage) wound around the cylinder 10.
  • a die 40 for discharging the molten resin extruded from the extruder outlet 14 into a film shape (band shape) is provided at the tip of the extruder outlet 14 of the cylinder 10. Further, a filter 42 is provided between the extruder outlet 14 of the cylinder 10 and the die 40 to prevent unmelted resin and foreign matter from entering the film.
  • a gear pump 44 may be provided between the extruder 100 and the die 40 in order to reduce the variation in the extrusion amount as much as possible. By supplying a certain amount of resin from the gear pump 44, the thickness accuracy can be improved. In particular, when using a twin screw extruder, it is preferable to stabilize the extrusion by the gear pump 44 because the pressurization capacity of the extruder itself is low.
  • the pressure fluctuation on the secondary side of the gear pump 44 can be reduced to 1/5 or less on the primary side, and the resin pressure fluctuation width can be within ⁇ 1%.
  • the gear pump 44 when the gear pump 44 is installed, the length of the equipment becomes longer depending on the equipment selection method, and the residence time of the resin becomes longer, and the shearing stress of the gear pump section may cause the molecular chain to be broken. It is.
  • the differential pressure during operation is set to 20 MPa or less, preferably 15 MPa, and more preferably 10 MPa or less. In order to make the film thickness uniform, it is also effective to control the screw rotation of the extruder or to use a pressure control valve in order to keep the primary pressure of the gear pump 44 constant.
  • the raw material resin may be selected in consideration of the physical properties required for the finally required polyester film. For example, it is preferable to use a polyester resin having an intrinsic viscosity IV of 0.5 to 0.9. It is more preferable to use a polyester resin having an IV of 0.6 to 0.8. In the extrusion process of the polyester resin, it is easy to generate heat and the terminal COOH tends to increase, but if the low IV polyester resin as described above is used, the raw resin can be sufficiently kneaded and melted in the heating and melting part, Excessive heating can be suppressed in the cooling section, and an increase in terminal COOH can be effectively suppressed.
  • IV is 0.6 or more, it is possible to obtain a film having a sufficiently small terminal COOH, and if it is 0.8 or less, excessive heat generation can be suppressed.
  • the IV of the raw material resin can be adjusted by the polymerization method and polymerization conditions. Specifically, when solid phase polymerization is performed after liquid phase polymerization, a polyester resin having an intrinsic viscosity IV of 0.6 to 0.8 can be obtained by adjusting the processing temperature, processing time, processing atmosphere moisture, and oxygen concentration. it can.
  • the raw material resin preferably has a terminal COOH amount (AV) of 20 eq / t (equivalent / ton) or less, and more preferably 15 eq / t or less. If a raw material resin having a small amount of terminal COOH is used, a polyester film having higher hydrolysis resistance can be obtained. However, for example, from the viewpoint of obtaining adhesion with the adherend, the amount of terminal COOH of the raw material resin is desirably 2 eq / t or more. In the present specification, “equivalent / ton (eq / t)” represents a molar equivalent per ton.
  • the amount of terminal COOH is a value measured by the following method. That is, after dissolving 0.1 g of the raw material resin in 10 ml of benzyl alcohol, chloroform is further added to obtain a mixed solution, and phenol red indicator is added dropwise thereto. This solution is titrated with a standard solution (0.01 N KOH-benzyl alcohol mixed solution), and the amount of terminal carboxyl groups is determined from the amount added.
  • the amount of terminal COOH of the said raw material resin represents the quantity in a mixed state.
  • PET polyethylene terephthalate
  • the total amount of terminal COOH in the pellet, or the amount of terminal COOH in the pellet and the fluff It is the total amount with the amount of terminal COOH.
  • the melting point Tm of the raw material resin is preferably in the range of 250 ° C. to 260 ° C.
  • the melting point Tm is a value obtained by differential scanning calorimetry. When mixing a plurality of resins, it is preferable that the average melting point is within the above range.
  • the bulk specific gravity of the raw material resin is preferably in the range of 0.6 to 0.8. When the bulk specific gravity is 0.6 or more, extrusion can be performed more stably. When the bulk specific gravity is 0.8 or less, local heat generation can be effectively suppressed.
  • the bulk specific gravity of the raw material resin refers to the specific gravity (per unit volume) obtained by dividing the mass of the powder into a predetermined shape by dividing the powder into a predetermined volume in a constant volume container. Mass), the smaller the bulk specific gravity, the larger the bulk.
  • the bulk specific gravity of the raw material resin is particularly preferably in the range of 0.7 to 0.75 from the viewpoint that the increase in terminal COOH is further suppressed by suppressing heat generation during extrusion.
  • the polyester resin constituting the raw material resin can be obtained by subjecting dicarboxylic acid or an ester derivative thereof and a diol compound to an esterification reaction and / or an ester exchange reaction by a known method.
  • dicarboxylic acid or ester derivative thereof include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalon.
  • Aliphatic dicarboxylic acids such as acids, ethylmalonic acids, alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalene Dicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalate Acid, phenyl Emissions boys carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic, 9,9'-bis (4-carboxyphenyl) a dicar
  • diol compound examples include aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. , Cycloaliphatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzendimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene And aromatic diols such as.
  • aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol.
  • Cycloaliphatic diols such as cyclohexanedimethanol, spirogly
  • a conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction.
  • the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds.
  • an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed.
  • a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
  • PET polyethylene terephthalate
  • PEN polyethylene-2,6-naphthalate
  • PET is preferably polymerized using one or more selected from a germanium (Ge) -based catalyst, an antimony (Sb) -based catalyst, an aluminum (Al) -based catalyst, and a titanium (Ti) -based catalyst. More preferred is a Ti-based catalyst.
  • the Ti catalyst has a high reaction activity and can lower the polymerization temperature. Therefore, it is possible to suppress the thermal decomposition of PET and the generation of COOH particularly during the polymerization reaction.
  • it is suitable for adjusting the terminal COOH amount of the polyester film to a range of 30 eq / ton or less.
  • Ti catalyst-based PET obtained by polymerization using a Ti-based catalyst
  • JP 2005-340616 A JP 2005-239940 A
  • JP 2004-319444 A Patent 3436268
  • the polymerization methods described in Japanese Patent No. 3978666, Japanese Patent No. 3780137, Japanese Patent Application Laid-Open No. 2007-204538, and the like can be used.
  • Polymerization is preferably performed using a titanium (Ti) -based compound in the range of 1 ppm to 30 ppm, more preferably 2 ppm to 20 ppm, and even more preferably 3 ppm to 15 ppm.
  • the polyester film produced by the method of the present invention contains 1 ppm or more and 30 ppm or less of titanium.
  • the amount of the Ti-based catalyst is 1 ppm or more, preferable IV is obtained, and when it is 30 ppm or less, the terminal COOH can be kept low, which is advantageous in improving the hydrolysis resistance.
  • pellets, fluffs, mixtures thereof and the like can be used, and those in which the mass ratio of the fluff is 60% or less and mixed with the pellets are preferable.
  • the fluff is, for example, a pulverized product obtained by pulverizing a film that is no longer needed into small pieces (so-called chips) or scrap pieces. Increasing the fluff ratio has a high recycle ratio and can reduce the cost of raw materials.
  • an increase in the fluff ratio gives a bulkiness, and the bulk specific gravity can be lowered as compared with, for example, a pellet alone.
  • a polyester film is preferable, and a polyester film of the same type as the polyester resin in the raw resin is preferable.
  • the mass ratio of the fluff is more preferably 10 to 40%, and particularly preferably 20 to 30%.
  • the fluff size is not limited as long as the bulk change is given, but a fluff thickness of 20 to 5000 ⁇ m is preferable.
  • the fluff thickness is preferably in the range of 100 to 1000 ⁇ m, more preferably in the range of 100 to 500 ⁇ m, from the viewpoint of preventing the bulk density from becoming too small and reducing the filling rate too much and avoiding insufficient melting.
  • the variation in the size of the fluff is smaller, for example, the variation in the thickness of the fluff is preferably within ⁇ 100%, more preferably It is within ⁇ 50%, and further within ⁇ 10%.
  • variation in the terminal COOH amount of the obtained polyester film can be suppressed low by suppressing size variation such as thickness.
  • the bulk specific gravity of the fluff is preferably in the range of 0.3 to 0.7 as long as the bulk specific gravity of the raw material resin satisfies the above range.
  • the bulk specific gravity is synonymous with the bulk specific gravity of the raw material resin described above, and is measured in the same manner as described above.
  • the cylinder 10 is heated by the temperature control means 30 and the screw is rotated to supply the polyester resin raw material (raw material resin) from the supply port 12.
  • the supply port 12 is preferably cooled to prevent heat transfer of the raw material resin pellets and the like, and to protect the screw drive equipment such as the motor.
  • the raw material resin supplied into the cylinder is melted not only by heating by the temperature control means 30, but also by heat generated by friction between the resins accompanying rotation of the screws 20A and 20B, friction between the resin and the screws 20A and 20B and the cylinder 10, and the like. And gradually moves toward the extruder outlet 14 as the screw rotates.
  • the raw material resin supplied into the cylinder is heated to a temperature equal to or higher than the melting point Tm (° C.).
  • Tm melting point
  • the resin temperature is too low, melting during melt extrusion may be insufficient and ejection from the die 40 may be difficult.
  • the resin temperature is too high, the terminal COOH may be remarkably increased due to thermal decomposition, leading to a decrease in hydrolysis resistance.
  • the resin temperature in the extruder is 295 at a position of 40% to 80% of the total length of the extruder from the upstream end of the extruder. Melt extrusion is performed so that the resin temperature at the extruder exit is 275 ° C. to 285 ° C., with a maximum value of ⁇ 320 ° C.
  • the upstream end of the extruder means the root position where the screw groove is located.
  • the maximum value of the resin temperature in the twin screw extruder is less than 295 ° C., a part of the molten resin is solidified to generate an unmelted resin, and if it exceeds 320 ° C., the terminal COOH is increased and the hydrolysis resistance is increased. It will drop greatly. From such a viewpoint, in the present invention, the maximum value of the resin temperature in the twin screw extruder is 295 to 320 ° C., preferably 300 to 315 ° C., and more preferably 305 to 310 ° C.
  • the maximum value of the resin temperature in the twin screw extruder is at a position less than 40% of the total length of the extruder from the upstream end of the extruder, the heat generation becomes large and it becomes difficult to sufficiently reduce the outlet resin temperature. If it is at a position exceeding 80%, the resin cooling effect due to cooling becomes insufficient.
  • the maximum value of the resin temperature in the twin-screw extruder is 40% to 80% of the total length of the extruder from the upstream end of the extruder, and 45% to 70% of the total length of the extruder.
  • the position is preferably at a position of 50% to 60%.
  • the resin temperature at the exit of the twin-screw extruder is usually extruded at about 300 ° C. in the conventional general melt extrusion, but is controlled to be 275 ° C. to 285 ° C. in the present invention. If the resin temperature at the exit of the extruder is less than 275 ° C., unmelted foreign matter is generated, and if it exceeds 285 ° C., the terminal COOH increases and the hydrolysis resistance is greatly reduced. From such a viewpoint, in the present invention, the resin temperature at the exit of the extruder is 275 to 285 ° C., preferably 278 to 283 ° C., more preferably 280 to 282 ° C.
  • air cooling may be used, but it is preferable to control the temperature at the exit of the cylinder with a liquid heat medium.
  • a liquid heat medium for example, in the heating / cooling device C9 arranged near the outlet of the cylinder, a water passage is provided so as to surround the cylinder, and a liquid such as water is passed through the water passage so that the resin temperature at the outlet of the extruder is efficiently increased. It can be lowered and controlled accurately.
  • the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is lower than the melting point of the polyester resin. If the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is controlled to be less than the melting point of the polyester resin, the resin at the exit of the extruder is efficiently cooled and the resin The temperature can be controlled between 275 ° C. and 285 ° C. However, if the cylinder temperature is too low, the molten resin may be solidified.
  • the temperature of the cylinder on the downstream side of the position where the resin temperature in the extruder on the outlet side of the extruder becomes the maximum value is (polyester resin).
  • the melting point of the polyester resin is preferably ⁇ 150 ° C.) or more, more preferably (the melting point of the polyester resin ⁇ 100 ° C.) or more.
  • the work of the screw is transferred to the resin as frictional heat and is greatly related to the resin temperature.
  • the extrusion amount (kg / h) is Q and the heat capacity (J / kgK) of the polyester resin is Cp
  • the following relational expression (1) is satisfied with respect to the heat exchange amount Epoly of the polyester resin. It is preferable.
  • the specific power of the extruder with respect to the polyester resin can be calculated from the screw current and the voltage as the work amount of the screw.
  • the heat exchange amount Epoly (J / s) of the polyester resin is calculated by the following formula.
  • Epoly QCp (Tout ⁇ Tin) + QE (Q: resin discharge rate (kg / s), Cp: resin heat capacity (J / kg ° C.), Tout: extruder exit resin temperature (° C.), Tin: raw material temperature (° C.), E: latent heat of fusion (J / Kg))
  • the polyester resin melts by giving the heat exchange amount Epoly of the polyester resin, but the viewpoint of reliably suppressing the increase in the terminal COOH while reliably suppressing the remaining of the unmelted resin and the solidification of the molten resin. Therefore, it is preferable to add the heat amount (work amount) to the heat exchange amount of the polyester resin within a certain range. If the specific power Esp of the extruder with respect to the polyester resin is larger than (Epoly + 20QCp), the remaining of the unmelted resin and the solidification of the molten resin can be suppressed, while if smaller than (Epoly + 50QCp), the increase in the terminal COOH is suppressed. can do.
  • the specific power Esp of the extruder with respect to the polyester resin more preferably satisfies the relationship of the following formula (2), and more preferably satisfies the relationship of the formula (3).
  • the temperature-induced crystallization temperature Tc (° C.) of the water-cooled strand after the polyester resin is melt-extruded with a twin-screw extruder is 130 ⁇ Tc ⁇ 150.
  • the polyester resin obtained by melting and extruding the polyester resin by controlling the resin temperature in the twin screw extruder and the resin temperature at the outlet of the extruder (strand) is heated by DSC (differential scanning calorimetry).
  • the crystallization temperature Tc (° C.) is measured.
  • Tc is low (about 120 ° C.), but if Tc is higher than 130 ° C., there is almost no unmelted resin, and if Tc is less than 150 ° C., decomposition of the resin is suppressed and sufficient. It becomes possible to obtain weather resistance.
  • the resin extruded from the extruder outlet 14 of the cylinder 10 is passed through the filter 42 and extruded from the die 40 (for example, to a cooling roll) to be formed into a film.
  • the humidity is adjusted to 5% RH to 60% RH after the melt (molten resin) is extruded from the die 40 until it contacts the cooling roll (air gap), and 15% RH to 50% RH. It is more preferable to adjust to.
  • By adjusting the humidity in the air gap to the above range it is possible to adjust the amount of COOH and OH on the film surface, and by adjusting to low humidity, the amount of carboxylic acid on the film surface can be reduced. .
  • the film thickness is preferably 2 mm to 8 mm, more preferably 2.5 mm to 7 mm, and still more preferably 3 mm to 6 mm.
  • Tg glass transition temperature
  • the film thickness is preferably 2 mm to 8 mm, more preferably 2.5 mm to 7 mm, and still more preferably 3 mm to 6 mm.
  • a polymer such as polyester is weighed as a sample, set in an aluminum pan, and heated at a rate of temperature increase of 10 ° C./min from room temperature to a final temperature of 300 ° C., with a DSC apparatus, the amount of heat with respect to temperature. was measured as the glass transition temperature.
  • the obtained film-like polyester resin can be made into the polyester film which has desired thickness by performing biaxial stretching in a extending process after that.
  • the amount of terminal COOH in the polyester film produced by the method of the present invention is preferably in the range of 2 eq / t to 20 eq / t, and preferably in the range of 2 eq / t to 15 eq / t. Is more preferable.
  • the polyester film produced by the method of the present invention can further contain additives such as a light stabilizer and an antioxidant.
  • UV degradation can be prevented.
  • the light stabilizer include a compound that absorbs light such as ultraviolet rays and converts it into heat energy, and a material that captures radicals generated by light absorption and decomposition of the resin and suppresses the decomposition chain reaction.
  • the light stabilizer is preferably a compound that absorbs light such as ultraviolet rays and converts it into heat energy.
  • an ultraviolet absorber is a range in which other properties of the polyester are not impaired, any of organic ultraviolet absorbers, inorganic ultraviolet absorbers, and combinations thereof are preferably used without particular limitation. Can do. On the other hand, it is desired that the ultraviolet absorber has excellent heat and moisture resistance and can be uniformly dispersed in the resin.
  • ultraviolet absorbers include, for example, salicylic acid-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, hindered amine-based ultraviolet stabilizers, and the like as organic ultraviolet absorbers.
  • salicylic acid-based pt-butylphenyl salicylate p-octylphenyl salicylate
  • benzophenone-based 2,4-dihydroxybenzophenone 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy -5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane
  • benzotriazole 2- (2'-hydroxy-5) '-Methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H benzotriazol-2-yl) phenol], a cyanoacrylate Ethyl ⁇ -cyano- ⁇ , ⁇ -diphenyl acrylate, 2- (4,6
  • triazine-based ultraviolet absorbers are more preferable in that they have high resistance to repeated ultraviolet absorption.
  • these ultraviolet absorbers may be added to the above-mentioned ultraviolet absorber alone, or a form in which an organic conductive material or a water-insoluble resin is copolymerized with a monomer having an ultraviolet absorber ability. May be introduced.
  • the content of the light stabilizer in the polyester film is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.3% by mass or more and 7% by mass or less with respect to the total mass of the polyester film. More preferably, it is 0.7 mass% or more and 4 mass% or less.
  • the polyester film of the present invention contains, in addition to the light stabilizer, for example, a lubricant (fine particles), a colorant, a nucleating agent (crystallization agent), a flame retardant, and the like as necessary. be able to.
  • the polyester film produced by the method of the present invention is a polyester film for solar cell members, specifically, a back surface protective sheet (so-called back sheet) disposed on the back surface opposite to the sunlight incident side of the solar cell power generation module. ), Suitable for applications such as a barrier film substrate.
  • the power generation element (solar cell element) connected by the lead wiring for taking out electricity is sealed with a sealing agent such as ethylene / vinyl acetate copolymer system (EVA system) resin,
  • EVA system ethylene / vinyl acetate copolymer system
  • solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, and group III-V such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenic.
  • group III-V such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenic.
  • Various known solar cell elements such as II-VI group compound semiconductor systems can be applied.
  • Example 1 -Twin screw extruder- As shown in FIG. 1, the extruder is provided with a screw having the following configuration in a cylinder provided with vents at two locations as shown in FIG. 1, and the temperature can be controlled by dividing the cylinder into nine zones in the longitudinal direction.
  • a double vent type co-rotating mesh type twin screw extruder equipped with a heater (temperature control means) was prepared.
  • Screw shape plasticization kneading section just before the first vent, degassing promotion kneading section just before the second vent
  • gear pump 2-gear type Filter: Sintered metal fiber filter (pore diameter 20 ⁇ m) Die: Lip spacing 4mm
  • pellets of polyethylene terephthalate (melting point Tm: 257 ° C., intrinsic viscosity IV: 0.78, terminal COOH amount: 15 eq / t, Cp: 2300 J / kgK, crystallized at 160 ° C. with a Henschel mixer) are used. It was. PET pellets having an average major axis: 4.5 mm, an average minor axis: 1.8 mm, and an average length: 4.0 mm were used.
  • the melt (melt) extruded from the extruder outlet was passed through a gear pump and a metal fiber filter (pore diameter 20 ⁇ m), and then extruded from a die to a cooling (chill) roll.
  • the extruded melt was brought into close contact with the cooling roll using an electrostatic application method.
  • As the cooling roll a hollow chill roll is used, and the temperature of the cooling roll can be controlled through water as a heating medium.
  • the conveyance area (air gap) from the die exit to the cooling roll surrounds this conveyance area, and humidity is adjusted to 30% RH by introducing humidity-conditioned air therein.
  • the film thickness was set to 3000 ⁇ m by adjusting the extrusion amount of the extruder and the slit width of the die. As described above, a PET film was obtained.
  • Example 2 A film was produced in the same manner as in Example 1 except that the conditions such as barrel temperature, cooling method, raw material IV, and chip ratio were changed as shown in Table 1 with respect to Example 1, and the same as in Example 1. Was evaluated. The results are shown in Table 2 below.
  • the amount of terminal COOH was 20 eq / t or less, the increase in terminal COOH due to heat melting was suppressed, and a polyester film excellent in hydrolysis resistance could be obtained. Moreover, in the Example, the haze of the film before extending

Abstract

Provided is a method for producing polyester film, the method comprising: a step in which polyester resin is fed to a biaxial extruder (100), and extruded with the resin temperature inside the extruder controlled at a maximum value from 295 to 320°C at a position of 40% to 80% of the entire length of the extruder from the upstream end, and the resin temperature at the extruder outlet (14) within the range of 275 to 285°C; and a step in which the molten-extruded polyester resin is formed into a film. The resultant polyester film has high resistance to thermal decomposition, and generates minimal unmelted impurities during molten extrusion.

Description

ポリエステルフィルムの製造方法及び太陽電池用のポリエステルフィルムMethod for producing polyester film and polyester film for solar cell
 本発明は、ポリエステルフィルムの製造方法及び太陽電池用のポリエステルフィルムに関する。 The present invention relates to a method for producing a polyester film and a polyester film for a solar cell.
 近年、太陽電池モジュールの太陽光入射側とは反対側に配されるバックシートには、ポリエステルなどの樹脂材料が使用されるに至っている。ポリエステルには、通常はその表面にカルボキシル基や水酸基が多く存在しており、水分が存在する環境では加水分解を起こしやすく、経時で劣化する傾向がある。そのため、屋外等の常に風雨に曝されるような環境におかれる太陽電池モジュール等に用いられるポリエステルは、その加水分解性が抑えられていることが求められる。 In recent years, a resin material such as polyester has been used for the back sheet disposed on the side opposite to the sunlight incident side of the solar cell module. Polyester usually has many carboxyl groups and hydroxyl groups on its surface, and tends to undergo hydrolysis in an environment where moisture exists, and tends to deteriorate over time. For this reason, polyesters used in solar cell modules and the like that are constantly exposed to wind and rain, such as outdoors, are required to have reduced hydrolyzability.
 ポリエステル樹脂に耐加水分解性を付与するには、加水分解反応の触媒となる末端COOHを低減することが考えられる。末端COOHは溶融時の加熱で発生するため、可塑化溶融押出機で溶融製膜する場合には、溶融時の熱履歴を緩和することが重要になる。しかし、単純に押出機を低温化しただけでは、温度ムラによる未溶融樹脂が生じ、その後の延伸工程でフィルム状にするときに異物となって破断の原因となる。 In order to impart hydrolysis resistance to the polyester resin, it is conceivable to reduce terminal COOH that becomes a catalyst for the hydrolysis reaction. Since terminal COOH is generated by heating at the time of melting, it is important to alleviate the thermal history at the time of melting when melt-forming with a plasticizing melt extruder. However, if the temperature of the extruder is simply lowered, an unmelted resin is generated due to temperature unevenness, which becomes a foreign substance when the film is formed in the subsequent stretching process, causing breakage.
 上記の状況に関連して、押出機をタンデム配置にし、2段目の押出機で樹脂を冷却することにより熱履歴を緩和する技術が開示されている(例えば、特開平10-119112号公報参照)。
 また、発熱を抑えて大量生産を達成するため、シリンダーの内径が140mm以上のベント式二軸押出機を使用し、単位時間当たりの押出量Qとスクリュ回転数Nとの比Q/Nが一定の範囲内となる条件下で溶融押出しを行うポリエステルシートの製造方法が開示されている(例えば、特許第3577178号公報参照)。
In relation to the above situation, a technique is disclosed in which the thermal history is alleviated by placing the extruder in a tandem arrangement and cooling the resin with a second-stage extruder (see, for example, JP-A-10-119112). ).
In addition, in order to achieve mass production while suppressing heat generation, a vent type twin screw extruder with an inner diameter of 140 mm or more is used, and the ratio Q / N between the extrusion amount Q per unit time and the screw rotation speed N is constant. A method for producing a polyester sheet that is melt-extruded under the conditions within the above range is disclosed (for example, see Japanese Patent No. 3577178).
 本発明は、溶融押出時の未溶融異物の発生を抑えるとともに高い耐加水分解性を有するポリエステルフィルムを製造する方法及びそれにより製造された太陽電池用のポリエステルフィルムを提供することを目的とする。 An object of the present invention is to provide a method for producing a polyester film having high hydrolysis resistance while suppressing generation of unmelted foreign matters during melt extrusion, and a polyester film for a solar cell produced thereby.
 前記目的を達成するため、以下の発明が提供される。
<1> ポリエステル樹脂を二軸押出機に供給し、該押出機内の樹脂温度が該押出機の上流端から押出機全長の40%~80%の位置に295℃~320℃の範囲の最大値を有し、かつ、該押出機出口の樹脂温度を275℃~285℃の範囲に制御して溶融押出する工程と、
 前記溶融押出したポリエステル樹脂をフィルム状に成形する工程と、
を有するポリエステルフィルムの製造方法。
<2> 前記押出機内の樹脂温度が最大値となる位置よりも下流側のシリンダーの少なくとも一部の部分の温度が、前記ポリエステル樹脂の融点未満である<1>に記載のポリエステルフィルムの製造方法。
<3> 前記押出機内の樹脂温度が最大値となる位置よりも下流側のシリンダーの少なくとも一部の部分の温度を、液体の熱媒によって制御する<2>に記載のポリエステルフィルムの製造方法。
<4> 前記溶融押出したポリエステル樹脂をギアポンプを経て、フィルタを通過させる工程を更に有する、<1>~<3>のいずれかに記載のポリエステルフィルムの製造方法。
<5> 前記フィルム状に成形する工程の前に、前記溶融押出したポリエステル樹脂をダイを通過させる工程を、更に有する<1>~<4>のいずれかに記載のポリエステルフィルムの製造方法。
In order to achieve the above object, the following invention is provided.
<1> Polyester resin is supplied to a twin-screw extruder, and the maximum value in the range of 295 ° C. to 320 ° C. at a position where the resin temperature in the extruder is 40% to 80% of the total length of the extruder from the upstream end of the extruder And melt extrusion by controlling the resin temperature at the exit of the extruder to a range of 275 ° C. to 285 ° C .;
Forming the melt-extruded polyester resin into a film;
The manufacturing method of the polyester film which has this.
<2> The method for producing a polyester film according to <1>, wherein the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is lower than the melting point of the polyester resin. .
<3> The method for producing a polyester film according to <2>, wherein the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is controlled by a liquid heat medium.
<4> The method for producing a polyester film according to any one of <1> to <3>, further comprising a step of allowing the melt-extruded polyester resin to pass through a filter through a gear pump.
<5> The method for producing a polyester film according to any one of <1> to <4>, further comprising a step of allowing the melt-extruded polyester resin to pass through a die before the step of forming the film.
<6> 前記ポリエステル樹脂として、ペレットとフラフを、該フラフの質量比率を60%以下にして前記押出機に供給する<1>~<5>のいずれかに記載のポリエステルフィルムの製造方法。
<7> 前記ポリエステル樹脂の原料の極限粘度が0.6~0.8の範囲内である<1>~<6>のいずれかに記載のポリエステルフィルムの製造方法。
<8> 示差走査熱量測定により求められる前記ポリエステル樹脂原料の融点Tmが、250℃~260℃の範囲内である<1>~<7>のいずれかに記載のポリエステルフィルムの製造方法。
<9> 前記<1>~<8>のいずれかに記載のポリエステルフィルムの製造方法により製造されたポリエステルフィルム中のポリエステルの末端COOH量が2eq/t~20eq/tの範囲内であるポリエステルフィルム。
<10> <1>~<8>のいずれかに記載の製造方法により製造されたポリエステルフィルム。
<6> The method for producing a polyester film according to any one of <1> to <5>, wherein pellets and fluff are supplied to the extruder as the polyester resin at a mass ratio of the fluff of 60% or less.
<7> The method for producing a polyester film according to any one of <1> to <6>, wherein the raw material of the polyester resin has an intrinsic viscosity in the range of 0.6 to 0.8.
<8> The method for producing a polyester film according to any one of <1> to <7>, wherein a melting point Tm of the polyester resin raw material obtained by differential scanning calorimetry is in a range of 250 ° C. to 260 ° C.
<9> Polyester film in which the amount of terminal COOH of the polyester in the polyester film produced by the method for producing a polyester film according to any one of <1> to <8> is in the range of 2 eq / t to 20 eq / t. .
<10> A polyester film produced by the production method according to any one of <1> to <8>.
 本発明によれば、溶融押出時の未溶融異物の発生を抑えるとともに高い耐加水分解性を有するポリエステルフィルムを製造する方法が提供される。また、本発明によれば、太陽電池のバックシート等に好適な太陽電池用のポリエステルフィルムが提供される。 According to the present invention, there is provided a method for producing a polyester film having high hydrolysis resistance while suppressing generation of unmelted foreign matter during melt extrusion. Moreover, according to this invention, the polyester film for solar cells suitable for a solar cell backsheet etc. is provided.
本発明に係るポリエステルフィルムの製造方法を実施するための二軸押出機の構成例を示す概略図である。It is the schematic which shows the structural example of the twin-screw extruder for enforcing the manufacturing method of the polyester film which concerns on this invention. 本発明に係るポリエステルフィルムの製造方法を実施するフローの一例を示す図である。It is a figure which shows an example of the flow which enforces the manufacturing method of the polyester film which concerns on this invention.
 以下、本発明のポリエステルフィルムの製造方法について詳細に説明する。なお、本願明細書において「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本発明者は、低温押出しと均一溶融を両立するため研究を重ねたところ、二軸押出機を用い、押出機の中央手前から後半において押出機内部の樹脂温度が最大となるように短時間で溶融温度以上の特定の温度範囲に昇温した後、押出機の出口までに樹脂を冷却して出口の樹脂温度を比較的低い温度に制御することにより、従来の方法では未溶融異物が残るような吐出温度においても、ポリエステル樹脂を均一に溶融して押出することができ、これにより、未溶融樹脂の発生を抑制するとともに末端COOHの増加を効果的に抑えて耐加水分解性の高いフィルムを得ることができることを見出した。
Hereinafter, the manufacturing method of the polyester film of this invention is demonstrated in detail. In the present specification, “to” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
The present inventor conducted research to achieve both low-temperature extrusion and uniform melting.In a short time, using a twin-screw extruder, the resin temperature inside the extruder was maximized from the middle front to the latter half of the extruder. After raising the temperature to a specific temperature range above the melting temperature, the resin is cooled to the outlet of the extruder and the resin temperature at the outlet is controlled to a relatively low temperature so that unmelted foreign matter remains in the conventional method. Even at a high discharge temperature, the polyester resin can be uniformly melted and extruded, thereby suppressing the generation of unmelted resin and effectively suppressing the increase in terminal COOH, thereby producing a film having high hydrolysis resistance. Found that can be obtained.
 本発明のポリエステルフィルムの製造方法は、ポリエステル樹脂を二軸押出機に供給し、該押出機内の樹脂温度が該押出機の上流端から押出機全長の40%~80%の位置に295℃~320℃の範囲の最大値を有し、かつ、該押出機出口の樹脂温度を275℃~285℃の範囲に制御して溶融押出する工程と、前記溶融押出したポリエステル樹脂をフィルム状に成形する工程と、を有する。
 以下、各工程について説明する。
In the method for producing a polyester film of the present invention, a polyester resin is supplied to a twin-screw extruder, and the resin temperature in the extruder is from 295 ° C. to 40% to 80% of the total length of the extruder from the upstream end of the extruder. A step of melt-extrusion having a maximum value in the range of 320 ° C. and controlling the resin temperature at the exit of the extruder to a range of 275 ° C. to 285 ° C., and molding the melt-extruded polyester resin into a film shape And a process.
Hereinafter, each step will be described.
(溶融押出し工程)
 本発明では、原料となるポリエステル樹脂を二軸押出機に供給し、該押出機内の樹脂温度が該押出機の上流端から押出機全長の40%~80%の位置に295~320℃の範囲の最大値を有し、かつ、該押出機出口の樹脂温度を275℃~285℃に制御して溶融押出を行う。
 まず、本発明で用いることができる二軸押出機について説明する。図1は、本発明に係るポリエステルフィルムの製造方法を実施する際に使用する二軸押出機の構成の一例を概略的に示している。図2は、本発明に係るポリエステルフィルムの製造方法を実施するフローの一例を示している。
 図1に示す二軸押出機は、供給口12及び押出機出口14を有するシリンダー10(バレル)と、シリンダー10内で回転する2つのスクリュ20A,20Bと、シリンダー10の周囲に配置され、該シリンダー10内の温度を制御する温度制御手段30と、を備えている。供給口12の手前には原料供給装置46が設けられている。また、押出機出口14の先には、図2に示すようにギアポンプ44と、フィルタ42と、ダイ40が設けられている。
(Melt extrusion process)
In the present invention, the raw material polyester resin is supplied to a twin screw extruder, and the resin temperature in the extruder is in the range of 295 to 320 ° C. at a position of 40% to 80% of the total length of the extruder from the upstream end of the extruder. And the resin temperature at the exit of the extruder is controlled to 275 ° C. to 285 ° C. to perform melt extrusion.
First, the twin screw extruder that can be used in the present invention will be described. FIG. 1 schematically shows an example of the configuration of a twin-screw extruder used in carrying out the method for producing a polyester film according to the present invention. FIG. 2 shows an example of a flow for carrying out the method for producing a polyester film according to the present invention.
The twin screw extruder shown in FIG. 1 is disposed around a cylinder 10 (barrel) having a supply port 12 and an extruder outlet 14, two screws 20A and 20B rotating in the cylinder 10, and the cylinder 10. Temperature control means 30 for controlling the temperature in the cylinder 10. A raw material supply device 46 is provided in front of the supply port 12. Further, a gear pump 44, a filter 42, and a die 40 are provided at the tip of the extruder outlet 14 as shown in FIG.
-シリンダー
 シリンダー10は原料樹脂を供給するための供給口12と、加熱溶融された樹脂が押し出される押出機出口14を有する。
 シリンダー10の内壁面は、耐熱、耐磨耗性、及び腐食性に優れ、樹脂との摩擦が確保可能な素材を用いることが必要である。一般的には内面を窒化処理した窒化鋼が使用されているが、クロムモリブデン鋼、ニッケルクロムモリブデン鋼、ステンレス鋼を窒化処理して用いることもできる。特に耐摩耗性、耐食性を要求される用途では、遠心鋳造法によりニッケル、コバルト、クロム、タングステン等の耐腐食性、耐磨耗性素材合金をシリンダー10の内壁面にライニングさせたバイメタリックシリンダーを用いることや、セラミックの溶射皮膜を形成させることが有効である。
-Cylinder The cylinder 10 has a supply port 12 for supplying the raw material resin and an extruder outlet 14 through which the heat-melted resin is extruded.
For the inner wall surface of the cylinder 10, it is necessary to use a material that is excellent in heat resistance, wear resistance, and corrosion resistance and that can ensure friction with the resin. Generally, nitrided steel whose inner surface is nitrided is used, but chromium molybdenum steel, nickel chromium molybdenum steel, and stainless steel can also be nitrided and used. For applications that require wear resistance and corrosion resistance in particular, a bimetallic cylinder in which a corrosion-resistant and wear-resistant material alloy such as nickel, cobalt, chromium or tungsten is lined on the inner wall surface of the cylinder 10 by centrifugal casting. It is effective to use or form a ceramic sprayed coating.
 シリンダー10には真空を引くためのベント16A,16Bが設けられている。ベント16A,16Bを通じて真空引きをすることでシリンダー10内の樹脂中の水分等の揮発成分を効率的に除去することができる。ベント16A,16Bを適正に配置することにより、未乾燥状態の原料(ペレット、パウダー、フレークなど)や製膜途中で出たフィルムの粉砕屑(フラフ)等をそのまま原料樹脂として使用することができる。
 ベント16A,16Bは脱気効率との関係で、開口面積やベントの数を適正にすることが求められる。本発明で用いる二軸押出機100は、1箇所以上のベント16A,16Bを有することが望ましい。なお、ベント16A,16Bの数が多過ぎると、溶融樹脂がベントから溢れ出るおそれ、滞留劣化異物増加の懸念があるので、ベントは1箇所又は2箇所設けることが好ましい。
 また、ベント付近の壁面に滞留した樹脂や析出した揮発成分が押出機100(シリンダー10)の内部に落下すると、製品に異物として顕在化する可能性があり、注意が必要である。滞留については、ベント蓋の形状の適正化や、上部ベント、側面ベントの適正な選定が有効であり、揮発成分の析出は、配管等の加熱で析出を防止する手法が一般的に用いられる。
The cylinder 10 is provided with vents 16A and 16B for drawing a vacuum. By evacuating through the vents 16A and 16B, volatile components such as moisture in the resin in the cylinder 10 can be efficiently removed. By appropriately arranging the vents 16A and 16B, raw materials (pellets, powders, flakes, etc.) in an undried state, crushed waste (fluffs) of the film produced during film formation, etc. can be used as raw material resins as they are. .
The vents 16A and 16B are required to have an appropriate opening area and number of vents in relation to the deaeration efficiency. The twin-screw extruder 100 used in the present invention desirably has one or more vents 16A and 16B. If the number of the vents 16A and 16B is too large, there is a concern that the molten resin may overflow from the vent and there is a concern that the staying deterioration foreign matter may increase. Therefore, it is preferable to provide one or two vents.
In addition, if the resin staying on the wall surface near the vent or the deposited volatile component falls into the extruder 100 (cylinder 10), it may be manifested as a foreign substance in the product, so care must be taken. For retention, optimization of the shape of the vent lid and appropriate selection of the upper vent and the side vent are effective, and precipitation of volatile components is generally performed by a method of preventing precipitation by heating the piping or the like.
 例えば、ポリエチレンテレフタレート(PET)を押出す場合、加水分解、熱分解、酸化分解の抑制が製品(フィルム)の品質に大きな影響を及ぼす。
 例えば、樹脂供給口12を真空化したり、窒素パージを行うことで酸化分解を抑えることができる。
 また、ベント16A,16Bを複数箇所に設けることで、原料水分量が2000ppm程度の場合でも、50ppm以下に乾燥した樹脂を単軸で押出した場合と同様の押出しが可能である。
 剪断発熱による樹脂分解を抑えるため、押出と脱気が両立できる範囲でニーディング等のセグメントは極力設けないことが好ましい。
 また、スクリュ出口(押出機出口)14の圧力が大きいほど剪断発熱が大きくなるため、ベント16A,16Bによる脱気効率と押出の安定性が確保できる範囲内で、押出機出口14の圧力は極力低くすることが好ましい。
For example, when polyethylene terephthalate (PET) is extruded, the suppression of hydrolysis, thermal decomposition, and oxidative decomposition has a great influence on the quality of the product (film).
For example, oxidative decomposition can be suppressed by evacuating the resin supply port 12 or performing a nitrogen purge.
Further, by providing the vents 16A and 16B at a plurality of locations, even when the raw material moisture content is about 2000 ppm, the same extrusion as when the resin dried to 50 ppm or less is extruded on a single axis is possible.
In order to suppress resin decomposition due to shearing heat generation, it is preferable that segments such as kneading are not provided as much as possible within a range in which extrusion and degassing can be compatible.
Further, since the shear heat generation increases as the pressure at the screw outlet (extruder outlet) 14 increases, the pressure at the extruder outlet 14 is as much as possible within a range in which the degassing efficiency and the stability of the extrusion by the vents 16A and 16B can be secured. It is preferable to make it low.
 ベント16A,16Bを通じて真空引きをすることでシリンダー内の樹脂中の水分等の揮発成分を効率的に除去することができる。ベント圧力が低過ぎると溶融樹脂がシリンダー10の外に溢れ出るおそれがあり、ベント圧力が高過ぎると揮発成分の除去が不十分となり、得られたフィルムの加水分解が生じ易くなるおそれがある。溶融樹脂がベント16A,16Bから溢れ出ることを防ぐとともに揮発成分を選択的に除去する観点から、ベント圧力は0.01Torr~5Torr(1.333Pa~666.5Pa)とすることが好ましく、0.01Torr~4Torr(1.333Pa~533.2Pa)とすることがより好ましい。 揮 発 Vacuum components such as moisture in the resin in the cylinder can be efficiently removed by evacuating through the vents 16A and 16B. If the vent pressure is too low, the molten resin may overflow from the cylinder 10, and if the vent pressure is too high, removal of volatile components may be insufficient, and the resulting film may be easily hydrolyzed. From the viewpoint of preventing the molten resin from overflowing the vents 16A and 16B and selectively removing volatile components, the vent pressure is preferably 0.01 Torr to 5 Torr (1.333 Pa to 666.5 Pa). More preferably, the pressure is set at 01 Torr to 4 Torr (1.333 Pa to 533.2 Pa).
-二軸スクリュ-
 シリンダー10内には、モータおよびギアを含む駆動手段21によって回転する2つのスクリュ20A,20Bが設けられている。スクリュ径Dが大きくなるほど、大量生産が可能である一方、溶融ムラが生じ易い。スクリュ径Dは、30~250mmが好ましく、より好ましくは50~200mmである。
-Biaxial screw-
In the cylinder 10, two screws 20 </ b> A and 20 </ b> B that are rotated by a driving unit 21 including a motor and a gear are provided. As the screw diameter D increases, mass production is possible, but uneven melting tends to occur. The screw diameter D is preferably 30 to 250 mm, more preferably 50 to 200 mm.
 二軸押出機は、2つのスクリュ20A,20Bの噛み合い型と非噛み合い型に大別され、噛み合い型のほうが、非噛み合い型よりも混練効果が大きい。本発明では、噛み合い型と非噛み合い型のいずれのタイプでも良いが、原料樹脂を十分混練して溶融ムラを抑制する観点から、噛み合い型を用いることが好ましい。
 2つのスクリュ20A,20Bの回転方向もそれぞれ同方向と異方向に分かれる。異方向回転スクリュ20A,20Bは同方向回転型よりも混練効果が高く、同方向回転型は自己清掃効果を持っているため、押出機内の滞留防止には有効である。
 さらに軸方向も平行と斜交があり、強いせん断を付与する場合に用いられるコニカルタイプの形状もある。
The twin screw extruder is roughly divided into a meshing type and a non-meshing type of the two screws 20A and 20B, and the meshing type has a larger kneading effect than the non-meshing type. In the present invention, any of a meshing type and a non-meshing type may be used, but it is preferable to use a meshing type from the viewpoint of sufficiently kneading the raw material resin and suppressing melting unevenness.
The rotation directions of the two screws 20A and 20B are also divided into the same direction and different directions, respectively. The different- direction rotating screws 20A and 20B have a higher kneading effect than the same-direction rotating type, and the same-direction rotating type has a self-cleaning effect, which is effective for preventing retention in the extruder.
Furthermore, the axial direction is also parallel and oblique, and there is also a conical type shape used when applying strong shear.
 本発明で用いる二軸押出機では、様々な形状のスクリュセグメントを用いることができる。スクリュ20A,20Bの形状としては、例えば、等ピッチの1条のらせん状フライト22が設けられたフルフライトスクリュが用いられる。
 加熱溶融部に、ニーディングディスクやローターなどの剪断を付与するセグメントを用いることで、原料樹脂をより確実に溶融することができる。また、逆スクリュやシールリングを用いることにより、樹脂をせき止め、ベント16A,16Bを引く際のメルトシールを形成することができる。例えば、図1に示すように、ベント16A,16B付近に、上記のような原料樹脂の溶融を促進する混練部24A(可塑化混練部),24B(脱気促進混練部)を設けることができる。
In the twin screw extruder used in the present invention, screw segments having various shapes can be used. As the shape of the screws 20 </ b> A and 20 </ b> B, for example, a full flight screw provided with a single helical flight 22 having an equal pitch is used.
By using a segment that imparts shear, such as a kneading disk or a rotor, in the heating and melting part, the raw material resin can be more reliably melted. Further, by using a reverse screw or a seal ring, it is possible to dam the resin and form a melt seal when pulling the vents 16A and 16B. For example, as shown in FIG. 1, kneading parts 24A (plasticizing kneading parts) and 24B (degassing promoting kneading parts) for promoting melting of the raw material resin as described above can be provided in the vicinity of the vents 16A and 16B. .
 押出機100の出口付近では溶融樹脂を冷却するための温調ゾーン(冷却部)が有効である。剪断発熱よりもシリンダー10の伝熱効率が高い場合は、例えば、温調ゾーン(冷却部)にピッチの短いスクリュ28を設けることで、シリンダー10壁面の樹脂移動速度が高まり、温調効率を上げることができる。 In the vicinity of the exit of the extruder 100, a temperature control zone (cooling section) for cooling the molten resin is effective. When the heat transfer efficiency of the cylinder 10 is higher than the shear heat generation, for example, by providing a screw 28 with a short pitch in the temperature control zone (cooling section), the resin moving speed of the wall surface of the cylinder 10 is increased and the temperature control efficiency is increased. Can do.
-温度制御手段-
 シリンダー10の周囲には、温度制御手段30が設けられている。図1に示す押出機100では、原料供給口12から押出機出口14に向けて長手方向に9つに分割された加熱/冷却装置C1~C9が温度制御手段30を構成している。このようにシリンダー10の周囲に分割して配置された加熱/冷却装置C1~C9によって、例えば加熱溶融部C1~C7と冷却部C8,C9の各領域(ゾーン)に区画し、シリンダー10内を領域ごとに所望の温度に制御することができる。
-Temperature control means-
A temperature control means 30 is provided around the cylinder 10. In the extruder 100 shown in FIG. 1, heating / cooling devices C1 to C9 divided into nine pieces in the longitudinal direction from the raw material supply port 12 to the extruder outlet 14 constitute the temperature control means 30. Thus, the heating / cooling devices C1 to C9 arranged separately around the cylinder 10 are divided into, for example, heating / melting parts C1 to C7 and cooling parts C8 and C9. Each region can be controlled to a desired temperature.
 加熱は、通常バンドヒーターまたはシーズ線アルミ鋳込みヒーターが用いられるが、これらに限定されず、例えば熱媒循環加熱方法も用いることができる。一方、冷却はブロワーによる空冷が一般的であるが、シリンダー10の周囲に巻き付けたパイプ(通水路)に水または油を流す方法もある。 The heating is usually performed using a band heater or a sheathed wire aluminum cast heater, but is not limited thereto, and for example, a heating medium circulating heating method can also be used. On the other hand, air cooling by a blower is generally used for cooling, but there is also a method of flowing water or oil through a pipe (water passage) wound around the cylinder 10.
-ダイ-
 シリンダー10の押出機出口14の先には、押出機出口14から押出された溶融樹脂をフィルム状(帯状)に吐出するためのダイ40が設けられている。また、シリンダー10の押出機出口14とダイ40との間には、フィルムに未溶融樹脂や異物が混入することを防ぐためのフィルタ42が設けられている。
-Die-
A die 40 for discharging the molten resin extruded from the extruder outlet 14 into a film shape (band shape) is provided at the tip of the extruder outlet 14 of the cylinder 10. Further, a filter 42 is provided between the extruder outlet 14 of the cylinder 10 and the die 40 to prevent unmelted resin and foreign matter from entering the film.
-ギアポンプ-
 厚み精度を向上させるためには、押出量の変動を極力減少させることが重要である。押出量の変動を極力減少させるために押出機100とダイ40との間にギアポンプ44を設けてもよい。ギアポンプ44から一定量の樹脂を供給することにより、厚み精度を向上させることができる。特に、二軸スクリュ押出機を用いる場合には、押出機自身の昇圧能力が低いため、ギアポンプ44による押出安定化を図ることが好ましい。
-Gear pump-
In order to improve the thickness accuracy, it is important to reduce the fluctuation of the extrusion amount as much as possible. A gear pump 44 may be provided between the extruder 100 and the die 40 in order to reduce the variation in the extrusion amount as much as possible. By supplying a certain amount of resin from the gear pump 44, the thickness accuracy can be improved. In particular, when using a twin screw extruder, it is preferable to stabilize the extrusion by the gear pump 44 because the pressurization capacity of the extruder itself is low.
 ギアポンプ44を用いることにより、ギアポンプ44の2次側の圧力変動を1次側の1/5以下にすることも可能であり、樹脂圧力変動幅を±1%以内にできる。その他のメリットとしては、スクリュ先端部の圧力を上げることなしにフィルタによる濾過が可能なことから、樹脂温度の上昇の防止、輸送効率の向上、及び押出機内での滞留時間の短縮が期待できる。また、フィルタの濾圧上昇が原因で、スクリュから供給される樹脂量が経時変動することも防止できる。ただし、ギアポンプ44を設置すると、設備の選定方法によっては設備の長さが長くなり、樹脂の滞留時間が長くなることと、ギアポンプ部のせん断応力によって分子鎖の切断を引き起こすことがあり注意が必要である。 By using the gear pump 44, the pressure fluctuation on the secondary side of the gear pump 44 can be reduced to 1/5 or less on the primary side, and the resin pressure fluctuation width can be within ± 1%. As other merits, it is possible to perform filtration with a filter without increasing the pressure at the tip of the screw, so that prevention of an increase in the resin temperature, improvement in transport efficiency, and shortening of the residence time in the extruder can be expected. It is also possible to prevent the amount of resin supplied from the screw from fluctuating with time due to the increase in the filtration pressure of the filter. However, when the gear pump 44 is installed, the length of the equipment becomes longer depending on the equipment selection method, and the residence time of the resin becomes longer, and the shearing stress of the gear pump section may cause the molecular chain to be broken. It is.
 ギアポンプ44は1次圧力(入圧)と2次圧力(出圧)の差を大きくし過ぎると、ギアポンプ44の負荷が大きくなり、せん断発熱が大きくなる。そのため、運転時の差圧は20MPa以内、好ましくは15MPa、更に好ましくは10MPa以内とする。また、フィルム厚みの均一化のために、ギアポンプ44の一次圧力を一定にするために、押出機のスクリュ回転を制御したり、圧力調節弁を用いたりすることも有効である。 If the difference between the primary pressure (input pressure) and the secondary pressure (output pressure) of the gear pump 44 is excessively increased, the load on the gear pump 44 increases and shear heat generation increases. Therefore, the differential pressure during operation is set to 20 MPa or less, preferably 15 MPa, and more preferably 10 MPa or less. In order to make the film thickness uniform, it is also effective to control the screw rotation of the extruder or to use a pressure control valve in order to keep the primary pressure of the gear pump 44 constant.
-原料樹脂-
 原料樹脂は、最終的に要求されるポリエステルフィルムに求められる物性等を考慮して選択すればよいが、例えば、極限粘度IVが0.5~0.9であるポリエステル樹脂を用いることが好ましく、IVが0.6~0.8であるポリエステル樹脂を用いることがより好ましい。ポリエステル樹脂の押出し工程では、発熱し易く、末端COOHが増加し易いが、上記のような低IVのポリエステル樹脂を用いれば、加熱溶融部において原料樹脂を十分混練して溶融させることができるとともに、冷却部において過剰な加熱を抑制し、末端COOHの増加を効果的に抑制することができる。特にIVが0.6以上であれば 末端COOHが十分に少ないフィルムを得ることが可能であり、0.8以下であれば 過剰な発熱を抑制することが可能である。
 原料樹脂のIVは、重合方式および重合条件によって調整することができる。具体的には、液相重合の後に固相重合を行う際、処理温度、処理時間、処理雰囲気水分、酸素濃度の調節によって極限粘度IVが0.6~0.8のポリエステル樹脂を得ることができる。
 尚、極限粘度(IV)は、溶液粘度(η)と溶媒粘度(η0)の比ηr(=η/η0;相対粘度)から1を引いた比粘度(ηsp=ηr-1)を濃度で割った値を濃度がゼロの状態に外挿した値である。IVは、ウベローデ型粘度計を用い、ポリエステルを1,1,2,2-テトラクロルエタン/フェノール(=2/3[質量比])混合溶媒に溶解させ、25℃の溶液粘度から求めた。
-Raw resin-
The raw material resin may be selected in consideration of the physical properties required for the finally required polyester film. For example, it is preferable to use a polyester resin having an intrinsic viscosity IV of 0.5 to 0.9. It is more preferable to use a polyester resin having an IV of 0.6 to 0.8. In the extrusion process of the polyester resin, it is easy to generate heat and the terminal COOH tends to increase, but if the low IV polyester resin as described above is used, the raw resin can be sufficiently kneaded and melted in the heating and melting part, Excessive heating can be suppressed in the cooling section, and an increase in terminal COOH can be effectively suppressed. In particular, if IV is 0.6 or more, it is possible to obtain a film having a sufficiently small terminal COOH, and if it is 0.8 or less, excessive heat generation can be suppressed.
The IV of the raw material resin can be adjusted by the polymerization method and polymerization conditions. Specifically, when solid phase polymerization is performed after liquid phase polymerization, a polyester resin having an intrinsic viscosity IV of 0.6 to 0.8 can be obtained by adjusting the processing temperature, processing time, processing atmosphere moisture, and oxygen concentration. it can.
The intrinsic viscosity (IV) is a specific viscosity (η sp = η r −1) obtained by subtracting 1 from the ratio η r (= η / η 0 ; relative viscosity) of the solution viscosity (η) and the solvent viscosity (η 0 ). ) Divided by the density is extrapolated to a density zero state. IV was obtained from a solution viscosity at 25 ° C. by using a Ubbelohde viscometer, dissolving polyester in a 1,1,2,2-tetrachloroethane / phenol (= 2/3 [mass ratio]) mixed solvent.
 また、原料樹脂は、末端COOH量(AV)が20eq/t(当量/トン)以下であることが好ましく、15eq/t以下がより好ましい。末端COOH量が少ない原料樹脂を用いれば、より高い耐加水分解性を有するポリエステルフィルムが得られる。ただし、例えば被着物との間の密着性が得られる観点から、原料樹脂の末端COOH量は2eq/t以上であることが望ましい。なお、本明細書中において、「当量/トン(eq/t)」は1トンあたりのモル当量を表す。 Further, the raw material resin preferably has a terminal COOH amount (AV) of 20 eq / t (equivalent / ton) or less, and more preferably 15 eq / t or less. If a raw material resin having a small amount of terminal COOH is used, a polyester film having higher hydrolysis resistance can be obtained. However, for example, from the viewpoint of obtaining adhesion with the adherend, the amount of terminal COOH of the raw material resin is desirably 2 eq / t or more. In the present specification, “equivalent / ton (eq / t)” represents a molar equivalent per ton.
 末端COOH量は、以下の方法により測定される値である。すなわち、原料樹脂0.1gをベンジルアルコール10mlに溶解後、さらにクロロホルムを加えて混合溶液を得、これにフェノールレッド指示薬を滴下する。この溶液を、基準液(0.01N KOH-ベンジルアルコール混合溶液)で滴定し、滴下量から末端カルボキシル基量を求める。 The amount of terminal COOH is a value measured by the following method. That is, after dissolving 0.1 g of the raw material resin in 10 ml of benzyl alcohol, chloroform is further added to obtain a mixed solution, and phenol red indicator is added dropwise thereto. This solution is titrated with a standard solution (0.01 N KOH-benzyl alcohol mixed solution), and the amount of terminal carboxyl groups is determined from the amount added.
 なお、複数の種類の樹脂を混合して用いる場合は、前記原料樹脂の末端COOH量は、混合状態での量を表す。例えば、ポリエチレンテレフタレート(PET)として、そのペレットの1種又は2種以上やPETフィルムの粉砕屑であるフラフなどを混合する場合、ペレットの末端COOH量の総量、又はペレットの末端COOH量とフラフの末端COOH量との合計量である。 In addition, when mixing and using several types of resin, the amount of terminal COOH of the said raw material resin represents the quantity in a mixed state. For example, when polyethylene terephthalate (PET) is mixed with one or more of the pellets or fluff which is a pulverized waste of PET film, the total amount of terminal COOH in the pellet, or the amount of terminal COOH in the pellet and the fluff It is the total amount with the amount of terminal COOH.
 また、原料樹脂の融点Tmは、250℃~260℃の範囲であることが好ましい。前記融点Tmは示差走査熱量測定により求められる値である。複数の樹脂の混合であるときは融点の平均値が上記範囲内にあることが好ましい。 The melting point Tm of the raw material resin is preferably in the range of 250 ° C. to 260 ° C. The melting point Tm is a value obtained by differential scanning calorimetry. When mixing a plurality of resins, it is preferable that the average melting point is within the above range.
 原料樹脂の嵩比重としては、0.6~0.8の範囲が好ましい。この嵩比重が0.6以上であると、押出しをより安定的に行なうことができる。嵩比重が0.8以下であると、局所的な発熱を効果的に抑制することができる。
 原料樹脂の嵩比重とは、粉末を一定容積の容器の中に一定状態で入れる等して、所定形状にした粉末の質量を、そのときの体積で除算して求められる比重(単位体積あたりの質量)をいい、嵩比重が小さいほど嵩張る。
 上記の中でも、押出時の発熱の抑制により末端COOHの増加をより抑える点で、原料樹脂の嵩比重は0.7~0.75の範囲が特に好ましい。
The bulk specific gravity of the raw material resin is preferably in the range of 0.6 to 0.8. When the bulk specific gravity is 0.6 or more, extrusion can be performed more stably. When the bulk specific gravity is 0.8 or less, local heat generation can be effectively suppressed.
The bulk specific gravity of the raw material resin refers to the specific gravity (per unit volume) obtained by dividing the mass of the powder into a predetermined shape by dividing the powder into a predetermined volume in a constant volume container. Mass), the smaller the bulk specific gravity, the larger the bulk.
Among these, the bulk specific gravity of the raw material resin is particularly preferably in the range of 0.7 to 0.75 from the viewpoint that the increase in terminal COOH is further suppressed by suppressing heat generation during extrusion.
 原料樹脂を構成するポリエステル樹脂としては、ジカルボン酸又はそのエステル誘導体と、ジオール化合物とを公知の方法でエステル化反応及び/又はエステル交換反応させることによって得ることができる。
 前記ジカルボン酸又はそのエステル誘導体としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸、ダイマー酸、エイコサンジオン酸、ピメリン酸、アゼライン酸、メチルマロン酸、エチルマロン酸等の脂肪族ジカルボン酸類、アダマンタンジカルボン酸、ノルボルネンジカルボン酸、シクロヘキサンジカルボン酸、デカリンジカルボン酸、などの脂環族ジカルボン酸、テレフタル酸、イソフタル酸、フタル酸、1,4-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,6-ナフタレンジカルボン酸、1,8-ナフタレンジカルボン酸、4,4’-ジフェニルジカルボン酸、4,4’-ジフェニルエーテルジカルボン酸、5-ナトリウムスルホイソフタル酸、フェニルインダンジカルボン酸、アントラセンジカルボン酸、フェナントレンジカルボン、9,9’-ビス(4-カルボキシフェニル)フルオレン酸等の芳香族ジカルボン酸などのジカルボン酸又はそのエステル誘導体が挙げられる。
The polyester resin constituting the raw material resin can be obtained by subjecting dicarboxylic acid or an ester derivative thereof and a diol compound to an esterification reaction and / or an ester exchange reaction by a known method.
Examples of the dicarboxylic acid or ester derivative thereof include malonic acid, succinic acid, glutaric acid, adipic acid, suberic acid, sebacic acid, dodecanedioic acid, dimer acid, eicosandioic acid, pimelic acid, azelaic acid, methylmalon. Aliphatic dicarboxylic acids such as acids, ethylmalonic acids, alicyclic dicarboxylic acids such as adamantane dicarboxylic acid, norbornene dicarboxylic acid, cyclohexane dicarboxylic acid, decalin dicarboxylic acid, terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalene Dicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,8-naphthalenedicarboxylic acid, 4,4′-diphenyldicarboxylic acid, 4,4′-diphenyletherdicarboxylic acid, 5-sodium sulfoisophthalate Acid, phenyl Emissions boys carboxylic acid, anthracene dicarboxylic acid, phenanthrene carboxylic, 9,9'-bis (4-carboxyphenyl) a dicarboxylic acid or an ester derivative such as an aromatic dicarboxylic acid such as fluorene acid.
 前記ジオール化合物としては、例えば、エチレングリコール、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、1,2-ブタンジオール、1,3-ブタンジオール等の脂肪族ジオール類、シクロヘキサンジメタノール、スピログリコール、イソソルビドなどの脂環式ジオール類、ビスフェノールA、1,3―ベンゼンジメタノール,1,4-ベンセンジメタノール、9,9’-ビス(4-ヒドロキシフェニル)フルオレン、などの芳香族ジオール類等が挙げられる。 Examples of the diol compound include aliphatic diols such as ethylene glycol, 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, 1,2-butanediol, and 1,3-butanediol. , Cycloaliphatic diols such as cyclohexanedimethanol, spiroglycol, isosorbide, bisphenol A, 1,3-benzenedimethanol, 1,4-benzendimethanol, 9,9'-bis (4-hydroxyphenyl) fluorene And aromatic diols such as.
 エステル化反応及び/又はエステル交換反応には、従来から公知の反応触媒を用いることができる。反応触媒としては、アルカリ金属化合物、アルカリ土類金属化合物、亜鉛化合物、鉛化合物、マンガン化合物、コバルト化合物、アルミニウム化合物、アンチモン化合物、チタン化合物、リン化合物などが挙げられる。通常は、ポリエステルの製造方法が完結する以前の任意の段階において、重合触媒としてアンチモン化合物、ゲルマニウム化合物、チタン化合物を添加することが好ましい。このような方法としては、例えば、ゲルマニウム化合物を例に挙げると、ゲルマニウム化合物粉体をそのまま添加することが好ましい。 A conventionally known reaction catalyst can be used for the esterification reaction and / or transesterification reaction. Examples of the reaction catalyst include alkali metal compounds, alkaline earth metal compounds, zinc compounds, lead compounds, manganese compounds, cobalt compounds, aluminum compounds, antimony compounds, titanium compounds, and phosphorus compounds. Usually, it is preferable to add an antimony compound, a germanium compound, or a titanium compound as a polymerization catalyst at an arbitrary stage before the polyester production method is completed. As such a method, for example, when a germanium compound is taken as an example, it is preferable to add the germanium compound powder as it is.
 好ましいポリエステルは、ポリエチレンテレフタレート(PET)、ポリエチレン-2,6-ナフタレート(PEN)であり、より好ましくはPETである。PETは、ゲルマニウム(Ge)系触媒、アンチモン(Sb)系触媒、アルミニウム(Al)系触媒、及びチタン(Ti)系触媒から選ばれる1種又は2種以上を用いて重合されるものが好ましく、より好ましくはTi系触媒である。 Preferred polyesters are polyethylene terephthalate (PET) and polyethylene-2,6-naphthalate (PEN), more preferably PET. PET is preferably polymerized using one or more selected from a germanium (Ge) -based catalyst, an antimony (Sb) -based catalyst, an aluminum (Al) -based catalyst, and a titanium (Ti) -based catalyst. More preferred is a Ti-based catalyst.
 前記Ti系触媒は、反応活性が高く、重合温度を低くすることができる。そのため、特に重合反応中にPETが熱分解し、COOHが発生するのを抑制することが可能である。本発明においては、ポリエステルフィルムの末端COOH量を30eq/トン以下の範囲に調整するのに好適である。 The Ti catalyst has a high reaction activity and can lower the polymerization temperature. Therefore, it is possible to suppress the thermal decomposition of PET and the generation of COOH particularly during the polymerization reaction. In the present invention, it is suitable for adjusting the terminal COOH amount of the polyester film to a range of 30 eq / ton or less.
 Ti系触媒を用いた重合により得たTi触媒系PETの製造には、例えば、特開2005-340616号公報、特開2005-239940号公報、特開2004-319444号公報、特許3436268号公報、特許3979866号公報、特許3780137号公報、特開2007-204538号公報等に記載の重合方法を用いることができる。 For the production of Ti catalyst-based PET obtained by polymerization using a Ti-based catalyst, for example, JP 2005-340616 A, JP 2005-239940 A, JP 2004-319444 A, Patent 3436268, The polymerization methods described in Japanese Patent No. 3978666, Japanese Patent No. 3780137, Japanese Patent Application Laid-Open No. 2007-204538, and the like can be used.
 チタン(Ti)系化合物を、1ppm以上30ppm以下、より好ましくは2ppm以上20ppm以下、さらに好ましくは3ppm以上15ppm以下の範囲で用いて重合を行なうことが好ましい。この場合、本発明の方法によって製造されるポリエステルフィルムには、1ppm以上30ppm以下のチタンが含まれる。
 Ti系触媒の量は、1ppm以上であると好ましいIVが得られ、30ppm以下であると、末端COOHを低く抑えることができ、耐加水分解性の向上に有利である。
Polymerization is preferably performed using a titanium (Ti) -based compound in the range of 1 ppm to 30 ppm, more preferably 2 ppm to 20 ppm, and even more preferably 3 ppm to 15 ppm. In this case, the polyester film produced by the method of the present invention contains 1 ppm or more and 30 ppm or less of titanium.
When the amount of the Ti-based catalyst is 1 ppm or more, preferable IV is obtained, and when it is 30 ppm or less, the terminal COOH can be kept low, which is advantageous in improving the hydrolysis resistance.
 また、原料樹脂の形態としては、ペレット、フラフ、それらの混合物などを用いることができ、フラフの質量比率を60%以下にしてペレットと混合したものが好ましい。このようにペレットとフラフを混ぜ合わせたものを用いることで、原料樹脂の溶融の仕方や熱履歴を調整することができる。フラフは、例えば不要となったフィルムを粉砕して小片(いわゆるチップ)や屑片等にした粉砕物であり、フラフ比率を高めることは、リサイクル比率が高く、原料のコストダウンが可能である。一方で、フラフ比率増加は嵩高さを与え、嵩比重を例えばペレットのみの場合よりも低下させることができる。フラフを得るための樹脂フィルムとしては、ポリエステルフィルムが好適であり、原料樹脂中のポリエステル樹脂と同種のポリエステルのフィルムが好ましい。フラフの割合を60質量%以下にすることで、得られるポリエステルフィルムの末端COOH量の変動幅を低く抑えることができる。中でも、同様の理由から、フラフの質量比率は10~40%がより好ましく、20~30%が特に好ましい。 Also, as the form of the raw material resin, pellets, fluffs, mixtures thereof and the like can be used, and those in which the mass ratio of the fluff is 60% or less and mixed with the pellets are preferable. By using a mixture of pellets and fluffs in this way, the melting method and heat history of the raw resin can be adjusted. The fluff is, for example, a pulverized product obtained by pulverizing a film that is no longer needed into small pieces (so-called chips) or scrap pieces. Increasing the fluff ratio has a high recycle ratio and can reduce the cost of raw materials. On the other hand, an increase in the fluff ratio gives a bulkiness, and the bulk specific gravity can be lowered as compared with, for example, a pellet alone. As the resin film for obtaining the fluff, a polyester film is preferable, and a polyester film of the same type as the polyester resin in the raw resin is preferable. By setting the fluff ratio to 60% by mass or less, the fluctuation range of the terminal COOH amount of the obtained polyester film can be kept low. Among these, for the same reason, the mass ratio of the fluff is more preferably 10 to 40%, and particularly preferably 20 to 30%.
 フラフのサイズとしては、嵩変化が与えられる範囲であれば制限はないが、フラフの厚みが20~5000μmであるものが好ましい。中でも、嵩比重が小さくなり過ぎて充満率が低下しすぎないようにし、溶融不足を回避する観点から、フラフの厚みが100~1000μmの範囲、更には100~500μmの範囲がより好ましい。 The fluff size is not limited as long as the bulk change is given, but a fluff thickness of 20 to 5000 μm is preferable. In particular, the fluff thickness is preferably in the range of 100 to 1000 μm, more preferably in the range of 100 to 500 μm, from the viewpoint of preventing the bulk density from becoming too small and reducing the filling rate too much and avoiding insufficient melting.
 また、製膜されるポリエステルフィルムの末端COOH量をより低減する点で、フラフのサイズのばらつきは小さい方が好ましく、例えばフラフの厚みのばらつきは±100%以内であることが好ましく、より好ましくは±50%以内であり、更には±10%以内である。フラフを用いる場合、厚みなどサイズばらつきを小さく抑えることで、得られるポリエステルフィルムの末端COOH量の変動を低く抑えることができる。 Further, in terms of further reducing the amount of terminal COOH of the polyester film to be formed, it is preferable that the variation in the size of the fluff is smaller, for example, the variation in the thickness of the fluff is preferably within ± 100%, more preferably It is within ± 50%, and further within ± 10%. In the case of using a fluff, variation in the terminal COOH amount of the obtained polyester film can be suppressed low by suppressing size variation such as thickness.
 フラフの嵩比重としては、原料樹脂の嵩比重が前記範囲を満たす範囲において、0.3~0.7の範囲であることが好ましい。嵩比重は、既述の原料樹脂の嵩比重と同義であり、既述の方法と同様にして測定される。 The bulk specific gravity of the fluff is preferably in the range of 0.3 to 0.7 as long as the bulk specific gravity of the raw material resin satisfies the above range. The bulk specific gravity is synonymous with the bulk specific gravity of the raw material resin described above, and is measured in the same manner as described above.
‐加熱溶融‐
 温度制御手段30によりシリンダー10を加熱するとともにスクリュを回転させ、供給口12からポリエステル樹脂の原料(原料樹脂)を供給する。なお、供給口12は、原料樹脂のペレット等が加熱されて融着しないようにすることと、モータなどのスクリュ駆動設備を保護するため、伝熱防止として冷却することが好ましい。
-Heating and melting-
The cylinder 10 is heated by the temperature control means 30 and the screw is rotated to supply the polyester resin raw material (raw material resin) from the supply port 12. The supply port 12 is preferably cooled to prevent heat transfer of the raw material resin pellets and the like, and to protect the screw drive equipment such as the motor.
 シリンダー内に供給された原料樹脂は、温度制御手段30による加熱のほか、スクリュ20A,20Bの回転に伴う樹脂同士の摩擦、樹脂とスクリュ20A,20Bやシリンダー10との摩擦などによる発熱によって溶融されるとともに、スクリュの回転に伴って押出機出口14に向けて徐々に移動する。
 シリンダー内に供給された原料樹脂は融点Tm(℃)以上の温度に加熱されるが、樹脂温度が低過ぎると溶融押出時の溶融が不足し、ダイ40からの吐出が困難になるおそれがあり、樹脂温度が高過ぎると熱分解によって末端COOHが著しく増加して耐加水分解性の低下を招くおそれがある。
 本発明では、温度制御手段30による加熱温度及びスクリュ20A,20Bの回転数を調整することにより、押出機内の樹脂温度が押出機の上流端から押出機全長の40%~80%の位置に295~320℃の最大値を有し、かつ、押出機出口の樹脂温度が275℃~285℃となるように溶融押出しを行う。なお、押出機の上流端とは、スクリュの溝がある根元の位置を意味する。
The raw material resin supplied into the cylinder is melted not only by heating by the temperature control means 30, but also by heat generated by friction between the resins accompanying rotation of the screws 20A and 20B, friction between the resin and the screws 20A and 20B and the cylinder 10, and the like. And gradually moves toward the extruder outlet 14 as the screw rotates.
The raw material resin supplied into the cylinder is heated to a temperature equal to or higher than the melting point Tm (° C.). However, if the resin temperature is too low, melting during melt extrusion may be insufficient and ejection from the die 40 may be difficult. If the resin temperature is too high, the terminal COOH may be remarkably increased due to thermal decomposition, leading to a decrease in hydrolysis resistance.
In the present invention, by adjusting the heating temperature by the temperature control means 30 and the number of rotations of the screws 20A and 20B, the resin temperature in the extruder is 295 at a position of 40% to 80% of the total length of the extruder from the upstream end of the extruder. Melt extrusion is performed so that the resin temperature at the extruder exit is 275 ° C. to 285 ° C., with a maximum value of ˜320 ° C. The upstream end of the extruder means the root position where the screw groove is located.
 二軸押出機内の樹脂温度の最大値が295℃未満であると、溶融樹脂の一部が固化して未溶融樹脂が発生し、320℃を超えると末端COOHが増大して耐加水分解性が大きく低下してしまう。このような観点から、本発明では、二軸押出機内の樹脂温度の最大値は295~320℃とし、300~315℃が好ましく、305~310℃がより好ましい。 If the maximum value of the resin temperature in the twin screw extruder is less than 295 ° C., a part of the molten resin is solidified to generate an unmelted resin, and if it exceeds 320 ° C., the terminal COOH is increased and the hydrolysis resistance is increased. It will drop greatly. From such a viewpoint, in the present invention, the maximum value of the resin temperature in the twin screw extruder is 295 to 320 ° C., preferably 300 to 315 ° C., and more preferably 305 to 310 ° C.
 また、二軸押出機内の樹脂温度の最大値が押出機の上流端から押出機全長の40%未満の位置にあると、発熱が大きくなり、出口樹脂温度を十分に低くすることが困難となり、80%を超える位置にあると、冷却による樹脂冷却効果が不十分となる。このような観点から、本発明では、二軸押出機内の樹脂温度の最大値は、押出機の上流端から押出機全長の40%~80%の位置とし、押出機全長の45%~70%の位置にあることが好ましく、50%~60%の位置にあることがより好ましい。 Also, if the maximum value of the resin temperature in the twin screw extruder is at a position less than 40% of the total length of the extruder from the upstream end of the extruder, the heat generation becomes large and it becomes difficult to sufficiently reduce the outlet resin temperature. If it is at a position exceeding 80%, the resin cooling effect due to cooling becomes insufficient. From this point of view, in the present invention, the maximum value of the resin temperature in the twin-screw extruder is 40% to 80% of the total length of the extruder from the upstream end of the extruder, and 45% to 70% of the total length of the extruder. The position is preferably at a position of 50% to 60%.
 一方、二軸押出機出口の樹脂温度については、従来の一般的な溶融押出しでは、通常、300℃程度で押出されるが、本発明では275℃~285℃となるように制御する。押出機出口の樹脂温度が275℃未満では未溶融異物が発生し、285℃を超えると末端COOHが増大して耐加水分解性が大きく低下してしまう。このような観点から、本発明では、押出機出口の樹脂温度は275℃~285℃とし、278~283℃が好ましく、280~282℃がより好ましい。 On the other hand, the resin temperature at the exit of the twin-screw extruder is usually extruded at about 300 ° C. in the conventional general melt extrusion, but is controlled to be 275 ° C. to 285 ° C. in the present invention. If the resin temperature at the exit of the extruder is less than 275 ° C., unmelted foreign matter is generated, and if it exceeds 285 ° C., the terminal COOH increases and the hydrolysis resistance is greatly reduced. From such a viewpoint, in the present invention, the resin temperature at the exit of the extruder is 275 to 285 ° C., preferably 278 to 283 ° C., more preferably 280 to 282 ° C.
 押出機出口の樹脂温度を275℃~285℃の範囲に制御する手段としては、空冷してもよいが、シリンダーの出口の温度を液体の熱媒によって制御することが好ましい。例えば、シリンダーの出口付近に配置されている加熱/冷却装置C9において、シリンダーを囲むように通水路を設け、通水路内に水等の液体を通すことで押出機出口の樹脂温度を効率的に低下させ、精度良く制御することができる。 As a means for controlling the resin temperature at the exit of the extruder within the range of 275 ° C. to 285 ° C., air cooling may be used, but it is preferable to control the temperature at the exit of the cylinder with a liquid heat medium. For example, in the heating / cooling device C9 arranged near the outlet of the cylinder, a water passage is provided so as to surround the cylinder, and a liquid such as water is passed through the water passage so that the resin temperature at the outlet of the extruder is efficiently increased. It can be lowered and controlled accurately.
 押出機内の樹脂温度が最大値となる位置よりも下流側のシリンダーの少なくとも一部の部分の温度は、ポリエステル樹脂の融点未満であることが好ましい。前記押出機内の樹脂温度が最大値となる位置よりも下流側のシリンダーの少なくとも一部の部分の温度をポリエステル樹脂の融点未満に制御すれば、押出機出口の樹脂を効率的に冷却して樹脂温度を275℃~285℃に制御することができる。ただし、シリンダー温度が低すぎると、溶融樹脂の固化を招くおそれがあるため、押出機出口側の前記押出機内の樹脂温度が最大値となる位置よりも下流側のシリンダーの温度は、(ポリエステル樹脂の融点-150℃)以上とすることが好ましく、(ポリエステル樹脂の融点-100℃)以上とすることがより好ましい。 It is preferable that the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is lower than the melting point of the polyester resin. If the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is controlled to be less than the melting point of the polyester resin, the resin at the exit of the extruder is efficiently cooled and the resin The temperature can be controlled between 275 ° C. and 285 ° C. However, if the cylinder temperature is too low, the molten resin may be solidified. Therefore, the temperature of the cylinder on the downstream side of the position where the resin temperature in the extruder on the outlet side of the extruder becomes the maximum value is (polyester resin). The melting point of the polyester resin is preferably −150 ° C.) or more, more preferably (the melting point of the polyester resin−100 ° C.) or more.
 スクリュの仕事は摩擦熱として樹脂に伝わり、樹脂温度に大きく関わる。本発明では、押出量(kg/h)をQ、ポリエステル樹脂の熱容量(J/kgK)をCpとしたときに、ポリエステル樹脂の熱交換量Epolyに対して、下記の関係式(1)を満たすことが好ましい。
 Epoly+20QCp<Esp<Epoly+50QCp       (1)
 なお、ポリエステル樹脂に対する押出機の比動力は、スクリュの仕事量として、スクリュ電流、電圧から算出することができる。
 また、ポリエステル樹脂の熱交換量Epoly(J/s)は下記式により算出される。
 Epoly=QCp(Tout-Tin)+QE
(Q:樹脂の吐出量(kg/s)、Cp:樹脂の熱容量(J/kg℃)、Tout:押出機出口樹脂温度(℃)、Tin:原料温度(℃)、E:融解潜熱(J/kg))
The work of the screw is transferred to the resin as frictional heat and is greatly related to the resin temperature. In the present invention, when the extrusion amount (kg / h) is Q and the heat capacity (J / kgK) of the polyester resin is Cp, the following relational expression (1) is satisfied with respect to the heat exchange amount Epoly of the polyester resin. It is preferable.
Epoly + 20QCp <Esp <Epoly + 50QCp (1)
In addition, the specific power of the extruder with respect to the polyester resin can be calculated from the screw current and the voltage as the work amount of the screw.
The heat exchange amount Epoly (J / s) of the polyester resin is calculated by the following formula.
Epoly = QCp (Tout−Tin) + QE
(Q: resin discharge rate (kg / s), Cp: resin heat capacity (J / kg ° C.), Tout: extruder exit resin temperature (° C.), Tin: raw material temperature (° C.), E: latent heat of fusion (J / Kg))
 なお、理論上はポリエステル樹脂の熱交換量Epolyを与えることで溶融することになるが、未溶融樹脂の残存及び溶融樹脂の固化を確実に抑制しつつ、末端COOHの増加を確実に抑制する観点から、ポリエステル樹脂の熱交換量に熱量(仕事量)を一定の範囲で上乗せすることが好ましい。
 ポリエステル樹脂に対する押出機の比動力Espが(Epoly+20QCp)よりも大きければ、未溶融樹脂の残存及び溶融樹脂の固化を抑制することができ、一方、(Epoly+50QCp)よりも小さければ末端COOHの増加を抑制することができる。このよう観点から、ポリエステル樹脂に対する押出機の比動力Espは下記式(2)の関係を満たすことがより好ましく、式(3)の関係を満たすことがさらに好ましい。
 Epoly+25QCp<Esp<Epoly+40QCp    (2)
 Epoly+25QCp<Esp<Epoly+35QCp    (3)
Theoretically, the polyester resin melts by giving the heat exchange amount Epoly of the polyester resin, but the viewpoint of reliably suppressing the increase in the terminal COOH while reliably suppressing the remaining of the unmelted resin and the solidification of the molten resin. Therefore, it is preferable to add the heat amount (work amount) to the heat exchange amount of the polyester resin within a certain range.
If the specific power Esp of the extruder with respect to the polyester resin is larger than (Epoly + 20QCp), the remaining of the unmelted resin and the solidification of the molten resin can be suppressed, while if smaller than (Epoly + 50QCp), the increase in the terminal COOH is suppressed. can do. From this point of view, the specific power Esp of the extruder with respect to the polyester resin more preferably satisfies the relationship of the following formula (2), and more preferably satisfies the relationship of the formula (3).
Epoly + 25QCp <Esp <Epoly + 40QCp (2)
Epoly + 25QCp <Esp <Epoly + 35QCp (3)
 また、本発明では、ポリエステル樹脂を二軸押出機で溶融押出した後、水冷したストランドの昇温結晶化温度Tc(℃)が130<Tc<150であることが好ましい。前記のように二軸押出機内の樹脂温度と押出機出口の樹脂温度を制御して溶融押出したポリエステル樹脂を水中に入れて得たもの(ストランド)について、DSC(示差走査熱量測定)によって昇温結晶化温度Tc(℃)を測定する。未溶融樹脂が残存していればTcは低く(120℃程度)なるが、Tcが130℃より大きければ未溶融樹脂がほとんどなく、Tcが150℃未満であれば樹脂の分解を抑えて十分な耐候性を得ることが可能となる。 In the present invention, it is preferable that the temperature-induced crystallization temperature Tc (° C.) of the water-cooled strand after the polyester resin is melt-extruded with a twin-screw extruder is 130 <Tc <150. As described above, the polyester resin obtained by melting and extruding the polyester resin by controlling the resin temperature in the twin screw extruder and the resin temperature at the outlet of the extruder (strand) is heated by DSC (differential scanning calorimetry). The crystallization temperature Tc (° C.) is measured. If unmelted resin remains, Tc is low (about 120 ° C.), but if Tc is higher than 130 ° C., there is almost no unmelted resin, and if Tc is less than 150 ° C., decomposition of the resin is suppressed and sufficient. It becomes possible to obtain weather resistance.
(フィルム成形工程)
 シリンダー10の押出機出口14から押し出された樹脂をフィルタ42に通してダイ40から(例えば冷却ロールに)押し出してフィルム状に成形する。
 ダイ40からメルト(溶融樹脂)を押出した後、冷却ロールに接触させるまでの間(エアギャップ)は、湿度を5%RH~60%RHに調整することが好ましく、15%RH~50%RHに調整することがより好ましい。エアギャップでの湿度を上記範囲にすることで、フィルム表面のCOOH量やOH量を調節することが可能であり、低湿度に調節することで、フィルム表面のカルボン酸量を減少させることができる。
 フィルム厚は、2mm~8mmが好ましく、より好ましくは2.5mm~7mmであり、さらに好ましくは3mm~6mmである。フィルムの厚みを厚くすることで、押出されたメルトがガラス転移温度(Tg)以下に冷却するまでの所要時間を長くすることができる。この間に、フィルム表面のCOOH基はポリエステル内部に拡散され、表面COOH量を低減することができる。 なお、Tgはガラス転移温度を表し、JIS K7121或いはASTM D3418-82等に基づいて測定することができる。例えば。本発明では、島津製作所社製の示差走査熱量測定装置(DSC)を用いて測定する。
 具体的には、試料としてポリエステル等のポリマーを10mg秤量し、アルミパンにセットし、昇温速度10℃/minで、室温から最終温度300℃まで昇温しながら、DSC装置で、温度に対する熱量を測定したとき、DSC曲線が屈曲する温度をガラス転移温度とした。
(Film forming process)
The resin extruded from the extruder outlet 14 of the cylinder 10 is passed through the filter 42 and extruded from the die 40 (for example, to a cooling roll) to be formed into a film.
It is preferable that the humidity is adjusted to 5% RH to 60% RH after the melt (molten resin) is extruded from the die 40 until it contacts the cooling roll (air gap), and 15% RH to 50% RH. It is more preferable to adjust to. By adjusting the humidity in the air gap to the above range, it is possible to adjust the amount of COOH and OH on the film surface, and by adjusting to low humidity, the amount of carboxylic acid on the film surface can be reduced. .
The film thickness is preferably 2 mm to 8 mm, more preferably 2.5 mm to 7 mm, and still more preferably 3 mm to 6 mm. By increasing the thickness of the film, the time required for the extruded melt to cool below the glass transition temperature (Tg) can be lengthened. During this time, COOH groups on the film surface are diffused into the polyester, and the amount of surface COOH can be reduced. Tg represents a glass transition temperature and can be measured based on JIS K7121 or ASTM D3418-82. For example. In the present invention, measurement is performed using a differential scanning calorimeter (DSC) manufactured by Shimadzu Corporation.
Specifically, 10 mg of a polymer such as polyester is weighed as a sample, set in an aluminum pan, and heated at a rate of temperature increase of 10 ° C./min from room temperature to a final temperature of 300 ° C., with a DSC apparatus, the amount of heat with respect to temperature. Was measured as the glass transition temperature.
 また、得られたフィルム状のポリエステル樹脂は、その後延伸工程において、二軸延伸を行うことで所望の厚みを有するポリエステルフィルムとすることができる。
 尚、本発明の方法により製造されるポリエステルフィルム中のポリエステルの末端COOH量は、2eq/t~20eq/tの範囲内であることが好ましく、2eq/t~15eq/tの範囲内であることがより好ましい。
Moreover, the obtained film-like polyester resin can be made into the polyester film which has desired thickness by performing biaxial stretching in a extending process after that.
The amount of terminal COOH in the polyester film produced by the method of the present invention is preferably in the range of 2 eq / t to 20 eq / t, and preferably in the range of 2 eq / t to 15 eq / t. Is more preferable.
 このように本発明の方法により製造されるポリエステルフィルムは、光安定化剤、酸化防止剤などの添加剤を更に含有することができる。 Thus, the polyester film produced by the method of the present invention can further contain additives such as a light stabilizer and an antioxidant.
 光安定化剤を含有すると、紫外線劣化を防ぐことができる。光安定化剤とは、紫外線などの光線を吸収して熱エネルギーに変換する化合物、樹脂が光吸収して分解して発生したラジカルを捕捉し、分解連鎖反応を抑制する材料などが挙げられる。光安定化剤として好ましくは、紫外線などの光線を吸収して熱エネルギーに変換する化合物である。このような光安定化剤を含有することで、長期間継続的に紫外線の照射を受けても、部分放電電圧の向上効果を長期間高く保つことが可能になったり、樹脂中の紫外線による色調変化、強度劣化等が防止される。 When containing a light stabilizer, UV degradation can be prevented. Examples of the light stabilizer include a compound that absorbs light such as ultraviolet rays and converts it into heat energy, and a material that captures radicals generated by light absorption and decomposition of the resin and suppresses the decomposition chain reaction. The light stabilizer is preferably a compound that absorbs light such as ultraviolet rays and converts it into heat energy. By containing such a light stabilizer, the effect of improving the partial discharge voltage can be kept high for a long period of time even if it is irradiated with ultraviolet rays continuously for a long period of time. Change, strength deterioration, etc. are prevented.
 例えば紫外線吸収剤は、ポリエステルの他の特性が損なわれない範囲であれば、有機系紫外線吸収剤、無機系紫外線吸収剤、及びこれらの併用のいずれも、特に限定されることなく好適に用いることができる。一方、紫外線吸収剤は、耐湿熱性に優れ、樹脂中に均一分散できることが望まれる。 For example, if an ultraviolet absorber is a range in which other properties of the polyester are not impaired, any of organic ultraviolet absorbers, inorganic ultraviolet absorbers, and combinations thereof are preferably used without particular limitation. Can do. On the other hand, it is desired that the ultraviolet absorber has excellent heat and moisture resistance and can be uniformly dispersed in the resin.
 紫外線吸収剤の例としては、有機系の紫外線吸収剤として、サリチル酸系、ベンゾフェノン系、ベンゾトリアゾール系、シアノアクリレート系等の紫外線吸収剤及びヒンダードアミン系等の紫外線安定剤などが挙げられる。具体的には、例えば、サリチル酸系のp-t-ブチルフェニルサリシレート、p-オクチルフェニルサリシレート、ベンゾフェノン系の2,4-ジヒドロキシベンゾフェノン、2-ヒドロキシ-4-メトキシベンゾフェノン、2-ヒドロキシ-4-メトキシ-5-スルホベンゾフェノン、2,2’,4,4’-テトラヒドロキシベンゾフェノン、ビス(2-メトキシ-4-ヒドロキシ-5-ベンゾイルフェニル)メタン、ベンゾトリアゾール系の2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-ヒドロキシ-5’-メチルフェニル)ベンゾトリアゾール、2,2’-メチレンビス[4-(1,1,3,3-テトラメチルブチル)-6-(2Hベンゾトリアゾール-2-イル)フェノール]、シアノアクリレート系のエチル=α-シアノ-β,β-ジフェニルアクリレート、トリアジン系として2-(4,6-ジフェニル-1,3,5-トリアジン-2-イル)-5-[(ヘキシル)オキシ]-フェノール、ヒンダードアミン系のビス(2,2,6,6-テトラメチル-4-ピペリジル)セバケート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチルピペリジン重縮合物、そのほかに、ニッケルビス(オクチルフェニル)サルファイド、及び2,4-ジ・t-ブチルフェニル-3’,5’-ジ・t-ブチル-4’-ヒドロキシベンゾエート、などが挙げられる。
 これらの紫外線吸収剤のうち、繰り返し紫外線吸収に対する耐性が高いという点で、トリアジン系紫外線吸収剤がより好ましい。なお、これらの紫外線吸収剤は、上述の紫外線吸収剤単体でフィルムに添加してもよいし、有機系導電性材料や、非水溶性樹脂に紫外線吸収剤能を有するモノマーを共重合させた形態で導入してもよい。
Examples of ultraviolet absorbers include, for example, salicylic acid-based, benzophenone-based, benzotriazole-based, cyanoacrylate-based ultraviolet absorbers, hindered amine-based ultraviolet stabilizers, and the like as organic ultraviolet absorbers. Specifically, for example, salicylic acid-based pt-butylphenyl salicylate, p-octylphenyl salicylate, benzophenone-based 2,4-dihydroxybenzophenone, 2-hydroxy-4-methoxybenzophenone, 2-hydroxy-4-methoxy -5-sulfobenzophenone, 2,2 ', 4,4'-tetrahydroxybenzophenone, bis (2-methoxy-4-hydroxy-5-benzoylphenyl) methane, benzotriazole 2- (2'-hydroxy-5) '-Methylphenyl) benzotriazole, 2- (2'-hydroxy-5'-methylphenyl) benzotriazole, 2,2'-methylenebis [4- (1,1,3,3-tetramethylbutyl) -6- (2H benzotriazol-2-yl) phenol], a cyanoacrylate Ethyl = α-cyano-β, β-diphenyl acrylate, 2- (4,6-diphenyl-1,3,5-triazin-2-yl) -5-[(hexyl) oxy] -phenol, hindered amine as triazine Bis (2,2,6,6-tetramethyl-4-piperidyl) sebacate, dimethyl succinate 1- (2-hydroxyethyl) -4-hydroxy-2,2,6,6-tetramethylpiperidine heavy In addition to the condensate, nickel bis (octylphenyl) sulfide, 2,4-di-t-butylphenyl-3 ′, 5′-di-t-butyl-4′-hydroxybenzoate, and the like can be given.
Of these ultraviolet absorbers, triazine-based ultraviolet absorbers are more preferable in that they have high resistance to repeated ultraviolet absorption. In addition, these ultraviolet absorbers may be added to the above-mentioned ultraviolet absorber alone, or a form in which an organic conductive material or a water-insoluble resin is copolymerized with a monomer having an ultraviolet absorber ability. May be introduced.
 光安定化剤のポリエステルフィルム中における含有量は、ポリエステルフィルムの全質量に対して、0.1質量%以上10質量%以下が好ましく、より好ましくは0.3質量%以上7質量%以下であり、さらに好ましくは0.7質量%以上4質量%以下である。これにより、長期経時での光劣化によるポリエステルの分子量低下を抑止でき、その結果発生するフィルム内の凝集破壊に起因する密着力低下を抑止できる。 The content of the light stabilizer in the polyester film is preferably 0.1% by mass or more and 10% by mass or less, and more preferably 0.3% by mass or more and 7% by mass or less with respect to the total mass of the polyester film. More preferably, it is 0.7 mass% or more and 4 mass% or less. Thereby, the molecular weight fall of the polyester by the photodegradation over a long time can be suppressed, and the adhesive force fall resulting from the cohesive failure in the film which arises as a result can be suppressed.
 更に、本発明のポリエステルフィルムは、前記光安定化剤の他にも、例えば、易滑剤(微粒子)、着色剤、核剤(結晶化剤)、難燃化剤などを必要に応じて含有することができる。 Furthermore, the polyester film of the present invention contains, in addition to the light stabilizer, for example, a lubricant (fine particles), a colorant, a nucleating agent (crystallization agent), a flame retardant, and the like as necessary. be able to.
<用途>
 本発明の方法により製造されるポリエステルフィルムは、太陽電池部材用ポリエステルフィルム、具体的には、太陽電池発電モジュールの太陽光入射側とは反対側の裏面に配置される裏面保護シート(いわゆるバックシート)、バリアフィルム基材等の用途に好適である。
<Application>
The polyester film produced by the method of the present invention is a polyester film for solar cell members, specifically, a back surface protective sheet (so-called back sheet) disposed on the back surface opposite to the sunlight incident side of the solar cell power generation module. ), Suitable for applications such as a barrier film substrate.
 太陽電池発電モジュールの用途では、電気を取り出すリード配線で接続された発電素子(太陽電池素子)をエチレン・酢酸ビニル共重合体系(EVA系)樹脂等の封止剤で封止し、これを、ガラス等の透明基板と、本発明のポリエステルフィルム(バックシート)との間に挟んで互いに張り合わせることによって構成される態様が挙げられる。
 太陽電池素子の例としては、単結晶シリコン、多結晶シリコン、アモルファスシリコンなどのシリコン系、銅-インジウム-ガリウム-セレン、銅-インジウム-セレン、カドミウム-テルル、ガリウム-砒素などのIII-V族やII-VI族化合物半導体系など、各種公知の太陽電池素子を適用することができる。
In the application of the solar cell power generation module, the power generation element (solar cell element) connected by the lead wiring for taking out electricity is sealed with a sealing agent such as ethylene / vinyl acetate copolymer system (EVA system) resin, The aspect comprised by sticking together between transparent substrates, such as glass, and the polyester film (back sheet | seat) of this invention is mentioned.
Examples of solar cell elements include silicon-based materials such as single crystal silicon, polycrystalline silicon, and amorphous silicon, and group III-V such as copper-indium-gallium-selenium, copper-indium-selenium, cadmium-tellurium, and gallium-arsenic. Various known solar cell elements such as II-VI group compound semiconductor systems can be applied.
 以下、本発明を実施例により更に具体的に説明するが、本発明はその主旨を越えない限り、以下の実施例に限定されるものではない。 Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples as long as the gist thereof is not exceeded.
(実施例1)
‐二軸押出機‐
 押出機として、図1に示すように2箇所にベントが設けられたシリンダー内に下記構成のスクリュを備え、シリンダーの周囲には長手方向に9つのゾーンに分割して温度制御を行うことができるヒータ(温度制御手段)を備えたダブルベント式同方向回転噛合型の二軸押出機を準備した。
 スクリュ径D:65mm
 長さL[mm]/スクリュ径D[mm]:31.5(1ゾーンの幅:3.5D)
 スクリュ形状:第1ベント直前に可塑化混練部、第2ベント直前に脱気促進混練部
Example 1
-Twin screw extruder-
As shown in FIG. 1, the extruder is provided with a screw having the following configuration in a cylinder provided with vents at two locations as shown in FIG. 1, and the temperature can be controlled by dividing the cylinder into nine zones in the longitudinal direction. A double vent type co-rotating mesh type twin screw extruder equipped with a heater (temperature control means) was prepared.
Screw diameter D: 65mm
Length L [mm] / screw diameter D [mm]: 31.5 (width of one zone: 3.5D)
Screw shape: plasticization kneading section just before the first vent, degassing promotion kneading section just before the second vent
 二軸押出機の押出機出口以降には、図2に示すように、下記構成のギアポンプ、金属繊維フィルタおよびダイを接続し、ダイを加熱するヒータの設定温度は280℃とし、平均滞留時間は10分とした。
 ギアポンプ:2ギアタイプ
 フィルタ:金属繊維焼結フィルタ(孔径20μm)
 ダイ:リップ間隔4mm
After the extruder exit of the twin screw extruder, as shown in FIG. 2, a gear pump, a metal fiber filter and a die having the following constitution are connected, the set temperature of the heater for heating the die is 280 ° C., and the average residence time is 10 minutes.
Gear pump: 2-gear type Filter: Sintered metal fiber filter (pore diameter 20μm)
Die: Lip spacing 4mm
‐原料‐
 原料樹脂としては、ポリエチレンテレフタレート(融点Tm:257℃、極限粘度IV:0.78、末端COOH量:15eq/t、Cp:2300J/kgK、ヘンシェルミキサーにて160℃で結晶化)のペレットを用いた。PETペレットには、平均長径:4.5mm、平均短径:1.8mm、平均長さ:4.0mmのサイズのものを用いた。
-material-
As a raw material resin, pellets of polyethylene terephthalate (melting point Tm: 257 ° C., intrinsic viscosity IV: 0.78, terminal COOH amount: 15 eq / t, Cp: 2300 J / kgK, crystallized at 160 ° C. with a Henschel mixer) are used. It was. PET pellets having an average major axis: 4.5 mm, an average minor axis: 1.8 mm, and an average length: 4.0 mm were used.
‐溶融押出し‐
 各ゾーン(C1~C9)は以下の表1に示すように温度設定して溶融押出を行った。
 スクリュの回転数を110rpmに設定し、供給口12から原料樹脂を供給して加熱溶融し、押出量を250kg/hに設定して溶融押出を行った。
-Melt extrusion-
Each zone (C1 to C9) was melt-extruded with the temperature set as shown in Table 1 below.
The rotation speed of the screw was set to 110 rpm, the raw material resin was supplied from the supply port 12 and heated and melted, and the extrusion rate was set to 250 kg / h to perform melt extrusion.
 押出機出口から押出された溶融体(メルト)をギアポンプ、金属繊維フィルタ(孔径20μm)を通した後、ダイから冷却(チル)ロールに押出した。押出されたメルトは、静電印加法を用いて冷却ロールに密着させた。冷却ロールは、中空のチルロールを用い、この中に熱媒として水を通して温調できるようになっている。
 なお、ダイ出口から冷却ロールまでの搬送域(エアギャップ)は、この搬送域を囲い、この中に調湿空気を導入することにより、湿度を30%RHに調節してある。押出機の押出量及びダイのスリット幅の調整により、フィルム厚みを3000μmとした。
 以上のようにして、PETフィルムを得た。
The melt (melt) extruded from the extruder outlet was passed through a gear pump and a metal fiber filter (pore diameter 20 μm), and then extruded from a die to a cooling (chill) roll. The extruded melt was brought into close contact with the cooling roll using an electrostatic application method. As the cooling roll, a hollow chill roll is used, and the temperature of the cooling roll can be controlled through water as a heating medium.
The conveyance area (air gap) from the die exit to the cooling roll surrounds this conveyance area, and humidity is adjusted to 30% RH by introducing humidity-conditioned air therein. The film thickness was set to 3000 μm by adjusting the extrusion amount of the extruder and the slit width of the die.
As described above, a PET film was obtained.
-末端COOH量の測定-
 原料ペレットと得られたPETフィルムについては、0.1gの試料をベンジルアルコール10mlに溶解後、さらにクロロホルムを加えて混合溶液を得、これにフェノールレッド指示薬を滴下した。この溶液を、基準液(0.01N KOH-ベンジルアルコール混合溶液)で滴定し、フェノールレッド指示薬の色が黄色から赤色に変わる直前の基準液の滴下量から末端カルボキシル基量を求めた。原料樹脂とフィルムについてそれぞれ求めたAVの差ΔAVを求めた。結果を下記表2に示す。
-Measurement of terminal COOH amount-
About a raw material pellet and the obtained PET film, after dissolving 0.1 g sample in 10 ml of benzyl alcohol, chloroform was further added, the mixed solution was obtained, and the phenol red indicator was dripped at this. This solution was titrated with a reference solution (0.01N KOH-benzyl alcohol mixed solution), and the amount of terminal carboxyl groups was determined from the amount of the reference solution added just before the color of the phenol red indicator changed from yellow to red. AV difference ΔAV obtained for each of the raw material resin and the film was obtained. The results are shown in Table 2 below.
‐破断伸度の測定‐
 冷却ロールにより冷却されたPETフィルムを二軸延伸(3.4×3.8倍)して、二軸延伸後のフィルムの湿熱条件下(120℃×100%RH)での破断伸度が半減する時間で判定する。85時間以上で良好な耐候性(耐加水分解性)を示すものと判定する。結果を下記表2に示す。
-Measurement of elongation at break-
The PET film cooled by the cooling roll is biaxially stretched (3.4 × 3.8 times), and the breaking elongation of the biaxially stretched film under wet heat conditions (120 ° C. × 100% RH) is halved. Judge by the time to do. It is determined that good weather resistance (hydrolysis resistance) is exhibited in 85 hours or more. The results are shown in Table 2 below.
‐未溶融異物の残留評価‐
 延伸前フィルム(厚み3000μm)のヘイズを指標とした。2.0%以下であれば延伸性が良好であると評価することができる。なお、ヘイズの測定は、JIS K 7136に基づき測定した。結果を下記表2に示す。
-Residual evaluation of unmelted foreign matter-
The haze of the film before stretching (thickness 3000 μm) was used as an index. If it is 2.0% or less, it can be evaluated that the stretchability is good. In addition, the measurement of haze was measured based on JISK7136. The results are shown in Table 2 below.
(実施例2~10)
 実施例1に対し、バレル温度、冷却方法、原料IV、チップ比率などの条件を表1に示すように変更したこと以外は、実施例1と同様にしてフィルムを製造し、実施例1と同様に評価を行った。結果を下記表2に示す。
(Examples 2 to 10)
A film was produced in the same manner as in Example 1 except that the conditions such as barrel temperature, cooling method, raw material IV, and chip ratio were changed as shown in Table 1 with respect to Example 1, and the same as in Example 1. Was evaluated. The results are shown in Table 2 below.
(比較例1~5)
 実施例1に対し、バレル温度、チップ比率、原料IVなどの条件を表1に示すように変更したこと以外は、実施例1と同様にしてフィルムを製造し、実施例1と同様に評価を行った。結果を下記表2に示す。
(Comparative Examples 1 to 5)
A film was produced in the same manner as in Example 1 except that the conditions such as the barrel temperature, the chip ratio, and the raw material IV were changed as shown in Table 1 with respect to Example 1. The film was evaluated in the same manner as in Example 1. went. The results are shown in Table 2 below.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002

 
Figure JPOXMLDOC01-appb-T000002

 
 表2に示すように、実施例では、末端COOH量がいずれも20eq/t以下であり、加熱溶融による末端COOHの増加が抑制され、耐加水分解性に優れたポリエステルフィルムを得ることができた。また、実施例では、延伸前フィルムのヘイズは2.0%以下であり、未溶融異物の残存が抑制されていた。
 一方、比較例1,3、4では、末端COOH量がいずれも20eq/tを超えており、加熱溶融によって末端COOHが大きく増加することで耐加水分解性が低下し、耐久性が不足していた。
 また、比較例2、4,5では、フィルム延伸時に破断が生じ、製品に適するフィルム成形が不可能であった。
As shown in Table 2, in the examples, the amount of terminal COOH was 20 eq / t or less, the increase in terminal COOH due to heat melting was suppressed, and a polyester film excellent in hydrolysis resistance could be obtained. . Moreover, in the Example, the haze of the film before extending | stretching is 2.0% or less, and the residual of the unmelted foreign material was suppressed.
On the other hand, in Comparative Examples 1, 3, and 4, the amount of terminal COOH exceeds 20 eq / t, and hydrolysis resistance is lowered due to a large increase in terminal COOH due to heat melting, resulting in insufficient durability. It was.
In Comparative Examples 2, 4, and 5, breakage occurred during film stretching, and film formation suitable for the product was impossible.
 本発明の具体的態様の前記記述は、記述と説明の目的で提供するものである。開示された、まさにその形態に本発明を限定することを企図するものでもなく、或いは網羅的なものを企図するものでもない。明らかに、当業者が多くの修飾や変形をすることができることは自明である。該態様は、本発明の概念やその実際の応用を最もよく説明するために選定されたものであって、それによって、当業者の他者が企図する特定の用途に適合させるべく種々の態様や種々の変形をなすことができるように、当業者の他者に本発明を理解せしめるためのものである。 The above description of specific embodiments of the present invention is provided for purposes of description and explanation. It is not intended to limit the invention to the precise form disclosed, nor is it intended to be exhaustive. Obviously, many modifications and variations will be apparent to practitioners skilled in this art. The embodiments have been selected to best illustrate the concepts of the invention and their practical application, and thus various embodiments and methods to adapt them to specific applications contemplated by others skilled in the art. It is intended to allow others skilled in the art to understand the present invention so that various modifications can be made.
 2011年2月23日出願の日本特許出願第2011-037187号公報、2011年11月29日出願の日本特許出願第2011-259763号公報は、その開示全体がここに参照文献として組み込まれるものである。
  本明細書に記述された全ての刊行物や特許出願、並びに技術標準は、それら個々の刊行物や特許出願、並びに技術標準が引用文献として特別に、そして個々に組み込むことが指定されている場合には、該引用文献と同じ限定範囲においてここに組み込まれるものである。本発明の範囲は下記特許請求の範囲及びその等価物に拠って決定されることを企図するものである。
Japanese Patent Application No. 2011-037187 filed on February 23, 2011 and Japanese Patent Application No. 2011-259663 filed on November 29, 2011 are incorporated herein by reference in their entirety. is there.
All publications, patent applications, and technical standards mentioned in this specification are intended to be specifically and individually incorporated by reference as individual references, patent applications, and technical standards. Is incorporated herein to the same extent as the cited references. It is intended that the scope of the invention be determined by the following claims and their equivalents.

Claims (10)

  1.  ポリエステル樹脂を二軸押出機に供給し、該押出機内の樹脂温度が該押出機の上流端から押出機全長の40%~80%の位置に295℃~320℃の範囲の最大値を有し、かつ、該押出機出口の樹脂温度を275℃~285℃の範囲に制御して溶融押出する工程と、
     前記溶融押出したポリエステル樹脂をフィルム状に成形する工程と、
    を有するポリエステルフィルムの製造方法。
    Polyester resin is supplied to a twin screw extruder, and the resin temperature in the extruder has a maximum value in the range of 295 ° C. to 320 ° C. at a position of 40% to 80% of the total length of the extruder from the upstream end of the extruder. And a step of melt extrusion by controlling the resin temperature at the outlet of the extruder to a range of 275 ° C. to 285 ° C .;
    Forming the melt-extruded polyester resin into a film;
    The manufacturing method of the polyester film which has this.
  2.  前記押出機内の樹脂温度が最大値となる位置よりも下流側のシリンダーの少なくとも一部の部分の温度が、前記ポリエステル樹脂の融点未満である請求項1に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1, wherein the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is lower than the melting point of the polyester resin.
  3.  前記押出機内の樹脂温度が最大値となる位置よりも下流側のシリンダーの少なくとも一部の部分の温度を、液体の熱媒によって制御する請求項2に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 2, wherein the temperature of at least a part of the cylinder on the downstream side of the position where the resin temperature in the extruder reaches the maximum value is controlled by a liquid heating medium.
  4.  前記溶融押出したポリエステル樹脂をギアポンプを経て、フィルタを通過させる工程を更に有する請求項1に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1, further comprising a step of allowing the melt-extruded polyester resin to pass through a filter through a gear pump.
  5.  前記フィルム状に成形する工程の前に、前記溶融押出したポリエステル樹脂をダイを通過させる工程を、更に有する請求項1に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to claim 1, further comprising a step of passing the melt-extruded polyester resin through a die before the step of forming the film.
  6.  前記ポリエステル樹脂として、ペレットとフラフを、該フラフの質量比率を60%以下にして前記押出機に供給する請求項1~請求項5のいずれか一項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 1 to 5, wherein pellets and fluff are supplied as the polyester resin to the extruder with a mass ratio of the fluff being 60% or less.
  7.  前記ポリエステル樹脂の原料の極限粘度が0.6~0.8の範囲内である請求項1~請求項5のいずれか一項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 1 to 5, wherein an intrinsic viscosity of the raw material of the polyester resin is in a range of 0.6 to 0.8.
  8.  示差走査熱量測定により求められる前記ポリエステル樹脂原料の融点Tmが、250℃~260℃の範囲内である請求項1~請求項5のいずれか一項に記載のポリエステルフィルムの製造方法。 The method for producing a polyester film according to any one of claims 1 to 5, wherein a melting point Tm of the polyester resin raw material determined by differential scanning calorimetry is in a range of 250 ° C to 260 ° C.
  9.  請求項1~請求項5のいずれか一項に記載のポリエステルフィルムの製造方法により製造されたポリエステルフィルム中のポリエステルの末端COOH量が2eq/t~20eq/tの範囲内であるポリエステルフィルム。 A polyester film in which the amount of terminal COOH of the polyester in the polyester film produced by the method for producing a polyester film according to any one of claims 1 to 5 is in the range of 2 eq / t to 20 eq / t.
  10.  請求項1~請求項5のいずれか一項に記載の製造方法により製造された太陽電池用のポリエステルフィルム。 A polyester film for a solar cell produced by the production method according to any one of claims 1 to 5.
PCT/JP2012/054319 2011-02-23 2012-02-22 Method for producing polyester film, and polyester film for solar cells WO2012115167A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201280004576.4A CN103298595B (en) 2011-02-23 2012-02-22 The manufacture method of polyester film and polyester film used for solar batteries

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2011037187 2011-02-23
JP2011-037187 2011-02-23
JP2011259763 2011-11-29
JP2011-259763 2011-11-29

Publications (1)

Publication Number Publication Date
WO2012115167A1 true WO2012115167A1 (en) 2012-08-30

Family

ID=46720941

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/054319 WO2012115167A1 (en) 2011-02-23 2012-02-22 Method for producing polyester film, and polyester film for solar cells

Country Status (3)

Country Link
JP (1) JP5653951B2 (en)
CN (1) CN103298595B (en)
WO (1) WO2012115167A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153972A (en) * 2014-02-18 2015-08-24 富士フイルム株式会社 Laminate film, backsheet for solar battery modules, and solar battery module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113829537B (en) * 2014-09-12 2023-08-04 东芝机械株式会社 Plasticizing device, injection molding device, and method for manufacturing molded article

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828360A (en) * 1981-01-13 1983-02-19 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Method of extruding high-molecular quantity poly ( ethylene terephthalate )
JPH091687A (en) * 1995-06-21 1997-01-07 Mitsubishi Chem Corp Polyester corrugated plate
JPH0985795A (en) * 1995-09-27 1997-03-31 Mitsubishi Chem Corp Manufacture of polyester sheet for draw forming
JPH10180844A (en) * 1996-11-05 1998-07-07 Toray Ind Inc Polyester film and its manufacture
JP2002086543A (en) * 2000-09-19 2002-03-26 Sumitomo Heavy Ind Ltd Equipment for preventing dew formation of extruded molten resin cooling roll

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09262894A (en) * 1996-03-27 1997-10-07 Toray Ind Inc Manufacture of thermoplastic resin film
EP1473319B1 (en) * 2002-01-11 2006-05-03 Toyo Boseki Kabushiki Kaisha Polyester films
JP5400762B2 (en) * 2008-04-02 2014-01-29 帝人デュポンフィルム株式会社 Solar cell back surface protective film

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5828360A (en) * 1981-01-13 1983-02-19 イ−・アイ・デユポン・デ・ニモアス・アンド・カンパニ− Method of extruding high-molecular quantity poly ( ethylene terephthalate )
JPH091687A (en) * 1995-06-21 1997-01-07 Mitsubishi Chem Corp Polyester corrugated plate
JPH0985795A (en) * 1995-09-27 1997-03-31 Mitsubishi Chem Corp Manufacture of polyester sheet for draw forming
JPH10180844A (en) * 1996-11-05 1998-07-07 Toray Ind Inc Polyester film and its manufacture
JP2002086543A (en) * 2000-09-19 2002-03-26 Sumitomo Heavy Ind Ltd Equipment for preventing dew formation of extruded molten resin cooling roll

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015153972A (en) * 2014-02-18 2015-08-24 富士フイルム株式会社 Laminate film, backsheet for solar battery modules, and solar battery module
WO2015125666A1 (en) * 2014-02-18 2015-08-27 富士フイルム株式会社 Multilayer film, back sheet for solar cell modules, and solar cell module
KR20160111428A (en) * 2014-02-18 2016-09-26 후지필름 가부시키가이샤 Multilayer film, back sheet for solar cell modules, and solar cell module
KR101871615B1 (en) * 2014-02-18 2018-08-02 후지필름 가부시키가이샤 Multilayer film, back sheet for solar cell modules, and solar cell module

Also Published As

Publication number Publication date
CN103298595B (en) 2016-08-10
JP5653951B2 (en) 2015-01-14
JP2013136223A (en) 2013-07-11
CN103298595A (en) 2013-09-11

Similar Documents

Publication Publication Date Title
JP5676533B2 (en) Biaxially stretched polyester film, method for producing the same, and solar cell module
JP5738792B2 (en) Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module
JP5512749B2 (en) Production method of polyester film
KR101810856B1 (en) Twin-screw extrusion device and method for manufacturing film
JP5847629B2 (en) Production method of polyester film
JP5759908B2 (en) POLYESTER FILM, ITS MANUFACTURING METHOD, SOLAR CELL BACK SHEET, AND SOLAR CELL POWER GENERATION MODULE
JP5547142B2 (en) Production method of polyester film
JP5797535B2 (en) Method for producing polyester resin and method for producing polyester film
JP5893277B2 (en) Production method of polyester film
JP5653951B2 (en) Production method of polyester film
KR102051724B1 (en) Polyester film, process for producing same, back-protective sheet for solar cell, and solar cell module
JP5676526B2 (en) Method for producing polyester resin, protective sheet for solar cell, and solar cell module
JP5587267B2 (en) Production method of polyester resin
JP2013043411A (en) Polyester film, method for manufacturing the same, back sheet for solar cell, and solar cell module
JP2012256632A (en) Method for manufacturing resin film, polyester film, back sheet for solar cell, and solar cell module
JP5752360B2 (en) Polyester film melt film forming method and polyester film for solar cell member
JP5770693B2 (en) Method for producing polyester film, polyester film, protective sheet for solar cell, and solar cell module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749282

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749282

Country of ref document: EP

Kind code of ref document: A1