WO2012102101A1 - Polycarbonate having outstanding heat-resistance stability and process for producing same - Google Patents

Polycarbonate having outstanding heat-resistance stability and process for producing same Download PDF

Info

Publication number
WO2012102101A1
WO2012102101A1 PCT/JP2012/050621 JP2012050621W WO2012102101A1 WO 2012102101 A1 WO2012102101 A1 WO 2012102101A1 JP 2012050621 W JP2012050621 W JP 2012050621W WO 2012102101 A1 WO2012102101 A1 WO 2012102101A1
Authority
WO
WIPO (PCT)
Prior art keywords
polycarbonate
chain
repeating unit
asymmetric carbon
heat
Prior art date
Application number
PCT/JP2012/050621
Other languages
French (fr)
Japanese (ja)
Inventor
幸司 中野
京子 野崎
聖司 西岡
信貴 藤本
Original Assignee
国立大学法人東京大学
住友精化株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人東京大学, 住友精化株式会社 filed Critical 国立大学法人東京大学
Priority to JP2012554721A priority Critical patent/JPWO2012102101A1/en
Publication of WO2012102101A1 publication Critical patent/WO2012102101A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/02Aliphatic polycarbonates
    • C08G64/0208Aliphatic polycarbonates saturated
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/32General preparatory processes using carbon dioxide
    • C08G64/34General preparatory processes using carbon dioxide and cyclic ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/40Post-polymerisation treatment
    • C08G64/403Recovery of the polymer

Definitions

  • the present invention relates to a polycarbonate excellent in heat resistance and a method for producing the same.
  • Global warming is caused by the increase in greenhouse gases such as carbon dioxide, chlorofluorocarbons and methane in the atmosphere, so reducing the atmospheric concentration of carbon dioxide, which has a high contribution to global warming, It is extremely important, and various studies such as emission regulations and immobilization are being conducted on a global scale.
  • Non-patent Document 1 Non-patent Document 1
  • Polycarbonate is transparent and completely decomposes when heated to a predetermined temperature or higher, so it can be used for applications such as general moldings, films, and fibers, as well as optical materials such as optical fibers and optical disks, or ceramic binders. It can also be used as a thermally decomposable material such as lost foam casting.
  • polycarbonate is degradable in vivo, it can be applied as a medical material such as a sustained-release drug capsule, an additive of biodegradable resin, or a main component of biodegradable resin.
  • An object of the present invention is to provide a polycarbonate having excellent heat resistance stability and a method for producing the same.
  • the present inventors have obtained a polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and the absolute configuration of the asymmetric carbon center in one polymer chain.
  • the conceptual diagram which shows the representative example of the linear polycarbonate of this invention; (1) Stereoblock polymer and (2) Stereogradient polymer.
  • the thermogravimetric analysis curve of the polycarbonate obtained by the Example and the comparative example The thermogravimetric analysis curve of the polycarbonate obtained by the Example and the comparative example.
  • the thermogravimetric analysis curve of the polycarbonate obtained by the comparative example The thermogravimetric analysis curve of the polycarbonate obtained by the comparative example.
  • the heat-stable polycarbonate according to the present invention is a polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and among a plurality of types of repeating units having different absolute configurations of the asymmetric carbon center in one polymer chain.
  • a chain polycarbonate having a region containing a large amount of one type of repeating unit and a region containing a large amount of a repeating unit different from the one type of repeating unit hereinafter referred to as “asymmetric in the same polymer chain”. It is a polycarbonate that can be obtained by precipitation from a mixed solution of a solution in which a chain polycarbonate having regions having different absolute configurations at the carbon center is dissolved and a solvent that does not dissolve the chain polycarbonate.
  • the repeating unit of the chain polycarbonate used in the production of the heat-stable polycarbonate according to the present invention includes a plurality of types of repeating units having different asymmetric carbon center absolute configurations depending on the number of asymmetric carbons. For example, when the repeating unit contains one asymmetric carbon, there are two optical isomers of S-form and R-form in the repeat unit, and a region containing a large amount of repeat units of S-form in one polymer chain And a region containing a large amount of repeating units of the R isomer.
  • the chain polycarbonate used in the present invention has, for example, a region containing a large amount of repeating units of S form and a region containing a large amount of repeating units of R form.
  • a polycarbonate a copolymer having a block containing a large amount of repeating units of S isomer and a block containing a large amount of repeating units of R isomer (referred to as “stereo block polymer” in the present invention) and a polymer chain.
  • stereo block polymer a copolymer having a block containing a large amount of repeating units of S isomer and a block containing a large amount of repeating units of R isomer
  • the “region containing a large amount” means a region where the molar ratio of one stereoisomer is 70% or more, preferably 78% based on the total number of repeating units contained in the region. It means the region having the above.
  • the abundance ratio of plural types of repeating units having different absolute configurations at the asymmetric carbon center may be the same mole number or different in one polymer chain and between each region. Good.
  • the chain polycarbonate used in the present invention can be produced, for example, by copolymerizing carbon dioxide and chiral epoxide in the presence of a catalyst.
  • a catalyst for example, by copolymerizing carbon dioxide and chiral epoxide in the presence of a catalyst.
  • the chiral epoxide is, for example, the following formula (1):
  • R 1 and R 2 may be the same or different, provided that they are not simultaneously hydrogen atoms, and R 1 and R 2 are independently of each other a hydrogen atom,
  • R 1 and R 2 together may form a saturated or unsaturated C 4 -C 8 alicyclic group; the aryl moiety in the aryl and arylalkyl and the alicyclic group, a halogen atom, a straight chain or C 1 ⁇ C 8 branched chain alkyl, C 2 ⁇ C 8 alkenyl, one or more selected from C 2 ⁇ C 8 alkynyl and C 4 ⁇ C 8 group consisting cycloalkyl May be substituted with substituents, or, forming
  • chiral epoxides include propylene oxide, 1-butene oxide, 2-butene oxide, 1-pentene oxide, 2-pentene oxide, cyclopentene oxide, 1-hexene oxide, cyclohexene oxide, 1-octene oxide, 1-dodecene oxide, styrene oxide, vinylcyclohexene oxide, 3-phenylpropylene oxide, 3,3,3-trifluoropropylene oxide, 3-naphthylpropylene oxide, butadiene monooxide, 3-trimethylsilyloxypropylene oxide, etc.
  • propylene oxide is particularly preferable from the viewpoint of high reactivity.
  • carbon dioxide to be copolymerized with the chiral epoxide is introduced into the reaction vessel as a gas and used for the reaction.
  • the pressure of carbon dioxide in the reaction vessel is preferably 0.01 to 6 MPa, more preferably 0.1 to 3.0 MPa.
  • the molar ratio of chiral epoxide to carbon dioxide used in the reaction is typically 1: 0.1 to 1:10, but is preferably 1: 0.5 to 1: 3.0, more preferably 1: 1.0 to 1: 2.0.
  • R 3 and R 4 may be the same or different and independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted aromatic group.
  • R 5 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted Unsubstituted alkoxy group, acyl group, substituted or unsubstituted alkoxycarbonyl dil group, substituted or unsubstituted aromatic oxycarbonyl group, substituted or unsubstituted aralkyloxycarbo Or a group, or an aliphatic ring or aromatic ring bonded to a substituted or unsubstituted and R 6 and R 7 together on adjacent carbon atoms may be formed.
  • R 3 , R 4 , R 5 , R 6 and R 7 are the same as defined above, and Z is F—, Cl—, Br—, I—, N 3 —, NO 3 —,
  • an anionic ligand selected from the group consisting of an aliphatic carboxylate, an aromatic carboxylate, an alkoxide and an aromatic oxide.
  • R 3 , R 4 and Z are as defined above, R 8 , R 9 , R 10 and R 11 are groups selected from the group consisting of W, X and Y; , R 8 , R 9 , R 10 , R 11 include at least one W and at least one X, Y may not be present, and at least one of R 8 , R 10 is a substituent W, W is a quaternary ammonium group represented by -CH 2 aminomethyl group represented by -NG 1 G 2, or -CH 2 -NG 1 G 2 ⁇ HT , R 9, At least one of R 11 is a substituent X, and X is selected from the group consisting of a C 4 to C 20 tertiary alkyl group, a C 3 to C 20 tertiary silyl group, and a C 6 to C 20 aromatic group.
  • Y is a hydrogen atom, a C 1 -C 20 alkyl group, C 1 Alkoxy group ⁇ C 20, C aromatic group 6 ⁇ C 20, carboxylic acid group of C 1 ⁇ C 20, acyl group of C 1 ⁇ C 20, a nitro group, a cyano group, is selected from the group consisting of halogen group
  • G 1 and G 2 may be the same or different, and are independently a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, and a C 6 -C 20 aromatic group.
  • Represents a selected group, or G 1 , G 2 and N may be taken together to form a substituted or unsubstituted 3- to 8-membered cyclic amino group.
  • HT is an inorganic acid, aliphatic And a cobalt complex represented by a protonic acid selected from carboxylic acids, aromatic carboxylic acids, aliphatic sulfonic acids, and aromatic sulfonic acids.
  • the use ratio of the catalyst is preferably 0.05 mol or less, more preferably 0.01 mol or less, relative to 1 mol of the chiral epoxide. Moreover, since reaction time becomes long, it is preferable that it is 0.00001 mol or more, and it is more preferable that it is 0.00002 mol or more. In the copolymerization, a cocatalyst can be further used.
  • Co-catalysts include bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), piperidine, bis (triphenylphosphoranylidene) ammonium fluoride (PPNF), bis (triphenylphosphoranylidene) ammonium pentafluoro Benzoate (PPNOBzF 5 ), tetra-n-butylammonium chloride (nBu 4 NCl), tetra-n-butylammonium bromide (nBu 4 NBr), tetra-n-butylammonium iodide (nBu 4 NI), tetra-n- butylammonium acetate (nBu 4 nOAc), such as triphenylphosphine (Ph 3 P) and the like, preferably PPNCl, PPNF, PPNOBzF 5 and nBu 4 NCl, more preferably A PPNCl and PPNF terms having high reaction activity.
  • the proportion of the cocatalyst used as necessary is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, relative to 1 mol of the catalyst, Even more preferred is ⁇ 1.5 moles.
  • a solvent can be used as necessary.
  • the solvent used is not particularly limited as long as it does not react with the chiral epoxide, carbon dioxide, catalyst and cocatalyst used.
  • ethers and halogenated hydrocarbons are preferred because of their high solubility, and 1,2-dimethoxyethane and methylene chloride are particularly preferred.
  • These solvents may be used alone or in combination of two or more.
  • the amount used is preferably 50 to 10,000 parts by mass, more preferably 100 to 5000 parts by mass with respect to 100 parts by mass of the chiral epoxide.
  • the copolymerization can be carried out using a known polymerization reactor capable of being pressurized, for example, an autoclave.
  • the copolymerization is preferably carried out in an inert atmosphere in order to eliminate the influence of oxygen and the like.
  • the copolymerization reaction temperature is preferably 0 ° C. to 100 ° C. from the viewpoint of suppressing the formation reaction of the cyclic carbonate as a by-product and shortening the reaction time, and preferably 10 ° C. to 90 ° C. Is more preferable, and it is even more preferable that the temperature is 20 to 60 ° C.
  • the reaction time varies depending on the reaction conditions, but is usually 1 to 100 hours.
  • the chain polycarbonate thus obtained is a polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and is one of a plurality of types of repeating units having different absolute configurations of the asymmetric carbon center in one polymer chain. A region including a large amount of repeating units of a type and a region including a large amount of repeating units different from the one type of repeating unit.
  • This chain polycarbonate can be isolated by concentrating and drying by a conventional method after completion of the reaction. Further, the chain polycarbonate may be further purified using a known means such as column chromatography.
  • the molecular weight of the chain polycarbonate obtained by the copolymerization is, for example, 1000 or more, preferably 2,000 to 1,000, as a typical number average molecular weight (Mn) measured by gel permeation chromatography (GPC; converted to polystyrene). 1,000,000, more preferably 3,000 to 100,000.
  • the chain polycarbonate obtained by the copolymerization may have a relatively narrow molecular weight distribution (Mw / Mn). Specifically, for example, it is 4 or less, preferably 2.5 or less, and more preferably 1.0 to 1.6.
  • the catalyst or the like is appropriately selected, and after using only one of the optical isomers as a monomer raw material to completely react this, only the other optical isomer is further added.
  • a stereo block polymer having a region substantially composed only of one optical isomer monomer and a region composed only of the other optical isomer monomer by continuing the reaction Can be manufactured.
  • one optical isomer monomer is converted to the other.
  • a stereogradient polymer having a region configured to be contained in a larger amount than the optical isomer monomer and a region in which the quantitative relationship of the optical isomer monomer is reversed can be produced.
  • the polycarbonate having excellent heat stability according to the present invention includes a solution in which a chain polycarbonate having a plurality of regions having different asymmetric carbon center absolute configurations in the same polymer chain, a solvent that does not dissolve the chain polycarbonate, It can be obtained by precipitation from a mixed solution.
  • dissolution with respect to polycarbonate means that the polycarbonate is completely dissolved, the polycarbonate is not completely dissolved but partially dissolved, and the polycarbonate is swollen.
  • “precipitation” of the polycarbonate means that the polycarbonate appears completely or partially from a solution in which the polycarbonate is completely or partially dissolved, and that the swollen polycarbonate is immersed in the solvent. It means that the solvent is removed by filtration or the like, and the swollen polycarbonate is exposed.
  • Examples of the solvent for dissolving the chain polycarbonate used in the present invention include aromatic hydrocarbons, ethers, esters, ketones, halogenated hydrocarbons and the like. Specifically, benzene, toluene, xylene, dibutyl ether, tetrahydrofuran, 1,4-dioxane, methyl acetate, ethyl acetate, propyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methylene chloride, chloroform, dichloroethane, trichloroethane, chlorobenzene Etc.
  • esters are preferable from the viewpoint of high solubility, and methyl lactate, ethyl lactate, methyl acetate, and ethyl acetate are particularly preferably used.
  • These solvents for dissolving the polycarbonate may be used alone or in combination of two or more.
  • the amount of the solvent used is preferably 50 to 10,000 parts by mass, more preferably 100 to 5000 parts by mass with respect to 100 parts by mass of the polycarbonate.
  • Examples of the solvent that does not dissolve the polycarbonate include alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, pentane, Examples thereof include aliphatic hydrocarbon solvents such as hexane, octane, decane, and cyclohexane, and water.
  • alcohol-based solvents are preferable from the viewpoint of improving the heat resistance stability of the obtained polycarbonate, and methyl alcohol, ethyl alcohol, and isopropyl alcohol are particularly preferably used.
  • These solvents that do not dissolve the polycarbonate may be used alone or in combination of two or more.
  • the amount of the solvent that does not dissolve the polycarbonate is preferably 50 to 100,000 parts by mass, more preferably 100 to 50,000 parts by mass with respect to 100 parts by mass of the polycarbonate.
  • a specific method for precipitating a polycarbonate having excellent heat resistance stability by mixing a solution in which the chain polycarbonate used in the present invention is dissolved with a solvent that does not dissolve the chain polycarbonate is, for example, the chain polycarbonate.
  • a method in which the solution in which the solution is dissolved is added to a solvent that does not dissolve the chain polycarbonate to precipitate the polycarbonate, followed by decantation, filtration, and drying by a known method.
  • the obtained polycarbonate may be washed with water or methyl alcohol and then dried by a known method.
  • the number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the polycarbonate obtained in this example and the like are determined by gel permeation chromatography (High Performance Liquid Chromatography System DG660B / PU713 / UV702 / RI631A manufactured by GL Sciences Inc.). ) And measured at 40 ° C. in THF, and calculated based on standard polystyrene.
  • the 1 H NMR spectrum of the polycarbonate obtained in this example was measured using JNM-ECP500 (500 MHz) manufactured by JEOL.
  • the measurement of the heat resistance stability of the polycarbonate obtained in this example and the like was performed using a TG / DTA6200 manufactured by SII Nanotechnology, Inc., from room temperature to 350 ° C. at a temperature rising rate of 20 ° C./min. This was done by raising the temperature.
  • Example 1 To a 5 mL eggplant flask, 100 mg of the polycarbonate obtained in Synthesis Example 2 and 0.5 mL of ethyl acetate were added and stirred to completely dissolve. Thereafter, the total amount of the solution was added to 50 mL of methyl alcohol to precipitate a polymer. The precipitated polymer was filtered, washed with 10 mL of methyl alcohol, and dried under reduced pressure at 25 ° C. for 24 hours to obtain 85 mg of a polycarbonate which is a stereogradient polymer. (Sample 1).
  • Example 2 In Example 1, except that 100 mg of the polycarbonate obtained in Synthesis Example 3 was used in place of 100 mg of the polycarbonate obtained in Synthesis Example 2, 87 mg of a polycarbonate which is a stereo block polymer was obtained in the same manner as in Example 1 ( Sample 2).
  • Comparative Example 2 100 mg of a polycarbonate, which is a stereoblock polymer, was obtained in the same manner as in Comparative Example 1, except that 100 mg of the polycarbonate obtained in Synthesis Example 3 was used instead of 100 mg of the polycarbonate obtained in Synthesis Example 2. Sample 4).
  • the polycarbonate of Sample 1 obtained in Example 1 showed a greatly improved thermal decomposition temperature as compared with the polycarbonate of Sample 3 obtained in Comparative Example 1.
  • the polycarbonate of Sample 2 obtained in Example 2 also showed a greatly improved thermal decomposition temperature compared to the polycarbonate of Sample 4 obtained in Comparative Example 2.
  • the polycarbonates of Samples 5 and 6 obtained in Comparative Example 3 and Comparative Example 4 showed a lower thermal decomposition temperature than the polycarbonates of Samples 1 to 4, and even if the precipitation treatment was performed, No change was seen. That is, it can be understood that the thermal decomposition temperature is improved by the precipitation treatment, which is a phenomenon peculiar to the chain polycarbonate having regions having different absolute configurations of asymmetric carbon centers in the same polymer chain.
  • heat resistance stability can be imparted to a polycarbonate that is transparent and completely decomposes when heated to a predetermined temperature or higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention provides a polycarbonate having outstanding heat-resistance stability and a process for producing the same. More specifically, the present invention provides a polycarbonate which has heat-resistance stability and is a polycarbonate in which a repeating unit is an optical isomer which includes an asymmetric carbon atom, and the present invention also provides a process for production of the polycarbonate which has heat-resistance stability. The polycarbonate can be obtained by precipitation from a mixture of: a solution which has dissolved therein a chain polycarbonate having, in a single polymer chain, a region rich in one type of repeating unit from among a plurality of types of repeating units differing in the absolute position of the asymmetric carbon centre, and a region rich in a repeating unit different from the aforementioned one type of repeating unit; and a solvent which does not dissolve the chain polycarbonate.

Description

耐熱安定性に優れたポリカーボネートおよびその製造方法Polycarbonate excellent in heat stability and method for producing the same
 本発明は、耐熱性に優れたポリカーボネートおよびその製造方法に関する。 The present invention relates to a polycarbonate excellent in heat resistance and a method for producing the same.
 地球温暖化は、大気中の二酸化炭素、フロンやメタンといった温室効果ガスが増加したことが原因とされることから、地球温暖化への寄与率の高い二酸化炭素の大気中濃度を減少させることは極めて重要であり、この排出規制や固定化などの様々な研究が世界規模で行われている。 Global warming is caused by the increase in greenhouse gases such as carbon dioxide, chlorofluorocarbons and methane in the atmosphere, so reducing the atmospheric concentration of carbon dioxide, which has a high contribution to global warming, It is extremely important, and various studies such as emission regulations and immobilization are being conducted on a global scale.
 中でも、井上らによって見出された二酸化炭素とエポキシドとの共重合によるポリカーボネートの製造は、地球温暖化問題の解決を担うものとして期待されており、化学的な二酸化炭素の固定といった観点だけでなく、炭素資源としての二酸化炭素の利用といった観点からも盛んに研究されている(非特許文献1)。 Above all, the production of polycarbonate by copolymerization of carbon dioxide and epoxide found by Inoue et al. Is expected to play a role in solving the global warming problem. Also, active research has been conducted from the viewpoint of using carbon dioxide as a carbon resource (Non-patent Document 1).
 ポリカーボネートは、透明性を有し、かつ所定温度以上に加熱すると完全に分解するため、一般成形物、フィルム、ファイバーなどの用途に使用できることに加えて、光ファイバー、光ディスクなどの光学材料、あるいはセラミックスバインダー、ロストフォームキャスティングなどの熱分解性材料として利用することも可能である。 Polycarbonate is transparent and completely decomposes when heated to a predetermined temperature or higher, so it can be used for applications such as general moldings, films, and fibers, as well as optical materials such as optical fibers and optical disks, or ceramic binders. It can also be used as a thermally decomposable material such as lost foam casting.
 さらに、ポリカーボネートは、生体内で分解可能であるため、徐放性の薬剤カプセルなどの医用材料、生分解性樹脂の添加剤、または生分解性樹脂の主成分として応用できる。 Furthermore, since polycarbonate is degradable in vivo, it can be applied as a medical material such as a sustained-release drug capsule, an additive of biodegradable resin, or a main component of biodegradable resin.
 しかしながら、ポリカーボネートは、一般に、耐熱安定性が低いことが知られており、耐熱安定性を向上させることが求められている。ポリカーボネートの立体規則性を制御することによって、新たな物性、機能の発現、および用途の拡大を目指した開発研究が行われているが(特許文献1参照)、耐熱安定性の改善は未だ満足できるものではなかった。 However, polycarbonate is generally known to have low heat stability, and is required to improve heat stability. Development studies aiming at the development of new physical properties, functions, and applications by controlling the stereoregularity of polycarbonate have been carried out (see Patent Document 1), but the improvement in heat stability is still satisfactory. It was not a thing.
特開2010-1443号公報JP 2010-1443
 本発明は、耐熱安定性に優れたポリカーボネートおよびその製造方法を提供することを目的とする。 An object of the present invention is to provide a polycarbonate having excellent heat resistance stability and a method for producing the same.
 本発明者らは、上記課題を解決するために鋭意検討した結果、不斉炭素を含む光学異性体を繰返し単位とするポリカーボネートであって、一つのポリマー鎖中、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位のうちの1種類の繰返し単位を多量に含む領域と、前記1種類の繰返し単位とは異なる繰返し単位を多量に含む領域とを含む鎖状ポリカーボネートが溶解した溶液と前記鎖状ポリカーボネートを溶解しない溶媒とを混合してポリカーボネートを析出させることにより、耐熱安定性に優れたポリカーボネートを製造できることを見出し、本発明を完成するに至った。 As a result of intensive studies to solve the above problems, the present inventors have obtained a polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and the absolute configuration of the asymmetric carbon center in one polymer chain. A solution in which a chain polycarbonate containing a region containing a large amount of one type of repeating unit among a plurality of different types of repeating units and a region containing a large amount of a repeating unit different from the one type of repeating unit is dissolved, and the chain It has been found that a polycarbonate having excellent heat stability can be produced by mixing a solvent that does not dissolve the glassy polycarbonate to precipitate the polycarbonate, and the present invention has been completed.
 具体的には、本発明は以下の態様に関する。
[態様1]
 不斉炭素を含む光学異性体を繰返し単位とするポリカーボネートであって、一つのポリマー鎖中、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位のうちの1種類の繰返し単位を多量に含む領域と、前記1種類の繰返し単位とは異なる繰返し単位を多量に含む領域とを有する鎖状ポリカーボネートが溶解した溶液と、前記鎖状ポリカーボネートを溶解しない溶媒との混合溶液から析出して得ることができる、耐熱安定性ポリカーボネート。
[態様2]
 前記鎖状ポリカーボネートが、ポリプロピレンカーボネートである態様1に記載の耐熱安定性ポリカーボネート。
[態様3]
 不斉炭素を含む光学異性体を繰返し単位とするポリカーボネートであって、一つのポリマー鎖中、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位のうちの1種類の繰返し単位を多量に含む領域と、前記1種類の繰返し単位とは異なる繰返し単位を多量に含む領域とを含む鎖状ポリカーボネートを、前記鎖状ポリカーボネートを溶解する溶媒に溶解させて、ポリカーボネート溶液を作製する工程;および
 前記ポリカーボネート溶液と、前記鎖状ポリカーボネートを溶解しない溶媒とを混合して、ポリカーボネートを析出させる工程を含み、
 これによって、前記鎖状ポリカーボネートの耐熱安定性よりも高い耐熱安定性を有する耐熱安定性ポリカーボネートを製造する方法。
Specifically, the present invention relates to the following aspects.
[Aspect 1]
A polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and one polymer chain containing a large amount of one type of repeating unit having a different absolute configuration at the asymmetric carbon center. It can be obtained by precipitation from a mixed solution of a solution in which a chain polycarbonate having a region and a region containing a large amount of a repeating unit different from the one type of repeating unit is dissolved, and a solvent that does not dissolve the chain polycarbonate. Heat resistant and stable polycarbonate.
[Aspect 2]
The heat-stable polycarbonate according to aspect 1, wherein the chain polycarbonate is polypropylene carbonate.
[Aspect 3]
A polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and one polymer chain containing a large amount of one type of repeating unit having a different absolute configuration at the asymmetric carbon center. Dissolving a chain polycarbonate containing a region and a region containing a large amount of a repeating unit different from the one type of repeating unit in a solvent that dissolves the chain polycarbonate to produce a polycarbonate solution; and the polycarbonate Mixing the solution with a solvent that does not dissolve the chain polycarbonate, and precipitating the polycarbonate,
A method for producing a heat-stable polycarbonate having a heat stability higher than that of the chain polycarbonate.
 本発明によると、高い透明性や熱分解性を有するポリカーボネートに、優れた耐熱安定性を付与することができる。 According to the present invention, excellent heat stability can be imparted to polycarbonate having high transparency and thermal decomposability.
本発明の鎖状ポリカーボネートの代表例を示す概念図;(1)ステレオブロックポリマーおよび(2)ステレオグラジエントポリマー。The conceptual diagram which shows the representative example of the linear polycarbonate of this invention; (1) Stereoblock polymer and (2) Stereogradient polymer. 実施例および比較例で得られたポリカーボネートの熱重量分析曲線。The thermogravimetric analysis curve of the polycarbonate obtained by the Example and the comparative example. 実施例および比較例で得られたポリカーボネートの熱重量分析曲線。The thermogravimetric analysis curve of the polycarbonate obtained by the Example and the comparative example. 比較例で得られたポリカーボネートの熱重量分析曲線。The thermogravimetric analysis curve of the polycarbonate obtained by the comparative example.
 本発明にかかる耐熱安定性ポリカーボネートは、不斉炭素を含む光学異性体を繰返し単位とするポリカーボネートであって、一つのポリマー鎖中、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位のうちの1種類の繰返し単位を多量に含む領域と、前記1種類の繰返し単位とは異なる繰返し単位を多量に含む領域とを有する鎖状ポリカーボネート(以下、本発明において、「同一ポリマー鎖中に不斉炭素中心の絶対配置の異なる領域を有する鎖状ポリカーボネート」)が溶解した溶液と、前記鎖状ポリカーボネートを溶解しない溶媒との混合溶液から析出して得ることができるポリカーボネートである。 The heat-stable polycarbonate according to the present invention is a polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and among a plurality of types of repeating units having different absolute configurations of the asymmetric carbon center in one polymer chain. A chain polycarbonate having a region containing a large amount of one type of repeating unit and a region containing a large amount of a repeating unit different from the one type of repeating unit (hereinafter referred to as “asymmetric in the same polymer chain”). It is a polycarbonate that can be obtained by precipitation from a mixed solution of a solution in which a chain polycarbonate having regions having different absolute configurations at the carbon center is dissolved and a solvent that does not dissolve the chain polycarbonate.
 本発明にかかる耐熱安定性ポリカーボネートの製造に使用する鎖状ポリカーボネートの繰返し単位には、不斉炭素の数に応じて不斉炭素中心の絶対配置の異なる複数種類の繰返し単位が存在する。例えば、その繰返し単位が一つの不斉炭素を含む場合、繰返し単位にはS体およびR体の2つの光学異性体が存在し、一つのポリマー鎖中、S体の繰返し単位を多量に含む領域とR体の繰返し単位を多量に含む領域とを有する。この鎖状ポリカーボネートを溶解する溶媒に、この鎖状ポリカーボネートを溶解して得られた溶液と、この鎖状ポリカーボネートを溶解しない溶媒とを混合して析出させることによって、元の鎖状ポリカーボネートの耐熱安定性よりも高い耐熱安定性を示すポリカーボネートを得ることができる。 The repeating unit of the chain polycarbonate used in the production of the heat-stable polycarbonate according to the present invention includes a plurality of types of repeating units having different asymmetric carbon center absolute configurations depending on the number of asymmetric carbons. For example, when the repeating unit contains one asymmetric carbon, there are two optical isomers of S-form and R-form in the repeat unit, and a region containing a large amount of repeat units of S-form in one polymer chain And a region containing a large amount of repeating units of the R isomer. By mixing and precipitating a solution obtained by dissolving this chain polycarbonate in a solvent that dissolves this chain polycarbonate and a solvent that does not dissolve this chain polycarbonate, the heat stability of the original chain polycarbonate is stabilized. A polycarbonate exhibiting higher heat stability than the property can be obtained.
 本発明に用いられる鎖状ポリカーボネートは、例えば、S体の繰返し単位を多量に含む領域とR体の繰返し単位を多量に含む領域とを有する。このようなポリカーボネートとして、S体の繰返し単位を多量に含むブロックおよびR体の繰返し単位を多量に含むブロックを有する共重合体(本発明において、「ステレオブロックポリマー」と称する。)ならびにポリマー鎖の一方の末端にはS体の繰返し単位のみを含む領域が存在し、他方の末端にはR体の繰返し単位のみを含む領域が存在し、前記S体の繰返し単位のみを含む領域から前記R体の繰返し単位のみを含む領域に向かって、S体の繰返し単位の存在比が徐々に減少してR体の繰返し単位の存在比が徐々に増加する共重合体(本発明において、「ステレオグラジエントポリマー」と称する。)がある。ステレオブロックポリマーおよびステレオグラジエントポリマーの概念図を図1(1)および(2)にそれぞれ例示する。 The chain polycarbonate used in the present invention has, for example, a region containing a large amount of repeating units of S form and a region containing a large amount of repeating units of R form. As such a polycarbonate, a copolymer having a block containing a large amount of repeating units of S isomer and a block containing a large amount of repeating units of R isomer (referred to as “stereo block polymer” in the present invention) and a polymer chain. There is a region containing only the repeating unit of S form at one end, and there is a region containing only the repeating unit of R form at the other end, from the region containing only the repeating unit of S form to the R form. Copolymers in which the abundance ratio of the S isomer repeating unit gradually decreases and the abundance ratio of the R isomer repeating unit gradually increases toward the region containing only the repeating unit (in the present invention, “stereo gradient polymer”). "). Conceptual diagrams of the stereo block polymer and the stereo gradient polymer are illustrated in FIGS. 1 (1) and (2), respectively.
 本発明において、「多量に含む領域」とは、当該領域内に含まれる繰返し単位の全数を基準として、一方の立体異性体のモル比が70%以上である領域を意味し、好ましくは78%以上を有する領域を意味する。 In the present invention, the “region containing a large amount” means a region where the molar ratio of one stereoisomer is 70% or more, preferably 78% based on the total number of repeating units contained in the region. It means the region having the above.
 本発明において、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位の存在割合は、一つのポリマー鎖中、および、各領域間において、同一モル数であってもよいし、異なっていてもよい。 In the present invention, the abundance ratio of plural types of repeating units having different absolute configurations at the asymmetric carbon center may be the same mole number or different in one polymer chain and between each region. Good.
 本発明に用いられる鎖状ポリカーボネートは、例えば、二酸化炭素とキラルエポキシドとを触媒存在下で共重合することにより製造することができる。以下、この共重合に関して記載する。 The chain polycarbonate used in the present invention can be produced, for example, by copolymerizing carbon dioxide and chiral epoxide in the presence of a catalyst. Hereinafter, the copolymerization will be described.
 前記キラルエポキシドは、例えば、下記式(1): The chiral epoxide is, for example, the following formula (1):
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
(式中、RおよびRは、同時に水素原子であることがないことを条件に、同一でも異なっていてもよく、更に、RおよびRは、互いに独立して、水素原子、直鎖もしくは分岐鎖のC~Cアルキル、C~Cアルケニル、C~Cアルキニル、C~Cシクロアルキル、C~C16アリールもしくはC~C20アリールアルキルであるか、または、RおよびRは、一緒になって飽和または不飽和のC~C脂環式基を形成してもよく;前記アリールおよびアリールアルキル中のアリール部分並びに前記脂環式基は、ハロゲン原子、直鎖または分岐鎖のC~Cアルキル、C~Cアルケニル、C~CアルキニルおよびC~Cシクロアルキルよりなる群から選ばれる1個以上の置換基で置換されてもよく、または、アリール環を構成する二個の隣接した炭素に結合する両置換基が一緒になって飽和または不飽和のC~C脂環式基を形成してもよく;前記アルキル、アルケニル、アルキニル、シクロアルキル、アリールおよび脂環式基は1個以上のヘテロ原子を含んでよく、前記ハロゲンはフッ素、塩素、臭素およびヨウ素の中から選択される1種類以上の原子である。)で表される。 (Wherein R 1 and R 2 may be the same or different, provided that they are not simultaneously hydrogen atoms, and R 1 and R 2 are independently of each other a hydrogen atom, A chain or branched C 1 -C 8 alkyl, C 2 -C 8 alkenyl, C 2 -C 8 alkynyl, C 4 -C 8 cycloalkyl, C 6 -C 16 aryl or C 7 -C 20 arylalkyl Or R 1 and R 2 together may form a saturated or unsaturated C 4 -C 8 alicyclic group; the aryl moiety in the aryl and arylalkyl and the alicyclic group, a halogen atom, a straight chain or C 1 ~ C 8 branched chain alkyl, C 2 ~ C 8 alkenyl, one or more selected from C 2 ~ C 8 alkynyl and C 4 ~ C 8 group consisting cycloalkyl May be substituted with substituents, or, forming a C 4 ~ C 8 cycloaliphatic groups at both substituents attached to two adjacent carbon atoms constituting the aryl ring together a saturated or unsaturated The alkyl, alkenyl, alkynyl, cycloalkyl, aryl and alicyclic groups may contain one or more heteroatoms, and the halogen is selected from fluorine, chlorine, bromine and iodine 1 It is an atom of more than kinds.)
 特に、好ましいキラルエポキシドの具体例としては、プロピレンオキシド、1-ブテンオキシド、2-ブテンオキシド、1-ペンテンオキシド、2-ペンテンオキシド、シクロペンテンオキシド、1-ヘキセンオキシド、シクロヘキセンオキシド、1-オクテンオキシド、1-ドデセンオキシド、スチレンオキシド、ビニルシクロヘキセンオキシド、3-フェニルプロピレンオキシド、3,3,3-トリフルオロプロピレンオキシド、3-ナフチルプロピレンオキシド、ブタジエンモノオキシド、3-トリメチルシリルオキシプロピレンオキシドなどが挙げられ、中でも、高い反応性を有する観点からプロピレンオキシドが特に好ましい。 In particular, specific examples of preferred chiral epoxides include propylene oxide, 1-butene oxide, 2-butene oxide, 1-pentene oxide, 2-pentene oxide, cyclopentene oxide, 1-hexene oxide, cyclohexene oxide, 1-octene oxide, 1-dodecene oxide, styrene oxide, vinylcyclohexene oxide, 3-phenylpropylene oxide, 3,3,3-trifluoropropylene oxide, 3-naphthylpropylene oxide, butadiene monooxide, 3-trimethylsilyloxypropylene oxide, etc. Of these, propylene oxide is particularly preferable from the viewpoint of high reactivity.
 一方、キラルエポキシドと共重合させる二酸化炭素は、気体のまま反応容器に導入して反応に使用する。反応容器内の二酸化炭素の圧力は、0.01~6MPaが好ましく、より好ましくは、0.1~3.0MPaである。反応に使用するキラルエポキシドと二酸化炭素のモル比は、典型的には1:0.1~1:10であるが、好ましくは1:0.5~1:3.0、より好ましくは1:1.0~1:2.0である。 On the other hand, carbon dioxide to be copolymerized with the chiral epoxide is introduced into the reaction vessel as a gas and used for the reaction. The pressure of carbon dioxide in the reaction vessel is preferably 0.01 to 6 MPa, more preferably 0.1 to 3.0 MPa. The molar ratio of chiral epoxide to carbon dioxide used in the reaction is typically 1: 0.1 to 1:10, but is preferably 1: 0.5 to 1: 3.0, more preferably 1: 1.0 to 1: 2.0.
 前記共重合で用いられる触媒としては、例えば、特開2010-1443号公報記載のような、特定の置換基を有した、下記式(2): As the catalyst used in the copolymerization, for example, the following formula (2) having a specific substituent as described in JP 2010-1443 A:
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式中、RおよびRは、同一でも異なっていてもよく、独立して、水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換の芳香族基、もしくは置換もしくは非置換の芳香族複素環基であるか、または、2個のRもしくは2個のRが互いに結合して置換もしくは非置換の飽和もしくは不飽和の脂肪族環を形成してもよく、R、RおよびRは、独立して水素原子、置換もしくは非置換のアルキル基、置換もしくは非置換のアルケニル基、置換もしくは非置換の芳香族基、置換もしくは非置換の芳香族複素環基、置換もしくは非置換のアルコキシ基、アシル基、置換もしくは非置換のアルコキシカルボニル二ル基、置換もしくは非置換の芳香族オキシカルボニル基、置換もしくは非置換のアラルキルオキシカルボニル基であるか、または、隣り合う炭素原子上のRとRとが互いに結合して置換もしくは非置換の脂肪族環又は芳香環を形成してもよい。)で表されるコバルト錯体または下記式(3): (In the formula, R 3 and R 4 may be the same or different and independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted aromatic group, or a substituted or unsubstituted aromatic group. or a group heterocyclic group, or may form two R 3 or two bonds R 4 with each other to be substituted or unsubstituted, saturated or unsaturated aliphatic ring, R 5, R 6 and R 7 independently represent a hydrogen atom, a substituted or unsubstituted alkyl group, a substituted or unsubstituted alkenyl group, a substituted or unsubstituted aromatic group, a substituted or unsubstituted aromatic heterocyclic group, substituted or unsubstituted Unsubstituted alkoxy group, acyl group, substituted or unsubstituted alkoxycarbonyl dil group, substituted or unsubstituted aromatic oxycarbonyl group, substituted or unsubstituted aralkyloxycarbo Or a group, or an aliphatic ring or aromatic ring bonded to a substituted or unsubstituted and R 6 and R 7 together on adjacent carbon atoms may be formed.) Cobalt complex represented by Or the following formula (3):
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式中、R、R、R、RおよびRは、上記定義と同じであり、Zは、F-、Cl-、Br-、I-、N-、NO-、脂肪族カルボキシラート、芳香族カルボキシラート、アルコキシドおよび芳香族オキシドよりなる群から選択されるアニオン性配位子である。)で表されるコバルト錯体を用いることができる。このようなコバルト錯体として、下記式(4): Wherein R 3 , R 4 , R 5 , R 6 and R 7 are the same as defined above, and Z is F—, Cl—, Br—, I—, N 3 —, NO 3 —, A cobalt complex represented by an anionic ligand selected from the group consisting of an aliphatic carboxylate, an aromatic carboxylate, an alkoxide and an aromatic oxide. As such a cobalt complex, the following formula (4):
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式中、R、RおよびZは、上記定義と同じであり、R、R、R10およびR11は、W、XおよびYよりなる群から選択される基であり、また、R、R、R10、R11には少なくとも1個のW及び、少なくとも1個のXが含まれるが、Yは存在しなくてもよく、さらに、R、R10の少なくとも一方は置換基Wであり、Wは-CH-NGで表されるアミノメチル基、もしくは-CH-NG・HTで表される四級アンモニウム基であり、R、R11の少なくとも一方は置換基Xであり、XはC~C20の三級アルキル基、C~C20の三級シリル基およびC~C20の芳香族基からなる群から選択される基であり、Yは水素原子、C~C20のアルキル基、C~C20のアルコキシ基、C~C20の芳香族基、C~C20のカルボン酸基、C~C20のアシル基、ニトロ基、シアノ基、ハロゲン基からなる群から選択される基であり、GおよびGは同一でも異なっていてもよく、独立にC~C20のアルキル基、C~C20のアルコキシ基、およびC~C20の芳香族基から選択される基を表すか、あるいはG、GおよびNが一緒になって置換もしくは非置換の3~8員環の環状アミノ基を形成していてもよく、HTは無機酸、脂肪族カルボン酸、芳香族カルボン酸、脂肪族スルホン酸、芳香族スルホン酸から選択されるプロトン酸である。)で表されるコバルト錯体が挙げられる。 Wherein R 3 , R 4 and Z are as defined above, R 8 , R 9 , R 10 and R 11 are groups selected from the group consisting of W, X and Y; , R 8 , R 9 , R 10 , R 11 include at least one W and at least one X, Y may not be present, and at least one of R 8 , R 10 is a substituent W, W is a quaternary ammonium group represented by -CH 2 aminomethyl group represented by -NG 1 G 2, or -CH 2 -NG 1 G 2 · HT , R 9, At least one of R 11 is a substituent X, and X is selected from the group consisting of a C 4 to C 20 tertiary alkyl group, a C 3 to C 20 tertiary silyl group, and a C 6 to C 20 aromatic group. Y is a hydrogen atom, a C 1 -C 20 alkyl group, C 1 Alkoxy group ~ C 20, C aromatic group 6 ~ C 20, carboxylic acid group of C 1 ~ C 20, acyl group of C 1 ~ C 20, a nitro group, a cyano group, is selected from the group consisting of halogen group G 1 and G 2 may be the same or different, and are independently a C 1 -C 20 alkyl group, a C 1 -C 20 alkoxy group, and a C 6 -C 20 aromatic group. Represents a selected group, or G 1 , G 2 and N may be taken together to form a substituted or unsubstituted 3- to 8-membered cyclic amino group. HT is an inorganic acid, aliphatic And a cobalt complex represented by a protonic acid selected from carboxylic acids, aromatic carboxylic acids, aliphatic sulfonic acids, and aromatic sulfonic acids.
 前記式(4)で表されるコバルト錯体の中で特に好ましいものの具体例としては、下記式(4-1)~(4-4)のものが挙げられる。 Specific examples of particularly preferable cobalt complexes represented by the formula (4) include those represented by the following formulas (4-1) to (4-4).
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
 触媒の使用割合は、キラルエポキシド1モルに対して、0.05モル以下であることが好ましく、0.01モル以下であることがより好ましい。また、反応時間が長くなることから、0.00001モル以上であることが好ましく、0.00002モル以上であることがより好ましい。
 前記共重合において、さらに助触媒を使用することができる。
The use ratio of the catalyst is preferably 0.05 mol or less, more preferably 0.01 mol or less, relative to 1 mol of the chiral epoxide. Moreover, since reaction time becomes long, it is preferable that it is 0.00001 mol or more, and it is more preferable that it is 0.00002 mol or more.
In the copolymerization, a cocatalyst can be further used.
 助触媒としては、ビス(トリフェニルホスフォラニリデン)アンモニウムクロリド(PPNCl)、ピペリジン、ビス(トリフェニルホスフォラニリデン)アンモニウムフルオリド(PPNF)、ビス(トリフェニルホスフォラニリデン)アンモニウムペンタフルオロベンゾエート(PPNOBzF)、テトラ-n-ブチルアンモニウムクロライド(nBuNCl)、テトラ-n-ブチルアンモニウムブロマイド(nBuNBr)、テトラ-n-ブチルアンモニウムアイオダイド(nBuNI)、テトラ-n-ブチルアンモニウムアセテート(nBuNOAc)、トリフェニルホスフィン(PhP)などが挙げられ、好ましくはPPNCl、PPNF、PPNOBzFおよびnBuNClであり、より好ましくは、高い反応活性を有する観点からPPNClおよびPPNFである。 Co-catalysts include bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), piperidine, bis (triphenylphosphoranylidene) ammonium fluoride (PPNF), bis (triphenylphosphoranylidene) ammonium pentafluoro Benzoate (PPNOBzF 5 ), tetra-n-butylammonium chloride (nBu 4 NCl), tetra-n-butylammonium bromide (nBu 4 NBr), tetra-n-butylammonium iodide (nBu 4 NI), tetra-n- butylammonium acetate (nBu 4 nOAc), such as triphenylphosphine (Ph 3 P) and the like, preferably PPNCl, PPNF, PPNOBzF 5 and nBu 4 NCl, more preferably A PPNCl and PPNF terms having high reaction activity.
 必要に応じて使用される助触媒の使用割合は、前記触媒1モルに対して、0.1~10モルであることが好ましく、0.3~5モルであることがより好ましく、0.5~1.5モルであることがさらにより好ましい。 The proportion of the cocatalyst used as necessary is preferably 0.1 to 10 mol, more preferably 0.3 to 5 mol, relative to 1 mol of the catalyst, Even more preferred is ˜1.5 moles.
 前記共重合において、必要に応じて溶媒を使用することができる。用いられる溶媒としては、使用されるキラルエポキシド、二酸化炭素、触媒および助触媒と反応しないものであれば特に制限はなく、例えば、炭化水素類、エーテル類、エステル類、ケトン類、ハロゲン化炭化水素類などが挙げられる。具体的には、ヘキサン、ベンゼン、トルエン、キシレン、シクロヘキサン、1,2-ジメトキシエタン、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン、酢酸メチル、酢酸エチル、酢酸プロピル、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエタン、クロロベンゼンなどが挙げられる。中でも、溶解性が高いことからエーテル類およびハロゲン化炭化水素類が好ましく、特に、1,2-ジメトキシエタンおよび塩化メチレンが特に好ましく用いられる。これら溶媒は単独で用いても、2種以上を組み合わせて用いてもよい。 In the copolymerization, a solvent can be used as necessary. The solvent used is not particularly limited as long as it does not react with the chiral epoxide, carbon dioxide, catalyst and cocatalyst used. For example, hydrocarbons, ethers, esters, ketones, halogenated hydrocarbons And the like. Specifically, hexane, benzene, toluene, xylene, cyclohexane, 1,2-dimethoxyethane, dibutyl ether, tetrahydrofuran, 1,4-dioxane, methyl acetate, ethyl acetate, propyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone , Methylene chloride, chloroform, dichloroethane, trichloroethane, chlorobenzene and the like. Of these, ethers and halogenated hydrocarbons are preferred because of their high solubility, and 1,2-dimethoxyethane and methylene chloride are particularly preferred. These solvents may be used alone or in combination of two or more.
 溶媒を使用する場合の使用量としては、前記キラルエポキシド100質量部に対して50~10000質量部であることが好ましく、100~5000質量部であることがより好ましい。 When the solvent is used, the amount used is preferably 50 to 10,000 parts by mass, more preferably 100 to 5000 parts by mass with respect to 100 parts by mass of the chiral epoxide.
 前記共重合は、加圧可能な公知の重合反応装置、例えば、オートクレーブを用いて行うことができる。前記共重合は、酸素などの影響を排除するために不活性雰囲気下で実施することが好ましい。
 共重合の反応温度は、副生成物である環状カーボネートの生成反応を抑制する観点、および反応時間を短縮する観点から、0℃~100℃であることが好ましく、10℃~90℃であることがより好ましく、20℃~60℃であることがさらにより好ましい。反応時間は、反応条件により異なるが、通常、1~100時間である。
The copolymerization can be carried out using a known polymerization reactor capable of being pressurized, for example, an autoclave. The copolymerization is preferably carried out in an inert atmosphere in order to eliminate the influence of oxygen and the like.
The copolymerization reaction temperature is preferably 0 ° C. to 100 ° C. from the viewpoint of suppressing the formation reaction of the cyclic carbonate as a by-product and shortening the reaction time, and preferably 10 ° C. to 90 ° C. Is more preferable, and it is even more preferable that the temperature is 20 to 60 ° C. The reaction time varies depending on the reaction conditions, but is usually 1 to 100 hours.
 かくして得られる鎖状ポリカーボネートは、不斉炭素を含む光学異性体を繰返し単位とするポリカーボネートであって、一つのポリマー鎖中、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位のうちの1種類の繰返し単位を多量に含む領域と、前記1種類の繰返し単位とは異なる繰返し単位を多量に含む領域とを有する。この鎖状ポリカーボネートは、前記反応終了後、常法により濃縮、乾燥して単離することができる。また、カラムクロマトグラフィーなどの周知の手段を用いて、前記鎖状ポリカーボネートを更に精製してもよい。 The chain polycarbonate thus obtained is a polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and is one of a plurality of types of repeating units having different absolute configurations of the asymmetric carbon center in one polymer chain. A region including a large amount of repeating units of a type and a region including a large amount of repeating units different from the one type of repeating unit. This chain polycarbonate can be isolated by concentrating and drying by a conventional method after completion of the reaction. Further, the chain polycarbonate may be further purified using a known means such as column chromatography.
 前記共重合により得られる鎖状ポリカーボネートの分子量は、ゲルパーミエーションクロマトグラフィー(GPC;ポリスチレン換算)によって測定した典型的な数平均分子量(Mn)では、例えば1000以上であり、好ましくは2,000~1,000,000であり、より好ましくは3,000~100,000である。 The molecular weight of the chain polycarbonate obtained by the copolymerization is, for example, 1000 or more, preferably 2,000 to 1,000, as a typical number average molecular weight (Mn) measured by gel permeation chromatography (GPC; converted to polystyrene). 1,000,000, more preferably 3,000 to 100,000.
 また、前記共重合により得られる鎖状ポリカーボネートは、比較的狭い分子量分布(Mw/Mn)を有し得る。具体的には、例えば4以下であり、好ましくは2.5以下であり、より好ましくは、1.0~1.6である。 Further, the chain polycarbonate obtained by the copolymerization may have a relatively narrow molecular weight distribution (Mw / Mn). Specifically, for example, it is 4 or less, preferably 2.5 or less, and more preferably 1.0 to 1.6.
 前記共重合の一態様によれば、例えば、前記触媒等を適宜選択し、モノマー原料として光学異性体の一方のみを用いてこれを完全に反応させた後、もう一方の光学異性体のみをさらに反応系に加えて、引き続き反応させることによって、実質的に一方の光学異性体モノマーのみで構成されている領域と、もう一方の光学異性体モノマーのみで構成されている領域とを有するステレオブロックポリマーを製造することができる。 According to one aspect of the copolymerization, for example, the catalyst or the like is appropriately selected, and after using only one of the optical isomers as a monomer raw material to completely react this, only the other optical isomer is further added. In addition to the reaction system, a stereo block polymer having a region substantially composed only of one optical isomer monomer and a region composed only of the other optical isomer monomer by continuing the reaction Can be manufactured.
 また、前記共重合の別の態様によれば、例えば、重合反応における種々の選択性を有する前記触媒を適宜選択し、モノマー原料としてラセミ体を用いることによって、一方の光学異性体モノマーがもう一方の光学異性体モノマーより多量に含まれているように構成されている領域と、それら光学異性体モノマーの量的関係が逆転している領域とを有するステレオグラジエントポリマーを製造することができる。 Further, according to another aspect of the copolymerization, for example, by appropriately selecting the catalyst having various selectivity in the polymerization reaction and using a racemate as a monomer raw material, one optical isomer monomer is converted to the other. A stereogradient polymer having a region configured to be contained in a larger amount than the optical isomer monomer and a region in which the quantitative relationship of the optical isomer monomer is reversed can be produced.
 本発明にかかる耐熱安定性に優れたポリカーボネートは、同一ポリマー鎖中に不斉炭素中心の絶対配置の異なる複数の領域を有する鎖状ポリカーボネートが溶解した溶液と、前記鎖状ポリカーボネートを溶解しない溶媒との混合溶液から析出して得ることができる。 The polycarbonate having excellent heat stability according to the present invention includes a solution in which a chain polycarbonate having a plurality of regions having different asymmetric carbon center absolute configurations in the same polymer chain, a solvent that does not dissolve the chain polycarbonate, It can be obtained by precipitation from a mixed solution.
 本発明において、ポリカーボネートに対する「溶解」とは、ポリカーボネートが完全に溶解すること、ポリカーボネートが完全には溶解しないが部分的に溶解すること、および、ポリカーボネートが膨潤することを意味する。 In the present invention, “dissolution” with respect to polycarbonate means that the polycarbonate is completely dissolved, the polycarbonate is not completely dissolved but partially dissolved, and the polycarbonate is swollen.
 本発明において、ポリカーボネートの「析出」とは、ポリカーボネートが完全にまたは部分的に溶解した溶液から、ポリカーボネートが完全にまたは部分的に出現すること、および、膨潤したポリカーボネートが溶媒に浸漬した状態から、ろ過などにより溶媒が除去されて、膨潤したポリカーボネートが露出することを意味する。 In the present invention, “precipitation” of the polycarbonate means that the polycarbonate appears completely or partially from a solution in which the polycarbonate is completely or partially dissolved, and that the swollen polycarbonate is immersed in the solvent. It means that the solvent is removed by filtration or the like, and the swollen polycarbonate is exposed.
 本発明に用いられる鎖状ポリカーボネートを溶解する溶媒としては、例えば、芳香族炭化水素類、エーテル類、エステル類、ケトン類、ハロゲン化炭化水素類などを挙げることができる。具体的には、ベンゼン、トルエン、キシレン、ジブチルエーテル、テトラヒドロフラン、1,4-ジオキサン、酢酸メチル、酢酸エチル、酢酸プロピル、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン、塩化メチレン、クロロホルム、ジクロロエタン、トリクロロエタン、クロロベンゼンなどが挙げられる。これらの中でも、溶解性が高い観点からエステル類が好ましく、特に、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチルが好ましく用いられる。これら前記ポリカーボネートを溶解する溶媒は単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。 Examples of the solvent for dissolving the chain polycarbonate used in the present invention include aromatic hydrocarbons, ethers, esters, ketones, halogenated hydrocarbons and the like. Specifically, benzene, toluene, xylene, dibutyl ether, tetrahydrofuran, 1,4-dioxane, methyl acetate, ethyl acetate, propyl acetate, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone, methylene chloride, chloroform, dichloroethane, trichloroethane, chlorobenzene Etc. Among these, esters are preferable from the viewpoint of high solubility, and methyl lactate, ethyl lactate, methyl acetate, and ethyl acetate are particularly preferably used. These solvents for dissolving the polycarbonate may be used alone or in combination of two or more.
 前記溶媒の使用量としては、ポリカーボネート100質量部に対して50~10000質量部であることが好ましく、100~5000質量部であることがより好ましい。 The amount of the solvent used is preferably 50 to 10,000 parts by mass, more preferably 100 to 5000 parts by mass with respect to 100 parts by mass of the polycarbonate.
 前記ポリカーボネートを溶解しない溶媒としては、例えば、メチルアルコール、エチルアルコール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコールなどのアルコール系溶媒、ペンタン、ヘキサン、オクタン、デカン、シクロヘキサンなどの脂肪族炭化水素系溶媒および水などが挙げられる。これらの中でも、得られるポリカーボネートの耐熱安定性向上の効果が高い観点からアルコール系溶媒が好ましく、特に、メチルアルコール、エチルアルコールおよびイソプロピルアルコールが好適に用いられる。これら前記ポリカーボネートを溶解しない溶媒は単独で用いてもよいし、あるいは2種以上を組み合わせて用いてもよい。 Examples of the solvent that does not dissolve the polycarbonate include alcohol solvents such as methyl alcohol, ethyl alcohol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, pentane, Examples thereof include aliphatic hydrocarbon solvents such as hexane, octane, decane, and cyclohexane, and water. Among these, alcohol-based solvents are preferable from the viewpoint of improving the heat resistance stability of the obtained polycarbonate, and methyl alcohol, ethyl alcohol, and isopropyl alcohol are particularly preferably used. These solvents that do not dissolve the polycarbonate may be used alone or in combination of two or more.
 前記ポリカーボネートを溶解しない溶媒の使用量としては、ポリカーボネート100質量部に対して50~100000質量部であることが好ましく、100~50000質量部であることがより好ましい。 The amount of the solvent that does not dissolve the polycarbonate is preferably 50 to 100,000 parts by mass, more preferably 100 to 50,000 parts by mass with respect to 100 parts by mass of the polycarbonate.
 本発明に用いられる鎖状ポリカーボネートが溶解した溶液と、前記鎖状ポリカーボネートを溶解しない溶媒とを混合して、耐熱安定性に優れたポリカーボネートを析出させる具体的方法としては、例えば、前記鎖状ポリカーボネートを溶解させた溶液を前記鎖状ポリカーボネートを溶解しない溶媒に加えてポリカーボネートを析出させた後、デカンテーションやろ過し、公知の方法で乾燥する方法を挙げることができる。また、得られたポリカーボネートを水やメチルアルコールなどで洗浄後、公知の方法で乾燥してもよい。 A specific method for precipitating a polycarbonate having excellent heat resistance stability by mixing a solution in which the chain polycarbonate used in the present invention is dissolved with a solvent that does not dissolve the chain polycarbonate is, for example, the chain polycarbonate. A method in which the solution in which the solution is dissolved is added to a solvent that does not dissolve the chain polycarbonate to precipitate the polycarbonate, followed by decantation, filtration, and drying by a known method. The obtained polycarbonate may be washed with water or methyl alcohol and then dried by a known method.
 本発明において、耐熱安定性が向上する理由は詳らかではないが、同一ポリマー鎖中に不斉炭素中心の絶対配置の異なる領域を有する鎖状ポリカーボネート中、不斉炭素中心の絶対配置の異なる領域がファンデルワールス結合するのに好都合なコンフォメーションをとること、および、不斉炭素中心の絶対配置の異なる領域が、同一ポリマー鎖中に存在しているので、コンフォメーションの生成が促進するためであると考えられる。 In the present invention, the reason why the heat stability is improved is not clear, but in a chain polycarbonate having regions having different absolute configurations of asymmetric carbon centers in the same polymer chain, regions having different absolute configurations of asymmetric carbon centers are present. This is because a conformation favorable for van der Waals bonding is adopted, and formation of conformation is promoted because regions having different absolute configurations of asymmetric carbon centers exist in the same polymer chain. it is conceivable that.
 以下に実施例を示すが、本発明はこれらに限定されるものではない。
 なお、本実施例等で得られたポリカーボネートの数平均分子量(Mn)および分子量分布(Mw/Mn)は、ゲルパーミエーションクロマトグラフィー(ジーエルサイエンス社製高速液体クロマトグラフィーシステムDG660B・PU713・UV702・RI631A)を用いて、THF中40℃にて測定し、標準ポリスチレンを基準にして算出した。
Examples are shown below, but the present invention is not limited thereto.
The number average molecular weight (Mn) and molecular weight distribution (Mw / Mn) of the polycarbonate obtained in this example and the like are determined by gel permeation chromatography (High Performance Liquid Chromatography System DG660B / PU713 / UV702 / RI631A manufactured by GL Sciences Inc.). ) And measured at 40 ° C. in THF, and calculated based on standard polystyrene.
 また、本実施例等で得られたポリカーボネートのH NMRスペクトルの測定は、JEOL社製JNM-ECP500(500MHz)を用いて行った。 Further, the 1 H NMR spectrum of the polycarbonate obtained in this example was measured using JNM-ECP500 (500 MHz) manufactured by JEOL.
 さらに、本実施例等で得られたポリカーボネートの耐熱安定性の測定は、エスアイアイ・ナノテクノロジー社製TG/DTA6200を用い、窒素雰囲気下、20℃/分の昇温速度で室温から350℃まで昇温することで行った。 Furthermore, the measurement of the heat resistance stability of the polycarbonate obtained in this example and the like was performed using a TG / DTA6200 manufactured by SII Nanotechnology, Inc., from room temperature to 350 ° C. at a temperature rising rate of 20 ° C./min. This was done by raising the temperature.
[合成例1]
 触媒を、特開2010-1443号公報記載の方法に従って合成した。
Figure JPOXMLDOC01-appb-C000006
[Synthesis Example 1]
The catalyst was synthesized according to the method described in JP2010-1443A.
Figure JPOXMLDOC01-appb-C000006
 アルゴンガス雰囲気下、20mL容のシュレンク管に酢酸コバルト72mg(0.41mmol)、配位子(5-1)256mg(0.41mmol)、ジクロロメタン5mLを入れ、室温で3時間攪拌した。氷酢酸160μLを加え、空気下で3.5時間攪拌した。減圧下で揮発成分を除き、十分に乾燥させた後、ペンタフルオロ安息香酸173mg(0.82mmol)と塩化メチレン8mLを加え、室温で2時間攪拌した。減圧下で塩化メチレンを除き,コバルト錯体(4-1)を定量的に得た。 Under an argon gas atmosphere, 72 mg (0.41 mmol) of cobalt acetate, 256 mg (0.41 mmol) of ligand (5-1) and 5 mL of dichloromethane were placed in a 20 mL Schlenk tube, and the mixture was stirred at room temperature for 3 hours. Glacial acetic acid (160 μL) was added, and the mixture was stirred under air for 3.5 hours. After removing volatile components under reduced pressure and drying sufficiently, 173 mg (0.82 mmol) of pentafluorobenzoic acid and 8 mL of methylene chloride were added, and the mixture was stirred at room temperature for 2 hours. Cobalt complex (4-1) was quantitatively obtained by removing methylene chloride under reduced pressure.
[合成例2]
 アルゴン導入管、温度計を備え、あらかじめアルゴンガスで置換した耐圧反応容器(50mL)に、合成例1で得られたコバルト錯体(4-1)16.7mg(0.0143mmol)、ラセミ混合物のプロピレンオキシド1.0mL(14.3mmol)、1,2-ジメトキシエタン1.0mLを入れ、二酸化炭素を1.4MPaまで圧入して25℃で96時間撹拌した。その後、二酸化炭素圧を抜き、反応容器内に残った固体状の粗生成物を得た。塩化メチレン10mLを加えて溶解させ、1M塩酸2mLで2回洗浄した後、塩化メチレン層を単離した。硫酸ナトリウム2gを加えて乾燥させた後、ろ過し、ろ液を濃縮した後、メタノール10mLに注ぎ、ポリマーを析出させた。その後、ろ過し、25℃で減圧乾燥してステレオグラジエントポリマーであるポリカーボネート1.35gを得た。
 収率93%、Mn=13,800、Mw/Mn=1.15
[Synthesis Example 2]
Into a pressure-resistant reaction vessel (50 mL) equipped with an argon introduction tube and a thermometer and previously substituted with argon gas, 16.7 mg (0.0143 mmol) of the cobalt complex (4-1) obtained in Synthesis Example 1 and propylene of a racemic mixture 1.0 mL (14.3 mmol) of oxide and 1.0 mL of 1,2-dimethoxyethane were added, carbon dioxide was injected to 1.4 MPa, and the mixture was stirred at 25 ° C. for 96 hours. Thereafter, the carbon dioxide pressure was released to obtain a solid crude product remaining in the reaction vessel. 10 mL of methylene chloride was added and dissolved, and after washing twice with 2 mL of 1M hydrochloric acid, the methylene chloride layer was isolated. 2 g of sodium sulfate was added and dried, followed by filtration. The filtrate was concentrated and then poured into 10 mL of methanol to precipitate a polymer. Then, it filtered and dried under reduced pressure at 25 degreeC, and obtained 1.35g of polycarbonate which is a stereogradient polymer.
Yield 93%, Mn = 13,000, Mw / Mn = 1.15
[合成例3]
 アルゴン導入管、温度計を備え、あらかじめアルゴンガスで置換した耐圧反応容器(50mL)に、合成例1で得られたコバルト錯体(4-1)16.7mg(0.0143mmol)、(S)-プロピレンオキシド0.50mL(7.15mmol)、1,2-ジメトキシエタン1.0mLを入れ、二酸化炭素を1.4MPaまで圧入して25℃で97時間撹拌した。その後、二酸化炭素圧を抜き,アルゴン下で内容物を少量採取し、そのNMR測定によって(S)-プロピレンオキシドが完全に消費されたことを確認した[共重合体選択性98%]。
 次に、上記耐圧反応容器にアルゴン下で(R)-プロピレンオキシド0.50mL(7.15mmol)を加え、二酸化炭素を1.4MPaまで再圧入して、更に、25℃で108時間撹拌した。その後、合成例2と同様の操作を行い、ステレオブロックポリマーであるポリカーボネート1.01gを得た。
 収率69%、Mn=9,700、Mw/Mn=1.16
[Synthesis Example 3]
Into a pressure resistant reaction vessel (50 mL) equipped with an argon inlet tube and a thermometer and previously substituted with argon gas, 16.7 mg (0.0143 mmol) of the cobalt complex (4-1) obtained in Synthesis Example 1 (S) — Propylene oxide (0.50 mL, 7.15 mmol) and 1,2-dimethoxyethane (1.0 mL) were added, carbon dioxide was injected to 1.4 MPa, and the mixture was stirred at 25 ° C. for 97 hours. Thereafter, the carbon dioxide pressure was released, and a small amount of the contents were collected under argon, and it was confirmed by NMR measurement that (S) -propylene oxide was completely consumed [copolymer selectivity 98%].
Next, 0.50 mL (7.15 mmol) of (R) -propylene oxide was added to the above pressure-resistant reaction vessel under argon, carbon dioxide was reinjected to 1.4 MPa, and the mixture was further stirred at 25 ° C. for 108 hours. Then, operation similar to the synthesis example 2 was performed, and 1.01 g of polycarbonate which is a stereo block polymer was obtained.
Yield 69%, Mn = 9,700, Mw / Mn = 1.16
[合成例4]
 アルゴン導入管、温度計を備え、あらかじめアルゴンガスで置換した耐圧反応容器(50mL)に、文献(Journal of the American Chemical Society,Vol.127,p.10877(2005))に記載の方法で合成したペンタフルオロベンゾエート-コバルト錯体23.0mg(0.029mmol)、ビス(トリフェニルホスフォラニリデン)アンモニウムクロリド(PPNCl)16.0mg(0.029mmol)、(S)-プロピレンオキシド2.0mL(29.0mmol)を入れ、二酸化炭素を2.0MPaまで圧入して25℃で25分間撹拌した。その後、合成例2と同様の操作を行い、(S)-ポリプロピレンカーボネートであるポリカーボネート0.97gを得た。
 収率33%、Mn=13,600、Mw/Mn=1.17
[Synthesis Example 4]
Synthesized by a method described in the literature (Journal of the American Chemical Society, Vol. 127, p. 10877 (2005)) in a pressure-resistant reaction vessel (50 mL) equipped with an argon introduction tube and a thermometer and previously substituted with argon gas. 23.0 mg (0.029 mmol) of pentafluorobenzoate-cobalt complex, 16.0 mg (0.029 mmol) of bis (triphenylphosphoranylidene) ammonium chloride (PPNCl), 2.0 mL of (S) -propylene oxide (29. 0 mmol), carbon dioxide was injected to 2.0 MPa, and the mixture was stirred at 25 ° C. for 25 minutes. Thereafter, the same operation as in Synthesis Example 2 was performed to obtain 0.97 g of (S) -polypropylene carbonate polycarbonate.
Yield 33%, Mn = 13,600, Mw / Mn = 1.17
[合成例5]
 アルゴン導入管、温度計を備え、あらかじめアルゴンガスで置換した耐圧反応容器(50mL)に、文献(Journal of the American Chemical Society、Vol.127,p.10877(2005))に記載の方法で合成したペンタフルオロベンゾエート-コバルト錯体23.0mg(0.029mmol)、(R)-プロピレンオキシド2.0mL(29.0mmol)を入れ、二酸化炭素を2.0MPaまで圧入して25℃で2時間撹拌した。その後、合成例2と同様の操作を行い、(R)-ポリプロピレンカーボネートであるポリカーボネート1.15gを得た。
 収率39%、Mn=12,800、Mw/Mn=1.15
[Synthesis Example 5]
Synthesized by a method described in the literature (Journal of the American Chemical Society, Vol. 127, p. 10877 (2005)) in a pressure-resistant reaction vessel (50 mL) equipped with an argon introduction tube and a thermometer and previously substituted with argon gas. 23.0 mg (0.029 mmol) of pentafluorobenzoate-cobalt complex and 2.0 mL (29.0 mmol) of (R) -propylene oxide were added, carbon dioxide was injected to 2.0 MPa, and the mixture was stirred at 25 ° C. for 2 hours. Thereafter, the same operation as in Synthesis Example 2 was performed to obtain 1.15 g of polycarbonate which was (R) -polypropylene carbonate.
Yield 39%, Mn = 12,800, Mw / Mn = 1.15
[実施例1]
 5mLのナスフラスコに、合成例2で得られたポリカーボネート100mgおよび酢酸エチル0.5mLを加えて撹拌し、完全に溶解させた。その後、その溶液全量をメチルアルコール50mL中に加えてポリマーを析出させ、析出したポリマーをろ過した後、メチルアルコール10mLで洗浄し、25℃で24時間減圧乾燥することによりステレオグラジエントポリマーであるポリカーボネート85mgを得た(サンプル1)。
[Example 1]
To a 5 mL eggplant flask, 100 mg of the polycarbonate obtained in Synthesis Example 2 and 0.5 mL of ethyl acetate were added and stirred to completely dissolve. Thereafter, the total amount of the solution was added to 50 mL of methyl alcohol to precipitate a polymer. The precipitated polymer was filtered, washed with 10 mL of methyl alcohol, and dried under reduced pressure at 25 ° C. for 24 hours to obtain 85 mg of a polycarbonate which is a stereogradient polymer. (Sample 1).
[実施例2]
 実施例1において、合成例2で得られたポリカーボネート100mgに代えて合成例3で得られたポリカーボネート100mgを用いた以外は、実施例1と同様にしてステレオブロックポリマーであるポリカーボネート87mgを得た(サンプル2)。
[Example 2]
In Example 1, except that 100 mg of the polycarbonate obtained in Synthesis Example 3 was used in place of 100 mg of the polycarbonate obtained in Synthesis Example 2, 87 mg of a polycarbonate which is a stereo block polymer was obtained in the same manner as in Example 1 ( Sample 2).
[比較例1]
 100mLのナスフラスコに、合成例2で得られたポリカーボネート100mgおよび酢酸エチル10mLを加えて撹拌し、完全に溶解させた。その後、25℃で24時間減圧乾燥することによりステレオグラジエントポリマーであるポリカーボネート100mgを得た(サンプル3)。
[Comparative Example 1]
To the 100 mL eggplant flask, 100 mg of the polycarbonate obtained in Synthesis Example 2 and 10 mL of ethyl acetate were added and stirred to completely dissolve. Then, 100 mg of polycarbonate which is a stereo gradient polymer was obtained by drying under reduced pressure at 25 ° C. for 24 hours (Sample 3).
[比較例2]
 比較例1において、合成例2で得られたポリカーボネート100mgに代えて合成例3で得られたポリカーボネート100mgを用いた以外は、比較例1と同様にしてステレオブロックポリマーであるポリカーボネート100mgを得た(サンプル4)。
[Comparative Example 2]
In Comparative Example 1, 100 mg of a polycarbonate, which is a stereoblock polymer, was obtained in the same manner as in Comparative Example 1, except that 100 mg of the polycarbonate obtained in Synthesis Example 3 was used instead of 100 mg of the polycarbonate obtained in Synthesis Example 2. Sample 4).
[比較例3]
 5mLのナスフラスコに、合成例4で得られたポリカーボネート50mg、合成例5で得られたポリカーボネート50mgおよび酢酸エチル0.5mLを加えて撹拌し、完全に溶解させた。その後、その溶液全量をメチルアルコール50mL中に加えてポリマーを析出させ、析出したポリマーをろ過した後、メチルアルコール10mLで洗浄し、25℃で24時間減圧乾燥することにより(S)-ポリプロピレンカーボネートと(R)-ポリプロピレンカーボネートの混合物であるポリカーボネート90mgを得た(サンプル5)。
[Comparative Example 3]
In a 5 mL eggplant flask, 50 mg of the polycarbonate obtained in Synthesis Example 4, 50 mg of the polycarbonate obtained in Synthesis Example 5 and 0.5 mL of ethyl acetate were added and stirred to dissolve completely. Thereafter, the total amount of the solution was added to 50 mL of methyl alcohol to precipitate a polymer. The precipitated polymer was filtered, washed with 10 mL of methyl alcohol, and dried under reduced pressure at 25 ° C. for 24 hours to obtain (S) -polypropylene carbonate. 90 mg of polycarbonate which is a mixture of (R) -polypropylene carbonate was obtained (Sample 5).
[比較例4]
 100mLのナスフラスコに、合成例4で得られたポリカーボネート50mg、合成例5で得られたポリカーボネート50mgおよび酢酸エチル10mLを加えて撹拌し、完全に溶解させた。その後、25℃で24時間減圧乾燥することにより(S)-ポリプロピレンカーボネートと(R)-ポリプロピレンカーボネートの混合物であるポリカーボネート100mgを得た(サンプル6)。
[Comparative Example 4]
To a 100 mL eggplant flask, 50 mg of the polycarbonate obtained in Synthesis Example 4, 50 mg of the polycarbonate obtained in Synthesis Example 5 and 10 mL of ethyl acetate were added and stirred to completely dissolve. Thereafter, the resultant was dried under reduced pressure at 25 ° C. for 24 hours to obtain 100 mg of a polycarbonate which was a mixture of (S) -polypropylene carbonate and (R) -polypropylene carbonate (Sample 6).
[耐熱安定性の評価]
 実施例1~2、比較例1~4で得られたサンプル1~6のポリカーボネートを用いて耐熱安定性を評価した。表1にその結果を、図2~4に熱重量分析曲線を示す。
[Evaluation of heat stability]
The heat resistance stability was evaluated using the polycarbonates of Samples 1 to 6 obtained in Examples 1 and 2 and Comparative Examples 1 to 4. The results are shown in Table 1, and the thermogravimetric analysis curves are shown in FIGS.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
 実施例1で得られたサンプル1のポリカーボネートは、比較例1で得られたサンプル3のポリカーボネートと比較して、大きく向上した熱分解温度を示した。
 同様に、実施例2で得られたサンプル2のポリカーボネートも、比較例2で得られたサンプル4のポリカーボネートと比較して大きく向上した熱分解温度を示した。
 一方、比較例3および比較例4で得られたサンプル5および6のポリカーボネートは、サンプル1~4のポリカーボネートと比較して、低い熱分解温度を示し、析出処理を行っても、熱分解温度の変化が全く見られなかった。
 すなわち、析出処理により熱分解温度が向上するのは、同一ポリマー鎖中に不斉炭素中心の絶対配置の異なる領域を有する鎖状ポリカーボネートに特有の現象であることがわかる。
The polycarbonate of Sample 1 obtained in Example 1 showed a greatly improved thermal decomposition temperature as compared with the polycarbonate of Sample 3 obtained in Comparative Example 1.
Similarly, the polycarbonate of Sample 2 obtained in Example 2 also showed a greatly improved thermal decomposition temperature compared to the polycarbonate of Sample 4 obtained in Comparative Example 2.
On the other hand, the polycarbonates of Samples 5 and 6 obtained in Comparative Example 3 and Comparative Example 4 showed a lower thermal decomposition temperature than the polycarbonates of Samples 1 to 4, and even if the precipitation treatment was performed, No change was seen.
That is, it can be understood that the thermal decomposition temperature is improved by the precipitation treatment, which is a phenomenon peculiar to the chain polycarbonate having regions having different absolute configurations of asymmetric carbon centers in the same polymer chain.
 かくして、本発明によれば、透明性を有し、かつ所定温度以上に加熱すると完全に分解するポリカーボネートに耐熱安定性を付与することができる。 Thus, according to the present invention, heat resistance stability can be imparted to a polycarbonate that is transparent and completely decomposes when heated to a predetermined temperature or higher.

Claims (3)

  1.  不斉炭素を含む光学異性体を繰返し単位とするポリカーボネートであって、一つのポリマー鎖中、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位のうちの1種類の繰返し単位を多量に含む領域と、前記1種類の繰返し単位とは異なる繰返し単位を多量に含む領域とを有する鎖状ポリカーボネートが溶解した溶液と、前記鎖状ポリカーボネートを溶解しない溶媒との混合溶液から析出して得ることができる、耐熱安定性ポリカーボネート。 A polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and one polymer chain containing a large amount of one type of repeating unit having a different absolute configuration of the asymmetric carbon center. It can be obtained by precipitation from a mixed solution of a solution in which a chain polycarbonate having a region and a region containing a large amount of a repeating unit different from the one type of repeating unit is dissolved, and a solvent that does not dissolve the chain polycarbonate. Heat resistant and stable polycarbonate.
  2.  前記鎖状ポリカーボネートが、ポリプロピレンカーボネートである請求項1に記載の耐熱安定性ポリカーボネート。 The heat-stable polycarbonate according to claim 1, wherein the chain polycarbonate is polypropylene carbonate.
  3.  不斉炭素を含む光学異性体を繰返し単位とするポリカーボネートであって、一つのポリマー鎖中、不斉炭素中心の絶対配置の異なる複数種類の繰返し単位のうちの1種類の繰返し単位を多量に含む領域と、前記1種類の繰返し単位とは異なる繰返し単位を多量に含む領域とを含む鎖状ポリカーボネートを、前記鎖状ポリカーボネートを溶解する溶媒に溶解させて、ポリカーボネート溶液を作製する工程;および
     前記ポリカーボネート溶液と、前記鎖状ポリカーボネートを溶解しない溶媒とを混合して、ポリカーボネートを析出させる工程を含み、
     これによって、前記鎖状ポリカーボネートの耐熱安定性よりも高い耐熱安定性を有する耐熱安定性ポリカーボネートを製造する方法。
    A polycarbonate having an optical isomer containing an asymmetric carbon as a repeating unit, and one polymer chain containing a large amount of one type of repeating unit having a different absolute configuration at the asymmetric carbon center. Dissolving a chain polycarbonate containing a region and a region containing a large amount of a repeating unit different from the one type of repeating unit in a solvent that dissolves the chain polycarbonate to produce a polycarbonate solution; and the polycarbonate Mixing the solution with a solvent that does not dissolve the chain polycarbonate, and precipitating the polycarbonate,
    A method for producing a heat-stable polycarbonate having a heat stability higher than that of the chain polycarbonate.
PCT/JP2012/050621 2011-01-28 2012-01-13 Polycarbonate having outstanding heat-resistance stability and process for producing same WO2012102101A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012554721A JPWO2012102101A1 (en) 2011-01-28 2012-01-13 Polycarbonate excellent in heat stability and method for producing the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-016798 2011-01-28
JP2011016798 2011-01-28

Publications (1)

Publication Number Publication Date
WO2012102101A1 true WO2012102101A1 (en) 2012-08-02

Family

ID=46580673

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050621 WO2012102101A1 (en) 2011-01-28 2012-01-13 Polycarbonate having outstanding heat-resistance stability and process for producing same

Country Status (2)

Country Link
JP (1) JPWO2012102101A1 (en)
WO (1) WO2012102101A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268092A (en) * 1994-03-31 1995-10-17 Mitsui Toatsu Chem Inc Production of polycarbonate
JPH09291143A (en) * 1996-04-25 1997-11-11 Idemitsu Petrochem Co Ltd Production of polycarbonate powder
WO2008150033A1 (en) * 2007-06-08 2008-12-11 The University Of Tokyo Epoxide-carbon dioxide stereoselective alternating copolymer
JP2009215529A (en) * 2008-02-14 2009-09-24 Keio Gijuku Method for producing polycarbonate resin
JP2010001443A (en) * 2008-06-23 2010-01-07 Univ Of Tokyo Stereoselective alternating copolymerization of epoxide and carbon dioxide

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07268092A (en) * 1994-03-31 1995-10-17 Mitsui Toatsu Chem Inc Production of polycarbonate
JPH09291143A (en) * 1996-04-25 1997-11-11 Idemitsu Petrochem Co Ltd Production of polycarbonate powder
WO2008150033A1 (en) * 2007-06-08 2008-12-11 The University Of Tokyo Epoxide-carbon dioxide stereoselective alternating copolymer
JP2009215529A (en) * 2008-02-14 2009-09-24 Keio Gijuku Method for producing polycarbonate resin
JP2010001443A (en) * 2008-06-23 2010-01-07 Univ Of Tokyo Stereoselective alternating copolymerization of epoxide and carbon dioxide

Also Published As

Publication number Publication date
JPWO2012102101A1 (en) 2014-06-30

Similar Documents

Publication Publication Date Title
Hung et al. Preparation, characterization, and catalytic studies of magnesium complexes supported by NNO-tridentate Schiff-base ligands
JPWO2008150033A1 (en) Stereoselective alternating copolymerization of epoxides with carbon dioxide.
JP4590284B2 (en) Method for producing polycarbonate
JP2013520493A (en) Nitrate anion carbon dioxide / epoxide copolymerization catalyst system
JP2010001443A (en) Stereoselective alternating copolymerization of epoxide and carbon dioxide
JP2009215529A (en) Method for producing polycarbonate resin
CN114478635A (en) Chromium compound, preparation method thereof and preparation method of multi-block polyester material
JP2014185260A (en) Carbon dioxide/epoxide copolymer having crystallinity and manufacturing method therefor
WO2012102101A1 (en) Polycarbonate having outstanding heat-resistance stability and process for producing same
JP2013108074A (en) Polyalkylene carbonate diol having cyclic alkylene group, copolymer there of, and method for producing them
Babu et al. Versatile metal complexes of 2, 5-bis {N-(2, 6-di isopropylphenyl) iminomethyl} pyrrole for epoxide–CO 2 coupling and ring opening polymerization of ε-caprolactone
WO2021200952A1 (en) Thermoplastic resin having carbonate bond
JP2011213982A (en) Method for producing polycarbonate using metal complex, the metal complex, and catalyst system including the metal complex
CN101279986B (en) Synthetic method of axis-unsymmetric chiral diphosphine ligand
JP5140878B2 (en) Method for recovering polycarbonate polymerization catalyst
JP2019151770A (en) Polycarbonate cyclic body and method for producing polycarbonate
US8981024B2 (en) Olefin metathesis
KR20140069057A (en) Catalysts for producing carbonates from epoxides and co2
JP2014201717A (en) Polycarbonate production method
JP5797497B2 (en) Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same
JP2019127442A (en) Method for producing alicyclic carbonate
JP2010270278A (en) Cobalt complex, catalyst system including the complex, and method for copolymerizing epoxide compound and carbon dioxide using the complex
JP6021002B2 (en) Polyetherketone and method for producing the same
JP5473516B2 (en) Method for producing polyallyl ether solution
WO2016056669A1 (en) Solid-supported ruthenium-diamine complex, and method for manufacturing optically active compound

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12738840

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554721

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12738840

Country of ref document: EP

Kind code of ref document: A1