JP5797497B2 - Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same - Google Patents

Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same Download PDF

Info

Publication number
JP5797497B2
JP5797497B2 JP2011186600A JP2011186600A JP5797497B2 JP 5797497 B2 JP5797497 B2 JP 5797497B2 JP 2011186600 A JP2011186600 A JP 2011186600A JP 2011186600 A JP2011186600 A JP 2011186600A JP 5797497 B2 JP5797497 B2 JP 5797497B2
Authority
JP
Japan
Prior art keywords
group
rhodium complex
formula
substituted
general formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011186600A
Other languages
Japanese (ja)
Other versions
JP2013047198A (en
Inventor
三田 文雄
文雄 三田
雅士 塩月
雅士 塩月
夏博 佐野
夏博 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyoto University
Nippon Chemical Industrial Co Ltd
Original Assignee
Kyoto University
Nippon Chemical Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyoto University, Nippon Chemical Industrial Co Ltd filed Critical Kyoto University
Priority to JP2011186600A priority Critical patent/JP5797497B2/en
Publication of JP2013047198A publication Critical patent/JP2013047198A/en
Application granted granted Critical
Publication of JP5797497B2 publication Critical patent/JP5797497B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、三座配位子ロジウム錯体、その製造方法、置換アセチレン重合開始剤及びそれを用いた置換ポリアセチレン誘導体の製造方法に関するものである。   The present invention relates to a tridentate ligand rhodium complex, a method for producing the same, a substituted acetylene polymerization initiator, and a method for producing a substituted polyacetylene derivative using the same.

置換ポリアセチレンは、主鎖に特異的な共役ポリエチレン構造を有しており、主鎖の立体的構造や側鎖の置換基を制御することで、導電性、エレクトロルミネッセンス、らせん状構造の形成といったさまざまな特性や機能を発現することが知られている。   Substituted polyacetylene has a conjugated polyethylene structure specific to the main chain. By controlling the three-dimensional structure of the main chain and the substituents on the side chain, various forms such as formation of conductivity, electroluminescence, and helical structure It is known to express various characteristics and functions.

らせん状構造を有するポリマーはキラルセンサー、光学分割剤等の用途に対して特に注目されている材料である(例えば、下記特許文献1〜3参照)。   Polymers having a helical structure are materials that are particularly attracting attention for uses such as chiral sensors and optical resolution agents (see, for example, Patent Documents 1 to 3 below).

らせん構造を有する置換ポリアセチレンの製造方法として、例えばロジウム系の重合開始剤を用いる方法が提案されている(非特許文献1参照)。しかしながら、非特許文献1の方法によれば重合開始剤の他にキラルアミン系の助触媒を併用して用いらなければならず、また、この助触媒の添加量により微妙にらせんの巻く方向が変化し反応自体を制御することが難しいという問題がある。   As a method for producing a substituted polyacetylene having a helical structure, for example, a method using a rhodium-based polymerization initiator has been proposed (see Non-Patent Document 1). However, according to the method of Non-Patent Document 1, a chiral amine-based cocatalyst must be used in addition to the polymerization initiator, and the direction in which the helix is wound slightly changes depending on the amount of the cocatalyst added. However, there is a problem that it is difficult to control the reaction itself.

本発明者らは、先に下記一般式(A1)及び(A2)で表わされる三座配位子は一置換型のアセチレンモノマーの重合に対して高い触媒活性を示すことを知見し、これを報告した(非特許文献2参照)。
The present inventors have previously found that the tridentate ligands represented by the following general formulas (A1) and (A2) exhibit high catalytic activity for the polymerization of monosubstituted acetylene monomers. Reported (see Non-Patent Document 2).

特開2003−292538号公報JP 2003-292538 A 特開2008−291207号公報JP 2008-291207 A 特開2008−273898号公報JP 2008-273898 A

Journal of the American Chemical Society, (2003),125(21),6346-6347Journal of the American Chemical Society, (2003), 125 (21), 6346-6347 高分子学会予稿集(CD-ROM) Vol.60 No.1 Disk1 Page.ROMBUNNO.1PB034Proceedings of the Society of Polymer Science (CD-ROM) Vol.60 No.1 Disk1 Page.ROMBUNNO.1PB034

本発明者らは、更に新規な置換アセチレンの重合開始剤の検討を進める中で、特定の三座配位子ロジウム錯体を置換アセチレンの重合開始剤として用いると、助触媒と併用することなく、らせん状構造の置換ポリアセチレン誘導体が得られることを見出し、本発明を完成するに到った。   While further studying a novel substituted acetylene polymerization initiator, the present inventors used a specific tridentate ligand rhodium complex as a substituted acetylene polymerization initiator, without using it together with a promoter. The inventors have found that a substituted polyacetylene derivative having a helical structure can be obtained, and have completed the present invention.

即ち、本発明の第1の目的は、らせん状構造の置換ポリアセチレン誘導体も得ることができ、特に置換アセチレンの重合開始剤として有用な新規な三座配位子ロジウム錯体を提供すること。また、本発明の第2の目的は、該三座配位子ロジウム錯体を工業的に有利な方法で提供すること。また、本発明の第3の目的は、該三座配位子ロジウム錯体を用いた置換ポリアセチレン誘導体、特にらせん状構造を有する置換ポリアセチレン誘導体の製造方法を提供することにある。   That is, the first object of the present invention is to provide a novel tridentate rhodium complex useful as a polymerization initiator for a substituted acetylene, in which a substituted polyacetylene derivative having a helical structure can also be obtained. The second object of the present invention is to provide the tridentate ligand rhodium complex in an industrially advantageous manner. A third object of the present invention is to provide a method for producing a substituted polyacetylene derivative using the tridentate ligand rhodium complex, particularly a substituted polyacetylene derivative having a helical structure.

本発明が提供しようする第1の発明は、下記一般式(1)で表わされることを特徴とする三座配位子ロジウム錯体である。
(式中、Rは炭素数1〜5の直鎖状又は分岐状のアルキル基、及びアリール基を示す。R及びRは炭素数1〜5の直鎖状又は分岐状のアルキル基、及びアリール基を示し、但し、RとRで同一の基となることはない。Zは炭素数3〜6のアルキレン基を示す。XはNH又はOを示す。*は不斉炭素原子を示す。)
A first invention to be provided by the present invention is a tridentate rhodium complex represented by the following general formula (1).
(In the formula, R 1 represents a linear or branched alkyl group having 1 to 5 carbon atoms and an aryl group. R 2 and R 3 represent a linear or branched alkyl group having 1 to 5 carbon atoms. , And an aryl group, provided that R 2 and R 3 are not the same group, Z represents an alkylene group having 3 to 6 carbon atoms, X represents NH or O, and * represents an asymmetric carbon. Indicates an atom.)

また、本発明が提供しようとする第2の発明は、下記一般式(2)
(式中、R及びRは炭素数1〜5の直鎖状又は分岐状のアルキル基、及びアリール基を示し、但し、RとRで同一の基となることはない。Zは炭素数3〜5のアルキレン基を示す。XはNH又はOを示す。*は不斉炭素原子を示す。)で表わされるノルボルナジエン化合物と、下記化学式(3)
で表わされるクロロビス(エチレン)ロジウムダイマーとを反応させて、下記一般式(4)
(式中、R、R、Z、X及び*は前記と同義。)で表わされるロジウム錯体を得た後、下記一般式(5)
(式中、Rはアルキル基又はアリール基を示す。)で表わされるホウ酸化合物と反応させることを特徴とする下記一般式(1)
(式中、R、R、R、Z、X及び*は前記と同義)で表わされる三座配位子ロジウム錯体の製造方法である。
The second invention to be provided by the present invention is the following general formula (2).
(In the formula, R 2 and R 3 represent a linear or branched alkyl group having 1 to 5 carbon atoms and an aryl group, provided that R 2 and R 3 are not the same group. Z Represents an alkylene group having 3 to 5 carbon atoms, X represents NH or O, * represents an asymmetric carbon atom, and the following chemical formula (3):
Is reacted with a chlorobis (ethylene) rhodium dimer represented by the following general formula (4):
(In the formula, R 2 , R 3 , Z, X and * are as defined above), and then the following general formula (5)
(In the formula, R 1 represents an alkyl group or an aryl group.) A reaction with a boric acid compound represented by the following general formula (1)
(Wherein R 1 , R 2 , R 3 , Z, X and * are as defined above).

また、本発明が提供しようとする第3の発明は、前記第1の発明の三座配位子ロジウム錯体からなる置換アセチレンの重合開始剤である。   The third invention to be provided by the present invention is a polymerization initiator of substituted acetylene comprising the tridentate rhodium complex of the first invention.

また、本発明が提供しようとする第4の発明は、下記一般式(6)
(式中、Aはアルコキシ基又はアルキル基を示す。n1は0〜3の整数、n2は0又は2を示す。)で表わされる置換アセチレンを、前記第3の発明の置換アセチレンの重合開始剤の存在下に重合反応させることを特徴とする下記一般式(7)
(式中、A、n1及びn2は前記と同義。)で表わされる繰り返し単位を有する置換ポリアセチレン誘導体の製造方法である。
The fourth invention to be provided by the present invention is the following general formula (6).
(Wherein A represents an alkoxy group or an alkyl group, n1 represents an integer of 0 to 3, and n2 represents 0 or 2), the substituted acetylene polymerization initiator of the third invention The following general formula (7), wherein the polymerization reaction is carried out in the presence of
(In the formula, A, n1, and n2 have the same meanings as described above.) A method for producing a substituted polyacetylene derivative having a repeating unit represented by:

本発明によれば、らせん状構造の置換ポリアセチレン誘導体も得ることができ、特に置換アセチレンの重合開始剤として有用な新規な三座配位子ロジウム錯体を提供することができる。また、本発明によれば、該三座配位子ロジウム錯体を工業的に有利な方法で提供することができる。また、本発明の三座配位子ロジウム錯体を置換アセチレンの重合開始剤として用いることにより、助触媒を用いずにらせん状構造の置換ポリアセチレン誘導体を製造することができ、また、らせんの巻き方向についても、適宜用いる重合開始剤の種類を選択することにより所望の巻き方向のらせん状構造のものを得ることができる。   According to the present invention, a substituted polyacetylene derivative having a helical structure can also be obtained. In particular, a novel tridentate ligand rhodium complex useful as a polymerization initiator for a substituted acetylene can be provided. Moreover, according to this invention, this tridentate ligand rhodium complex can be provided by an industrially advantageous method. Also, by using the tridentate ligand rhodium complex of the present invention as a polymerization initiator for substituted acetylene, a substituted polyacetylene derivative having a helical structure can be produced without using a cocatalyst, and the helical winding direction As for, a helical structure having a desired winding direction can be obtained by appropriately selecting the type of polymerization initiator used.

実施例3及び実施例4で得られた置換ポリアセチレン誘導体のCDスペクトル図(上段)及びUV−visスペクトル図(下段)。The CD spectrum figure (upper part) and UV-vis spectrum figure (lower part) of the substituted polyacetylene derivative obtained in Example 3 and Example 4. FIG.

以下、本発明をその好ましい実施形態に基づき説明する。
本発明に係る三座配位子ロジウム錯体は、下記一般式(1)で表されるものである。
Hereinafter, the present invention will be described based on preferred embodiments thereof.
The tridentate ligand rhodium complex according to the present invention is represented by the following general formula (1).

前記一般式(1)の式中のRは、炭素数1〜5の直鎖状又は分岐状のアルキル基又はアリール基を示す。前記アルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基等が挙げられる。また、前記アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。本発明において、式中のRは特にフェニル基が好ましい。 R 1 in the general formula (1) represents a linear or branched alkyl group or aryl group having 1 to 5 carbon atoms. Examples of the alkyl group include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, and iso-pentyl. Groups and the like. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. In the present invention, R 1 in the formula is particularly preferably a phenyl group.

前記一般式(1)の式中のR及びRは、炭素数1〜5の直鎖状又は分岐状のアルキル基及びアリール基から選ばれる基である。前記アルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基等が挙げられる。また、前記アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。
なお、前記RとRは、異なる基であり、同一の基となることはない。RとRのもっとも好ましい組み合わせは、RとRの何れかがメチル基であり、他方がフェニル基であることが好ましい。
R 2 and R 3 in the formula (1) are groups selected from linear or branched alkyl groups and aryl groups having 1 to 5 carbon atoms. Examples of the alkyl group include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, and iso-pentyl. Groups and the like. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group.
R 2 and R 3 are different groups and do not become the same group. The most preferred combination of R 2 and R 3 are either R 2 and R 3 is a methyl group, it is preferably the other is a phenyl group.

前記一般式(1)の式中のZは、炭素数3〜6の直鎖状のアルキレン基を示し、例えば、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等が挙げられ、このうち炭素数4〜5、特に好ましくは炭素数4のアルキレン基が好ましい。   Z in the general formula (1) represents a linear alkylene group having 3 to 6 carbon atoms, and examples thereof include a propylene group, a butylene group, a pentylene group, and a hexylene group. An alkylene group having 4 to 5, particularly preferably 4 carbon atoms is preferred.

前記一般式(1)の式中のXは、NH又はOを示す。また、式中の*は不斉炭素原子を示す。本発明の三座配位子ロジウム錯体の立体に関しては、S体又はR体の何れであってもよい。
本発明の三座配位子ロジウム錯体は、前記一般式(1)の式中のXがNHのときはキラルなアミン部位を持ち、式中のXがOのときはキラルなエーテル部位を持つようになる。
X in the formula of the general formula (1) represents NH or O. Moreover, * in a formula shows an asymmetric carbon atom. Regarding the stereo of the tridentate rhodium complex of the present invention, either the S-form or the R-form may be used.
The tridentate rhodium complex of the present invention has a chiral amine moiety when X in the formula of the general formula (1) is NH, and has a chiral ether moiety when X in the formula is O. It becomes like this.

次いで、本発明の前記一般式(1)で表される三座配位子ロジウム錯体の製造方法について説明する。   Subsequently, the manufacturing method of the tridentate ligand rhodium complex represented by the said General formula (1) of this invention is demonstrated.

本発明の三座配位子ロジウム錯体の製造方法は、前記一般式(2)で表されるノルボルナジエン化合物と、前記化学式(3)で表わされるクロロビス(エチレン)ロジウムダイマーとを反応させて前記一般式(4)で表わされるロジウム錯体を得る第1工程、次いで得られたロジウム錯体と前記一般式(5)で表わされるホウ酸化合物と反応させる第2工程を有するものである。   The method for producing a tridentate rhodium complex of the present invention comprises reacting the norbornadiene compound represented by the general formula (2) with the chlorobis (ethylene) rhodium dimer represented by the chemical formula (3). It has a first step of obtaining a rhodium complex represented by the formula (4), and then a second step of reacting the obtained rhodium complex with the boric acid compound represented by the general formula (5).

第1工程に係る原料の前記一般式(2)で表されるノルボルナジエン化合物の式中のR、R、X及びZは、前記一般式(1)の式中のR、R、X及びZにそれぞれ相当する基である。具体的には、前記一般式(2)の式中のR及びRは炭素数1〜5の直鎖状又は分岐状のアルキル基及びアリール基から選ばれる基である。前記アルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基等が挙げられる。また、前記アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。前記RとRは、異なる基であり、同一の基となることはない。RとRのもっとも好ましい組み合わせは、前述したようにRとRの何れかがメチル基であり、他方がフェニル基である。前記一般式(2)の式中のZは、炭素数3〜6の直鎖状のアルキレン基を示し、例えば、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基等が挙げられ、このうち炭素数4〜5、特に好ましくは炭素数4のアルキレン基が好ましい。なお、前記一般式(2)の式中の*は前述したように不斉炭素原子を示す。
なお、本発明に係る前記一般式(2)で表されるノルボルナジエン化合物は、新規な化合物であり、配位子として有用である。
R 2, R 3, X and Z in the formula of norbornadiene compound represented by the general formula of the raw material (2) in the first step, R 2, R 3 in the formula of the general formula (1), It is a group corresponding to each of X and Z. Specifically, R 2 and R 3 in the general formula (2) are groups selected from linear or branched alkyl groups and aryl groups having 1 to 5 carbon atoms. Examples of the alkyl group include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, and iso-pentyl. Groups and the like. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. R 2 and R 3 are different groups and do not become the same group. The most preferred combination of R 2 and R 3 are either methyl groups R 2 and R 3 as described above, the other is a phenyl group. Z in the formula of the general formula (2) represents a linear alkylene group having 3 to 6 carbon atoms, and examples thereof include a propylene group, a butylene group, a pentylene group, a hexylene group, and the like. An alkylene group having 4 to 5, particularly preferably 4 carbon atoms is preferred. In addition, * in the formula of the general formula (2) represents an asymmetric carbon atom as described above.
The norbornadiene compound represented by the general formula (2) according to the present invention is a novel compound and useful as a ligand.

前記一般式(2)で表されるノルボルナジエン化合物のうち、本発明で好ましい化合物であるRがメチル基であり、Rがフェニル基である化合物は、例えば、下記反応スキーム1 に従って製造することができる。
(式中、Z及び*は前記と同義。)
Of the norbornadiene compounds represented by the general formula (2), a compound in which R 2 which is a preferred compound in the present invention is a methyl group and R 3 is a phenyl group is prepared according to, for example, the following reaction scheme 1 Can do.
(In the formula, Z and * are as defined above.)

前記反応スキーム1において、ブロモノルボルナジエン化合物(a)と、キラルなアミン化合物(b1)とをアセトニトリル等の溶媒中で100〜150℃で、5時間以上、反応させることにより一般式(2a)で表されるノルボルナジエン化合物を得ることができる。
一方、ブロモノルボルナジエン化合物(a)と、キラルなアルコール化合物(b2)とを、NaH等の塩基の存在下にN,N−ジメチルホルムアミド等の溶媒中で30〜100℃で、3時間以上、反応させることにより一般式(2b)で表されるノルボルナジエン化合物を得ることができる。
In the reaction scheme 1, the bromonorbornadiene compound (a) and the chiral amine compound (b1) are reacted with each other in a solvent such as acetonitrile at 100 to 150 ° C. for 5 hours or more, and represented by the general formula (2a). The norbornadiene compound obtained can be obtained.
On the other hand, the bromonorbornadiene compound (a) and the chiral alcohol compound (b2) are reacted in a solvent such as N, N-dimethylformamide at 30 to 100 ° C. for 3 hours or more in the presence of a base such as NaH. By doing so, a norbornadiene compound represented by the general formula (2b) can be obtained.

なお、ブロモノルボルナジエン化合物(a)は、公知の化合物であり、例えば下記反応スキーム 2に従って、2,5−ノルボルナジエン(a’)と、ジブロモ化合物(a”)とを反応させることにより容易に製造することができる(J.Am.Chem.Soc.1995,117,10276−10291等参照)。
(式中、Zは前記と同義。)
The bromonorbornadiene compound (a) is a known compound and can be easily produced by reacting 2,5-norbornadiene (a ′) with the dibromo compound (a ″) according to the following reaction scheme 2, for example. (See J. Am. Chem. Soc. 1995, 117, 10276-10291 etc.).
(In the formula, Z is as defined above.)

第1工程に係る反応において、前記クロロビス(エチレン)ロジウムダイマーの添加量は、前記一般式(2)で表されるノルボルナジエン化合物に対するモル比で0.3〜0.7、好ましくは0.4〜0.6である。   In the reaction according to the first step, the addition amount of the chlorobis (ethylene) rhodium dimer is 0.3 to 0.7, preferably 0.4 to the molar ratio with respect to the norbornadiene compound represented by the general formula (2). 0.6.

第1工程に係る前記一般式(2)で表されるノルボルナジエン化合物とクロロビス(エチレン)ロジウムダイマーの反応は、溶媒中で行われる。使用できる溶媒としては、原料を溶解することができ生成物に対して不活性な溶媒であれば特に制限なく用いることができる。例えば、テトラヒドロフラン、トルエン、ジクロロメタン、アセトニトリル、エチルアルコール、メチルアルコール、ヘキサン、ジエチルエーテル、N,N−ジメチルホルムアミド、クロロホルム、クロロベンゼン等が挙げられ、これらは1種又は2種以上で用いることができる。   The reaction of the norbornadiene compound represented by the general formula (2) and the chlorobis (ethylene) rhodium dimer in the first step is performed in a solvent. The solvent that can be used is not particularly limited as long as it can dissolve the raw material and is inert to the product. For example, tetrahydrofuran, toluene, dichloromethane, acetonitrile, ethyl alcohol, methyl alcohol, hexane, diethyl ether, N, N-dimethylformamide, chloroform, chlorobenzene and the like can be used, and these can be used alone or in combination.

第1工程に係る反応条件は反応温度が50〜200℃、好ましくは100〜150℃で、反応時間が5時間以上、好ましくは5〜15時間である。   The reaction conditions for the first step are a reaction temperature of 50 to 200 ° C., preferably 100 to 150 ° C., and a reaction time of 5 hours or more, preferably 5 to 15 hours.

反応終了後、例えば、反応液を減圧下に蒸留して溶媒を除去し、必要により再結晶等の精製等を行うことにより、目的とする前記一般式(4)で表わされるロジウム錯体を得ることができる。   After completion of the reaction, for example, the reaction solution is distilled under reduced pressure to remove the solvent, and if necessary, purification such as recrystallization is performed to obtain the target rhodium complex represented by the general formula (4). Can do.

第2工程では、第1工程で得られた前記一般式(4)で表わされるロジウム錯体と前記一般式(5)で表わされるホウ酸化合物とを溶媒中で反応させる。   In the second step, the rhodium complex represented by the general formula (4) obtained in the first step is reacted with the boric acid compound represented by the general formula (5) in a solvent.

第2工程に係る原料の一般式(5)で表わされるホウ酸化合物の式中のRは、前記一般式(1)の式中のRに相当する基である。具体的には、一般式(5)の式中のRは、炭素数1〜5の直鎖状又は分岐状のアルキル基又はアリール基を示す。前記アルキル基としては、メチル基、エチル基、n−プロピル基、iso−プロピル基、n−ブチル基、iso−ブチル基、sec−ブチル基、tert−ブチル基、n−ペンチル基、iso−ペンチル基等が挙げられる。また、前記アリール基としては、フェニル基、トリル基、キシリル基、ナフチル基等が挙げられる。本発明のおいて、式中のRは特にフェニル基が好ましい。 R 1 in the boric acid compound represented by the general formula (5) of the raw material in the second step is a group corresponding to R 1 in the formula of the general formula (1). Specifically, R 1 in the formula (5) represents a linear or branched alkyl group or aryl group having 1 to 5 carbon atoms. Examples of the alkyl group include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, and iso-pentyl. Groups and the like. Examples of the aryl group include a phenyl group, a tolyl group, a xylyl group, and a naphthyl group. In the present invention, R 1 in the formula is particularly preferably a phenyl group.

一般式(5)で表わされるホウ酸化合物の添加量は、前記一般式(4)で表わされるロジウム錯体に対するモル比で1〜2、好ましくは1〜1.2である。   The addition amount of the boric acid compound represented by the general formula (5) is 1 to 2, preferably 1 to 1.2 in terms of a molar ratio to the rhodium complex represented by the general formula (4).

第2工程の反応で使用できる溶媒としては、原料を溶解することができ生成物に対して不活性な溶媒であれば特に制限なく用いることができる。例えば、テトラヒドロフラン、トルエン、ジクロロメタン、アセトニトリル、エチルアルコール、メチルアルコール、ヘキサン、ジエチルエーテル、N,N−ジメチルホルムアミド、クロロホルム、クロロベンゼン等が挙げられ、これらは1種又は2種以上で用いることができる。   As the solvent that can be used in the reaction of the second step, any solvent can be used without particular limitation as long as it can dissolve the raw materials and is inert to the product. For example, tetrahydrofuran, toluene, dichloromethane, acetonitrile, ethyl alcohol, methyl alcohol, hexane, diethyl ether, N, N-dimethylformamide, chloroform, chlorobenzene and the like can be used, and these can be used alone or in combination.

第2工程に係る反応条件は反応温度が0〜40℃、好ましくは20〜30℃で、反応時間が5時間以上、好ましくは10〜20時間である。   The reaction conditions for the second step are a reaction temperature of 0 to 40 ° C., preferably 20 to 30 ° C., and a reaction time of 5 hours or longer, preferably 10 to 20 hours.

反応終了後、例えば、反応液を減圧下に蒸留して溶媒を除去し、必要により再結晶等の精製等を行うことにより、目的とする前記一般式(1)で表わされる三座配位子ロジウム錯体を得ることができる。   After completion of the reaction, for example, the reaction solution is distilled under reduced pressure to remove the solvent and, if necessary, purification such as recrystallization is performed, whereby the target tridentate ligand represented by the general formula (1) is obtained. A rhodium complex can be obtained.

本発明に係る前記一般式(1)で表される三座配位子ロジウム錯体は、置換アセチレンの重合開始剤、特にらせん状構造の置換ポリアセチレン誘導体を得るための重合開始剤として好適に用いることができる。   The tridentate rhodium complex represented by the general formula (1) according to the present invention is preferably used as a polymerization initiator for substituted acetylene, particularly a polymerization initiator for obtaining a substituted polyacetylene derivative having a helical structure. Can do.

本発明に係る置換ポリアセチレン誘導体の製造方法は、前記一般式(1)で表される三座配位子ロジウム錯体を置換アセチレンの重合開始剤(以下、「重合開始剤」と呼ぶ)として用い、該重合開始剤の存在下に、前記一般式(6)で表される置換アセチレンの重合反応を行って、前記一般式(7)で表される繰り返し単位を有する置換ポリアセチレンを得るものである。   The method for producing a substituted polyacetylene derivative according to the present invention uses a tridentate ligand rhodium complex represented by the general formula (1) as a polymerization initiator of a substituted acetylene (hereinafter referred to as “polymerization initiator”). In the presence of the polymerization initiator, the substituted acetylene represented by the general formula (6) is polymerized to obtain a substituted polyacetylene having a repeating unit represented by the general formula (7).

重合反応に用いる置換アセチレンは、下記一般式(6)で表される。
一般式(6)の式中のAは、アルコキシ基、アルキル基である。前記アルコキシ基としては、好ましくは炭素数1〜16、特に炭素数8〜14のアルコキシ基が好ましい。前記アルキル基としては、好ましくは炭素数1〜16、特に炭素数8〜14のアルキル基が好ましい。
また、一般式(6)の式中のn1は0〜3の整数を示し、式中のn2は0又は2の整数を示す。
The substituted acetylene used for the polymerization reaction is represented by the following general formula (6).
A in the general formula (6) is an alkoxy group or an alkyl group. The alkoxy group is preferably an alkoxy group having 1 to 16 carbon atoms, particularly 8 to 14 carbon atoms. The alkyl group is preferably an alkyl group having 1 to 16 carbon atoms, particularly 8 to 14 carbon atoms.
Moreover, n1 in the formula of General formula (6) shows the integer of 0-3, n2 in a formula shows the integer of 0 or 2.

本発明において、一般式(6)で表される置換アセチレンは、下記一般式(6a)又は(6b)で表されるものが特に好ましく用いられる。
In the present invention, as the substituted acetylene represented by the general formula (6), those represented by the following general formula (6a) or (6b) are particularly preferably used.

本発明において、前記一般式(6b)で表される置換アセチレンを用いて重合反応を行うと、不斉部位を有する重合開始剤より、不斉誘導を受け、アキラルなモノマーから、光学活性ならせん状構造を有する置換ポリアセチレン誘導体を製造することができる。   In the present invention, when a polymerization reaction is carried out using the substituted acetylene represented by the general formula (6b), it undergoes an asymmetric induction from a polymerization initiator having an asymmetric moiety, and the optically active helix is produced from the achiral monomer. A substituted polyacetylene derivative having a structure can be produced.

本重合反応では、前述した本発明の重合開始剤が用いられる。
本重合反応における重合開始剤の添加量は、重合開始剤に対する置換アセチレンのモル比で10〜1000、好ましくは50〜100である。
In the main polymerization reaction, the polymerization initiator of the present invention described above is used.
The addition amount of the polymerization initiator in the main polymerization reaction is 10 to 1000, preferably 50 to 100 in terms of the molar ratio of the substituted acetylene to the polymerization initiator.

使用できる溶媒は、原料を溶解することができ生成物に対して不活性な溶媒であれば特に制限なく用いることができる。例えば、テトラヒドロフラン、トルエン、ジクロロメタン、アセトニトリル、エチルアルコール、メチルアルコール、ヘキサン、ジエチルエーテル、N,N−ジメチルホルムアミド、クロロホルム、クロロベンゼン等が挙げられ、これらは1種又は2種以上で用いることができる。   The solvent that can be used is not particularly limited as long as it can dissolve the raw materials and is inert to the product. For example, tetrahydrofuran, toluene, dichloromethane, acetonitrile, ethyl alcohol, methyl alcohol, hexane, diethyl ether, N, N-dimethylformamide, chloroform, chlorobenzene and the like can be used, and these can be used alone or in combination.

重合反応の反応温度は、重合を行う置換アセチレンの種類により適宜好適な温度条件を選択することが好ましいが、多くの場合、0〜60℃、好ましくは20〜40℃である。また、反応時間は、重合を行う置換アセチレンの種類により異なるが、多くの場合5時間以上、好ましくは10〜30時間である。   The reaction temperature of the polymerization reaction is preferably appropriately selected depending on the type of substituted acetylene to be polymerized, but in many cases it is 0 to 60 ° C, preferably 20 to 40 ° C. Moreover, although reaction time changes with kinds of substituted acetylene to superpose | polymerize, in many cases, it is 5 hours or more, Preferably it is 10 to 30 hours.

重合反応終了後、常法により、反応溶媒を除去し、必要により貧溶媒への沈殿化等の精製を行うことにより、目的とする下記一般式(7)
(式中、A、n1及びn2は前記と同義。)で表わされる繰り返し単位を有する置換ポリアセチレン誘導体を得ることができる。
After completion of the polymerization reaction, the reaction solvent is removed by a conventional method, and if necessary, purification such as precipitation into a poor solvent is carried out to obtain the following general formula (7)
A substituted polyacetylene derivative having a repeating unit represented by the formula (wherein A, n1, and n2 are as defined above) can be obtained.

本製造方法で得られる置換ポリアセチレン誘導体は、数平均分子量(Mn)が5000以上、好ましくは10000〜1000000である。また、重量平均分子量(Mw)が10000以下、好ましくは20000〜2000000が好ましい。   The substituted polyacetylene derivative obtained by this production method has a number average molecular weight (Mn) of 5,000 or more, preferably 10,000 to 1,000,000. Further, the weight average molecular weight (Mw) is 10,000 or less, preferably 20,000 to 2,000,000.

以下、本発明を実施例により説明するが、本発明はこれらの実施例に限定されるものではない。
{実施例1}
(ノルボルナジエン化合物(2a-1)の合成)
アセトニトリル10mlにブロモノルボルナジエン化合物(a-1)(300mg、1.32mmol)を溶解し、これに(R)−1−フェニルエチルアミン(b1)(0.50ml、3.92mmol)を加えた。次に、攪拌下に110℃で10時間、還流下に反応を行った。
反応終了後、室温まで冷却し、反応液を減圧下に蒸留して溶媒を除去した。得られた残渣を酢酸エチルに溶解し、飽和炭酸水素ナトリウム水溶液で有機層を洗浄した。有機層を分取し、有機層を無水硫酸ナトリウムで脱水後、無水硫酸ナトリウムを除去し、減圧下に蒸留して溶媒を除去した。次いで得られた残渣をカラムクロマトグラフィーを用いて精製を行って油状のノルボルナジエン化合物(2a-1)を得た(収率89%)。
(ノルボルナジエン化合物(2a-1)の同定データ)
・元素分析 計算値(C1925N):C,85.34%;H,9.42%;N、5.24%測定値:C,85.46%;H,9.42%;N、5.02%
1H NMR (CDCl3) d: 7.27-7.15 (m, 5H), 6.66 (s, 2H), 6.02 (s, 1H), 3.68 (q, 1H, J = 6.8 Hz), 3.41 (s, 1H), 3.18 (s, 1H), 2.45 (m, 1H), 2.40 (m, 1H), 2.15 (m, 2H), 1.93 (m, 2H), 1.40 (m, 4H), 1.33 (d, 3H, J = 6.8 Hz), 1.15 (brs, 1H).
13C NMR (CDCl3) d: 158.6, 145.8, 143.8, 142.3, 133.3, 128.3, 126.7, 126.5, 73.4, 58.3, 53.4, 50.0, 47.7, 31.3, 30.0, 25.0, 24.4.
・比旋光度[α]D=+36.8(クロロホルム中、室温で測定、c=0.10g/dL)
EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not limited to these Examples.
{Example 1}
(Synthesis of norbornadiene compound (2a-1))
Bromonorbornadiene compound (a-1) (300 mg, 1.32 mmol) was dissolved in 10 ml of acetonitrile, and (R) -1-phenylethylamine (b1) (0.50 ml, 3.92 mmol) was added thereto. Next, the reaction was carried out under reflux at 110 ° C. for 10 hours with stirring.
After completion of the reaction, the reaction solution was cooled to room temperature, and the reaction solution was distilled under reduced pressure to remove the solvent. The obtained residue was dissolved in ethyl acetate, and the organic layer was washed with a saturated aqueous solution of sodium bicarbonate. The organic layer was separated, and the organic layer was dehydrated with anhydrous sodium sulfate. Then, anhydrous sodium sulfate was removed, and the solvent was removed by distillation under reduced pressure. Subsequently, the obtained residue was purified using column chromatography to obtain an oily norbornadiene compound (2a-1) (yield 89%).
(Identification data of norbornadiene compound (2a-1))
Elemental analysis Calculated value (C 19 H 25 N): C, 85.34%; H, 9.42%; N, 5.24% measured value: C, 85.46%; H, 9.42%; N, 5.02%
1 H NMR (CDCl 3 ) d: 7.27-7.15 (m, 5H), 6.66 (s, 2H), 6.02 (s, 1H), 3.68 (q, 1H, J = 6.8 Hz), 3.41 (s, 1H ), 3.18 (s, 1H), 2.45 (m, 1H), 2.40 (m, 1H), 2.15 (m, 2H), 1.93 (m, 2H), 1.40 (m, 4H), 1.33 (d, 3H, J = 6.8 Hz), 1.15 (brs, 1H).
13 C NMR (CDCl 3 ) d: 158.6, 145.8, 143.8, 142.3, 133.3, 128.3, 126.7, 126.5, 73.4, 58.3, 53.4, 50.0, 47.7, 31.3, 30.0, 25.0, 24.4.
Specific rotation [α] D = + 36.8 (measured in chloroform at room temperature, c = 0.10 g / dL)

(ロジウム錯体(4a-1)の合成)
ジクロロメタン4.0mlにクロロビス(エチレン)ロジウムダイマー(3)(185mg、0.48mmol)を溶解し、これにノルボルナジエン化合物(2a-1)(280mg、1.09mmol)を溶解したジクロロメタン4.0mlを加え、アルゴン雰囲気中で15時間、室温(25℃)で反応を行った。
反応終了後、反応液を減圧下に蒸留して溶媒を除去し、残渣をジクロロメタン−ペンタン混合溶媒により再結晶して精製し、ロジウム錯体(4a-1)を得た(収率83%)。
(ロジウム錯体(4a-1)の同定データ)
・元素分析 計算値(C1925NClRh):C,56.24%;H,6.21%;N、3.45%測定値:C,56.31%;H,6.39%;N、3.35%
(Synthesis of rhodium complex (4a-1))
Chlorobis (ethylene) rhodium dimer (3) (185 mg, 0.48 mmol) was dissolved in 4.0 ml of dichloromethane, and 4.0 ml of dichloromethane in which norbornadiene compound (2a-1) (280 mg, 1.09 mmol) was dissolved was added thereto. The reaction was performed at room temperature (25 ° C.) for 15 hours in an argon atmosphere.
After completion of the reaction, the reaction solution was distilled under reduced pressure to remove the solvent, and the residue was purified by recrystallization from a dichloromethane-pentane mixed solvent to obtain a rhodium complex (4a-1) (yield 83%).
(Identification data of rhodium complex (4a-1))
Elemental analysis Calculated value (C 19 H 25 NClRh): C, 56.24%; H, 6.21%; N, 3.45% measured value: C, 56.31%; H, 6.39%; N, 3.35%

(三座配位子ロジウム錯体(1a―1)の合成)
シュレンクチューブに、ロジウム錯体(4a-1)(60mg、0148mmol)、テトラフェニルホウ酸ナトリウム(5a-1)(55.8mg、0.163mmol)を仕込み、アルゴンガスで置換した。次いで、ジクロロメタン5.5mlを仕込み、室温(25℃)で一晩反応を行った。
反応終了後、ろ過してテトラフェニルホウ酸ナトリウム(5a-1)を除去後、ろ液を減圧下に蒸留して溶媒を除去した。残渣をジクロロメタン−ペンタン混合溶媒により再結晶して精製し、三座配位子ロジウム錯体試料(1a―1)を得た(収率89%)。
(三座配位子ロジウム錯体(1a―1)の同定データ)
・元素分析 計算値(C4345BNRh):C,74.9%;H,6.59%;N、2.03%測定値:C,74.60%;H,6.31%;N、1.94%
1H NMR (CDCl3) d: 7.37-7.00 (m, 20H), 6.60 (m, 2H), 6.38 (m, 1H), 6.25 (m, 1H), 5.84 (m, 1H), 3.80 (s, 1H), 3.71 (m, 1H), 3.66 (m, 1H), 3.46 (m, 1H), 3.31(m, 1H), 3.14 (m, 1H), 2.42 (brs, 1H), 2.31 (brs, 1H), 2.06 (m, 1H), 1.38-1.29 (m, 7H), 1.09-1.00 (m, 4H).
(Synthesis of tridentate rhodium complex (1a-1))
A Schlenk tube was charged with rhodium complex (4a-1) (60 mg, 0148 mmol) and sodium tetraphenylborate (5a-1) (55.8 mg, 0.163 mmol) and replaced with argon gas. Next, 5.5 ml of dichloromethane was charged, and the reaction was performed overnight at room temperature (25 ° C.).
After completion of the reaction, filtration was performed to remove sodium tetraphenylborate (5a-1), and then the filtrate was distilled under reduced pressure to remove the solvent. The residue was purified by recrystallization from a dichloromethane-pentane mixed solvent to obtain a tridentate rhodium complex sample (1a-1) (yield 89%).
(Identification data of tridentate rhodium complex (1a-1))
· Analysis Calculated (C 43 H 45 BNRh): C, 74.9%; H, 6.59%; N, 2.03% measured value: C, 74.60%; H, 6.31%; N, 1.94%
1 H NMR (CDCl 3 ) d: 7.37-7.00 (m, 20H), 6.60 (m, 2H), 6.38 (m, 1H), 6.25 (m, 1H), 5.84 (m, 1H), 3.80 (s , 1H), 3.71 (m, 1H), 3.66 (m, 1H), 3.46 (m, 1H), 3.31 (m, 1H), 3.14 (m, 1H), 2.42 (brs, 1H), 2.31 (brs, 1H), 2.06 (m, 1H), 1.38-1.29 (m, 7H), 1.09-1.00 (m, 4H).

{実施例2}
(ノルボルナジエン化合物(2a-2)の合成)
N,N−ジメチルホルムアミド8mlにブロモノルボルナジエン化合物(a-1)(676.8mg、2.98mmol)を溶解し、これに(R)−1−フェニルエタノール(b2)(364mg、2.28mmol)を加えた。次に、NaH(含有量50%、184.7mg、5.54mmol)を加え、攪拌下に60で6時間、反応を行った。
反応終了後、室温まで冷却し、反応液に飽和炭酸ナトリウム水溶液を添加し、次いでジエチルエーテルで抽出した。有機層を分取し、有機層を無水硫酸ナトリウムで脱水後、無水硫酸ナトリウムを除去し、減圧下に蒸留して溶媒を除去した。次いで得られた残渣をHPLCを用いて精製を行って油状のノルボルナジエン化合物(2a-2)を得た(収率38%)。
(ノルボルナジエン化合物(2a-2)の同定データ)
・元素分析 計算値(C1924O):C,83.03%;H,9.01%測定値:C,84.99%;H,8.72%
1H NMR (CDCl3) d: 7.33-7.30 (m, 5H), 6.73 (s, 2H), 6.09 (s, 1H), 4.38 (q, 1H, J = 6.4 Hz), 3.48 (s, 1H), 3.27 (m, 3H), 2.16 (m, 2H), 1.94 (m, 2H), 1.52 (m, 4H), 1.42 (d, 3H, J = 6.0 Hz).
13C NMR (CDCl3) d: 158.7, 144.3, 143.8, 142.4, 133.5, 128.4, 127.3, 126.1, 77.9, 73.4, 68.5, 53.4, 50.0, 31.2, 29.6, 24.2, 23.8.
・比旋光度[α]D=−66(クロロホルム中、室温で測定、c=0.10g/dL)
{Example 2}
(Synthesis of norbornadiene compound (2a-2))
Bromonorbornadiene compound (a-1) (676.8 mg, 2.98 mmol) was dissolved in 8 ml of N, N-dimethylformamide, and (R) -1-phenylethanol (b2) (364 mg, 2.28 mmol) was dissolved therein. added. Next, NaH (content 50%, 184.7 mg, 5.54 mmol) was added, and the reaction was performed at 60 with stirring for 6 hours.
After completion of the reaction, the reaction solution was cooled to room temperature, saturated aqueous sodium carbonate solution was added to the reaction solution, and then extracted with diethyl ether. The organic layer was separated, and the organic layer was dehydrated with anhydrous sodium sulfate. Then, anhydrous sodium sulfate was removed, and the solvent was removed by distillation under reduced pressure. Subsequently, the obtained residue was purified using HPLC to obtain an oily norbornadiene compound (2a-2) (yield 38%).
(Identification data of norbornadiene compound (2a-2))
Elemental analysis: calculated (C 19 H 24 O): C, 83.03%; H, 9.01% measured value: C, 84.99%; H, 8.72%
1 H NMR (CDCl 3 ) d: 7.33-7.30 (m, 5H), 6.73 (s, 2H), 6.09 (s, 1H), 4.38 (q, 1H, J = 6.4 Hz), 3.48 (s, 1H ), 3.27 (m, 3H), 2.16 (m, 2H), 1.94 (m, 2H), 1.52 (m, 4H), 1.42 (d, 3H, J = 6.0 Hz).
13 C NMR (CDCl 3 ) d: 158.7, 144.3, 143.8, 142.4, 133.5, 128.4, 127.3, 126.1, 77.9, 73.4, 68.5, 53.4, 50.0, 31.2, 29.6, 24.2, 23.8.
Specific rotation [α] D = −66 (measured in chloroform at room temperature, c = 0.10 g / dL)

(ロジウム錯体(4a-2)の合成)
ジクロロメタン5.0mlにクロロビス(エチレン)ロジウムダイマー(3)(160mg、0.41mmol)を溶解し、これにノルボルナジエン化合物(2a-2)(243mg、0.91mmol)を溶解したジクロロメタン3.0mlを加え、大気雰囲気中で室温(25℃)で19時間反応を行った。
反応終了後、反応液を減圧下に蒸留して溶媒を除去し、残渣をジクロロメタン−ペンタン混合溶媒により−78℃で再結晶して精製し、ロジウム錯体(4a-2)を得た(収率66%)。
(Synthesis of rhodium complex (4a-2))
Dissolve chlorobis (ethylene) rhodium dimer (3) (160 mg, 0.41 mmol) in 5.0 ml of dichloromethane, and add 3.0 ml of dichloromethane in which norbornadiene compound (2a-2) (243 mg, 0.91 mmol) was dissolved. The reaction was performed at room temperature (25 ° C.) for 19 hours in an air atmosphere.
After completion of the reaction, the reaction solution was distilled under reduced pressure to remove the solvent, and the residue was purified by recrystallization at -78 ° C. with a dichloromethane-pentane mixed solvent to obtain a rhodium complex (4a-2) (yield). 66%).

(三座配位子ロジウム錯体(1a―2)の合成)
シュレンクチューブに、ロジウム錯体(4a-2)(30mg、0.073mmol)、テトラフェニルホウ酸ナトリウム(5a-1)(26.5mg、0.077mmol)を仕込み、アルゴンガスで置換した。次いで、ジクロロメタン2.0mlを仕込み、室温(25℃)で一晩反応を行った。
反応終了後、ろ過してテトラフェニルホウ酸ナトリウム(5a-1)を除去後、ろ液を減圧下に蒸留して溶媒を除去した。残渣をジクロロメタン−ペンタン混合溶媒により再結晶して精製し、三座配位子ロジウム錯体(1a―2)を得た(収率79%)。
(三座配位子ロジウム錯体(1a―2)の同定データ)
・元素分析 計算値(C4344BORh):C,74.79%;H,6.42%測定値:C,73.17%;H,6.16%
1H NMR (CDCl3) d: 7.41-7.03 (m, 20H), 6.67 (m, 1H), 6.50 (m, 1H), 6.43 (m, 1H), 6.20 (m, 1H), 5.79 (m, 1H), 4.35 (q, 1H, J = 6.8 Hz), 3.77 (brs, 1H), 3.63 (brs, 1H), 3.46 (brs, 1H), 3.33 (brs, 1H), 3.21 (m, 2H), 3.15 (brs, 1H), 2.07 (m, 2H), 1.43-1.01 (m, 9H).
(Synthesis of tridentate ligand rhodium complex (1a-2))
A Schlenk tube was charged with rhodium complex (4a-2) (30 mg, 0.073 mmol) and sodium tetraphenylborate (5a-1) (26.5 mg, 0.077 mmol), and replaced with argon gas. Next, 2.0 ml of dichloromethane was charged, and the reaction was performed overnight at room temperature (25 ° C.).
After completion of the reaction, filtration was performed to remove sodium tetraphenylborate (5a-1), and then the filtrate was distilled under reduced pressure to remove the solvent. The residue was purified by recrystallization from a dichloromethane-pentane mixed solvent to obtain a tridentate rhodium complex (1a-2) (yield 79%).
(Identification data of tridentate rhodium complex (1a-2))
Elemental analysis calculated value (C 43 H 44 BORh): C, 74.79%; H, 6.42% measured value: C, 73.17%; H, 6.16%
1 H NMR (CDCl 3 ) d: 7.41-7.03 (m, 20H), 6.67 (m, 1H), 6.50 (m, 1H), 6.43 (m, 1H), 6.20 (m, 1H), 5.79 (m , 1H), 4.35 (q, 1H, J = 6.8 Hz), 3.77 (brs, 1H), 3.63 (brs, 1H), 3.46 (brs, 1H), 3.33 (brs, 1H), 3.21 (m, 2H) , 3.15 (brs, 1H), 2.07 (m, 2H), 1.43-1.01 (m, 9H).

{実施例3〜4}
(らせん状構造を有する置換ポリアセチレン誘導体(7b)の合成)
置換アセチレン(6b)を0.2Mになるようにテトラヒドロフランに溶解し、重合開始剤試料に対する置換アセチレンのモル比が100となるように重合開始剤試料を添加し、30℃で24時間重合反応を行った。反応終了後に重合溶液をメタノールに投入し、沈殿したポリマーを単離した。
(らせん状構造を有する置換ポリアセチレン誘導体(7b)の同定データ)
1H NMR (CD2Cl2) δ 0.81-1.80 (m, 23H), 3.87 (broad, 2H), 4.30 (broad, 2H), 4.37 (broad, 4H), 6.70-7.20 (broad, 3H).
{Examples 3 to 4}
(Synthesis of a substituted polyacetylene derivative (7b) having a helical structure)
The substituted acetylene (6b) is dissolved in tetrahydrofuran so as to have a concentration of 0.2 M, the polymerization initiator sample is added so that the molar ratio of the substituted acetylene to the polymerization initiator sample is 100, and the polymerization reaction is performed at 30 ° C. for 24 hours. went. After completion of the reaction, the polymerization solution was poured into methanol, and the precipitated polymer was isolated.
(Identification data of substituted polyacetylene derivative (7b) having a helical structure)
1 H NMR (CD 2 Cl 2 ) δ 0.81-1.80 (m, 23H), 3.87 (broad, 2H), 4.30 (broad, 2H), 4.37 (broad, 4H), 6.70-7.20 (broad, 3H).

<らせん状構造を有する置換ポリアセチレン誘導体(7b)の物性評価>
(評価1);実施例3及び実施例4で得られた置換ポリアセチレン誘導体(7b)について、数平均分子量(Mn)、重量平均分子量(Mw)を求めた。また、平均分子量(Mn)、重量平均分子量(Mw)からPDI(Mw/Mn)を算出した。その結果を収率とともに表1に示した。
なお、数平均分子量(Mn)、重量平均分子量(Mw)の評価は、ゲル浸透クロマトグラフィー(GPC;JASCO PU−980/RI−930クロマトグラフィー、ポリスチレン換算)により行った。
(評価2);実施例3及び実施例4で得られた置換ポリアセチレン(7b)についてCHCl中で比旋光度及びUV−visスペクトルを20℃で測定した。なお、CHCl中の置換ポリアセチレンのモノマー単位の濃度は0.10mMとした。
得られたCDスペクトルとUV−visスペクトルを図1に示す。
<Evaluation of physical properties of substituted polyacetylene derivative (7b) having a helical structure>
(Evaluation 1): For the substituted polyacetylene derivative (7b) obtained in Example 3 and Example 4, the number average molecular weight (Mn) and the weight average molecular weight (Mw) were determined. Further, PDI (Mw / Mn) was calculated from the average molecular weight (Mn) and the weight average molecular weight (Mw). The results are shown in Table 1 together with the yield.
The number average molecular weight (Mn) and the weight average molecular weight (Mw) were evaluated by gel permeation chromatography (GPC; JASCO PU-980 / RI-930 chromatography, polystyrene conversion).
(Evaluation 2); Specific rotation and UV-vis spectrum of the substituted polyacetylene (7b) obtained in Example 3 and Example 4 were measured in CHCl 3 at 20 ° C. The monomer unit concentration of the substituted polyacetylene in CHCl 3 was 0.10 mM.
The obtained CD spectrum and UV-vis spectrum are shown in FIG.

図1の結果から、実施例3及び実施例4で得られた置換ポリアセチレン誘導体はCHCl溶解中で大きい比旋光度を示すこと、また、主鎖ポリアセチレンに基づくCDシグナル、UV−可視シグナルは文献値(Journal of the American Chemical Society, (2003),125(21),6346-6347)と一致し、300nm付近にピークを示したことから主鎖がらせん構造を形成していることが確認された。
また、生成した置換ポリアセチレン誘導体(7b)は、主鎖の吸収領域に明確なコットン効果を示し、巻き方向の偏ったらせん構造を形成していることが明らかになった。使用した重合開始剤のアミン部位、エーテル部位の立体配位はともに(R)であるが、得られた置換ポリアセチレン(7b)のコットン効果は正負が逆であった。
From the results shown in FIG. 1, the substituted polyacetylene derivatives obtained in Example 3 and Example 4 show a large specific rotation in CHCl 3 dissolution, and the CD signal and UV-visible signal based on the main chain polyacetylene are shown in the literature. It agrees with the value (Journal of the American Chemical Society, (2003), 125 (21), 6346-6347) and shows a peak near 300 nm, confirming that the main chain forms a helical structure. .
Moreover, it was revealed that the produced substituted polyacetylene derivative (7b) exhibited a clear cotton effect in the absorption region of the main chain and formed a helical structure with a biased winding direction. The stereo-coordination of the amine site and the ether site of the polymerization initiator used was (R), but the cotton effect of the obtained substituted polyacetylene (7b) was positive and negative.

本発明によれば、らせん状構造の置換ポリアセチレン誘導体も得ることができ、特に置換アセチレンの重合開始剤として有用な新規な三座配位子ロジウム錯体を提供することができる。また、本発明によれば、該三座配位子ロジウム錯体を工業的に有利な方法で提供することができる。また、本発明の三座配位子ロジウム錯体を置換アセチレンの重合開始剤として用いることにより、助触媒を用いずにらせん状構造の置換ポリアセチレン誘導体を製造することができ、また、らせんの巻き方向についても、適宜用いる重合開始剤の種類を選択することにより所望の巻き方向のらせん状構造のものを得ることができる。   According to the present invention, a substituted polyacetylene derivative having a helical structure can also be obtained. In particular, a novel tridentate ligand rhodium complex useful as a polymerization initiator for a substituted acetylene can be provided. Moreover, according to this invention, this tridentate ligand rhodium complex can be provided by an industrially advantageous method. Also, by using the tridentate ligand rhodium complex of the present invention as a polymerization initiator for substituted acetylene, a substituted polyacetylene derivative having a helical structure can be produced without using a cocatalyst, and the helical winding direction As for, a helical structure having a desired winding direction can be obtained by appropriately selecting the type of polymerization initiator used.

Claims (8)

下記一般式(1)で表わされることを特徴とする三座配位子ロジウム錯体。
(式中、R1は炭素数1〜5の直鎖状又は分岐状のアルキル基、及びアリール基を示す。R2及びR3は炭素数1〜5の直鎖状又は分岐状のアルキル基、及びアリール基を示し、但し、R2とR3で同一の基となることはない。Zは炭素数3〜6のアルキレン基を示す。XはNH又はOを示す。*は不斉炭素原子を示す。)
A tridentate rhodium complex represented by the following general formula (1):
(In the formula, R 1 represents a linear or branched alkyl group having 1 to 5 carbon atoms and an aryl group. R 2 and R 3 represent a linear or branched alkyl group having 1 to 5 carbon atoms. And an aryl group, wherein R 2 and R 3 are not the same group, Z represents an alkylene group having 3 to 6 carbon atoms, X represents NH or O, and * represents an asymmetric carbon. Indicates an atom.)
前記一般式(1)の式中のZが炭素数4のアルキレン基であることを特徴とする請求項1記載の三座配位子ロジウム錯体。   The tridentate rhodium complex according to claim 1, wherein Z in the formula (1) is an alkylene group having 4 carbon atoms. 前記一般式(1)の式中のR1がフェニル基であることを特徴とする請求項1又は2の何れか1項に記載の三座配位子ロジウム錯体。 The tridentate rhodium complex according to any one of claims 1 and 2 , wherein R 1 in the formula (1) is a phenyl group. 前記一般式(1)の式中のR2及びR3はメチル基及びフェニル基から選ばれる基であることを特徴とする請求項1乃至3の何れか1項に記載の三座配位子ロジウム錯体。 The tridentate ligand according to any one of claims 1 to 3 , wherein R 2 and R 3 in the formula (1) are groups selected from a methyl group and a phenyl group. Rhodium complex. 下記一般式(2)で表されることを特徴とするノルボルナジエン化合物。
(式中、R2及びR3は炭素数1〜5の直鎖状又は分岐状のアルキル基、及びアリール基を示し、但し、R2とR3で同一の基となることはない。Zは炭素数3〜5のアルキレン基を示す。XはNH又はOを示す。*は不斉炭素原子を示す。)
A norbornadiene compound represented by the following general formula (2):
(In the formula, R 2 and R 3 represent a linear or branched alkyl group having 1 to 5 carbon atoms and an aryl group, provided that R 2 and R 3 are not the same group. Z Represents an alkylene group having 3 to 5 carbon atoms, X represents NH or O. * represents an asymmetric carbon atom.)
請求項1乃至4の何れか1項に記載の三座配位子ロジウム錯体からなる置換アセチレンの重合開始剤。   A polymerization initiator of a substituted acetylene comprising the tridentate ligand rhodium complex according to any one of claims 1 to 4. 下記一般式(6)
(式中、Aはアルコキシ基又はアルキル基を示す。n1は0〜3の整数、n2は0又は2を示す。)で表わされる置換アセチレンを、請求項記載の置換アセチレンの重合開始剤の存在下に重合反応させることを特徴とする下記一般式(7)
(式中、A、n1及びn2は前記と同義。)で表わされる繰り返し単位を有する置換ポリアセチレン誘導体の製造方法。
The following general formula (6)
(In the formula, A represents an alkoxy group or an alkyl group. N1 represents an integer of 0 to 3, and n2 represents 0 or 2.) The substituted acetylene represented by the polymerization initiator for substituted acetylene according to claim 6 , The following general formula (7), wherein the polymerization reaction is carried out in the presence of
(Wherein A, n1 and n2 are as defined above). A method for producing a substituted polyacetylene derivative having a repeating unit represented by:
製造される置換ポリアセチレン誘導体が、らせん状構造を有することを特徴とする請求項記載の置換ポリアセチレン誘導体の製造方法。 The method for producing a substituted polyacetylene derivative according to claim 7, wherein the produced substituted polyacetylene derivative has a helical structure.
JP2011186600A 2011-08-29 2011-08-29 Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same Expired - Fee Related JP5797497B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011186600A JP5797497B2 (en) 2011-08-29 2011-08-29 Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011186600A JP5797497B2 (en) 2011-08-29 2011-08-29 Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same

Publications (2)

Publication Number Publication Date
JP2013047198A JP2013047198A (en) 2013-03-07
JP5797497B2 true JP5797497B2 (en) 2015-10-21

Family

ID=48010439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011186600A Expired - Fee Related JP5797497B2 (en) 2011-08-29 2011-08-29 Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same

Country Status (1)

Country Link
JP (1) JP5797497B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110618477B (en) * 2019-08-15 2021-06-15 诚瑞光学(常州)股份有限公司 Lens and lens assembly

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07102012A (en) * 1993-09-30 1995-04-18 Res Dev Corp Of Japan Production of substituted acetylene polymer
JP2005047837A (en) * 2003-07-31 2005-02-24 Tamio Hayashi Optically active diene compound, transition metal complex compound comprising optically active diene compound as ligand and method for producing optically active compound using transition metal complex compound
JP5185779B2 (en) * 2008-11-07 2013-04-17 株式会社クラレ Cis-cisoid type substituted acetylene polymer and process for producing the same

Also Published As

Publication number Publication date
JP2013047198A (en) 2013-03-07

Similar Documents

Publication Publication Date Title
JP5466927B2 (en) Fluorene polyester oligomer and method for producing the same
JP2006512410A5 (en)
WO2012029432A1 (en) Carboxylate metal complex and catalyst for olefin polymerization
JP5797497B2 (en) Tridentate rhodium complex, substituted acetylene polymerization initiator, and method for producing substituted polyacetylene derivative using the same
JP2011122145A5 (en)
JP2009007305A (en) Aluminum compound, ring-opening polymerization catalyst and method for producing polyester
WO2019120846A1 (en) PROCESS FOR POLYMERIZING ß-BUTYROLACTONE
JP6726521B2 (en) Substituted polyacetylene having optically active group and method for producing the same
JP2003246791A (en) Trivalent organic lanthanoid complex, catalyst for manufacturing (meth)acrylic polymer, and (meth)acrylic polymer
JP6045938B2 (en) Substituted acetylene polymerization initiator and method for producing substituted polyacetylene
JP5180493B2 (en) Method for producing polymer-supported chiral zirconium catalyst
CN107312045B (en) Preparation method of substituted cyclopentadienyl metallocene compound
JP5256498B2 (en) Polymer ligand, aluminum complex and method for producing polylactide
JP6421814B2 (en) Transition metal complex, process for producing the same, and catalyst for metathesis reaction
JP6187130B2 (en) Degradable polymer
JP2005254048A (en) Hydroformylating catalyst comprising dendrimer type phosphine-rhodium complex and hydroformylation method using it
JP5980659B2 (en) Polymer having carbazole group, monomer and compound having carbazole group
JP2013166725A (en) Phenols and process for production thereof
JP4686754B2 (en) Aluminum-containing dendrimer, process for producing the same, and aluminum-containing Lewis acid catalyst comprising the dendrimer
JP2017203052A (en) Bisphosphine-bipyridine ligand-containing conjugated polymer and method for producing the same
JP2009185125A (en) Hyperbranched polymer, method for producing the same, monomer for synthesizing hyperbranched polymer, and precursor thereof
JP5283984B2 (en) Process for producing transition metal compound
JP5557654B2 (en) Substituted acetylene polymerization initiator, substituted acetylene polymerization initiator system and method for producing substituted polyacetylene derivative using the same
JP2008137960A (en) Adamantane compound and its manufacturing method
JP2007238639A (en) Synthesis of polytrithiocarbonate by alternating copolymerization of episulfide and carbon disulfide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150224

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150415

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150811

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150819

R150 Certificate of patent or registration of utility model

Ref document number: 5797497

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees