WO2012101930A1 - リスク分析システム及びリスク分析方法 - Google Patents

リスク分析システム及びリスク分析方法 Download PDF

Info

Publication number
WO2012101930A1
WO2012101930A1 PCT/JP2011/079240 JP2011079240W WO2012101930A1 WO 2012101930 A1 WO2012101930 A1 WO 2012101930A1 JP 2011079240 W JP2011079240 W JP 2011079240W WO 2012101930 A1 WO2012101930 A1 WO 2012101930A1
Authority
WO
WIPO (PCT)
Prior art keywords
risk
sample
time
risk analysis
analysis
Prior art date
Application number
PCT/JP2011/079240
Other languages
English (en)
French (fr)
Inventor
義晴 前野
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012554645A priority Critical patent/JP5311085B2/ja
Priority to US13/979,810 priority patent/US20130339081A1/en
Publication of WO2012101930A1 publication Critical patent/WO2012101930A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/06Resources, workflows, human or project management; Enterprise or organisation planning; Enterprise or organisation modelling
    • G06Q10/063Operations research, analysis or management
    • G06Q10/0635Risk analysis of enterprise or organisation activities

Definitions

  • the present invention relates to a risk analysis system and a risk analysis method.
  • An input-output table is known as an index for analyzing production in interdependent companies.
  • the input-output table is a macroscopic economic index that was devised by the former Soviet Union economist Leontief and expressed the amount of transactions between industrial sectors in the form of a matrix.
  • the input-output table summarizes the magnitude of the effect of the production of one industrial sector on the production of other industrial sectors.
  • the magnitude of the ripple effect is called the input factor and is useful as basic data for product life cycle assessment.
  • Japan the Ministry of Internal Affairs and Communications plays a central role in creating an input-output table every five years.
  • the raw materials are 0.124901 units from the agriculture, forestry and fisheries industry, 0.000048 units from the mining industry, and food and beverage products.
  • the information that it is necessary to purchase 0.094618 units is obtained.
  • Patent Documents 1 to 5 disclose examples of techniques for analyzing production of companies that depend on each other using such an input-output table.
  • the environmental load is calculated by using the emission intensity calculated from the input-output table by designating the recycling mode for each material constituting the product at each stage of recycling specific to the product to be analyzed.
  • a method for obtaining the size of the is disclosed.
  • Patent Document 2 describes sales, operating income, and variable costs when the amount of sales to each company is given when analyzing the interdependence among multiple business units in a company.
  • a method of calculating an inverse matrix coefficient for calculating the relationship and outputting an association table between business units is disclosed.
  • Patent Document 3 predicts the environmental load in advance at the product design stage based on the input-output table showing the transaction amount for parts and materials and the environmental load database, and quickly and easily increases the environmental load. A method of calculating the length and supporting product design is disclosed.
  • Patent Document 4 describes that even a complex product composed of a wide variety of parts is efficiently and highly accurately evaluated from the production to the disposal of the product, and the disposal process is considered.
  • a method for evaluating the magnitude of the environmental load that can be designed is disclosed.
  • Patent Document 5 discloses the management of each production process by associating the product life cycle data with an identification number and an environmental load, and discloses only the minimum data necessary for other processes using the product. However, a method for managing information on the environmental load of a product life cycle in common in all production processes is disclosed.
  • FIG. 12 shows an example of a production analysis system that analyzes production of companies that depend on each other using an input-output table.
  • the production analysis system 100 includes an input-output table input unit 110, an initial production amount input unit 112, a ripple effect calculation unit 114, and a final production amount display unit 116.
  • the input coefficient of the above-mentioned input-output table is given to the system 100 via the input-output table input unit 112.
  • the initial production amount input unit 112 receives a production amount for each industrial sector to be analyzed from a system user.
  • the ripple effect calculation unit 114 calculates the final production amount based on the input coefficient and the initial production amount, and outputs the final production amount for each industrial sector.
  • the production analysis system 100 can know the average magnitude of the ripple after a sufficient time has passed with respect to the ripple from the production of one industrial sector to the production of another industrial sector.
  • the coefficient listed in the input-output table is the average of these values. Only. Therefore, by simply using the coefficients listed in the input-output table, analysis that incorporates microscopic differences, such as analyzing the impact on other industries at any time from immediately after production in one industry. Can not do. For example, in the production analysis system 100 described above, how much (varied) the average size deviates under the best state or the worst state at an arbitrary time immediately after production in a certain industrial sector. It is not possible to know if a ripple can occur.
  • the present invention has been made in view of such circumstances, and analyzes a risk indicating the degree of influence on the production volume of another industrial sector when the production volume of a certain industrial sector changes at an arbitrary time. For the purpose.
  • a risk analysis system includes an input-output table storage unit that stores input coefficients between a plurality of mutually dependent industrial sectors, and an initial production amount that stores initial production amounts of each industrial sector at an initial time. Based on the storage unit, the input coefficient, and the initial production amount, a plurality of sample values of the cumulative production amount of each industrial sector from the initial time to a predetermined analysis time are generated so that the plurality of sample values vary.
  • a sample generation unit a sample storage unit for storing a plurality of sample values generated by the sample generation unit; and at least one of a plurality of industrial sectors based on the plurality of sample values stored in the sample storage unit
  • a risk analysis unit that analyzes the risk of changes in accumulated production volume at the time of analysis in the analysis sector, and an analysis result that outputs the analysis result of the risk analysis unit It includes a radical 19, a.
  • the “unit” does not simply mean a physical means, but includes a case where the function of the “unit” is realized by software. Also, even if the functions of one “unit” or device are realized by two or more physical means or devices, the functions of two or more “units” or devices are realized by one physical means or device. May be.
  • the present invention it is possible to analyze a risk indicating the degree of influence on the production volume of another industrial sector when the production volume of a certain industrial sector changes at an arbitrary time.
  • FIG. 1 is a diagram showing a configuration of the risk analysis system of the present embodiment.
  • the risk analysis system 10 is a system for analyzing the risk of a change in production volume between mutually dependent industrial sectors.
  • the risk analysis system 10 can be configured using an information processing apparatus such as a server, for example.
  • the risk analysis system 10 may be configured using a plurality of information processing apparatuses.
  • the risk analysis system 10 includes an input-output table receiving unit 20, an input-output table storage unit 22, an initial production volume receiving unit 24, an initial production volume storage unit 26, an analysis time receiving unit 28, and an analysis time storage.
  • the unit 30 includes a production amount sample generation unit 32, a cumulative production amount storage unit 34, a production amount sample storage unit 36, a risk analysis unit 38, and an analysis result output unit 40.
  • the input-output table storage unit 22, the initial production volume storage unit 26, the analysis time storage unit 30, the cumulative production volume storage unit 34, and the production volume sample storage unit 36 are, for example, a memory or a storage device in an information processing apparatus. This storage area can be realized.
  • the input-output table receiving unit 20, the initial production volume receiving unit 24, the analysis time receiving unit 28, the production volume sample generating unit 32, the risk analysis unit 38, and the analysis result output unit 40 are stored in a memory in the information processing apparatus. It can be realized by executing the program being executed by the processor.
  • the input-output table reception unit 20 receives an input-output table necessary for risk analysis and stores it in the input-output table storage unit 22.
  • the input-output table receiving unit 20 may receive an input-output table input from a system user or an input-output table from another system via the input I / F of the information processing apparatus. it can.
  • FIG. 2 is a diagram illustrating an example of the input-output table stored in the input-output table storage unit 22.
  • the input-output table includes a matrix with identifiers indicating industrial sectors (industrial sector identifiers), and input coefficients are set for each element of the matrix.
  • the identifier “1” indicates agriculture, forestry and fisheries
  • the identifier “2” indicates mining.
  • the identifier is given according to a predetermined rule, and may be other than an integer value.
  • the input coefficient A ji indicates a unit in which the raw material needs to be input from the industrial sector “j” even though the industrial sector “i” produces one unit.
  • the input coefficient A 11 means that it is necessary to purchase A 11 units from the industrial sector “1” in order to produce one unit in the industrial sector “1”.
  • the input coefficient A 21 means that it is necessary to purchase A 21 units from the industrial sector “2” in order to produce one unit in the industrial sector “1”.
  • a 2 ⁇ 2 matrix is shown as an example when the number of industrial sectors is 2, but the input-output table is indicated by a larger matrix if the number of industrial sectors is large.
  • the number of industrial sectors is determined in advance, for example, 13 sectors, 34 sectors, 108 sectors, etc., and an input-output table having a size corresponding to the number is stored in the input-output table storage unit 22.
  • the initial production volume receiving unit 24 receives an initial production volume management table necessary for risk analysis and stores it in the initial production volume storage unit 26.
  • the initial production amount receiving unit 24 can receive an initial production amount input from a system user via the input I / F of the information processing apparatus.
  • the initial production volume is a condition for analyzing the risk, and is specified by the system user. For example, if the risk is analyzed when the initial production amount of the industrial sector “1” is 10 units, “10” is input as the initial production amount. In addition, when the difference in the magnitude of risk is compared by changing the initial production amount, the input initial production amount is changed.
  • FIG. 3 is a diagram illustrating an example of the initial production volume management table stored in the initial production volume storage unit 26.
  • the initial production volume for each industrial sector is set in the initial production volume management table.
  • the initial production amount Y i (0) indicates the initial production amount of the industrial sector “i”.
  • FIG. 3 shows an initial production volume management table in which initial production volumes of two industrial sectors are set. If there are a large number of industrial sectors, the initial production volume management of a size corresponding to that number is shown. The table is stored in the initial production amount storage unit 26.
  • the analysis time reception unit 28 receives an analysis time necessary for risk analysis and stores it in the analysis time storage unit 30.
  • the analysis time is a time at which risk analysis is performed after initial production is started. Since the analysis time stored in the analysis time storage unit 30 is a single value, it is not particularly held in the form of a table.
  • This analysis time is a condition for analyzing the risk, and is specified by the user of the system. For example, in the risk analysis system 10, the initial value of time is “0”, and the time can be increased by “1”.
  • one unit of time can be a preset period such as 5 days. In this case, for example, when analyzing the risk 10 days after the start of the initial production, “2” is input as the analysis time. In addition, when the difference in the magnitude of risk is compared by changing the analysis time, the input analysis time is changed.
  • the production volume sample generation unit 32 calculates the cumulative production volume at the analysis time based on the input-output table, the initial production volume management table, and the analysis time in consideration of the variation for each transaction. Then, the production volume sample generation unit 32 stores the sample data in which the calculated cumulative production volume is set in the production volume sample storage unit 36. The production volume sample generation unit 32 repeatedly executes calculation of the accumulated production volume until the number of sample data necessary for risk analysis is accumulated. It is assumed that the lower limit (threshold value) of the number of sample data necessary for risk analysis is predetermined.
  • FIG. 4 is a diagram showing an example of a cumulative production volume management table that is generated by the production volume sample generation unit 32 and stored in the cumulative production volume storage unit 34.
  • an average ripple amount, variation, ripple amount, and cumulative production amount at a certain time are set for each industrial sector in the cumulative production amount management table.
  • the average spillover amount indicates the average spillover amount (production amount) of a certain industrial sector at a certain time, and is based on the input coefficient and the spillover amount of each industrial sector at the previous time. Is calculated.
  • the average spillover volume W i (T) is at time "T” in the industrial sector "i”, based on the time spillover volume of each industrial sector in the "T-1", Y j (T-1), the following formula It can be calculated by (1).
  • the variation is for giving a change to the ripple amount (production amount) for each transaction, and is calculated based on the input coefficient, the ripple amount of each industrial sector at the previous time, and a random number.
  • the variation D i (T) indicating “deviation” from the average ripple amount at the time “T” of the industrial sector “i” can be calculated by the following equations (2) and (3).
  • N (0, 1) represents a normal distribution with an average value “0” and a variance “1” (standard deviation “1”), and X j (T) follows this normal distribution. It is a random number.
  • the variation D i (T) calculated by the equation (3) indicates that each transaction from the ordering industry sector “j” in the transaction from the ordering industry sector “j” to the ordering industry sector “i”.
  • the value determined as a function of the spread amount according to the amplitude is a value obtained by multiplying the variation due to the normal random number.
  • the ripple amount indicates a production amount at a certain time in a certain industrial sector, and is calculated based on the average ripple amount and variation.
  • the ripple amount Y i (T) at time “T” of the industrial sector “i” can be calculated by the following equation (4).
  • the accumulated production amount is a cumulative amount of ripple (production amount) up to a certain time.
  • the cumulative production amount Z i (T) at time “T” of the industrial sector “i” can be calculated by the following equation (5).
  • the production volume sample generation unit 32 calculates the accumulated production volume at the analysis time based on such an expression and stores it in the sample management table storage unit 36.
  • variation for every transaction is considered when calculating the propagation amount (production amount) in each time, dispersion
  • FIG. 5 is a diagram illustrating an example of a sample management table that is generated by the production volume sample generation unit 32 and stored in the production volume sample storage unit 36.
  • the sample value Z i (T f ) of the accumulated production amount at the analysis time “T f ” of the industrial sector “i” is stored in the sample management table together with the sample identifier.
  • the sample identifier is assigned so that there is no duplication for each sample data.
  • the sample identifier may be an integer value that increases by “1”.
  • the risk analysis unit 38 analyzes the risk of production change in each industrial sector based on the sample data stored in the sample management table. A specific example of analysis will be described later.
  • the analysis result output unit 40 outputs the analysis result from the risk analysis unit 38.
  • the analysis result can be output by, for example, displaying on a display or outputting data to another system.
  • FIG. 6 is a flowchart illustrating an example of the risk analysis process.
  • the input-output table, initial production volume, and analysis time are received by the input-output table receiving unit 20, the initial production volume receiving unit 24, and the analysis time receiving unit 28 (S601), the input-output table storage unit 22, the initial production volume.
  • the data is stored in the storage unit 26 and the analysis time storage unit 30 (S602).
  • the production volume sample generation unit 32 refers to the production volume sample storage unit 36 and confirms whether the number of sample data stored in the sample management table is equal to or greater than a threshold value (S603).
  • the threshold value is a lower limit value of the number of sample data necessary for risk analysis, and is set in advance.
  • the production volume sample generation unit 32 initializes the cumulative production volume management table stored in the cumulative production volume storage unit 34 (S604).
  • the production volume sample generation unit 32 initializes the time to, for example, “0” together with the initialization of the cumulative production volume management table.
  • the production volume sample generation unit 32 determines whether the time has reached the analysis time (S605). If the time has not reached the analysis time (S605: NO), for example, “1” is added to the time, and a ripple amount and a cumulative production amount at that time are calculated (S606) and stored in the cumulative production amount storage unit 34. It is added to the accumulated production volume management table (S607). Then, the production volume sample generation unit 32 returns to the time determination (S605). That is, the cumulative production amount calculation process is repeatedly executed until the time reaches the analysis time.
  • the production volume sample generation unit 32 stops adding to the cumulative production volume management table. Then, the production volume sample generation unit 32 refers to the cumulative production volume management table stored in the cumulative production volume storage unit 34, and acquires the cumulative production volume at the analysis time as a sample value (S608). The production volume sample generation unit 32 adds the sample data set with the sample value to the sample management table of the production volume sample storage unit 36 (S609), and returns to the determination of the number of sample data (S603). That is, the generation processing of sample data at the analysis time is repeatedly executed until the number of sample data stored in the sample management table becomes equal to or greater than the threshold value.
  • the risk analysis unit 38 refers to the sample management table in the production volume sample storage unit 36 and analyzes the risk of each industrial sector at the analysis time. For example, the risk analysis unit 38 searches the maximum value and the minimum value of the accumulated production amount for each industrial sector from the sample management table as a value indicating the risk (S610).
  • the analysis result output unit 40 outputs the analysis result of the risk analysis unit 38.
  • the analysis result output unit 40 displays the maximum value and the minimum value of the accumulated production amount for each industrial sector searched by the risk analysis unit 38 (S611).
  • the minimum value of the accumulated production volume of the industrial sector to which the company interested in the analysis belongs can be interpreted as a risk representing the financial accounting impact as the lower limit of the production volume.
  • the maximum value of the accumulated production amount can be interpreted as a risk representing the environmental load as the upper limit of the production amount.
  • the maximum value and the minimum value are examples of an index indicating risk, and the index indicating risk is not limited to these, and a more advanced index or a complicated index may be used.
  • the input-output table storage unit 22 stores the input-output table shown in FIG.
  • the initial production volume storage unit 26 stores an initial production volume management table shown in FIG.
  • the initial production volume of the industrial sector “1” is set to “1000”
  • the initial production volume of the industrial sector “2” is set to “0”. It is assumed that “2” is set as the analysis time.
  • FIG. 9 shows an example of the cumulative production volume management table in an initialized state.
  • the initial production volume in the initial production volume management table is set to the ripple amount and the cumulative production volume for each industrial sector.
  • An initial value “0” is set for the average ripple amount and the variation.
  • FIG. 10 shows an example of the cumulative production volume management table at time “2”, which is updated by the production volume sample generation unit 32 under such conditions.
  • the average spillover amount, variation, spillover amount, and cumulative production amount set in this cumulative production volume management table are expressed by equations (1) based on the input-output table shown in FIG. 7 and the initial production volume management table shown in FIG. It is calculated according to 1) to (5).
  • the accumulated production amount up to time “2” that is the analysis time is calculated.
  • FIG. 11 shows an example of a sample management table.
  • the accumulated production volume at time “2” in the accumulated production volume management table shown in FIG. 10 is set in the sample data of the sample identifier “1”. That is, the cumulative production amount “1140.6” of the industrial sector “1” and the cumulative production amount “276.1” of the industrial sector “2” are set.
  • the sample management table shown in FIG. 11 stores sample data of sample identifiers “2” to “8”.
  • the risk analysis unit 38 can perform risk analysis based on the sample management table shown in FIG. For example, when the maximum value and the minimum value of the accumulated production amount are used as the risk index, the risk analysis unit 38 refers to the sample management table of FIG. 11 and refers to the maximum value of the accumulated production amount of the industrial sector “1”. As a result, “1147.3” set in the sample data of the sample identifier “2” is acquired. Further, the risk analysis unit 38 acquires “1099.4” set in the sample data of the sample identifier “6” as the minimum value of the accumulated production amount of the industrial sector “1”.
  • the analysis result output unit 40 outputs the maximum value and the minimum value of the accumulated production amount for each industrial sector acquired as described above as the risk analysis result.
  • the risk analysis unit 38 can not only analyze the risk of change in the accumulated production amount for each industrial sector, but also detect the correlation risk between the industrial sectors. For example, the risk analysis unit 38 retrieves the correlation between the industrial sectors by searching the sample management table for the cumulative production of the other industrial sector when the cumulative production of the certain industrial sector reaches the maximum value and the minimum value. Can detect risks. For example, when the cumulative production amount of the industrial sector “1” reaches the maximum value “1147.3”, the cumulative production amount of the industrial sector “2” is “279.9”. This value can be considered as a risk due to the correlation between the industrial sector “1” and the industrial sector “2”.
  • the cumulative production amount of the industrial sector “1” reaches the minimum value “1099.4”
  • the cumulative production amount of the industrial sector “2” is “270.0”. This is equal to the minimum cumulative production amount of the industrial sector “2”. Therefore, it can be considered that the risk that the production volume of the industrial sector “2” decreases is a risk caused by the correlation between the industrial sector “1” and the industrial sector “2”.
  • the embodiment has been described above. According to the risk analysis system 10 of the present embodiment, it is possible to analyze a risk indicating the degree of influence on the production amount of another industrial sector when the production amount of a certain industrial sector changes at an arbitrary time. For example, knowing how far a spillover may occur from the average production volume under the best or worst conditions at any time immediately after production in an industrial sector it can.
  • this embodiment is for making an understanding of this invention easy, and is not for limiting and interpreting this invention.
  • the present invention can be changed / improved without departing from the spirit thereof, and the present invention includes equivalents thereof.
  • An input-output table storage unit that stores input coefficients among a plurality of mutually dependent industrial sectors, an initial production amount storage unit that stores initial production amounts of each industrial sector at an initial time, and the input coefficients Based on the initial production amount, a sample generation unit that generates a plurality of sample values of the cumulative production amount of each industrial sector from the initial time to a predetermined analysis time so that the plurality of sample values vary, A sample storage unit for storing the plurality of sample values generated by the sample generation unit; and at least one of the plurality of industrial sectors based on the plurality of sample values stored in the sample storage unit
  • the risk analysis unit that analyzes the risk of changes in the cumulative production volume at the time of analysis in the industry sector to be analyzed, and the output of the analysis results of the risk analysis unit Risk analysis system comprising a result output unit.
  • (Supplementary note 5) The risk analysis system according to any one of supplementary notes 1 to 4, wherein the input-output table receiving unit receives input coefficients between the plurality of industrial sectors and stores them in the input-output table storage unit. Further comprising a risk analysis system.
  • (Supplementary note 6) The risk analysis system according to any one of supplementary notes 1 to 5, wherein the risk analysis unit sets a maximum value among the plurality of sample values in each industry sector to be analyzed as the risk. Analyzing as a risk analysis system.
  • (Supplementary note 7) The risk analysis system according to any one of supplementary notes 1 to 6, wherein the risk analysis unit calculates a minimum value of the plurality of sample values in each industrial sector to be analyzed as the risk.
  • Analyzing as a risk analysis system The risk analysis system according to any one of supplementary notes 1 to 7, wherein the risk analysis unit has a maximum sample value of one of the plurality of industrial sectors. A risk analysis system for analyzing the sample value in each industrial sector to be analyzed as the risk. (Supplementary note 9) The risk analysis system according to any one of supplementary notes 1 to 8, wherein the risk analysis unit has a minimum sample value of one of the plurality of industrial sectors. A risk analysis system for analyzing the sample value in each industrial sector to be analyzed as the risk.
  • An inter-industry input table storage unit stores input coefficients between a plurality of interdependent industrial sectors, an initial production amount of each industrial sector at an initial time is stored in an initial production amount storage unit, and the input coefficient and Based on the initial production amount, a plurality of sample values of the cumulative production amount of each industrial sector from the initial time to a predetermined analysis time are generated so that the plurality of sample values vary, and the generated A plurality of sample values are stored in a sample storage unit, and the analysis is performed in at least one of the plurality of industry sectors to be analyzed based on the plurality of sample values stored in the sample storage unit.
  • a risk analysis method for analyzing a risk of change in cumulative production at a time and outputting the analysis result of the risk.

Landscapes

  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Engineering & Computer Science (AREA)
  • Strategic Management (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Economics (AREA)
  • Operations Research (AREA)
  • Game Theory and Decision Science (AREA)
  • Development Economics (AREA)
  • Marketing (AREA)
  • Educational Administration (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

 任意の時刻において、ある産業部門の生産量が変化した場合の他の産業部門の生産量への影響の程度を示すリスクを分析する。相互に依存する複数の産業部門間の投入係数を産業連関表記憶部に記憶し、初期時刻における各産業部門の初期生産量を初期生産量記憶部に記憶し、投入係数及び初期生産量に基づいて、初期時刻から所定の分析時刻までの各産業部門の累積生産量の複数のサンプル値を、該複数のサンプル値にばらつきが生じるように生成し、生成された複数のサンプル値をサンプル記憶部に記憶し、サンプル記憶部に記憶されている複数のサンプル値に基づいて、複数の産業部門のうちの少なくとも1つの分析対象の産業部門における、分析時刻における累積生産量の変化のリスクを分析する、リスクの分析結果を出力する。

Description

リスク分析システム及びリスク分析方法
 本発明は、リスク分析システム及びリスク分析方法に関する。
 相互に依存する企業における生産を分析するための指標として、産業連関表が知られている。産業連関表とは、旧ソビエト連邦の経済学者レオンチェフが考案した、産業部門間の取引の金額を行列の形式で表記したマクロスコピックな経済指標である。また、産業連関表は、ある産業部門の生産が他の産業部門の生産にどう波及するか、その効果の大きさをまとめたものと言うことができる。波及の効果の大きさは投入係数と呼ばれ、製品のライフサイクルアセスメントの基礎データとして有用である。日本では、総務省が中心となり省庁共同で5年ごとに産業連関表が作成されている。例えば、2005年度(平成17年度)の産業連関表を参照すると、農林水産業が1単位生産するには、原料を農林水産業から0.124901単位、鉱業から0.000048単位、飲食料品から0.094618単位購入する必要がある、といった情報が得られる。
 例えば、特許文献1~5には、このような産業連関表を利用して相互に依存する企業の生産を分析する手法の例が開示されている。
 特許文献1には、分析対象とする製品に固有のリサイクルの各段階において、製品を構成する材料ごとのリサイクル形態を指定することにより、産業連関表から算出した排出原単位を利用して環境負荷の大きさを求める方法が開示されている。
 また、特許文献2には、企業における複数の事業部門間での相互依存性を分析する際に、各事業部門での社外への販売額を与えた場合の売上、営業利益、および、変動費を算出する逆行列係数を算出し、事業部門間の連関表を出力する方法が開示されている。
 また、特許文献3には、部品や素材に対する取引金額を示す産業連関表と環境負荷データベースとをもとに、製品の設計段階において、あらかじめ環境負荷を予測し、迅速かつ簡易に環境負荷の大きさを算出し、製品の設計を支援する方法が開示されている。
 また、特許文献4には、多種多様な部品から構成される複雑な製品であっても、製品の製造から廃棄に至るまでの総合的な評価を効率的かつ高精度に行い、廃棄処理を考慮した設計を行うことのできる、環境負荷の大きさを評価する方法が開示されている。
 また、特許文献5には、製品のライフサイクルのデータに識別番号と環境負荷とを対応させて生産工程ごとに管理し、その製品を利用する他の工程に対して必要最小限のデータのみ開示し、製品のライフサイクルの環境負荷の情報を全生産工程で共通に管理する方法が開示されている。
 ここで、産業連関表を利用して相互に依存する企業の生産を分析する生産分析システムの一例を図12に示す。この生産分析システム100は、産業連関表入力部110、初期生産量入力部112、波及効果計算部114、最終生産量表示部116を含んでいる。産業連関表入力部112を介して、上記の産業連関表の投入係数がシステム100に与えられる。初期生産量入力部112は、分析対象とする産業部門ごとの生産量をシステムの利用者から受け付ける。波及効果計算部114は、投入係数及び初期生産量に基づいて最終生産量を算出し、産業部門ごとに最終生産量を出力する。相互に依存する企業の生産、すなわち、サプライチェーンの分析では、それらの企業が属する産業部門間の投入係数によって企業の生産が他の企業の生産に波及するものとすれば、算出された結果をそのまま当てはめることができる。したがって、生産分析システム100では、ある産業部門の生産から他の産業部門の生産への波及について、充分時間が経過した後での平均的な波及の大きさを知ることができる。
 なお、波及効果計算部114における具体的な計算方法の例は、平成17年(2005年)産業連関表総合解説編(平成21年3月総務省編)の第5章「産業連関分析のための各種係数の内容と計算方法」や第6章「産業連関分析の方法」に詳しく記載されている。
特開2005-301867号公報 特開2010-224769号公報 特開2004-334272号公報 特開2002-259628号公報 特開平11-161709号公報
 ところで、ひとつひとつの取引の金額は、同一の産業部門の中でも企業ごとに異なり、同一の企業であっても時期によって異なるものであるが、産業連関表に記載されている係数はこれらの平均値にすぎない。そのため、産業連関表に記載されている係数を単純に用いるだけでは、ある産業部門の生産の直後から任意の時刻における他の産業部門への影響を分析する等、ミクロスコピックな差異を組み入れた分析を行うことはできない。例えば、上述した生産分析システム100では、ある産業部門の生産の直後から任意の時刻において、最善の状態、あるいは、最悪の状態のもとで平均的な大きさからどの程度ずれた(ばらついた)波及が起こりうるかを知ることはできない。
 本発明はこのような事情に鑑みてなされたものであり、任意の時刻において、ある産業部門の生産量が変化した場合の他の産業部門の生産量への影響の程度を示すリスクを分析することを目的とする。
 本発明の一側面に係るリスク分析システムは、相互に依存する複数の産業部門間の投入係数を記憶する産業連関表記憶部と、初期時刻における各産業部門の初期生産量を記憶する初期生産量記憶部と、投入係数及び初期生産量に基づいて、初期時刻から所定の分析時刻までの各産業部門の累積生産量の複数のサンプル値を、該複数のサンプル値にばらつきが生じるように生成するサンプル生成部と、サンプル生成部によって生成された複数のサンプル値を記憶するサンプル記憶部と、サンプル記憶部に記憶されている複数のサンプル値に基づいて、複数の産業部門のうちの少なくとも1つの分析対象の産業部門における、分析時刻における累積生産量の変化のリスクを分析するリスク分析部と、リスク分析部の分析結果を出力する分析結果出力部と、を備える。
 なお、本発明において、「部」とは、単に物理的手段を意味するものではなく、その「部」が有する機能をソフトウェアによって実現する場合も含む。また、1つの「部」や装置が有する機能が2つ以上の物理的手段や装置により実現されても、2つ以上の「部」や装置の機能が1つの物理的手段や装置により実現されても良い。
 本発明によれば、任意の時刻において、ある産業部門の生産量が変化した場合の他の産業部門の生産量への影響の程度を示すリスクを分析することができる。
本実施形態のリスク分析システムの構成を示す図である。 産業連関表の一例を示す図である。 初期生産量管理表の一例を示す図である。 累積生産量管理表の一例を示す図である。 サンプル管理表の一例を示す図である。 リスク分析処理の一例を示すフローチャートである。 産業連関表の具体例を示す図である。 初期生産量管理表の具体例を示す図である。 初期化された状態の累積生産量管理表の一例を示す図である。 累積生産量管理表の具体例を示す図である。 サンプル管理表の具体例を示す図である。 生産分析システムの一例を示す図である。
 以下、図面を参照して本発明の一実施形態について説明する。
 図1は、本実施形態のリスク分析システムの構成を示す図である。リスク分析システム10は、相互に依存する産業部門間における生産量変化のリスクを分析するシステムである。リスク分析システム10は、例えば、サーバ等の情報処理装置を用いて構成することができる。また、リスク分析システム10は、複数の情報処理装置を用いて構成されることとしてもよい。
 図1に示すように、リスク分析システム10は、産業連関表受付部20、産業連関表記憶部22、初期生産量受付部24、初期生産量記憶部26、分析時刻受付部28、分析時刻記憶部30、生産量サンプル生成部32、累積生産量記憶部34、生産量サンプル記憶部36、リスク分析部38、及び分析結果出力部40を含んで構成されている。なお、産業連関表記憶部22、初期生産量記憶部26、分析時刻記憶部30、累積生産量記憶部34、及び生産量サンプル記憶部36は、例えば、情報処理装置において、メモリや記憶装置等の記憶領域を用いて実現することができる。また、産業連関表受付部20、初期生産量受付部24、分析時刻受付部28、生産量サンプル生成部32、リスク分析部38、及び分析結果出力部40は、情報処理装置において、メモリに格納されているプログラムをプロセッサが実行することにより実現することができる。
 産業連関表受付部20は、リスクの分析において必要となる産業連関表を受け付け、産業連関表記憶部22に格納する。例えば、産業連関表受付部20は、情報処理装置の入力I/Fを介して、システムの利用者から入力される産業連関表を受け付けたり、他のシステムから産業連関表を受け付けたりすることができる。
 産業連関表には、取引についての発注側産業部門と受注側産業部門の対ごとに投入係数が設定されている。図2は、産業連関表記憶部22に記憶される、産業連関表の一例を示す図である。図2に示す例では、産業連関表には、産業部門を示す識別子(産業部門識別子)による行列が構成され、行列の各要素に投入係数が設定されている。例えば、識別子「1」は農林水産業、識別子「2」は鉱業を示している。なお、識別子は、予め定められた規則に従って付与されており、整数値以外であってもよい。図2において、投入係数Ajiは、産業部門「i」が1単位生産するのに、原料を産業部門「j」から投入する必要がある単位を示している。例えば、投入係数A11は、産業部門「1」が1単位生産するのに、原料を産業部門「1」からA11単位購入する必要があるということを意味している。また、投入係数A21は、産業部門「1」が1単位生産するのに、原料を産業部門「2」からA21単位購入する必要があるということを意味している。なお、図2では、産業部門の数が2である場合の例として2×2の行列が示されているが、産業連関表は、産業部門の数が多ければその分大きな行列によって示される。なお、産業部門の数は、例えば、13部門、34部門、108部門等あらかじめ定められており、その数に応じた大きさの産業連関表が産業連関表記憶部22に格納される。
 初期生産量受付部24は、リスク分析において必要となる初期生産量管理表を受け付け、初期生産量記憶部26に格納する。例えば、初期生産量受付部24は、情報処理装置の入力I/Fを介してシステムの利用者から入力される初期生産量を受け付けることができる。初期生産量は、リスクを分析する際の条件であり、システムの利用者によって指定される。例えば、産業部門「1」の初期生産量が10単位の場合のリスクを分析する場合であれば、初期生産量として「10」が入力される。また、初期生産量を変更してリスクの大きさの違いを比較する場合には、入力される初期生産量が変更される。
 初期生産量管理表には、産業部門ごとの初期の生産量が設定されている。図3は、初期生産量記憶部26に記憶される、初期生産量管理表の一例を示す図である。図3に示す例では、初期生産量管理表には、産業部門ごとの初期生産量が設定されている。図3において、初期生産量Yi(0)は、産業部門「i」の初期生産量を示している。なお、図3には、2つの産業部門の初期生産量が設定された初期生産量管理表が示されているが、産業部門の数が多ければその数に応じた大きさの初期生産量管理表が初期生産量記憶部26に格納される。
 分析時刻受付部28は、リスク分析において必要となる分析時刻を受け付け、分析時刻記憶部30に格納する。ここで、分析時刻とは、初期生産が開始された後で、リスク分析を行う時刻である。分析時刻記憶部30に記憶される分析時刻は単一の値であるため、特に表の形式で保持されるものではない。この分析時刻は、リスクを分析する際の条件であり、システムの利用者によって指定される。例えば、リスク分析システム10では、時刻の初期値が「0」であり、時刻は「1」ずつ増加していくとすることができる。ここで、時刻の1単位は、例えば5日間等、あらかじめ設定された期間とすることができる。この場合において、例えば、初期生産が開始されてから10日後のリスクを分析する場合であれば、分析時刻として「2」が入力される。また、分析時刻を変更してリスクの大きさの違いを比較する場合には、入力される分析時刻が変更される。
 生産量サンプル生成部32は、産業連関表、初期生産量管理表、分析時刻をもとに、取引ごとのばらつきを考慮したうえで、分析時刻における累積生産量を算出する。そして、生産量サンプル生成部32は、算出された累積生産量が設定されたサンプルデータを生産量サンプル記憶部36に格納する。また、生産量サンプル生成部32は、リスクの分析に必要な数のサンプルデータが蓄積されるまで、累積生産量の算出を繰り返し実行する。なお、リスクの分析に必要なサンプルデータの数の下限(閾値)は、あらかじめ定められているものとする。
 図4は、生産量サンプル生成部32によって生成され、累積生産量記憶部34に格納される、累積生産量管理表の一例を示す図である。図4の例では、累積生産量管理表には、産業部門ごとに、ある時刻における、平均波及量、ばらつき、波及量、及び累積生産量が設定されている。
 平均波及量(平均生産量)は、ある産業部門のある時刻における波及量(生産量)の平均を示すものであり、投入係数と、1つ前の時刻における各産業部門の波及量とに基づいて算出される。例えば、産業部門「i」の時刻「T」における平均波及量Wi(T)は、時刻「T-1」における各産業部門の波及量Yj(T-1)に基づいて、以下の式(1)により算出することができる。
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)では、産業部門の数が2である場合の一例が示されているが、産業部門の数が多ければ、i,jはその分大きくなる。以下に示す他の式においても同様である。
 ばらつきは、取引ごとの波及量(生産量)に変化を与えるためのものであり、投入係数と、1つ前の時刻における各産業部門の波及量と、乱数とに基づいて算出される。例えば、産業部門「i」の時刻「T」における、平均波及量からの「ずれ」を示すばらつきDi(T)は、以下の式(2)、(3)により算出することができる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 式(2)において、N(0,1)は、平均値「0」、分散「1」(標準偏差「1」)の正規分布を表しており、Xj(T)は、この正規分布に従う乱数である。また、式(3)において、指数θはあらかじめ定められた値である。例えば、θ=0.5とすることができる。式(3)により算出されるばらつきDi(T)は、発注側の産業部門「j」から受注側の産業部門「i」への取引において、発注側の産業部門「j」からの各取引に応じて波及量の関数として決まる値を振幅として、正規乱数によるばらつきを掛け合わせた値となる。
 波及量は、ある産業部門におけるある時刻における生産量を示すものであり、平均波及量とばらつきとに基づいて算出される。例えば、産業部門「i」の時刻「T」における波及量Yi(T)は、以下の式(4)により算出することができる。
Figure JPOXMLDOC01-appb-M000004
 累積生産量は、ある時刻までにおける波及量(生産量)を累積したものである。例えば、産業部門「i」の時刻「T」における累積生産量はZi(T)は、以下の式(5)により算出することができる。
Figure JPOXMLDOC01-appb-M000005
 生産量サンプル生成部32は、このような式に基づいて、分析時刻における累積生産量を算出し、サンプル管理表記憶部36に格納する。なお、各時刻における波及量(生産量)を算出する際に取引ごとのばらつきが考慮されているため、累積生産量のサンプル値にもばらつきが生じることとなる。
 図5は、生産量サンプル生成部32によって生成され、生産量サンプル記憶部36に格納される、サンプル管理表の一例を示す図である。図5に示すように、産業部門「i」の分析時刻「Tf」における累積生産量のサンプル値Zi(Tf)がサンプル識別子とともにサンプル管理表に格納されている。サンプル識別子は、サンプルデータごとに重複のないように割り当てられている。例えば、サンプル識別子は、「1」ずつ増加していく整数値とすることができる。
 リスク分析部38は、サンプル管理表に記憶されているサンプルデータに基づいて、各産業部門における生産量変化のリスクを分析する。分析の具体例については後述する。
 分析結果出力部40は、リスク分析部38による分析結果を出力する。なお、分析結果の出力は、例えば、ディスプレイへの表示や他のシステムへのデータ出力等により行うことができる。
 次に、リスク分析システム10におけるリスク分析処理について説明する。図6は、リスク分析処理の一例を示すフローチャートである。
 まず、産業連関表、初期生産量、分析時刻が、産業連関表受付部20、初期生産量受付部24、分析時刻受付部28によって受け付けられ(S601)、産業連関表記憶部22、初期生産量記憶部26、分析時刻記憶部30に格納される(S602)。
 生産量サンプル生成部32は、生産量サンプル記憶部36を参照し、サンプル管理表に格納されているサンプルデータの数が閾値以上であるかどうか確認する(S603)。なお、閾値は、リスクの分析に必要なサンプルデータ数の下限値であり、あらかじめ設定されている。
 サンプルデータの数が閾値未満である場合(S603:NO)、生産量サンプル生成部32は、累積生産量記憶部34に記憶されている累積生産量管理表を初期化する(S604)。なお、生産量サンプル生成部32は、累積生産量管理表の初期化とともに、時刻を例えば「0」に初期化する。
 生産量サンプル生成部32は、時刻が分析時刻に到達しているかどうか判定する(S605)。時刻が分析時刻に到達していなければ(S605:NO)、時刻に例えば「1」を加算し、該時刻における波及量や累積生産量を算出し(S606)、累積生産量記憶部34に記憶されている累積生産量管理表に追加する(S607)。そして、生産量サンプル生成部32は、時刻の判定(S605)に戻る。すなわち、時刻が分析時刻に到達するまで、累積生産量の算出処理が繰り返し実行される。
 時刻が分析時刻に到達すると(S605:YES)、生産量サンプル生成部32は、累積生産量管理表への追加を停止する。そして、生産量サンプル生成部32は、累積生産量記憶部34に記憶されている累積生産量管理表を参照し、分析時刻における累積生産量をサンプル値として取得する(S608)。生産量サンプル生成部32は、該サンプル値が設定されたサンプルデータを生産量サンプル記憶部36のサンプル管理表に追加し(S609)、サンプルデータ数の判定(S603)に戻る。すなわち、サンプル管理表に記憶されているサンプルデータ数が閾値以上となるまで、分析時刻のサンプルデータの生成処理が繰り返し実行される。
 サンプルデータの数が閾値に到達すると(S603:YES)、リスク分析部38は、生産量サンプル記憶部36のサンプル管理表を参照し、分析時刻における、各産業部門のリスクを分析する。例えば、リスク分析部38は、リスクを示す値として、サンプル管理表から、産業部門ごとの累積生産量の最大値、最小値を検索する(S610)。
 分析結果出力部40は、リスク分析部38の分析結果を出力する。例えば、分析結果出力部40は、リスク分析部38によって検索された、産業部門ごとの累積生産量の最大値、最小値を表示する(S611)。分析対象として興味がある企業が属する産業部門の累積生産量の最小値は、生産量の下限としての財務会計的なインパクトを表すリスクと解釈することができる。また、累積生産量の最大値は、生産量の上限としての環境負荷を表すリスクと解釈することができる。なお、最大値、最小値は、リスクを示す指標の一例であり、リスクを示す指標はこれらに限られず、より高度な指標や、複雑な指標が用いられることとしてもよい。
 ここで、具体例を用いてリスク分析処理の一例を説明する。いま、産業連関表記憶部22には、図7に示す産業連関表が格納されていることとする。図7に示す産業連関表では、例えば、発注側の産業部門「1」と受注側の産業部門「2」との間の投入係数が、A21=0.15に設定されている。また、初期生産量記憶部26には、図8に示す初期生産量管理表が格納されていることとする。図8に示す初期生産量管理表では、産業部門「1」の初期生産量が「1000」、産業部門「2」の初期生産量が「0」に設定されている。なお、分析時刻には「2」が設定されていることとする。
 また、図9には、初期化された状態の累積生産量管理表の一例が示されている。この累積生産量管理表は、産業部門ごとに、初期生産量管理表の初期生産量を、波及量および累積生産量に設定したものである。なお、平均波及量およびばらつきには、初期値「0」が設定されている。
 そして、このような条件のもとで生産量サンプル生成部32により更新された、時刻「2」における累積生産量管理表の一例が図10に示されている。この累積生産量管理表に設定されている平均波及量、ばらつき、波及量、累積生産量は、図7に示す産業連関表、および、図8に示す初期生産量管理表に基づいて、式(1)~(5)に従って算出されたものである。図10に示すように、分析時刻である時刻「2」までの累積生産量が算出されている。
 また、図11には、サンプル管理表の一例が示されている。図11に示すように、サンプル識別子「1」のサンプルデータには、図10に示した累積生産量管理表における時刻「2」の累積生産量が設定されている。すなわち、産業部門「1」の累積生産量「1140.6」と、産業部門「2」の累積生産量「276.1」が設定されている。そして、図11に示すサンプル管理表には、この他に、サンプル識別子「2」~「8」までのサンプルデータが格納されている。
 ここで、リスク分析に必要なサンプルデータ数の下限値を「8」とすると、リスク分析部38は、図11に示されるサンプル管理表に基づいてリスクの分析を行うことができる。例えば、累積生産量の最大値、最小値をリスクの指標とする場合であれば、リスク分析部38は、図11のサンプル管理表を参照し、産業部門「1」の累積生産量の最大値として、サンプル識別子「2」のサンプルデータに設定されている「1147.3」を取得する。また、リスク分析部38は、産業部門「1」の累積生産量の最小値として、サンプル識別子「6」のサンプルデータに設定されている「1099.4」を取得する。同様に、産業部門「2」については、累積生産量の最大値として、サンプル識別子「4」のサンプルデータに設定されている「285.6」が取得され、累積生産量の最小値として、サンプル識別子「6」のサンプルデータに設定されている「270.0」が取得される。分析結果出力部40は、このようにして取得された、産業部門ごとの累積生産量の最大値、最小値をリスクの分析結果として出力する。
 また、リスク分析部38は、単に、産業部門ごとに累積生産量の変化のリスクを分析するだけではなく、産業部門間の相関のリスクを検出することもできる。例えば、リスク分析部38は、サンプル管理表から、ある産業部門の累積生産量が最大値、最小値になった時の他の産業部門の累積生産量を検索することにより、産業部門間の相関のリスクを検出することができる。例えば、産業部門「1」の累積生産量が最大値「1147.3」になった時の産業部門「2」の累積生産量は、「279.9」である。この値は、産業部門「1」と産業部門「2」の相関に起因するリスクであると考えることができる。また、産業部門「1」の累積生産量が最小値「1099.4」になった時の産業部門「2」の累積生産量は、「270.0」である。これは、産業部門「2」の累積生産量の最小値に等しい。したがって、産業部門「2」の生産量が減少するリスクは、すべて産業部門「1」と産業部門「2」の相関に起因するリスクであると考えることができる。
 以上、本実施形態について説明した。本実施形態のリスク分析システム10によれば、任意の時刻において、ある産業部門の生産量が変化した場合の他の産業部門の生産量への影響の程度を示すリスクを分析することができる。例えば、ある産業部門の生産の直後から任意の時刻において、最善の状態、あるいは、最悪の状態のもとで平均的な生産量からどの程度ずれた(ばらついた)波及が起こりうるかを知ることができる。
 なお、本実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更/改良され得るととともに、本発明にはその等価物も含まれる。
 この出願は、2011年1月24日に出願された日本出願特願2011-012303を基礎とする優先権を主張し、その開示の全てをここに取り込む。
 以上、実施形態を参照して本願発明を説明したが、本願発明は上記実施形態に限定されるものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 本実施形態の一部又は全部は、以下の付記のようにも記載されうるが、以下には限られない。
(付記1)相互に依存する複数の産業部門間の投入係数を記憶する産業連関表記憶部と、初期時刻における各産業部門の初期生産量を記憶する初期生産量記憶部と、前記投入係数及び前記初期生産量に基づいて、前記初期時刻から所定の分析時刻までの各産業部門の累積生産量の複数のサンプル値を、該複数のサンプル値にばらつきが生じるように生成するサンプル生成部と、前記サンプル生成部によって生成された前記複数のサンプル値を記憶するサンプル記憶部と、前記サンプル記憶部に記憶されている前記複数のサンプル値に基づいて、前記複数の産業部門のうちの少なくとも1つの分析対象の産業部門における、前記分析時刻における累積生産量の変化のリスクを分析するリスク分析部と、前記リスク分析部の分析結果を出力する分析結果出力部と、を備えるリスク分析システム。
(付記2)付記1に記載のリスク分析システムであって、前記サンプル生成部は、前記分析時刻までの各時刻において、前記投入係数と、1つ前の時刻における前記複数の産業部門の生産量とにより定まる平均生産量を、乱数を用いた関数に適用することにより、前記複数のサンプル値にばらつきが生じるように各産業部門の複数のサンプル値を生成する、リスク分析システム。
(付記3)付記2に記載のリスク分析システムであって、前記サンプル生成部は、前記分析時刻までの各時刻において、各産業部門における生産量のばらつきを示す値を、1つ前の時刻における前記複数の産業部門の生産量と、乱数とに基づいて生成し、前記平均生産量と、該ばらつきを示す値とに基づいて、各時刻における各産業部門における生産量を算出する、リスク分析システム。
(付記4)付記1~3の何れか一項に記載のリスク分析システムであって、前記分析時刻を受け付ける分析時刻受付部と、前記受け付けた分析時刻を記憶する分析時刻記憶部と、をさらに備えるリスク分析システム。
(付記5)付記1~4の何れか一項に記載のリスク分析システムであって、前記複数の産業部門間の投入係数を受け付けて、前記産業連関表記憶部に格納する産業連関表受付部をさらに備えるリスク分析システム。
(付記6)付記1~5の何れか一項に記載のリスク分析システムであって、前記リスク分析部は、分析対象の各産業部門における、前記複数のサンプル値のうちの最大値を前記リスクとして分析する、リスク分析システム。
(付記7)付記1~6の何れか一項に記載のリスク分析システムであって、前記リスク分析部は、分析対象の各産業部門における、前記複数のサンプル値のうちの最小値を前記リスクとして分析する、リスク分析システム。
(付記8)付記1~7の何れか一項に記載のリスク分析システムであって、前記リスク分析部は、前記複数の産業部門のうちの1つの産業部門の前記サンプル値が最大である場合における、分析対象の各産業部門における前記サンプル値を前記リスクとして分析する、リスク分析システム。
(付記9)付記1~8の何れか一項に記載のリスク分析システムであって、前記リスク分析部は、前記複数の産業部門のうちの1つの産業部門の前記サンプル値が最小である場合における、分析対象の各産業部門における前記サンプル値を前記リスクとして分析する、リスク分析システム。
(付記10)相互に依存する複数の産業部門間の投入係数を産業連関表記憶部に記憶し、 初期時刻における各産業部門の初期生産量を初期生産量記憶部に記憶し、前記投入係数及び前記初期生産量に基づいて、前記初期時刻から所定の分析時刻までの各産業部門の累積生産量の複数のサンプル値を、該複数のサンプル値にばらつきが生じるように生成し、前記生成された複数のサンプル値をサンプル記憶部に記憶し、前記サンプル記憶部に記憶されている前記複数のサンプル値に基づいて、前記複数の産業部門のうちの少なくとも1つの分析対象の産業部門における、前記分析時刻における累積生産量の変化のリスクを分析する、前記リスクの分析結果を出力する、リスク分析方法。
 10 リスク分析システム
 20 産業連関表受付部
 22 産業連関表記憶部
 24 初期生産量受付部
 26 初期生産量記憶部
 28 分析時刻受付部
 30 分析時刻記憶部
 32 生産量サンプル生成部
 34 累積生産量記憶部
 36 生産量サンプル記憶部
 38 リスク分析部
 40 分析結果出力部

Claims (10)

  1.  相互に依存する複数の産業部門間の投入係数を記憶する産業連関表記憶部と、
     初期時刻における各産業部門の初期生産量を記憶する初期生産量記憶部と、
     前記投入係数及び前記初期生産量に基づいて、前記初期時刻から所定の分析時刻までの各産業部門の累積生産量の複数のサンプル値を、該複数のサンプル値にばらつきが生じるように生成するサンプル生成部と、
     前記サンプル生成部によって生成された前記複数のサンプル値を記憶するサンプル記憶部と、
     前記サンプル記憶部に記憶されている前記複数のサンプル値に基づいて、前記複数の産業部門のうちの少なくとも1つの分析対象の産業部門における、前記分析時刻における累積生産量の変化のリスクを分析するリスク分析部と、
     前記リスク分析部の分析結果を出力する分析結果出力部と、
     を備えるリスク分析システム。
  2.  請求項1に記載のリスク分析システムであって、
     前記サンプル生成部は、前記分析時刻までの各時刻において、前記投入係数と、1つ前の時刻における前記複数の産業部門の生産量とにより定まる平均生産量を、乱数を用いた関数に適用することにより、前記複数のサンプル値にばらつきが生じるように各産業部門の複数のサンプル値を生成する、
     リスク分析システム。
  3.  請求項2に記載のリスク分析システムであって、
     前記サンプル生成部は、前記分析時刻までの各時刻において、各産業部門における生産量のばらつきを示す値を、1つ前の時刻における前記複数の産業部門の生産量と、乱数とに基づいて生成し、前記平均生産量と、該ばらつきを示す値とに基づいて、各時刻における各産業部門における生産量を算出する、
     リスク分析システム。
  4.  請求項1~3の何れか一項に記載のリスク分析システムであって、
     前記分析時刻を受け付ける分析時刻受付部と、
     前記受け付けた分析時刻を記憶する分析時刻記憶部と、
     をさらに備えるリスク分析システム。
  5.  請求項1~4の何れか一項に記載のリスク分析システムであって、
     前記複数の産業部門間の投入係数を受け付けて、前記産業連関表記憶部に格納する産業連関表受付部をさらに備えるリスク分析システム。
  6.  請求項1~5の何れか一項に記載のリスク分析システムであって、
     前記リスク分析部は、分析対象の各産業部門における、前記複数のサンプル値のうちの最大値を前記リスクとして分析する、
     リスク分析システム。
  7.  請求項1~6の何れか一項に記載のリスク分析システムであって、
     前記リスク分析部は、分析対象の各産業部門における、前記複数のサンプル値のうちの最小値を前記リスクとして分析する、
     リスク分析システム。
  8.  請求項1~7の何れか一項に記載のリスク分析システムであって、
     前記リスク分析部は、前記複数の産業部門のうちの1つの産業部門の前記サンプル値が最大である場合における、分析対象の各産業部門における前記サンプル値を前記リスクとして分析する、
     リスク分析システム。
  9.  請求項1~8の何れか一項に記載のリスク分析システムであって、
     前記リスク分析部は、前記複数の産業部門のうちの1つの産業部門の前記サンプル値が最小である場合における、分析対象の各産業部門における前記サンプル値を前記リスクとして分析する、
     リスク分析システム。
  10.  相互に依存する複数の産業部門間の投入係数を産業連関表記憶部に記憶し、
     初期時刻における各産業部門の初期生産量を初期生産量記憶部に記憶し、
     前記投入係数及び前記初期生産量に基づいて、前記初期時刻から所定の分析時刻までの各産業部門の累積生産量の複数のサンプル値を、該複数のサンプル値にばらつきが生じるように生成し、
     前記生成された複数のサンプル値をサンプル記憶部に記憶し、
     前記サンプル記憶部に記憶されている前記複数のサンプル値に基づいて、前記複数の産業部門のうちの少なくとも1つの分析対象の産業部門における、前記分析時刻における累積生産量の変化のリスクを分析する、
     前記リスクの分析結果を出力する、
     リスク分析方法。
PCT/JP2011/079240 2011-01-24 2011-12-16 リスク分析システム及びリスク分析方法 WO2012101930A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012554645A JP5311085B2 (ja) 2011-01-24 2011-12-16 リスク分析システム及びリスク分析方法
US13/979,810 US20130339081A1 (en) 2011-01-24 2011-12-16 Risk analysis system and risk analysis method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-012303 2011-01-24
JP2011012303 2011-01-24

Publications (1)

Publication Number Publication Date
WO2012101930A1 true WO2012101930A1 (ja) 2012-08-02

Family

ID=46580512

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079240 WO2012101930A1 (ja) 2011-01-24 2011-12-16 リスク分析システム及びリスク分析方法

Country Status (3)

Country Link
US (1) US20130339081A1 (ja)
JP (1) JP5311085B2 (ja)
WO (1) WO2012101930A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084710A1 (ja) * 2021-11-11 2023-05-19 日本電信電話株式会社 推計システム、推計方法、及びプログラム

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9183527B1 (en) * 2011-10-17 2015-11-10 Redzone Robotics, Inc. Analyzing infrastructure data
DE102013007769A1 (de) * 2013-05-04 2014-11-06 Till Förstemann Verfahren zur portfolioorientierten Erfassung von Kreditrisiken
CN111861712A (zh) * 2020-07-22 2020-10-30 国网上海市电力公司 基于电力投产率征信及风控评估方法、装置、设备及介质
CN111915206B (zh) * 2020-08-11 2024-02-27 成都市食品药品检验研究院 一种识别食品风险传导的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058298A (ja) * 2000-08-07 2002-02-22 Shigeto Yoshikawa 時空考慮型価値計算法
JP2005165469A (ja) * 2003-11-28 2005-06-23 Toshiba Corp 評価装置、評価方法およびプログラム
JP2009098797A (ja) * 2007-10-15 2009-05-07 Toshiba Corp 環境影響評価装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7246080B2 (en) * 2001-06-08 2007-07-17 International Business Machines Corporation Apparatus, system and method for measuring and monitoring supply chain risk
US7644863B2 (en) * 2001-11-14 2010-01-12 Sap Aktiengesellschaft Agent using detailed predictive model
US20050182646A1 (en) * 2004-01-20 2005-08-18 Gilmore Robert E. Method and system for reporting economic impact
US7970642B2 (en) * 2005-12-27 2011-06-28 Alex Anas Computer based system to generate data for implementing regional and metropolitan economic, land use and transportation planning
JP4908485B2 (ja) * 2007-12-18 2012-04-04 安武 當山 パイナップルの栽培用培地及びその栽培方法
US20090248488A1 (en) * 2008-03-27 2009-10-01 British Telecommunications Public Limited Company Risk assessment forecasting in a supply chain

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002058298A (ja) * 2000-08-07 2002-02-22 Shigeto Yoshikawa 時空考慮型価値計算法
JP2005165469A (ja) * 2003-11-28 2005-06-23 Toshiba Corp 評価装置、評価方法およびプログラム
JP2009098797A (ja) * 2007-10-15 2009-05-07 Toshiba Corp 環境影響評価装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
RYOKO MORIOKA: "Information Geometry of Input-Output Tables", IEICE TECHNICAL REPORT, vol. 110, no. 476, 21 March 2011 (2011-03-21), pages 161 - 167 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023084710A1 (ja) * 2021-11-11 2023-05-19 日本電信電話株式会社 推計システム、推計方法、及びプログラム

Also Published As

Publication number Publication date
US20130339081A1 (en) 2013-12-19
JP5311085B2 (ja) 2013-10-09
JPWO2012101930A1 (ja) 2014-06-30

Similar Documents

Publication Publication Date Title
Kirlik et al. A variable neighborhood search for minimizing total weighted tardiness with sequence dependent setup times on a single machine
Aparicio et al. Closest targets and strong monotonicity on the strongly efficient frontier in DEA
JP5311085B2 (ja) リスク分析システム及びリスク分析方法
JP2019519027A (ja) 履歴ログからの学習と、etlツール内のデータアセットに関するデータベースオペレーションの推奨
Okushima et al. What causes the change in energy demand in the economy?: The role of technological change
US11587012B2 (en) Continuous data quality assessment and monitoring for big data
Singh et al. Machine learning based classification and segmentation techniques for CRM: a customer analytics
JP2019079104A (ja) データ解析システム及び施策の生成方法
Xie et al. Evaluating performance of super-efficiency models in ranking efficient decision-making units based on Monte Carlo simulations
Talla Nobibon et al. Complexity results and exact algorithms for robust knapsack problems
Davoodi et al. The nearest MPSS pattern in data envelopment analysis
Demiroz et al. Static task scheduling with a unified objective on time and resource domains
JP6634938B2 (ja) 分析支援方法、分析支援プログラムおよび分析支援装置
Maddulapalli et al. Sensitivity analysis for product design selection with an implicit value function
Fukuyama et al. Two-stage network DEA with bad outputs
Aranburu et al. A so-called Cluster Benders Decomposition approach for solving two-stage stochastic linear problems
Andreica et al. Multidimensional Data Structures and Techniques for Efficient Decision Making
Gerami et al. Measuring performance of network structure by DEA-R model
JP6229988B1 (ja) 情報処理装置、情報処理方法及び情報処理用プログラム
CN112906723A (zh) 一种特征选择的方法和装置
US20180253515A1 (en) Characterizing model performance using hierarchical feature groups
US11586947B2 (en) Visualization system, visualization method, and visualization program
Afif Exploring the quality of the higher educational institution website using data mining techniques
WO2023084710A1 (ja) 推計システム、推計方法、及びプログラム
Mirbolouki et al. Multiplier Models in Stochastic DEA

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11857122

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012554645

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13979810

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11857122

Country of ref document: EP

Kind code of ref document: A1