WO2012101205A1 - Concentrateur optique longue durée basé sur une lentille de fresnel spécifique produite à partir de matériaux polymères pour production d'énergie solaire - Google Patents

Concentrateur optique longue durée basé sur une lentille de fresnel spécifique produite à partir de matériaux polymères pour production d'énergie solaire Download PDF

Info

Publication number
WO2012101205A1
WO2012101205A1 PCT/EP2012/051210 EP2012051210W WO2012101205A1 WO 2012101205 A1 WO2012101205 A1 WO 2012101205A1 EP 2012051210 W EP2012051210 W EP 2012051210W WO 2012101205 A1 WO2012101205 A1 WO 2012101205A1
Authority
WO
WIPO (PCT)
Prior art keywords
concentrator
polymer layer
process according
layer
solar
Prior art date
Application number
PCT/EP2012/051210
Other languages
English (en)
Inventor
Uwe Numrich
Thomas Arndt
Peter Battenhausen
Jochen Ackermann
Michael Olbrich
Original Assignee
Evonik Röhm Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to AU2012210521A priority Critical patent/AU2012210521A1/en
Priority to KR1020137019883A priority patent/KR20140011317A/ko
Priority to JP2013550881A priority patent/JP2014509379A/ja
Priority to BR112013018627A priority patent/BR112013018627A2/pt
Priority to EP12701129.4A priority patent/EP2668026A1/fr
Priority to CN2012800065306A priority patent/CN103338917A/zh
Application filed by Evonik Röhm Gmbh filed Critical Evonik Röhm Gmbh
Priority to US13/980,460 priority patent/US20130291929A1/en
Priority to MA36104A priority patent/MA34882B1/fr
Priority to MX2013008556A priority patent/MX2013008556A/es
Publication of WO2012101205A1 publication Critical patent/WO2012101205A1/fr
Priority to TNP2013000288A priority patent/TN2013000288A1/fr
Priority to ZA2013/05690A priority patent/ZA201305690B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0004Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed
    • G02B19/0009Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only
    • G02B19/0014Condensers, e.g. light collectors or similar non-imaging optics characterised by the optical means employed having refractive surfaces only at least one surface having optical power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/16Cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/00009Production of simple or compound lenses
    • B29D11/00269Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • F24S23/31Arrangements for concentrating solar-rays for solar heat collectors with lenses having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B3/00Simple or compound lenses
    • G02B3/02Simple or compound lenses with non-spherical faces
    • G02B3/08Simple or compound lenses with non-spherical faces with discontinuous faces, e.g. Fresnel lens
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/054Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means
    • H01L31/0543Optical elements directly associated or integrated with the PV cell, e.g. light-reflecting means or light-concentrating means comprising light concentrating means of the refractive type, e.g. lenses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S40/00Components or accessories in combination with PV modules, not provided for in groups H02S10/00 - H02S30/00
    • H02S40/40Thermal components
    • H02S40/44Means to utilise heat energy, e.g. hybrid systems producing warm water and electricity at the same time
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/02Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing
    • B29C59/04Surface shaping of articles, e.g. embossing; Apparatus therefor by mechanical means, e.g. pressing using rollers or endless belts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S80/00Details, accessories or component parts of solar heat collectors not provided for in groups F24S10/00-F24S70/00
    • F24S2080/01Selection of particular materials
    • F24S2080/015Plastics
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B19/00Condensers, e.g. light collectors or similar non-imaging optics
    • G02B19/0033Condensers, e.g. light collectors or similar non-imaging optics characterised by the use
    • G02B19/0038Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light
    • G02B19/0042Condensers, e.g. light collectors or similar non-imaging optics characterised by the use for use with ambient light for use with direct solar radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids

Definitions

  • the present invention relates to a concentrator for focusing solar radiation, having surface structuring in the form of one or more Fresnel lenses on the lower side, and to the production thereof from polymeric materials by means of a specific extrusion process.
  • the inventive concentrator can be employed in plants utilizable for photovoltaic or solar heating purposes.
  • the inventive concentrator enables particularly economic production and efficient concentration of solar radiation onto objects such as solar cells or absorber units, irrespective of the geometry thereof.
  • the inventive concentrator has high longevity and - combined with this - high optical performance when employed in extreme and demanding climatic zones.
  • This relates, for example, to the area of a high- performance solar cell as used in concentrating photo- voltaics, and likewise to an absorber tube which finds use in concentrating solar thermal collectors, for example in the context of parabolic trough technology.
  • Fresnel lenses are a development from the early 18th century and are used in projection monitors, overhead projectors, floodlights, for example headlights for automobiles, lighthouses and similar fields of use. Recently, Fresnel lenses have also been finding use as concentrators for solar energy (especially photovoltaics ) for focusing and subsequent conversion of the solar energy to electricity. In order to ensure performance in relation to the precision of the concentration of the solar radiation, and also strength, dimensional stability and easy installability of such plates or films with optical elements such as the Fresnel lenses in the solar applications described, it is necessary according to the prior art to laminate or to bond these structured films onto a supporting film or plate. However, such a process regime is associated with high costs.
  • thermolamination can be used, which can optionally be configured inline.
  • the high temperatures and pressures required for this purpose lead, however, to destruction or damage to the optical structures, as a result of which the precision - necessary in the applications envisaged - of the concentration of the solar radiation cannot be maintained .
  • Inline lamination is disclosed in US 5, 945, 042 and in US 6,375,776 for thin carrier films with a thickness of 10 to 100 ⁇ or of 35 to 150 ⁇ . Such thin films are unsuitable for dimensional stability reasons for employment in photovoltaics or solar thermal collectors .
  • WO 2009/121708 discloses a process for thermolamination of a film having optical structures onto a polymer sheet without damaging the structures.
  • lamination processes often have the disadvantage that the additional adhesive layers and the resulting increase in the number of phase inter- faces within the plate lead to an impairment of the optical properties and hence to an energy yield loss.
  • the concentrator must of course have a longevity of at least 20 years in demanding climatic zones, ensure high precision of concentration of solar radiation and have an improved resistance or at least equivalent resistance, compared to the prior art, with respect to environnmental influences and cleaning operations .
  • the concentrator obtained from the process should have self-supporting character.
  • self-supporting is understood to mean that a workpiece, after the curving or forming step, retains this form at use temperatures up to at least 50°C, preferably at least 65°C, and the ambient environmental conditions, for example wind speeds.
  • the object is achieved by a novel process for producing surface-structured, self-supporting concentrators, and the provision of such self-supporting concentrators for plants for solar power generation.
  • the object is more particularly achieved by provision of a novel process for producing a self-supporting concentrator for plants for solar power generation, and by this concentrator produced by the process according to the invention.
  • the process according to the invention consists of at least the following steps:
  • a high-transparency polymer layer is formed from a pellet formulation by melting in an extruder and withdrawing via a slot die to give a melt film or sheet.
  • This melt is structured on the later lower side of the concentrator by means of a gravure-bearing cooled roll or drum which has a temperature gradient of at least 60°C on the roll surface, and cooled in such a way that the structuring is still maintained.
  • the structuring of the is an optical surface structure on the lower side of the concentrator, said optical surface structure forming one or more Fresnel lenses. It is additionally very important in accordance with the invention that the concentrator has been equipped with at least one UV absorber and at least one UV stabilizer.
  • a second extruder is used to apply a second polymer layer by means of coextrusion before the structuring from a second pellet formulation on the upper side of the first polymer layer. More preferably, this second polymer layer has been equipped with the UV stabilizers and UV absorbers.
  • this second extruder or a further third extruder can be used to apply the second pellet formulation, likewise on the lower side of the first polymer layer, by means of co- extrusion.
  • This third layer preferably has identical additization to the second layer.
  • at least one UV absorber is a triazine, very particularly preferred UV absorbers being at least one benzotriazole and at least one triazine, and very particularly preferred UV stabilizers being at least one HALS compound.
  • the upper side of the concentrator can be coated with a scratch-resistant and/or antisoil coating and/or an antireflection coating, before or after the structuring .
  • the first polymer layer determines the stiffness and is therefore crucial for shaping.
  • it is, however, also possible that the difference in the layer thicknesses between the first polymer layer and the second or third polymer layer is low, and all or two layers contribute to shaping .
  • the inventive concentrator may have an overall thickness between 0.1 mm and 25 mm, preferably between
  • a further aspect of the present process is that the laminate has such a stiffness that it is self- supporting, and that the laminate at the same time remains dimensionally stable under the action of heat and at the same time can be deformed with preservation of the Fresnel lens structure.
  • This property is achieved in accordance with the invention by virtue of the individual polymer layers being matched to one another with regard to stiffness, thickness and other material properties.
  • concentrators which can be produced by means of this process also form part of the present invention.
  • these are concentrators which are characterized in that the concentrator, viewed from the light source, consists of at least the following layers :
  • a second polymer layer which comprises a UV stabilizer and a UV absorber and has a thickness between 5 and 500 ⁇ , preferably between 10 and 250 ⁇ , and more preferably between 20 and 150 ⁇ .
  • a first polymer layer having a thickness between 0.1 and 25 mm, preferably between 0.5 and 15 mm, and more preferably between 1 and 10 mm.
  • the lower side of the concentrator has been surface-structured in the form of one or more Fresnel lenses .
  • the second polymer layer may also be a layer composed of several sublayers.
  • the second layer may be a two- or three-layer coextrudate.
  • each individual layer may satisfy the thicknesses stated for the second layer.
  • the entire coextrudate has a thickness which corresponds to the values specified for the second polymer layer of between 5 and 500 ⁇ , preferably between 10 and 250 ⁇ and more preferably between 20 and 150 ⁇ .
  • the production preferably inline with the entire process for producing the concentrator, is effected by means of known coextrusion technologies, as detailed, for example, in "Plastic Extrusion Technology” (F. Hensen, Hanser Publishers, Kunststoff, 2nd edition, 1997) .
  • the inventive concentrator is preferably a concentrator which, viewed from the light source, consists of the following layers:
  • a second polymer layer which comprises UV stabilizer and UV absorber and has a thickness between 5 and 500 ⁇ , preferably between 10 and 250 ⁇ and more preferably between 20 and 150 ⁇ .
  • a first polymer layer with a thickness between 0.1 and 25 mm, preferably between 0.5 and 15 mm, and more preferably between 1 and 10 mm.
  • a third polymer layer which optionally and preferably comprises UV stabilizer and UV absorber and has a thickness between 5 and 500 ⁇ , preferably between 10 and 250 ⁇ , and more preferably between 20 and 150 ⁇ .
  • the lower side of the concentrator has been surface-structured in the form of one or more Fresnel lenses .
  • the individual Fresnal lenses may be angular, radial or linear structures. These may be arranged in grid or linear form, or irregularly with respect to one another, preference being given to arrangement of linear structures running parallel.
  • the material of the inventive concentrator is - under the influence of UV, weathering and moisture particularly color-neutral and does not become cloudy.
  • the concentrator exhibits an excellent weathering stability and, in the case of optional equipping with a surface finish, has a very good chemical resistance, for example to all commercial cleaning compositions. These aspects too contribute to preservation of solar focusing over a long period.
  • the surface has soil- repellent properties.
  • the surface is optionally abrasion-resistant, antireflective and/or scratch-resistant .
  • the first polymer layer is a layer of transparent polymer materials, for example SAN (styrene- acrylonitrile terpolymer) , polycarbonate, polyurethane, polycycloolefins , polystyrene, a styrene copolymer, a polyester, preferably polyethylene terephthalate (PET) or PETG, or of a poly (meth) acrylate .
  • SAN styrene- acrylonitrile terpolymer
  • the second, optional or the likewise optional third polymer layer is a layer of poly (meth) acrylate, a fluoropolymer or a mixture of poly (meth) acrylate and a fluoropolymer, preferably a mixture of PMMA and PVDF or a multilayer system composed of PMMA and PVDF.
  • the polymer composition of two (in the case of a two- layer system) or of all three layers may optionally also be identical.
  • the relevant wavelength range of the concentrating photovoltaics (PV) is approx. 300 to 1800 nm, or approx. 300 to 1200 nm in the case of use of crystalline silicon PV cells.
  • the selected polymers should have a maximum transparency in the particular relevant wavelength range .
  • the surface of the high-transparency polymer layer is embossed with Fresnel lens structures by an inline embossing process with specific instruments.
  • the melt is transported by means of the with a gravure roll or drum which produces the Fresnel lens shape.
  • This roll or drum is at a controlled temperature of the heat of fusion or a maximum of 20°C cooler at the contact site of the roll nip.
  • the melt film is fed into a nip formed from the gravure roll or drum and a cooling water bath.
  • the roll or drum has been cooled to such an extent that the melt film is cooled to the solidification temperature.
  • the drum or roll may be hollow and filled with a cooling medium.
  • the fill level should be selected such that only the region opposite the cooling bath is cooled.
  • the melt film is cooled from a temperature between 150°C and 250°C, generally between 180°C and 220°C, within half a roll rotation, to a temperature of below 100°C, preferably of below 90°C more preferably of below 80°C.
  • the surface of the gravure roll or drum is cooled within half a rotation, proceeding from the roll nip to which the melt is fed from the slot die, by at least 60°C, preferably by at least 80°C and more preferably by at least 100°C.
  • the cooling medium for example water
  • the cooling medium for example water
  • inlets and outlets are renewed regularly, preferably permanently, via inlets and outlets.
  • the gravure roll or drum is preferably notable in that a gravure sleeve has been clamped onto the cylinder.
  • the processes for surface structuring which can be employed in accordance with the invention can be read about in detail in WO2009/072929 and in WO01/19600.
  • the stabilizer package (light stabilizer)
  • UV protection formulations can be found, for example, in WO 2007/073952 (Evonik Rohm) or in DE 10 2007 029 263 Al .
  • a particular constituent of the UV protection layer used in accordance with the invention is the UV additive package, which contributes to long life and to the weathering stability of the concentrators.
  • the stabilizer package used in the UV protection layers used in accordance with the invention consists of the following components:
  • A a UV absorber of the benzotriazole type
  • C a UV stabilizer, preferably an HALS compound.
  • Components A and B can be used as an individual substance or in mixtures. At least one UV absorber component must be present in the uppermost polymer layer. Component C is necessarily present in the uppermost polymer layer used in accordance with the invention .
  • the concentrator produced in accordance with the invention is notable for its significantly improved UV stability compared to the prior art and the associated longer lifetime.
  • the inventive material can thus also be used in solar concentrators over a very long period of at least 15 years, preferably even at least 20 years, more preferably at least 25 years, at sites with a particularly large number of sun hours and particularly intense solar radiation, for example in the southeastern USA or the Sahara.
  • the wavelength spectrum of solar radiation relevant for "solar heating" ranges from approx. 300 nm to 2500 nm.
  • the range below 400 nm, especially below 375 nm, should, however, be filtered out to prolong the lifetime of the
  • UV absorbers and UV stabilizers used in accordance with the invention exhibits stable, long- lived UV protection over a broad wavelength spectrum
  • surface coating in the context of this 3 invention is understood as a collective term for coat ⁇ ings which are applied to reduce surface scratching and/or to improve abrasion resistance and/or as an antisoil coating and/or to reduce reflections.
  • polysiloxanes such as CRYSTALCOATTM MP-100 from SDC Technologies Inc., AS 400-SHP 401 or
  • UVHC3000K both from Momentive Performance Materials, can be used. These coating formulations are applied, for example, by means of roll-coating, knife-coating or flow-coating to the surface of the high-transparency polymer layer of the concentrator. Examples of further coating formulations are described below.
  • PVD physical vapor deposition
  • CVD plasma chemical vapor deposition
  • Antisoil functionalities are often included in the formulation of the scratch-resistant coating. They can also be applied in place of the scratch-resistant coating or - in a separate process step - above the scratch-resistant coating. Antisoil coatings can be produced, for example - but not exclusively - by fluoropolymers , silicone polymers, so-called hybrid materials, titanium dioxide particles - or combinations .
  • Single-layer and multilayer antireflection coatings there are single-layer and multilayer antireflection coatings.
  • Single-layer coatings generally have a refractive index which is calculated from the square root of the refractive index of the material below it.
  • Multilayer coatings have different, graduated refractive indices.
  • the choice of the correct antireflection coating arises from the optical properties of the material below it, especially the refractive index thereof, and from the adhesion properties of the layer below it and from the preferred wavelengths to be focused, which may be absorbed only to a minimal degree, if at all, by the coating. For this reason, antireflection coatings based on the principle of absorption are unsuitable for the inventive concentrators.
  • antireflection coatings are known to those skilled in the art. The choice of the suitable coating will also be easy for a person skilled in the art with knowledge of the other parameters of the concentrator. In addition, such antireflection coatings for concentrators can be read about in US 20090032102.
  • the reflection can be reduced such that the two uppermost layers of the concentrator, for example the first and second polymer layers, or the scratch-resistant and/or antisoil coating and the second polymer layer, or the scratch-resistant and/or antisoil coating and the first polymer layer, or all layers, with regard to the particular refractive indices, are chosen so as to result in a minimization of reflection up to prevention of reflection.
  • the principle of simple antireflection coating coating can be obtained by virtue of the refractive index of the uppermost layer, with an accuracy of 5%, forming the square root of the refractive index of the layer below it.
  • the concentrators produced in accordance with the invention preferably find use as concentrators in photovoltaic plants or in solar heating plants. A distinction should be drawn between two different embodiments.
  • the lower side of the concentrator has angular or radial Fresnel lenses. These lead to point-concentrated focusing of solar radiation onto the two-dimensional geometry of a photovoltaic cell and onto a Stirling motor or thermal receiver of a solar thermal collector.
  • the lower side of the concentrator has linear Fresnel lenses. These can be used for linear-concentrated reflection of solar radiation onto a linear arrangement of photovoltaic cells, or onto an absorber tube of a solar thermal collector .
  • Curving can be performed after the production of the concentrators and the subsequent cutting-to-size, for example by cold curving or thermoforming, preference being given to a cold curving process.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Ophthalmology & Optometry (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Power Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Computer Hardware Design (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Engineering & Computer Science (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Photovoltaic Devices (AREA)
  • Laminated Bodies (AREA)
  • Toxicology (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

La présente invention se rapporte à un concentrateur destiné à concentrer le rayonnement solaire, ayant une structuration de surface sous la forme d'une ou de plusieurs lentilles de Fresnel sur le côté inférieur, et à la production de celui-ci à partir de matériaux polymères à l'aide d'un processus d'extrusion spécifique. Le concentrateur de l'invention peut être employé dans des usines pouvant être utilisées à des fins de chauffage photovoltaïque ou solaire, et a la durabilité et les performances requises dans les régions climatiques exigeantes. Le concentrateur de l'invention permet une production particulièrement économique et une concentration efficace du rayonnement solaire sur des objets tels que des unités d'absorption ou cellules solaires, quelle que soit leur géométrie. Le concentrateur de l'invention a une longévité élevée et - combinées à cela - des performances optiques élevées lorsqu'il est employé dans des régions climatiques extrêmes et exigeantes. Cela se rapporte, par exemple, à la région d'une cellule solaire aux performances élevées telle qu'utilisée dans des dispositifs photovoltaïques à concentration, et de façon similaire, à un tube d'absorption qui trouve son utilité dans un collecteur thermique solaire à concentration, par exemple dans le contexte de la technologie de canaux paraboliques.
PCT/EP2012/051210 2011-01-28 2012-01-26 Concentrateur optique longue durée basé sur une lentille de fresnel spécifique produite à partir de matériaux polymères pour production d'énergie solaire WO2012101205A1 (fr)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020137019883A KR20140011317A (ko) 2011-01-28 2012-01-26 중합체 재료로 제조된 특수 프레넬 렌즈를 기재로 하는 태양광 발전용 긴 수명 광학 집광기
JP2013550881A JP2014509379A (ja) 2011-01-28 2012-01-26 太陽発電用のポリマー材料から製造された特殊なフレネルレンズに基づく長寿命の集光器
BR112013018627A BR112013018627A2 (pt) 2011-01-28 2012-01-26 concentrador óptico de vida longa baseado em uma lente de fresnel específica produzida a partir de materiais poliméricos para geração de energia solar
EP12701129.4A EP2668026A1 (fr) 2011-01-28 2012-01-26 Concentrateur optique longue durée basé sur une lentille de fresnel spécifique produite à partir de matériaux polymères pour production d'énergie solaire
CN2012800065306A CN103338917A (zh) 2011-01-28 2012-01-26 用于太阳能发电的由聚合物材料制备的基于特定菲涅耳透镜的长寿命光学聚光器
AU2012210521A AU2012210521A1 (en) 2011-01-28 2012-01-26 Long-life optical concentrator based on a specific fresnel lens produced from polymeric materials for solar power generation
US13/980,460 US20130291929A1 (en) 2011-01-28 2012-01-26 Long-life optical concentrator based on a specific fresnel lens produced from polymeric materials for solar power generation
MA36104A MA34882B1 (fr) 2011-01-28 2012-01-26 Concentrateur optique longue durée basé sur une lentille de fresnel spécifique produite à partir de matériaux polymères pour production d'énergie solaire
MX2013008556A MX2013008556A (es) 2011-01-28 2012-01-26 Concentrador optico de larga duracion basado en lentes de fresnel especificos producidos a partir de materiales polimericos para generacion de energia solar.
TNP2013000288A TN2013000288A1 (en) 2011-01-28 2013-07-08 Long-life optical concentrator based on a specific fresnel lens produced from polymeric materials for solar power generation
ZA2013/05690A ZA201305690B (en) 2011-01-28 2013-07-26 Long-life optical concentrator on a specific fresnel lens produced form polymeric materials for solar power generation

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201161437220P 2011-01-28 2011-01-28
DE102011003311.4 2011-01-28
US61/437,220 2011-01-28
DE102011003311A DE102011003311A1 (de) 2011-01-28 2011-01-28 Langlebiger optischer Konzentrator auf Basis einer speziellen, aus polymeren Werkstoffen hergestellten, Fresnellinse für die solare Energiegewinnung

Publications (1)

Publication Number Publication Date
WO2012101205A1 true WO2012101205A1 (fr) 2012-08-02

Family

ID=46511216

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2012/051210 WO2012101205A1 (fr) 2011-01-28 2012-01-26 Concentrateur optique longue durée basé sur une lentille de fresnel spécifique produite à partir de matériaux polymères pour production d'énergie solaire

Country Status (16)

Country Link
US (1) US20130291929A1 (fr)
EP (1) EP2668026A1 (fr)
JP (1) JP2014509379A (fr)
KR (1) KR20140011317A (fr)
CN (1) CN103338917A (fr)
AU (1) AU2012210521A1 (fr)
BR (1) BR112013018627A2 (fr)
CL (1) CL2013002130A1 (fr)
DE (1) DE102011003311A1 (fr)
MA (1) MA34882B1 (fr)
MX (1) MX2013008556A (fr)
PE (1) PE20141240A1 (fr)
TN (1) TN2013000288A1 (fr)
TW (1) TW201244917A (fr)
WO (1) WO2012101205A1 (fr)
ZA (1) ZA201305690B (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175289A1 (fr) * 2011-06-21 2012-12-27 Evonik Röhm Gmbh Matériau substrat polymère pour processus de dépôt physique et chimique en phase vapeur , contenant une couche polymère promotrice d'adhésion et utilisation dudit matériau substrat pour produire des concentrateurs de rayonnement solaire
ITAR20130009A1 (it) * 2013-02-21 2014-08-22 Jonghe Kristof De Reattore solare plasmatico
WO2019145269A1 (fr) 2018-01-24 2019-08-01 Evonik Röhm Gmbh Élément électroluminescent

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011113160A1 (de) 2011-09-14 2013-03-14 Evonik Röhm Gmbh Polymere Materialien für Außenanwendungen mit selbstheilenden Oberflächeneigenschaften nach Verkratzen oder Abrasionsbeschädigung
DE102013019302B4 (de) * 2013-11-11 2015-07-09 Met-Optik Elektronische Systeme Gmbh Parabol-Stufenreflektor und Verfahren zur Herstellung und zum Justieren
WO2015102100A1 (fr) * 2014-01-06 2015-07-09 株式会社クラレ Élément optique, procédé de fabrication d'élément optique, dispositif photovoltaïque de type à capter la lumière

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4110248A1 (de) * 1991-03-28 1992-10-01 Berstorff Gmbh Masch Hermann Verfahren und vorrichtung zur kontinuierlichen herstellung von fresnellinsen aus thermoplastischen werkstoffen
US5656209A (en) 1993-12-24 1997-08-12 Roehm Gmbh Chemische Fabrik Process for manufacture of Fresnel lenses
US5945042A (en) 1995-10-24 1999-08-31 Nippon Carbide Kogyo Kabushiki Kaisha Method for continuously forming an array of optical elements and apparatus therefor
WO2001019600A1 (fr) 1999-09-11 2001-03-22 Heinrich Friedrich Schröder Procede de production continue de films, de bandes ou de plaques continus en matiere plastique capables de produire des images et dispositif permettant de mettre en oeuvre ce procede
US6375776B1 (en) 2000-01-24 2002-04-23 Avery Dennison Corporation Method for forming multi-layer laminates with microstructures
WO2007073952A1 (fr) 2005-12-23 2007-07-05 Evonik Röhm Gmbh Film de pmma ayant une resistance aux intemperies particulierement elevee, et assurant une protection elevee contre le rayonnement u.v.
DE102007029263A1 (de) 2007-06-22 2008-12-24 Evonik Röhm Gmbh PMMA/PVDF-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung
US20090032102A1 (en) 2007-08-03 2009-02-05 Prodisc Technology, Inc. Light collection device
WO2009028000A2 (fr) 2007-08-30 2009-03-05 Aparna Thirumalai Anandampilla Collecteur robot amélioré pour concentrateurs solaires à grosses lentilles
WO2009072929A1 (fr) 2007-12-06 2009-06-11 Yulia Alekseevna Yashukova Système de monitorage de raccords d'un système de câbles utilisant des étiquettes rfid
WO2009099331A2 (fr) 2008-02-08 2009-08-13 Vereniging Vu-Windesheim Dispositif réfléchissant, capteur solaire, toit en pente équipé d’un capteur solaire de ce type et serre
WO2009121708A2 (fr) 2008-04-03 2009-10-08 Evonik Röhm Gmbh Stratification continue d'un film de poly(méthacrylate de méthyle) (pmma) dans la fabrication d'une lentille de fresnel
WO2010062947A1 (fr) * 2008-11-26 2010-06-03 E. I. Du Pont De Nemours And Company Module de cellules solaires concentratrices avec articles concentrateurs de lumière comprenant des matériaux ionomères
US20100181014A1 (en) * 2009-01-16 2010-07-22 Genie Lens Technologies, Llc Method of manufacturing photovoltaic (pv) enhancement films

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5449641A (en) * 1977-09-28 1979-04-19 Yasurou Kuratomi Liquid heating device using solar heat
AU530905B2 (en) * 1977-12-22 1983-08-04 Canon Kabushiki Kaisha Electrophotographic photosensitive member
JPS5626701U (fr) * 1979-08-04 1981-03-12
JPS56157319A (en) * 1980-05-09 1981-12-04 Dainippon Printing Co Ltd Manufacture of fresnel lens
JPS57120902A (en) * 1981-01-20 1982-07-28 Masao Horiguchi Solar light condensing member
US4601861A (en) * 1982-09-30 1986-07-22 Amerace Corporation Methods and apparatus for embossing a precision optical pattern in a resinous sheet or laminate
US4871487A (en) * 1987-01-16 1989-10-03 The Dow Chemical Company Method of making a polymeric optical waveguide by coextrusion
US5330799A (en) * 1992-09-15 1994-07-19 The Phscologram Venture, Inc. Press polymerization of lenticular images
JP3521546B2 (ja) * 1995-05-10 2004-04-19 凸版印刷株式会社 ホログラム紙の製造方法
JPH09258011A (ja) * 1996-03-25 1997-10-03 Toppan Printing Co Ltd レンズシート
BR9813383B1 (pt) * 1997-12-05 2008-11-18 processo para preparaÇço de laminados brilhantes, emprego do laminado e objeto de massas termoplÁsticas moldadas.
US6384320B1 (en) * 2000-10-13 2002-05-07 Leon Lung-Chen Chen Solar compound concentrator of electric power generation system for residential homes
JP2003152215A (ja) * 2001-11-13 2003-05-23 Dainippon Printing Co Ltd 太陽電池モジュ−ル用裏面保護シ−トおよびそれを使用した太陽電池モジュ−ル
JP4503216B2 (ja) * 2002-03-29 2010-07-14 リンテック株式会社 光学用ハードコートフィルム
JP2009175597A (ja) * 2008-01-28 2009-08-06 Takiron Co Ltd 光学シート及びこれを用いたバックライトユニット
DE102008018963B4 (de) * 2008-04-16 2023-06-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Selbsttragender Reflektor für eine Parabolrinne
EP2342239B1 (fr) * 2008-10-31 2020-04-15 Performance Materials NA, Inc. Compositions ionomères à transparence élevée et articles les comportant
US8338693B2 (en) * 2009-01-16 2012-12-25 Genie Lens Technology, LLC Solar arrays and other photovoltaic (PV) devices using PV enhancement films for trapping light
CN201344650Y (zh) * 2009-02-10 2009-11-11 吴兆流 菲涅尔聚光器
CN102460230B (zh) * 2009-05-29 2014-06-04 可乐丽股份有限公司 太阳光聚光用菲涅耳透镜片及其设计方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4110248A1 (de) * 1991-03-28 1992-10-01 Berstorff Gmbh Masch Hermann Verfahren und vorrichtung zur kontinuierlichen herstellung von fresnellinsen aus thermoplastischen werkstoffen
US5656209A (en) 1993-12-24 1997-08-12 Roehm Gmbh Chemische Fabrik Process for manufacture of Fresnel lenses
US5945042A (en) 1995-10-24 1999-08-31 Nippon Carbide Kogyo Kabushiki Kaisha Method for continuously forming an array of optical elements and apparatus therefor
WO2001019600A1 (fr) 1999-09-11 2001-03-22 Heinrich Friedrich Schröder Procede de production continue de films, de bandes ou de plaques continus en matiere plastique capables de produire des images et dispositif permettant de mettre en oeuvre ce procede
US6375776B1 (en) 2000-01-24 2002-04-23 Avery Dennison Corporation Method for forming multi-layer laminates with microstructures
WO2007073952A1 (fr) 2005-12-23 2007-07-05 Evonik Röhm Gmbh Film de pmma ayant une resistance aux intemperies particulierement elevee, et assurant une protection elevee contre le rayonnement u.v.
DE102007029263A1 (de) 2007-06-22 2008-12-24 Evonik Röhm Gmbh PMMA/PVDF-Folie mit besonders hoher Witterungsbeständigkeit und hoher UV-Schutzwirkung
US20090032102A1 (en) 2007-08-03 2009-02-05 Prodisc Technology, Inc. Light collection device
WO2009028000A2 (fr) 2007-08-30 2009-03-05 Aparna Thirumalai Anandampilla Collecteur robot amélioré pour concentrateurs solaires à grosses lentilles
WO2009072929A1 (fr) 2007-12-06 2009-06-11 Yulia Alekseevna Yashukova Système de monitorage de raccords d'un système de câbles utilisant des étiquettes rfid
WO2009099331A2 (fr) 2008-02-08 2009-08-13 Vereniging Vu-Windesheim Dispositif réfléchissant, capteur solaire, toit en pente équipé d’un capteur solaire de ce type et serre
WO2009121708A2 (fr) 2008-04-03 2009-10-08 Evonik Röhm Gmbh Stratification continue d'un film de poly(méthacrylate de méthyle) (pmma) dans la fabrication d'une lentille de fresnel
WO2010062947A1 (fr) * 2008-11-26 2010-06-03 E. I. Du Pont De Nemours And Company Module de cellules solaires concentratrices avec articles concentrateurs de lumière comprenant des matériaux ionomères
US20100181014A1 (en) * 2009-01-16 2010-07-22 Genie Lens Technologies, Llc Method of manufacturing photovoltaic (pv) enhancement films

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. HENSEN: "Plastic Extrusion Technology", 1997, HANSER PUBLISHERS

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012175289A1 (fr) * 2011-06-21 2012-12-27 Evonik Röhm Gmbh Matériau substrat polymère pour processus de dépôt physique et chimique en phase vapeur , contenant une couche polymère promotrice d'adhésion et utilisation dudit matériau substrat pour produire des concentrateurs de rayonnement solaire
ITAR20130009A1 (it) * 2013-02-21 2014-08-22 Jonghe Kristof De Reattore solare plasmatico
WO2019145269A1 (fr) 2018-01-24 2019-08-01 Evonik Röhm Gmbh Élément électroluminescent

Also Published As

Publication number Publication date
PE20141240A1 (es) 2014-10-12
MA34882B1 (fr) 2014-02-01
CL2013002130A1 (es) 2014-01-03
ZA201305690B (en) 2014-04-30
CN103338917A (zh) 2013-10-02
AU2012210521A1 (en) 2013-07-11
US20130291929A1 (en) 2013-11-07
DE102011003311A1 (de) 2012-08-02
KR20140011317A (ko) 2014-01-28
EP2668026A1 (fr) 2013-12-04
MX2013008556A (es) 2013-08-21
TW201244917A (en) 2012-11-16
TN2013000288A1 (en) 2015-01-20
AU2012210521A8 (en) 2013-07-25
BR112013018627A2 (pt) 2016-10-18
JP2014509379A (ja) 2014-04-17

Similar Documents

Publication Publication Date Title
US9523516B2 (en) Broadband reflectors, concentrated solar power systems, and methods of using the same
WO2012101205A1 (fr) Concentrateur optique longue durée basé sur une lentille de fresnel spécifique produite à partir de matériaux polymères pour production d'énergie solaire
US20090283144A1 (en) Solar concentrating mirror
EP2871499B1 (fr) Élément optique et dispositif photovoltaïque concentrant
KR20110016923A (ko) 태양광 집광 거울
JP2013507663A (ja) 太陽エネルギー採取のための集光器およびポリマー原料からのその製造
KR20120121363A (ko) 태양전지 모듈용 백 시트 및 이를 포함하는 태양전지 모듈
JP5109273B2 (ja) 太陽電池モジュール用表面保護シート
US20190081195A1 (en) Laminate Solar Concentrator
US20210402721A1 (en) Silicone fresnel lenses on glass substrates for solar concentrators and method of manufacturing
US8969716B2 (en) Photovoltaic device and method for producing a concentrator lens system
WO2015029746A1 (fr) Miroir réfléchissant pour génération d'énergie thermique solaire et dispositif réfléchissant pour génération l'énergie thermique solaire
CN103630951B (zh) 聚光集热菲涅尔线焦透镜
JP2012083527A (ja) フィルムミラー、その製造方法及び太陽熱発電用反射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12701129

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012701129

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2012210521

Country of ref document: AU

Date of ref document: 20120126

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13980460

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: MX/A/2013/008556

Country of ref document: MX

WWE Wipo information: entry into national phase

Ref document number: 2013002130

Country of ref document: CL

Ref document number: 001602-2013

Country of ref document: PE

ENP Entry into the national phase

Ref document number: 20137019883

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2013550881

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013018627

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013018627

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130719