WO2012100743A1 - 一种五电平整流变换器 - Google Patents

一种五电平整流变换器 Download PDF

Info

Publication number
WO2012100743A1
WO2012100743A1 PCT/CN2012/070733 CN2012070733W WO2012100743A1 WO 2012100743 A1 WO2012100743 A1 WO 2012100743A1 CN 2012070733 W CN2012070733 W CN 2012070733W WO 2012100743 A1 WO2012100743 A1 WO 2012100743A1
Authority
WO
WIPO (PCT)
Prior art keywords
midpoint
diode
inductor
switch
capacitor
Prior art date
Application number
PCT/CN2012/070733
Other languages
English (en)
French (fr)
Inventor
赫尔特•弗兰克
武志贤
吴云
胡永辉
王琳化
黄立巍
周朝阳
Original Assignee
艾默生网络能源系统北美公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 艾默生网络能源系统北美公司 filed Critical 艾默生网络能源系统北美公司
Publication of WO2012100743A1 publication Critical patent/WO2012100743A1/zh

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/14Arrangements for reducing ripples from dc input or output
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/21Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/217Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M7/219Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters

Definitions

  • a five-level rectification converter is claimed.
  • the application is filed on January 27, 2011, the Chinese Patent Office, the application number is 201110029237. 9.
  • the priority of the Chinese patent application entitled “a five-level rectifier converter” The entire contents of which are incorporated herein by reference.
  • the present invention relates to converters, and more particularly to a five-level rectifier converter.
  • a three-level rectification converter topology with midpoint clamping is often used in signal rectification.
  • Figure 1 it is a circuit diagram of a three-level rectifier.
  • the three-level rectifier converter includes a filter circuit composed of an inductor L1, a midpoint clamp arm LS1, a first capacitor C1, and a second capacitor C2.
  • the midpoint clamp arm LSI includes two diodes D1, D2 and a previous switch M1, a second switch M2, a next switch M3, and a lower switch M4, and a switch M1 of the previous switch M1.
  • the drain is connected to the positive potential bus, and the source of the lower switch M4 is connected to the negative potential bus.
  • the first capacitor C1 is connected to the positive potential bus, and the other end is connected to the midpoint of the DC bus.
  • the second capacitor C2 has one end connected to the negative potential bus and the other end connected to the midpoint of the DC bus.
  • the Vi-terminal of the AC power source is connected to the connected end of the second switch tube M2 and the next switch tube M3 through the first inductor L1, and the other end of the AC power source Vi is connected to the midpoint of the DC bus, and the AC signal is rectified to output a DC signal, and the positive potential bus bar is connected.
  • the negative potential bus is the DC output of the rectifier, which supplies DC power to the load.
  • the voltage stress of the switching tubes (Ml, M2, M3, M4) in the three-level topology is half that of the two-level topology, and the switching loss of the switching tubes is small.
  • the three-level topology technology is improved on the basis of two-level topology technology, however, how to further reduce the total harmonic distortion of the circuit or reduce the switching frequency of the switching tube to reduce switching loss or reduce the size of the inductor, It is a technical problem that a person skilled in the art needs to continue to solve.
  • the technical problem to be solved by the present invention is: to make up for the deficiencies of the above prior art, and to propose a five-level rectification converter, which is further improved on the basis of the topology technology of the three-level rectification converter, and can further reduce the total circuit Harmonic distortion, reduced switching losses, and reduced inductor size.
  • a five-level rectifier converter includes a filter circuit, a first midpoint clamp bridge arm, a second midpoint clamp bridge arm, a first capacitor and a second capacitor, and the AC power source is filtered by the filter circuit and connected to a midpoint of the first midpoint clamp bridge arm and a midpoint of the second midpoint clamp bridge arm, an upper end of the first midpoint clamp bridge arm, and a second midpoint clamp bridge
  • the upper end of the arm, the first end of the first capacitor is connected to the positive potential bus, the lower end of the first midpoint clamp bridge arm, the lower end of the second midpoint clamp bridge arm, and the second capacitor
  • the first end is connected to the negative potential bus
  • the second end of the first capacitor and the second end of the second capacitor are connected to the midpoint of the DC bus.
  • the first midpoint clamp bridge arm and the second midpoint clamp bridge arm each include two diodes and a previous switch tube, a second switch tube, a next switch tube and a lower switch tube.
  • An anode of the diode is connected to a midpoint of the DC bus
  • a cathode of the diode is connected to a connection end of the upper switch and the upper switch
  • an anode of the other diode is connected to the next
  • the switching transistor is connected to the connected end of the lower switching transistor, and the cathode of the other diode is connected to the midpoint of the DC bus.
  • the first midpoint clamp bridge arm includes a first diode, a second diode, and a first switch tube, a second switch tube, a third switch tube, and a fourth switch tube that are sequentially connected, the first The drain of the switch tube is connected to the positive potential bus, the source of the fourth switch is connected to the negative potential bus, the source of the first switch is connected to the drain of the second switch, and the connected end is connected to the a cathode of the first diode; a source of the second switching transistor is connected to a drain of the third switching transistor; a source of the third switching transistor is connected to a drain of the fourth switching transistor, The connected end is connected to the anode of the second diode; the anode of the first diode and the cathode of the second diode are connected to a midpoint of the DC bus.
  • the second midpoint clamp bridge arm includes a third diode, a fourth diode, and a fifth switch tube, a sixth switch tube, a seventh switch tube, and an eighth switch tube, which are sequentially connected, and the fifth a drain of the switch tube is connected to the positive potential bus, a source of the eighth switch is connected to a negative potential bus, a source of the fifth switch is connected to a drain of the sixth switch, and a connection end is connected a cathode of the third diode; a source of the seventh switching transistor is connected to a drain of the eighth switching transistor; a source of the seventh switching transistor is connected to a drain of the eighth switching transistor, The connected end is connected to the anode of the fourth diode; the anode of the third diode and the cathode of the fourth diode are connected to a midpoint of the DC bus.
  • the filter circuit includes a first filter circuit, the first filter circuit includes a first inductor, One end of the first inductor is connected to the alternating current power source, and the other end is connected to a midpoint of the first midpoint clamping bridge arm.
  • the filter circuit includes a second filter circuit and a third filter circuit
  • the second filter circuit includes a second inductor
  • the third filter circuit includes a third inductor
  • one end of the second inductor is connected to the AC power source
  • One end, the other end of the second inductor is connected to a midpoint of the first midpoint clamp bridge arm
  • one end of the third inductor is connected to the other end of the AC power source
  • the other end of the third inductor is connected The second midpoint clamps the midpoint of the bridge arm.
  • the second filter circuit further includes a third capacitor
  • the third filter circuit further includes a fourth capacitor
  • one end of the third capacitor is connected to one end of the second inductor
  • one end of the fourth capacitor is One end of the third inductor is connected, and the other ends of the third capacitor and the fourth capacitor are connected to a midpoint of the DC bus.
  • the second filter circuit further includes a fifth diode
  • the third filter circuit further includes a sixth diode
  • a cathode of the fifth diode is connected to one end of the second inductor
  • a cathode of the six diode is connected to one end of the third inductor
  • an anode of the fifth diode and the sixth diode are both connected to a midpoint of the DC bus.
  • the five-level rectification converter of the invention can be regarded as adding a midpoint clamp bridge arm based on the three-level rectification conversion circuit, which can be obtained according to the theoretical analysis of the circuit, and the five electric power of the invention
  • the flat rectifier circuit has more zero-crossing points of the inductor current and voltage, and there is no current ripple at the zero-crossing point. Therefore, the zero-crossing point is large, and the total harmonic distortion THD i of the input current is smaller. It can reduce the total harmonic distortion THD of the circuit and improve the power factor.
  • the inductance ripple of the five-level rectifier circuit of the present invention is smaller than half of the inductor ripple of the three-level rectifier circuit, and therefore, under the condition that the ripple current of the inductor current is the same In the circuit of the present invention, only a small inductance amount of inductance can be satisfied, that is, the inductance size can be reduced in the circuit of the present invention.
  • the five-level rectifier circuit of the present invention has a ripple frequency of twice the switching frequency of the switching transistor with respect to the three-level rectifier circuit.
  • the switching frequency of the switching tube is half of the switching frequency of the switching tube of the switching tube in the topology of the three-level rectifier circuit, that is, the circuit of the invention can reduce the switching loss of the switching tube.
  • FIG. 1 is a circuit structural diagram of a three-level rectifier converter with a midpoint clamp in the prior art
  • FIG. 2 is a circuit configuration diagram of a five-level rectifier converter in an embodiment of the present invention
  • the current flow direction diagram of the five-level rectifier converter in the four embodiments in the specific embodiment
  • FIG. 4 is a diagram showing the relationship between the input voltage phase and the ripple current of the five-level rectification converter and the three-level rectification converter according to the theoretical analysis in the embodiment of the present invention
  • FIG. 5 is a diagram showing a relationship between a switching frequency of a five-level rectification converter and a three-level rectification converter and a ripple frequency of an inductor current according to a theoretical analysis according to an embodiment of the present invention
  • FIG. 6 is a structural diagram of a five-level rectification converter in which a filter circuit is improved in a five-level rectification converter according to an embodiment of the present invention
  • FIG. 7 is a structural diagram of a five-level rectification converter in which a filter circuit is further improved in a five-level rectification converter according to an embodiment of the present invention
  • Fig. 8 is a structural diagram of a five-level rectification converter in which a filter circuit is further improved in a five-level rectification converter according to an embodiment of the present invention.
  • the five-level rectification converter includes a filter circuit, a first midpoint clamp arm LS1, a second midpoint clamp arm LS2, a first capacitor C1 and a second capacitor C2.
  • the first midpoint clamp arm LSI includes a first diode D1, a second diode D2, and a first switch M1 (ie, a previous switch) and a second switch M2 (ie, the upper switch)
  • the drain of the first switch M1 is connected to the positive potential bus
  • the source of the fourth switch M4 is connected to the negative potential bus
  • the source of the first switch M1 is connected to the drain of the second switch M2, and the connection is connected first.
  • the connection end of the second switch tube M2 and the third switch tube M3 is the midpoint of the first midpoint clamp bridge arm LSI, and the drain of the first switch tube M1 is the first midpoint clamp bridge arm LSI.
  • the source of the fourth switch M4 is The first midpoint clamps the lower end of the bridge arm LS I .
  • the second midpoint clamp bridge arm LS2 includes a third diode D3, a fourth diode D4, and a fifth switch tube M5 (ie, a previous switch tube) and a sixth switch tube M6 (ie, the upper switch tube)
  • the second switch tube the seventh switch tube M7 (that is, the next switch tube), and the eighth switch tube M8 (that is, the next two switch tubes).
  • the drain of the fifth switch transistor M5 is connected to the positive potential bus, and the source of the eighth switch M8 is connected to the negative potential bus.
  • the source of the fifth switch M5 is connected to the drain of the sixth switch M6, the connection end is connected to the cathode of the third diode D3; the source of the seventh switch M7 is connected to the drain of the eighth switch M8; The source of the seventh switch M7 is connected to the drain of the eighth switch M8, the connection end is connected to the anode of the fourth diode D4; the anode of the third diode D3 is connected to the cathode of the fourth diode D4.
  • the midpoint of the bus is 0.
  • connection end of the sixth switch tube M6 and the seventh switch tube M7 is the midpoint of the second midpoint clamp bridge arm LS2, and the drain of the fifth switch tube M5 is the second midpoint clamp bridge arm LS2 At the upper end, the source of the eighth switch tube M8 is the lower end of the second midpoint clamp bridge arm LS2.
  • each of the switch tubes (M1-M8) is a field effect transistor.
  • the field effect transistor it is not limited to the field effect transistor, and may be other types of switching transistors, such as an insulated gate bipolar transistor IGBT, a gate turn-off thyristor GT0, a vertical junction field effect transistor VJFET, a junction field effect transistor JFET, and the like.
  • the AC power source V i is filtered by the filter circuit and connected to the midpoint A of the first midpoint clamp bridge arm LSI and the midpoint B of the second midpoint clamp bridge arm LS2, the upper end of the first midpoint clamp bridge arm LSI
  • the upper end of the second midpoint clamp arm LS2 the first end of the first capacitor C1 is connected to the positive potential bus E, the lower end of the first midpoint clamp arm LSI, and the lower end of the second midpoint clamp arm LS2
  • the first end of the second capacitor C2 is connected to the negative potential bus F, and the second end of the first capacitor C1 and the second end of the second capacitor C2 are connected to the midpoint of the DC bus.
  • the filter circuit is a first filter circuit.
  • the first filter circuit includes a first inductor L1.
  • One end of the first inductor L1 is connected to the AC power source V i , and the other end is connected to the midpoint A of the first midpoint clamp bridge arm LSI.
  • the midpoint A of the first midpoint clamp arm LSI leads to the port C, the midpoint B of the second midpoint clamp arm LS2, the port D, the positive potential bus take-off port E, and the negative potential bus take-off port F, after filtering
  • the subsequent AC signal is input to the rectifier converter from port C and port D.
  • Port E and port F are the DC outputs of the rectifier converter.
  • the operation of the five-level rectifier converter is explained as follows.
  • five levels are generated between port C and port D by modulation of the switching transistor, by controlling a constant voltage value output between the DC output ports E and F.
  • the five levels of the AC input port are: Hypothesis five
  • the DC bus voltage amplitude of the level rectification converter is Vo.
  • the voltage amplitude between the AC input port C and the port D is +Vo, +0. 5Vo, _0. 5Vo and 0.
  • the voltage amplitude between the AC input port C and the port D is +0. 5Vo, _Vo, -0. 5Vo and 0, ie, total +Vo, +0. 5Vo, 0, - 0. 5Vo and -Vo five levels.
  • the positive half-cycle is used as an example to illustrate that +Vo, +0. 5 Vo is formed at the AC input port C and the port D.
  • the negative half cycle is the opposite of the positive half cycle current flow (from port C to port D), from port D to port C.
  • the first switch M1, the second switch M2, the seventh switch M7 and the eighth switch M8 are turned on.
  • the flow direction of the device along the solid line in the figure is from port C ⁇ second switch tube M2 ⁇ first switch tube one capacitor two capacitor C2 ⁇ eighth switch tube M8 ⁇ seven switch tube M7 ⁇ port D.
  • the voltage between the AC input port C and port D is +Vo.
  • the first switch M1, the second switch M2, the sixth switch M6, and the third diode D3 are turned on.
  • the flow direction of the device along the solid line in the figure is from port C ⁇ second switch tube M2 ⁇ first switch tube, one capacitor Cl ⁇ third diode D3 ⁇ sixth switch tube M6 ⁇ port D. 5 ⁇
  • the voltage between AC input port C and port D is +0. 5Vo.
  • the third switch M3, the fourth switch M4, the sixth switch M6, and the third diode D3 are turned on.
  • the flow direction of the device along the solid line in the figure is from port C ⁇ third switch tube M3 ⁇ fourth switch tube ⁇ 14 ⁇ second capacitor C2 ⁇ third diode D3 ⁇ sixth switch tube M6 ⁇ port D. 5 ⁇
  • the voltage between the AC input port C and the port D is -0. 5Vo.
  • the third switch M3, the second diode D2, the sixth switch M6, and the third diode D3 are turned on.
  • the flow direction of the device along the solid line in the figure is from port C ⁇ third switch tube M3 ⁇ second diode D2 ⁇ third diode D3 ⁇ sixth switch tube M6 ⁇ port D.
  • the voltage between the AC input port C and port D is 0.
  • the input voltage Vi is 220 volts AC voltage
  • the DC bus voltage is 400 volts
  • the switching frequency of each switch tube is 24 kHz
  • the first capacitor Cl the first
  • the second capacitor C2 295 microfarads
  • the first inductor Ll 130 microhenries
  • the output power is 3000 watts. According to the ratio of the input voltage to the output voltage, the maximum value of the duty cycle is 0. 933.
  • FIG. Show When the input voltage is at different phases, the theoretical derivation of the relationship between the ripple magnitude of the current of the first inductor L1 and the input voltage phase of the five-level rectifier converter and the three-level rectifier converter is as shown in FIG. Show.
  • denotes the phase of the input voltage signal
  • ⁇ - 3 ( ⁇ ) denotes the ripple magnitude of the current of the first inductor L1 in the three-level rectifier converter
  • 1 - 5 ( ⁇ ) denotes a five-level rectifier converter
  • the ripple of the current of the first inductor L1 of the five-level rectifier converter has four a zero point, and the ripple of the current of the first inductor L1 of the three-level rectifier converter has two zero points, thereby obtaining a five-level rectifier converter with respect to the three-level rectifier converter Reduce the total harmonic distortion of the circuit.
  • the ripple of the inductor current of the five-level rectifier converter is half of the ripple of the inductor current of the three-level rectifier converter. Small, therefore, under the condition that the ripple current of the inductor current is the same, the inductor of a small inductance is required in the five-level rectifier converter, that is, the five-level rectifier converter can greatly reduce the inductor size.
  • the inductor current ripple value is set to be the same, the duty ratio of the switch tube is adjusted, and the same inductor current ripple value of the first inductor L1 in the three-level rectifier converter and the five-level rectifier converter is obtained.
  • the value of the corresponding inductance in the case is shown in Figure 5.
  • D represents the duty cycle of the switching transistor
  • I - 3L (D) represents the inductance of the first inductor L1 in the three-level rectifier converter
  • I _5L (D) represents the fifth in the five-level rectifier converter.
  • the duty cycle is changed from 0 to 1 in one switching cycle.
  • the inductance of the inductor in the three-level rectifier converter (shown by the solid line) only experiences once from small to large, from large to small.
  • the process, and the inductance of the inductor in the five-level rectifier converter (shown by the dashed line) goes through two small to large, large to small processes. Therefore, as the duty cycle changes, the frequency of the inductor ripple is twice the switching frequency in the five-level rectifier converter; and the frequency and switching frequency of the inductor ripple in the three-level rectifier converter the same.
  • the inductor ripple frequency is set to be the same (set to Fh), then the switching frequency of the five-level rectifier converter is l/2Fh, and the switching frequency of the three-level rectifier converter is Fh, that is, the five-electrode in the specific embodiment.
  • the switching frequency of the flat rectifier converter is half of the switching frequency of the three-level rectifier converter, that is, the switching frequency of the five-level rectifier converter is low, which can reduce the switching loss of the switching tube.
  • the phase converter is kept, the ripple of the inductor current is small, the zero crossing of the inductor current is large, and the total harmonic distortion THD is small;
  • the switching frequency of the five-level rectifier can be made. The rate is halved, which is half of the switching frequency of the three-level rectifier, and the switching loss of the switching tube is correspondingly reduced.
  • the filter circuit in the five-level rectifier converter has various improvements.
  • the filter circuit includes a second filter circuit and a third filter circuit.
  • the second filter circuit includes a second inductor L2.
  • the third filter circuit includes a third inductor L3.
  • the AC signal generating source Vi-terminal passes through the second inductor. After L2 is connected to the midpoint of the first midpoint clamp arm LSI, the other end of the AC signal generating source Vi is connected to the midpoint of the second midpoint clamp arm LS2 through the third inductor L3.
  • the meanings of the marks of the remaining devices are the same as those of the marks in Figure 3.
  • the second filter circuit further includes a third capacitor C3, and the third filter circuit further includes a fourth capacitor C4, and one end of the third capacitor C3 is connected to one end of the second inductor L2.
  • One end of the fourth capacitor C4 is connected to one end of the third inductor L3, and the other ends of the third capacitor C3 and the fourth capacitor C4 are connected to the midpoint of the DC bus.
  • the meanings of the marks of the remaining devices are the same as those of the marks in Figure 3.
  • the third capacitor C3 and the second inductor L2 are connected to form a filter circuit, the third capacitor C3 is connected to either end of the second inductor L2, and the third capacitor C3 is connected to the second.
  • One end of the inductor L2 is connected to the power source V i , and the third capacitor C3 is connected to the other end of the second inductor L2 . Similarly, the fourth capacitor C4 is connected to the other end of the third inductor L3.
  • the second filter circuit further includes a fifth diode D5
  • the third filter circuit further includes a sixth diode D6.
  • the cathode of the fifth diode D5 is connected to one end of the second inductor L2
  • the cathode of the sixth diode D6 is connected to one end of the third inductor L3
  • the anodes of the fifth diode D5 and the sixth diode D6 are both Connected to the midpoint of the DC bus.
  • the meanings of the marks of the remaining devices are the same as those of the marks in Figure 3.
  • the cathode of the fifth diode D5 is connected at either end of the second inductor L2, which is shown as a fifth.
  • the cathode of the diode D5 is connected to one end of the second inductor L2 connected to the power source Vi, and the cathode of the fifth diode D5 is connected to the other end of the second inductor L2.
  • the cathode of the sixth diode D6 is connected to the other end of the third inductor L 3 .

Description

一种五电平整流变换器 本申请要求于 2011 年 01 月 27 日提交中国专利局、 申请号为 201110029237. 9、 发明名称为 "一种五电平整流变换器" 的中国专利申请的优 先权, 其全部内容通过引用结合在本申请中。
技术领域 本发明涉及变换器, 特别是涉及一种五电平整流变换器。
背景技术
在信号的整流中经常会使用带中点嵌位的三电平整流变换器拓朴结构。如 图 1所示, 为三电平整流器的电路结构图。 从图中可看出, 三电平整流变换器 包括由电感 L1组成的滤波电路、 一个中点箝位桥臂 LS1、 第一电容 C1和第二 电容 C2。 其中, 中点箝位桥臂 LSI包括两个二极管 Dl、 D2以及依次相连的上 一开关管 Ml、 上二开关管 M2、 下一开关管 M3和下二开关管 M4 , 上一开关管 Ml的漏极连接正电位母线、 下二开关管 M4的源极连接负电位母线。 第一电容 C1的一端连接正电位母线, 另一端连接直流母线中点。 第二电容 C2的一端连 接负电位母线, 另一端连接直流母线中点。 交流电源 Vi—端通过第一电感 L1 后连接上二开关管 M2和下一开关管 M3的相连端, 交流电源 Vi另一端连接直 流母线中点, 交流信号经过整流后输出直流信号,正电位母线与负电位母线即 为整流器的直流输出端, 为负载 Load提供直流电。
与传统的两电平拓朴相比, 三电平拓朴中开关管(Ml、 M2、 M3、 M4 )的电 压应力是两电平拓朴的一半, 开关管的开关损耗较小。三电平拓朴技术是在两 电平拓朴技术的基础上经过改进得到, 然而,如何进一步减小电路的总谐波失 真或者降低开关管的开关频率以减少开关损耗或者减小电感尺寸,是本领域技 术人员需要继续解决的技术问题。
发明内容
本发明所要解决的技术问题是: 弥补上述现有技术的不足,提出一种五电 平整流变换器,在三电平整流变换器拓朴技术的基础上进一步改进得到, 能够 进一步减小电路总谐波失真、 减少开关损耗以及减小电感尺寸。
本发明的技术问题通过以下的技术方案予以解决: 一种五电平整流变换器, 包括滤波电路、 第一中点箝位桥臂、 第二中点箝 位桥臂、第一电容和第二电容, 交流电源通过所述滤波电路滤波后连接到所述 第一中点箝位桥臂的中点和所述第二中点箝位桥臂的中点,所述第一中点箝位 桥臂的上端、所述第二中点箝位桥臂的上端、所述第一电容的第一端连接正电 位母线, 所述第一中点箝位桥臂的下端、 所述第二中点箝位桥臂的下端、 所述 第二电容的第一端连接负电位母线,所述第一电容的第二端和所述第二电容的 第二端连接直流母线中点。
优选的技术方案中,
所述第一中点箝位桥臂和所述第二中点箝位桥臂均包括两个二极管以及 依次相连的上一开关管、 上二开关管、 下一开关管和下二开关管, 所述一个二 极管的阳极与直流母线中点相连、所述一个二极管的阴极与所述上一开关管和 所述上二开关管的相连端相连,所述另一个二极管的阳极与所述下一开关管和 所述下二开关管的相连端相连、 所述另一个二极管的阴极与直流母线中点相 连。
所述第一中点箝位桥臂包括第一二极管、第二二极管以及依次相连的第一 开关管、 第二开关管、 第三开关管和第四开关管, 所述第一开关管的漏极连接 正电位母线、所述第四开关管的源极连接负电位母线, 所述第一开关管的源极 和所述第二开关管的漏极相连,相连端连接所述第一二极管的阴极; 所述第二 开关管的源极与所述第三开关管的漏极相连;所述第三开关管的源极和所述第 四开关管的漏极相连,相连端连接所述第二二极管的阳极; 所述第一二极管的 阳极和所述第二二极管的阴极连接直流母线中点。
所述第二中点箝位桥臂包括第三二极管、第四二极管以及依次相连的第五 开关管、 第六开关管、 第七开关管和第八开关管, 所述第五开关管的漏极连接 正电位母线、所述第八开关管的源极连接负电位母线, 所述第五开关管的源极 和所述第六开关管的漏极相连,相连端连接所述第三二极管的阴极; 所述第七 开关管的源极与所述第八开关管的漏极相连;所述第七开关管的源极和所述第 八开关管的漏极相连,相连端连接所述第四二极管的阳极; 所述第三二极管的 阳极和所述第四二极管的阴极连接直流母线中点。
所述滤波电路包括第一滤波电路, 所述第一滤波电路包括第一电感, 所述 第一电感的一端连接所述交流电源, 另一端连接所述第一中点箝位桥臂的中 点。
所述滤波电路包括第二滤波电路和第三滤波电路,所述第二滤波电路包括 第二电感, 所述第三滤波电路包括第三电感, 所述第二电感的一端连接所述交 流电源的一端, 所述第二电感的另一端连接所述第一中点箝位桥臂的中点, 所 述第三电感的一端连接所述交流电源的另一端,所述第三电感的另一端连接所 述第二中点箝位桥臂的中点。
所述第二滤波电路还包括第三电容, 所述第三滤波电路还包括第四电容, 所述第三电容的一端与所述第二电感的一端相连,所述第四电容的一端与所述 第三电感的一端相连,所述第三电容和所述第四电容的另一端均与直流母线中 点相连。
所述第二滤波电路还包括第五二极管,所述第三滤波电路还包括第六二极 管, 所述第五二极管的阴极与所述第二电感的一端相连, 所述第六二极管的阴 极与所述第三电感的一端相连,所述第五二极管和所述第六二极管的阳极均与 直流母线中点相连。
本发明与现有技术对比的有益效果是:
本发明的五电平整流变换器,电路组成上可看作是在三电平整流变换电路 的基础上增加一个中点箝位桥臂,根据对电路的理论分析可以得到, 本发明的 五电平整流电路相对于三电平整流电路而言, 电感电流和电压的过零点多, 而 在过零处没有电流纹波, 因此过零点多,输入电流的总谐波失真 THD i就越小, 即可降低电路的总谐波失真 THD, 提高功率因数。 同时, 在电感量相同的情况 下,本发明的五电平整流电路的电感纹波比三电平整流电路的电感纹波的一半 还要小, 因此在电感电流的纹波大小相同的条件下, 本发明的电路中只需较小 电感量的电感即可满足要求, 即本发明的电路中可减小电感尺寸。 另外, 本发 明的五电平整流电路相对于三电平整流电路而言,电感电流的纹波频率是开关 管的开关频率的 2倍, 因此在电感电流的纹波频率相同的条件下, 本发明的电 路中开关管的开关频率是三电平整流电路拓朴中开关管的开关管的开关频率 的一半, 即本发明的电路能降低开关管的开关损耗。
附图说明 图 1是现有技术中带中点嵌位的三电平整流变换器的电路结构图; 图 2是本发明具体实施方式中的五电平整流变换器的电路结构图; 图 3 是本发明具体实施方式中的五电平整流变换器在四种情形下的电流 流向示意图;
图 4 是本发明具体实施方式中的五电平整流变换器与三电平整流变换器 的输入电压相位和电感电流的纹波大小根据理论分析的关系图;
图 5 是本发明具体实施方式中的五电平整流变换器与三电平整流变换器 的开关频率和电感电流的纹波频率根据理论分析的关系图;
图 6 是本发明具体实施方式中的五电平整流变换器中滤波电路做出改进 后的五电平整流变换器的结构图;
图 7 是本发明具体实施方式中的五电平整流变换器中滤波电路做出进一 步改进后的五电平整流变换器的结构图;
图 8 是本发明具体实施方式中的五电平整流变换器中滤波电路做出更进 一步改进后的五电平整流变换器的结构图。
具体实施方式 下面结合具体实施方式并对照附图对本发明做进一步详细说明。
如图 2所示, 为五电平整流变换器的电路结构图。五电平整流变换器包括 滤波电路、 第一中点箝位桥臂 LS1、 第二中点箝位桥臂 LS2 , 第一电容 C1和第 二电容 C2。
第一中点箝位桥臂 LSI包括第一二极管 Dl、 第二二极管 D2以及依次相连 的第一开关管 Ml (也即上一开关管)、 第二开关管 M2 (也即上二开关管)、 第 三开关管 M3 (也即下一开关管)和第四开关管 M4 (也即下二开关管)。 第一开 关管 Ml的漏极连接正电位母线、第四开关管 M4的源极连接负电位母线, 第一 开关管 Ml的源极和第二开关管 M2的漏极相连, 相连端连接第一二极管 D1的 阴极; 第二开关管 M2的源极与第三开关管 M3的漏极相连; 第三开关管 M3的 源极和第四开关管 M4的漏极相连,相连端连接第二二极管 D2的阳极; 第一二 极管 D1的阳极和第二二极管 D2的阴极连接直流母线中点 0。 其中, 第二开关 管 M2和第三开关管 M3的相连端即为第一中点箝位桥臂 LSI的中点,第一开关 管 Ml的漏极即为第一中点箝位桥臂 LSI的上端,第四开关管 M4的的源极即为 第一中点箝位桥臂 LS I的下端。
第二中点箝位桥臂 LS2包括第三二极管 D3、 第四二极管 D4以及依次相连 的第五开关管 M5 (也即上一开关管)、 第六开关管 M6 (也即上二开关管)、 第 七开关管 M7 (也即下一开关管)和第八开关管 M8 (也即下二开关管)。 第五开 关管 M5的漏极连接正电位母线、第八开关管 M8的源极连接负电位母线。 第五 开关管 M5的源极和第六开关管 M6的漏极相连, 相连端连接第三二极管 D3的 阴极; 第七开关管 M7的源极与第八开关管 M8的漏极相连; 第七开关管 M7的 源极和第八开关管 M8的漏极相连,相连端连接第四二极管 D4的阳极; 第三二 极管 D3的阳极和第四二极管 D4的阴极连接直流母线中点 0。 其中, 第六开关 管 M6和第七开关管 M7的相连端即为第二中点箝位桥臂 LS2的中点,第五开关 管 M5的漏极即为第二中点箝位桥臂 LS2的上端,第八开关管 M8的源极即为第 二中点箝位桥臂 LS2的下端。
上述中点箝位桥臂中, 各开关管 (M1-M8 ) 为场效应管。 但不限定为场效 应管, 也可以是其它类型的开关管, 如绝缘栅双极型晶体管 IGBT、 门极可关 断晶闸管 GT0 , 垂直结型场效应晶体管 VJFET, 结型场效应晶体管 JFET等。
交流电源 V i通过滤波电路滤波后连接到第一中点箝位桥臂 LSI的中点 A 和第二中点箝位桥臂 LS2的中点 B, 第一中点箝位桥臂 LSI的上端、 第二中点 箝位桥臂 LS2的上端、 第一电容 C1的第一端连接正电位母线 E , 第一中点箝 位桥臂 LSI的下端、 第二中点箝位桥臂 LS2的下端、 第二电容 C2的第一端连 接负电位母线 F , 第一电容 C1的第二端和第二电容 C2的第二端连接直流母线 中点 0点。 滤波电路为第一滤波电路, 第一滤波电路包括第一电感 L1 , 第一 电感 L1的一端连接交流电源 V i ,另一端连接第一中点箝位桥臂 LSI的中点 A。 第一中点箝位桥臂 LSI的中点 A引出端口 C、 第二中点箝位桥臂 LS2的中点 B 引出端口 D、 正电位母线引出端口 E、 负电位母线引出端口 F , 经过滤波后的 交流信号从端口 C和端口 D输入整流变换器中。 端口 E和端口 F , 为整流变换 器的直流输出端。
如下说明五电平整流变换器的工作原理。五电平整流变换器工作时,通过 开关管的调制,在端口 C和端口 D之间产生 5种电平,通过控制在直流输出端 口 E、 F之间输出的一个恒定电压值。 交流输入端口 5种电平分别为: 假设五 电平整流变换器输出的直流母线电压幅值为 Vo, 在正半周时交流输入端口 C 和端口 D之间的电压幅值为 +Vo、 +0. 5Vo、 _0. 5Vo和 0四种电平, 在负半周时 交流输入端口 C和端口 D之间的电压幅值为 +0. 5Vo、 _Vo、 -0. 5Vo和 0四种电 平, 即总共 +Vo、 +0. 5Vo、 0、 -0. 5Vo和 -Vo五种电平。
如下仅以正半周为例,说明交流输入端口 C和端口 D处形成 +Vo、 +0. 5 Vo、
-0. 5Vo和 0四种电平的原理。 而负半周的情形, 即是与正半周的电流流向(从 端口 C到端口 D )相反, 从端口 D到端口 C。
如图 3a所示, 第一开关管 Ml、 第二开关管 M2、 第七开关管 M7和第八开 关管 M8导通。 电流沿图中实线所示器件的流向为从端口 C→第二开关管 M2→ 第一开关管 一电容 二电容 C2→第八开关管 M8→第七开关管 M7 →端口 D。 此时, 交流输入端口 C和端口 D之间的电压为 +Vo。
如图 3b所示, 为第一开关管 Ml、 第二开关管 M2、 第六开关管 M6、 第三 二极管 D3导通。 电流沿图中实线所示器件的流向为从端口 C→第二开关管 M2 →第一开关管 一电容 Cl→第三二极管 D3→第六开关管 M6→端口 D。 此 时, 交流输入端口 C和端口 D之间的电压为 +0. 5Vo。
如图 3c所示, 第三开关管 M3、 第四开关管 M4、 第六开关管 M6、 第三二 极管 D3导通。 电流沿图中实线所示器件的流向为从端口 C→第三开关管 M3→ 第四开关管 ^14→第二电容 C2→第三二极管 D3→第六开关管 M6→端口 D。此时, 交流输入端口 C和端口 D之间的电压为 -0. 5Vo。
如图 3d所示, 第三开关管 M3、 第二二极管 D2、 第六开关管 M6、 第三二 极管 D3导通。 电流沿图中实线所示器件的流向为从端口 C→第三开关管 M3→ 第二二极管 D2→第三二极管 D3→第六开关管 M6→端口 D。 此时, 交流输入端 口 C和端口 D之间的电压为 0。
对图 2所示电路进行理论分析, 设定电路参数如下: 输入电压 Vi为 220 伏的交流电压, 直流母线电压为 400伏, 各开关管的开关频率为 24千赫兹, 第一电容 Cl=第二电容 C2=295微法, 第一电感 Ll=130微亨,输出功率为 3000 瓦。 根据输入电压和输出电压的比值可以得出占空比的最大值为 0. 933。
当输入电压处于不同的相位时,理论推导得到五电平整流变换器与三电平 整流变换器中第一电感 L1的电流的纹波大小与输入电压相位的关系如图 4所 示。 图中, Θ表示输入电压信号的相位, Ι - 3 ( θ )表示三电平整流变换器中的 第一电感 L1的电流的纹波大小, 1 - 5 ( Θ )表示五电平整流变换器中的第一电感 L1的电流的纹波大小。 从图 4中可得到, 输入电压信号的相位在 O- π的弧度 (也即 0-180。 的角度) 内变换时, 五电平整流变换器的第一电感 L1 的电流 的纹波有四个为零的点, 而三电平整流变换器的第一电感 L1的电流的纹波有 两个为零的点,由此可以得到五电平整流变换器相对于三电平整流变换器可减 小电路的总谐波失真。 同时, 在同一电感量条件下 (第一电感 Ll=130微亨), 图中五电平整流变换器的电感电流的纹波比三电平整流变换器的电感电流的 纹波的一半还要小, 因此在电感电流的纹波大小相同的条件下,五电平整流变 换器中只需较小电感量的电感即可满足要求,即五电平整流变换器可大大减小 电感尺寸。
另外, 若设定电感电流纹波取值相同, 调节开关管的占空比, 得到三电平 整流变换器和五电平整流变换器中第一电感 L1在上述相同的电感电流纹波取 值情形下对应的电感量的取值如图 5 所示。 图中, D表示开关管的占空比, I - 3L (D)表示三电平整流变换器中的第一电感 L1的电感量, I _5L (D)表示五电 平整流变换器中的第一电感 L1的电感量。从图 5中可得到, 一个开关周期内, 占空比从 0到 1变换, 三电平整流变换器中电感的电感量(如实线所示)仅经 历一次从小到大, 从大到小的过程, 而五电平整流变换器中电感的电感量(如 虚线所示)经历两次从小到大, 从大到小的过程。 由此可得, 随着占空比的变 化, 五电平整流变换器中, 电感纹波的频率是开关频率的 2倍; 而三电平整流 变换器中, 电感纹波的频率与开关频率相同。 因此设定电感纹波频率相同(设 均为 Fh ), 则五电平整流变换器的开关频率为 l/2Fh, 三电平整流变换器的开 关频率为 Fh, 即本具体实施方式中五电平整流变换器的开关频率为三电平整 流变换器的开关频率的一半, 即五电平整流变换器的开关频率低, 可减小开关 管的开关损耗。
综上所述, 根据上述两幅理论分析图可知, 在相同的开关频率下, 保持相 换器, 电感电流的纹波小, 电感电流的过零点多, 总谐波失真 THD要小; 在相 同的电感下, 若保持相同的电感电流纹波频率, 可以使五电平整流器的开关频 率减半, 为三电平整流器开关频率的一半, 开关管的开关损耗相应减小。
优选地, 五电平整流变换器中的滤波电路有多种改进方案。
如图 6所示, 滤波电路包括第二滤波电路和第三滤波电路, 第二滤波电路 包括第二电感 L2 , 第三滤波电路包括第三电感 L3 , 交流信号发生源 Vi—端通 过第二电感 L2后连接第一中点箝位桥臂 LSI的中点,交流信号发生源 Vi的另 一端通过第三电感 L 3后连接第二中点箝位桥臂 LS2的中点。 图中, 其余器件 的标记的含义同图 3中的标记的含义。
如图 7所示, 在图 6的基础上, 第二滤波电路还包括第三电容 C3 , 第三 滤波电路还包括第四电容 C4 , 第三电容 C3的一端与第二电感 L2的一端相连, 第四电容 C4的一端与第三电感 L3的一端相连, 第三电容 C3和第四电容 C4 的另一端均与直流母线中点相连。 图中, 其余器件的标记的含义同图 3中的标 记的含义。 另外, 由于第三电容 C3与第二电感 L2连接组成滤波电路, 因此第 三电容 C3连接在第二电感 L2的两端中任一端均可, 图中所示为第三电容 C3 连接到第二电感 L2与电源 V i相连的一端, 第三电容 C3连接到第二电感 L2 的另一端也可。 同理, 第四电容 C4连接到第三电感 L3的另一端也可。
如图 8所示, 在图 6的基础上, 第二滤波电路还包括第五二极管 D5 , 第 三滤波电路还包括第六二极管 D6。 第五二极管 D5的阴极与第二电感 L2的一 端相连, 第六二极管 D6的阴极与第三电感 L3的一端相连, 第五二极管 D5和 第六二极管 D6的阳极均与直流母线中点相连。 图中, 其余器件的标记的含义 同图 3中的标记的含义。 另外, 由于第五二极管 D5与第二电感 L2连接组成滤 波电路, 因此第五二极管 D5的阴极连接在第二电感 L2的两端中任一端均可, 图中所示为第五二极管 D5的阴极连接到第二电感 L2与电源 Vi相连的一端, 第五二极管 D5 的阴极连接到第二电感 L2 的另一端也可。 同理, 第六二极管 D6的阴极连接到第三电感 L 3的另一端也可。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不 能认定本发明的具体实施只局限于这些说明。对于本发明所属技术领域的普通 技术人员来说,在不脱离本发明构思的前提下做出若干替代或明显变型, 而且 性能或用途相同, 都应当视为属于本发明的保护范围。

Claims

权 利 要 求
1、 一种五电平整流变换器, 其特征在于: 包括滤波电路、 第一中点箝位 桥臂、 第二中点箝位桥臂、 第一电容和第二电容,
交流电源通过所述滤波电路滤波后连接到所述第一中点箝位桥臂的中点 和所述第二中点箝位桥臂的中点, 所述第一中点箝位桥臂的上端、所述第二中 点箝位桥臂的上端、 所述第一电容的第一端连接正电位母线,
所述第一中点箝位桥臂的下端、所述第二中点箝位桥臂的下端、所述第二 电容的第一端连接负电位母线,
所述第一电容的第二端和所述第二电容的第二端连接直流母线中点。
2、 根据权利要求 1所述的五电平整流变换器, 其特征在于: 所述第一中 点箝位桥臂和所述第二中点箝位桥臂均包括两个二极管以及依次相连的上一 开关管、 上二开关管、 下一开关管和下二开关管, 所述一个二极管的阳极与直 流母线中点相连、所述一个二极管的阴极与所述上一开关管和所述上二开关管 的相连端相连,所述另一个二极管的阳极与所述下一开关管和所述下二开关管 的相连端相连、 所述另一个二极管的阴极与直流母线中点相连。
3、 根据权利要求 2所述的五电平整流变换器, 其特征在于: 所述第一中 点箝位桥臂包括第一二极管 (Dl)、 第二二极管 (D2) 以及依次相连的第一开 关管 (Ml)、 第二开关管 (M2)、 第三开关管 (M3)和第四开关管 (M , 所述 第一开关管(Ml )的漏极连接正电位母线、 所述第四开关管(M 的源极连接 负电位母线, 所述第一开关管(Ml )的源极和所述第二开关管(M2 )的漏极相 连, 相连端连接所述第一二极管(D1 )的阴极; 所述第二开关管(M2)的源极 与所述第三开关管(M3)的漏极相连; 所述第三开关管(M3)的源极和所述第 四开关管(M 的漏极相连, 相连端连接所述第二二极管(D2)的阳极; 所述 第一二极管 (D1 ) 的阳极和所述第二二极管 (D2) 的阴极连接直流母线中点。
4、 根据权利要求 2所述的五电平整流变换器, 其特征在于: 所述第二中 点箝位桥臂包括第三二极管 (D3)、 第四二极管 (D4) 以及依次相连的第五开 关管 (M5)、 第六开关管 (M6)、 第七开关管 (M7)和第八开关管 (M8), 所述 第五开关管(M5)的漏极连接正电位母线、 所述第八开关管(M8)的源极连接 负电位母线, 所述第五开关管(M5)的源极和所述第六开关管(M6)的漏极相 连, 相连端连接所述第三二极管(D3)的阴极; 所述第七开关管(M7)的源极 与所述第八开关管(M8 )的漏极相连; 所述第七开关管(M7)的源极和所述第 八开关管(M8 )的漏极相连, 相连端连接所述第四二极管(D 的阳极; 所述 第三二极管 (D3) 的阳极和所述第四二极管 (D 的阴极连接直流母线中点。
5、 根据权利要求 1所述的五电平整流变换器, 其特征在于: 所述滤波电 路包括第一滤波电路, 所述第一滤波电路包括第一电感 (L1 ), 所述第一电感 (L1 ) 的一端连接所述交流电源, 另一端连接所述第一中点箝位桥臂的中点。
6、 根据权利要求 1所述的五电平整流变换器, 其特征在于: 所述滤波电 路包括第二滤波电路和第三滤波电路, 所述第二滤波电路包括第二电感(L2 ), 所述第三滤波电路包括第三电感 (L3), 所述第二电感 (L2 ) 的一端连接所述 交流电源的一端, 所述第二电感(L2)的另一端连接所述第一中点箝位桥臂的 中点, 所述第三电感(L3)的一端连接所述交流电源的另一端, 所述第三电感 (L3) 的另一端连接所述第二中点箝位桥臂的中点。
7、 根据权利要求 6所述的五电平整流变换器, 其特征在于: 所述第二滤 波电路还包括第三电容(C3), 所述第三滤波电路还包括第四电容(C4 ), 所述 第三电容(C3)的一端与所述第二电感(L2)的一端相连, 所述第四电容(C4 ) 的一端与所述第三电感(L3)的一端相连, 所述第三电容(C3)和所述第四电 容(C4) 的另一端均与直流母线中点相连。
8、 根据权利要求 6所述的五电平整流变换器, 其特征在于: 所述第二滤 波电路还包括第五二极管 (D5 ), 所述第三滤波电路还包括第六二极管 (D6), 所述第五二极管(D5 )的阴极与所述第二电感(L2)的一端相连, 所述第六二 极管 (D6) 的阴极与所述第三电感 (L3) 的一端相连, 所述第五二极管 (D5 ) 和所述第六二极管 (D6) 的阳极均与直流母线中点相连。
PCT/CN2012/070733 2011-01-27 2012-01-29 一种五电平整流变换器 WO2012100743A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110029237.9 2011-01-27
CN2011100292379A CN102082520A (zh) 2011-01-27 2011-01-27 一种五电平整流变换器

Publications (1)

Publication Number Publication Date
WO2012100743A1 true WO2012100743A1 (zh) 2012-08-02

Family

ID=44088289

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/070733 WO2012100743A1 (zh) 2011-01-27 2012-01-29 一种五电平整流变换器

Country Status (2)

Country Link
CN (1) CN102082520A (zh)
WO (1) WO2012100743A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102082520A (zh) * 2011-01-27 2011-06-01 艾默生网络能源系统北美公司 一种五电平整流变换器
CN103684010A (zh) * 2012-09-21 2014-03-26 成都市思博睿科技有限公司 独立五电平输出二极管箝位桥式变频器
CN103178736B (zh) * 2013-03-22 2015-07-29 阳光电源股份有限公司 一种五电平逆变器
US11267747B2 (en) * 2015-03-24 2022-03-08 Corning Incorporated High strength, scratch resistant and transparent glass-based materials
CN105939125B (zh) * 2016-07-06 2019-09-17 内江市凌辉电子科技有限公司 一种交流输入带功率因数校正的全桥单极变换器
CN113364312B (zh) * 2021-06-16 2023-05-30 华工科技(广东)有限公司 一种适用于智能频漂水处理电源前级的三电平整流电路
CN115441757A (zh) * 2022-08-30 2022-12-06 江苏科曜能源科技有限公司 一种五电平pwm整流器及供电设备

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223009A (ja) * 2005-02-08 2006-08-24 Fuji Electric Holdings Co Ltd 5レベルインバータとその駆動方法
CN101728961A (zh) * 2009-12-09 2010-06-09 艾默生网络能源有限公司 一种ac/dc变换器
CN102082520A (zh) * 2011-01-27 2011-06-01 艾默生网络能源系统北美公司 一种五电平整流变换器

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006223009A (ja) * 2005-02-08 2006-08-24 Fuji Electric Holdings Co Ltd 5レベルインバータとその駆動方法
CN101728961A (zh) * 2009-12-09 2010-06-09 艾默生网络能源有限公司 一种ac/dc变换器
CN102082520A (zh) * 2011-01-27 2011-06-01 艾默生网络能源系统北美公司 一种五电平整流变换器

Also Published As

Publication number Publication date
CN102082520A (zh) 2011-06-01

Similar Documents

Publication Publication Date Title
WO2012100743A1 (zh) 一种五电平整流变换器
CN111030440B (zh) 基于混合h桥的单相两管五电平整流器
CN112910244B (zh) 一种混合桥臂单相三电平功率因数校正电路
CN109639160B (zh) 基于软开关技术的新型单向三相三电平整流器
CN110880864B (zh) 基于混合h桥的单相五电平功率因数校正电路
CN111416535B (zh) 一种三模态混合单相五电平整流器
CN110572069B (zh) 一种双向dc-ac变换器
CN107888096B (zh) 一种三相两桥臂三电平混合整流器
WO2012041020A1 (zh) 单相五电平功率变换器
CN112865567B (zh) 一种异构二极管钳位式的三电平整流器
WO2018036315A1 (zh) 谐振变换器及电流处理方法
AU2015265242A1 (en) Power conversion device and three-phase AC power supply device
WO2017028776A1 (zh) 高电压增益的五电平逆变器拓扑电路
CN108667321A (zh) 混合四电平整流器
AU2018287788A1 (en) Improved power supply having four quadrant converter and techniques for operation
CN102403922A (zh) Dc/ac并网逆变电路及功率因数调节方法
WO2013135050A1 (zh) 三电平逆变器
CN212811585U (zh) 一种能量双向流动型ac-dc变换器
CN107888090B (zh) 一种非三相桥臂对称结构的混合三相整流器
CN113489361A (zh) 一种混合型三相四电平有源中点箝位变换器及其多步软开关spwm控制方法
CN112865508A (zh) 一种非对称新型t型桥的单相三电平功率因数校正电路
CN112701905A (zh) 基于伪图腾柱结构的单相三电平功率因数校正电路
CN115642826B (zh) 双向裂相逆变电路和双向裂相逆变器
CN219918730U (zh) 一种主功率电路及中频交流镀膜电源
CN115603563B (zh) 功率因数校正电路和电源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12739949

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12739949

Country of ref document: EP

Kind code of ref document: A1