WO2012099029A1 - 超電導線材の接続構造体およびその製造方法 - Google Patents

超電導線材の接続構造体およびその製造方法 Download PDF

Info

Publication number
WO2012099029A1
WO2012099029A1 PCT/JP2012/050644 JP2012050644W WO2012099029A1 WO 2012099029 A1 WO2012099029 A1 WO 2012099029A1 JP 2012050644 W JP2012050644 W JP 2012050644W WO 2012099029 A1 WO2012099029 A1 WO 2012099029A1
Authority
WO
WIPO (PCT)
Prior art keywords
superconducting
connection structure
filament
superconducting wire
wire
Prior art date
Application number
PCT/JP2012/050644
Other languages
English (en)
French (fr)
Inventor
一宗 児玉
和久田 毅
Original Assignee
株式会社日立メディコ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立メディコ filed Critical 株式会社日立メディコ
Publication of WO2012099029A1 publication Critical patent/WO2012099029A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C9/00Alloys based on copper
    • C22C9/06Alloys based on copper with nickel or cobalt as the next major constituent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01RELECTRICALLY-CONDUCTIVE CONNECTIONS; STRUCTURAL ASSOCIATIONS OF A PLURALITY OF MUTUALLY-INSULATED ELECTRICAL CONNECTING ELEMENTS; COUPLING DEVICES; CURRENT COLLECTORS
    • H01R4/00Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation
    • H01R4/58Electrically-conductive connections between two or more conductive members in direct contact, i.e. touching one another; Means for effecting or maintaining such contact; Electrically-conductive connections having two or more spaced connecting locations for conductors and using contact members penetrating insulation characterised by the form or material of the contacting members
    • H01R4/68Connections to or between superconductive connectors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/20Permanent superconducting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N60/00Superconducting devices
    • H10N60/80Constructional details

Definitions

  • the present invention relates to an electrical connection between superconducting wires, and more particularly to a connection structure having high quench resistance used for an AC conducting superconducting device and a permanent current switch, and a method for manufacturing the same.
  • the technology for electrically connecting superconducting wires is one of important technologies for applying superconducting wires.
  • the simplest connection method is a method in which superconducting wires are overlapped with each other with a sufficient length and soldered (referred to as a solder connection method).
  • a solder connection method since a superconducting wire generally has a structure in which a number of superconducting filaments made of a superconductor are covered with a base material (for example, copper, aluminum, etc.), one of the superconducting filaments is connected by a solder connection method.
  • the current that has flowed from the current flows into the other superconducting filament via the base material, solder, and base material. That is, the connection resistance in the solder connection method includes the electrical resistance between the base material and the solder.
  • the connection resistance is about 10 ⁇ 9 ⁇ .
  • Typical products using a superconducting wire and a superconducting magnet are a nuclear magnetic resonance analyzer (NMR) and a nuclear magnetic resonance imaging device (MRI), which are widely used in the biotechnology field and the medical field. These devices are normally operated in a permanent current mode, and a very small magnetic field attenuation rate of 0.1 ppm / h or less is required in the magnetic field accuracy.
  • connection with a low connection resistance of at least 10 ⁇ 12 ⁇ or less is an essential technique.
  • the superconducting filament is exposed by removing the base material at the connection portion between the superconducting wires to be connected, and then the exposed superconducting filaments are overlapped and inserted into a metal pipe.
  • a method of crimping and connecting the superconducting wire filaments by pressurizing and crushing the metal pipe (referred to as a caulking connection method) has been reported (for example, see Patent Document 1 and Non-Patent Document 1).
  • a caulking connection method since the superconducting wire filaments to be connected are in direct contact without passing through a normal conductor such as a base material or solder, a connection resistance of 10 ⁇ 13 ⁇ or less can be realized. For this reason, the caulking connection method is often applied to a superconducting connection part in a superconducting magnet of NMR or MRI which has a strict requirement for connection resistance.
  • Patent Document 2 discloses a superconducting connection structure that is a kind of caulking connection method, in which superconducting powder containing magnesium diboride is interposed between the superconducting wire filaments to be connected. According to Patent Document 2, it is said that connection with a low electric resistance is possible even if the superconducting wire connection portion is arranged in a high magnetic field.
  • the superconducting connection portion to which the caulking connection method is applied is a portion where quenching is particularly likely to occur compared to other portions.
  • One of the causes is considered that the base material is removed for connection.
  • the base material has a role of enlarging the heat capacity of the superconducting wire to suppress the temperature rise due to disturbance and promoting the diffusion of the generated heat.
  • the caulking connection method removes this for connection, it is considered that the quench resistance is reduced.
  • the quench resistance is not always sufficient.
  • a base material of a normal superconducting wire eg, oxygen-free copper
  • a superconducting wire using a base material for example, a copper-nickel alloy
  • metals with high electrical resistivity have low thermal conductivity
  • these superconducting wires tend to be less resistant to quenching than ordinary superconducting wires, even when the base material is attached.
  • a highly durable connection method and connection structure have been highly desired.
  • an object of the present invention is to provide a connection structure having both a low connection resistance and a high quench resistance in an electrical connection between superconducting wires used for an alternating current superconducting device and a permanent current switch, and a method for manufacturing the same. There is.
  • connection structure that electrically connects a first superconducting multicore wire and a second superconducting multicore wire having a structure in which a plurality of superconducting filaments are covered with a base material. Because At least one of the first and second superconducting multicore wires is a superconducting wire for alternating current conduction or a permanent current switch, The first superconducting filament tip region exposed by removing the base material of the first superconducting multicore wire, and the second superconducting filament exposed by removing the base material of the second superconducting multicore wire.
  • the tip region constitutes a joint part that is caulked and connected,
  • the remaining area of the exposed first superconducting filament and the remaining area of the exposed second superconducting filament constitute a bypass portion connected via a covering member;
  • the covering member provides a connection structure for a superconducting wire made of a metal material having an electric resistivity lower than that of the base material of the superconducting wire for the alternating current conduction or the permanent current switch under the operating environment of the connection structure.
  • the present invention can be improved or changed as follows in the above-described aspect (I).
  • the superconducting filament of the superconducting wire for the AC energization or the permanent current switch is a niobium titanium alloy
  • the base material of the superconducting wire is one of a copper nickel alloy, a copper manganese alloy, or a copper manganese nickel alloy
  • the covering member is any one of copper, aluminum, indium, tin, bismuth, and alloys composed of these elements.
  • an outer layer member different from the covering member is further disposed on an outer periphery of the covering member, and the outer layer member is used for the AC energization or permanent in the operating environment of the connection structure.
  • the outer layer member is any one of copper, aluminum, indium, tin, bismuth, and an alloy composed of these elements.
  • an intermediate layer different from the covering member is further disposed between the first superconducting filament and the covering member and between the second superconducting filament and the covering member.
  • the intermediate layer is made of a metal material having an electrical resistivity lower than that of the base material of the superconducting wire for the AC energization or permanent current switch in the operating environment of the connection structure.
  • the intermediate layer is any one of copper, aluminum, indium, tin, bismuth, and alloys composed of these elements.
  • An intervening superconductor is provided in contact between the first superconducting filament and the second superconducting filament in the joint portion, and the intervening superconductor is operated under the operating environment of the connection structure. The critical current density is lower than that of the first and second superconducting filaments.
  • the intervening superconductor is plate-shaped, the first superconducting filament is electrically connected to one main surface of the intervening superconductor, and the second main surface of the intervening superconductor is the second main surface. A superconducting filament is electrically connected.
  • a superconducting device comprising the connection structure of the superconducting wire.
  • Ix A nuclear magnetic resonance analyzer or a nuclear magnetic resonance imaging apparatus comprising the above-described superconducting wire connecting structure.
  • Another aspect of the present invention is to electrically connect a first superconducting multicore wire and a second superconducting multicore wire having a structure in which a plurality of niobium titanium alloy filaments are covered with a base material.
  • a method of manufacturing a connection structure At least one of the first and second superconducting multicore wires is a superconducting wire for alternating current conduction or a permanent current switch,
  • a joint part forming step to be formed Under the operating environment of the connection structure, a covering member made of a metal material having a lower electrical resistivity than the base material of the superconducting wire for the alternating current conduction or the permanent current switch is left behind the exposed first superconducting filament. And a bypass part forming step of forming a bypass part by covering and integrating with the exposed area and the remaining area of the exposed second superconducting filament.
  • the present invention can be improved or changed as follows.
  • connection structure which has low connection resistance and high quench tolerance, and its manufacturing method are provided. it can.
  • FIG. 1 is a schematic perspective view showing an example of a superconducting wire connecting structure according to the present invention and a schematic cross-sectional view of a bypass portion. It is an equivalent circuit which shows the connection structure of the superconducting wire which concerns on this invention. It is the perspective schematic diagram which shows another example of the connection structure of the superconducting wire which concerns on this invention, and the cross-sectional schematic diagram of a bypass part. It is the perspective schematic diagram which shows another example of the connection structure of the superconducting wire which concerns on this invention, and the cross-sectional schematic diagram of a bypass part.
  • FIG. 1 is a schematic perspective view showing an example of a conventional connection structure between superconducting wires by caulking connection.
  • the conventional connection structure 14 by caulking is connected to the superconducting filament 6 (first superconducting filament 61, second superconductor filament 61, and second superconductor filament) exposed by removing the base materials of the two superconducting multicore wires 4 respectively.
  • the superconducting filament 62) is inserted into a metal pipe (for example, an oxygen-free copper pipe 15 '), and the metal pipe is pressed and deformed so that the superconducting filaments 6 are joined by pressure bonding. Since the superconducting filaments 6 are directly joined to the joint portion 1, a very low connection resistance of 10 ⁇ 13 ⁇ or less can be obtained.
  • the superconducting multi-core wire 4 near the joint 1 is often fixed with the solder 16 for the purpose of mechanical protection near the joint 1 and suppression of wire movement.
  • the superconducting filament 6 and the solder 16 are not so good in wettability, so that the solder is fixed mainly in a region where the base material is coated (a region where the base material is not removed).
  • both the base materials of the superconducting multi-core wire 4 are made of a material having a low electrical resistivity such as oxygen-free copper
  • a normal conduction region quenching bud
  • the solder The effect that the fixed portion functions as a solder connection and suppresses the expansion of quenching (that is, the effect of improving quench resistance) can be expected.
  • a base material having a high electrical resistivity for example, a copper nickel alloy, a copper manganese alloy, etc.
  • the conventional connection structure 14 is extremely weak in quench resistance.
  • FIG. 2 is a schematic perspective view showing an example of a superconducting wire connecting structure according to the present invention and a schematic cross-sectional view of a bypass portion.
  • the superconducting wire connecting structure 11 according to the present invention at least one of the two superconducting multicore wires 4 (the first superconducting multicore wire 41 and the second superconducting multicore wire 42) is for AC energization or A superconducting wire for a permanent current switch, and the tip region of the superconducting filament 6 exposed by removing the base materials of the two superconducting multicore wires 4 is in a metal pipe 15 (for example, an oxygen-free copper pipe 15 ′).
  • a metal pipe 15 for example, an oxygen-free copper pipe 15 ′
  • the joint portion 1 is inserted, the metal pipe 15 is pressed and deformed, and the superconducting filaments 6 are joined by pressure bonding.
  • a bypass portion 2 connected via a coating material 5 is formed in the remaining region of the exposed superconducting filament 6.
  • the coating material 5 is a metal material (for example, copper, aluminum, indium, etc.) having an electrical resistivity lower than that of the base material of the superconducting wire for alternating current or permanent current switch under the operating environment of the connection structure 11. Tin, bismuth, or an alloy composed of these elements).
  • the superconducting filament 6 (first superconducting filament 6 (first superconducting multicore wire 41, first superconducting multicore wire 41, second superconducting multicore wire 42) is dissolved in nitric acid or the like in the region to be connected.
  • the first superconducting filament 61 and the second superconducting filament 62) are exposed (filament exposing step).
  • the exposed tip region of the superconducting filament 6 is inserted into the metal pipe 15, and the first superconducting filament 61 and the second superconducting filament 62 are connected by a caulking connection method to form the joint portion 1 ( Joint part forming step).
  • (3) The remaining region of the exposed superconducting filament 6 is covered with the covering member 5 to form the bypass portion 2 in which the covering member 5 and the superconducting filament 6 are integrated (bypass portion forming step). More specifically, after covering the outer periphery of the bundle of the remaining region of the exposed superconducting filament 6 with a coating material 5 made of tin, indium, bismuth, or an alloy thereof, a copper or aluminum pipe is applied to the outer periphery.
  • the pipe is deformed by pressure so that the coating material 5 is sufficiently integrated into the gap between the superconducting filaments 6 and integrated.
  • the pipe used for the integration may or may not be removed.
  • FIG. 3 is an equivalent circuit showing a superconducting wire connecting structure according to the present invention.
  • the resistance of the joint portion 1 is denoted as R j
  • the resistance of the bypass portion 2 is denoted as R b
  • the inductance of the connection structure loop 3 composed of the joint portion 1 and the bypass portion 2 is represented by Denote as L j .
  • the inductance of the superconducting coil connected to the two superconducting multicore wires 4 (the first superconducting multicore wire 41 and the second superconducting multicore wire 42) is L c (generally about 10 to 100H).
  • L c generally about 10 to 100H
  • the magnetic field decay rate in the superconducting magnet by the above process will be described.
  • the superconducting wire connecting structure 11 uses a metallic material having a lower electrical resistivity than the base material of the superconducting wire for AC conduction or permanent current switch as the covering member 5, the bypass portion 2.
  • the resistance Rb can be reduced. Therefore, Joule heat generation can be suppressed even when the current is transferred to the bypass unit 2.
  • the bypass part 2 since each superconducting filament 6 is covered with the coating
  • L c is about 10 to 100H
  • L j can be reduced to about 10 ⁇ 9 H if the joint portion 1 and the bypass portion 2 are sufficiently close to each other. Therefore, when approximated from Equation 1, the magnetic field attenuation rate ⁇ B / B by one cycle of steps (a) to (d) is only about 1 ppb. This is a level that does not cause a problem in the operation of the NMR analyzer and the MRI apparatus.
  • connection structure of the superconducting wire according to the present invention is prevented from expanding even if a normal conduction region is generated in the joint part produced by the caulking connection method, and the central magnetic flux of the superconducting magnet operated in the permanent current mode. There is an effect that the attenuation of the density is suppressed to a minute amount.
  • the superconducting wire connecting structure according to the present invention is suitable for use in superconducting equipment such as an NMR analyzer and an MRI apparatus.
  • FIG. 4 is a perspective schematic view showing another example of a superconducting wire connection structure according to the present invention and a cross-sectional schematic view of a bypass portion.
  • the connecting structure 12 according to the second embodiment is the first in that the outer layer member 7 different from the covering member 5 is disposed on the outer periphery of the covering member 5 in the bypass portion 2. It differs from the connection structure 11 which concerns on 1 embodiment.
  • the outer layer member 7 is made of a metal material having a higher thermal conductivity than the base material of the superconducting wire for alternating current or permanent current switch under the operating environment of the connection structure, for example, copper, aluminum, indium, tin, Bismuth or an alloy composed of these elements is preferably used.
  • connection structure 12 according to the second embodiment has the bypass portion 2 by disposing the outer layer member 7 on the outer periphery of the covering member 5. Therefore, the temperature rise when the current is transferred to the bypass unit 2 is suppressed. Thereby, there is an effect that quenching of the bypass unit 2 is further prevented.
  • FIG. 5 is a schematic perspective view showing another example of the superconducting wire connecting structure according to the present invention and a schematic cross-sectional view of the bypass portion.
  • an intermediate layer 8 different from the covering member 5 is disposed between the covering member 5 and the superconducting filament 6 in the bypass portion 2. It differs from the connection structure 11 according to the first embodiment only in that there are.
  • the intermediate layer 8 is made of a metal material having an electric resistivity lower than that of the base material of the superconducting wire for AC current supply or permanent current switch in the operating environment of the connection structure, for example, copper, aluminum, indium, tin, Bismuth or an alloy composed of these elements is preferably used.
  • connection structure 13 in addition to the same effects as those of the connection structure 11 according to the first embodiment, the intermediate layer 8 is disposed between the coating material 5 and the superconducting filament 6.
  • the adhesiveness between the coating material 5 and the superconducting filament 6 is increased, so that the resistance Rb of the bypass portion 2 can be further reduced.
  • vapor phase film-forming methods such as vapor deposition, are used suitably, for example.
  • FIG. 6 is a schematic cross-sectional view showing a modification of the joint portion of the connection structure of the superconducting wire according to the present invention.
  • the joint portion 1 ′ according to the fourth embodiment is provided with a plate-shaped intercalating superconductor 17 in contact between the first superconducting filament 61 and the second superconducting filament 62. It has been.
  • the intervening superconductor 17 has a lower critical current density than the first superconducting filament 61 and the second superconducting filament 62 under the operating environment of the connection structure.
  • the superconducting wire is generally designed so that the critical current has a certain margin at the maximum empirical magnetic field in the use environment (or the device (eg, superconducting coil) is designed so as to do so).
  • the connection structure between the superconducting wires is usually installed in a low magnetic field region from the viewpoint of spatial restriction of the installation location and superconducting stability. Therefore, in the low magnetic field region where the connection structure is installed, the superconducting filament in the connection structure has an excessive critical current with respect to the operating current, and only a part of the poles among the many superconducting filaments is used.
  • the intervening superconductor 17 having a lower critical current density than the superconducting filament is disposed between the first and second superconducting filaments 61 and 62. Therefore, the transport current is prevented from drifting to a part of the pole of the superconducting filament 6 due to the limitation of the critical current density of the intervening superconductor 17, and the current distribution approaches an even current distribution. As a result, there is an effect that it is possible to suppress large Joule heat due to excessive drift in the transport current and to suppress the occurrence of quenching in the joint portion. Needless to say, the fourth embodiment can be combined with any of the first to third embodiments described above.
  • FIG. 7 is a schematic diagram showing a sample shape for measuring the current-carrying characteristics of the superconducting wire connecting structure.
  • the measurement sample is composed of two superconducting multicore wires 4.
  • the material of the superconducting filament 6 is a niobium titanium alloy, and the material of the base material is oxygen-free copper.
  • the material of the superconducting filament 6 is a niobium titanium alloy, and the material of the base material is a copper nickel alloy (Cu-10 mass% Ni).
  • the first superconducting multicore wire 41 formed a loop part in the middle, and the second superconducting multicore wire 42 remained straight.
  • connection structure was formed at two locations opposite to each other across the loop portion, and the first superconducting multicore wire 41 and the second superconducting multicore wire 42 were connected.
  • the first superconducting multicore wire 41 and the second superconducting multicore wire 42 have the same configuration except for the material of the base material.
  • a conventional connection structure 14 (see FIG. 1) was produced in the following procedure.
  • Each of the first and second superconducting multi-core wires 41 and 42 was immersed in nitric acid at both end portions 35 mm to dissolve the base material to expose the superconducting filament.
  • the exposed first and second superconducting filaments 61 and 62 were overlapped and inserted into an oxygen-free copper pipe 15 '(thickness 5 mm, length 25 mm).
  • the oxygen-free copper pipe 15 ' was uniaxially pressed and crushed to form a joint portion 1 in which two superconducting filaments 61 and 62 were integrated (crimped) in the oxygen-free copper pipe 15'.
  • the base materials of the two superconducting multi-core wires 41 and 42 were fixed with solder 16 at a length of 25 mm from the boundary from which the base material was removed.
  • FIG. 8 is a schematic perspective view showing the first embodiment according to the present invention and a schematic cross-sectional view of the bypass portion.
  • 50 mm at both ends of the first and second superconducting multicore wires 41 and 42 were immersed in nitric acid to dissolve the base material, thereby exposing the superconducting filament.
  • the exposed first and second superconducting filaments 61 and 62 are overlapped, and the tip region of the exposed superconducting filament (region having a distance from the tip of 0 to 25 mm) is an oxygen-free copper pipe 15 ′ (thickness 5 mm, (Length 25 mm).
  • the oxygen-free copper pipe 15 ' was uniaxially pressed and crushed to form a joint portion 1 in which two superconducting filaments 61 and 62 were integrated (crimped) in the oxygen-free copper pipe 15'.
  • an indium sheet was wound as a covering member 5 'around the remaining regions of the exposed first and second superconducting filaments 61 and 62 (regions having a distance from the tip of 25 to 50 mm).
  • An oxygen-free copper pipe 15 ′′ (thickness 5 mm, length 25 mm) previously inserted was covered on the outer periphery of the wound indium sheet. Thereafter, the indium covering member 5 ′ sufficiently entered the gaps between the superconducting filaments 6. Thus, the oxygen-free copper pipe 15 ′′ was uniaxially pressurized and crushed to form the bypass portion 2.
  • FIG. 9 is a schematic diagram showing a test system for measuring the current-carrying characteristics of the superconducting wire connection structure.
  • a test system including an induction coil 21, a sample heater 22, and a hall element 23 is assembled in the cryostat 20, and the measurement sample is set so that the loop portion of the measurement sample enters the region of the induction coil 21.
  • the cryostat 20 was filled with liquid helium, and the measurement sample was energized by the following procedure.
  • the sample heater 22 was heated, and the superconductivity of a part of the measurement sample (part of the superconducting multicore wire 4) was lost.
  • the induction coil 21 was energized, and a magnetic flux was generated so as to penetrate the loop portion of the measurement sample.
  • a current is supplied to the superconducting multi-core wire 4 so that the magnetic flux in the loop portion of the measurement sample is preserved. Flows. At this time, the center magnetic flux density of the loop portion was measured by the Hall element 23, and the change with time was recorded.
  • FIG. 10 is a chart showing an example of the result of energization characteristics of Comparative Example 1 (change in captured magnetic flux over time). As shown in FIG. 10, a discontinuous decrease in the central magnetic flux density suddenly occurred after about 300 seconds from the start of measurement. This was thought to be because quenching occurred in the conventional connection structure 14 and the magnetic energy held in the measurement sample disappeared as Joule heat. The magnetic field decay rate at this time was about 90%.
  • FIG. 11 is a chart showing an example of the result of energization characteristics of Example 1 (change in captured magnetic flux over time). As shown in FIG. 11, a discontinuous decrease in the center magnetic flux density suddenly occurred after about 1500 seconds from the start of measurement. This was also thought to be due to the occurrence of quenching in the connection structure 12 ′ according to the second embodiment. However, the magnetic field attenuation rate at this time was only about 1%. In addition, it confirmed separately that the same result was obtained also in the connection structure which concerns on other embodiment.
  • the superconducting wire connecting structure according to the present invention is prevented from expanding even if a normal conducting region (quenching bud) occurs in the joint portion 1, and the magnetic field of the superconducting magnet operated in the permanent current mode.
  • the effect that the attenuation rate can be suppressed to the minimum was demonstrated. That is, it can be said that it has both low connection resistance and high quench resistance. Therefore, the superconducting wire connecting structure according to the present invention is applied to superconducting equipment such as NMR analyzers and MRI apparatuses, large superconducting magnets, power storage devices, magnetic separation devices, superconducting generators, and fusion reactor magnets. Applicable.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Containers, Films, And Cooling For Superconductive Devices (AREA)

Abstract

低い接続抵抗と高いクエンチ耐性とを兼ね備えるため、複数の超電導フィラメントが安定化材に覆われた構造を有する第1の超電導多芯線材と第2の超電導多芯線材とを電気的に接続する接続構造体において、第1および第2の超電導多芯線材のうちの少なくとも一方は、交流通電用または永久電流スイッチ用の超電導線材であり、第1の超電導多芯線材の母材が除去されて露出した第1の超電導フィラメントの先端領域と、第2の超電導多芯線材の母材が除去されて露出した第2の超電導フィラメントの先端領域とは、かしめ接続されたジョイント部を構成し、露出した第1の超電導フィラメントの残りの領域と、露出した第2の超電導フィラメントの残りの領域とは、被覆部材を介して接続されたバイパス部を構成し、被覆部材は、接続構造体の運転環境下において、交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料からなる。

Description

超電導線材の接続構造体およびその製造方法
 本発明は、超電導線材同士の電気的な接続に関し、特に交流通電の超電導機器や永久電流スイッチに用いられ高いクエンチ耐性を有する接続構造体およびその製造方法に関するものである。
 超電導線材同士を電気的に接続する技術は、超電導線材を応用するにあたっての重要な技術のうちの1つである。最も簡便に接続する方法は、超電導線材同士を十分な長さでオーバーラップさせてはんだ付けする方法である(はんだ接続法と称する)。ここで、超電導線材は、一般に、超電導体からなる多数の超電導フィラメントが母材(例えば、銅やアルミニウムなど)に覆われた構造をしているため、はんだ接続法による接続では、一方の超電導フィラメントから流れてきた電流が、母材、はんだ、母材を経由して他方の超電導フィラメントへと流れ込むことになる。すなわち、はんだ接続法における接続抵抗は母材とはんだとの電気抵抗を含み、その結果、数メートル長さで超電導線材同士をオーバーラップさせた場合でも10-9Ω程度の接続抵抗となる。
 超電導線材およびそれによる超電導磁石を利用した代表的な製品として核磁気共鳴分析装置(NMR)や核磁気共鳴画像装置(MRI)があり、バイオテクノロジー分野や医療分野で広く利用されている。これらの装置は、通常、永久電流モードで運転され、磁場精度において0.1ppm/h以下という極めて小さな磁場減衰率が要求されている。そして、永久電流モードや該磁場減衰率を達成するためには、少なくとも10-12Ω以下の低い接続抵抗での接続(いわゆる超電導接続)が必須の技術となる。
 そのような低い接続抵抗を達成する方法として、接続する超電導線材同士の接続予定部で母材を除去して超電導フィラメントを露出させ、その後、露出させた超電導フィラメント同士を重ね合わせて金属パイプに挿入し該金属パイプを加圧して潰すことで相互の超電導線フィラメントを圧着接続する方法(かしめ接続法と称する)が報告されている(例えば、特許文献1や非特許文献1参照)。かしめ接続法では、接続する相互の超電導線フィラメントが母材やはんだ等の常電導体を介さずに直接接触しているため、10-13Ω以下の接続抵抗を実現できる。このため、かしめ接続法は、接続抵抗に厳しい要求のあるNMRやMRIの超電導磁石における超電導接続部にもしばしば適用されている。
 また、特許文献2には、かしめ接続法の一種であり、接続する相互の超電導線フィラメント間に二硼化マグネシウムを含む超電導粉末を接触介在させる超電導接続構造が開示されている。特許文献2によると、超電導線接続部が高磁場中に配置されていても低い電気抵抗での接続が可能であるとされている。
特開平4-319280号公報 特開2003-022719号公報
下畑賢司,山本俊二,中村史朗,川口武男:「NbTi超電導線の超電導接続」,低温工学 Vol.30 pp.70-75
 超電導線材や超電導磁石に通電したとき、定格電流よりも低い電流値で超電導性が突然消失するクエンチと呼ばれる現象が発生することがある。クエンチの発生は、超電導線材を用いた製品の運転安定性・信頼性に係わる問題であり、クエンチの防止は、超電導製品における最重要課題のうちの1つである。
 かしめ接続法を適用した超電導接続部(例えば、特許文献1や非特許文献1参照)は、それ以外の部分と比較してクエンチが特に発生しやすい箇所である。その原因の1つは、接続のために母材を除去したためと考えられる。母材は、超電導線材の熱容量を大きくして擾乱による温度上昇を抑制するとともに、発生した熱の拡散を促す役割がある。しかしながら、かしめ接続法は接続のためにこれを除去することから、クエンチ耐性を低下させることつながったと考えられる。また、特許文献2に記載の超電導接続構造においても、クエンチ耐性が必ずしも十分とは言えなかった。
 一方、交流通電する超電導機器に用いられる超電導線材や、永久電流モードで運転する超電導機器に必須な永久電流スイッチに用いられる超電導線材などにおいては、通常の超電導線材の母材(例えば無酸素銅)よりも電気抵抗率が高い母材(例えば銅ニッケル合金)を用いた超電導線材が通常使用されるため、はんだ接続法の適用は不適当と考えられる。さらに、電気抵抗率が高い金属は熱伝導率が低いことから、これらの超電導線材では、母材が付いている状態であっても通常の超電導線材よりもクエンチ耐性が低下する傾向があり、クエンチ耐性の高い接続方法および接続構造体が強く望まれていた。
 従って、本発明の目的は、交流通電の超電導機器や永久電流スイッチに用いられる超電導線材同士の電気的接続において、低い接続抵抗と高いクエンチ耐性とを兼ね備えた接続構造体およびその製造方法を提供することにある。
 (I)本発明の1つの態様は、複数の超電導フィラメントが母材に覆われた構造を有する第1の超電導多芯線材と第2の超電導多芯線材とを電気的に接続する接続構造体であって、
前記第1および第2の超電導多芯線材のうちの少なくとも一方は、交流通電用または永久電流スイッチ用の超電導線材であり、
前記第1の超電導多芯線材の母材が除去されて露出した第1の超電導フィラメントの先端領域と、前記第2の超電導多芯線材の母材が除去されて露出した第2の超電導フィラメントの先端領域とは、かしめ接続されたジョイント部を構成し、
前記露出した第1の超電導フィラメントの残りの領域と、前記露出した第2の超電導フィラメントの残りの領域とは、被覆部材を介して接続されたバイパス部を構成し、
前記被覆部材は、前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料からなる超電導線材の接続構造体を提供する。
 本発明は、上記の態様(I)において、以下のような改良や変更を加えることができる。
(i)前記交流通電用または永久電流スイッチ用の超電導線材の超電導フィラメントがニオブチタン合金であり、該超電導線材の母材が銅ニッケル合金、銅マンガン合金、または銅マンガンニッケル合金のいずれかであり、前記被覆部材が銅、アルミニウム、インジウム、スズ、ビスマス、およびこれらの元素から構成される合金のいずれかである。
(ii)前記バイパス部は、前記被覆部材の外周に前記被覆部材と異なる外層部材が更に配設されており、前記外層部材は、前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも熱伝導率が高い金属材料からなる。
(iii)前記外層部材が銅、アルミニウム、インジウム、スズ、ビスマス、およびこれらの元素から構成される合金のいずれかである。
(iv)前記バイパス部は、前記第1の超電導フィラメントと前記被覆部材との間、および前記第2の超電導フィラメントと前記被覆部材との間に前記被覆部材と異なる中間層が更に配設されており、前記中間層は、前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料からなる。
(v)前記中間層が銅、アルミニウム、インジウム、スズ、ビスマス、およびこれらの元素から構成される合金のいずれかである。
(vi)前記ジョイント部における前記第1の超電導フィラメントと前記第2の超電導フィラメントとの間に介在超電導体が当接して設けられ、前記介在超電導体は、前記接続構造体の運転環境下において、前記第1および第2の超電導フィラメントよりも低い臨界電流密度を有している。
(vii)前記介在超電導体はプレート形状であり、前記介在超電導体の一方の主表面に前記第1の超電導フィラメントが電気的に接続され、前記介在超電導体の他方の主表面に前記第2の超電導フィラメントが電気的に接続されている。
(viii)上記の超電導線材の接続構造体を具備する超電導機器である。
(ix)上記の超電導線材の接続構造体を具備する核磁気共鳴分析装置または核磁気共鳴画像装置である。
 (II)本発明の他の1つの態様は、複数のニオブチタン合金フィラメントが母材に覆われた構造を有する第1の超電導多芯線材と第2の超電導多芯線材とを電気的に接続する接続構造体の製造方法であって、
前記第1および第2の超電導多芯線材のうちの少なくとも一方は、交流通電用または永久電流スイッチ用の超電導線材であり、
前記第1および第2の超電導多芯線材における接続予定領域の前記母材を除去して第1および第2のニオブチタン合金フィラメントを露出させるフィラメント露出工程と、
前記露出した第1および第2のニオブチタン合金フィラメントの先端領域を金属パイプ内に挿入し、前記金属パイプを押圧変形することによって前記第1および第2のニオブチタン合金フィラメント同士を圧着してジョイント部を形成するジョイント部形成工程と、
前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料である被覆部材を、前記露出した第1の超電導フィラメントの残りの領域と、前記露出した第2の超電導フィラメントの残りの領域とに被覆・一体化してバイパス部を形成するバイパス部形成工程とを有する超電導線材の接続構造体の製造方法を提供する。
 本発明は、上記の態様(II)において、以下のような改良や変更を加えることができる。
(x)前記バイパス部形成工程の後に、前記被覆部材の外周に前記被覆部材と異なる金属材料からなる外層パイプを被せ、前記外層パイプを押圧することによって前記被覆部材と一体化した外層部材を形成する外層部材配設工程を更に有する。
 本発明によれば、交流通電の超電導機器や永久電流スイッチに用いられる超電導線材同士の電気的接続において、低い接続抵抗と高いクエンチ耐性とを兼ね備えた接続構造体およびその製造方法を提供することができる。
かしめ接続による超電導線材同士の従来の接続構造体の1例を示す斜視模式図である。 本発明に係る超電導線材の接続構造体の1例を示す斜視模式図とバイパス部の断面模式図である。 本発明に係る超電導線材の接続構造体を示す等価回路である。 本発明に係る超電導線材の接続構造体の他の1例を示す斜視模式図とバイパス部の断面模式図である。 本発明に係る超電導線材の接続構造体の他の1例を示す斜視模式図とバイパス部の断面模式図である。 本発明に係る超電導線材の接続構造体のジョイント部の変形例を示す断面模式図である。 超電導線材の接続構造体の通電特性を測定するためのサンプル形状を示す模式図である。 本発明に係る実施例1を示す斜視模式図とバイパス部の断面模式図である。 超電導線材の接続構造体の通電特性を測定するための試験系を示す模式図である。 比較例1の通電特性の結果(捕捉した磁束の時間変化)の1例を示すチャートである。 実施例1の通電特性の結果(捕捉した磁束の時間変化)の1例を示すチャートである。
 以下、本発明に係る実施形態について、図面を参照しながら詳細に説明する。ただし、本発明はここで取り上げた実施形態に限定されることはなく、要旨を変更しない範囲で適宜組み合わせや改良が可能である。
 (本発明の第1の実施形態)
 はじめに、従来の接続構造体について説明する。図1は、かしめ接続による超電導線材同士の従来の接続構造体の1例を示す斜視模式図である。
 図1に示したように、かしめ接続による従来の接続構造体14は、2本の超電導多芯線材4の母材がそれぞれ除去されて露出した超電導フィラメント6(第1の超電導フィラメント61、第2の超電導フィラメント62)が金属パイプ(例えば、無酸素銅パイプ15’)内に挿入され、該金属パイプが押圧変形されて超電導フィラメント6同士が圧着接合されたジョイント部1を有している。ジョイント部1は、超電導フィラメント6同士が直接接合していることから、10-13Ω以下の非常に低い接続抵抗が得られる。
 また、従来の接続構造体14では、ジョイント部1近傍の機械的保護やワイヤームーブメントの抑制を目的として、しばしばジョイント部1近傍の超電導多芯線材4がはんだ16で固定される。なお、一般的に、超電導フィラメント6とはんだ16とは濡れ性があまり良くないことから、はんだ固定は主に母材が被覆されている領域(母材が除去されていない領域)で行われる。
 ここで、超電導多芯線材4の母材が共に無酸素銅のような電気抵抗率の低い材料からなる場合には、ジョイント部1で常電導領域(クエンチの芽)が生じた際に、はんだ固定部分がはんだ接続として機能してクエンチの拡大を抑制する効果(すなわち、クエンチ耐性が向上する効果)が期待できる。しかしながら、前述したように、交流通電用や永久電流スイッチ用の超電導線材においては、超電導フィラメント間の電気的結合を抑制するために電気抵抗率が高い母材(例えば、銅ニッケル合金、銅マンガン合金、または銅マンガンニッケル合金)を使用することから、従来の接続構造体14ではクエンチ耐性が極めて弱いことが、本発明者等の調査・研究で確認された(詳細は後述する)。
 図2は、本発明に係る超電導線材の接続構造体の1例を示す斜視模式図とバイパス部の断面模式図である。本発明に係る超電導線材の接続構造体11では、2本の超電導多芯線材4(第1の超電導多芯線材41、第2の超電導多芯線材42)のうちの少なくとも一方が交流通電用または永久電流スイッチ用の超電導線材であり、2本の超電導多芯線材4の母材がそれぞれ除去されて露出した超電導フィラメント6の先端領域が金属パイプ15(例えば、無酸素銅パイプ15’)内に挿入され、該金属パイプ15が押圧変形されて超電導フィラメント6同士が圧着接合されたジョイント部1を有している。また、図2に示したように、露出した超電導フィラメント6の残りの領域では、被覆材料5を介して接続されたバイパス部2が形成されている。このとき、被覆材料5は、接続構造体11の運転環境下において、交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料(例えば、銅、アルミニウム、インジウム、スズ、ビスマス、またはこれらの元素から構成される合金)からなる。
 (接続構造体の製造方法)
 本発明に係る超電導線材の接続構造体11の製造プロセスの1例は、次のようなものである。なお、言うまでもなく下記に限定されるものではない。
(1)2本の超電導多芯線材4(第1の超電導多芯線材41、第2の超電導多芯線材42)における接続予定領域の母材を硝酸などで溶解して、超電導フィラメント6(第1の超電導フィラメント61、第2の超電導フィラメント62)を露出させる(フィラメント露出工程)。
(2)露出させた超電導フィラメント6の先端領域を金属パイプ15内に挿入し、第1の超電導フィラメント61と第2の超電導フィラメント62とをかしめ接続法によって接続してジョイント部1を形成する(ジョイント部形成工程)。
(3)露出させた超電導フィラメント6の残りの領域に対して被覆部材5を被覆して、被覆部材5と超電導フィラメント6とが一体化したバイパス部2を形成する(バイパス部形成工程)。より具体的には、露出させた超電導フィラメント6の残りの領域の束の外周にスズ、インジウム、ビスマス、またはこれらの合金からなる被覆材料5を被せた後に、その外周に銅またはアルミニウムのパイプを被せ、該パイプを加圧変形させて被覆材料5が超電導フィラメント6間の隙間に十分入り込むようにして一体化する。なお、被覆部材5と超電導フィラメント6とを一体化した後、一体化に用いたパイプを除去してもよいし、除去しなくてもよい。
 (本発明の効果の考察)
 次に、本発明の効果について等価回路でモデル化して説明する。図3は、本発明に係る超電導線材の接続構造体を示す等価回路である。図3に示したように、ジョイント部1の抵抗をRと表記し、バイパス部2の抵抗をRと表記し、ジョイント部1とバイパス部2とからなる接続構造体ループ3のインダクタンスをLと表記する。また、2本の超電導多芯線材4(第1の超電導多芯線材41、第2の超電導多芯線材42)に接続される超電導コイルのインダクタンスをL(一般的には10~100H程度)とする。
 例えば、接続構造体11に接続された超電導コイル(超電導磁石)を永久電流モード運転で運転する場合を想定する。永久電流モードの定常時には「R<<R」であるため、電流はジョイント部1を流れる。ここで、ジョイント部1で常電導領域(クエンチの芽)が生じたとする。このとき、次のような過程に従う。
(a)ジョイント部1における常電導領域の発生に伴ってRが大きくなりRjNとなる(R<RjN)。
(b)「RjN>R」となると、ジョイント部1の電流はバイパス部2に移る(Rは、典型的には10-8~10-7Ωの程度である)。
(c)ジョイント部1におけるジュール発熱が収まり冷却されるため、ジョイント部1は超電導状態に復帰する(R<<R)。
(d)電流が再びジョイント部1に戻る。
 上記の過程による超電導磁石における磁場減衰率について説明する。電流がジョイント部1からバイパス部2に移動するのに掛る所要時間Δtj→bは「Δtj→b=L/RjN」であり、この間の磁場の減衰時定数τj→bは「τj→b=L/RjN」と表わされる。一方、電流がバイパス部2からジョイント部1に復帰するのに掛る所要時間Δtb→jは「Δtb→j=L/R」であり、この間の磁場の減衰時定数τb→jは「τb→j=L/R」と表わされる。したがって、超電導磁石の中心磁束密度は上記(a)~(d)の過程を経て、式1で与えられる割合で減衰する。なお、B:初期磁束密度、ΔB:(a)~(d)過程1サイクルの磁束密度変化量とする。
Figure JPOXMLDOC01-appb-M000001
 本発明に係る超電導線材の接続構造体11は、被覆部材5として交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率の低い金属材料を用いていることから、バイパス部2の抵抗Rを小さくすることができる。そのため、バイパス部2に電流が移ったときでもジュール発熱を抑制することができる。また、バイパス部2では、各超電導フィラメント6が熱伝導性に優れた被覆部材5で覆われているため、熱を速やかに逃すことができる。これらの効果によって、バイパス部2におけるクエンチを防止することができる。
 さらに、Lは前述したように10~100Hの程度であり、Lはジョイント部1とバイパス部2とを十分に近づければ10-9H程度まで小さくすることができる。よって、式1から概算すると、(a)~(d)過程1サイクルによる磁場減衰率ΔB/Bは、わずか1ppb程度である。これは、NMR分析装置やMRI装置の稼働上で問題とならないレベルである。
 以上のことから、本発明に係る超電導線材の接続構造体は、かしめ接続法で作製したジョイント部で常電導領域が発生してもその拡大が防止され、永久電流モード運転する超電導磁石の中心磁束密度の減衰が微小量に抑制されるという効果がある。言い換えると、本発明に係る超電導線材の接続構造体は、NMR分析装置やMRI装置などの超電導機器での使用に適していると言える。
 (本発明の第2の実施形態)
 図4は、本発明に係る超電導線材の接続構造体の他の1例を示す斜視模式図とバイパス部の断面模式図である。図4に示したように、第2の実施形態に係る接続構造体12は、バイパス部2において、被覆部材5と異なる外層部材7が被覆部材5の外周に配設されている点でのみ第1の実施形態に係る接続構造体11と異なる。外層部材7は、接続構造体の運転環境下において、交流通電用または永久電流スイッチ用の超電導線材の母材よりも熱伝導率が高い金属材料からなり、例えば、銅、アルミニウム、インジウム、スズ、ビスマス、またはこれらの元素から構成される合金が好適に用いられる。
 第2の実施形態に係る接続構造体12は、第1の実施形態に係る接続構造体11と同様の効果に加えて、被覆部材5の外周に外層部材7を配設することでバイパス部2の熱容量が大きくなることから、バイパス部2に電流が移ったときの温度上昇が抑制される。これにより、バイパス部2のクエンチが更に防止される効果がある。
 (本発明の第3の実施形態)
 図5は、本発明に係る超電導線材の接続構造体の他の1例を示す斜視模式図とバイパス部の断面模式図である。図5に示したように、第3の実施形態に係る接続構造体13は、バイパス部2において、被覆部材5と異なる中間層8が被覆部材5と超電導フィラメント6との間に配設されている点でのみ第1の実施形態に係る接続構造体11と異なる。中間層8は、接続構造体の運転環境下において、交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料からなり、例えば、銅、アルミニウム、インジウム、スズ、ビスマス、またはこれらの元素から構成される合金が好適に用いられる。
 第3の実施形態に係る接続構造体13は、第1の実施形態に係る接続構造体11と同様の効果に加えて、被覆材料5と超電導フィラメント6との間に中間層8を配設することで被覆材料5と超電導フィラメント6との密着性が高まることから、バイパス部2の抵抗Rを更に低減することができる。なお、中間層8の形成プロセスとしては、例えば、蒸着などの気相成膜法が好適に用いられる。
 (本発明の第4の実施形態)
 図6は、本発明に係る超電導線材の接続構造体のジョイント部の変形例を示す断面模式図である。図6に示したように、第4の実施形態に係るジョイント部1’は、第1の超電導フィラメント61と第2の超電導フィラメント62との間にプレート形状の介在超電導体17が当接して設けられている。また、介在超電導体17は、接続構造体の運転環境下において、第1の超電導フィラメント61および第2の超電導フィラメント62よりも低い臨界電流密度を有している。
 超電導線材は、一般的に、使用環境における最大経験磁場でその臨界電流がある程度のマージンを持つように設計される(または、そうなるように機器(例えば超電導コイル)を設計する)。一方、超電導線材同士の接続構造体は、設置場所の空間的な制約や超電導安定性の観点から、低磁場領域に設置されることが通常である。そのため、接続構造体の設置される低磁場領域では、接続構造体内の超電導フィラメントが運転電流に対して過大な臨界電流を有することになり、多数の超電導フィラメントの内の極一部を利用するだけで運転電流を輸送することが可能と考えられる。そのため、時間が経過するにつれて、超電導フィラメント6間の電流分布は良好な接合界面を有する超電導フィラメントのみに偏っていくと考えられる。その結果、クエンチの芽が生じた時に、過度の偏流に起因した大きなジュール熱が起こり易いと考えられる。
 上述したように、第4の実施形態に係るジョイント部1’では、第1および第2の超電導フィラメント61,62の間に該超電導フィラメントよりも低い臨界電流密度を有する介在超電導体17を配設しているため、介在超電導体17の臨界電流密度の制約により輸送電流が超電導フィラメント6の極一部に偏流することを抑制し、均等な電流分布に近づく。その結果、輸送電流における過度の偏流に起因する大きなジュール熱を抑制し、ジョイント部におけるクエンチの発生を抑制することができる効果がある。なお、言うまでもなく、第4の実施形態は前述の第1~第3の実施形態のいずれとも組み合わせることができる。
 以下、実施例により本発明の具体例を説明する。なお、本発明は以下の実施例に限定されるものではない。
 図7は、超電導線材の接続構造体の通電特性を測定するためのサンプル形状を示す模式図である。図7に示したように、測定サンプルは2本の超電導多芯線材4から構成されている。第1の超電導多芯線材41は、超電導フィラメント6の材質がニオブチタン合金であり、母材の材質が無酸素銅である。第2の超電導多芯線材42は、超電導フィラメント6の材質がニオブチタン合金であり、母材の材質が銅ニッケル合金(Cu-10mass%Ni)である。第1の超電導多芯線材41は途中にループ部を形成し、第2の超電導多芯線材42は直状のままとした。また、ループ部を挟んで互いに反対側の2箇所で接続構造体を形成して第1の超電導多芯線材41と第2の超電導多芯線材42とを接続した。なお、第1の超電導多芯線材41と第2の超電導多芯線材42とは、母材の材質以外は同じ構成とした。
 比較例1として、従来の接続構造体14(図1参照)を次のような手順で作製した。第1および第2の超電導多芯線材41,42のそれぞれ両端部35mmを硝酸に浸漬して母材を溶解し、超電導フィラメントを露出させた。次に、露出した第1および第2の超電導フィラメント61,62を重ねて無酸素銅パイプ15’(肉厚5mm、長さ25mm)に挿入した。該無酸素銅パイプ15’を一軸加圧して潰すことで、無酸素銅パイプ15’内で2つの超電導フィラメント61,62を一体化(圧着)させたジョイント部1を形成した。また、母材を除去した境界から25mm長さで2本の超電導多芯線材41,42の母材同士をはんだ16で固定した。
 実施例1として、第2の実施形態に係る接続構造体12’(図8参照)を次のような手順で作製した。図8は、本発明に係る実施例1を示す斜視模式図とバイパス部の断面模式図である。第1および第2の超電導多芯線材41,42のそれぞれ両端部50mmを硝酸に浸漬して母材を溶解し、超電導フィラメントを露出させた。次に、露出した第1および第2の超電導フィラメント61,62を重ね、露出した超電導フィラメントの先端領域(先端からの距離が0~25mmの領域)を無酸素銅パイプ15’(肉厚5mm、長さ25mm)に挿入した。該無酸素銅パイプ15’を一軸加圧して潰すことで、無酸素銅パイプ15’内で2つの超電導フィラメント61,62を一体化(圧着)させたジョイント部1を形成した。
 次に、露出した第1および第2の超電導フィラメント61,62の残りの領域(先端からの距離が25~50mmの領域)に被覆部材5’としてインジウムシートを巻き付けた。巻き付けたインジウムシートの外周に予め挿入しておいた無酸素銅パイプ15”(肉厚5mm、長さ25mm)を被せた。その後、インジウムの被覆部材5’が各超電導フィラメント6の隙間に十分入り込むように該無酸素銅パイプ15”を一軸加圧して潰してバイパス部2を形成した。
 上記で作製した測定サンプルの通電特性は、次のようにして測定した。図9は、超電導線材の接続構造体の通電特性を測定するための試験系を示す模式図である。図9に示したように、クライオスタット20内に誘導コイル21、サンプルヒータ22、ホール素子23から構成される試験系を組み、測定サンプルのループ部が誘導コイル21の領域内に入るように測定サンプルを設置した。クライオスタット20内に液体ヘリウムを満たして次の手順で測定サンプルに通電した。
 まず、サンプルヒータ22を加熱し、測定サンプルの一部(超電導多芯線材4の一部)の超電導性を消失させた。この状態で誘導コイル21に通電し、測定サンプルのループ部を貫通するように磁束を発生させた。次に、サンプルヒータ22の加熱を止めて測定サンプルの超電導性を復帰させた後、誘導コイル21の通電を止めると測定サンプルのループ部内の磁束が保存されるように超電導多芯線材4に電流が流れる。このとき、ループ部の中心磁束密度をホール素子23で計測し、その時間変化を記録した。
 図10は、比較例1の通電特性の結果(捕捉した磁束の時間変化)の1例を示すチャートである。図10に示したように、測定開始から約300秒経過時に中心磁束密度の不連続な減少が突然起こった。これは、従来の接続構造体14においてクエンチが発生し、測定サンプルに保持されていた磁気エネルギーがジュール熱となって消失したためと考えられた。このときの磁場減衰率は約90%であった。
 図11は、実施例1の通電特性の結果(捕捉した磁束の時間変化)の1例を示すチャートである。図11に示したように、測定開始から約1500秒経過時に中心磁束密度の不連続な減少が突然起こった。これも、第2の実施形態に係る接続構造体12’においてクエンチが発生したことに起因すると考えられた。ただし、このときの磁場減衰率はわずか1%程度であった。なお、他の実施形態に係る接続構造体においても、同様の結果が得られることを別途確認した。
 上記の結果を図3に示した等価回路で考察する。測定サンプルのインダクタンスは10-7H程度であり、ジョイント部1とバイパス部2とからなるループ3のインダクタンスは10-9H程度である。これらインダクタンスと電気抵抗率とを式1に代入して計算すると、実施例1に関しては磁場減衰率がよく一致した。すなわち、図3の等価回路で説明したモデルの現象が起きていると考えられた。また、この接続構造体12’を一般的な超電導磁石(10~100H)に適用したとすると、式1からその磁場減衰率は0.1ppb程度となることが示唆される。これは、NMR分析装置やMRI装置で要求されるレベルを十分満足している。
 一方、比較例1に関しては、式1の結果と一致しなかった。これは、ジョイント部1で常電導領域が生じてはんだ固定部に電流が移った際、はんだ固定部におけるジュール発熱が大き過ぎて熱拡散が追い付かず、はんだ固定部の温度が上昇して測定サンプル全体にクエンチが進展したためと考えられた。
 以上説明したように、本発明に係る超電導線材の接続構造体は、ジョイント部1で常電導領域(クエンチの芽)が発生してもその拡大が防止され、永久電流モード運転する超電導磁石の磁場減衰率を極小に抑制できるという効果を実証した。すなわち、低い接続抵抗と高いクエンチ耐性とを兼ね備えていると言える。そのため、本発明に係る超電導線材の接続構造体は、NMR分析装置やMRI装置をはじめとして、大型超電導マグネット、電力貯蔵装置、磁気分離装置、超電導発電機、核融合炉用マグネットなどの超電導機器に適用可能である。
 1,1’…ジョイント部、 2…バイパス部、 3…ジョイント部とバイパス部とからなる接続構造体ループ、 4…超電導多芯線材、 41…第1の超電導多芯線材、 42…第2の超電導多芯線材、 5,5’…被覆部材、 6…超電導フィラメント、 61…第1の超電導フィラメント、 62…第2の超電導フィラメント、 7…外層部材、 8…中間層、 11,12,12’,13,14…接続構造体、 15…金属パイプ、 15’,15”…無酸素銅パイプ、 16…はんだ、 17…介在超電導体、 20…クライオスタット、 21…誘導コイル、 22…サンプルヒータ、 23…ホール素子

Claims (12)

  1.  複数の超電導フィラメントが母材に覆われた構造を有する第1の超電導多芯線材と第2の超電導多芯線材とを電気的に接続する接続構造体であって、
    前記第1および第2の超電導多芯線材のうちの少なくとも一方は、交流通電用または永久電流スイッチ用の超電導線材であり、
    前記第1の超電導多芯線材の母材が除去されて露出した第1の超電導フィラメントの先端領域と、前記第2の超電導多芯線材の母材が除去されて露出した第2の超電導フィラメントの先端領域とは、かしめ接続されたジョイント部を構成し、
    前記露出した第1の超電導フィラメントの残りの領域と、前記露出した第2の超電導フィラメントの残りの領域とは、被覆部材を介して接続されたバイパス部を構成し、
    前記被覆部材は、前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料からなることを特徴とする超電導線材の接続構造体。
  2.  請求項1に記載の超電導線材の接続構造体において、
    前記交流通電用または永久電流スイッチ用の超電導線材の超電導フィラメントがニオブチタン合金であり、
    該超電導線材の母材が銅ニッケル合金、銅マンガン合金、または銅マンガンニッケル合金のいずれかであり、
    前記被覆部材が銅、アルミニウム、インジウム、スズ、ビスマス、およびこれらの元素から構成される合金のいずれかであることを特徴とする超電導線材の接続構造体。
  3.  請求項1または請求項2に記載の超電導線材の接続構造体において、
    前記バイパス部は、前記被覆部材の外周に前記被覆部材と異なる外層部材が更に配設されており、
    前記外層部材は、前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも熱伝導率が高い金属材料からなることを特徴とする超電導線材の接続構造体。
  4.  請求項3に記載の超電導線材の接続構造体において、
    前記外層部材が銅、アルミニウム、インジウム、スズ、ビスマス、およびこれらの元素から構成される合金のいずれかであることを特徴とする超電導線材の接続構造体。
  5.  請求項1乃至請求項4のいずれかに記載の超電導線材の接続構造体において、
    前記バイパス部は、前記第1の超電導フィラメントと前記被覆部材との間、および前記第2の超電導フィラメントと前記被覆部材との間に前記被覆部材と異なる中間層が更に配設されており、
    前記中間層は、前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料からなることを特徴とする超電導線材の接続構造体。
  6.  請求項5に記載の超電導線材の接続構造体において、
    前記中間層が銅、アルミニウム、インジウム、スズ、ビスマス、およびこれらの元素から構成される合金のいずれかであることを特徴とする超電導線材の接続構造体。
  7.  請求項1乃至請求項6のいずれかに記載の超電導線材の接続構造体において、
    前記ジョイント部における前記第1の超電導フィラメントと前記第2の超電導フィラメントとの間に介在超電導体が当接して設けられ、
    前記介在超電導体は、前記接続構造体の運転環境下において、前記第1および第2の超電導フィラメントよりも低い臨界電流密度を有していることを特徴とする超電導線材の接続構造体。
  8.  請求項7に記載の超電導線材の接続構造体において、
    前記介在超電導体はプレート形状であり、
    前記介在超電導体の一方の主表面に前記第1の超電導フィラメントが電気的に接続され、前記介在超電導体の他方の主表面に前記第2の超電導フィラメントが電気的に接続されていることを特徴とする超電導線材の接続構造体。
  9.  請求項1乃至請求項8のいずれかに記載の超電導線材の接続構造体を具備していることを特徴とする超電導機器。
  10.  請求項1乃至請求項8のいずれかに記載の超電導線材の接続構造体を具備していることを特徴とする核磁気共鳴分析装置または磁気共鳴画像装置。
  11.  複数のニオブチタン合金フィラメントが母材に覆われた構造を有する第1の超電導多芯線材と第2の超電導多芯線材とを電気的に接続する接続構造体の製造方法であって、
    前記第1および第2の超電導多芯線材のうちの少なくとも一方は、交流通電用または永久電流スイッチ用の超電導線材であり、
    前記第1および第2の超電導多芯線材における接続予定領域の前記母材を除去して第1および第2のニオブチタン合金フィラメントを露出させるフィラメント露出工程と、
    前記露出した第1および第2のニオブチタン合金フィラメントの先端領域を金属パイプ内に挿入し、前記金属パイプを押圧変形することによって前記第1および第2のニオブチタン合金フィラメント同士を圧着してジョイント部を形成するジョイント部形成工程と、
    前記接続構造体の運転環境下において、前記交流通電用または永久電流スイッチ用の超電導線材の母材よりも電気抵抗率が低い金属材料である被覆部材を、前記露出した第1の超電導フィラメントの残りの領域と、前記露出した第2の超電導フィラメントの残りの領域とに被覆・一体化してバイパス部を形成するバイパス部形成工程とを有することを特徴とする超電導線材の接続構造体の製造方法。
  12.  請求項11に記載の超電導線材の接続構造体の製造方法において、
    前記バイパス部形成工程の後に、前記被覆部材の外周に前記被覆部材と異なる金属材料からなる外層パイプを被せ、前記外層パイプを押圧することによって前記被覆部材と一体化した外層部材を形成する外層部材配設工程を更に有することを特徴とする超電導線材の接続構造体の製造方法。
PCT/JP2012/050644 2011-01-19 2012-01-16 超電導線材の接続構造体およびその製造方法 WO2012099029A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011008579A JP5501258B2 (ja) 2011-01-19 2011-01-19 超電導線材の接続構造体およびその製造方法
JP2011-008579 2011-04-14

Publications (1)

Publication Number Publication Date
WO2012099029A1 true WO2012099029A1 (ja) 2012-07-26

Family

ID=46515656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050644 WO2012099029A1 (ja) 2011-01-19 2012-01-16 超電導線材の接続構造体およびその製造方法

Country Status (2)

Country Link
JP (1) JP5501258B2 (ja)
WO (1) WO2012099029A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751069A (zh) * 2012-07-30 2012-10-24 西部超导材料科技股份有限公司 低电阻多芯NbTi/Cu超导磁体线圈内接头及制备方法
GB2525218A (en) * 2014-04-16 2015-10-21 Siemens Plc High di/dt superconductive joint
CN105794006A (zh) * 2013-12-20 2016-07-20 株式会社日立制作所 超导磁铁、mri以及nmr

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102187155B1 (ko) * 2019-02-25 2020-12-04 강원대학교산학협력단 단심 초전도선 접합체 및 이의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084852A (ja) * 1999-09-17 2001-03-30 Hitachi Cable Ltd アルミニウム安定化超電導線
JP2008084547A (ja) * 2006-09-25 2008-04-10 Kobe Steel Ltd Nb3Sn超電導線材およびそのための前駆体
JP2009158234A (ja) * 2007-12-26 2009-07-16 Hitachi Ltd 超電導線材を接続した超電導接続部およびその作製方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001084852A (ja) * 1999-09-17 2001-03-30 Hitachi Cable Ltd アルミニウム安定化超電導線
JP2008084547A (ja) * 2006-09-25 2008-04-10 Kobe Steel Ltd Nb3Sn超電導線材およびそのための前駆体
JP2009158234A (ja) * 2007-12-26 2009-07-16 Hitachi Ltd 超電導線材を接続した超電導接続部およびその作製方法

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102751069A (zh) * 2012-07-30 2012-10-24 西部超导材料科技股份有限公司 低电阻多芯NbTi/Cu超导磁体线圈内接头及制备方法
CN105794006A (zh) * 2013-12-20 2016-07-20 株式会社日立制作所 超导磁铁、mri以及nmr
EP3086380A4 (en) * 2013-12-20 2017-08-23 Hitachi, Ltd. Superconducting magnet, mri, and nmr
US10121955B2 (en) 2013-12-20 2018-11-06 Hitachi, Ltd. Superconducting magnet, MRI, and NMR
GB2525218A (en) * 2014-04-16 2015-10-21 Siemens Plc High di/dt superconductive joint
GB2525218B (en) * 2014-04-16 2016-08-03 Siemens Healthcare Ltd High di/dt superconductive switch

Also Published As

Publication number Publication date
JP2012150978A (ja) 2012-08-09
JP5501258B2 (ja) 2014-05-21

Similar Documents

Publication Publication Date Title
Van der Laan et al. Status of CORC® cables and wires for use in high-field magnets and power systems a decade after their introduction
JP5476242B2 (ja) 超電導線材の接続構造体およびその製造方法
US8229528B2 (en) Superconducting coil having a granular superconducting junction
JP5770947B2 (ja) 高温超伝導体層の直接接触による部分微細溶融拡散圧接を用いた2世代ReBCO高温超伝導体の接合及び酸素供給アニーリング熱処理による超伝導回復方法
Kwon et al. Effects of turn-to-turn compactness in the straight sections of HTS racetrack coils on thermal and electrical characteristics
US7684839B2 (en) Connecting structure for magnesium diboride superconducting wire and a method of connecting the same
JP5005582B2 (ja) 超電導電流リードの製造方法
WO2012099029A1 (ja) 超電導線材の接続構造体およびその製造方法
Zhang et al. First performance test of the iron-based superconducting racetrack coils at 10 T
Ye et al. Magnetic field dependent stability and quench behavior and degradation limits in conduction-cooled MgB2 wires and coils
Pelegrín et al. Experimental and numerical analysis of quench propagation on MgB2 tapes and pancake coils
Terazaki et al. Measurement of the joint resistance of large-current YBCO conductors
Yuki et al. Recovery performance of partially-joined porous-stabilized REBCO tape for resistive type superconducting fault current limiters
JP2015028912A (ja) 超電導線材及びそれを用いた超電導コイル
KR101343887B1 (ko) Mg 및 B를 포함하는 초전도 와이어의 접합방법
Van Der Laan et al. A turnkey gaseous helium-cooled superconducting CORC® dc power cable with integrated current leads
JP2023531954A (ja) 溝内に高温超伝導体(hts)ケーブルを備える磁石構造体
JP3866926B2 (ja) 粉末法Nb▲3▼Sn超電導線材による超電導接続構造体の製造方法
Zhu et al. Lamination process of second generation high temperature superconducting tape at Shanghai Superconductor Technology
Solovyov et al. Performance of layer wound epoxy-impregnated coils made from a multifilamentary cable of exfoliated YBCO
Bykovskiy et al. Demonstration of engineering current density exceeding 1 kA mm− 2 in ultra-thin no-insulation, soldered coil windings using NbTi/Cu wires with CuNi cladding
EP3803916B1 (en) Superconducting joints
JP2013089416A (ja) 超電導線材、超電導線材の接続部、永久電流スイッチ、超電導磁石システム及び超電導線材の接続方法
Lee et al. Design of a high temperature superconducting coil for a 8.3 MVA fault current limiter
Takahashi et al. Performance of joints in the CS model coil and application to the full size ITER coils

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736827

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736827

Country of ref document: EP

Kind code of ref document: A1