WO2012098922A1 - Hull having changeable outer surface shape - Google Patents

Hull having changeable outer surface shape Download PDF

Info

Publication number
WO2012098922A1
WO2012098922A1 PCT/JP2012/050004 JP2012050004W WO2012098922A1 WO 2012098922 A1 WO2012098922 A1 WO 2012098922A1 JP 2012050004 W JP2012050004 W JP 2012050004W WO 2012098922 A1 WO2012098922 A1 WO 2012098922A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer plate
shape
plate surface
movable
hull
Prior art date
Application number
PCT/JP2012/050004
Other languages
French (fr)
Japanese (ja)
Inventor
石井昭良
Original Assignee
ISHII Teruyoshi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHII Teruyoshi filed Critical ISHII Teruyoshi
Publication of WO2012098922A1 publication Critical patent/WO2012098922A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/32Other means for varying the inherent hydrodynamic characteristics of hulls
    • B63B1/40Other means for varying the inherent hydrodynamic characteristics of hulls by diminishing wave resistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B1/00Hydrodynamic or hydrostatic features of hulls or of hydrofoils
    • B63B1/02Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement
    • B63B1/04Hydrodynamic or hydrostatic features of hulls or of hydrofoils deriving lift mainly from water displacement with single hull
    • B63B1/06Shape of fore part
    • B63B1/063Bulbous bows
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T70/00Maritime or waterways transport
    • Y02T70/10Measures concerning design or construction of watercraft hulls

Definitions

  • the present invention relates to a hull equipped with a bow valve for reducing wave-making resistance acting on the hull.
  • the bow valve is widely used to reduce the wave resistance acting on the hull.
  • the size and shape of the bow valve that is optimal for reducing wave resistance varies depending on the shape and speed of the main hull, but it is difficult to change the size and shape of a fixed bow valve. It is common.
  • the shape-changeable hull is intended to reduce wave-making resistance in response to changes in ship speed by making it possible to change the size and shape of the bow valve.
  • the wave resistance can be reduced according to the navigation conditions and the loading state, and the energy consumption of the ship can be reduced.
  • Patent Document 1 proposes a movable bow valve that can change the outer surface shape by moving a rigid body and can change the wave-making characteristics at different ship speeds.
  • the problem to be solved by the invention is to reduce hull resistance under two navigation conditions by a hull with a bow valve that can be changed to two types of outer surface shapes suitable for the flow field around the hull corresponding to two different navigation conditions. It is something to try.
  • the present invention employs the following means in order to solve the above problems.
  • the shape-changeable hull according to claim 1 is capable of forming two types of outer surface shapes corresponding to two types of Cp curves having wave-making characteristics in which the magnitude of wave-making resistance is reversed at a certain fluid number.
  • the first outer surface shape is composed of a fixed outer plate surface, a movable outer plate surface, and a connecting surface between the fixed outer plate surface and the movable outer plate surface
  • the second outer surface shape is the same as the first outer surface shape.
  • It has a movable outer plate that can be repositioned to change from the shape to the second outer surface and its reverse direction, and a drive unit and link mechanism that move the connecting surface between the fixed outer plate and the movable outer plate.
  • the outer surface formed with a connecting surface between the fixed outer plate surface and the movable outer plate surface that is not required when forming the outer shape of one side
  • the curvature of the water line at both ends in the longitudinal direction of the movable outer plate that changes in the shape of the two outer surfaces is stored inside the shape, and the length of the connecting surface between the two fixed outer plates and the corresponding movable outer plate.
  • FIG. 1 is a plan view of a hull skin
  • FIG. 2 is a side view of a hull skin corresponding to FIG.
  • FIG. 3 shows a part of a hull diagram according to an embodiment of the invention of claim 1 and shows a water line having a depth having a maximum valve width.
  • FIG. 4 is a diagram showing a wave-making resistance curve in two states when the valve size is changed and when the valve size is changed according to the change in the fluid number.
  • FIG. 5 is a diagram showing Cp curves in the same planned draft state in two states at the normal valve size and when the valve size is changed.
  • FIG. 6 is a diagram showing a wave-making resistance curve corresponding to a change in draft at a constant ship speed in two states, a normal valve size and a valve size change.
  • FIGS. 7 and 8 relate to another embodiment of claim 1.
  • FIG. 7 is a plan view of the hull skin and
  • FIG. 8 is a side view of the hull skin corresponding to FIG.
  • FIG. 1 is a plan view of the outer shape of the hull viewed from the bottom of the ship.
  • FIG. 1 shows two types of outer surface shapes, (1) showing a normal valve size and (2) showing a valve size change.
  • the first outer surface shape shown in (1) of FIG. 1 is a normal valve size and is composed of one fixed outer plate surface, 2R and 2L movable outer plate surfaces, and 3R and 3L connecting surfaces. Is done.
  • the second outer surface shape shown in (2) of FIG. 1 is a valve size change, 1 of the fixed outer plate surface common to the first outer surface shape, 2R and 2L common to the first outer surface shape.
  • the position of the movable outer plate surface is changed from (1) and the connecting surface of 4R and 4L.
  • the difference in the outer shape of the hull between the first outer shape and the second outer shape is limited to the side of the ship between Xa and Xf in the longitudinal direction of the hull.
  • a water line having the maximum valve width is (1) in the longitudinal direction between X1 and X2 and in the width direction between Y1 and Y2, and (2) in the longitudinal direction from X3 to X4. Between Y3 and Y4 in the width direction.
  • the valve size can be changed by changing the position of the movable outer plate surface from (1) to (2) or from (2) to (1).
  • 3R and 3L are connecting surfaces for connecting the fixed outer plate surface and the movable outer plate surface with a smooth curved surface at the normal valve size.
  • 4R and 4L are connecting surfaces for connecting the fixed outer plate surface and the movable outer plate surface with a smooth curved surface when the valve size is changed.
  • the connecting surface is different between (1) and (2), and the other connecting surface that is not required when forming one outer shape is housed in the hull.
  • FIG. 2 is a side view corresponding to FIG. 1. As in FIG. 1, (1) is the first outer surface shape when the normal valve size is used, (2) is the second outer surface shape when the valve size is changed. Shows things.
  • the fixed outer plate surface 1 and the movable outer plate surface 2R are selected by appropriately selecting the arrangement of the movable outer plate surface 2R and the shape of the connecting surface 3R.
  • a discontinuous curvature does not occur in the water line and the buttocks line formed by the connecting surface 3R.
  • the difference between the outer shapes of (1) and (2) is limited to the ship side between Xa and Xf in the longitudinal direction of the hull and between Zt and Zb in the depth direction.
  • the outer surface can be fixed from the keel to the stem of the hull, and the internal structure can be reinforced in the same way as a conventional bow valve without moving parts, and it has sufficient strength. become.
  • FIG. 3 is a view showing a water line corresponding to FIG. 1.
  • (1) is a first outer shape and is a normal valve size
  • (2) is a second outer shape. Shown when the valve size is changed.
  • the difference between the outer shapes of (1) and (2) is limited to between Xa and Xf in the longitudinal direction of the hull.
  • 41 and 42 are water lines on the fixed outer plate surface, and there is no difference between (1) and (2).
  • the water lines on the movable outer plate surface correspond to 43 in (1) and 46 in (2), respectively.
  • the curvature of the water line 44 of the connecting surface and the water line 41 of the fixed outer plate surface on the rear side is made the same by Xa, and the connection between both water lines is made smooth.
  • the curvature of the end of the water line connecting 44 and 43 in X1, 43 and 45 in X2, and 45 and 41 in Xf is made the same, so that a series of water lines are connected smoothly.
  • FIG. 3 shows a method for realizing smoothness at both ends of the connecting surface between the fixed outer plate surface and the movable outer plate surface for a typical water line
  • each water line connects the curvatures at both ends of the connecting surface.
  • the wave resistance curve shown in FIG. 4 shows the wave resistance coefficient based on the Froude number.
  • 31 corresponds to the first outer surface shape shown in (1) of FIG. 1
  • 32 corresponds to the second outer surface shape shown in (2) of FIG. Both curves intersect at the Froude number Fn1, and the magnitude relationship is reversed before and after that.
  • the first outer surface shape is used when navigating with a fluid number lower than Fn1
  • the second outer surface shape is used when navigating with a fluid number higher than Fn1, thereby providing a bow valve with only one outer surface shape.
  • the wave resistance when navigating at two or more speed conditions can be reduced.
  • the characteristics of the wave resistance curve shown in FIG. 4 are based on the difference in the Cp curve shown in FIG.
  • the difference in the outer shape shown in FIG. 1 reflects the difference in the Cp curve shown in FIG.
  • the wave resistance curve shown in FIG. 6 depicts the wave resistance coefficient based on the draft. 35 corresponds to the first outer surface shape shown in (1) of FIG. 1, and 36 corresponds to the second outer surface shape shown in (2) of FIG. Both curves intersect at the draft d1, and the magnitude relationship is reversed before and after that.
  • a ship equipped with a bow valve having only one outer surface shape by adopting a first outer surface shape when navigating with a draft larger than d1 and a second outer surface shape when navigating with a draft smaller than d1.
  • the hull having a bow valve equipped on the hull has two types of Cp curves in which the magnitude of the wave resistance is reversed around a certain fluid number.
  • the outer surface shape can be formed.
  • FIG. 7 and 8 show another embodiment of the present invention.
  • FIG. 7 is a plan view of the outer shape of the hull as seen from the bottom of the ship
  • FIG. 8 is a side view of the outer shape of the hull.
  • FIG. 7 and FIG. 8 show two types of outer surface shapes. (1) is a normal valve size, and (2) is a valve size change.
  • the fixed outer plate surface 11 is the same in (2). Although the movable outer plate surface 12R of (1) and the movable outer plate surface 22R of (2) are common, the arrangement is different.
  • the connecting surface 7 and 8 is characterized in that the connecting surface is divided into four parts on the starboard side and the port side, respectively.
  • the rear connecting surface 13R, the front connecting surface 14R, the lower side The entire connecting surface is constituted by the side connecting surface 15R and the upper connecting surface 16R.
  • the rear connecting surface 13L, the front connecting surface 14L, the lower connecting surface 15L, and the upper connecting surface 16L constitute the entire connecting surface.
  • the rear connecting surface 23R, the front connecting surface 24R, the lower connecting surface 25R, and the upper connecting surface 26R constitute the entire connecting surface.
  • the entire connecting surface is constituted by the rear connecting surface 23L, the front connecting surface 24L, the lower connecting surface 25L, and the upper connecting surface 26L.
  • the arrangement of the movable outer plate surface 12R, the rear connecting surface 13R, the front connecting surface 14R, the lower connecting surface 15R, and the upper connecting surface 16R By appropriately selecting the shape, a water line composed of a fixed outer plate surface 11, a movable outer plate surface 12R, a rear side connecting surface 13R, a front side connecting surface 14R, a lower side connecting surface 15R and an upper side connecting surface 16R. In addition, there is no discontinuous curvature in the buttocks line. *
  • the arrangement of the movable outer plate surface 22R, the rear side connecting surface 23R, the front side connecting surface 24R, the lower side connecting surface 25R and the upper side as well.
  • the connecting surface 26R, the fixed outer plate surface 11, the movable outer plate surface 22R, the rear connecting surface 23R, the front connecting surface 24R, the lower connecting surface 25R, and the upper connecting surface 26R are configured. Discontinuous curvature does not occur in the water line and buttocks line.
  • connecting surface By dividing the connecting surface into four parts, when moving the connecting surface to change the outer surface shape, interference with other connecting surfaces and movable outer plate surfaces can be avoided. Further, when storing unnecessary connecting surfaces, it is possible to avoid interference with the fixed outer plate surface and the movable outer plate surface.
  • the rear side connecting surface 53 and the front side connecting surface 54 used only in the first outer surface shape (1) can be moved by 53S and 54S as a link mechanism portion and 53K and 54K as a drive portion.
  • 53 and 54 are stored inside the second outer surface shape as shown in (2).
  • the rear side connecting surface 55 and the front side connecting surface 56 used only in the second outer surface shape (2) can be moved by 55S and 56S as the link mechanism portion and 55K and 56K as the drive portion.
  • 55 and 56 are stored inside the first outer surface shape as shown in (1).
  • FIG. 10 is a vertical sectional view in the width direction of the bow valve.
  • the external components commonly used in the first outer surface shape (1) and the second outer surface shape (2) are the fixed outer plate surface 61 and the movable outer plate surface 62. These are the same when the fixed outer plate surface 51 and the movable outer plate surface 52 in FIG.
  • the lower connecting surface 63 and the upper connecting surface 64 used only in the first outer surface shape (1) can be moved by 63S and 64S as a link mechanism portion and 63K and 64K as a drive portion.
  • 63 and 64 are stored inside the second outer surface shape as shown in (2).
  • the lower connecting surface 65 and the upper connecting surface 66 used only in the second outer surface shape (2) can be moved by 65S and 66S as the link mechanism portion and 65K and 66K as the driving portion.
  • 65 and 66 are stored inside the first outer surface shape as shown in (1).
  • 9 and 10 show one embodiment of the fixed outer plate surface, the movable outer plate surface and the connecting surface, and the link mechanism unit and the driving unit, and two types of outer surface shapes are formed and unnecessary connection is made. It shows that the surface can be stored in the hull.
  • the angle changing function can also be realized by using a plurality of combinations of link mechanism units and drive units each having a rotatable gimbal as another embodiment.
  • FIGS. 9 and 10 an example of a link mechanism unit and a drive unit that are linearly moved to move the connecting surface is shown.
  • the movement of the connecting surface can also be realized by adopting a rotational movement method by combining a link mechanism portion having a hinge portion and a drive portion as another embodiment.
  • FIG. 1 is a plan view of an outer shape of a hull showing an embodiment of the invention of claim 1.
  • (1) corresponds to the outer shape of the normal valve size, and (2) corresponds to the outer shape when the valve size is reduced. It is a side view of the hull outline which shows one embodiment of the invention of Claim 1.
  • (1) corresponds to the outer shape of the normal valve size, and (2) corresponds to the outer shape when the valve size is reduced.
  • FIG. 3 is a part of a hull diagram showing an embodiment of the invention of claim 1.
  • (1) corresponds to the water line of the normal valve size, and (2) corresponds to the water line when the valve size is reduced. It is a figure which shows the wave-making resistance curve of the ship corresponding to (1) and (2) of FIG. 1 according to the change of the fluid number.
  • (1) corresponds to a cross-sectional view of the normal valve size, and (2) corresponds to a cross-sectional view when the valve size is reduced. It is a vertical sectional view of the width direction of the bow valve in another embodiment of the invention of claim 1.
  • (1) corresponds to a cross-sectional view of the normal valve size, and (2) corresponds to a cross-sectional view when the valve size is reduced.

Abstract

[Problem] The present invention is designed to solve the problem of minimizing the wave-making resistance of a hull under two navigation conditions different from each other in response to changes in the wave-making characteristic of a bow bulb under both the conditions in a displacement-type ship. [Solution] To solve the problem, this bow bulb device is characterized in that the bulb side surface is made movable in order to enable the formation of two outer surface shapes corresponding to different Cp curves, a smooth curved surface with no difference in level is maintained by disposing a surface that connects a hull and the movable bulb side surface, and the size and the outer shape of a bow bulb can be changed.

Description

外面形状が変更可能な船体Hull with external shape changeable
本発明は、船体に働く造波抵抗を低減させるための船首バルブを装備する船体に関するものである。 The present invention relates to a hull equipped with a bow valve for reducing wave-making resistance acting on the hull.
 船首バルブは船体に働く造波抵抗を低減するために広く利用されている。造波抵抗低減に最適な船首バルブの大きさや形状は主船体の形状や船速に依存し変化するが、固定型の船首バルブでは大きさや形状の変更が難しいため、一つの設計点において設計されるのが一般的である。 The bow valve is widely used to reduce the wave resistance acting on the hull. The size and shape of the bow valve that is optimal for reducing wave resistance varies depending on the shape and speed of the main hull, but it is difficult to change the size and shape of a fixed bow valve. It is common.
形状変更可能な船体は船首バルブの大きさや形状を変更可能とすることで、船速の変更に対応して造波抵抗の低減を図ろうとするものである。形状変更可能な船体を利用することにより、航行条件や載貨状態に応じて造波抵抗の低減が図れ、船舶の消費エネルギーの削減が可能となる。 The shape-changeable hull is intended to reduce wave-making resistance in response to changes in ship speed by making it possible to change the size and shape of the bow valve. By using a hull that can be changed in shape, the wave resistance can be reduced according to the navigation conditions and the loading state, and the energy consumption of the ship can be reduced.
剛体を動かして外面形状を変更出来、異なる船速で造波特性を変化させることが出来る可動型の船首バルブについては、基本特許として特許文献1で提案されている。 Patent Document 1 proposes a movable bow valve that can change the outer surface shape by moving a rigid body and can change the wave-making characteristics at different ship speeds.
特許第4598854号Japanese Patent No. 4598854
発明が解決しようとする課題は、相異なる2つの航行条件に対応する船体周りの流れ場に適する2種類の外面形状に変更可能な船首バルブ付きの船体により、船体抵抗を2つの航行条件で低減しようとするものである。 The problem to be solved by the invention is to reduce hull resistance under two navigation conditions by a hull with a bow valve that can be changed to two types of outer surface shapes suitable for the flow field around the hull corresponding to two different navigation conditions. It is something to try.
 上記基本特許を満足した製品を生産するに際し、上記条件を満足した状態で滑らかな外面形状を製作可能とし、片方の外面形状形成時にだけ使用する分割面を船体に格納可能とし、船首バルブの強度を維持可能な構造とする課題を併せて解決しようとするものである。 When producing products that satisfy the above basic patents, it is possible to produce a smooth outer surface shape that satisfies the above conditions, and to store a split surface that is used only when forming one outer surface shape in the hull. It is intended to solve the problem of making the structure maintainable.
本発明は、上記課題を解決するために、以下の手段を採用した。請求項1に記載の形状変更可能な船体は、あるフルード数を境に造波抵抗の大きさが逆転する造波特性を持つ2種類のCpカーブに対応する2種類の外面形状を形成でき、第一の外面形状は固定外板面、可動外板面、ならびに、固定外板面と可動外板面とのつなぎ面で構成され、第二の外面形状は第一の外面形状と同一の固定外板面、第一の外面形状と共通に用いる可動外板面、ならびに、第一の外面形状とは異なる固定外板面と可動外板面とのつなぎ面で構成され、第一の外面形状から第二の外面形状への変更及びその逆方向の変更のために位置変更可能な可動外板面及び固定外板面と可動外板面とのつなぎ面を動かす駆動部とリンク機構を持ち、片方の外面形状を形成する時に不要な固定外板面と可動外板面とのつなぎ面を形成された外面形状の内側に納め、2つの外面形状で変化する可動外板面の長手方向両端部のウォーターラインの曲率を、それぞれに対応する2つの固定外板面と可動外板面とのつなぎ面の長手方向端部のウォーターラインの曲率と同一にすることにより、外面形状の変更時に段差を生じない滑らかな曲面を形成することを特徴としている。 The present invention employs the following means in order to solve the above problems. The shape-changeable hull according to claim 1 is capable of forming two types of outer surface shapes corresponding to two types of Cp curves having wave-making characteristics in which the magnitude of wave-making resistance is reversed at a certain fluid number. The first outer surface shape is composed of a fixed outer plate surface, a movable outer plate surface, and a connecting surface between the fixed outer plate surface and the movable outer plate surface, and the second outer surface shape is the same as the first outer surface shape. The fixed outer plate surface, the movable outer plate surface used in common with the first outer surface shape, and the connecting surface between the fixed outer plate surface and the movable outer plate surface different from the first outer surface shape, and the first outer surface. It has a movable outer plate that can be repositioned to change from the shape to the second outer surface and its reverse direction, and a drive unit and link mechanism that move the connecting surface between the fixed outer plate and the movable outer plate. The outer surface formed with a connecting surface between the fixed outer plate surface and the movable outer plate surface that is not required when forming the outer shape of one side The curvature of the water line at both ends in the longitudinal direction of the movable outer plate that changes in the shape of the two outer surfaces is stored inside the shape, and the length of the connecting surface between the two fixed outer plates and the corresponding movable outer plate. By making it the same as the curvature of the water line at the end in the direction, a smooth curved surface that does not cause a step when the outer surface shape is changed is formed.
請求項1に記載の発明によれば、船首バルブの外面形状の変更により、相異なる2種類の航行条件において、造波抵抗を低減するための最適バルブサイズに変更することが出来、船体に働く造波抵抗を低減する効果を高めることができる。同時に、滑らかな外面形状を製作可能とし、片方の外面形状形成時にだけ使用する分割面を船体に格納可能とし、船首バルブの強度を維持可能な構造とすることができる。
 
According to the invention described in claim 1, by changing the shape of the outer surface of the bow valve, it is possible to change to the optimum valve size for reducing wave resistance under two different kinds of navigation conditions, which works on the hull. The effect of reducing wave resistance can be enhanced. At the same time, a smooth outer surface shape can be manufactured, a split surface used only when forming one outer surface shape can be stored in the hull, and a structure capable of maintaining the strength of the bow valve can be obtained.
以下、本発明の実施の形態について、図面に基づき詳細に説明する。図1及び図2は請求項1の発明の一実施の形態にかかり、図1は船体外板の平面図、図2は図1に対応した船体外板の側面図である。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. 1 and 2 relate to an embodiment of the invention of claim 1, FIG. 1 is a plan view of a hull skin, and FIG. 2 is a side view of a hull skin corresponding to FIG.
 図3は請求項1の発明の一実施の形態にかかる船体線図の一部を示したもので、バルブ最大幅を持つ深さのウォーターラインを示している。 FIG. 3 shows a part of a hull diagram according to an embodiment of the invention of claim 1 and shows a water line having a depth having a maximum valve width.
図4はフルード数の変化に応じて通常バルブサイズ時とバルブサイズ変更時の2状態での造波抵抗曲線を示す図である。 FIG. 4 is a diagram showing a wave-making resistance curve in two states when the valve size is changed and when the valve size is changed according to the change in the fluid number.
図5は通常バルブサイズ時とバルブサイズ変更時の2状態での同一の計画喫水状態でのCpカーブを示す図である。 FIG. 5 is a diagram showing Cp curves in the same planned draft state in two states at the normal valve size and when the valve size is changed.
図6は通常バルブサイズ時とバルブサイズ変更時の2状態での一定船速で喫水の変化に対応する造波抵抗曲線を示す図である。 FIG. 6 is a diagram showing a wave-making resistance curve corresponding to a change in draft at a constant ship speed in two states, a normal valve size and a valve size change.
 図7及び図8は請求項1の別の実施形態にかかり図7は船体外板の平面図、図8は図7に対応した船体外板の側面図である。 FIGS. 7 and 8 relate to another embodiment of claim 1. FIG. 7 is a plan view of the hull skin and FIG. 8 is a side view of the hull skin corresponding to FIG.
図1を参照して請求項1の発明の構成を説明する。図1は船体の外形を船底から見た平面図である。図1は2種類の外面形状を示しており、(1)は通常バルブサイズ時のもの、(2)はバルブサイズ変更時のものを示している。 The configuration of the invention of claim 1 will be described with reference to FIG. FIG. 1 is a plan view of the outer shape of the hull viewed from the bottom of the ship. FIG. 1 shows two types of outer surface shapes, (1) showing a normal valve size and (2) showing a valve size change.
図1の(1)で示される第一の外面形状は通常バルブサイズ時のものであり、1の固定外板面、2R及び2Lの可動外板面、ならびに、3R及び3Lのつなぎ面で構成される。 The first outer surface shape shown in (1) of FIG. 1 is a normal valve size and is composed of one fixed outer plate surface, 2R and 2L movable outer plate surfaces, and 3R and 3L connecting surfaces. Is done.
図1の(2)で示される第二の外面形状はバルブサイズ変更時のものであり、第一の外面形状と共通な固定外板面の1、第一の外面形状と共通な2R及び2Lの可動外板面の位置を(1)から変更したもの、ならびに、4R及び4Lのつなぎ面で構成される。 The second outer surface shape shown in (2) of FIG. 1 is a valve size change, 1 of the fixed outer plate surface common to the first outer surface shape, 2R and 2L common to the first outer surface shape. The position of the movable outer plate surface is changed from (1) and the connecting surface of 4R and 4L.
 第一の外面形状と第二の外面形状との間での船体の外形面の違いは、船体長手方向でXaからXfの間の船側部に限定されている。 The difference in the outer shape of the hull between the first outer shape and the second outer shape is limited to the side of the ship between Xa and Xf in the longitudinal direction of the hull.
可動外板面2Rと2Bはバルブ最大幅を持つウォーターラインが、(1)では長手方向でX1からX2の間に幅方向でY1からY2の間に、(2)では長手方向でX3からX4の間に幅方向でY3からY4の間に、それぞれ配置される。(1)から(2)へ、あるいは、(2)から(1)へ可動外板面の位置を変更することにより、バルブサイズの変更が可能になる。 On the movable outer plate surfaces 2R and 2B, a water line having the maximum valve width is (1) in the longitudinal direction between X1 and X2 and in the width direction between Y1 and Y2, and (2) in the longitudinal direction from X3 to X4. Between Y3 and Y4 in the width direction. The valve size can be changed by changing the position of the movable outer plate surface from (1) to (2) or from (2) to (1).
3Rと3Lは通常バルブサイズ時の固定外板面と可動外板面とを滑らかな曲面でつなぐためのつなぎ面である。4Rと4Lはバルブサイズ変更時の固定外板面と可動外板面とを滑らかな曲面でつなぐためのつなぎ面である。つなぎ面は(1)と(2)とでは別のものであり、片方の外形を形成する時に不要となるもう片方のつなぎ面は、船体の中に収納される。 3R and 3L are connecting surfaces for connecting the fixed outer plate surface and the movable outer plate surface with a smooth curved surface at the normal valve size. 4R and 4L are connecting surfaces for connecting the fixed outer plate surface and the movable outer plate surface with a smooth curved surface when the valve size is changed. The connecting surface is different between (1) and (2), and the other connecting surface that is not required when forming one outer shape is housed in the hull.
図1の(1)から図1の(2)へ、または、図1の(2)から図1の(1)への外面形状の変更により、船首バルブ部分のCpカーブが変更され、これに伴い船首バルブの造波特性を変化させることが出来る。  By changing the external shape from (1) in FIG. 1 to (2) in FIG. 1 or from (2) in FIG. 1 to (1) in FIG. 1, the Cp curve of the bow valve portion is changed. As a result, the wave-making characteristics of the bow valve can be changed. *
図2は図1に対応した側面図であり、図1と同様に、(1)は第一の外面形状で通常バルブサイズ時のもの、(2)は第二の外面形状でバルブサイズ変更時のものを示している。 2 is a side view corresponding to FIG. 1. As in FIG. 1, (1) is the first outer surface shape when the normal valve size is used, (2) is the second outer surface shape when the valve size is changed. Shows things.
図2の(1)で第一の外面形状を形成する時、可動外板面2Rの配置、ならびに、つなぎ面3Rの形状を適宜選択することにより、固定外板面1、可動外板面2R及びつなぎ面3Rで構成されるウォーターライン及びバトックラインには不連続な曲率が生じない。  When the first outer surface shape is formed in (1) of FIG. 2, the fixed outer plate surface 1 and the movable outer plate surface 2R are selected by appropriately selecting the arrangement of the movable outer plate surface 2R and the shape of the connecting surface 3R. In addition, a discontinuous curvature does not occur in the water line and the buttocks line formed by the connecting surface 3R. *
図2の(2)で第二の外面形状を形成する時も、同様に可動外板面2Rの配置、ならびに、つなぎ面4Rの形状を適宜選択することにより、1の固定外板面、2Rの可動外板面及び4Rのつなぎ面で構成されるウォーターライン及びバトックラインは不連続な曲率を持たない。 When the second outer surface shape is formed in (2) of FIG. 2, similarly, the arrangement of the movable outer plate surface 2R and the shape of the connecting surface 4R are appropriately selected, so that one fixed outer plate surface 2R The water line and the buttocks line composed of the movable outer plate surface and the 4R connecting surface have no discontinuous curvature.
図2に示すように、(1)と(2)の外形面の違いは、船体長手方向でXaからXfの間の、深さ方向でZtからZbの間の船側部に限定されている。これにより、船体のキールからステムへと外形面を固定面とすることが出来、内部構造の補強も従来の可動部のない船首バルブと同等に行うことが出来、十分な強度を持つことが可能になる。 As shown in FIG. 2, the difference between the outer shapes of (1) and (2) is limited to the ship side between Xa and Xf in the longitudinal direction of the hull and between Zt and Zb in the depth direction. As a result, the outer surface can be fixed from the keel to the stem of the hull, and the internal structure can be reinforced in the same way as a conventional bow valve without moving parts, and it has sufficient strength. become.
図3は図1に対応したウォーターラインを示した図であり、図1と同様に、(1)は第一の外面形状で通常バルブサイズ時のもの、(2)は第二の外面形状でバルブサイズ変更時のものを示している。 FIG. 3 is a view showing a water line corresponding to FIG. 1. As in FIG. 1, (1) is a first outer shape and is a normal valve size, and (2) is a second outer shape. Shown when the valve size is changed.
図3に示すように、(1)と(2)の外形面の違いは、船体長手方向でXaからXfの間に限定されている。41と42は固定外板面のウォーターラインで(1)と(2)との間に違いはない。 As shown in FIG. 3, the difference between the outer shapes of (1) and (2) is limited to between Xa and Xf in the longitudinal direction of the hull. 41 and 42 are water lines on the fixed outer plate surface, and there is no difference between (1) and (2).
可動外板面のウォーターラインは、(1)で43、(2)で46にそれぞれ対応する。(1)では、Xaでつなぎ面のウォーターライン44と後方側の固定外板面のウォーターライン41の曲率を同一とし、両ウォーターラインの接続を滑らかにしている。同様に、X1では44と43,X2では43と45、ならびに、Xfでは45と41がそれぞれ接続するウォーターライン端部の曲率を同一とし、一連のウォーターラインの接続を滑らかにしている。 The water lines on the movable outer plate surface correspond to 43 in (1) and 46 in (2), respectively. In (1), the curvature of the water line 44 of the connecting surface and the water line 41 of the fixed outer plate surface on the rear side is made the same by Xa, and the connection between both water lines is made smooth. Similarly, the curvature of the end of the water line connecting 44 and 43 in X1, 43 and 45 in X2, and 45 and 41 in Xf is made the same, so that a series of water lines are connected smoothly.
(2)でも同様に、Xaで41と47、X3で47と46、X4で46と48、ならびに、Xfで48と42がそれぞれ接続するウォーターライン端部の曲率を同一とし、一連のウォーターラインの接続を滑らかにしている。 Similarly in (2), the curvature of the end of the waterline connecting 41 and 47 for Xa, 47 and 46 for X3, 46 and 48 for X4, and 48 and 42 for Xf is the same, and a series of waterlines The connection is smooth.
 図3では代表的なウォーターラインについて固定外板面と可動外板面との間のつなぎ面両端での滑らかを実現する方法を示したが、各ウォーターラインでつなぎ面両端での曲率を接続する部分の曲率と合わせることにより、外面形状を変更したときの固定外板面、可動外板面及びつなぎ面で構成されるウォーターラインは不連続な曲率を持たず、滑らかな3次元曲面が形成される。 Although FIG. 3 shows a method for realizing smoothness at both ends of the connecting surface between the fixed outer plate surface and the movable outer plate surface for a typical water line, each water line connects the curvatures at both ends of the connecting surface. By combining with the curvature of the part, the water line composed of the fixed outer plate surface, the movable outer plate surface and the connecting surface when the outer surface shape is changed does not have a discontinuous curvature, and a smooth three-dimensional curved surface is formed. The
 図4で示す造波抵抗曲線はフルード数をベースに造波抵抗係数を描いたものである。31は図1の(1)で示した第一の外面形状に、32は図1の(2)で示した第二の外面形状に、それぞれ対応する。両曲線はフルード数Fn1で交差し、その前後で大小関係を逆転している。 The wave resistance curve shown in FIG. 4 shows the wave resistance coefficient based on the Froude number. 31 corresponds to the first outer surface shape shown in (1) of FIG. 1, and 32 corresponds to the second outer surface shape shown in (2) of FIG. Both curves intersect at the Froude number Fn1, and the magnitude relationship is reversed before and after that.
 本発明により、Fn1より低いフルード数で航行する時は第一の外面形状、Fn1より高いフルード数で航行する時は第二の外面形状とすることで、一つの外面形状だけの船首バルブを装備する船舶と比べ、2つ以上の速力条件で航行する時の造波抵抗の低減が図れる。 According to the present invention, the first outer surface shape is used when navigating with a fluid number lower than Fn1, and the second outer surface shape is used when navigating with a fluid number higher than Fn1, thereby providing a bow valve with only one outer surface shape. Compared to a ship that performs, the wave resistance when navigating at two or more speed conditions can be reduced.
 図5で示すCpカーブで、33は図1の(1)で示した第一の外面形状に、34は図1の(2)で示した第二の外面形状に、それぞれ対応する。両曲線は船首バルブに対応する領域で大きさと傾きに違いを有する。 In the Cp curve shown in FIG. 5, 33 corresponds to the first outer surface shape shown in (1) of FIG. 1, and 34 corresponds to the second outer surface shape shown in (2) of FIG. Both curves have a difference in size and inclination in the region corresponding to the bow valve.
 図4で示す造波抵抗曲線の特徴は図5で示したCpカーブの違いに基づくものである。図1で示した外面形状の違いは、図5で示したCpカーブの違いを反映させたものである。 The characteristics of the wave resistance curve shown in FIG. 4 are based on the difference in the Cp curve shown in FIG. The difference in the outer shape shown in FIG. 1 reflects the difference in the Cp curve shown in FIG.
 図6で示す造波抵抗曲線は喫水をベースに造波抵抗係数を描いたものである。35は図1の(1)で示した第一の外面形状に、36は図1の(2)で示した第二の外面形状に、それぞれ対応する。両曲線は喫水d1で交差し、その前後で大小関係を逆転している。 The wave resistance curve shown in FIG. 6 depicts the wave resistance coefficient based on the draft. 35 corresponds to the first outer surface shape shown in (1) of FIG. 1, and 36 corresponds to the second outer surface shape shown in (2) of FIG. Both curves intersect at the draft d1, and the magnitude relationship is reversed before and after that.
 本発明により、d1より大きい喫水で航行する時は第一の外面形状、d1より小さい喫水で航行する時は第二の外面形状とすることで、一つの外面形状だけの船首バルブを装備する船舶と比べ、2つ以上の喫水で航行する時の造波抵抗の低減が図れる。 According to the present invention, a ship equipped with a bow valve having only one outer surface shape by adopting a first outer surface shape when navigating with a draft larger than d1 and a second outer surface shape when navigating with a draft smaller than d1. In comparison with this, it is possible to reduce the wave resistance when sailing with two or more drafts.
このように図1及び図2に示した実施形態では、船体に装備する船首バルブを有する船体で、あるフルード数を前後して造波抵抗の大きさが逆転する2種類のCpカーブを持つバルブの外面形状を形成できる。 As described above, in the embodiment shown in FIGS. 1 and 2, the hull having a bow valve equipped on the hull has two types of Cp curves in which the magnitude of the wave resistance is reversed around a certain fluid number. The outer surface shape can be formed.
図7及び図8は請求項1の別の実施形態で、図7は船体の外形を船底から見た平面図であり、図8は船体の外形の側面図である。図7及び図8は2種類の外面形状を示しており、(1)は通常バルブサイズ時のもの、(2)はバルブサイズ変更時のものである。 7 and 8 show another embodiment of the present invention. FIG. 7 is a plan view of the outer shape of the hull as seen from the bottom of the ship, and FIG. 8 is a side view of the outer shape of the hull. FIG. 7 and FIG. 8 show two types of outer surface shapes. (1) is a normal valve size, and (2) is a valve size change.
 (1)と(2)で固定外板面11は同一である。(1)の可動外板面12Rと(2)の可動外板面22Rは共通のものであるが、配置が異なっている。 (1) The fixed outer plate surface 11 is the same in (2). Although the movable outer plate surface 12R of (1) and the movable outer plate surface 22R of (2) are common, the arrangement is different.
 図7及び図8での実施形態では、右舷と左舷のそれぞれでつなぎ面を4分割した点に特徴があり、(1)の右舷側では、後方側つなぎ面13R、前方側つなぎ面14R、下方側つなぎ面15R及び上方側つなぎ面16Rで全体のつなぎ面が構成される。(1)の左舷側でも同様に、後方側つなぎ面13L、前方側つなぎ面14L、下方側つなぎ面15L及び上方側つなぎ面16Lで全体のつなぎ面が構成される。 7 and 8 is characterized in that the connecting surface is divided into four parts on the starboard side and the port side, respectively. On the starboard side of (1), the rear connecting surface 13R, the front connecting surface 14R, the lower side The entire connecting surface is constituted by the side connecting surface 15R and the upper connecting surface 16R. Similarly, on the port side of (1), the rear connecting surface 13L, the front connecting surface 14L, the lower connecting surface 15L, and the upper connecting surface 16L constitute the entire connecting surface.
(2)の右舷側では、後方側つなぎ面23R、前方側つなぎ面24R、下方側つなぎ面25R及び上方側つなぎ面26Rで全体のつなぎ面が構成される。(2)の左舷側でも同様に、後方側つなぎ面23L、前方側つなぎ面24L、下方側つなぎ面25L及び上方側つなぎ面26Lで全体のつなぎ面が構成される。 On the starboard side of (2), the rear connecting surface 23R, the front connecting surface 24R, the lower connecting surface 25R, and the upper connecting surface 26R constitute the entire connecting surface. Similarly, on the port side of (2), the entire connecting surface is constituted by the rear connecting surface 23L, the front connecting surface 24L, the lower connecting surface 25L, and the upper connecting surface 26L.
図8の(1)で第一の外面形状を形成する時、可動外板面12Rの配置、ならびに、後方側つなぎ面13R、前方側つなぎ面14R、下方側つなぎ面15R及び上方側つなぎ面16Rの形状を適宜選択することにより、固定外板面11、可動外板面12R、後方側つなぎ面13R、前方側つなぎ面14R、下方側つなぎ面15R及び上方側つなぎ面16Rで構成されるウォーターライン及びバトックラインには不連続な曲率が生じない。  When the first outer surface shape is formed in (1) of FIG. 8, the arrangement of the movable outer plate surface 12R, the rear connecting surface 13R, the front connecting surface 14R, the lower connecting surface 15R, and the upper connecting surface 16R. By appropriately selecting the shape, a water line composed of a fixed outer plate surface 11, a movable outer plate surface 12R, a rear side connecting surface 13R, a front side connecting surface 14R, a lower side connecting surface 15R and an upper side connecting surface 16R. In addition, there is no discontinuous curvature in the buttocks line. *
図8の(2)で第二の外面形状を形成する時も、同様に可動外板面22Rの配置、ならびに、後方側つなぎ面23R、前方側つなぎ面24R、下方側つなぎ面25R及び上方側つなぎ面26Rの形状を適宜選択することにより、固定外板面11、可動外板面22R、後方側つなぎ面23R、前方側つなぎ面24R、下方側つなぎ面25R及び上方側つなぎ面26Rで構成されるウォーターライン及びバトックラインには不連続な曲率が生じない。 Similarly, when forming the second outer surface shape in (2) of FIG. 8, the arrangement of the movable outer plate surface 22R, the rear side connecting surface 23R, the front side connecting surface 24R, the lower side connecting surface 25R and the upper side as well. By appropriately selecting the shape of the connecting surface 26R, the fixed outer plate surface 11, the movable outer plate surface 22R, the rear connecting surface 23R, the front connecting surface 24R, the lower connecting surface 25R, and the upper connecting surface 26R are configured. Discontinuous curvature does not occur in the water line and buttocks line.
 つなぎ面を4分割にすることで、外面形状を変更するためにつなぎ面を動かす時に、他のつなぎ面や可動外板面との干渉が避けられる。また、不要なつなぎ面の格納に際し、固定外板面や可動外板面との干渉を避けられる。 By dividing the connecting surface into four parts, when moving the connecting surface to change the outer surface shape, interference with other connecting surfaces and movable outer plate surfaces can be avoided. Further, when storing unnecessary connecting surfaces, it is possible to avoid interference with the fixed outer plate surface and the movable outer plate surface.
 図9で示す船首バルブの水平断面図を用い、本発明の特徴をさらに説明する。第一の外面形状(1)と第二の外面形状(2)で共通に用いられる外形構成要素に関は、固定外板面51と可動外板面52である。可動外板面52は、52を水平移動するためのリンク機構部52S及び駆動部52K、ならびに、52を回転移動ためのプーリー及び駆動部52Pとワイヤー及びリンク部52Wにより所定の位置への移動が可能になる。 The features of the present invention will be further described with reference to a horizontal sectional view of the bow valve shown in FIG. Concerning the external components commonly used in the first outer surface shape (1) and the second outer surface shape (2), there are a fixed outer plate surface 51 and a movable outer plate surface 52. The movable outer plate surface 52 is moved to a predetermined position by a link mechanism portion 52S and a drive portion 52K for horizontally moving the 52, and a pulley and drive portion 52P for rotating and moving the 52, a wire and a link portion 52W. It becomes possible.
第一の外面形状(1)だけで用いられる後方側つなぎ面53と前方側つなぎ面54は、リンク機構部として53Sと54S,駆動部として53Kと54Kにより移動可能である。53と54は、第二の外面形状を形成する時には(2)に示されるように、第二の外面形状の内部に格納される。 The rear side connecting surface 53 and the front side connecting surface 54 used only in the first outer surface shape (1) can be moved by 53S and 54S as a link mechanism portion and 53K and 54K as a drive portion. When forming the second outer surface shape, 53 and 54 are stored inside the second outer surface shape as shown in (2).
同様に、第二の外面形状(2)だけで用いられる後方側つなぎ面55と前方側つなぎ面56は、リンク機構部として55Sと56S,駆動部として55Kと56Kにより移動可能である。55と56は、第一の外面形状を形成する時は(1)に示されるように、第一の外面形状の内部に格納される。 Similarly, the rear side connecting surface 55 and the front side connecting surface 56 used only in the second outer surface shape (2) can be moved by 55S and 56S as the link mechanism portion and 55K and 56K as the drive portion. When forming the first outer surface shape, 55 and 56 are stored inside the first outer surface shape as shown in (1).
 図10は船首バルブの幅方向の鉛直断面図である。第一の外面形状(1)と第二の外面形状(2)で共通に用いられる外形構成要素は、固定外板面61と可動外板面62である。これらは図9における固定外板面51と可動外板面52をそれぞれ別断面で見たもので同一のものである。 FIG. 10 is a vertical sectional view in the width direction of the bow valve. The external components commonly used in the first outer surface shape (1) and the second outer surface shape (2) are the fixed outer plate surface 61 and the movable outer plate surface 62. These are the same when the fixed outer plate surface 51 and the movable outer plate surface 52 in FIG.
 図10では、第一の外面形状(1)の下方側つなぎ面63と上方側つなぎ面64、第二の外面形状(2)の下方側つなぎ面65と上方側つなぎ面66の配置及び格納の様子を示している。 In FIG. 10, the arrangement and storage of the lower connecting surface 63 and the upper connecting surface 64 of the first outer surface shape (1), and the lower connecting surface 65 and the upper connecting surface 66 of the second outer surface shape (2). It shows a state.
第一の外面形状(1)だけで用いられる下方側つなぎ面63と上方側つなぎ面64は、リンク機構部として63Sと64S,駆動部として63Kと64Kにより移動可能である。63と64は、第二の外面形状を形成する時には(2)に示されるように、第二の外面形状の内部に格納される。 The lower connecting surface 63 and the upper connecting surface 64 used only in the first outer surface shape (1) can be moved by 63S and 64S as a link mechanism portion and 63K and 64K as a drive portion. When forming the second outer surface shape, 63 and 64 are stored inside the second outer surface shape as shown in (2).
同様に、第二の外面形状(2)だけで用いられる下方側つなぎ面65と上方側つなぎ面66は、リンク機構部として65Sと66S,駆動部として65Kと66Kにより移動可能である。65と66は、第一の外面形状を形成する時には(1)に示されるように、第一の外面形状の内部に格納される。 Similarly, the lower connecting surface 65 and the upper connecting surface 66 used only in the second outer surface shape (2) can be moved by 65S and 66S as the link mechanism portion and 65K and 66K as the driving portion. When forming the first outer surface shape, 65 and 66 are stored inside the first outer surface shape as shown in (1).
 左舷側のリンク機構部と駆動部は、右舷側のリンク機構部と駆動部との干渉を避けるため図10で示された断面とは別の断面に配置されているため、図10には描かれていない。 Since the port-side link mechanism and the drive unit are arranged on a cross-section different from the cross-section shown in FIG. 10 in order to avoid interference between the starboard-side link mechanism and the drive unit, FIG. Not.
 図9及び図10は、固定外板面、可動外板面及びつなぎ面、ならびに、これらのリンク機構部と駆動部の一つの実施形態であり、2種類の外面形状を形成し、不要なつなぎ面の船体内への格納を可能にすることを示している。 9 and 10 show one embodiment of the fixed outer plate surface, the movable outer plate surface and the connecting surface, and the link mechanism unit and the driving unit, and two types of outer surface shapes are formed and unnecessary connection is made. It shows that the surface can be stored in the hull.
図9の実施形態では、可動外板面のセンターラインとのなす角度の変更にプーリーとワイヤーを用いる例を示している。図示はしていないが、上記角度の変更機能は、他の実施形態として回転自由なジンバルを備えたリンク機構部と駆動部の組み合わせを複数個用いることによっても実現可能である。 In the embodiment of FIG. 9, an example is shown in which a pulley and a wire are used to change the angle formed with the center line of the movable outer plate surface. Although not shown, the angle changing function can also be realized by using a plurality of combinations of link mechanism units and drive units each having a rotatable gimbal as another embodiment.
図9及び図10の実施形態では、つなぎ面の移動に直線移動させるリンク機構部と駆動部の例を示している。図示はしていないが、つなぎ面の移動は、他の実施形態としてヒンジ部を備えたリンク機構部と駆動部の組み合わせにより、回転移動方式とすることによっても実現可能である。
 
In the embodiment of FIGS. 9 and 10, an example of a link mechanism unit and a drive unit that are linearly moved to move the connecting surface is shown. Although not shown, the movement of the connecting surface can also be realized by adopting a rotational movement method by combining a link mechanism portion having a hinge portion and a drive portion as another embodiment.
請求項1の発明の一実施形態例を示す船体外形の平面図である。(1)が通常時バルブサイズの外形、(2)がバルブサイズを小さくした時の外形にそれぞれ対応する。1 is a plan view of an outer shape of a hull showing an embodiment of the invention of claim 1. (1) corresponds to the outer shape of the normal valve size, and (2) corresponds to the outer shape when the valve size is reduced. 請求項1の発明の一実施形態例を示す船体外形の側面図である。(1)が通常時バルブサイズの外形、(2)がバルブサイズを小さくした時の外形にそれぞれ対応する。It is a side view of the hull outline which shows one embodiment of the invention of Claim 1. (1) corresponds to the outer shape of the normal valve size, and (2) corresponds to the outer shape when the valve size is reduced. 請求項1の発明の一実施形態例を示す船体線図の一部である。(1)が通常時バルブサイズのウォーターライン、(2)がバルブサイズを小さくした時のウォーターラインにそれぞれ対応する。FIG. 3 is a part of a hull diagram showing an embodiment of the invention of claim 1. (1) corresponds to the water line of the normal valve size, and (2) corresponds to the water line when the valve size is reduced. フルード数の変化に応じて図1の(1)と(2)に対応する船舶の造波抵抗曲線を示す図である。It is a figure which shows the wave-making resistance curve of the ship corresponding to (1) and (2) of FIG. 1 according to the change of the fluid number. 図1の(1)と(2)に対応する船舶のCpカーブを示す図である。It is a figure which shows the Cp curve of the ship corresponding to (1) and (2) of FIG. 一定船速で喫水の変化に応じて図1の(1)と(2)に対応する船舶の造波抵抗曲線を示す図である。It is a figure which shows the wave-making resistance curve of the ship corresponding to (1) and (2) of FIG. 1 according to the change of draft at constant ship speed. 請求項1の発明の別の実施形態例を示す船体外形の平面図である。(1)が通常時バルブサイズの外形、(2)がバルブサイズを小さくした時の外形にそれぞれ対応する。It is a top view of the hull outline which shows another embodiment of the invention of Claim 1. (1) corresponds to the outer shape of the normal valve size, and (2) corresponds to the outer shape when the valve size is reduced. 請求項1の発明の別の実施形態例を示す船体外形の側面図である。(1)が通常時バルブサイズの外形、(2)がバルブサイズを小さくした時の外形にそれぞれ対応する。It is a side view of the hull outer shape which shows another example of embodiment of invention of Claim 1. (1) corresponds to the outer shape of the normal valve size, and (2) corresponds to the outer shape when the valve size is reduced. 請求項1の発明の別の実施形態例での船首バルブの水平断面図である。(1)が通常時バルブサイズの断面図、(2)がバルブサイズを小さくした時の断面図にそれぞれ対応する。It is a horizontal sectional view of the bow valve in another embodiment of the invention of claim 1. (1) corresponds to a cross-sectional view of the normal valve size, and (2) corresponds to a cross-sectional view when the valve size is reduced. 請求項1の発明の別の実施形態例での船首バルブの幅方向の鉛直断面図である。(1)が通常時バルブサイズの断面図、(2)がバルブサイズを小さくした時の断面図にそれぞれ対応する。It is a vertical sectional view of the width direction of the bow valve in another embodiment of the invention of claim 1. (1) corresponds to a cross-sectional view of the normal valve size, and (2) corresponds to a cross-sectional view when the valve size is reduced.
1:主船体固定外形面
2R:右舷側の可動外板面
2L:左舷側の可動外板面
3R:通常バルブサイズ時の右舷側の固定外形面と可動外板面とのつなぎ面
3L:通常バルブサイズ時の左舷側の固定外形面と可動外板面とのつなぎ面
4R:バルブサイズ変更時の右舷側の固定外形面と可動外板面とのつなぎ面
4L:バルブサイズ変更時の左舷側の固定外形面と可動外板面とのつなぎ面
11:主船体固定外形面
12R:右舷側の可動外板面
12L:左舷側の可動外板面
13R:通常バルブサイズ時の右舷側の固定外形面と可動外板面との後方側つなぎ面
13L:通常バルブサイズ時の左舷側の固定外形面と可動外板面との後方側つなぎ面
14R:通常バルブサイズ時の右舷側の固定外形面と可動外板面との前方側つなぎ面
14L:通常バルブサイズ時の左舷側の固定外形面と可動外板面との前方側つなぎ面
15R:通常バルブサイズ時の右舷側の固定外形面と可動外板面との下方側つなぎ面
15L:通常バルブサイズ時の左舷側の固定外形面と可動外板面との下方側つなぎ面
16R:通常バルブサイズ時の右舷側の固定外形面と可動外板面との上方側つなぎ面
22R:バルブサイズ変更時の右舷側の可動外板面
22L:バルブサイズ変更時の左舷側の可動外板面
23R:バルブサイズ変更時の右舷側の固定外形面と可動外板面との後方側つなぎ面
23L:バルブサイズ変更時の左舷側の固定外形面と可動外板面との後方側つなぎ面
24R:バルブサイズ変更時の右舷側の固定外形面と可動外板面との前方側つなぎ面
24L:バルブサイズ変更時の左舷側の固定外形面と可動外板面との前方側つなぎ面
25R:バルブサイズ変更時の右舷側の固定外形面と可動外板面との下方側つなぎ面
25L:バルブサイズ変更時の左舷側の固定外形面と可動外板面との下方側つなぎ面
26R:バルブサイズ変更時の右舷側の固定外形面と可動外板面との上方側つなぎ面
31:通常バルブサイズ時のフルード数ベースの造波抵抗曲線
32:バルブサイズ変更時のフルード数ベースの造波抵抗曲線
33:通常バルブサイズ時のCpカーブ
34:バルブサイズ変更時のCpカーブ
35:通常バルブサイズ時の喫水を変更した時の造波抵抗曲線
36:バルブサイズ変更時の喫水を変更した時の造波抵抗曲線
41:後方側固定外板面のウォーターライン
42:前方側固定外板面のウォーターライン
43:通常バルブサイズ時の可動外板面のウォーターライン
44:通常バルブサイズ時の後方側つなぎ外板面のウォーターライン
45:通常バルブサイズ時の前方側つなぎ外板面のウォーターライン
46:バルブサイズ変更時の可動外板面のウォーターライン
47:バルブサイズ変更時の後方側つなぎ外板面のウォーターライン
48:バルブサイズ変更時の前方側つなぎ外板面のウォーターライン
51:固定外形面
52:右舷側の可動外板面
52S:52のリンク機構部
52K:52の駆動部
52P:52の角度調整用プーリー及び駆動部
52W:52の角度調整用ワイヤー及びリンク機構部
53:通常バルブサイズ時の右舷側の固定外形面と可動外板面との後方側つなぎ面
53S:53のリンク機構部
53K:53の駆動部
54:通常バルブサイズ時の右舷側の固定外形面と可動外板面との前方側つなぎ面
54S:54のリンク機構部
54K:54の駆動部
55:バルブサイズ変更時の右舷側の固定外形面と可動外板面との後方側つなぎ面
55S:55のリンク機構部
55K:55の駆動部
56:バルブサイズ変更時の右舷側の固定外形面と可動外板面との前方側つなぎ面
56S:56のリンク機構部
56K:56の駆動部
Xa:固定外板面とつなぎ面との後方側接続位置X座標
Xf:固定外板面とつなぎ面との前方側接続位置X座標
X1:通常バルブサイズ時の可動外板面とつなぎ面との後方側接続位置X座標
X2:通常バルブサイズ時の可動外板面とつなぎ面との前方側接続位置X座標
X3:バルブサイズ変更時の可動外板面とつなぎ面との後方側接続位置X座標
X4:バルブサイズ変更時の可動外板面とつなぎ面との前方側接続位置X座標
Ya:固定外板面とつなぎ面との後方側接続位置Y座標
Yf:固定外板面とつなぎ面との前方側接続位置Y座標
Y1:通常バルブサイズ時の可動外板面とつなぎ面との後方側接続位置Y座標
Y2:通常バルブサイズ時の可動外板面とつなぎ面との前方側接続位置Y座標
Y3:バルブサイズ変更時の可動外板面とつなぎ面との後方側接続位置Y座標
Y4:バルブサイズ変更時の可動外板面とつなぎ面との前方側接続位置Y座標
Zt:つなぎ面最上部Z座標
Zc:バルブ最大幅を持つウォーターラインZ座標
Zb:つなぎ面最上部Z座標
 
1: Main hull fixed outer surface 2R: Starboard side movable outer plate surface 2L: Port side movable outer plate surface 3R: Connecting surface 3L between starboard side fixed outer surface and movable outer plate surface at normal valve size: Normal 4R connecting port side fixed outer surface and movable outer plate surface when the valve size is changed: Starboard side connecting outer surface and fixed outer surface when the valve size is changed 4L: port side when changing the valve size Connecting surface 11 of the fixed outer surface and movable outer plate surface 11: Main hull fixed outer surface 12R: Starboard side movable outer plate surface 12L: Port side movable outer plate surface 13R: Starboard side fixed outer shape at normal valve size A rear connecting surface 13L between the surface and the movable outer plate surface: a fixed outer surface on the port side at the normal valve size and a rear connecting surface 14R between the movable outer plate surface and a fixed outer surface on the starboard side at the normal valve size Front connecting surface 14L with movable outer plate surface: Normal valve size 15R on the front side of the fixed outer surface on the starboard side and the movable outer plate surface: Downward connecting surface 15L between the fixed outer surface on the starboard side and the movable outer plate surface at the normal valve size: Port on the normal valve size Lower connecting surface 16R between the fixed outer surface on the side and the movable outer plate surface: Upper connecting surface 22R between the fixed outer surface on the starboard side and the movable outer plate surface at the normal valve size: Starboard side when the valve size is changed Movable outer plate surface 22L: Port side movable outer plate surface 23R when the valve size is changed: Starboard side connecting surface 23L: Port side fixed outer surface when the valve size is changed and the movable outer plate surface Port side when the valve size is changed Rear connecting surface 24R between the fixed outer surface on the side and the movable outer plate surface: Front connecting surface 24L between the fixed outer surface on the starboard side when the valve size is changed and the movable outer plate surface: Port side when the valve size is changed Forward of fixed outer surface and movable skin surface Connecting surface 25R: Downward connecting surface of the starboard side fixed outer surface and the movable outer plate surface when the valve size is changed 25L: Lower connecting surface of the portside fixed outer surface and the movable outer plate surface when the valve size is changed 26R: Upper side connecting surface of starboard side fixed outer shape surface and movable outer plate surface at the time of valve size change 31: Wave forming resistance curve based on fluid number at normal valve size 32: Fluid number base at time of valve size change Wave-making resistance curve 33: Cp curve 34 for normal valve size 34: Cp curve 35 for changing valve size 35: Wave-making resistance curve 36 for changing draft for normal valve size: Drafting for changing valve size Wave-forming resistance curve 41 at the time: Water line 42 on the rear fixed outer plate surface 42: Water line 43 on the front fixed outer plate surface 43: Water line 44 on the movable outer plate surface at the normal valve size Water line 45 on the rear connection outer plate surface at the normal valve size: Water line 46 on the front connection outer plate surface at the normal valve size 46: Water line 47 on the movable outer plate surface at the time of valve size change: When the valve size is changed Water line 48 on the rear connecting outer plate surface of the water: Water line 51 on the front connecting outer plate surface when changing the valve size 51: Fixed outer surface 52: Link mechanism portion 52K of the movable outer plate surface 52S on the starboard side 52: 52 Driving part 52P: 52 angle adjusting pulley and driving part 52W: 52 angle adjusting wire and link mechanism part 53: A connecting side on the rear side of the fixed outer surface on the starboard side and the movable outer plate surface in the normal valve size. 53S: 53 link mechanism portion 53K: 53 drive portion 54: forward connecting surface of starboard side fixed outer shape surface and movable outer plate surface at normal valve size 54S: 54 link mechanism portion 54K: 54 drive portion 55: rear linkage surface 55S: 55 link mechanism portion 55K: 55 drive portion of the starboard side fixed outer shape surface and movable outer plate surface when the valve size is changed 56: Front side connecting surface 56S of the starboard side fixed outer shape surface and movable outer plate surface when the valve size is changed 56S: Link mechanism portion 56K of 56: Drive portion Xa of 56: Rear side of the fixed outer plate surface and the connecting surface Connection position X coordinate Xf: Front side connection position X of fixed outer plate surface and connecting surface X coordinate X1: Rear side connection position X of movable outer plate surface and connecting surface at normal valve size X2: At normal valve size Forward side connection position X coordinate X3 between the movable outer plate surface and the connecting surface: Rear side connection position X coordinate X4 between the movable outer plate surface and the connecting surface when the valve size is changed X4: Connection with the movable outer plate surface when the valve size is changed Front side connection position with surface X coordinate a: Rear side connection position Y coordinate between the fixed outer plate surface and the connecting surface Yf: Front side connection position Y coordinate between the fixed outer plate surface and the connecting surface Y1: Between the movable outer plate surface and the connecting surface at the normal valve size Rear side connection position Y-coordinate Y2: Front side connection position Y-coordinate between movable outer plate surface and connecting surface when normal valve size Y3: Rear side connection position Y-coordinate between movable outer plate surface and connecting surface when changing valve size Y4: Front side connection position of movable outer plate surface and connecting surface when changing valve size Y coordinate Zt: Connecting surface uppermost Z coordinate Zc: Water line Z coordinate with the maximum valve width Zb: Connecting surface uppermost Z coordinate

Claims (1)

  1.  船首バルブを装備する船体で、あるフルード数を境に造波抵抗の大きさが逆転する造波特性を持つ2種類のCpカーブに対応する2種類の外面形状を形成でき、第一の外面形状は固定外板面、可動外板面、ならびに、固定外板面と可動外板面とのつなぎ面で構成され、第二の外面形状は第一の外面形状と同一の固定外板面、第一の外面形状と共通に用いる可動外板面、ならびに、第一の外面形状とは異なる固定外板面と可動外板面とのつなぎ面で構成され、第一の外面形状から第二の外面形状への変更及びその逆方向の変更のために位置変更可能な可動外板面及び固定外板面と可動外板面とのつなぎ面を動かすため駆動部とリンク機構を持ち、片方の外面形状を形成する時に不要な固定外板面と可動外板面とのつなぎ面を形成された外面形状の内側に納め、2つの外面形状で変化する可動外板面の長手方向両端部のウォーターラインの曲率を、それぞれに対応する2つの固定外板面と可動外板面とのつなぎ面の長手方向端部のウォーターラインの曲率と同一にすることにより、外面形状の変更時に段差を生じない滑らかな曲面を形成することを特徴とする船体。
     
    A hull equipped with a bow valve, which can form two types of outer surface shapes corresponding to two types of Cp curves with wave forming characteristics that reverse the magnitude of wave forming resistance at a certain fluid number. The shape is composed of a fixed outer plate surface, a movable outer plate surface, and a connecting surface between the fixed outer plate surface and the movable outer plate surface, and the second outer surface shape is the same fixed outer plate surface as the first outer surface shape, It is composed of a movable outer plate surface used in common with the first outer surface shape, and a connecting surface between the fixed outer plate surface and the movable outer plate surface different from the first outer surface shape. A movable outer plate surface that can be repositioned to change to the outer surface shape and the reverse direction, and a drive unit and a link mechanism to move the connecting surface between the fixed outer plate surface and the movable outer plate surface, and one outer surface Outer surface shape formed with a connecting surface between the fixed outer plate surface and the movable outer plate surface that is not required when forming the shape Longitudinal ends of the connecting surface between the two fixed outer plate surfaces and the movable outer plate surface corresponding to the curvatures of the water lines at both ends in the longitudinal direction of the movable outer plate surface that are accommodated inside and change in two outer surface shapes. The hull is characterized by forming a smooth curved surface that does not cause a step when the outer surface shape is changed by making it the same as the curvature of the water line of the part.
PCT/JP2012/050004 2011-01-18 2012-01-04 Hull having changeable outer surface shape WO2012098922A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011007503A JP5578621B2 (en) 2011-01-18 2011-01-18 Hull with external shape changeable
JP2011-007503 2011-01-18

Publications (1)

Publication Number Publication Date
WO2012098922A1 true WO2012098922A1 (en) 2012-07-26

Family

ID=46515554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050004 WO2012098922A1 (en) 2011-01-18 2012-01-04 Hull having changeable outer surface shape

Country Status (2)

Country Link
JP (1) JP5578621B2 (en)
WO (1) WO2012098922A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091259A1 (en) * 2012-12-12 2014-06-19 Petromanolakis E Emmanuel Vessel with a flow deflecting hydrodynamic bow fin arrangement
EP3620365A1 (en) * 2018-09-06 2020-03-11 Nobuyoshi Morimoto Merchant ship capable of sailing in frozen sea area and operation method thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101691005B1 (en) 2015-06-05 2016-12-29 삼성중공업 주식회사 Ship
KR101894293B1 (en) * 2016-11-10 2018-09-03 삼성중공업 주식회사 Apparatus for decreasing drag resistance of ship

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137833A (en) * 2008-12-15 2010-06-24 Akiyoshi Ishii Bow valve device
JP2010188953A (en) * 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd Bulbous bow device and ship

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4328601A (en) * 1979-12-26 1982-05-11 Fmc Corporation Inflatable bow
JPS59156880U (en) * 1983-04-07 1984-10-22 三菱重工業株式会社 Bow shape adjustment device
JPS61175193A (en) * 1985-01-29 1986-08-06 Ishikawajima Harima Heavy Ind Co Ltd Bulbous bow
JPH0616172A (en) * 1992-06-29 1994-01-25 Mitsubishi Heavy Ind Ltd Ship with movable bow valve also used for anti-pitching

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010137833A (en) * 2008-12-15 2010-06-24 Akiyoshi Ishii Bow valve device
JP2010188953A (en) * 2009-02-20 2010-09-02 Mitsubishi Heavy Ind Ltd Bulbous bow device and ship

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014091259A1 (en) * 2012-12-12 2014-06-19 Petromanolakis E Emmanuel Vessel with a flow deflecting hydrodynamic bow fin arrangement
CN105263795A (en) * 2012-12-12 2016-01-20 E·伊曼纽尔·彼得罗马诺拉基斯 Vessel with a flow deflecting hydrodynamic bow fin arrangement
AU2013356970B2 (en) * 2012-12-12 2017-11-23 Milan Shipping And Investment Limited Vessel with a flow deflecting hydrodynamic bow fin arrangement
EP3620365A1 (en) * 2018-09-06 2020-03-11 Nobuyoshi Morimoto Merchant ship capable of sailing in frozen sea area and operation method thereof

Also Published As

Publication number Publication date
JP5578621B2 (en) 2014-08-27
JP2012148627A (en) 2012-08-09

Similar Documents

Publication Publication Date Title
JP5578621B2 (en) Hull with external shape changeable
CN102658816B (en) Hovercraft without lift fan
JP5412259B2 (en) boat
US7305926B2 (en) Ported tri-hull boat
CN102574568A (en) Trimaran motion damping
US5265554A (en) Boat construction
KR20120004414A (en) Method and arrangement of bulbous bow
US20210316817A1 (en) Hybrid chine boat hull and methods of manufacture and use
US6065415A (en) Reduction of wave making by multi-hull surface vessel
KR101225175B1 (en) Propulsion apparatus and ship including the same
JP2011157019A (en) Propulsion performance improving device of multi-hull ship
US10059405B2 (en) High stability low drag boat hull keel having inverted foil configuration
CN109572923A (en) A kind of Channel type planing boat
CN104760678A (en) Ship with tunnels on sides
JP7049144B2 (en) Stern fins and ships
CN209581768U (en) A kind of Channel type planing boat
US8726822B2 (en) Vessel
US3974535A (en) Boat hull with spherical dome
JP2016107715A (en) Rudder, rudder unit and marine vessel
RU2300478C1 (en) Transom-type aft extremity with bulge studs for single-hulled surface high-speed displacement-type ship
CN110282071B (en) Multifunctional turbulence device suitable for medium-high speed ship
JP2002068072A (en) Stern flap device for ship
JP2018203194A (en) Ship rudder and ship
CN217515361U (en) Small rudder for racing boat
JP5342512B2 (en) The shape of the bow valve section of the enlarged ship

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12736276

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12736276

Country of ref document: EP

Kind code of ref document: A1