WO2012098608A1 - 立体画像処理装置、立体画像処理方法およびプログラム - Google Patents

立体画像処理装置、立体画像処理方法およびプログラム Download PDF

Info

Publication number
WO2012098608A1
WO2012098608A1 PCT/JP2011/006406 JP2011006406W WO2012098608A1 WO 2012098608 A1 WO2012098608 A1 WO 2012098608A1 JP 2011006406 W JP2011006406 W JP 2011006406W WO 2012098608 A1 WO2012098608 A1 WO 2012098608A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
subject
eye
stereoscopic
distance
Prior art date
Application number
PCT/JP2011/006406
Other languages
English (en)
French (fr)
Inventor
山下 春生
井東 武志
弘道 小野
桑原 康浩
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Priority to US13/636,338 priority Critical patent/US8750601B2/en
Priority to JP2012553475A priority patent/JP5502211B2/ja
Publication of WO2012098608A1 publication Critical patent/WO2012098608A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/10Processing, recording or transmission of stereoscopic or multi-view image signals
    • H04N13/106Processing image signals
    • H04N13/128Adjusting depth or disparity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/204Image signal generators using stereoscopic image cameras
    • H04N13/239Image signal generators using stereoscopic image cameras using two 2D image sensors having a relative position equal to or related to the interocular distance
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/20Image signal generators
    • H04N13/282Image signal generators for generating image signals corresponding to three or more geometrical viewpoints, e.g. multi-view systems

Definitions

  • the present invention relates to a technique for improving the quality of a stereoscopic image (three-dimensional stereoscopic image), a camera (imaging device) that performs stereoscopic imaging, a display device that displays a stereoscopic image (stereoscopic image), and a stereoscopic image (stereoscopic image).
  • the present invention relates to a technology that can be applied to a wide range of devices that handle stereoscopic images (stereoscopic images), such as image processing apparatuses that process images.
  • a stereoscopic display device In order to reproduce a stereoscopic image by displaying the stereoscopic image (the image for the left eye and the image for the right eye) on a display device (hereinafter referred to as “stereoscopic display device”) that can be independently projected to the left and right eyes.
  • a stereoscopic imaging device that captures a stereoscopic image (a left-eye image and a right-eye image) in the presence of binocular parallax is known.
  • a stereoscopic image (left-eye image and right-eye image) acquired in a state where a distant view (distant subject) or a foreground (subject subject) has a large parallax, It becomes an image that exceeds the image limit and is difficult to stereoscopically view, or an image that causes a person who is viewing the stereoscopic image to feel tired (a tired image).
  • SB adjustment parallax adjustment or stereo base adjustment
  • Parallax adjustment is a technique used mainly when the distant view (distant view subject) exceeds the fusion limit. It is possible to obtain a stereoscopic image (stereoscopic image that can be easily viewed stereoscopically) that is easy to view when stereoscopically viewing (a distant subject).
  • the stereo base adjustment is performed by reducing the distance between the two cameras (the left-eye image capturing camera and the right-eye image capturing camera) (by reducing the stereo base (base line length)), The dynamic range of parallax can be reduced.
  • stereoscopic imaging is performed to obtain a stereoscopic image in which the whole from the foreground (the subject in the foreground) to the far background (the subject in the background) falls within the fusion zone. Can do.
  • the stereoscopic image displayed on the display device having a small size is an easily viewable stereoscopic image.
  • stereoscopic imaging by taking full advantage of the above-described imaging techniques (parallax adjustment, stereo base adjustment), a stereoscopic image that is a sufficiently easy-to-view image (stereoscopic image that can be easily viewed stereoscopically) is captured when stereoscopic display is performed in a predetermined display environment. (For example, refer to Patent Document 1).
  • the parallax is reduced from the original value by reducing the desired parallax in consideration of the fusion limit of stereoscopic vision (so that the subject that is the subject of stereoscopic imaging falls within the fusion zone of stereoscopic vision).
  • a stereoscopic image that is easy to view (a stereoscopic image that is easy to view stereoscopically) is acquired, which is not desirable from the viewpoint of the naturalness of the stereoscopic effect and perspective in the stereoscopic image. Therefore, a stereoscopic image acquired by the above-described conventional technique (a technique based on parallax adjustment or stereo base adjustment) has a problem regarding the quality of the stereoscopic image.
  • the acquired stereoscopic image tends to be a low-quality image with poor stereoscopic effect and perspective.
  • a so-called “writing splitting phenomenon” may occur with the compression and reduction of the stereoscopic effect that occurs when the above-described prior art is used.
  • “Writing phenomenon” refers to a phenomenon in a stereoscopic image that looks like a flat picture drawn on a board because the thickness of a main subject such as a foreground person is thin.
  • this cracking phenomenon occurs in an important main subject, the quality of the stereoscopic image is extremely lowered. Further, the splitting phenomenon does not occur only due to the occurrence of compression / decrease of stereoscopic effect in a stereoscopic image by performing parallax adjustment as in the prior art. Depending on the shooting conditions (shooting conditions), a cracking phenomenon may occur even in ideal undistorted stereoscopic shooting (shooting a stereoscopic image without compression / degradation of stereoscopic effect).
  • the cracking phenomenon is a visual phenomenon, and not all causes that cause the cracking phenomenon have been completely elucidated.
  • the cracking phenomenon that occurs due to any factor does not change the quality of the stereoscopic image.
  • the present invention restores the subject's three-dimensional effect / thickness, regardless of the cause of the cracking phenomenon, and provides a three-dimensional image process that provides a high-quality three-dimensional image with little sense of writing. It is an object to realize an apparatus, a stereoscopic image processing method, and a program.
  • a first invention is a stereoscopic image processing apparatus that performs an image correction process on a left-eye image and a right-eye image included in a stereoscopic image by a two-lens method or a multi-viewpoint method, and includes a depth acquisition unit, A correction unit.
  • the depth acquisition unit acquires distance information in a three-dimensional space for subjects included in the left-eye image and the right-eye image. (For example, the depth acquisition unit calculates distance information about a subject included in the left-eye image and the right-eye image from the left-eye image and the right-eye image, and the left-eye distance image and the right-eye distance. Get the image.)
  • the image correction unit (1) Based on the distance information of the subject acquired by the depth acquisition unit, an end region of the subject on the left-eye image and / or the right-eye image is detected, (2) The parallax of the end region of the subject on the left-eye image and / or the right-eye image is adjusted so that the localization position of the detected end region of the subject is farther when the stereoscopic image is displayed in three dimensions. adjust.
  • the stereoscopic image processing apparatus since the parallax of the end region of the subject is adjusted so that the localization position of the end region of the subject is far away, the end region of the subject is displayed when the stereoscopic image is stereoscopically displayed. It will appear rounded.
  • the stereoscopic image processed by the stereoscopic image processing apparatus is a high-quality stereoscopic image that can appropriately express the stereoscopic effect / thickness of the subject and has little sense of writing.
  • the “distance information in the three-dimensional space” is, for example, the first viewpoint (for example, the left when acquiring the left-eye image) when it is assumed that the left-eye image or the right-eye image is stereoscopically captured.
  • a three-dimensional space corresponding to the second pixel that is a pixel on the right-eye image corresponding to the first pixel an imaging space when it is assumed that the left-eye image or the right-eye image is stereoscopically captured
  • the “distance information about the subject in the three-dimensional space” refers to information correlated with the subject distance.
  • “Subject distance” refers to the distance from an object focused on the surface of an image sensor (for example, a CCD image sensor or a CMOS image sensor) of the imaging unit to a camera (stereoscopic imaging device). And a conjugate distance (object-image distance).
  • the “subject distance” is a concept including an approximate distance from the stereoscopic imaging device to the subject. For example, (1) the entire lens of the optical system of the stereoscopic imaging device (the first viewpoint lens and / or the second viewpoint).
  • 2nd invention is 1st invention, Comprising: An image correction part is provided with the image correction part for left eyes, and the image correction part for right eyes.
  • the left eye image correction unit performs the following processing. (1) Based on the distance information acquired by the depth acquisition unit, a change in the distance between the subject and the background included in the left-eye image is detected as left-eye distance change information, and the left-eye distance change information is And detecting a left end partial region of the subject on the left-eye image.
  • the right eye image correcting unit performs the following processing. (1) Based on the distance information acquired by the depth acquisition unit, a change in the distance between the subject and the background included in the right-eye distance image is detected as right-eye distance change information, and the right-eye distance change information. Is used to detect the right end partial region of the subject on the right-eye image. (For example, the differential processing is performed on the right-eye distance image, and the right end partial region of the subject on the right-eye image is detected from the differential processing result image and the right-eye distance image.) (2) On the right eye image, the left eye image is corrected so that the right end partial area of the detected subject is enlarged in the right direction.
  • the left eye image correction unit and the right eye image correction unit appropriately set the end region of the subject based on the depth value of the subject and the amount of change (differential value) of the depth value. Can be detected. Further, in this stereoscopic image processing apparatus, (1) the left end partial area of the subject on the left eye image is expanded leftward (expanded horizontally), and (2) the right end of the subject on the right eye image is displayed. The partial area can be expanded rightward (stretched horizontally).
  • the stereoscopic image processed by the stereoscopic image processing apparatus is a high-quality stereoscopic image that can appropriately express the stereoscopic effect / thickness of the subject and has little sense of writing.
  • 3rd invention is 1st or 2nd invention, Comprising: An image correction part is provided with the image correction part for left eyes, and the image correction part for right eyes.
  • the left eye image correction unit performs the following processing. (1) Based on the distance information acquired by the depth acquisition unit, a change in the distance between the subject and the background included in the left-eye image is detected as left-eye distance change information, and the left-eye distance change is used. The right end partial area of the subject on the left eye image is detected.
  • the right eye image correcting unit performs the following processing. (1) Based on the distance information acquired by the depth acquisition unit, a change in the distance between the subject and the background included in the right-eye distance image is detected as right-eye distance change information, and the right-eye distance change is detected. The right end partial area of the subject on the right-eye image is detected. (For example, the differential processing is performed on the right-eye distance image, and the right end partial region of the subject on the right-eye image is detected from the differential processing result image and the right-eye distance image.) (2) The left-eye image is corrected so that the left end partial area of the detected subject contracts in the right direction on the right-eye image.
  • the left eye image correction unit and the right eye image correction unit appropriately set the end region of the subject based on the depth value of the subject and the amount of change (differential value) of the depth value. Can be detected. Further, in this stereoscopic image processing apparatus, (1) the right end partial area of the subject on the left eye image is contracted leftward (compressed in the horizontal direction), and (2) the right end of the subject on the right eye image is displayed. The partial area can be contracted in the right direction (compressed in the horizontal direction).
  • a minute relative parallax is added so as to bend the end portion area of the subject slightly backward without changing the parallax other than the end portion area of the subject. Can do.
  • the end region of the subject is displayed with a rounded feeling.
  • the stereoscopic image processed by the stereoscopic image processing apparatus is a high-quality stereoscopic image that can appropriately express the stereoscopic effect / thickness of the subject and has little sense of writing.
  • images P (1) to P (N) which are N images (N is a natural number of 2 or more) acquired by the multi-viewpoint method (the variable x of the image P (x) is from the left).
  • a stereoscopic image processing apparatus that performs image correction processing on a natural number assigned in ascending order in the right direction), and includes a depth acquisition unit and an image correction unit.
  • the depth acquisition unit performs three-dimensional analysis on subjects included in the image P (k) (1 ⁇ k ⁇ N ⁇ 1, k is a natural number) and the image P (j + 1) (k ⁇ j ⁇ N ⁇ 1, j is a natural number). Get distance information in space.
  • the image correction unit (1) Based on the distance information of the subject acquired by the depth acquisition unit, an end region of the subject on the image P (k) and / or the image P (k + 1) is detected, (2) The parallax of the end region of the subject in the image P (k) and / or the image P (j + 1) so that the localization position of the end region of the detected subject is farther when the stereoscopic image is stereoscopically displayed. Adjust.
  • the subject is positioned so that the localization position of the end region of the subject is farther from N images (N is a natural number of 2 or more) acquired by the multi-view method for stereoscopic viewing.
  • N is a natural number of 2 or more
  • the parallax of the end partial area can be adjusted. Therefore, when the stereoscopic image acquired by the stereoscopic image processing apparatus is stereoscopically displayed, the end region of the subject is displayed with a rounded feeling.
  • the stereoscopic image processed by the stereoscopic image processing apparatus is a high-quality stereoscopic image that can appropriately express the stereoscopic effect / thickness of the subject and has little sense of writing.
  • An image correction part performs the following processes. That is, the image correction unit Detecting the left end partial area and the right end partial area of the subject on the images P (1) to P (N); On the image P (m) (1 ⁇ m ⁇ N, k is a natural number), the left extension amount on the detected subject image is ⁇ L (m), and the right extension amount on the detected subject image is Is ⁇ R (N ⁇ m + 1), for an arbitrary natural number x of 1 ⁇ x ⁇ N ⁇ 2, ⁇ R (x)> ⁇ R (x + 1) ⁇ L (x)> ⁇ L (x + 1) Using the right extension and left extension, (1) For the image P (1), the image P (1) is corrected so that the left end partial area of the subject is enlarged by the extension amount ⁇ L (1) in the left direction, (2) For the image P (x) (2 ⁇ x ⁇ N ⁇ 1, x: natural number), the left end partial area of the subject expands the extension amount by ⁇ L
  • An image correction part performs the following processes. That is, the image correction unit Detecting the left end partial area and the right end partial area of the subject on the images P (1) to P (N); On the image P (m) (1 ⁇ m ⁇ N, k is a natural number), the right compression amount on the detected subject image is ⁇ R (m), and the left compression amount on the detected subject image is Is ⁇ L (N ⁇ m + 1), for any natural number x with 1 ⁇ x ⁇ N ⁇ 2, ⁇ R (x)> ⁇ R (x + 1) ⁇ L (x)> ⁇ L (x + 1) Using the compression amount in the right direction and the compression amount in the left direction, (1) For the image P (1), the image P (1) is corrected so that the right end partial region of the subject contracts by the compression amount ⁇ R (1) in the right direction; (2) For the image P (x) (2 ⁇ x ⁇ N ⁇ 1, x: natural number), the right end partial area of the subject contracts in the right
  • a seventh invention is a stereoscopic image processing method for performing an image correction process on a left-eye image and a right-eye image included in a stereoscopic image by a two-lens method or a multi-viewpoint method, the depth acquisition step, A correction step.
  • the depth acquisition step distance information about the subject included in the left-eye image and the right-eye image is calculated from the left-eye image and the right-eye image, and a left-eye distance image and a right-eye distance image are generated. To do.
  • the image correction step (1) Based on the distance information of the subject acquired in the depth acquisition step, an end region of the subject on the left-eye image and / or the right-eye image is detected, (2) The parallax of the end region of the subject on the left-eye image and / or the right-eye image is adjusted so that the localization position of the detected end region of the subject is farther when the stereoscopic image is displayed in three dimensions. adjust. Thereby, it is possible to realize a stereoscopic image processing method having the same effects as those of the first invention.
  • An eighth invention is a program for causing a computer to execute a stereoscopic image processing method for performing image correction processing on a left-eye image and a right-eye image included in a stereoscopic image by a two-lens method or a multi-viewpoint method.
  • the stereoscopic image processing method includes a depth acquisition step and an image correction step. In the depth acquisition step, distance information about the subject included in the left-eye image and the right-eye image is calculated from the left-eye image and the right-eye image, and a left-eye distance image and a right-eye distance image are generated. To do.
  • the image correction step (1) Based on the distance information of the subject acquired in the depth acquisition step, an end region of the subject on the left-eye image and / or the right-eye image is detected, (2) The parallax of the end region of the subject on the left-eye image and / or the right-eye image is adjusted so that the localization position of the detected end region of the subject is farther when the stereoscopic image is displayed in three dimensions. adjust. Thereby, it is possible to realize a program for causing a computer to execute a stereoscopic image processing method having the same effects as those of the first invention.
  • Schematic configuration diagram of the stereoscopic imaging apparatus 1000 according to the first embodiment including a shooting environment (shooting scene).
  • Configuration diagram of the image correction unit 104 of the first embodiment Illustration of shooting environment and subject The figure for demonstrating the production
  • Process flow chart of intensity generator in first embodiment The figure for demonstrating the address conversion characteristic in the expansion
  • extension mode in 1st Embodiment, and an interpolation process Processing results of processing in the expansion mode by the stereoscopic imaging apparatus 1000 of the first embodiment
  • Processing results of processing in compression mode by the stereoscopic imaging apparatus 1000 of the first embodiment A diagram schematically showing the spatial arrangement of four viewpoints
  • FIG. 1 shows a schematic diagram of a stereoscopic imaging apparatus 1000 according to the first embodiment.
  • a scene 200 imaging scene 200
  • FIG. 1 together with the stereoscopic imaging apparatus 1000, a scene 200 (imaging scene 200) captured by the stereoscopic imaging apparatus 1000 is schematically illustrated.
  • the stereoscopic imaging apparatus 1000 collects subject light from a first viewpoint and acquires a first image signal (for example, a right-eye image signal (R image signal)); A second imaging unit 101L that collects subject light from the second viewpoint and acquires a second image signal (for example, a left-eye image signal (L image signal)), and a first image signal (for example, an R image signal). And an image input unit 102 for converting the second image signal (for example, the L image signal) into a digital signal.
  • a first image signal for example, a right-eye image signal (R image signal)
  • a second imaging unit 101L that collects subject light from the second viewpoint and acquires a second image signal (for example, a left-eye image signal (L image signal)
  • a first image signal for example, an R image signal
  • an image input unit 102 for converting the second image signal (for example, the L image signal) into a digital signal.
  • the stereoscopic imaging apparatus 1000 calculates subject distance information from the first image signal (for example, R image signal) and the second image signal (for example, L image signal) converted into digital signals, respectively, Depth acquisition unit that outputs as depth information (for example, R depth information) and second depth information (for example, L depth information), first depth information (for example, R depth information), and second depth information (for example, L depth information) And an image correction unit 104 that performs image correction processing on a first image signal (for example, an R image signal) and a second image signal (for example, an L image signal).
  • Depth acquisition unit that outputs as depth information (for example, R depth information) and second depth information (for example, L depth information), first depth information (for example, R depth information), and second depth information (for example, L depth information)
  • an image correction unit 104 that performs image correction processing on a first image signal (for example, an R image signal) and a second image signal (for example, an L image signal).
  • the stereoscopic imaging apparatus 1000 includes a control unit 105 that controls each of the functional units.
  • the control unit 105 and each functional unit of the stereoscopic imaging apparatus 1000 may be directly connected to each other, or may be connected to each other via a bus.
  • the following description will be made assuming that the first imaging unit 101R captures the right eye image (video) and the second imaging unit 101L captures the left eye image (video).
  • the first imaging unit 101R is installed at a first viewpoint, and an optical system that collects subject light and a first image signal (right-eye image signal (R image signal) by photoelectric conversion from the collected subject light. ).
  • the first imaging unit 101R outputs the acquired first image signal (R image signal) to the image input unit 102.
  • the second imaging unit 101L is installed at a second viewpoint, which is a position different from the first viewpoint, and an optical system that collects subject light and a second image signal (left) by photoelectric conversion from the collected subject light.
  • the second imaging unit 101L outputs the acquired second image signal (L image signal) to the image input unit 102.
  • the image input unit 102 receives the first image signal (R image signal) acquired by the first imaging unit 101R, performs A / D conversion on the input first image signal, and performs A / D conversion.
  • the first image signal (R image signal) is output to the depth acquisition unit 103 and the image correction unit 104.
  • the image input unit 102 also receives the second image signal (L image signal) acquired by the second imaging unit 101L, performs A / D conversion on the input second image signal, and performs A / D conversion.
  • the D-converted second image signal (L image signal) is output to the depth acquisition unit 103 and the image correction unit 104.
  • the depth acquisition unit 103 receives the first image signal (R image signal) and the second image signal (L image signal) output from the image input unit 102.
  • the depth acquisition unit 103 receives the first image (R image) formed from the first image signal (R image signal) and the second image (L image) formed from the second image signal (L image signal).
  • First depth information (R depth information) that is depth information for one image (R image) and second depth information (L depth information) that is depth information for a second image (L image) are generated. Then, the depth acquisition unit 103 outputs the generated first depth information (R depth information) and second depth information (L depth information) to the image correction unit 104.
  • the image correction unit 104 includes an L image correction unit 104L and an R image correction unit 104R.
  • the image correction unit 104 includes a first image signal (R image signal) and a second image signal (L image signal) output from the image input unit 102, and first depth information (R depth) output from the depth acquisition unit 103. Information) and second depth information (L depth information).
  • the image correction unit 104 performs correction processing on the first image signal (R image signal) based on the first depth information (R depth information), and outputs the first image signal (R image signal) after the correction processing. .
  • the image correction unit 104 performs a correction process on the second image signal (L image signal) based on the second depth information (L depth information), and outputs the second image signal (L image signal) after the correction process. Output.
  • the L image image correction unit 104 ⁇ / b> L includes a memory unit 141, an intensity generation unit 142, a coordinate conversion unit 143, and an interpolation unit 144.
  • the memory unit 141 includes an L image signal Lin output from the image input unit 102, a write address WAD_L output from the control unit 105, and a read address RAD2_L output from the coordinate conversion unit 143.
  • An integer part RAD2_L_Int is used as an input.
  • the memory unit 141 writes the data (signal value) of the L image signal Lin to an address indicated by the write address WAD_L at a predetermined timing.
  • the memory unit 141 reads the data (signal value) of the L image signal Lin from the address indicated by the read address (integer part) RAD2_L_Int at a predetermined timing. Then, the memory unit 141 outputs the read data (signal value) of the L image signal Lin to the interpolation unit 144.
  • the intensity generation unit 142 receives the second depth information (L depth information) output from the depth acquisition unit 103, and generates an intensity signal K1_L from the second depth information (L depth information). Then, the intensity generation unit 142 outputs the generated intensity signal K1_L to the coordinate conversion unit 143.
  • the coordinate conversion unit 143 includes an intensity signal K1_L output from the intensity generation unit 142, second depth information (L depth information) output from the depth acquisition unit 103, a read address RAD_L output from the control unit 105, and a mode.
  • the setting signal MODE is input.
  • the mode setting signal MODE is a signal for setting the mode of the correction processing method by the image correction unit 104.
  • the coordinate conversion unit 143 reads the read address RAD_L based on the second depth information (L depth information) and the intensity signal K1_L so that the process instructed by the mode set by the mode setting signal MODE is executed.
  • the address is converted to an address RAD2_L.
  • the coordinate conversion unit 143 outputs the integer part RAD2_L_Int of the converted read address RAD2_L to the memory unit 141, and outputs the decimal part RAD2_L_Deci of the converted read address RAD2_L to the interpolation unit 144.
  • the interpolation unit 144 receives the L image signal output from the memory unit 141 and the decimal part RAD2_L_Deci of the read address RAD2_L output from the coordinate conversion unit 143. Then, the interpolation unit 144 performs an interpolation process on the data (signal value) of the L image signal based on the read address (decimal part) RAD2_L_Deci (details of the interpolation process will be described later). Then, the interpolation unit 144 outputs the L image signal subjected to the interpolation processing as the L image signal Lout.
  • the L image correction unit 104L is configured.
  • the image correction unit for R image 104R has the same configuration as the image correction unit for L image 104L, and only the point that the input signals are the R image signal and the R depth information is for the L image. This is different from the image correction unit 104L.
  • the control unit 105 can exchange necessary signals bidirectionally with the first imaging unit 101 ⁇ / b> R, the second imaging unit 101 ⁇ / b> L, the image input unit 102, the depth acquisition unit, and the image correction unit 104. So connected.
  • the control unit 105 performs stereoscopic imaging with a predetermined control signal (such as a drive signal and a synchronization signal) so that signal processing for the R image signal and the L image signal and data read / write processing are executed at a predetermined timing.
  • a predetermined control signal such as a drive signal and a synchronization signal
  • ⁇ 1.2 Operation of stereoscopic imaging device>
  • the operation of the stereoscopic imaging apparatus 1000 configured as described above will be described below.
  • the feeling of writing still remains (the case where the writing splitting phenomenon occurs).
  • the cracking phenomenon that occurs in such cases is presumed to be due to an advanced cognitive mechanism in the human brain, and the specific cause is unknown.
  • the feeling of writing is reduced by enhancing the roundness of the subject object more than the actual size. It is something to be made.
  • the shooting scene 200 includes a background 201 and a foreground 202.
  • the foreground 202 is the main subject.
  • FIG. 3 is a diagram schematically showing a relationship (an example) between a shooting environment and a subject when performing stereoscopic shooting using the stereoscopic imaging apparatus 1000, and is a view of the shooting scene of FIG. It is.
  • FIG. 3A is a view of the shooting environment (shooting scene) 200, the first imaging unit 101R, and the second imaging unit 101L as viewed from above.
  • the foreground main subject 202 and the background subject 201 are in a positional relationship as shown in FIG.
  • the background subject 201 is assumed to be a wall with a picture on it, but it is needless to say that the subject is not limited to such a subject and may be an example subject.
  • . 3B shows the luminance distribution of the picture drawn on the background subject 201
  • FIG. 3C shows the main subject 202 in the foreground as viewed from the stereoscopic imaging device 1000 side (camera side).
  • the front luminance distribution is shown.
  • the horizontal axis represents the position in the horizontal direction
  • the vertical axis represents the luminance.
  • the center line of the angle of view taken by the first imaging unit 101R of the stereoscopic imaging apparatus 1000 (the one-dot chain line extending from 101R in FIG. 3) and the angle of view taken by the second imaging unit 101L.
  • the convergence angle is set so as to intersect with the center line (the one-dot chain line extending from 101L in FIG. 3) at the distance (d2) where the background 201 is arranged.
  • the foreground 202 (main subject 202) is, for example, an object having a three-dimensional roundness (for example, a substantially elliptical object (for example, a person) having a predetermined width when viewed from above).
  • the convergence angle is set as described above, but the present invention is not limited to the above, and the convergence angle may be set to another angle.
  • Subject light from the imaging scene 200 is collected by the first imaging unit 101R arranged at the first viewpoint, and is converted into a first image signal (R image signal) by the imaging element of the first imaging unit 101R.
  • subject light from the imaging scene 200 is collected by the second imaging unit 101L arranged at the second viewpoint, and converted into a second image signal (L image signal) by the imaging element of the second imaging unit 101L.
  • the first imaging unit 101R and the second imaging unit 101L are separated by a baseline length (stereo base length) so that the stereoscopic imaging apparatus 1000 can acquire a stereoscopic image (left eye image and right eye image). Is arranged.
  • the first image signal (R image signal) output from the first imaging unit 101R and the second image signal (L image signal) output from the second imaging unit 101L are respectively input to the image input unit 102, and the image It is converted into a digital signal by the input unit 102. Then, the first image signal (R image signal) and the second image signal (L image signal) converted into digital signals are output to the depth acquisition unit 103 and the image correction unit 104, respectively.
  • the first depth information (R depth information) that is the depth information for one image (R image) and the second depth information (L depth information) that is the depth information for the second image (L image) are, for example, parallax matching. Is generated.
  • a method of generating the first depth information (R depth information) and the second depth information (L depth information) by parallax matching will be described with reference to FIG. FIG.
  • FIG. 4 is a diagram schematically illustrating a stereoscopic image when the stereoscopic imaging apparatus 1000 stereoscopically captures a shooting scene in which a triangular object is disposed at the back and a circular object is disposed in front.
  • 4A is a diagram schematically illustrating an L image (left eye image)
  • FIG. 4B is a diagram schematically illustrating an R image (right eye image).
  • FIG. 4C is a diagram in which the R image and the L image are superimposed and displayed as one image.
  • the generation method of the first depth information (R depth information) and the second depth information (L depth information) by parallax matching is realized by executing the following processes (1) to (3), for example.
  • the depth acquisition unit 103 uses the L image (the left eye image) and the R image (the right eye image), for example, the subject corresponding to the point AL on the L image in FIG. It is detected that A (the vertex of the triangle in FIG. 4) corresponds to the point AR on the R image in FIG. 4B.
  • a deviation amount (parallax) Diff (A) between the two detected points AL and AR is calculated.
  • the parallax has a positive or negative sign depending on the shift direction. For example, when the point on the R image is shifted to the left with respect to the point on the L image, it is positive, and the opposite case is negative.
  • the parallax for the subject A is ⁇ ( ⁇ 0)
  • the AR point on the R image is shifted to the right from the AL point on the L image.
  • the parallax for A is calculated as “ ⁇ ”.
  • the absolute value of the parallax for the subject B is ⁇ ( ⁇ 0)
  • the BR point on the R image is shifted to the left from the BL point on the L image. Therefore, the parallax for the subject B is calculated as “+ ⁇ ”.
  • the depth acquisition unit 103 performs the processes (1) and (2) for all points (all pixels) on the image, and generates a parallax image having the calculated shift amount (parallax) as a pixel value. To do. Then, the parallax image generated using the parallax calculated for each pixel of the L image as the pixel value is L depth information (L depth information image (distance image for left eye image)), and the parallax calculated for each pixel of the R image is Let the parallax image produced
  • L depth information L depth information image (distance image for left eye image)
  • R depth information image right-eye image distance image
  • the “distance image” is a mapping of a value correlated to the distance between the actual position (position in the three-dimensional space) of the subject corresponding to each pixel and the position of the stereoscopic imaging apparatus 1000 to each pixel. It is the image that was made.
  • the method for generating the first depth information (R depth information) and the second depth information (L depth information) by the parallax matching is an example, and the present invention is not limited to this. For example, the parallax sign may be reversed from the above.
  • the depth acquisition unit 103 may acquire the left-eye image distance image and the right-eye image distance image and acquire the L depth information and the R depth information by another method.
  • the L depth information and the R depth information generated as described above are each output to the image correction unit 104.
  • the L image information correction unit 104L uses the L depth information for the L image
  • the R image information correction unit 104R uses the R depth information for the R image.
  • the L image image correction unit 104L will be mainly described below.
  • FIG. 5 is a diagram for explaining the operation of the intensity generation unit 142.
  • the horizontal axis is the position in the horizontal direction
  • the vertical axis is the value of the L depth information. That is, DL in the uppermost diagram in FIG. 5 is depth information (distance information) of the L image with respect to the pixel position in the L image, and represents the depth information (distance information) of the L image given from the depth acquisition unit 103.
  • the value of DL takes a smaller value as it is farther (the subject distance is larger), and takes a larger value as it is a foreground (the subject distance is smaller).
  • the depth information (distance information) of the main subject 202 takes a larger value than the depth information (distance information) of the background subject 201. Then, as shown in the top diagram of FIG. 5, the value of the L depth information of the main subject 202 takes a value in the range of D2_f to D2_n. That is, the value of the L depth information at the nearest point of the main subject 202 is D2_n, and the value of the L depth information at the farthest point of the main subject 202 is D2_f. Since the background subject 201 is a flat wall, the L depth information of the background subject 201 is constant at D1.
  • the intensity generation unit 142 performs contour correction processing (for example, LPF processing) on the input L depth information (L depth value), thereby generating a contour correction L depth value DL ′ (curve Crv1 in FIG. 5). Equivalent).
  • S103 The intensity generation unit 142 obtains the L depth differential signal ⁇ DL by differentiating (difference) the contour correction L depth value DL ′ with respect to the horizontal position (value in the X-axis direction in FIG. 5).
  • S104 The intensity generation unit 142 obtains the L depth differential absolute value signal ⁇ DL1 by taking the absolute value of the L depth differential signal ⁇ DL.
  • S105 The intensity generation unit 142 outputs the acquired L depth differential absolute value signal ⁇ DL1 to the coordinate conversion unit 143 as the L image intensity signal K1_L.
  • the stereoscopic imaging apparatus 1000 can accurately detect the vicinity of the contour having different depth values by the L image intensity signal K1_L generated by the intensity generation unit 142.
  • the coordinate conversion unit 143 detects the left end partial region and the right end partial region of the subject object based on the L image intensity signal K1_L generated by the intensity generation unit 142. For example, in FIG. 5, the coordinate conversion unit 143 detects regions P1 and P2 where the L image intensity signal K1_L is equal to or greater than a predetermined value (for example, equal to or greater than the dotted line value TH1 illustrated in FIG. 5).
  • the coordinate conversion unit 143 (1) Since the depth value DL changes from the depth value D1 to a value equal to or greater than D2_f in the region P1 of FIG. 5, it is determined that the region P1 is the left end partial region of the main subject 202. (2) In the area P2 of FIG. 5, the depth value DL changes from a value greater than or equal to the depth value D2_f to D1, so it is determined that the area P2 is the right end partial area of the main subject 202.
  • the coordinate conversion unit 143 changes the processing mode based on the mode setting signal MODE output from the control unit 105.
  • Extension mode in which the left end side of the subject on the L image is extended and the right end side of the subject on the R image is extended.
  • compression mode in which the right end side of the subject on the L image is compressed and the right end side of the subject on the R image is compressed.
  • FIG. 7 is a diagram showing address conversion characteristics in the expansion mode.
  • the horizontal axis is an input address (read address before conversion), and the vertical axis is an output address (read address after conversion).
  • FIG. 7A shows an address conversion characteristic for expanding (expanding) the left end partial area of the main subject 202 of the L image (the address conversion characteristic of the coordinate conversion unit of the L image correction unit 104L).
  • 7B is an address conversion characteristic for expanding (expanding) the right end partial area of the main subject 202 of the R image (the address conversion characteristic of the coordinate conversion unit of the R image correction unit 104R).
  • the addresses indicated by “R1”, “L1”, “R2” and “L2” are respectively “R1”, “L1”, “R2” and “L2” in FIGS. 3 and 5.
  • the address (data value) corresponding to is stored (in the memory unit 141).
  • the coordinate conversion unit 143 obtains a converted read address RAD2_L by performing an address conversion process based on the read address RAD_L instructed by the control unit 105. Specifically, the coordinate conversion unit 143 performs an address conversion process by the following processes (1) and (2). It is assumed that the data (signal value) of the L image signal is sequentially written in the memory unit 141 by the write address WAD_L instructed from the control unit 105, and the data written to the address WAD_L of the memory unit 141 is It is assumed that data can be read from the memory unit 141 by the read address RAD_L having the same address value as the write address WAD_L.
  • the coordinate conversion unit 143 When the read address RAD_L is an address in which data (signal value) of the L image signal corresponding to the area P1 in FIG. 5 is written, the coordinate conversion unit 143 has an address according to the address conversion characteristics shown in FIG. Perform conversion. This address conversion will be described with reference to FIG. FIG. 8 is an enlarged view of the area indicated by AREA 1 in FIG. As shown in FIG. 8, when the read RAD_L is an address value corresponding to the area P1, the coordinate conversion unit 143 performs address conversion so that the left end partial area is extended to the main subject 202, and the address conversion is performed. A later read address RAD2_L is obtained. That is, as shown in FIG.
  • RAD2_L L1
  • the address values (L1 ⁇ to L1 + ⁇ ) corresponding to the area P1 are converted into address values (L1 to L1 + ⁇ ). That is, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the L image Lin from the memory unit 141 based on the address value after the address conversion. As shown in FIG. 5, the left end partial area of the main subject 202 can be expanded. Specifically, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the L image Lin from the memory unit 141 based on the address value after the address conversion.
  • the left end portion (the region of L1 to L1 + ⁇ ) of the main subject 202 of the input L image Lin can be expanded to the region of L1 ⁇ to L1 + ⁇ .
  • the background 2 portion is replaced with the leftmost partial region of the main subject 202 that has been stretched.
  • the address conversion characteristic curve portion (L1- ⁇ to L1 + ⁇ portion) shown in FIG. 8 has a conversion characteristic that the output address value RAD2_L monotonically increases with respect to the input address value RAD_L (may be a straight line). Is preferred.
  • the address conversion process may be performed.
  • the size of ⁇ is set to a level that does not impair the monotonicity even at the maximum.
  • the coordinate conversion unit 143 performs an address conversion process.
  • the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process according to the address conversion characteristics shown in FIG. Since the basic process is the same as the process of the coordinate conversion unit 143 of the L image correction unit 104L, different points will be described below.
  • the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process based on the read address RAD_R instructed by the control unit 105, thereby acquiring the converted read address RAD2_R.
  • the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process by the following processes (1) and (2). It is assumed that the data (signal value) of the L image signal is sequentially written in the memory unit 141 by the write address WAD_R instructed by the control unit 105, and the data written in the address WAD_R of the memory unit 141 is It is assumed that data can be read from the memory unit 141 by the read address RAD_R having the same address value as the write address WAD_R. (1) When the read address RAD_L is an address in which data (signal value) of an R image signal corresponding to an area other than the area Q2 in FIG. 5 is written, the coordinate conversion unit 143 has the address shown in FIG.
  • RAD2_R RAD_R That is, the same address value as the read address RAD_R is acquired as the read address RAD2_R. Then, the coordinate conversion unit 143 outputs the integer part RAD2_R_Int of the acquired read address RAD2_R to the memory unit 141, and outputs the decimal part RAD2_R_Deci of the acquired read address RAD2_R to the interpolation unit 144.
  • FIG. 9 is an enlarged view of the area indicated by AREA 2 in FIG.
  • the coordinate conversion unit 143 performs address conversion so that the right end partial area is extended to the main subject 202, and the address conversion is performed.
  • a later read address RAD2_R is acquired. That is, in the address conversion characteristic curve shown in FIG.
  • the coordinate conversion unit 143 can expand (extend) the right end partial area of the main subject 202 by performing an address conversion process using the address conversion characteristic curve Curve1 shown in FIG. That is, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the R image Rin from the memory unit 141 based on the address value after the address conversion. As shown in FIG. 5, the right end partial region of the main subject 202 can be expanded. Specifically, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the R image Rin from the memory unit 141 based on the address value after the address conversion.
  • the right end portion (region R2- ⁇ to R2) of the main subject 202 of the input R image Rin can be expanded to the region R2- ⁇ to R2 + ⁇ .
  • the background 1 portion (R2 to R2 + ⁇ portion) of the input R image Rin is compressed (contracted) into the region of (R2 + ⁇ to R2 + ⁇ ).
  • the address conversion characteristic curve portion (R2- ⁇ to R2 + ⁇ portion) shown in FIG. 9 is a characteristic curve (a straight line may be used) for which the output address value RAD2_R monotonously increases with respect to the input address value RAD_R. Is preferred.
  • the address conversion process may be performed.
  • the size of ⁇ is set to a level that does not impair the monotonicity even at the maximum.
  • the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process.
  • the coordinate conversion unit 143 of the R image correction unit 104R may perform the address conversion process using the curve Curve2 indicated by the dotted line in FIG. 9 in the address conversion process. That is, in the curve Curve2 shown by the dotted line in FIG. 9, the slope of the curve is small in the region R2 + ⁇ to R2 + ⁇ compared to the curve Curve1 in FIG. Change to match. Accordingly, the coordinate conversion unit 143 of the R image correction unit 104R performs address conversion using the curve Curve2, thereby preventing the background 1 shown in the lower diagram of FIG. 9 from being rapidly compressed. As a result, an R image in which the background 1 portion is smoothly compressed can be acquired.
  • the address converted RAD2_L and RAD2_R as described above are output from the coordinate conversion unit 143 to the memory unit 141 and the interpolation unit 144 in the L image correction unit 104L and the R image correction unit 104R, respectively.
  • the input addresses RAD_L and RAD_R are integers, whereas the output addresses RAD2_L and RAD2_R have a fractional part.
  • the output addresses RAD2_L and RAD2_R have 4 bits after the decimal.
  • the stored data (signal value) of the L image Lin is read from the address specified by RAD2_L_Int that is an integer part of the read address RAD2_L output from the coordinate conversion unit 143.
  • RAD2_L_Int A4
  • Data (signal value) Val (A5) stored in the address value A5 whose value is “1” larger is instructed to be read out.
  • the stereoscopic imaging apparatus 1000 can smoothly perform delicate coordinate conversion on the L image in the left end partial region of the main subject 202. Note that the same processing as described above is executed for the right end partial area of the main subject 202 (area indicated by AREA2 in FIG. 7, area Q2).
  • FIG. 11 shows a processing result (processing result in the expansion mode) when the above processing is performed in the stereoscopic imaging apparatus 1000.
  • the vicinity of the left contour (left end partial area) of the main subject 202 of the L image is smoothly stretched to the left as indicated by the arrow AL1 in FIG.
  • the right outline (right end partial area) of the main subject 202 of the R image is smoothly extended to the right as indicated by an arrow AR1 in FIG.
  • the inside (inside area) of the subject object (the main subject 202) is S
  • the parallax is S.
  • the subject distance (the distance from the viewpoint to the localization position of the subject object) is the same.
  • the parallax at the left outline (left end partial area) is SL1
  • the parallax at the left contour (left end partial region) is SR1.
  • SL1 ⁇ S SR1 ⁇ S Therefore, the parallax of the stereoscopic image acquired by the stereoscopic imaging apparatus 1000 changes in a direction away from it. Therefore, compared to the inside of the subject object (main subject 202), the vicinity of the subject object (main subject 202) outline (the left end partial region and the right end partial region) is slightly moved away.
  • the stereoscopic imaging apparatus 1000 As a result, in the stereoscopic image acquired by the stereoscopic imaging apparatus 1000, a roundness in which the vicinity of the contour of the subject object (main subject 202) is curved toward the far side is expressed.
  • the recognition in the brain is recognized as a three-dimensional object instead of a flat plate, so that the feeling of writing is reduced. Therefore, in the stereoscopic imaging apparatus 1000, it is possible to acquire a stereoscopic image with reduced feeling of writing by performing the processing as described above.
  • FIG. 12 is a diagram showing address conversion characteristics in the compressed mode.
  • the horizontal axis is an input address (read address before conversion), and the vertical axis is an output address (read address after conversion).
  • FIG. 12A shows an address conversion characteristic for narrowing (compressing) the right end partial region of the main subject 202 of the L image (address conversion characteristic of the coordinate conversion unit of the L image correction unit 104L).
  • 12B is an address conversion characteristic for narrowing (compressing) the left end partial area of the main subject 202 of the R image (the address conversion characteristic of the coordinate conversion unit of the R image correction unit 104R).
  • the addresses indicated by “R1”, “L1”, “R2”, and “L2” are “R1”, “L1”, “R2”, and “L2” in FIGS. 3 and 5, respectively.
  • the address (data value) corresponding to is stored (in the memory unit 141).
  • the processing in the coordinate conversion unit 143, the memory unit 141, and the interpolation unit 144 is the same as the processing in the coordinate conversion unit 143, the memory unit 141, and the interpolation unit 144 described in the expansion mode processing.
  • the difference is that the address conversion characteristic in the decompression mode is as shown in FIG. 7, whereas the address conversion characteristic in the compression mode is as shown in FIG.
  • the processing in the coordinate conversion unit 143, the memory unit 141, and the interpolation unit 144 is executed according to the address conversion characteristics of FIG. 12, and therefore the right end partial region of the main subject 202 is compressed (contracted) in the L image. In the R image, the left end partial area of the main subject 202 is compressed (contracted).
  • 12A shows an address conversion characteristic for narrowing (compressing) the right end partial region of the main subject 202 of the L image (address conversion characteristic of the coordinate conversion unit of the L image correction unit 104L).
  • 12B is an address conversion characteristic for narrowing (compressing) the left end partial area of the main subject 202 of the R image (the address conversion characteristic of the coordinate conversion unit of the R image correction unit 104R).
  • the addresses indicated by “R1”, “L1”, “R2”, and “L2” are “R1”, “L1”, “R2”, and “L2” in FIGS. 3 and 5, respectively.
  • the address (data value) corresponding to is stored (in the memory unit 141).
  • the coordinate conversion unit 143 obtains a converted read address RAD2_L by performing an address conversion process based on the read address RAD_L instructed by the control unit 105. Specifically, the coordinate conversion unit 143 performs an address conversion process by the following processes (1) and (2). It is assumed that the data (signal value) of the L image signal is sequentially written in the memory unit 141 by the write address WAD_L instructed from the control unit 105, and the data written to the address WAD_L of the memory unit 141 is It is assumed that data can be read from the memory unit 141 by the read address RAD_L having the same address value as the write address WAD_L.
  • the coordinate conversion unit 143 When the read address RAD_L is an address in which data (signal value) of the L image signal corresponding to the area P2 in FIG. 5 is written, the coordinate conversion unit 143 has an address according to the address conversion characteristics shown in FIG. Perform conversion. This address conversion will be described with reference to FIG. FIG. 13 is an enlarged view of the area indicated by AREA 3 in FIG. As shown in FIG. 13, when the read RAD_L is an address value corresponding to the area P2, the coordinate conversion unit 143 performs address conversion so that the right end partial area is compressed in the main subject 202, and the address conversion is performed. A later read address RAD2_L is obtained. That is, as shown in FIG.
  • RAD2_L L2
  • the address values (L2- ⁇ to L2 + ⁇ ) corresponding to the area P2 are converted into address values (L2 to L2 + ⁇ ). That is, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the L image Lin from the memory unit 141 based on the address value after the address conversion. As shown in FIG. 5, the right end partial region of the main subject 202 can be compressed. Specifically, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the L image Lin from the memory unit 141 based on the address value after the address conversion.
  • the right end portion (region L2- ⁇ to L2) of the main subject 202 of the input L image Lin can be compressed into the region L2- ⁇ to L2- ⁇ .
  • the background 1 portion of L2 to L2 + ⁇ is expanded to L2- ⁇ to L2 + ⁇ .
  • the address conversion characteristic curve portion (L2- ⁇ to L2 + ⁇ portion) shown in FIG. 13 has a conversion characteristic that the output address value RAD2_L monotonically increases with respect to the input address value RAD_L (may be a straight line). Is preferred.
  • the address conversion process may be performed.
  • the size of ⁇ is set to a level that does not impair the monotonicity even at the maximum.
  • the coordinate conversion unit 143 performs an address conversion process.
  • the processing of the coordinate conversion unit 143 of the R image correction unit 104R in the compression mode will also be described.
  • the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process based on the address conversion characteristics shown in FIG. Since the basic process is the same as the process of the coordinate conversion unit 143 of the L image correction unit 104L, different points will be described below.
  • the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process based on the read address RAD_R instructed by the control unit 105, thereby acquiring the converted read address RAD2_R. Specifically, the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process by the following processes (1) and (2). It is assumed that the data (signal value) of the L image signal is sequentially written in the memory unit 141 by the write address WAD_R instructed by the control unit 105, and the data written in the address WAD_R of the memory unit 141 is It is assumed that data can be read from the memory unit 141 by the read address RAD_R having the same address value as the write address WAD_R.
  • FIG. 14 is an enlarged view of the area indicated by AREA 4 in FIG.
  • the coordinate conversion unit 143 performs address conversion so that the left end partial area is compressed in the main subject 202, and the address conversion is performed.
  • a later read address RAD2_R is acquired. That is, in the address conversion characteristic curve shown in FIG.
  • the coordinate conversion unit 143 performs the address conversion process using the address conversion characteristic curve Curve 1 shown in FIG. 14, thereby compressing the left end partial area in the main subject 202. That is, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the R image Rin from the memory unit 141 based on the address value after the address conversion. As shown in FIG. 5, the left end partial area of the main subject 202 can be compressed. Specifically, as described above, the coordinate conversion unit 143 performs the address conversion process, and reads the data (signal value) of the R image Rin from the memory unit 141 based on the address value after the address conversion.
  • the left end portion (region R1 to R1 + ⁇ ) of the main subject 202 of the input R image Rin can be compressed into a region R1 + ⁇ to R1 + ⁇ .
  • the background 2 portion (the portion of R1- ⁇ to R1) of the input R image Rin is expanded to the region of (R1- ⁇ to R1 + ⁇ ).
  • the address conversion characteristic curve portion (R1- ⁇ to R1 + ⁇ portion) shown in FIG. 14 is a characteristic curve (which may be a straight line) in which the output address value RAD2_R monotonously increases with respect to the input address value RAD_R.
  • the address conversion process may be performed.
  • the size of ⁇ is set to a level that does not impair the monotonicity even at the maximum.
  • the coordinate conversion unit 143 of the R image correction unit 104R performs an address conversion process.
  • the coordinate conversion unit 143 of the R image correction unit 104R may perform the address conversion process using the curve Curve2 shown by the dotted line in FIG. 14 in the address conversion process. That is, in the curve Curve2 shown by the dotted line in FIG. 14, the slope of the curve is small in the regions R2 + ⁇ to R2 + ⁇ compared to the curve Curve1 in FIG. Change to match. Therefore, the coordinate conversion unit 143 of the R image correction unit 104R performs address conversion using the curve Curve2, thereby preventing the left end portion of the object shown in the lower diagram of FIG. 14 from being rapidly compressed. As a result, an R image in which the left end portion of the object is smoothly compressed can be acquired.
  • the address converted RAD2_L and RAD2_R as described above are output from the coordinate conversion unit 143 to the memory unit 141 and the interpolation unit 144 in the L image correction unit 104L and the R image correction unit 104R, respectively.
  • the input addresses RAD_L and RAD_R are integers, whereas the output addresses RAD2_L and RAD2_R have a fractional part.
  • the output addresses RAD2_L and RAD2_R have 4 bits after the decimal.
  • FIG. 15 shows a processing result (processing result in the compression mode) when the above processing is performed in the stereoscopic imaging apparatus 1000.
  • the vicinity of the right contour (right end partial region) of the main subject 202 of the L image is smoothly compressed to the left as indicated by the arrow AL2 in FIG.
  • the left outline (left end partial area) of the main subject 202 of the R image is smoothly compressed to the right as indicated by an arrow AR2 in FIG.
  • the inside (inside area) of the subject object (the main subject 202) is S, and the parallax is S.
  • the subject distance (the distance from the viewpoint to the localization position of the subject object) is the same.
  • the vicinity of the subject object (main subject 202) outline (the left end partial region and the right end partial region) is slightly moved away.
  • a roundness in which the vicinity of the contour of the subject object (main subject 202) is curved toward the far side is expressed.
  • the recognition in the brain is not a flat plate but a three-dimensional object, so that the sense of writing is reduced. Therefore, in the stereoscopic imaging apparatus 1000, it is possible to acquire a stereoscopic image with reduced feeling of writing by performing the processing as described above.
  • the processing in the decompression mode and the processing in the compression mode have been described as separate processing, but a method using both of them is also possible. This method is excellent in image quality because the distortion applied to the image is small and the horizontal width of the subject object does not change.
  • FIG. 16 is a diagram schematically showing a spatial arrangement of four viewpoints.
  • FIG. 16 shows image signal waveforms of captured images obtained by capturing the captured scene 200 at the four viewpoints a to d in FIG. 16, and the x-axis (position coordinates in the x direction) of the captured image is plotted on the horizontal axis.
  • the vertical axis represents luminance (corresponding to the pixel value (luminance value) of each pixel of the captured image).
  • FIGS. 17A to 17B are drawn with the x-coordinates matched.
  • dotted lines indicate image signal waveforms before processing of captured images acquired at four viewpoints a to d
  • solid lines indicate image signal waveforms after processing. ing.
  • the amount of compression at the end of the object may be set as follows. That is, as shown in FIG. 17, in the point a image, the right end compression amount of the object (main subject 202) is ⁇ R1, and in the b point image, the right end compression amount of the object (main subject 202) is ⁇ R2, and the left end compression amount is ⁇ R2.
  • the compression amount is ⁇ L3, and in the c-point image, the compression amount at the right end of the object (subject 202) is ⁇ R3, the compression amount at the left end is ⁇ L2, and in the d-point image, the compression amount at the left end of the object (subject 202) is ⁇ L1. if you did this, ⁇ R1> ⁇ R2> ⁇ R3 ⁇ L1> ⁇ L2> ⁇ L3 In such a manner, compression mode processing may be executed for each image.
  • a point image is an L image and b point image is an R image
  • a b point image is an L image
  • a c point image is an R image
  • the parallax at the object end is smaller after the compression mode processing than before the compression mode processing.
  • a point image is an L image
  • b point image is an R image
  • a b point image is an L image
  • a c point image is an R image
  • the parallax at the object edge is more after the compression mode processing than before the compression mode processing. Becomes smaller.
  • the compression amount at the left end of the object (main subject 202) is ⁇ L3
  • the compression amount at the right end is ⁇ R3.
  • the parallax of the object (main subject 202) existing in front of the virtual screen is reduced, that is, the direction in which the parallax of the stereoscopic image is moved away. Will change. Therefore, the vicinity of the subject object (main subject 202) outline (the left end partial region and the right end partial region) is slightly away from the inside of the subject object (main subject 202) (the inner region on the image). As a result, in the stereoscopic image after the compression mode processing, a roundness is expressed in which the vicinity of the contour of the subject object (main subject 202) is curved toward the far side.
  • the recognition in the brain is not a flat plate but a three-dimensional object, so that the sense of writing is reduced. Therefore, by performing the processing as described above, it is possible to acquire a stereoscopic image with a reduced feeling of writing.
  • FIG. 18 shows image signal waveforms of captured images obtained by capturing the captured scene 200 at the four viewpoints a to d in FIG. 16.
  • the horizontal axis represents the x coordinate (position coordinate in the x direction) of the captured image.
  • the vertical axis represents the luminance (corresponding to the pixel value (luminance value) of each pixel of the captured image).
  • FIG. 18A shows an image acquired from the viewpoint a
  • FIG. 18B shows an image acquired from the viewpoint b
  • FIG. 18C shows an image acquired from the viewpoint c
  • FIG. 18D shows images acquired from the viewpoint d.
  • FIGS. 18A to 18B are drawn with the x-coordinates matched.
  • dotted lines indicate image signal waveforms before processing of captured images acquired at four viewpoints a to d
  • solid lines indicate image signal waveforms after processing. ing.
  • the expansion amount of the end of the object may be set as follows. That is, as shown in FIG.
  • the extension amount at the left end of the object (main subject 202) is ⁇ L1
  • the extension amount at the left end of the object (main subject 202) is ⁇ L2
  • the extension amount is ⁇ R3, and in the c-point image, the extension amount at the left end of the object (subject 202) is ⁇ L3, the extension amount at the right end is ⁇ R2, and in the d-point image, the extension amount at the right end of the object (subject 202) is ⁇ R1.
  • ⁇ R1> ⁇ R2> ⁇ R3 ⁇ L1> ⁇ L2> ⁇ L3 In such a manner, the expansion mode process may be executed for each image.
  • a point image is an L image
  • b point image is an R image
  • a b point image is an L image
  • a c point image is an R image
  • the parallax at the object end is smaller after the expansion mode processing than before the expansion mode processing.
  • the extension amount at the right end of the object (main subject 202) is ⁇ R3,
  • the extension amount at the left end of the object (main subject 202) is ⁇ L3, and the extension amount at the right end
  • the parallax at the object end is greater after the expansion mode processing than before the expansion mode processing. Becomes smaller.
  • the extension amount at the left end of the object (main subject 202) is ⁇ L3
  • the extension amount at the right end is ⁇ R3.
  • the parallax of the object (main subject 202) existing in front of the virtual screen is reduced, that is, the direction in which the parallax of the stereoscopic image is moved away. Will change. Therefore, the vicinity of the subject object (main subject 202) (the left end partial region and the right end partial region) is slightly away from the inside of the subject object (main subject 202) (the inner region on the image). As a result, in the stereoscopic image after the expansion mode processing, a roundness in which the vicinity of the contour of the subject object (main subject 202) is curved toward the far side is expressed.
  • each block may be individually made into one chip by a semiconductor device such as an LSI, or may be made into one chip so as to include a part or the whole.
  • LSI may be called IC, system LSI, super LSI, or ultra LSI depending on the degree of integration.
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • integrated circuit technology comes out to replace LSI's as a result of the advancement of semiconductor technology or a derivative other technology, it is naturally also possible to carry out function block integration using this technology. Biotechnology can be applied as a possibility.
  • part or all of the processing of each functional block in each of the above embodiments may be realized by a program.
  • a part or all of the processing of each functional block in each of the above embodiments is performed by a central processing unit (CPU) in the computer.
  • a program for performing each processing is stored in a storage device such as a hard disk or a ROM, and is read out and executed in the ROM or the RAM.
  • each process of the above embodiment may be realized by hardware, or may be realized by software (including a case where it is realized together with an OS (operating system), middleware, or a predetermined library). Further, it may be realized by mixed processing of software and hardware. Needless to say, when the stereoscopic imaging apparatus according to the above-described embodiment is realized by hardware, it is necessary to perform timing adjustment for performing each process. In the above embodiment, for convenience of explanation, details of timing adjustment of various signals generated in actual hardware design are omitted.
  • the execution order of the processing method in the said embodiment is not necessarily restricted to description of the said embodiment, The execution order can be changed in the range which does not deviate from the summary of invention.
  • a computer program that causes a computer to execute the above-described method and a computer-readable recording medium that records the program are included in the scope of the present invention.
  • examples of the computer-readable recording medium include a flexible disk, a hard disk, a CD-ROM, an MO, a DVD, a DVD-ROM, a DVD-RAM, a BD (Blue-ray Disc), and a semiconductor memory. .
  • the computer program is not limited to the one recorded on the recording medium, and may be transmitted via an electric communication line, a wireless or wired communication line, a network represented by the Internet, or the like. Further, in the above-described embodiment, the case where a stereo image (a left-eye image and a right-eye image) is acquired (captured) by two imaging units has been described. However, the present invention is not limited to this, and for example, the left eye image and the right eye image may be alternately acquired in a time-division manner with one image sensor, or one image sensor. The image pickup device surface may be divided into two to obtain a left eye image and a right eye image.
  • N images It is also possible to select an R image and an L image from images of N (a natural number equal to or greater than 2) and input the selected R image (signal) and L image (signal) to the image input unit 102.
  • the R image and the L image are not necessarily acquired internally.
  • the R image and the L image may be input from the outside to the stereoscopic image processing apparatus.
  • the R depth information and the L depth information are not necessarily acquired internally.
  • R depth information and L depth information may be input to the stereoscopic image processing apparatus from the outside.
  • the depth acquisition unit 103 can be omitted in the stereoscopic image processing apparatus. That is, the stereoscopic image processing apparatus may include only the image correction unit 104.
  • the stereoscopic image processing apparatus the stereoscopic image processing method, and the program according to the present invention, it is possible to restore the subject's stereoscopic effect / thickness and to reduce the sense of writing with high quality, regardless of the writing phenomenon that has occurred. 3D images can be acquired. Therefore, the present invention is useful in the field related to stereoscopic images (stereoscopic images), and can be implemented in this field.
  • stereoscopic imaging device (stereoscopic image processing device) 101R First imaging unit 101L Second imaging unit 102 Image input unit 103 Depth acquisition unit 104 Image correction unit 105 Control unit 141 Memory unit 142 Strength generation unit 143 Coordinate conversion unit 144 Interpolation unit

Abstract

立体画像において、いかなる要因で発生した書き割り現象であっても、被写体の立体感・厚み感を復元し、書き割り感の少ない高品位な立体画像を得る。立体撮像装置(立体画像処理装置)(1000)では、デプス取得部(103)が、立体画像からLデプス情報およびRデプス情報を取得し、画像補正部(104)が、Lデプス情報およびRデプス情報に基づいて、被写体の端部分領域の定位位置が遠くなるように、被写体の端部分領域の視差が調整される。従って、立体撮像装置(1000)で取得される立体画像を立体表示させたときに、被写体の端部領域が丸み感を帯びて表示されることになる。その結果、この立体画像処理装置による処理を行った立体画像は、被写体の立体感・厚み感を適切に表現でき、かつ、書き割り感の少ない高品位な立体画像となる。

Description

立体画像処理装置、立体画像処理方法およびプログラム
 本発明は、立体画像(3次元立体画像)の品位を高める技術に関するものであり、立体撮像を行うカメラ(撮像装置)、立体画像(立体映像)を表示するディスプレイ装置、立体画像(立体映像)を処理する画像処理装置など、立体画像(立体映像)を扱う幅広い機器に応用できる技術に関する。
 立体画像(左眼用画像および右眼用画像)を、独立して左右の目に投影できる表示装置(以下、「立体表示装置」という。)に表示することにより、立体画像を再現させるために、両眼視差が存在する状態で立体画像(左眼用画像および右眼用画像)を撮像する立体撮像装置が知られている。
 立体撮像において、遠景(遠景の被写体)や近景(近景の被写体)が大きな視差を持つ状態で取得された立体画像(左眼用画像および右眼用画像)は、人間が立体視する際の融像限界を超え立体視が困難な画像になる、あるいは、当該立体画像を見ている人間に疲労感を生じさせる画像(疲れる画像)になる。このような不良な立体画像の生成を避けるために、視差調整やステレオベース調整(以下、「SB調整」という。)を行うことで、良好な立体画像を得る技術があり、このような技術は、映画などの本格的な立体撮影において広く用いられている。
 視差調整は、主に遠景(遠景の被写体)が融像限界を超える場合に用いられる技術で、遠景までの距離を非線形に圧縮するように視差調整することで、立体視する際に見にくかった遠景(遠景の被写体)を近づけ、立体視する際に見やすい立体画像(立体視が容易な立体画像)を取得することができる。
 また、ステレオベース調整は、2台のカメラ(左眼用画像撮像用のカメラおよび右眼用画像撮像用のカメラ)の間隔を近づけることにより(ステレオベース(基線長)を小さくすることにより)、視差のダイナミックレンジを小さくすることができる。このため、上記のようにステレオベース調整を行った後、立体撮像を行うことで、近景(近景の被写体)から遠景(遠景の被写体)までの全体が融像域内に入る立体画像を取得することができる。
 また、立体画像を小さなサイズのディスプレイ装置に表示した場合も、立体画像(左眼用画像および右眼用画像)の視差が小さくなるため、遠景が圧縮される。したがって、この場合、小さなサイズのディスプレイ装置に表示される立体画像は、見やすい立体画像となる。
 立体撮像において、上記撮影技術(視差調整、ステレオベース調整)を駆使することにより、所定の表示環境において立体表示させたとき、十分見やすい画像(立体視しやすい立体画像)となる立体画像を撮影することができる(例えば、特許文献1参照)。
特開平8-9421号公報
 しかしながら、上記従来技術では、立体視の融像限界を考慮して、望ましい視差を減らすことにより(立体撮像の対象である被写体が立体視の融像域内に入るように、視差を本来の値から減少させることにより)、見やすい立体画像(立体視しやすい立体画像)を取得している訳であるから、立体画像における立体感・遠近感の自然さの観点では望ましいものではない。したがって、上記従来技術(視差調整、ステレオベース調整による技術)により取得される立体画像は、立体画像の品位について問題がある。
 視差調整による技術では、見やすい(立体視しやすい)立体画像を取得することはできるが、遠景までの距離が非線形に圧縮されることになるので、視差調整を行った立体画像では、奥行きが平板になる現象(遠景の被写体の厚み感が減少し、平板状の立体像として知覚される現象)が発生する。
 また、SB調整による技術では、取得される立体画像において、全体的に遠近感が少なくなるため(最近点から最遠点までの距離が小さくなるため)、個々の被写体の立体感が低下する現象が発生する。
 したがって、上記従来技術を用いた場合、何れの場合も、取得される立体画像は、立体感・遠近感の乏しい品位の低い画像になりがちである。
 また、上記従来技術を用いた場合に発生する立体感の圧縮・低下に伴い、いわゆる「書き割り現象」が生じることがある。
 「書き割り現象」とは、立体画像において、例えば、前景の人物などの主要な被写体の厚みが薄くなり、板に描いた平面的な絵のように見える現象のことである。
 この書き割り現象が重要な主被写体で発生すると、立体画像の品位は極端に低下する。
 また、書き割り現象は、上記従来技術のように視差調整を行うことにより立体画像における立体感の圧縮・低下が発生することを唯一の原因として生じるものではない。撮影条件(撮影状況)によっては、理想的な無歪みの立体撮影(立体感の圧縮・低下のない立体画像を撮像する撮影)においても、書き割り現象が発生することがある。
 このように、書き割り現象は、視覚的な現象であり、書き割り現象を発生させる全ての原因が完全に解明されているわけではない。ただ、どのような要因で発生した書き割り現象であっても、立体画像の品位を損なうことには変わりが無い。
 本発明は、上記問題点に鑑み、いかなる要因で発生した書き割り現象であっても、被写体の立体感・厚み感を復元し、書き割り感の少ない高品位な立体画像が得られる立体画像処理装置、立体画像処理方法およびプログラムを実現することを目的とする。
 第1の発明は、2眼方式または多視点方式による立体画像に含まれる左眼用画像および右眼用画像に対して画像補正処理を行う立体画像処理装置であって、デプス取得部と、画像補正部と、を備える。
 デプス取得部は、左眼用画像および右眼用画像に含まれる被写体についての3次元空間での距離情報を取得する。
(例えば、デプス取得部は、左眼用画像および右眼用画像から、左眼用画像および右眼用画像に含まれる被写体についての距離情報を算出し、左眼用距離画像および右眼用距離画像を取得する。)
 画像補正部は、
(1)デプス取得部が取得した被写体の距離情報に基づいて、左眼用画像および/または右眼用画像上における被写体の端部分領域を検出し、
(2)立体画像を立体表示させたときに、検出した被写体の端部分領域の定位位置が遠くなるように、左眼用画像および/または右眼用画像上における被写体の端部分領域の視差を調整する。
 この立体画像処理装置では、被写体の端部分領域の定位位置が遠くなるように、被写体の端部分領域の視差が調整されるので、立体画像を立体表示させたときに、被写体の端部領域が丸み感を帯びて表示されることになる。その結果、この立体画像処理装置による処理を行った立体画像は、被写体の立体感・厚み感を適切に表現でき、かつ、書き割り感の少ない高品位な立体画像となる。
 なお、「3次元空間での距離情報」とは、例えば、左眼用画像または右眼用画像を立体撮影したと仮定したときの第1視点(例えば、左眼用画像を取得するときの左眼視点)または第2視点(例えば、右眼用画像を取得するときの右眼視点)に相当する3次元空間内の点(撮影点)と、左眼用画像上の画素である第1画素と、第1画素に対応する右眼用画像上の画素である第2画素に対応する3次元空間(左眼用画像または右眼用画像を立体撮影したと仮定したときの撮影空間)内の点までの距離のことをいう。
 また、「被写体についての3次元空間での距離情報」(被写体の距離に関する情報である距離情報)とは、被写体距離と相関のある情報のことをいう。
 「被写体距離」とは、撮像部の撮像素子(例えば、CCD型イメージセンサやCMOS型イメージセンサ)面上に焦点を結んでいる物体からカメラ(立体撮像装置)までの距離をいい、物点距離と、共役距離(物像間距離)を含む概念である。また、「被写体距離」は、立体撮像装置から被写体までの概略の距離を含む概念であり、例えば、(1)立体撮像装置の光学系のレンズ全体(第1視点用レンズおよび/または第2視点用レンズ)の重心位置から被写体までの距離、(2)撮像部の撮像素子の撮像素子面から被写体までの距離、(3)立体撮像装置の重心(あるいは中心)から被写体までの距離、(4)第1視点および第2視点を結ぶ線分から被写体までの距離等を含む概念である。
 第2の発明は、第1の発明であって、画像補正部は、左眼用画像補正部と、右眼用画像補正部と、を備える。
 左眼用画像補正部は、以下の処理を行う。
(1)デプス取得部により取得された距離情報に基づいて、左眼用画像に含まれる被写体と背景との距離の変化を左眼用距離変化情報として検出し、当該左眼用距離変化情報を用いて左眼用画像上における前記被写体の左端部分領域を検出する。
(例えば、左眼用距離画像に対して微分処理を行い、当該微分処理結果画像および左眼用距離画像から、左眼用画像上における被写体の左端部分領域を検出する。)
(2)左眼用画像上において、検出した被写体の左端部分領域が左方向に拡大するように、左眼用画像を補正する。
 右眼用画像補正部は、以下の処理を行う。
(1)デプス取得部により取得された距離情報に基づいて、右眼用距離画像に含まれる被写体と背景との距離の変化を右眼用距離変化情報として検出し、当該右眼用距離変化情報を用いて右眼用画像上における被写体の右端部分領域を検出する。
(例えば、右眼用距離画像に対して微分処理を行い、当該微分処理結果画像および右眼用距離画像から、右眼用画像上における被写体の右端部分領域を検出する。)
(2)右眼用画像上において、検出した被写体の右端部分領域が右方向に拡大するように、左眼用画像を補正する。
 この立体画像処理装置では、左眼用画像補正部および右眼用画像補正部により、被写体のデプス値と、デプス値の変化量(微分値)とに基づいて、被写体の端部分領域を適切に検出することができる。さらに、この立体画像処理装置では、(1)左眼用画像上の被写体の左端部分領域を左方向に拡大(水平方向に伸張)し、かつ、(2)右眼用画像上の被写体の右端部分領域を右方向に拡大(水平方向に伸張)することができる。その結果、この立体画像処理装置で取得される立体画像において、被写体の端部分領域以外の視差を変化させずに、被写体の端部分領域を少し後方に曲げるような微小な相対視差を付加することができる。そのため、被写体について、立体画像を表示させたときに、被写体の端部領域が丸み感を帯びて表示されることになる。その結果、この立体画像処理装置による処理を行った立体画像は、被写体の立体感・厚み感を適切に表現でき、かつ、書き割り感の少ない高品位な立体画像となる。
 第3の発明は、第1または第2の発明であって、画像補正部は、左眼用画像補正部と、右眼用画像補正部と、を備える。
 左眼用画像補正部は、以下の処理を行う。
(1)デプス取得部により取得された距離情報に基づいて、左眼用画像に含まれる被写体と背景との距離の変化を左眼用距離変化情報として検出し、当該左眼用距離変化を用いて左眼用画像上における被写体の右端部分領域を検出する。
(例えば、左眼用距離画像に対して微分処理を行い、当該微分処理結果画像および左眼用距離画像から、左眼用画像上における被写体の右端部分領域を検出する。)
(2)左眼用画像上において、検出した被写体の右端部分領域が左方向に収縮するように、左眼用画像を補正する。
 右眼用画像補正部は、以下の処理を行う。
(1)デプス取得部により取得された距離情報に基づいて、右眼用距離画像に含まれる被写体と背景との距離の変化を右眼用距離変化情報として検出し、当該右眼用距離変化を用いて右眼用画像上における被写体の右端部分領域を検出する。
(例えば、右眼用距離画像に対して微分処理を行い、当該微分処理結果画像および右眼用距離画像から、右眼用画像上における被写体の右端部分領域を検出する。)
(2)右眼用画像上において、検出した被写体の左端部分領域が右方向に収縮するように、左眼用画像を補正する。
 この立体画像処理装置では、左眼用画像補正部および右眼用画像補正部により、被写体のデプス値と、デプス値の変化量(微分値)とに基づいて、被写体の端部分領域を適切に検出することができる。さらに、この立体画像処理装置では、(1)左眼用画像上の被写体の右端部分領域を左方向に収縮(水平方向に圧縮)し、かつ、(2)右眼用画像上の被写体の右端部分領域を右方向に収縮(水平方向に圧縮)することができる。その結果、この立体画像処理装置で取得される立体画像において、被写体の端部分領域以外の視差を変化させずに、被写体の端部分領域を少し後方に曲げるような微小な相対視差を付加することができる。そのため、被写体(仮想スクリーンより手前に定位する被写体)について、立体画像を表示させたときに、被写体の端部領域が丸み感を帯びて表示されることになる。その結果、この立体画像処理装置による処理を行った立体画像は、被写体の立体感・厚み感を適切に表現でき、かつ、書き割り感の少ない高品位な立体画像となる。
 第4の発明は、多視点方式により取得されるN枚(Nは2以上の自然数)の画像である画像P(1)~P(N)(画像P(x)の変数xは、左から右方向に昇順に付された自然数)に対して画像補正処理を行う立体画像処理装置であって、デプス取得部と、画像補正部とを備える。
 デプス取得部は、画像P(k)(1≦k≦N-1、kは自然数)および画像P(j+1)(k≦j≦N-1、jは自然数)に含まれる被写体についての3次元空間での距離情報を取得する。
 画像補正部は、
(1)デプス取得部が取得した被写体の距離情報に基づいて、画像P(k)および/または画像P(k+1)上における被写体の端部分領域を検出し、
(2)立体画像を立体表示させたときに、検出した被写体の端部分領域の定位位置が遠くなるように、画像P(k)および/または画像P(j+1)における被写体の端部分領域の視差を調整する。
 この立体画像処理装置では、立体視用の多視点方式により取得されるN枚(Nは2以上の自然数)の画像に対しても、被写体の端部分領域の定位位置が遠くなるように、被写体の端部分領域の視差が調整することができる。したがって、この立体画像処理装置により取得される立体画像を立体表示させたときに、被写体の端部領域が丸み感を帯びて表示されることになる。その結果、この立体画像処理装置による処理を行った立体画像は、被写体の立体感・厚み感を適切に表現でき、かつ、書き割り感の少ない高品位な立体画像となる。
 第5の発明は、第4の発明であって、画像補正部は、以下の処理を行う。
 つまり、画像補正部は、
 画像P(1)~P(N)の画像上の被写体の左端部分領域および右端部分領域を検出し、
 画像P(m)(1≦m≦N、kは自然数)上において、検出した被写体の画像上の左方向の伸張量をΔL(m)とし、検出した被写体の画像上の右方向の伸張量をΔR(N-m+1)とするとき、1≦x≦N-2の任意の自然数xについて、
  ΔR(x)>ΔR(x+1)
  ΔL(x)>ΔL(x+1)
となる右方向の伸張量および左方向の伸張量を用いて、
(1)画像P(1)について、被写体の左端部分領域が左方向に伸張量ΔL(1)だけ拡大するように画像P(1)を補正し、
(2)画像P(x)(2≦x≦N-1、x:自然数)について、被写体の左端部分領域が左方向に伸張量をΔL(x)だけ拡大するようにし、かつ、被写体の右端部分領域が右方向に伸張量をΔR(N-x+1)だけ拡大するように画像P(x)を補正し、
(3)画像P(N)について、被写体の右端部分領域が右方向に伸張量ΔR(1)だけ拡大するように画像P(N)を補正する。
 これにより、画像P(1)~P(N)から2枚の画像を抽出し、抽出した画像を右眼用画像および左眼用画像としたとき、仮想スクリーンより手前に存在する被写体オブジェクトの視差が小さくなる、つまり、立体画像の視差が遠ざかる方向に変化することとなる。そのため、被写体オブジェクトの内部(画像上の内側の領域)に比べて、被写体オブジェクト輪郭近傍(左端部分領域および右端部分領域)はわずかに遠ざかることになる。その結果、上記処理後の立体画像において、被写体オブジェクト輪郭近傍が遠方に向かって湾曲している丸み感が表現されることになる。
 これにより、この立体画像処理装置では、書き割り感が低減された立体画像を取得することができる。
 第6の発明は、第4の発明であって、画像補正部は、以下の処理を行う。
 つまり、画像補正部は、
 画像P(1)~P(N)の画像上の被写体の左端部分領域および右端部分領域を検出し、
 画像P(m)(1≦m≦N、kは自然数)上において、検出した被写体の画像上の右方向の圧縮量をΔR(m)とし、検出した被写体の画像上の左方向の圧縮量をΔL(N-m+1)とするとき、1≦x≦N-2の任意の自然数xについて、
  ΔR(x)>ΔR(x+1)
  ΔL(x)>ΔL(x+1)
となる右方向の圧縮量および左方向の圧縮量を用いて、
(1)画像P(1)について、被写体の右端部分領域が右方向に圧縮量ΔR(1)だけ収縮するように画像P(1)を補正し、
(2)画像P(x)(2≦x≦N-1、x:自然数)について、被写体の右端部分領域が右方向に圧縮量をΔR(x)だけ収縮するようにし、かつ、被写体の左端部分領域が左方向に圧縮量をΔL(N-x+1)だけ収縮するように画像P(x)を補正し、
(3)画像P(N)について、被写体の左端部分領域が左方向に圧縮量ΔL(1)だけ収縮するように画像P(N)を補正する。
 これにより、画像P(1)~P(N)から2枚の画像を抽出し、抽出した画像を右眼用画像および左眼用画像としたとき、仮想スクリーンより手前に存在する被写体オブジェクトの視差が小さくなる、つまり、立体画像の視差が遠ざかる方向に変化することとなる。そのため、被写体オブジェクトの内部(画像上の内側の領域)に比べて、被写体オブジェクト輪郭近傍(左端部分領域および右端部分領域)はわずかに遠ざかることになる。その結果、上記処理後の立体画像において、被写体オブジェクト輪郭近傍が遠方に向かって湾曲している丸み感が表現されることになる。
 これにより、この立体画像処理装置では、書き割り感が低減された立体画像を取得することができる。
 第7の発明は、2眼方式または多視点方式による立体画像に含まれる左眼用画像および右眼用画像に対して画像補正処理を行う立体画像処理方法であって、デプス取得ステップと、画像補正ステップと、を備える。
 デプス取得ステップでは、左眼用画像および右眼用画像から、左眼用画像および右眼用画像に含まれる被写体についての距離情報を算出し、左眼用距離画像および右眼用距離画像を生成する。
 画像補正ステップでは、
(1)デプス取得ステップが取得した被写体の距離情報に基づいて、左眼用画像および/または右眼用画像上における被写体の端部分領域を検出し、
(2)立体画像を立体表示させたときに、検出した被写体の端部分領域の定位位置が遠くなるように、左眼用画像および/または右眼用画像上における被写体の端部分領域の視差を調整する。
 これにより、第1の発明と同様の効果を奏する立体画像処理方法を実現することができる。
 第8の発明は、2眼方式または多視点方式による立体画像に含まれる左眼用画像および右眼用画像に対して画像補正処理を行う立体画像処理方法をコンピュータに実行させるためのプログラムである。立体画像処理方法は、デプス取得ステップと、画像補正ステップと、を備える。
 デプス取得ステップでは、左眼用画像および右眼用画像から、左眼用画像および右眼用画像に含まれる被写体についての距離情報を算出し、左眼用距離画像および右眼用距離画像を生成する。
 画像補正ステップでは、
(1)デプス取得ステップが取得した被写体の距離情報に基づいて、左眼用画像および/または右眼用画像上における被写体の端部分領域を検出し、
(2)立体画像を立体表示させたときに、検出した被写体の端部分領域の定位位置が遠くなるように、左眼用画像および/または右眼用画像上における被写体の端部分領域の視差を調整する。
 これにより、第1の発明と同様の効果を奏する立体画像処理方法をコンピュータに実行させるためのプログラムを実現することができる。
 本発明によれば、いかなる要因で発生した書き割り現象であっても、被写体の立体感・厚み感を復元し、書き割り感の少ない高品位な立体画像を取得することができる。
撮影環境(撮影シーン)を含めた第1実施形態の立体撮像装置1000の概略構成図 第1実施形態の画像補正部104の構成図 撮影環境と被写体についての説明図 視差マッチングによる第1デプス情報(Rデプス情報)および第2デプス情報(Lデプス情報)の生成方法を説明するための図 第1実施形態における強度生成部142の信号波形図 第1実施形態における強度生成部の処理フローチャート 第1実施形態における伸張モードにおけるアドレス変換特性を説明するための図 第1実施形態における伸張モードにおけるアドレス変換特性を説明するための図 第1実施形態における伸張モードにおけるアドレス変換特性を説明するための図 第1実施形態における伸張モードにおけるアドレス変換処理および補間処理を説明するための図 第1実施形態の立体撮像装置1000による伸張モードにおける処理の処理結果 第1実施形態における圧縮モードにおけるアドレス変換特性を説明するための図 第1実施形態における圧縮モードにおけるアドレス変換特性を説明するための図 第1実施形態における圧縮モードにおけるアドレス変換特性を説明するための図 第1実施形態の立体撮像装置1000による圧縮モードにおける処理の処理結果 4視点の空間的な配置を模式的に示した図 他の実施形態における4視点の場合の圧縮モードの処理を説明するための図 他の実施形態における4視点の場合の伸張モードの処理を説明するための図
 以下、本発明の実施形態について、図面を参照しながら説明する。
 [第1実施形態]
 第1実施形態では、立体画像処理装置として、2眼方式の立体撮像装置(デジタルカメラやビデオカメラなど)を例に、以下、説明する。
 <1.1:立体撮像装置の構成>
 図1に、第1実施形態に係る立体撮像装置1000の概略図を示す。なお、図1では、立体撮像装置1000とともに、立体撮像装置1000で撮像するシーン200(撮像シーン200)を模式的に図示している。
 立体撮像装置1000は、図1に示すように、第1視点から被写体光を集光し第1画像信号(例えば、右眼用画像信号(R画像信号))を取得する第1撮像部101Rと、第2視点から被写体光を集光し第2画像信号(例えば、左眼用画像信号(L画像信号))を取得する第2撮像部101Lと、第1画像信号(例えば、R画像信号)および第2画像信号(例えば、L画像信号)を、それぞれ、デジタル信号に変換する画像入力部102と、を備える。
 また、立体撮像装置1000は、デジタル信号に変換された第1画像信号(例えば、R画像信号)および第2画像信号(例えば、L画像信号)から、それぞれ、被写体距離情報を算出し、第1デプス情報(例えば、Rデプス情報)および第2デプス情報(例えば、Lデプス情報)として出力するデプス取得部と、第1デプス情報(例えば、Rデプス情報)および第2デプス情報(例えば、Lデプス情報)を用いて、第1画像信号(例えば、R画像信号)および第2画像信号(例えば、L画像信号)に画像補正処理を行う画像補正部104と、を備える。
 また、立体撮像装置1000は、図1に示すように、上記各機能部を制御する制御部105を備える。なお、制御部105と、立体撮像装置1000の各機能部とは、相互に直接接続されていてもよいし、あるいは、相互にバスを介して接続されていてもよい。
 なお、説明便宜のため、第1撮像部101Rにより右眼用画像(映像)が撮像され、第2撮像部101Lにより左眼用画像(映像)が撮像されるものとして、以下、説明する。
 第1撮像部101Rは、第1視点に設置されており、被写体光を集光する光学系と、集光した被写体光から光電変換により第1画像信号(右眼用画像信号(R画像信号))を取得する撮像素子と、を備える。そして、第1撮像部101Rは、取得した第1画像信号(R画像信号)を画像入力部102に出力する。
 第2撮像部101Lは、第1視点とは異なる位置である第2視点に設置されており、被写体光を集光する光学系と、集光した被写体光から光電変換により第2画像信号(左眼用画像信号(L画像信号))を取得する撮像素子と、を備える。そして、第2撮像部101Lは、取得した第2画像信号(L画像信号)を画像入力部102に出力する。
 画像入力部102は、第1撮像部101Rにより取得された第1画像信号(R画像信号)を入力とし、入力された第1画像信号に対して、A/D変換を行い、A/D変換した第1画像信号(R画像信号)をデプス取得部103および画像補正部104に出力する。
 また、画像入力部102は、第2撮像部101Lにより取得された第2画像信号(L画像信号)を入力とし、入力された第2画像信号に対して、A/D変換を行い、A/D変換した第2画像信号(L画像信号)をデプス取得部103および画像補正部104に出力する。
 デプス取得部103は、画像入力部102から出力される第1画像信号(R画像信号)および第2画像信号(L画像信号)を入力とする。デプス取得部103は、第1画像信号(R画像信号)により形成される第1画像(R画像)および第2画像信号(L画像信号)から形成される第2画像(L画像)から、第1画像(R画像)用のデプス情報である第1デプス情報(Rデプス情報)および第2画像(L画像)用のデプス情報である第2デプス情報(Lデプス情報)を生成する。そして、デプス取得部103は、生成した第1デプス情報(Rデプス情報)および第2デプス情報(Lデプス情報)を画像補正部104に出力する。
 なお、デプス情報の生成は、例えば、視差マッチングにより生成することが好ましい。
 画像補正部104は、図2に示すように、L画像用画像補正部104Lと、R画像用画像補正部104Rとを備える。画像補正部104は、画像入力部102から出力される第1画像信号(R画像信号)および第2画像信号(L画像信号)と、デプス取得部103から出力される第1デプス情報(Rデプス情報)および第2デプス情報(Lデプス情報)と、を入力とする。画像補正部104は、第1デプス情報(Rデプス情報)に基づいて、第1画像信号(R画像信号)に補正処理を行い、補正処理後の第1画像信号(R画像信号)を出力する。また、画像補正部104は、第2デプス情報(Lデプス情報)に基づいて、第2画像信号(L画像信号)に補正処理を行い、補正処理後の第2画像信号(L画像信号)を出力する。
 L画像用画像補正部104Lは、図2に示すように、メモリ部141と、強度生成部142と、座標変換部143と、補間部144とを備える。
 メモリ部141は、図2に示すように、画像入力部102から出力されるL画像信号Linと、制御部105から出力される書き込みアドレスWAD_Lと、座標変換部143から出力される読み出しアドレスRAD2_Lの整数部であるRAD2_L_Intと、を入力とする。メモリ部141は、L画像信号Linのデータ(信号値)を、所定のタイミングで、書き込みアドレスWAD_Lで指示されるアドレスに書き込む。そして、メモリ部141は、所定のタイミングで、読み出しアドレス(整数部)RAD2_L_Intで指示されるアドレスから、L画像信号Linのデータ(信号値)を読み出す。そして、メモリ部141は、読み出したL画像信号Linのデータ(信号値)を補間部144に出力する。
 メモリ部141として、例えば、ラインメモリを用いることができる。
 強度生成部142は、デプス取得部103から出力される第2デプス情報(Lデプス情報)を入力とし、第2デプス情報(Lデプス情報)から強度信号K1_Lを生成する。そして、強度生成部142は、生成した強度信号K1_Lを座標変換部143に出力する。
 座標変換部143は、強度生成部142から出力される強度信号K1_Lと、デプス取得部103から出力される第2デプス情報(Lデプス情報)と、制御部105から出力される読み出しアドレスRAD_Lおよびモード設定信号MODEと、を入力とする。モード設定信号MODEは、画像補正部104による補正処理方法のモードを設定するための信号である。
 モード設定信号MODEにより設定されるモードとして、以下の2つのモードがある。
(1)L画像上の被写体の左端側を伸張し、かつ、R画像上の当該被写体の右端側を伸張する「伸張モード」
(2)L画像上の被写体の右端側を圧縮し、かつ、R画像上の当該被写体の右端側を圧縮する「圧縮モード」
 座標変換部143は、モード設定信号MODEにより設定されるモードにより指示される処理が実行されるように、第2デプス情報(Lデプス情報)および強度信号K1_Lに基づいて、読み出しアドレスRAD_Lを、読み出しアドレスRAD2_Lに変換する。そして、座標変換部143は、変換後の読み出しアドレスRAD2_Lの整数部RAD2_L_Intをメモリ部141に出力し、変換後の読み出しアドレスRAD2_Lの小数部RAD2_L_Deciを補間部144に出力する。
 補間部144は、メモリ部141から出力されるL画像信号と、座標変換部143から出力される読み出しアドレスRAD2_Lの小数部RAD2_L_Deciとを入力とする。そして、補間部144は、読み出しアドレス(小数部)RAD2_L_Deciに基づいて、L画像信号のデータ(信号値)に対して補間処理を行う(補間処理の詳細については後述)。そして、補間部144は、補間処理を施したL画像信号を、L画像信号Loutとして出力する。
 以上のようにして、L画像用画像補正部104Lが構成される。
 なお、R画像用画像補正部104Rは、L画像用画像補正部104Lと同様の構成を有しており、入力される信号が、R画像信号およびRデプス情報である点だけが、L画像用画像補正部104Lとは相違する。
 制御部105は、図1に示すように、第1撮像部101R、第2撮像部101L、画像入力部102、デプス取得部、および、画像補正部104と、双方向に必要な信号をやり取りできるように接続されている。制御部105は、所定のタイミングで、R画像信号、L画像信号に対する信号処理や、データ読み出し/書き込み処理が実行されるように、所定の制御信号(駆動信号や同期信号等)により、立体撮像装置1000の上記各機能部を制御する。
 <1.2:立体撮像装置の動作>
 以上のように構成された立体撮像装置1000の動作について、以下、説明する。
 例えば、立体画像上の被写体オブジェクト内部の陰影を強調し、立体視における輪郭の不自然さ改善したとしても、まだ書き割り感が残る場合(書き割り現象が発生する場合)がある。このような場合に発生する書き割り現象は、人間の脳内の高度な認知機構によるものと推測され、具体的な原因は不明である。そのため、本実施形態では、立体画像上の被写体オブジェクトの左右端付近のある範囲について、微小な視差調整を行うことにより、当該被写体オブジェクトの丸み感を実際以上に強調することにより書き割り感を低減させるものである。
 なお、図1において、撮影シーン200は、背景201と、前景202とを含む。そして、前景202が主被写体である。このような図1に示した撮影シーン(図3に示した撮影シーン)を立体撮像装置1000で立体撮像する場合を例に、以下、立体撮像装置1000の動作について、説明する。
 また、図3は、立体撮像装置1000を用いて立体撮影を行う場合の撮影環境と被写体との関係(一例)を模式的に示した図であり、図1の撮影シーンを上から見た図である。図3(a)は、撮影環境(撮影シーン)200と、第1撮像部101Rおよび第2撮像部101Lとを上から見た図である。撮影環境(撮影シーン)200では、前景の主被写体202、および、背景の被写体201は、図3(a)に示すような位置関係となっている。なお、説明を簡単にするため、背景の被写体201は、絵が描かれた壁のようなものとしているが、このような被写体に限定されず、例の被写体であってもよいことは言うまでもない。
 図3(b)は、背景の被写体201に描かれている絵の輝度分布を表しており、図3(c)は、前景の主被写体202を立体撮像装置1000側(カメラ側)から見た正面の輝度分布を表している。
 なお、図3(b)、(c)において、横軸は水平方向の位置であり、縦軸は輝度を示している。
 なお、説明を簡単にするため、立体撮像装置1000の第1撮像部101Rが撮影する画角の中心線(図3の101Rから出ている一点鎖線)と第2撮像部101Lが撮影する画角の中心線(図3の101Lから出ている一点鎖線)とは、背景201の配置されている距離(d2)で交差するように輻輳角を設定している。
 また、前景202(主被写体202)は、例えば、立体的な丸みを持ったオブジェクト(例えば、上から見たときに所定の幅を有する略楕円形のオブジェクト(例えば、人物))であるものとする。
 なお、説明便宜のために、輻輳角を上記のように設定したが、上記に限定されず、輻輳角を他の角度に設定してもよい。
 撮像シーン200からの被写体光は、第1視点に配置された第1撮像部101Rで集光され、第1撮像部101Rの撮像素子により、第1画像信号(R画像信号)に変換される。同様に、撮像シーン200からの被写体光は、第2視点に配置された第2撮像部101Lで集光され、第2撮像部101Lの撮像素子により、第2画像信号(L画像信号)に変換される。
 なお、第1撮像部101Rおよび第2撮像部101Lは、立体撮像装置1000において立体画像(左眼用画像および右眼用画像)を取得できるように、基線長(ステレオベース長)分だけ離して配置されている。
 第1撮像部101Rから出力された第1画像信号(R画像信号)および第2撮像部101Lから出力された第2画像信号(L画像信号)は、それぞれ、画像入力部102に入力され、画像入力部102によりデジタル信号に変換される。そして、デジタル信号に変換された第1画像信号(R画像信号)および第2画像信号(L画像信号)は、それぞれ、デプス取得部103および画像補正部104に出力される。
 デプス取得部103では、第1画像信号(R画像信号)により形成される第1画像(R画像)および第2画像信号(L画像信号)から形成される第2画像(L画像)から、第1画像(R画像)用のデプス情報である第1デプス情報(Rデプス情報)および第2画像(L画像)用のデプス情報である第2デプス情報(Lデプス情報)が、例えば、視差マッチングにより、生成される。
 ここで、視差マッチングによる第1デプス情報(Rデプス情報)および第2デプス情報(Lデプス情報)の生成方法について、図4を用いて説明する。
 図4は、三角形のオブジェクトが奥に配置されており、円形のオブジェクトが手前に配置されている撮影シーンを立体撮像装置1000で立体撮影したときの立体画像を模式的に示す図である。図4(a)は、L画像(左眼用画像)を模式的に示した図であり、図4(b)は、R画像(右眼用画像)を模式的に示した図であり、図4(c)は、R画像およびL画像を1つの画像として重ねて表示させた図である。
 視差マッチングによる第1デプス情報(Rデプス情報)および第2デプス情報(Lデプス情報)の生成方法は、例えば、以下の(1)~(3)の処理を実行することで、実現される。
(1)まず、デプス取得部103は、L画像(左眼用画像)およびR画像(右眼用画像)を用いて、例えば、図4(a)のL画像上の点ALに対応する被写体A(図4の三角形の頂点)が、図4(b)のR画像上の点ARに対応していることを検出する。
(2)そして、検出した2つの点ALおよび点ARのずれ量(視差)Diff(A)を算出する。
 なお、視差は、ずれ方向により、正負の符号を有するものとする。例えば、R画像上の点が、L画像上の点に対して左方向にずれている場合をプラスとし、逆の場合をマイナスとする。
 例えば、図4の場合、被写体Aについての視差の絶対値がα(≧0)であるとすると、R画像上のAR点が、L画像上のAL点より右方向にずれているので、被写体Aについての視差を「-α」として算出する。そして、被写体B(図4の円の中心点)についての視差の絶対値がβ(≧0)であるとすると、R画像上のBR点が、L画像上のBL点より左方向にずれているので、被写体Bについての視差を「+β」として算出する。
(3)デプス取得部103は、(1)、(2)の処理を、画像上の全ての点(全ての画素)について行い、算出したずれ量(視差)を画素値とする視差画像を生成する。そして、L画像の各画素に算出した視差を画素値として生成した視差画像を、Lデプス情報(Lデプス情報画像(左眼画像用距離画像))とし、R画像の各画素に算出した視差を画素値として生成した視差画像を、Rデプス情報(Rデプス情報画像(右眼画像用距離画像))とする。
 例えば、Lデプス情報(Lデプス情報画像(左眼画像用距離画像))では、図4(a)のL画像のAL点に相当する画素の値が、被写体Aの視差である-αとなり、Rデプス情報(Rデプス情報画像(右眼画像用距離画像))では、図4(b)のR画像のAR点に相当する画素の値が、被写体Aの視差である-αとなる。
 なお、「距離画像」とは、各画素に、当該各画素に相当する被写体の実際の位置(3次元空間内の位置)と立体撮像装置1000の位置との距離に相関性のある値をマッピングした画像のことである。
 なお、上記視差マッチングによる第1デプス情報(Rデプス情報)および第2デプス情報(Lデプス情報)の生成方法は、一例であり、これに限定されるものではない。例えば、上記と視差の符号の取り方を逆にしても構わない。また、デプス取得部103は、他の方法により、左眼画像用距離画像および右眼画像用距離画像を取得し、Lデプス情報およびRデプス情報を取得するものであってもよい。
 以上のようにして生成されたLデプス情報およびRデプス情報は、それぞれ、画像補正部104に出力される。
 (1.2.1:画像補正部104の動作)
 以下、画像補正部104の動作について、説明する。
 なお、L画像に対しては、Lデプス情報を用いて、L画像用画像補正部104Lにより処理が実行され、R画像に対しては、Rデプス情報を用いて、R画像用画像補正部104Rにより処理が実行されるが、その処理内容は同一であるため、以下では、主として、L画像用画像補正部104Lについて、説明する。
 まず、L画像用画像補正部104Lの強度生成部142の動作について、説明する。
 図5は、強度生成部142の動作を説明するための図である。図5の最上図は、横軸が水平方向の位置であり、縦軸がLデプス情報の値である。つまり、図5の最上図におけるDLは、L画像における画素位置に対するL画像のデプス情報(距離情報)であり、デプス取得部103から与えられるL画像のデプス情報(距離情報)を表している。ここでは、DLの値は、遠方であるほど(被写体距離が大きい程)小さい値を取り、近景である程(被写体距離が小さい程)、大きい値を取るものとする。
 したがって、図5の最上図に示すように、主被写体202のデプス情報(距離情報)が背景被写体201のデプス情報(距離情報)より大きい値を取る。そして、図5の最上図に示すように、主被写体202のLデプス情報の値がD2_f~D2_nの範囲の値をとる。つまり、主被写体202の最近点のLデプス情報の値が、D2_nであり、主被写体202の最遠点のLデプス情報の値が、D2_fである。そして、背景被写体201は、平坦な壁であるため、背景被写体201のLデプス情報は、D1で一定である。
 強度生成部142の動作について、図5および図6に示すフローチャートを用いて、説明する。
(S101、S102):
 強度生成部142は、入力されたLデプス情報(Lデプス値)に対して、輪郭補正処理(例えば、LPF処理)を行うことで、輪郭補正Lデプス値DL’(図5中の曲線Crv1に相当)を取得する。
(S103):
 強度生成部142は、輪郭補正Lデプス値DL’を水平位置(図5のX軸方向の値)について微分(差分)することで、Lデプス微分信号ΔDLを取得する。
(S104):
 強度生成部142は、Lデプス微分信号ΔDLの絶対値をとることで、Lデプス微分絶対値信号ΔDL1を取得する。
(S105):
 強度生成部142は、取得したLデプス微分絶対値信号ΔDL1を、L画像用強度信号K1_Lとして、座標変換部143に出力する。
 以上により、立体撮像装置1000では、強度生成部142により生成されたL画像用強度信号K1_Lにより、デプス値の異なる輪郭付近を正確に検出することが出来る。
 座標変換部143では、強度生成部142により生成されたL画像用強度信号K1_Lにより、被写体オブジェクトの左端部分領域および右端部分領域を検出する。例えば、図5では、座標変換部143は、L画像用強度信号K1_Lが所定の値以上(例えば、図5に示す点線の値TH1以上)となる領域P1およびP2を検出する。
 そして、座標変換部143は、
(1)図5の領域P1において、デプス値DLが、デプス値D1からD2_f以上の値に変化していることから、領域P1が主被写体202の左端部分領域であることを判定し、
(2)図5の領域P2において、デプス値DLが、デプス値D2_f以上の値からD1に変化していることから、領域P2が主被写体202の右端部分領域であることを判定する。
 次に、座標変換部143は、制御部105から出力されたモード設定信号MODEに基づいて、処理モードを、
(1)L画像上の被写体の左端側を伸張し、かつ、R画像上の当該被写体の右端側を伸張する「伸張モード」、
(2)L画像上の被写体の右端側を圧縮し、かつ、R画像上の当該被写体の右端側を圧縮する「圧縮モード」、
のいずれかに設定する。
 以下では、「伸張モード」の場合の処理と、「圧縮モード」の場合の処理とに分けて説明する。
 ≪伸張モードの処理≫
 まず、伸張モードの場合の処理について、説明する。
 図7は、伸張モードの場合のアドレス変換特性を示す図である。図7において、横軸は入力アドレス(変換前の読み出しアドレス)であり、縦軸は出力アドレス(変換後の読み出しアドレス)である。
 具体的には、図7(a)は、L画像の主被写体202の左端部分領域を広げる(伸張する)ためのアドレス変換特性(L画像用画像補正部104Lの座標変換部のアドレス変換特性)を示すグラフであり、図7(b)は、R画像の主被写体202の右端部分領域を広げる(伸張する)ためのアドレス変換特性(R画像用画像補正部104Rの座標変換部のアドレス変換特性)を示すグラフである。なお、図7において、「R1」、「L1」、「R2」および「L2」で示したアドレスは、それぞれ、図3および図5の「R1」、「L1」、「R2」および「L2」に相当するデータ(信号値)が(メモリ部141に)格納されているアドレスを示している。
 座標変換部143は、制御部105から指示された読み出しアドレスRAD_Lに基づいて、アドレス変換処理を行うことで、変換後の読み出しアドレスRAD2_Lを取得する。
 具体的には、座標変換部143は、以下の処理(1)、(2)によりアドレス変換処理を行う。なお、メモリ部141には、制御部105から指示された書き込みアドレスWAD_Lにより、L画像信号のデータ(信号値)が順次書き込まれているものとし、メモリ部141のアドレスWAD_Lに書き込まれたデータは、当該書き込みアドレスWAD_Lと同じアドレス値である読み出しアドレスRAD_Lにより、メモリ部141から読み出すことができるものとする。
(1)読み出しアドレスRAD_Lが、図5の領域P1以外の領域に対応するL画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図7に示すアドレス変換特性に従い、
  RAD2_L=RAD_L
として、つまり、読み出しアドレスRAD_Lと同一アドレス値を、読み出しアドレスRAD2_Lとして取得する。そして、座標変換部143は、取得した読み出しアドレスRAD2_Lの整数部RAD2_L_Intをメモリ部141へ出力し、取得した読み出しアドレスRAD2_Lの小数部RAD2_L_Deciを補間部144へ出力する。
(2)読み出しアドレスRAD_Lが、図5の領域P1の領域に対応するL画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図7に示すアドレス変換特性に従うアドレス変換を行う。このアドレス変換について、図8を用いて、説明する。
 図8は、図7(a)にAREA1で示す領域を拡大した図である。
 座標変換部143は、図8に示すように、読み出しRAD_Lが、領域P1内に相当するアドレス値である場合、主被写体202に左端部分領域が拡張されるように、アドレス変換を行い、アドレス変換後の読み出しアドレスRAD2_Lを取得する。
 つまり、図8に示すように、RAD_L=(L1-β)(「L1-β」に対応するアドレス値を単に「L1-β」と表記することがある。以下、同様。)のとき、
  RAD2_L=L1
とアドレス変換される。座標変換部143が、この変換後の読み出しアドレスRAD2_L(=L1)により、メモリ部141からL画像信号Linのデータ(信号値)を読み出すことで、L画像上において「L1-β」に対応する位置に、「L1」に対応する位置のデータ(信号値)を読み出すことができる。
 これと同様にして、領域P1内に相当するアドレス値(L1-β~L1+α)は、アドレス値(L1~L1+α)にアドレス変換される。
 つまり、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からL画像Linのデータ(信号値)を読み出すことで、図8の下段の図に示したように、主被写体202の左端部分領域を伸張することができる。具体的には、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からL画像Linのデータ(信号値)を読み出すことで、図8の下段の図に示すように、入力L画像Linの主被写体202の左端部分(L1~L1+αの領域)を、L1-β~L1+αの領域に伸張することができる。(背景2の部分が伸張された主被写体202の左端部分領域に置換される。)
 なお、図8に示すアドレス変換特性の曲線部分(L1-β~L1+αの部分)の変換特性は、入力アドレス値RAD_Lについて、出力アドレス値RAD2_Lが単調増加する特性曲線(直線でもよい)であることが好ましい。
 例えば、座標変換部143は、強度信号K1_LであるΔDL1の信号値に適当なゲイン(μ)を乗算することで、
  RAD2_L=RAD_L+μ・K1_L
により、アドレス変換処理を行ってもよい。
 なお、上式において、μの大きさは最大でも単調性が損なわれないレベル以下に設定する。
 以上のようにして、座標変換部143は、アドレス変換処理を行う。
 ここで、伸張モードにおけるR画像用画像補正部104Rの座標変換部143の処理についても説明する。
 R画像用画像補正部104Rの座標変換部143は、図7(b)に示すアドレス変換特性により、アドレス変換処理を行う。基本的な処理については、L画像用画像補正部104Lの座標変換部143の処理と同様であるので、以下では、異なる点について説明する。
 R画像用画像補正部104Rの座標変換部143は、制御部105から指示された読み出しアドレスRAD_Rに基づいて、アドレス変換処理を行うことで、変換後の読み出しアドレスRAD2_Rを取得する。
 具体的には、R画像用画像補正部104Rの座標変換部143は、以下の処理(1)、(2)によりアドレス変換処理を行う。なお、メモリ部141には、制御部105から指示された書き込みアドレスWAD_Rにより、L画像信号のデータ(信号値)が順次書き込まれているものとし、メモリ部141のアドレスWAD_Rに書き込まれたデータは、当該書き込みアドレスWAD_Rと同じアドレス値である読み出しアドレスRAD_Rにより、メモリ部141から読み出すことができるものとする。
(1)読み出しアドレスRAD_Lが、図5の領域Q2以外の領域に対応するR画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図7(b)に示すアドレス変換特性に従い、
  RAD2_R=RAD_R
として、つまり、読み出しアドレスRAD_Rと同一アドレス値を、読み出しアドレスRAD2_Rとして取得する。そして、座標変換部143は、取得した読み出しアドレスRAD2_Rの整数部RAD2_R_Intをメモリ部141へ出力し、取得した読み出しアドレスRAD2_Rの小数部RAD2_R_Deciを補間部144へ出力する。
(2)読み出しアドレスRAD_Rが、図5の領域Q2の領域に対応するL画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図7(b)に示すアドレス変換特性に従うアドレス変換を行う。このアドレス変換について、図9を用いて、説明する。
 図9は、図7(b)にAREA2で示す領域を拡大した図である。
 座標変換部143は、図9に示すように、読み出しRAD_Rが、領域Q2内に相当するアドレス値である場合、主被写体202に右端部分領域が拡張されるように、アドレス変換を行い、アドレス変換後の読み出しアドレスRAD2_Rを取得する。
 つまり、図9に示すアドレス変換特性曲線において、
(A)RAD_RがR2-β~R2の領域に含まれる場合、当該アドレス変換特性曲線の傾きが小さく、
(B)RAD_RがR2~R2+αの領域に含まれる場合、当該アドレス変換特性曲線の傾きが大きい。
 座標変換部143が、この図9に示すアドレス変換特性曲線Curve1を用いて、アドレス変換処理を行うことで、主被写体202に右端部分領域を拡張(伸張)することができる。
 つまり、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からR画像Rinのデータ(信号値)を読み出すことで、図9の下段の図に示したように、主被写体202の右端部分領域を伸張することができる。具体的には、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からR画像Rinのデータ(信号値)を読み出すことで、図9の下段の図に示すように、入力R画像Rinの主被写体202の右端部分(R2-β~R2の領域)を、R2-β~R2+αの領域に伸張することができる。(入力R画像Rinの背景1の部分(R2~R2+αの部分)は、(R2+γ~R2+α)の領域に圧縮(収縮)される。)
 なお、図9に示すアドレス変換特性の曲線部分(R2-β~R2+αの部分)の変換特性は、入力アドレス値RAD_Rについて、出力アドレス値RAD2_Rが単調増加する特性曲線(直線でもよい)であることが好ましい。
 例えば、座標変換部143は、強度信号K1_RであるΔDR1の信号値に適当なゲイン(μ)を乗算することで、
  RAD2_R=RAD_R-μ・K1_R
により、アドレス変換処理を行ってもよい。
 なお、上式において、μの大きさは最大でも単調性が損なわれないレベル以下に設定する。
 上記のようにして、R画像用画像補正部104Rの座標変換部143は、アドレス変換処理を行う。
 なお、R画像用画像補正部104Rの座標変換部143は、アドレス変換処理において、図9の点線で示した曲線Curve2により、アドレス変換処理を行うようにしてもよい。つまり、図9の点線で示した曲線Curve2では、図9の曲線Curve1に比べて、領域R2+γ~R2+αにおいて、曲線の傾きが小さく、曲線Curve2は、なだらかに上昇して、RAD2_R=RAD_Rの直線と一致するように変化する。したがって、R画像用画像補正部104Rの座標変換部143が、曲線Curve2により、アドレス変換を行うことで、図9の下段の図に示した背景1が、急激に圧縮されることを防止することができ、その結果、背景1の部分が滑らかに圧縮されたR画像を取得することができる。
 以上のようにしてアドレス変換されたRAD2_LおよびRAD2_Rは、それぞれ、L画像用画像補正部104LおよびR画像用画像補正部104Rにおいて、座標変換部143からメモリ部141および補間部144に出力される。
 なお、入力アドレスRAD_LおよびRAD_Rは、整数であるのに対し、出力アドレスRAD2_LおよびRAD2_Rは、小数部を持つ。ここでは、出力アドレスRAD2_LおよびRAD2_Rは、小数以下4bit有するものとする。
 メモリ部141では、座標変換部143から出力された読み出しアドレスRAD2_Lの整数部であるRAD2_L_Intで指定されているアドレスから、格納しているL画像Linのデータ(信号値)を読み出す。具体的なメモリ部141でのデータ読み出し処理について、図10を用いて、説明する。
 図10は、図8と同様の図であり、図7のAREA1の部分を拡大した図である。なお、図10において示したアドレス値A1~A5は、整数値であるものとする。
(出力アドレス値の小数部が「0」の場合):
 図10に示すように、RAD_L=A1(L1-βに対応するアドレス値A1)の場合、座標変換部143は、RAD2_L=A3(L1に対応するアドレス値A3)として、変換アドレスRAD2_Lを出力する。
 このとき、RAD2_L=A3であり、RAD2_Lの小数部RAD2_L_Deciは「0」であるので、座標変換部143は、メモリ部141に対して、RAD2_L_Int=A3のアドレスに格納されているデータ(信号値)Val(A3)(Val(X)は、アドレス値Xに格納されているデータ値を示すものとする。)を読み出すように指示する。また、座標変換部143は、補間部144に対して、RAD2_Lの小数部RAD2_L_Deci(=0)を出力する。
 そして、補間部144では、RAD2_L_Deci=0であるので、補間処理を実行せず、メモリ部141から入力されたデータ(信号値)Val(A3)をそのまま出力L画像信号Loutとして出力する。
(出力アドレス値の小数部が「0」ではない場合):
 一方、図10に示すように、RAD_L=A2の場合、座標変換部143は、RAD2_L=A4+θ1として、変換アドレスRAD2_Lを出力する。
 このとき、
  RAD2_L_Int=A4
  RAD2_L_Deci=θ1 (0<θ1≦1)
であるので、座標変換部143は、メモリ部141に対して、RAD2_L_Int=A4のアドレスに格納されているデータ(信号値)Val(A4)と、RAD2_L_Int=A5のアドレス(A4のアドレス値よりアドレス値が「1」大きいアドレス値A5)に格納されているデータ(信号値)Val(A5)と、を読み出すように指示する。
 また、座標変換部143は、補間部144に対して、RAD2_Lの小数部RAD2_L_Deci(=θ1)を出力する。
 そして、補間部144では、RAD2_L_Deci=θ1であるので、メモリ部141から入力されたデータ(信号値)Val(A4)およびVal(A5)を用いて、
  Lout=(1-θ1)×Val(A4)+θ1×Val(A5)
に相当する補間処理を実行する。
 補間部144は、上記補間処理により取得した値を、出力L画像信号Loutとして出力する。
 なお、RAD_L=A2、A3、A4の場合も同様に、出力アドレス値の小数部が「0」ではないので、上記と同様の処理が実行される。
 また、出力アドレス値の小数部が「0」の場合に上記補間演算を行っても、補間演算を行わない場合と同様の出力アドレスが得られるため、具体的な補間演算の構成はどちらでも良い。
 上記のように処理を行うことで、立体撮像装置1000では、主被写体202の左端部分領域において、L画像上の微妙な座標変換を滑らかに行うことができる。
 なお、主被写体202の右端部分領域(図7のAREA2で示した領域、領域Q2)についても上記と同様の処理が実行される。
 立体撮像装置1000において、以上の処理を行った場合の処理結果(伸張モードにおける処理結果)を図11に示す。
 図11から分かるように、L画像の主被写体202の左の輪郭付近(左端部分領域)が、図11の矢印AL1で示すように、滑らかに左に引き延ばされている。
 同様に、R画像の主被写体202の右側の輪郭(右端部分領域)も、図11の矢印AR1で示すように、滑らかに右に引き延ばされている。
 この結果、立体撮像装置1000による上記処理を行った立体画像において、被写体オブジェクト(主被写体202)の内部(内側の領域)については、視差はSであり入力の原画と変わらないため、立体視した場合、被写体距離(視点から当該被写体オブジェクトの定位位置までの距離)は同じである。
 一方、(1)L画像において、主被写体202の左の輪郭(左端部分領域)が左に引き延ばされているため、左の輪郭(左端部分領域)での視差はSL1になり、また、(2)R画像において、主被写体202の右の輪郭(右端部分領域)が右に引き延ばされているため、左の輪郭(左端部分領域)での視差はSR1になる。
  SL1<S
  SR1<S
であるため、立体撮像装置1000により取得される立体画像の視差が遠ざかる方向に変化する。そのため、被写体オブジェクト(主被写体202)の内部に比べて、被写体オブジェクト(主被写体202)輪郭近傍(左端部分領域および右端部分領域)はわずかに遠ざかることになる。その結果、立体撮像装置1000により取得される立体画像において、被写体オブジェクト(主被写体202)輪郭近傍が遠方に向かって湾曲している丸み感が表現されることになる。
 輪郭近傍の丸み感が認知されると、脳での認識が平板ではなく立体物であると認識されることになるため、書き割り感が低減される。したがって、立体撮像装置1000において、上記のように処理を行うことで、書き割り感が低減された立体画像を取得することができる。
 ≪圧縮モードの処理≫
 次に、圧縮モードの場合の処理について、説明する。
 なお、伸張モードの処理と同様の部分については、説明を省略する。
 図12は、圧縮モードの場合のアドレス変換特性を示す図である。図12において、横軸は入力アドレス(変換前の読み出しアドレス)であり、縦軸は出力アドレス(変換後の読み出しアドレス)である。
 具体的には、図12(a)は、L画像の主被写体202の右端部分領域を狭める(圧縮する)ためのアドレス変換特性(L画像用画像補正部104Lの座標変換部のアドレス変換特性)を示すグラフであり、図12(b)は、R画像の主被写体202の左端部分領域を狭める(圧縮する)ためのアドレス変換特性(R画像用画像補正部104Rの座標変換部のアドレス変換特性)を示すグラフである。なお、図12において、「R1」、「L1」、「R2」および「L2」で示したアドレスは、それぞれ、図3および図5の「R1」、「L1」、「R2」および「L2」に相当するデータ(信号値)が(メモリ部141に)格納されているアドレスを示している。
 座標変換部143、メモリ部141および補間部144での処理は、伸張モードの処理で説明した、座標変換部143、メモリ部141および補間部144の処理と同様である。
 相違点は、伸張モードでのアドレス変換特性が図7に示すものであるのに対して、圧縮モードでのアドレス変換特性が図12に示すものである点である。
 圧縮モードでは、図12のアドレス変換特性により、座標変換部143、メモリ部141および補間部144での処理が実行されるため、L画像において、主被写体202の右端部分領域が圧縮(収縮)され、R画像において、主被写体202の左端部分領域が圧縮(収縮)される。
 具体的には、図12(a)は、L画像の主被写体202の右端部分領域を狭める(圧縮する)ためのアドレス変換特性(L画像用画像補正部104Lの座標変換部のアドレス変換特性)を示すグラフであり、図12(b)は、R画像の主被写体202の左端部分領域を狭める(圧縮する)ためのアドレス変換特性(R画像用画像補正部104Rの座標変換部のアドレス変換特性)を示すグラフである。なお、図12において、「R1」、「L1」、「R2」および「L2」で示したアドレスは、それぞれ、図3および図5の「R1」、「L1」、「R2」および「L2」に相当するデータ(信号値)が(メモリ部141に)格納されているアドレスを示している。
 座標変換部143は、制御部105から指示された読み出しアドレスRAD_Lに基づいて、アドレス変換処理を行うことで、変換後の読み出しアドレスRAD2_Lを取得する。
 具体的には、座標変換部143は、以下の処理(1)、(2)によりアドレス変換処理を行う。なお、メモリ部141には、制御部105から指示された書き込みアドレスWAD_Lにより、L画像信号のデータ(信号値)が順次書き込まれているものとし、メモリ部141のアドレスWAD_Lに書き込まれたデータは、当該書き込みアドレスWAD_Lと同じアドレス値である読み出しアドレスRAD_Lにより、メモリ部141から読み出すことができるものとする。
(1)読み出しアドレスRAD_Lが、図5の領域P2以外の領域に対応するL画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図12に示すアドレス変換特性に従い、
  RAD2_L=RAD_L
として、つまり、読み出しアドレスRAD_Lと同一アドレス値を、読み出しアドレスRAD2_Lとして取得する。そして、座標変換部143は、取得した読み出しアドレスRAD2_Lの整数部RAD2_L_Intをメモリ部141へ出力し、取得した読み出しアドレスRAD2_Lの小数部RAD2_L_Deciを補間部144へ出力する。
(2)読み出しアドレスRAD_Lが、図5の領域P2の領域に対応するL画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図12に示すアドレス変換特性に従うアドレス変換を行う。このアドレス変換について、図13を用いて、説明する。
 図13は、図12(a)にAREA3で示す領域を拡大した図である。
 座標変換部143は、図13に示すように、読み出しRAD_Lが、領域P2内に相当するアドレス値である場合、主被写体202に右端部分領域が圧縮されるように、アドレス変換を行い、アドレス変換後の読み出しアドレスRAD2_Lを取得する。
 つまり、図13に示すように、RAD_L=(L2-β)(「L2-β」に対応するアドレス値を単に「L2-β」と表記することがある。以下、同様。)のとき、
  RAD2_L=L2
とアドレス変換される。座標変換部143が、この変換後の読み出しアドレスRAD2_L(=L2)により、メモリ部141からL画像信号Linのデータ(信号値)を読み出すことで、L画像上において「L2-β」に対応する位置に、「L2」に対応する位置のデータ(信号値)を読み出すことができる。
 これと同様にして、領域P2内に相当するアドレス値(L2-β~L2+α)は、アドレス値(L2~L2+α)にアドレス変換される。
 つまり、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からL画像Linのデータ(信号値)を読み出すことで、図13の下段の図に示したように、主被写体202の右端部分領域を圧縮することができる。具体的には、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からL画像Linのデータ(信号値)を読み出すことで、図13の下段の図に示すように、入力L画像Linの主被写体202の右端部分(L2-γ~L2の領域)を、L2-γ~L2-βの領域に圧縮することができる。(L2~L2+αの背景1の部分が、L2-β~L2+αに伸張される。)
 なお、図13に示すアドレス変換特性の曲線部分(L2-β~L2+αの部分)の変換特性は、入力アドレス値RAD_Lについて、出力アドレス値RAD2_Lが単調増加する特性曲線(直線でもよい)であることが好ましい。
 例えば、座標変換部143は、強度信号K1_LであるΔDL1の信号値に適当なゲイン(μ)を乗算することで、
  RAD2_L=RAD_L+μ・K1_L
により、アドレス変換処理を行ってもよい。
 なお、上式において、μの大きさは最大でも単調性が損なわれないレベル以下に設定する。
 以上のようにして、座標変換部143は、アドレス変換処理を行う。
 ここで、圧縮モードにおけるR画像用画像補正部104Rの座標変換部143の処理についても説明する。
 R画像用画像補正部104Rの座標変換部143は、図12(b)に示すアドレス変換特性により、アドレス変換処理を行う。基本的な処理については、L画像用画像補正部104Lの座標変換部143の処理と同様であるので、以下では、異なる点について説明する。
 R画像用画像補正部104Rの座標変換部143は、制御部105から指示された読み出しアドレスRAD_Rに基づいて、アドレス変換処理を行うことで、変換後の読み出しアドレスRAD2_Rを取得する。
 具体的には、R画像用画像補正部104Rの座標変換部143は、以下の処理(1)、(2)によりアドレス変換処理を行う。なお、メモリ部141には、制御部105から指示された書き込みアドレスWAD_Rにより、L画像信号のデータ(信号値)が順次書き込まれているものとし、メモリ部141のアドレスWAD_Rに書き込まれたデータは、当該書き込みアドレスWAD_Rと同じアドレス値である読み出しアドレスRAD_Rにより、メモリ部141から読み出すことができるものとする。
(1)読み出しアドレスRAD_Lが、図5の領域Q1以外の領域に対応するR画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図12(b)に示すアドレス変換特性に従い、
  RAD2_R=RAD_R
として、つまり、読み出しアドレスRAD_Rと同一アドレス値を、読み出しアドレスRAD2_Rとして取得する。そして、座標変換部143は、取得した読み出しアドレスRAD2_Rの整数部RAD2_R_Intをメモリ部141へ出力し、取得した読み出しアドレスRAD2_Rの小数部RAD2_R_Deciを補間部144へ出力する。
(2)読み出しアドレスRAD_Rが、図12の領域Q1の領域に対応するL画像信号のデータ(信号値)を書き込んだアドレスである場合、座標変換部143は、図12(b)に示すアドレス変換特性に従うアドレス変換を行う。このアドレス変換について、図14を用いて、説明する。
 図14は、図12(b)にAREA4で示す領域を拡大した図である。
 座標変換部143は、図14に示すように、読み出しRAD_Rが、領域Q1内に相当するアドレス値である場合、主被写体202に左端部分領域が圧縮されるように、アドレス変換を行い、アドレス変換後の読み出しアドレスRAD2_Rを取得する。
 つまり、図14に示すアドレス変換特性曲線において、
(A)RAD_RがR1-β~R1の領域に含まれる場合、当該アドレス変換特性曲線の傾きが小さく、
(B)RAD_RがR1~R1+αの領域に含まれる場合、当該アドレス変換特性曲線の傾きが大きい。
 座標変換部143が、この図14に示すアドレス変換特性曲線Curve1を用いて、アドレス変換処理を行うことで、主被写体202に左端部分領域を圧縮することができる。
 つまり、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からR画像Rinのデータ(信号値)を読み出すことで、図14の下段の図に示したように、主被写体202の左端部分領域を圧縮することができる。具体的には、上記のように、座標変換部143がアドレス変換処理を行い、アドレス変換後のアドレス値により、メモリ部141からR画像Rinのデータ(信号値)を読み出すことで、図14の下段の図に示すように、入力R画像Rinの主被写体202の左端部分(R1~R1+αの領域)を、R1+γ~R1+αの領域に圧縮することができる。(入力R画像Rinの背景2の部分(R1-β~R1の部分)は、(R1-β~R1+γ)の領域に伸張される。)
 なお、図14に示すアドレス変換特性の曲線部分(R1-β~R1+αの部分)の変換特性は、入力アドレス値RAD_Rについて、出力アドレス値RAD2_Rが単調増加する特性曲線(直線でもよい)であることが好ましい。
 例えば、座標変換部143は、強度信号K1_RであるΔDR1の信号値に適当なゲイン(μ)を乗算することで、
  RAD2_R=RAD_R-μ・K1_R
により、アドレス変換処理を行ってもよい。
 なお、上式において、μの大きさは最大でも単調性が損なわれないレベル以下に設定する。
 上記のようにして、R画像用画像補正部104Rの座標変換部143は、アドレス変換処理を行う。
 なお、R画像用画像補正部104Rの座標変換部143は、アドレス変換処理において、図14の点線で示した曲線Curve2により、アドレス変換処理を行うようにしてもよい。つまり、図14の点線で示した曲線Curve2では、図14の曲線Curve1に比べて、領域R2+γ~R2+αにおいて、曲線の傾きが小さく、曲線Curve2は、なだらかに上昇して、RAD2_R=RAD_Rの直線と一致するように変化する。したがって、R画像用画像補正部104Rの座標変換部143が、曲線Curve2により、アドレス変換を行うことで、図14の下段の図に示したオブジェクト左端部が、急激に圧縮されることを防止することができ、その結果、オブジェクト左端部の部分が滑らかに圧縮されたR画像を取得することができる。
 以上のようにしてアドレス変換されたRAD2_LおよびRAD2_Rは、それぞれ、L画像用画像補正部104LおよびR画像用画像補正部104Rにおいて、座標変換部143からメモリ部141および補間部144に出力される。
 なお、入力アドレスRAD_LおよびRAD_Rは、整数であるのに対し、出力アドレスRAD2_LおよびRAD2_Rは、小数部を持つ。ここでは、出力アドレスRAD2_LおよびRAD2_Rは、小数以下4bit有するものとする。
 なお、以降の処理については、伸張モードの処理と同様である。
 立体撮像装置1000において、以上の処理を行った場合の処理結果(圧縮モードにおける処理結果)を図15に示す。
 図15から分かるように、L画像の主被写体202の右の輪郭付近(右端部分領域)が、図15の矢印AL2で示すように、滑らかに左に圧縮されている。
 同様に、R画像の主被写体202の左側の輪郭(左端部分領域)も、図15の矢印AR2で示すように、滑らかに右に圧縮されている。
 この結果、立体撮像装置1000による上記処理を行った立体画像において、被写体オブジェクト(主被写体202)の内部(内側の領域)については、視差はSであり入力の原画と変わらないため、立体視した場合、被写体距離(視点から当該被写体オブジェクトの定位位置までの距離)は同じである。
 一方、(1)L画像において、主被写体202の右の輪郭(右端部分領域)が左に圧縮されているため、右の輪郭(右端部分領域)での視差はSR2になり、また、(2)R画像において、主被写体202の左の輪郭(左端部分領域)が右に圧縮されているため、左の輪郭(左端部分領域)での視差はSL2になる。
  SR2<S
  SL2<S
であるため、立体撮像装置1000により取得される立体画像の視差が遠ざかる方向に変化する。そのため、被写体オブジェクト(主被写体202)の内部に比べて、被写体オブジェクト(主被写体202)輪郭近傍(左端部分領域および右端部分領域)はわずかに遠ざかることになる。その結果、立体撮像装置1000により取得される立体画像において、被写体オブジェクト(主被写体202)輪郭近傍が遠方に向かって湾曲している丸み感が表現されることになる。
 輪郭近傍の丸み感が認知されると、脳での認識が平板ではなく立体物であることがことになるため、書き割り感が低減される。したがって、立体撮像装置1000において、上記のように処理を行うことで、書き割り感が低減された立体画像を取得することができる。
 なお、本実施形態では、伸張モードによる処理と、圧縮モードによる処理とを、別々の処理として説明したが、両者を併用する方法も可能である。この方法では、画像に与える歪みが小さくてすみ、かつ被写体オブジェクトの横幅も変化しないため画質的に優れている。
 [他の実施形態]
 上記実施形態では、2視点による立体画像の処理について、説明したが、これに限定されることはなく、例えば、多視点(N視点、Nは3以上の自然数)による立体画像に対して、上記実施形態で説明したのと同様の処理を行うようにしてもよい。
 なお、N視点の処理を実行する場合、上記実施形態の2つの処理系統(R画像用の処理系統と、L画像用の処理系統)を、N個の処理系統に拡張すればよい。
 以下では、N=4の場合、すなわち、4視点の場合の処理について、圧縮モードの処理、および、伸張モードの処理について、説明する。
 ≪4視点の場合の圧縮モードの処理≫
 まず、4視点の場合の圧縮モードの処理について、図面を参照しながら、説明する。
 図16は、4視点の空間的な配置を模式的に示した図である。
 図16に示すように、最も左側に位置する視点をa点とし、右側に行くに従い、b点、c点、d点と、4つの視点が等間隔に配置されているものとする。
 以下では、図16の4視点により取得される画像に対して圧縮モードの処理を実行する場合について、説明する。
 図17は、撮像シーン200を、図16の4つの視点a~d点において取得した撮像画像の画像信号波形を示しており、横軸に撮像画像のx座標(x方向の位置座標)を、縦軸に輝度(撮像画像の各画素の画素値(輝度値)に相当)をとっている。
 そして、図17(a)に視点a点により取得された画像を、図17(b)に視点b点により取得された画像を、図17(c)に視点c点により取得された画像を、図17(d)に視点d点により取得された画像を、それぞれ、示している。また、図17(a)~(b)は、x座標を一致させて描かれている。
 また、図17(a)~(b)において、点線は、4つの視点a~d点において取得した撮像画像の処理前の画像信号波形を示しており、実線が処理後の画像信号波形を示している。
 4視点の場合の圧縮モードの処理では、以下のように、オブジェクトの端部の圧縮量を設定すればよい。つまり、図17に示すように、a点画像において、オブジェクト(主被写体202)の右端の圧縮量をΔR1とし、b点画像において、オブジェクト(主被写体202)の右端の圧縮量をΔR2、左端の圧縮量をΔL3とし、c点画像において、オブジェクト(被写体202)の右端の圧縮量をΔR3、左端の圧縮量をΔL2とし、d点画像において、オブジェクト(被写体202)の左端の圧縮量をΔL1とした場合、
  ΔR1>ΔR2>ΔR3
  ΔL1>ΔL2>ΔL3
となるように、各画像において、圧縮モードの処理を実行すればよい。
 これにより、(1)a点画像をL画像とし、b点画像をR画像とする場合、(2)b点画像をL画像とし、c点画像をR画像とする場合、および、(3)c点画像をL画像とし、d点画像をR画像とする場合、のいずれの場合であっても、オブジェクト端部における視差が、圧縮モードの処理前よりも圧縮モード処理後の方が小さくなる。
 例えば、
  ΔR1=3×ΔR3
  ΔR2=2×ΔR3
  ΔL1=3×ΔL3
  ΔL2=2×ΔL3
とした場合、
(1)a点画像をL画像とし、b点画像をR画像とする場合、オブジェクト(主被写体202)の右端の圧縮量は、
  ΔR1-ΔR2=ΔR3
となり、オブジェクト(主被写体202)の左端の圧縮量は、ΔL3となり、
(2)b点画像をL画像とし、c点画像をR画像とする場合、オブジェクト(主被写体202)の右端の圧縮量は、
  ΔR2-ΔR3=ΔR3
となり、オブジェクト(主被写体202)の左端の圧縮量は、
  ΔL2-ΔL3=ΔL3
(3)c点画像をL画像とし、d点画像をR画像とする場合、オブジェクト(主被写体202)の右端の圧縮量は、ΔR3となり、左端の圧縮量は、
  ΔL1-ΔL2=ΔL3
となる。
 つまり、上記の場合、(1)a点画像をL画像とし、b点画像をR画像とする場合、(2)b点画像をL画像とし、c点画像をR画像とする場合、および、(3)c点画像をL画像とし、d点画像をR画像とする場合、のいずれの場合であっても、オブジェクト端部における視差が、圧縮モードの処理前よりも圧縮モード処理後の方が小さくなる。そして、いずれの場合においても、オブジェクト(主被写体202)の左端の圧縮量はΔL3であり、右端の圧縮量はΔR3となる。
 以上のように、4視点の画像に対して圧縮モードの処理を実行することで、仮想スクリーンより手前に存在するオブジェクト(主被写体202)の視差が小さくなる、つまり、立体画像の視差が遠ざかる方向に変化することとなる。そのため、被写体オブジェクト(主被写体202)の内部(画像上の内側の領域)に比べて、被写体オブジェクト(主被写体202)輪郭近傍(左端部分領域および右端部分領域)はわずかに遠ざかることになる。その結果、上記圧縮モード処理後の立体画像において、被写体オブジェクト(主被写体202)輪郭近傍が遠方に向かって湾曲している丸み感が表現されることになる。
 輪郭近傍の丸み感が認知されると、脳での認識が平板ではなく立体物であることがことになるため、書き割り感が低減される。したがって、上記のように処理を行うことで、書き割り感が低減された立体画像を取得することができる。
 ≪4視点の場合の伸張モードの処理≫
 次に、4視点の場合の伸張モードの処理について、図面を参照しながら、説明する。
 以下では、図16の4視点により取得される画像に対して伸張モードの処理を実行する場合について、説明する。
 図18は、撮像シーン200を、図16の4つの視点a~d点において取得した撮像画像の画像信号波形を示しており、横軸に撮像画像のx座標(x方向の位置座標)を、縦軸に輝度(撮像画像の各画素の画素値(輝度値)に相当)をとっている。
 そして、図18(a)に視点a点により取得された画像を、図18(b)に視点b点により取得された画像を、図18(c)に視点c点により取得された画像を、図18(d)に視点d点により取得された画像を、それぞれ、示している。また、図18(a)~(b)は、x座標を一致させて描かれている。
 また、図18(a)~(b)において、点線は、4つの視点a~d点において取得した撮像画像の処理前の画像信号波形を示しており、実線が処理後の画像信号波形を示している。
 4視点の場合の伸張モードの処理では、以下のように、オブジェクトの端部の伸張量を設定すればよい。つまり、図18に示すように、a点画像において、オブジェクト(主被写体202)の左端の伸張量をΔL1とし、b点画像において、オブジェクト(主被写体202)の左端の伸張量をΔL2、右端の伸張量をΔR3とし、c点画像において、オブジェクト(被写体202)の左端の伸張量をΔL3、右端の伸張量をΔR2とし、d点画像において、オブジェクト(被写体202)の右端の伸張量をΔR1とした場合、
  ΔR1>ΔR2>ΔR3
  ΔL1>ΔL2>ΔL3
となるように、各画像において、伸張モードの処理を実行すればよい。
 これにより、(1)a点画像をL画像とし、b点画像をR画像とする場合、(2)b点画像をL画像とし、c点画像をR画像とする場合、および、(3)c点画像をL画像とし、d点画像をR画像とする場合、のいずれの場合であっても、オブジェクト端部における視差が、伸張モードの処理前よりも伸張モード処理後の方が小さくなる。
 例えば、
  ΔR1=3×ΔR3
  ΔR2=2×ΔR3
  ΔL1=3×ΔL3
  ΔL2=2×ΔL3
とした場合、
(1)a点画像をL画像とし、b点画像をR画像とする場合、オブジェクト(主被写体202)の左端の伸張量は、
  ΔL1-ΔL2=ΔL3
となり、オブジェクト(主被写体202)の右端の伸張量は、ΔR3となり、
(2)b点画像をL画像とし、c点画像をR画像とする場合、オブジェクト(主被写体202)の左端の伸張量は、
  ΔL2-ΔL3=ΔL3
となり、オブジェクト(主被写体202)の右端の伸張量は、
  ΔR2-ΔR3=ΔR3
(3)c点画像をL画像とし、d点画像をR画像とする場合、オブジェクト(主被写体202)の左端の伸張量は、ΔL3となり、右端の伸張量は、
  ΔR1-ΔR2=ΔR3
となる。
 つまり、上記の場合、(1)a点画像をL画像とし、b点画像をR画像とする場合、(2)b点画像をL画像とし、c点画像をR画像とする場合、および、(3)c点画像をL画像とし、d点画像をR画像とする場合、のいずれの場合であっても、オブジェクト端部における視差が、伸張モードの処理前よりも伸張モード処理後の方が小さくなる。そして、いずれの場合においても、オブジェクト(主被写体202)の左端の伸張量はΔL3であり、右端の伸張量はΔR3となる。
 以上のように、4視点の画像に対して伸張モードの処理を実行することで、仮想スクリーンより手前に存在するオブジェクト(主被写体202)の視差が小さくなる、つまり、立体画像の視差が遠ざかる方向に変化することとなる。そのため、被写体オブジェクト(主被写体202)の内部(画像上の内側の領域)に比べて、被写体オブジェクト(主被写体202)輪郭近傍(左端部分領域および右端部分領域)はわずかに遠ざかることになる。その結果、上記伸張モード処理後の立体画像において、被写体オブジェクト(主被写体202)輪郭近傍が遠方に向かって湾曲している丸み感が表現されることになる。
 輪郭近傍の丸み感が認知されると、脳での認識が平板ではなく立体物であることがことになるため、書き割り感が低減される。したがって、上記のように処理を行うことで、書き割り感が低減された立体画像を取得することができる。
 なお、上記実施形態で説明した立体撮像装置において、各ブロックは、LSIなどの半導体装置により個別に1チップ化されても良いし、一部又は全部を含むように1チップ化されても良い。なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。
 また、集積回路化の手法はLSIに限るものではなく、専用回路又は汎用プロセサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサーを利用しても良い。
 さらには、半導体技術の進歩又は派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適用等が可能性としてあり得る。
 また、上記各実施形態の各機能ブロックの処理の一部または全部は、プログラムにより実現されるものであってもよい。そして、上記各実施形態の各機能ブロックの処理の一部または全部は、コンピュータにおいて、中央演算装置(CPU)により行われる。また、それぞれの処理を行うためのプログラムは、ハードディスク、ROMなどの記憶装置に格納されており、ROMにおいて、あるいはRAMに読み出されて実行される。
 また、上記実施形態の各処理をハードウェアにより実現してもよいし、ソフトウェア(OS(オペレーティングシステム)、ミドルウェア、あるいは、所定のライブラリとともに実現される場合を含む。)により実現してもよい。さらに、ソフトウェアおよびハードウェアの混在処理により実現しても良い。なお、上記実施形態に係る立体撮像装置をハードウェアにより実現する場合、各処理を行うためのタイミング調整を行う必要があるのは言うまでもない。上記実施形態においては、説明便宜のため、実際のハードウェア設計で生じる各種信号のタイミング調整の詳細については省略している。
 また、上記実施形態における処理方法の実行順序は、必ずしも、上記実施形態の記載に制限されるものではなく、発明の要旨を逸脱しない範囲で、実行順序を入れ替えることができるものである。
 前述した方法をコンピュータに実行させるコンピュータプログラム及びそのプログラムを記録したコンピュータ読み取り可能な記録媒体は、本発明の範囲に含まれる。ここで、コンピュータ読み取り可能な記録媒体としては、例えば、フレキシブルディスク、ハードディスク、CD-ROM、MO、DVD、DVD-ROM、DVD-RAM、BD(Blue-ray Disc)、半導体メモリを挙げることができる。
 上記コンピュータプログラムは、上記記録媒体に記録されたものに限られず、電気通信回線、無線又は有線通信回線、インターネットを代表とするネットワーク等を経由して伝送されるものであってもよい。
 また、上記実施形態では、2つの撮像部により、ステレオ画像(左眼用画像および右眼用画像)を取得(撮像)している場合について説明した。しかし、これに限定されることはなく、例えば、1つの撮像素子により、左眼用画像と右眼用画像とを時分割で交互に取得するようにしてもよいし、また、1つの撮像素子の撮像素子面を2分割して、左眼用画像と右眼用画像とを取得するようにしてもよい。
 また、上記実施形態において、画像入力部102には、R画像およびL画像が入力される構成について説明したが、これに限定されることはなく、例えば、多視点方式により取得されたN枚(Nは2以上の自然数)の画像から、R画像およびL画像を選択し、選択したR画像(信号)およびL画像(信号)を、画像入力部102に入力するようにしてもよい。
 また、立体画像処理装置において、R画像およびL画像は、必ずしも内部で取得されなくてもよい。例えば、R画像およびL画像は、外部から立体画像処理装置に入力されるものであってもよい。
 さらに、立体画像処理装置において、Rデプス情報およびLデプス情報も、必ずしも内部で取得されなくてもよい。例えば、Rデプス情報およびLデプス情報は、外部から立体画像処理装置に入力されるものであってもよい。この場合、立体画像処理装置において、デプス取得部103を省略することができる。つまり、立体画像処理装置が、画像補正部104のみを備えるものであってもよい。
 また、本発明の具体的な構成は、前述の実施形態に限られるものではなく、発明の要旨を逸脱しない範囲で種々の変更および修正が可能である。
 本発明に係る立体画像処理装置、立体画像処理方法およびプログラムによれば、いかなる要因で発生した書き割り現象であっても、被写体の立体感・厚み感を復元し、書き割り感の少ない高品位な立体画像を取得することができる。したがって、本発明は、立体画像(立体映像)関連分野において有用であり、当該分野において、実施することができる。
1000 立体撮像装置(立体画像処理装置)
101R 第1撮像部
101L 第2撮像部
102 画像入力部
103 デプス取得部
104 画像補正部
105 制御部
141 メモリ部
142 強度生成部
143 座標変換部
144 補間部

Claims (8)

  1.  2眼方式または多視点方式による立体画像に含まれる左眼用画像および右眼用画像に対して画像補正処理を行う立体画像処理装置であって、
     前記左眼用画像および前記右眼用画像に含まれる被写体についての3次元空間での距離情報を取得するデプス取得部と、
     前記デプス取得部が取得した前記被写体の前記距離情報に基づいて、前記左眼用画像および/または前記右眼用画像上における前記被写体の端部分領域を検出し、
     立体画像を立体表示させたときに、検出した前記被写体の端部分領域の定位位置が遠くなるように、前記左眼用画像および/または前記右眼用画像上における前記被写体の端部分領域の視差を調整する画像補正部と、
    を備える立体画像処理装置。
  2.  前記画像補正部は、左眼用画像補正部と、右眼用画像補正部と、を備え、
     前記左眼用画像補正部は、
     前記デプス取得部により取得された前記距離情報に基づいて、前記左眼用画像に含まれる被写体と背景との距離の変化を左眼用距離変化情報として検出し、
     当該左眼用距離変化情報を用いて前記左眼用画像上における前記被写体の左端部分領域を検出し、
     前記左眼用画像上において、検出した前記被写体の左端部分領域が左方向に拡大するように、前記左眼用画像を補正し、
     前記右眼用画像補正部は、
     前記デプス取得部により取得された前記距離情報に基づいて、前記右眼用距離画像に含まれる被写体と背景との距離の変化を右眼用距離変化情報として検出し、
     当該右眼用距離変化情報を用いて前記右眼用画像上における前記被写体の右端部分領域を検出し、
     前記右眼用画像上において、検出した前記被写体の右端部分領域が右方向に拡大するように、前記左眼用画像を補正する、
     請求項1に記載の立体画像処理装置。
  3.  前記画像補正部は、左眼用画像補正部と、右眼用画像補正部と、を備え、
     前記左眼用画像補正部は、
     前記デプス取得部により取得された前記距離情報に基づいて、前記左眼用画像に含まれる被写体と背景との距離の変化を左眼用距離変化情報として検出し、
     当該左眼用距離変化を用いて前記左眼用画像上における前記被写体の右端部分領域を検出し、
     前記左眼用画像上において、検出した前記被写体の右端部分領域が左方向に収縮するように、前記左眼用画像を補正し、
     前記右眼用画像補正部は、
     前記デプス取得部により取得された前記距離情報に基づいて、前記右眼用距離画像に含まれる被写体と背景との距離の変化を右眼用距離変化情報として検出し、
     当該右眼用距離変化を用いて前記右眼用画像上における前記被写体の右端部分領域を検出し、
     前記右眼用画像上において、検出した前記被写体の左端部分領域が右方向に収縮するように、前記左眼用画像を補正する、
     請求項1または2に記載の立体画像処理装置。
  4.  多視点方式により取得されるN枚(Nは2以上の自然数)の画像である画像P(1)~P(N)(画像P(x)の変数xは、左から右方向に昇順に付された自然数)に対して画像補正処理を行う立体画像処理装置であって、
     前記画像P(k)(1≦k≦N-1、kは自然数)および前記画像P(j+1)(k≦j≦N-1、jは自然数)に含まれる被写体についての3次元空間での距離情報を取得するデプス取得部と、
     前記デプス取得部が取得した前記被写体の前記距離情報に基づいて、前記画像P(k)および/または前記画像P(j+1)上における前記被写体の端部分領域を検出し、
     立体画像を立体表示させたときに、検出した前記被写体の端部分領域の定位位置が遠くなるように、前記画像P(k)および/または前記画像P(j+1)における前記被写体の端部分領域の視差を調整する画像補正部と、
    を備える立体画像処理装置。
  5.  前記画像補正部は、
     前記画像P(1)~P(N)の画像上の前記被写体の左端部分領域および右端部分領域を検出し、
     前記画像P(m)(1≦m≦N、kは自然数)上において、検出した前記被写体の画像上の左方向の伸張量をΔL(m)とし、検出した前記被写体の画像上の右方向の伸張量をΔR(N-m+1)とするとき、1≦x≦N-2の任意の自然数xについて、
      ΔR(x)>ΔR(x+1)
      ΔL(x)>ΔL(x+1)
    となる右方向の伸張量および左方向の伸張量を用いて、
    (1)画像P(1)について、前記被写体の左端部分領域が左方向に伸張量ΔL(1)だけ拡大するように前記画像P(1)を補正し、
    (2)画像P(x)(2≦x≦N-1、x:自然数)について、前記被写体の左端部分領域が左方向に伸張量をΔL(x)だけ拡大するようにし、かつ、前記被写体の右端部分領域が右方向に伸張量をΔR(N-x+1)だけ拡大するように前記画像P(x)を補正し、
    (3)画像P(N)について、前記被写体の右端部分領域が右方向に伸張量ΔR(1)だけ拡大するように前記画像P(N)を補正する、
     請求項4に記載の立体画像処理装置。
  6.  前記画像補正部は、
     前記画像P(1)~P(N)の画像上の前記被写体の左端部分領域および右端部分領域を検出し、
     前記画像P(m)(1≦m≦N、kは自然数)上において、検出した前記被写体の画像上の右方向の圧縮量をΔR(m)とし、検出した前記被写体の画像上の左方向の圧縮量をΔL(N-m+1)とするとき、1≦x≦N-2の任意の自然数xについて、
      ΔR(x)>ΔR(x+1)
      ΔL(x)>ΔL(x+1)
    となる右方向の圧縮量および左方向の圧縮量を用いて、
    (1)画像P(1)について、前記被写体の右端部分領域が右方向に圧縮量ΔR(1)だけ収縮するように前記画像P(1)を補正し、
    (2)画像P(x)(2≦x≦N-1、x:自然数)について、前記被写体の右端部分領域が右方向に圧縮量をΔR(x)だけ収縮するようにし、かつ、前記被写体の左端部分領域が左方向に圧縮量をΔL(N-x+1)だけ収縮するように前記画像P(x)を補正し、
    (3)画像P(N)について、前記被写体の左端部分領域が左方向に圧縮量ΔL(1)だけ収縮するように前記画像P(N)を補正する、
     請求項4に記載の立体画像処理装置。
  7.  2眼方式または多視点方式による立体画像に含まれる左眼用画像および右眼用画像に対して画像補正処理を行う立体画像処理方法であって、
     前記左眼用画像および前記右眼用画像から、前記左眼用画像および前記右眼用画像に含まれる被写体の距離に関する情報である距離情報を取得するデプス取得ステップと、
     前記デプス取得ステップが取得した前記被写体の前記距離情報に基づいて、前記左眼用画像および/または前記右眼用画像上における前記被写体の端部分領域を検出し、
     立体画像を立体表示させたときに、検出した前記被写体の端部分領域の定位位置が遠くなるように、前記左眼用画像および/または前記右眼用画像上における前記被写体の端部分領域の視差を調整する画像補正ステップと、
    を備える立体画像処理方法。
  8.  2眼方式または多視点方式による立体画像に含まれる左眼用画像および右眼用画像に対して画像補正処理を行う立体画像処理方法をコンピュータに実行させるためのプログラムであって、
     前記左眼用画像および前記右眼用画像から、前記左眼用画像および前記右眼用画像に含まれる被写体の距離に関する情報である距離情報を取得するデプス取得ステップと、
     前記デプス取得ステップが取得した前記被写体の前記距離情報に基づいて、前記左眼用画像および/または前記右眼用画像上における前記被写体の端部分領域を検出し、
     立体画像を立体表示させたときに、検出した前記被写体の端部分領域の定位位置が遠くなるように、前記左眼用画像および/または前記右眼用画像上における前記被写体の端部分領域の視差を調整する画像補正ステップと、
    を備える立体画像処理方法をコンピュータに実行させるためのプログラム。
PCT/JP2011/006406 2011-01-17 2011-11-17 立体画像処理装置、立体画像処理方法およびプログラム WO2012098608A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US13/636,338 US8750601B2 (en) 2011-01-17 2011-11-17 Three-dimensional image processing device, and three-dimensional image processing method
JP2012553475A JP5502211B2 (ja) 2011-01-17 2011-11-17 立体画像処理装置および立体画像処理方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011006912 2011-01-17
JP2011-006912 2011-01-17

Publications (1)

Publication Number Publication Date
WO2012098608A1 true WO2012098608A1 (ja) 2012-07-26

Family

ID=46515262

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/006406 WO2012098608A1 (ja) 2011-01-17 2011-11-17 立体画像処理装置、立体画像処理方法およびプログラム

Country Status (3)

Country Link
US (1) US8750601B2 (ja)
JP (1) JP5502211B2 (ja)
WO (1) WO2012098608A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080544A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 立体画像処理装置、立体画像処理方法、および立体画像処理プログラム
JP2014072639A (ja) * 2012-09-28 2014-04-21 Jvc Kenwood Corp 画像処理装置、画像処理方法及び画像処理プログラム
KR101590777B1 (ko) * 2014-12-16 2016-02-11 경북대학교 산학협력단 스테레오 비젼에서의 시차 보정장치 및 그 방법

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9294758B2 (en) 2013-04-18 2016-03-22 Microsoft Technology Licensing, Llc Determining depth data for a captured image
US10356383B2 (en) * 2014-12-24 2019-07-16 Reald Spark, Llc Adjustment of perceived roundness in stereoscopic image of a head
JP7180245B2 (ja) * 2018-09-27 2022-11-30 日本電産株式会社 加工機械用データ処理装置及び加工機械用データ管理システム

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209858A (ja) * 2002-01-17 2003-07-25 Canon Inc 立体画像生成方法及び記録媒体
JP2004320189A (ja) * 2003-04-14 2004-11-11 Sharp Corp 2次元画像の3次元化方法
JP2006042298A (ja) * 2004-06-25 2006-02-09 雅貴 ▲吉▼良 立体視画像作成方法および装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3157384B2 (ja) 1994-06-20 2001-04-16 三洋電機株式会社 立体映像装置
US6031564A (en) * 1997-07-07 2000-02-29 Reveo, Inc. Method and apparatus for monoscopic to stereoscopic image conversion
JP2002232913A (ja) 2001-01-31 2002-08-16 Canon Inc 複眼カメラ及び立体視画像観察システム
JP3990271B2 (ja) * 2002-12-18 2007-10-10 日本電信電話株式会社 簡易ステレオ画像入力装置、方法、プログラム、および記録媒体
JP2005004341A (ja) * 2003-06-10 2005-01-06 Sanyo Electric Co Ltd 画像表示装置およびコンピュータに画像表示機能を付与するプログラム
JP4508569B2 (ja) * 2003-07-29 2010-07-21 オリンパス株式会社 双眼立体観察装置、電子画像実体顕微鏡、電子画像立体観察装置、電子画像観察装置
CA2553473A1 (en) * 2005-07-26 2007-01-26 Wa James Tam Generating a depth map from a tw0-dimensional source image for stereoscopic and multiview imaging
US7679641B2 (en) 2006-04-07 2010-03-16 Real D Vertical surround parallax correction
US8471898B2 (en) * 2008-02-05 2013-06-25 Disney Enterprises, Inc. Medial axis decomposition of 2D objects to synthesize binocular depth
US8345956B2 (en) * 2008-11-03 2013-01-01 Microsoft Corporation Converting 2D video into stereo video
KR101547151B1 (ko) 2008-12-26 2015-08-25 삼성전자주식회사 영상 처리 방법 및 장치

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003209858A (ja) * 2002-01-17 2003-07-25 Canon Inc 立体画像生成方法及び記録媒体
JP2004320189A (ja) * 2003-04-14 2004-11-11 Sharp Corp 2次元画像の3次元化方法
JP2006042298A (ja) * 2004-06-25 2006-02-09 雅貴 ▲吉▼良 立体視画像作成方法および装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080544A1 (ja) * 2011-11-30 2013-06-06 パナソニック株式会社 立体画像処理装置、立体画像処理方法、および立体画像処理プログラム
US9602797B2 (en) 2011-11-30 2017-03-21 Panasonic Intellectual Property Management Co., Ltd. Stereoscopic image processing apparatus, stereoscopic image processing method, and stereoscopic image processing program
JP2014072639A (ja) * 2012-09-28 2014-04-21 Jvc Kenwood Corp 画像処理装置、画像処理方法及び画像処理プログラム
KR101590777B1 (ko) * 2014-12-16 2016-02-11 경북대학교 산학협력단 스테레오 비젼에서의 시차 보정장치 및 그 방법

Also Published As

Publication number Publication date
US20130011048A1 (en) 2013-01-10
JPWO2012098608A1 (ja) 2014-06-09
US8750601B2 (en) 2014-06-10
JP5502211B2 (ja) 2014-05-28

Similar Documents

Publication Publication Date Title
JP6021541B2 (ja) 画像処理装置及び方法
JP6002043B2 (ja) 立体視強度調整装置、立体視強度調整方法、プログラム、集積回路、記録媒体
JP5414947B2 (ja) ステレオ撮影装置
JP5502211B2 (ja) 立体画像処理装置および立体画像処理方法
JP5320524B1 (ja) ステレオ撮影装置
JP5820985B2 (ja) 立体画像処理装置および立体画像処理方法
WO2014083752A1 (ja) 別視点画像生成装置および別視点画像生成方法
JP5307953B1 (ja) 立体画像処理装置、立体画像処理方法、および立体画像処理プログラム
JP5861114B2 (ja) 画像処理装置、及び画像処理方法
TWI589150B (zh) 3d自動對焦顯示方法及其系統
JP2014042238A (ja) 3dビジュアルコンテントのデプスベースイメージスケーリング用の装置及び方法
JP6113411B2 (ja) 画像処理装置
JP2019029721A (ja) 画像処理装置、画像処理方法およびプログラム
JP5627498B2 (ja) 立体画像生成装置及び方法
US20120163700A1 (en) Image processing device and image processing method
US20160165207A1 (en) Electronic device, method, and computer program product
TW201033936A (en) Method of synthesizing stereoscopic video
JP6217485B2 (ja) 立体画像生成装置、立体画像生成方法、及び立体画像生成プログラム
JP6217486B2 (ja) 立体画像生成装置、立体画像生成方法、及び立体画像生成プログラム
JP6070061B2 (ja) 画像処理装置、撮影装置、画像処理方法およびプログラム
JP2014090252A (ja) 画像処理装置およびその制御方法、撮像装置およびその制御方法、並びに画像処理プログラム
Jurk et al. Advanced Video Processing for Future Autostereoscopic 3D Displays
JP5431393B2 (ja) 立体画像生成装置及び方法
JP2012060346A (ja) 立体画像撮影装置
JP2013090170A (ja) 立体視映像再生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11856431

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012553475

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13636338

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11856431

Country of ref document: EP

Kind code of ref document: A1