WO2012096088A1 - Vertically aligned liquid crystal display device and method for manufacturing same - Google Patents

Vertically aligned liquid crystal display device and method for manufacturing same Download PDF

Info

Publication number
WO2012096088A1
WO2012096088A1 PCT/JP2011/078866 JP2011078866W WO2012096088A1 WO 2012096088 A1 WO2012096088 A1 WO 2012096088A1 JP 2011078866 W JP2011078866 W JP 2011078866W WO 2012096088 A1 WO2012096088 A1 WO 2012096088A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
retardation
retardation film
display device
Prior art date
Application number
PCT/JP2011/078866
Other languages
French (fr)
Japanese (ja)
Inventor
梅田 博紀
絢子 稲垣
矢野 健太郎
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Priority to CN201180064737.4A priority Critical patent/CN103314325B/en
Priority to KR1020137018008A priority patent/KR101530797B1/en
Priority to JP2012552650A priority patent/JP5835230B2/en
Publication of WO2012096088A1 publication Critical patent/WO2012096088A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29DPRODUCING PARTICULAR ARTICLES FROM PLASTICS OR FROM SUBSTANCES IN A PLASTIC STATE
    • B29D11/00Producing optical elements, e.g. lenses or prisms
    • B29D11/0074Production of other optical elements not provided for in B29D11/00009- B29D11/0073
    • B29D11/00807Producing lenses combined with electronics, e.g. chips
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133742Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers for homeotropic alignment

Definitions

  • the present invention relates to a vertical alignment type liquid crystal display device that achieves an improvement in front contrast that leads to power saving, a small color shift, and a wide viewing angle, and a method for manufacturing the same.
  • liquid crystal display device is advantageous in that it is thinner and lighter than a CRT (Cathode Ray Tube), can be driven at a low voltage, and consumes less power. Therefore, liquid crystal display devices are used in various electronic devices such as televisions, notebook PCs (personal computers), desktop PCs, PDAs (mobile terminals), and mobile phones.
  • CTR Cathode Ray Tube
  • a vertical alignment type liquid crystal display device also referred to as a “VA (vertical alignment) type” using vertical alignment type liquid crystal (liquid crystal having negative dielectric anisotropy) has been compared with a conventional TN type liquid crystal display device. Because of its excellent viewing angle characteristics, it has become widely used.
  • VA vertical alignment type liquid crystal display device
  • retardation film and viewing angle widening film are used to suppress depolarization by a film (protective film) placed between the polarizing film and the liquid crystal cell. It can no longer be met.
  • Patent Document 1 and Non-Patent Document 1 disclose that the front contrast is increased by the configuration of the retardation film. Although these methods suggest the possibility that the front contrast can be maintained even if the transmittance of the polarizing plate is increased, the front contrast improving means using these methods causes a very large color shift. Originally, the vertical alignment type liquid crystal display device has a small color shift, but this configuration is a method of eliminating the goodness inherent in the vertical alignment type liquid crystal display device.
  • a polarizing plate manufactured in a rolled state is referred to as a “rolled polarizing plate”, and a piece cut from the polarizing plate to a predetermined dimension is referred to as a “single sheet polarizing plate”.
  • the present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is a vertical that achieves an improvement in front contrast that leads to power saving, and has a small color shift and a wide viewing angle.
  • An alignment type liquid crystal display device and a manufacturing method thereof are provided.
  • a vertical alignment type liquid crystal cell having a configuration in which a backlight and a liquid crystal having a negative dielectric anisotropy are sandwiched between two transparent substrates, and one sheet on the display surface side and the backlight side of the vertical alignment type liquid crystal cell
  • a vertical alignment type liquid crystal display device having polarizing plates each satisfying the following requirements (a) to (c):
  • A) One of the transparent substrates has a thin film transistor and a color filter.
  • the polarizing plate has two retardation films sandwiching a polarizer using polyvinyl alcohol, and the in-plane slow axis of the retardation film on the liquid crystal cell side of the polarizing film is the polarized light. It is perpendicular to the absorption axis of the child.
  • Ro (n x ⁇ n y ) ⁇ d (nm)
  • Rt ⁇ (n x + n y ) / 2 ⁇ n z ⁇ ⁇ d (nm)
  • Ro represents the in-plane retardation value in the retardation film
  • Rt represents the retardation value in the thickness direction in the film
  • d represents the thickness of the retardation film
  • n x represents a refractive index of the maximum (slow axis direction) in a plane of the retardation film.
  • n y represents a refractive index in the direction perpendicular to the slow axis in the retardation film plane (fast axis direction), n z represents the refractive index of the retardation film in the thickness direction.
  • the measurement conditions are the same as above. ] 2.
  • the in-plane retardation values Ro of the retardation films A and B are respectively Ro (A) and Ro (B)
  • the relationships represented by the following (Expression 6) to (Expression 8) are satisfied.
  • the vertical alignment type liquid crystal display device according to item 1 wherein the liquid crystal display device is a vertical alignment type liquid crystal display device.
  • the in-plane retardation value Ro and the thickness direction retardation value Rt of the retardation film A are adjusted by the control by the draw ratio when the retardation film A is formed, and the in-plane of the retardation film B
  • a manufacturing method of a vertical alignment type liquid crystal display device for manufacturing the vertical alignment type liquid crystal display device according to any one of items 1 to 4, wherein the retardation film A and the retardation film B A method for producing a vertical alignment type liquid crystal display device, comprising preparing a long roll-shaped polarizing plate having at least one retardation film, and laminating the liquid crystal cell by a roll-to-panel manufacturing method.
  • VA type vertical alignment type
  • VA type liquid crystal display device
  • the vertical alignment type liquid crystal display device of the present invention includes a backlight, a vertical alignment type liquid crystal cell having a structure in which a liquid crystal having negative dielectric anisotropy is sandwiched between two transparent substrates, and the vertical alignment type liquid crystal cell.
  • a vertical alignment type liquid crystal display device having polarizing plates one by one on the display surface side and the backlight side, satisfying the requirements (a) to (c), and formulas (1) to (5) ) Is satisfied. This feature is a technical feature common to the inventions according to claims 1 to 5.
  • the in-plane retardation values Ro of the retardation films A and B are respectively Ro (A) and Ro (B). It is preferable that the relationships represented by Equations (6) to (8) are satisfied. Furthermore, it is preferable that the retardation film A or the retardation film B contains a cellulose ester resin.
  • the in-plane retardation value Ro and the retardation value Rt in the thickness direction of the retardation film A are adjusted by the control by the draw ratio when the retardation film A is formed, and
  • the in-plane retardation value Ro and the thickness direction retardation value Rt of the retardation film B are preferably adjusted by controlling the stretching temperature and the film thickness.
  • a manufacturing method of the vertical alignment type liquid crystal display device for manufacturing the vertical alignment type liquid crystal display device of the present invention a long roll-shaped polarizing plate having at least one of the retardation film A and the retardation film B is used. It is preferable that it is a manufacturing method of the aspect which prepares and is bonded with the roll to panel manufacturing method with respect to the said liquid crystal cell.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the polarizing plate has two retardation films sandwiching a polarizer using polyvinyl alcohol (PVA), and the retardation film on the liquid crystal cell side of the polarizing film
  • PVA polyvinyl alcohol
  • the in-plane slow axis is perpendicular to the absorption axis of the polarizer.
  • the retardation films when the retardation film on the color filter side of one polarizing plate is the retardation film A, and the retardation film on the liquid crystal cell side of the other polarizing plate is the retardation film B,
  • the retardation values Rt in the thickness direction of the retardation films A and B measured at a measurement wavelength of 590 nm are Rt (A) and Rt (B), respectively, and the thickness relative to the in-plane retardation value Ro.
  • the ratio value of the phase difference value Rt in the vertical direction is Rt / Ro (A) and Rt / Ro (B)
  • the relations expressed by the following (Expression 1) to (Expression 5) are satisfied. It is characterized by.
  • Ro (n x ⁇ n y ) ⁇ d (nm)
  • Rt ⁇ (n x + n y ) / 2 ⁇ n z ⁇ ⁇ d (nm)
  • Ro represents the in-plane retardation value in the retardation film
  • Rt represents the retardation value in the thickness direction in the film
  • d represents the thickness of the retardation film
  • n x represents a refractive index of the maximum (slow axis direction) in a plane of the retardation film.
  • n y represents a refractive index in the direction perpendicular to the slow axis in the retardation film plane (fast axis direction), n z represents the refractive index of the retardation film in the thickness direction.
  • the measurement conditions are the same as above.
  • the above (formula 2) to (formula 4) are more preferably 80 nm ⁇ Rt (A) ⁇ 120 nm, 140 nm ⁇ Rt (B) ⁇ 185 nm, and 30 nm ⁇ Rt (B) ⁇ Rt (A ) ⁇ 120 nm.
  • the liquid crystal display device of the present invention uses a vertical alignment type liquid crystal cell adopting a color filter on array (COA) system.
  • COA color filter on array
  • the COA method includes, for example, a color filter integrated drive substrate in which a color filter is directly formed on a drive side substrate of a liquid crystal cell, and a counter electrode (conductive layer) as described in JP-A-10-206888. ) And a counter substrate with a spacer interposed therebetween, and a liquid crystal material is sealed in the gap, and a color filter is formed on the reflective electrode, and a bonding margin is provided in high definition.
  • the yield and aperture ratio can be improved by widening.
  • the arrangement of the retardation film according to the present invention with respect to the configuration of the liquid crystal cell is very important.
  • the color filter side needs to be relatively small, and the difference Is greater than 20 nm and less than 130 nm, more preferably greater than 30 nm and less than 120 nm, and even more preferably greater than 35 nm and less than 110 nm. If this value is small, the front contrast of the liquid crystal display device cannot be improved, and if it is too large, the color shift of the liquid crystal display device becomes large. Especially, the color mixture when viewed from the periphery is remarkable, and the display quality of the liquid crystal display device is high. Is significantly reduced.
  • the Rt on the color filter side of the retardation film (or retardation layer) used on both sides (two places) of the liquid crystal cell in the liquid crystal display device of the present invention must be larger than 70 nm and smaller than 130 nm, which is opposite to the liquid crystal cell.
  • the Rt of the retardation film on the negative side needs to be larger than 130 nm and smaller than 200 nm, more preferably, the Rt on the color filter side is 80 nm or more and 120 nm or less, and more preferably 85 nm or more and 115 nm or less.
  • the Rt of the retardation film on the opposite side of the liquid crystal cell is 140 nm or more and 185 nm or less, and more preferably 145 nm or more and 170 nm or less.
  • the retardation value of these two retardation films affects the viewing angle of the liquid crystal display device. When each phase difference value falls within a desired range, it is possible to obtain viewing angle characteristics closer to the target in the vertical and horizontal directions.
  • the Rt / Ro value of the retardation film used on both sides (two places) of the liquid crystal cell in the liquid crystal display device of the present invention needs to be smaller on the color filter side of the liquid crystal cell.
  • the value of Rt / Ro on the color filter side of the liquid crystal cell is increased, the color shift is increased and the display quality of the liquid crystal display device is remarkably lowered.
  • Ro of the retardation film used on both sides (two places) of the liquid crystal cell is 40 nm ⁇ Ro ⁇ 90 nm on the color filter side and 45 ⁇ Ro ⁇ 100 nm on the side opposite to the color filter.
  • the side opposite to the color filter is preferably large.
  • the side opposite to the color filter is large, the viewing angle can be sufficiently widened by setting 45 nm ⁇ Ro ⁇ 100 nm, and the color shift can be suppressed by arranging a relatively small Ro on the color filter side. it can.
  • the retardation film used on both sides (two places) of the liquid crystal cell in the liquid crystal display device of the present invention is preferably made by a film forming method. Moreover, it is preferable to make it while controlling the retardation value during film formation.
  • Examples of the retardation film used in the liquid crystal display device of the present invention include a cellulose ester film, a polyester film, a cycloolefin film, a polycarbonate film, a polyolefin film, a polyacryl film, and a mixed resin film of an acrylic resin and a cellulose ester resin.
  • the retardation film A examples include a stretched polymer film mainly composed of a polycarbonate-based, cellulose-based, polyethylene-based, or polypropylene-based resin. Particularly preferred are cellulose ester resins.
  • the retardation value control method for these retardation films is, for example, when using cellulose aether, changing the degree of ester substitution or substituent, changing the solvent, adding a retardation value control material, adjusting the stretching conditions, etc.
  • the retardation value control of the retardation film used on the color filter side is mainly controlled by the draw ratio, and the retardation value control on the side opposite to the color filter is performed. More preferably, it is carried out by controlling the stretching temperature and the film thickness.
  • the reason for this is that the distortion remaining in the film changes depending on the retardation value control means, and the distortion can be balanced on both sides of the liquid crystal cell by controlling the retardation value on the color filter side and the opposite side by the above method. Therefore, it is estimated that the warpage of the liquid crystal cell may be alleviated.
  • the polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the retardation film according to the present invention, and is bonded to at least one surface of a polarizer produced by immersing and stretching in an iodine solution.
  • the retardation film according to the present invention may be used, or another polarizer protective film may be used.
  • a commercially available cellulose ester film for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
  • the above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or may be an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solventless type.
  • concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • the liquid crystal display device of the present invention is characterized by having a vertical alignment type liquid crystal cell, and various conventionally known liquid crystal cells can be used as the liquid crystal cell according to the present invention.
  • the present invention is characterized in that a vertical alignment type liquid crystal cell having a configuration in which a liquid crystal having negative dielectric anisotropy is sandwiched between two transparent substrates is used.
  • One of the transparent substrates has a thin film transistor (TFT) and a color filter.
  • TFT thin film transistor
  • the configuration of the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2010-44362 is helpful.
  • the transparent substrate conventionally known transparent glass or resin can be used.
  • a liquid crystal cell is formed by enclosing a nematic liquid crystal having negative dielectric anisotropy between such glass substrates.
  • a nematic liquid crystal having negative dielectric anisotropy conventionally known ones described in JP-A-2004-204133, JP-A-2004-250668, JP-A-2005-047980, etc. should be used. Can do.
  • the thickness d of the liquid crystal layer is not particularly limited, but can be set to, for example, about 3.5 ⁇ m when a liquid crystal having the above characteristics is used.
  • VA type liquid crystal display device the addition of a chiral material generally used in a TN mode liquid crystal display device is rarely used to degrade dynamic response characteristics, but alignment failure It may be added to reduce the amount.
  • the “multi-domain structure” refers to a structure in which one pixel of a liquid crystal display device is divided into a plurality of regions.
  • a vertical alignment type (VA type) liquid crystal display device the liquid crystal molecules are tilted during white display, so the birefringence of the liquid crystal molecules when viewed from an oblique direction differs between the tilt direction and the opposite direction.
  • VA type vertical alignment type
  • a multi-domain structure is preferable because viewing angle characteristics of luminance and color tone are improved.
  • each pixel is composed of two or more regions having different initial alignment states of liquid crystal molecules and averaged, whereby luminance and color tone bias depending on the viewing angle can be reduced. Further, the same effect can be obtained even if each pixel is constituted by two or more different regions where the orientation direction of the liquid crystal molecules continuously changes in a voltage application state.
  • the number of divisions may be increased.
  • a substantially uniform viewing angle can be obtained by using four or more divisions.
  • the polarizing plate absorption axis can be set at an arbitrary angle when dividing into eight.
  • thermoplastic resin refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into a desired shape.
  • thermoplastic resins include cellulose esters, polyethylene (PE), high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene. (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin (PMMA), etc., soluble in solvents It is preferable to dissolve the material appropriately and treat it by the method of the present invention.
  • PA polyamide
  • nylon polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • PET Polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • COP cyclic polyolefin
  • polyphenylene sulfide PPS
  • polytetrafluoroethylene PTFE
  • polysulfone polyethersulfone
  • amorphous polyarylate liquid crystal polymer
  • polyetherether A ketone thermoplastic polyimide (PI)
  • PAI polyamideimide
  • the upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 150 ⁇ m from the viewpoint of applicability, foaming, solvent drying, and the like.
  • the resin substrate preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • Cellulose ester resins that can be used in the retardation film described in the present invention are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, And at least one selected from cellulose phthalate.
  • particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • substitution degree of the mixed fatty acid ester when an acyl group having 2 to 4 carbon atoms is used as a substituent, the substitution degree of the acetyl group is X, and the substitution degree of the propionyl group or butyryl group is Y. It is preferable that it is a cellulose resin containing the cellulose ester which satisfy
  • the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0, The cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • cellulose ester resin 1 g is added to 20 ml of pure water (electric conductivity 0.1 ⁇ S / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. It is preferable that the electric conductivity is 1 to 100 ⁇ S / cm.
  • ⁇ Sugar ester compound ⁇ In the present invention, it is also preferable to include a cellulose ester resin and an ester compound in which at least one of the pyranose structure or the furanose structure is 1 to 12 and all or part of the OH groups in the structure are esterified.
  • the proportion of esterification is preferably 70% or more of the OH groups present in the pyranose structure or furanose structure.
  • ester compound according to the present invention examples include the following, but the present invention is not limited to these.
  • Glucose galactose, mannose, fructose, xylose or arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose .
  • gentiobiose gentiotriose
  • gentiotetraose gentiotetraose
  • xylotriose galactosyl sucrose
  • sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • the monocarboxylic acid used for esterifying all or part of the OH groups in the pyranose structure or furanose structure of the present invention is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, An aromatic monocarboxylic acid or the like can be used.
  • the carboxylic acid used may be one kind or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and oc
  • Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralin carboxylic acid, or derivatives thereof.
  • Oligosaccharide ester compounds can be applied as compounds having 1 to 12 of at least one of the pyranose structure or furanose structure according to the present invention.
  • Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc.
  • examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltooligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylooligos. Sugar.
  • the said ester compound is a compound which condensed 1 or more and 12 or less of at least 1 type of the pyranose structure or furanose structure represented with the following general formula (A).
  • R 11 to R 15 and R 21 to R 25 each represents an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n each represents an integer of 0 to 12, and m + n represents an integer of 1 to 12.
  • R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom.
  • the benzoyl group may further have a substituent R 26 (p is 0 to 5), and examples thereof include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and further, these alkyl groups, alkenyl groups, and phenyl groups. May have a substituent.
  • Oligosaccharides can also be produced in the same manner as the ester compound according to the present invention.
  • ester compound according to the present invention will be given below, but the present invention is not limited thereto.
  • the cellulose ester film according to the present invention contains the sugar ester compound according to the present invention in an amount of 0.5 to 30% by mass of the cellulose ester film in order to suppress the fluctuation of the retardation value and stabilize the display quality. In particular, it is preferable to contain 5 to 30% by mass.
  • Methacrylic resin is also contained in the acrylic resin which can be used for the resin film base material used for the phase difference film of this invention, a polarizing plate, etc.
  • the resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate and the like are preferable, and methyl acrylate and n-butyl acrylate are particularly preferable.
  • acrylic resins can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
  • cyclic olefin resin examples include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof.
  • norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
  • Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group.
  • these substituents may be the same or different and a plurality may be bonded to the ring.
  • Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxy group, a carbonyloxycarbonyl group, an epoxy group, a hydroxy group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • a known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units.
  • 9-diyl-ethylene structure the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60.
  • the molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use.
  • Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • Mw weight average molecular weight measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • the glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretchability, it is preferably in the range of 130 to 160 ° C, more preferably 135 to 150 ° C.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is 1.2 to 3.5, preferably 1.5 to 3.0, from the viewpoint of relaxation time, productivity and the like. More preferably, it is 1.8 to 2.7.
  • the cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and more preferably 4 ⁇ 10 12 It is particularly preferably ⁇ 12 Pa ⁇ 1 or less.
  • the cyclic olefin resin does not substantially contain particles.
  • substantially free of particles means that even if particles are added to a film made of a cyclic olefin resin, the amount of increase in haze from the non-added state is allowed to be in the range of 0.05% or less. Means you can.
  • the alicyclic polyolefin resin lacks affinity with many organic particles and inorganic particles. Therefore, when a cyclic olefin resin film to which particles exceeding the above range are added is stretched, voids are easily generated, and as a result, There is a risk that a significant increase in haze may occur.
  • ⁇ Polycarbonate resin> various known polycarbonate resins can also be used.
  • a polymer material collectively referred to as polycarbonate is a generic term for a polymer material in which a polycondensation reaction is used in its synthesis method and the main chain is linked by a carbonic acid bond.
  • Phosgene, diphenyl carbonate and the like obtained by polycondensation.
  • an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected.
  • bisphenol derivatives should be selected as appropriate.
  • an aromatic polycarbonate copolymer can be constituted.
  • bisphenol-A bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
  • aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components.
  • a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved.
  • the present invention is also effective for coalescence.
  • the viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000.
  • a viscosity average molecular weight of 20,000 to 120,000 is particularly preferred. If a resin having a viscosity average molecular weight lower than 10,000 is used, the mechanical strength of the resulting film may be insufficient, and if it has a high molecular weight of 400000 or more, the viscosity of the dope becomes too large, causing problems in handling.
  • the viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
  • the glass transition temperature of the aromatic polycarbonate according to the present invention is preferably 200 ° C. or higher in order to obtain a highly heat-resistant film, and more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component.
  • the glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetric analyzer). For example, the baseline is unevenly determined by a temperature rising condition of 10 ° C./min with RDC220 manufactured by Seiko Instruments Inc. It is the temperature that begins to do.
  • the solvent used in the dope composition containing the aromatic polycarbonate is a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms. It is preferable.
  • the mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass.
  • the type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more.
  • the alcohol in the present invention is preferably a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms. Specific examples include methanol, ethanol, isopropanol, and tert-butanol. Of these, ethanol, isopropanol, and tertiary-butanol can achieve almost the same effect, but methanol is slightly less effective. Although the reason is not clear, it is presumed that the boiling point of the solvent, that is, the ease of flying during drying is related. Higher alcohols higher than that are not preferred because they have a high boiling point and are likely to remain after film formation.
  • the amount of alcohol to be added must be carefully selected. These alcohols are completely poor in solubility in aromatic polycarbonate and are completely poor solvents. Therefore, it cannot be added too much, and should be the minimum amount that can provide satisfactory peelability. As described above, it is 4 to 14 parts by mass, preferably 4 to 12 parts by mass with respect to methylene chloride. When the addition amount is in the range of 4 to 14 parts by mass with respect to the amount of methylene chloride, the solubility of the solvent in the polymer and the dope stability are improved, and the effect of improving the peelability is increased.
  • the present invention is composed of the above methylene chloride and aliphatic alcohol in the dope composition, but other solvents can also be used.
  • the remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and is a low-boiling solvent.
  • halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
  • the effects here include mixing the solvent within a range that does not sacrifice the solubility and stability, for example, improving the surface properties of the film formed by the solution casting method (leveling effect), the evaporation rate and the system These include viscosity adjustment and crystallization suppression effects. What is necessary is just to determine the kind and addition amount of the solvent to mix by the degree of these effects, and you may use 1 type, or 2 or more types as a solvent to mix.
  • solvents preferably used include halogen solvents such as chloroform and 1,2-dichloroethane, hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and butyl acetate.
  • halogen solvents such as chloroform and 1,2-dichloroethane
  • hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone
  • ethyl acetate and butyl acetate examples include ester solvents, ether solvents such as ethylene glycol dimethyl ether and methoxyethyl acetate.
  • the dope composition according to the present invention may be prepared by any method as long as a transparent solution with low haze is obtained as a result.
  • a predetermined amount of alcohol may be added to the aromatic polycarbonate solution dissolved in a certain solvent in advance, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol.
  • alcohol is a poor solvent, the method of adding the latter after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
  • the polyester resin that can be used in the present invention is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of dicarboxylic acid structural units (constituent units derived from dicarboxylic acid) are derived from aromatic dicarboxylic acid, and 70% or more of the diol constituent units (constituent units derived from the diol) are derived from the aliphatic diol.
  • the proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
  • the proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more. Two or more polyester resins may be used in combination.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and the like, 4,4'-biphenyldicarboxylic acid 3,4'-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
  • polyester resin aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
  • Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
  • polyester resin monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
  • a known esterification method or transesterification method can be applied to the production of the polyester resin.
  • the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
  • Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
  • polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
  • thermoplastic resin substrate according to the present invention can contain various compounds as additives depending on the purpose. For example, it contains retardation increasing agent, plasticizer, antioxidant, acid scavenger, light stabilizer, UV absorber, optical anisotropy control agent, matting agent, antistatic agent, release agent, etc. Can be made.
  • the retardation increasing agent is preferably an aromatic compound having at least two aromatic rings.
  • the aromatic compound is preferably used in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin. And it is preferable to use in 0.05-15 mass parts, and it is still more preferable to use in 0.1-10 mass parts. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound includes an aromatic hetero ring in addition to the aromatic hydrocarbon ring.
  • the aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring).
  • the aromatic heterocycle is generally an unsaturated heterocycle.
  • the aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring.
  • Aromatic heterocycles generally have the most double bonds.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable.
  • aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring. Details of these are described in JP-A No. 2004-109410, JP-A No. 2003-344655, JP-A No. 2000-275434, JP-A No. 2000-1111914, JP-A No. 12-275434, and the like.
  • thermoplastic resin substrate according to the present invention may be added with fine particles as a matting agent in order to prevent scratching or deterioration of transportability when the produced film is handled. preferable.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • the average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 80 to 400 nm. preferable.
  • the content of these fine particles in the film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of a retardation film (optical film) having a multilayer structure formed by the co-casting method, it is preferable that the surface contains this amount of fine particles.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
  • Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • the resin examples include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the retardation film (optical film) low.
  • the dynamic friction coefficient of at least one surface is preferably 0.2 to 1.0.
  • Method for producing retardation film As a method for producing the resin film substrate according to the present invention as a film, production methods such as a normal inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, and a hot press method can be used. However, the solution casting method by the casting method and the melt casting method are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
  • the organic solvent useful for forming the dope is not limited as long as it dissolves a thermoplastic resin such as a cellulose ester resin. Can be used.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate,
  • the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • thermoplastic resin and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
  • thermoplastic resin For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
  • Recycled material is a finely pulverized film, which is generated when the film is formed, and has been cut off on both sides of the film, or a film original that has been speculated out due to scratches, etc. Reused.
  • An endless metal belt such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
  • a liquid feed pump for example, a pressurized metering gear pump
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, drying is generally carried out at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
  • tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
  • Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while applying the tenter until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding step This is a step of winding the film as a film by a winder after the amount of residual solvent in the web is 2% by mass or less. By reducing the amount of residual solvent to 0.4% by mass or less, dimensional stability can be improved. A good film can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the film thickness according to the present invention is not particularly limited, but is preferably 20 to 200 ⁇ m.
  • thermoplastic resin film used for melt extrusion is usually preferably kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, a dry thermoplastic resin and an additive depending on the purpose are fed to an extruder with a feeder and kneaded using a uniaxial or biaxial extruder, and then formed into a strand from a die. Can be extruded, water-cooled or air-cooled, and then cut.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
  • the antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
  • a vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the melt temperature Tm when extruding the pellets is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, Coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such a defect is also called a die line, but in order to reduce surface defects such as the die line, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface processing that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll there is no particular limitation on the cooling roll, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • examples of the elastic touch roll include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747,
  • a silicon rubber roll coated with a thin-film metal sleeve can be used as described in Japanese Unexamined Patent Application Publication No. 2002-36332, Japanese Patent Application Laid-Open No. 2005-172940 and Japanese Patent Application Laid-Open No. 2005-280217.
  • the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the retardation film optical film
  • the slow axis of the retardation film (optical film) becomes the width direction.
  • the stretching ratio is 1.1 to 3.0 times, preferably 1.2 to 2 times
  • the stretching temperature is usually a temperature of Tg to Tg + 50 ° C., preferably Tg to Tg + 50 ° C. of the resin constituting the film. Done in a range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film-like resin film produced by the above method is used as a retardation film
  • the film is formed in the longitudinal direction or width for the purpose of adjusting the retardation (retardation) of the retardation film (optical film) and reducing the dimensional change rate. It may be contracted in the hand direction.
  • Uniformity in the slow axis direction is also important, and the angle is preferably ⁇ 5 to + 5 ° with respect to the film width direction, more preferably in the range of ⁇ 1 to + 1 °, particularly ⁇ 0.
  • a range of 5 to + 0.5 ° is preferable, and a range of ⁇ 0.1 to + 0.1 ° is particularly preferable.
  • the retardation film according to the present invention is preferably a long film. Specifically, the retardation film is about 100 m to 10000 m, and is usually in the form of a roll.
  • the width of the film is preferably 1.3 to 4 m, more preferably 1.4 to 2.5 m.
  • the film thickness of the retardation film according to the present invention is not particularly limited and is preferably changed according to the purpose.
  • the thickness is preferably 20 to 200 ⁇ m.
  • the retardation film according to the present invention is particularly preferably used for a liquid crystal display device produced by a roll-to-panel manufacturing method.
  • the “roll-to-panel manufacturing method” means that the length of the liquid crystal cell and the width of the liquid crystal cell are not cut in advance in both the vertical and horizontal sizes of the liquid crystal cell.
  • This is a manufacturing method in which a polarizing plate is directly fed out from a long roll corresponding to the width of the film, and bonded to a liquid crystal cell, and then cut into a liquid crystal cell size with a laser cutter or the like (see FIG. 3).
  • the laminating roll is pressed when laminating the polarizing plate to the liquid crystal cell, but since it is a long polarizing plate, generally an unreasonable force is easily applied at the time of laminating, and unevenness is present in the polarizing plate.
  • unevenness is hardly generated, and variation in optical performance between lots is negligible.
  • Fine particles (Aerosil R972V (Nippon Aerosil Co., Ltd.)) 11 parts by mass (average primary particle diameter 16 nm, apparent specific gravity 90 g / liter) More than 89 parts by mass of ethanol was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion.
  • composition of fine particle addition liquid Methylene chloride 99 parts by weight Cellulose acetate (above) 4 parts by weight Fine particle dispersion 11 parts by weight
  • a main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. The cellulose ester was added to the pressure dissolution tank containing the solvent while stirring. This was heated and stirred to completely dissolve, and a plasticizer and an ultraviolet absorber were further added and dissolved. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
  • Table 1 and Table 2 show the conditions of the stretching zone (stretching ratio, heating temperature) and the amount of residual solvent when entering the tenter.
  • 150 to 185 were made 500 m each.
  • the production method of the films 150 to 185 is defined as prescription C.
  • the retardation value was measured at a measurement wavelength of 590 nm using KOBRA 31WPR manufactured by Oji Scientific Instruments.
  • the average refractive index is measured by measuring the refractive index in three directions with an Abbe refractometer and averaged using R 0 and the phase difference value when the slow axis is tilted by 40 ° with respect to the tilt axis. was calculated.
  • the prepared retardation film and Konica Minolta Op KC6UA-SW were saponified for 60 seconds using an aqueous KOH solution at 50 ° C. and 2N, washed with water and dried, and then subjected to polarizing plate processing as follows.
  • a polyvinyl alcohol film having a thickness of 75 ⁇ m was swollen with water at 35 ° C. and immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water, and then 3 g of potassium iodide and 7. It was immersed in a 45 ° C. aqueous solution consisting of 5 g and 100 g of water and uniaxially stretched (temperature 55 ° C., stretch ratio 5 times). This was washed with water and dried to obtain a polarizer.
  • the saponified protective film (KC6UA-SW and each retardation film) is placed on both sides of the polarizer, and the pressure is 20-30 N / cm 2 in a form in which the polarizer is sandwiched between both protective films using water paste.
  • the transfer speed was about 10 m / min, and a drying process was performed at 70 ° C. for about 2 minutes and then at 60 ° C. for about 2 minutes, and wound up to prepare a polarizing plate roll.
  • An adhesive layer was provided on the peeled polyethylene terephthalate film, and the surface of the adhesive layer was attached to the retardation film side of the obtained polarizing plate to prepare an adhesive polarizing plate roll.
  • Tables 3 and 4 show the correspondence between the retardation films (101 to 185) and the polarizing plates (201 to 285).
  • the liquid crystal cell of this liquid crystal display device has a color filter and a thin film transistor disposed on one of the transparent substrates (see FIG. 1), and is a cell of the liquid crystal display device of the present invention. W is described. Subsequently, the polarizing plate of BRAVIA KDL52V1 manufactured by Sony was peeled off and bonded to the panel in the combinations of Table 5, Table 6 and Table 7 to prepare liquid crystal display devices (3001 to 3004), and the following evaluation was performed.
  • the liquid crystal cell of this liquid crystal display device is a comparative example of the liquid crystal cell of the liquid crystal display device of the present invention in which the color filter and the thin film transistor are arranged on different transparent substrates (see FIG. 2). It is.
  • the front contrast was evaluated according to the following criteria.
  • white and black were displayed in the same manner as the front contrast measurement, and the minimum angle of contrast 50 in the range of 20 to 70 ° was set as the viewing angle.
  • the viewing angle exceeds 80 ° in all directions, it is described as 80 °.
  • the viewing angle was evaluated according to the following criteria. ⁇ : 70 ° or more ⁇ : 60 ° or more, less than 70 ° ⁇ : less than 60 ° ⁇ Color shift>
  • the color shift in black display was measured using EZ-Contrast 160D manufactured by ELDIM, and expressed as coordinates (u1 ′, v1 ′) in the CIE 1976 UCS chromaticity diagram, and measured at 360 ° with a tilt angle of 60 ° from the normal of the liquid crystal display device.
  • coordinates a value having the longest distance between the front direction (u2 ′, v2 ′) and the coordinate is defined as a color shift.
  • Color shift ( ⁇ CS) ((u1′ ⁇ u2 ′) 2 + (v1′ ⁇ v2 ′) 2 ) 1/2 Color shift ( ⁇ CS) was evaluated according to the following criteria. A: Less than 0.040 B: 0.040 or more and 0.060 or less X: More than 0.060 The above evaluation results are summarized in Tables 5 to 9.
  • the vertical alignment type liquid crystal display device of the present invention is excellent in evaluation of front contrast, viewing angle, and color shift.
  • the polarizing plate 218 is 1151 mm wide and the polarizing plate 248 is slit to a width of 647 mm using a laser slitter to prepare a polarizing plate roll 218A1 having a width of 1151 mm and a polarizing plate roll 248B1 having a width of 647 mm, and a polarizing plate roll set 218A1-248B1. did.
  • liquid crystal display device which is a panel bonding device for roll-shaped polarizing plates, and roll-bonded to 10 liquid crystal cells (liquid crystal display devices 2001 to 2010).
  • 10 polarizing plates 218 and 248 were cut into 52-inch sizes, and were similarly bonded to 10 liquid crystal cells (liquid crystal display devices 2011 to 2020).
  • ⁇ village> Applicable liquid crystal display device is wet-heated at 50 ° C / 90% RH for 24 hours, and the luminance unevenness (strength) in black display 2 hours after lighting the backlight and the effect of displaying the image are visually evaluated according to the following criteria. did. ⁇ : Brightness unevenness is not visible ⁇ : Weak brightness unevenness is visible but not noticeable in image display ⁇ : Brightness unevenness is strong, but hardly noticeable in image display ⁇ : Brightness unevenness is strong, and even in image display Table 10 shows the evaluation results.

Abstract

The present invention addresses the issue of providing: a vertically aligned liquid crystal display device, which achieves improved front contrast that makes it possible to save power, and which has a reduced color shift and a wider view angle; and a method for manufacturing such vertically aligned liquid crystal display device. A vertically aligned liquid crystal display device of the present invention has: a backlight; a vertically aligned liquid crystal cell having a configuration wherein a liquid crystal having negative dielectric constant anisotropy is sandwiched between two transparent substrates; and polarization plates, which are disposed on the display surface side and the backlight side of the vertically aligned liquid crystal cell, respectively. The vertically aligned liquid crystal display device is characterized in meeting specific requirements.

Description

垂直配向型液晶表示装置とその製造方法Vertical alignment type liquid crystal display device and manufacturing method thereof
 本発明は、省電力化につながる正面コントラストの向上を達成し、かつ、カラーシフトを小さくして、視野角を広くした垂直配向型液晶表示装置とその製造方法に関する。 The present invention relates to a vertical alignment type liquid crystal display device that achieves an improvement in front contrast that leads to power saving, a small color shift, and a wide viewing angle, and a method for manufacturing the same.
 液晶表示装置は、CRT(Cathode Ray Tube)に比べて薄くて軽量であり、低電圧で駆動できて消費電力が小さいという利点がある。そのため、液晶表示装置は、テレビ、ノート型PC(パーソナルコンピュータ)、ディスクトップ型PC、PDA(携帯端末)及び携帯電話など、種々の電子機器に使用されている。 The liquid crystal display device is advantageous in that it is thinner and lighter than a CRT (Cathode Ray Tube), can be driven at a low voltage, and consumes less power. Therefore, liquid crystal display devices are used in various electronic devices such as televisions, notebook PCs (personal computers), desktop PCs, PDAs (mobile terminals), and mobile phones.
 近年、垂直配向型液晶(誘電率異方性が負の液晶)を利用した垂直配向型(「VA(Vertical Alignment)型」ともいう。)液晶表示装置が、従来のTN型液晶表示装置に比べて視野角特性が優れていることから、広く使用されるようになった。 In recent years, a vertical alignment type liquid crystal display device (also referred to as a “VA (vertical alignment) type”) using vertical alignment type liquid crystal (liquid crystal having negative dielectric anisotropy) has been compared with a conventional TN type liquid crystal display device. Because of its excellent viewing angle characteristics, it has become widely used.
 近年、この垂直配向型液晶表示装置において、更に省電力化の要求が高まっており、遮光部分の極小化やカラーフィルターオンアレイ(COA)などによる高開口率化が進められている。 In recent years, in this vertical alignment type liquid crystal display device, there is an increasing demand for power saving, and miniaturization of a light-shielding portion and a high aperture ratio by a color filter on array (COA) are being promoted.
 また、省電力化の手段として偏光板の透過率を高くする方法が提案されているが、偏光板の透過率だけを高くすると、偏光度が下がり、正面コントラストが低くなってしまうという問題が発生する。 In addition, a method of increasing the transmittance of the polarizing plate has been proposed as a means of saving power, but if only the transmittance of the polarizing plate is increased, there is a problem that the degree of polarization decreases and the front contrast decreases. To do.
 これを解決するには、位相差フィルム、視野角拡大フィルムなど、偏光膜と液晶セルとの間に配置されるフィルム(保護膜)による偏光解消を抑える方法が用いられているがそれだけでは要求を満たすことができなくなっている。 In order to solve this problem, methods such as retardation film and viewing angle widening film are used to suppress depolarization by a film (protective film) placed between the polarizing film and the liquid crystal cell. It can no longer be met.
 特許文献1及び非特許文献1には、位相差フィルムの構成によって正面コントラストが上がることが開示されている。これらの方法は、偏光板の透過率を上げても正面コントラストが維持できる可能性を示唆しているが、これらの方法による正面コントラスト向上手段では、カラーシフトが非常に大きくなってしまう。本来、垂直配向型液晶表示装置はカラーシフトが小さいが、この構成では垂直配向型液晶表示装置が本来持っている良さを無くしてしまう方法である。 Patent Document 1 and Non-Patent Document 1 disclose that the front contrast is increased by the configuration of the retardation film. Although these methods suggest the possibility that the front contrast can be maintained even if the transmittance of the polarizing plate is increased, the front contrast improving means using these methods causes a very large color shift. Originally, the vertical alignment type liquid crystal display device has a small color shift, but this configuration is a method of eliminating the goodness inherent in the vertical alignment type liquid crystal display device.
 また、一方、近年、液晶表示装置の製造工程において、液晶パネルに、枚葉状偏光板を貼合する方法に代わって、ロール状の偏光板を直接貼合する「ロールtoパネル製法」が採用され始めているが、このような製法においても、偏光板のロット間の光学的性能のばらつきがないことが要望されている。 On the other hand, in recent years, in the manufacturing process of liquid crystal display devices, instead of the method of laminating a sheet-like polarizing plate on a liquid crystal panel, a “roll-to-panel manufacturing method” in which a roll-shaped polarizing plate is directly adhered is adopted. Although it has started, even in such a manufacturing method, it is desired that there is no variation in optical performance between lots of polarizing plates.
 なお、本願では、ロール状に巻かれた状態で製造される偏光板を「ロール状偏光板」と呼び、そこから所定寸法に切断されたものを「枚葉状偏光板」と呼ぶこととする。 In the present application, a polarizing plate manufactured in a rolled state is referred to as a “rolled polarizing plate”, and a piece cut from the polarizing plate to a predetermined dimension is referred to as a “single sheet polarizing plate”.
特開2010-54736号公報JP 2010-54736 A
 本発明は、上記問題・状況に鑑みてなされたものであり、その解決課題は、省電力化につながる正面コントラストの向上を達成し、かつ、カラーシフトを小さくして、視野角を広くした垂直配向型液晶表示装置とその製造方法を提供することである。 The present invention has been made in view of the above-described problems and circumstances, and a solution to the problem is a vertical that achieves an improvement in front contrast that leads to power saving, and has a small color shift and a wide viewing angle. An alignment type liquid crystal display device and a manufacturing method thereof are provided.
 本発明に係る上記課題は、以下の手段により解決される。 The above-mentioned problem according to the present invention is solved by the following means.
 1.バックライトと、誘電率異方性が負の液晶が二枚の透明基板で挟持されている構成の垂直配向型液晶セルと、当該垂直配向型液晶セルの表示面側及びバックライト側に一枚ずつ偏光板を有する垂直配向型液晶表示装置であって、下記要件(a)~(c)を満たしていることを特徴とする垂直配向型液晶表示装置。
(a)前記透明基板の一方は、薄膜トランジスタとカラーフィルタを有している。
(b)前記偏光板は、ポリビニルアルコールを用いた偏光子を挟持する二枚の位相差フィルムを有しており、当該偏光膜の液晶セル側の位相差フィルムの面内遅相軸が当該偏光子の吸収軸と直交している。
(c)前記位相差フィルムのうち、一方の偏光板のカラーフィルタ側の位相差フィルムを位相差フィルムA、もう一方の偏光板の液晶セル側の位相差フィルムを位相差フィルムBとしたときに、23℃・55%RHにおいて測定波長590nmで測定した、当該位相差フィルムA及びBの、厚さ方向の位相差値Rtを、それぞれ、Rt(A)、Rt(B)とし、かつ面内の位相差値Roに対する当該厚さ方向の位相差値Rtの比の値を、それぞれ、Rt/Ro(A)、Rt/Ro(B)としたとき、下記(式1)~(式5)で表される関係が満たされている。
(式1):Rt(A)<Rt(B)
(式2):70nm<Rt(A)<130nm
(式3):130nm<Rt(B)<200nm
(式4):20nm<Rt(B)-Rt(A)<130nm
(式5):Rt/Ro(A)<Rt/Ro(B)
〔ただし、Ro及びRtは、下記式で定義される。
式(I):Ro=(n-n)×d(nm)
式(II):Rt={(n+n)/2-n}×d(nm)
 上記式中、Roは位相差フィルム内の面内位相差値を表し、Rtはフィルム内の厚さ方向の位相差値を表す。また、dは位相差フィルムの厚さを表し、nは位相差フィルムの面内の最大(遅相軸方向)の屈折率を表す。nは位相差フィルム面内で遅相軸に直角な方向(進相軸方向)の屈折率を表し、nは厚さ方向における位相差フィルムの屈折率を表す。なお、測定条件は、上記と同じである。〕
 2.前記位相差フィルムA及びBの面内の位相差値Roを、それぞれ、Ro(A)、Ro(B)としとき、下記(式6)~(式8)で表される関係が満たされていることを特徴とする前記第1項に記載の垂直配向型液晶表示装置。
(式6):Ro(A)<Ro(B)
(式7):40nm<Ro(A)<90nm
(式8):45nm<Ro(B)<100nm
 3.前記位相差フィルムA又は位相差フィルムBがセルロースエステル系樹脂を含有していることを特徴とする前記第1項又は第2項に記載の垂直配向型液晶表示装置。
1. A vertical alignment type liquid crystal cell having a configuration in which a backlight and a liquid crystal having a negative dielectric anisotropy are sandwiched between two transparent substrates, and one sheet on the display surface side and the backlight side of the vertical alignment type liquid crystal cell A vertical alignment type liquid crystal display device having polarizing plates each satisfying the following requirements (a) to (c):
(A) One of the transparent substrates has a thin film transistor and a color filter.
(B) The polarizing plate has two retardation films sandwiching a polarizer using polyvinyl alcohol, and the in-plane slow axis of the retardation film on the liquid crystal cell side of the polarizing film is the polarized light. It is perpendicular to the absorption axis of the child.
(C) When the retardation film on the color filter side of one polarizing plate is used as the retardation film A and the retardation film on the liquid crystal cell side of the other polarizing plate is used as the retardation film B. The retardation values Rt in the thickness direction of the retardation films A and B measured at a measurement wavelength of 590 nm at 23 ° C. and 55% RH are Rt (A) and Rt (B), respectively, and in-plane When the values of the ratio of the retardation value Rt in the thickness direction to the retardation value Ro of Rt / Ro (A) and Rt / Ro (B) are respectively expressed by the following (Expression 1) to (Expression 5) The relationship represented by is satisfied.
(Formula 1): Rt (A) <Rt (B)
(Formula 2): 70 nm <Rt (A) <130 nm
(Formula 3): 130 nm <Rt (B) <200 nm
(Formula 4): 20 nm <Rt (B) −Rt (A) <130 nm
(Formula 5): Rt / Ro (A) <Rt / Ro (B)
[However, Ro and Rt are defined by the following formulas.
Formula (I): Ro = (n x −n y ) × d (nm)
Formula (II): Rt = {(n x + n y ) / 2−n z } × d (nm)
In the above formula, Ro represents the in-plane retardation value in the retardation film, and Rt represents the retardation value in the thickness direction in the film. Further, d represents the thickness of the retardation film, n x represents a refractive index of the maximum (slow axis direction) in a plane of the retardation film. n y represents a refractive index in the direction perpendicular to the slow axis in the retardation film plane (fast axis direction), n z represents the refractive index of the retardation film in the thickness direction. The measurement conditions are the same as above. ]
2. When the in-plane retardation values Ro of the retardation films A and B are respectively Ro (A) and Ro (B), the relationships represented by the following (Expression 6) to (Expression 8) are satisfied. 2. The vertical alignment type liquid crystal display device according to item 1, wherein the liquid crystal display device is a vertical alignment type liquid crystal display device.
(Formula 6): Ro (A) <Ro (B)
(Formula 7): 40 nm <Ro (A) <90 nm
(Formula 8): 45 nm <Ro (B) <100 nm
3. 3. The vertical alignment type liquid crystal display device according to item 1 or 2, wherein the retardation film A or retardation film B contains a cellulose ester resin.
 4.前記位相差フィルムAの面内位相差値Ro及び厚さ方向の位相差値Rtは、位相差フィルムAの製膜の際に延伸倍率による制御により調整され、かつ前記位相差フィルムBの面内位相差値Ro及び厚さ方向の位相差値Rtは、延伸温度と膜厚の制御により調整されたことを特徴とする前記第1項から第3項までのいずれか一項に記載の垂直配向型液晶表示装置。 4. The in-plane retardation value Ro and the thickness direction retardation value Rt of the retardation film A are adjusted by the control by the draw ratio when the retardation film A is formed, and the in-plane of the retardation film B The vertical alignment according to any one of the first to third items, wherein the retardation value Ro and the retardation value Rt in the thickness direction are adjusted by controlling the stretching temperature and the film thickness. Type liquid crystal display device.
 5.前記第1項から第4項までのいずれか一項に記載の垂直配向型液晶表示装置を製造する垂直配向型液晶表示装置の製造方法であって、前記位相差フィルムA及び位相差フィルムBのうち少なくとも一方の位相差フィルムを有する長尺ロール状偏光板を準備し、前記液晶セルに対してロールtoパネル製法で貼合することを特徴とする垂直配向型液晶表示装置の製造方法。 5. A manufacturing method of a vertical alignment type liquid crystal display device for manufacturing the vertical alignment type liquid crystal display device according to any one of items 1 to 4, wherein the retardation film A and the retardation film B A method for producing a vertical alignment type liquid crystal display device, comprising preparing a long roll-shaped polarizing plate having at least one retardation film, and laminating the liquid crystal cell by a roll-to-panel manufacturing method.
 本発明の上記手段により、省電力化につながる正面コントラストの向上を達成し、かつ、カラーシフトを小さくして、視野角を広くした垂直配向型液晶表示装置とその製造方法を提供することができる。 By the above-described means of the present invention, it is possible to provide a vertical alignment type liquid crystal display device that achieves an improvement in front contrast leading to power saving, a small color shift, and a wide viewing angle, and a manufacturing method thereof. .
本発明の垂直配向型(VA型)液晶表示装置の構成の一例を示す概念図1 is a conceptual diagram showing an example of a configuration of a vertical alignment type (VA type) liquid crystal display device of the present invention. 従来の液垂直配向型(VA型)液晶表示装置の構成の一例を示す概念図Conceptual diagram showing an example of a configuration of a conventional liquid vertical alignment type (VA type) liquid crystal display device ロールtoパネル製法を示す概念図Conceptual diagram showing the roll-to-panel manufacturing method
 本発明の垂直配向型液晶表示装置は、バックライトと、誘電率異方性が負の液晶が二枚の透明基板で挟持されている構成の垂直配向型液晶セルと、当該垂直配向型液晶セルの表示面側及びバックライト側に一枚ずつ偏光板を有する垂直配向型液晶表示装置であって、前記要件(a)~(c)を満たしていること、及び式(1)~式(5)を満たしていることを特徴とする。この特徴は、請求項1から請求項5までの請求項に係る発明に共通する技術的特徴である。 The vertical alignment type liquid crystal display device of the present invention includes a backlight, a vertical alignment type liquid crystal cell having a structure in which a liquid crystal having negative dielectric anisotropy is sandwiched between two transparent substrates, and the vertical alignment type liquid crystal cell. A vertical alignment type liquid crystal display device having polarizing plates one by one on the display surface side and the backlight side, satisfying the requirements (a) to (c), and formulas (1) to (5) ) Is satisfied. This feature is a technical feature common to the inventions according to claims 1 to 5.
 本発明の実施態様としては、本発明の効果発現の観点から、前記位相差フィルムA及びBの面内の位相差値Roを、それぞれ、Ro(A)、Ro(B)としとき、前記(式6)~(式8)で表される関係が満たされていることが好ましい。さらに、前記位相差フィルムA又は位相差フィルムBがセルロースエステル系樹脂を含有していることが好ましい。 As an embodiment of the present invention, from the viewpoint of manifesting the effects of the present invention, when the in-plane retardation values Ro of the retardation films A and B are respectively Ro (A) and Ro (B), It is preferable that the relationships represented by Equations (6) to (8) are satisfied. Furthermore, it is preferable that the retardation film A or the retardation film B contains a cellulose ester resin.
 本発明においては、前記位相差フィルムAの面内位相差値Ro及び厚さ方向の位相差値値Rtは、位相差フィルムAの製膜の際に延伸倍率による制御により調整され、かつ前記位相差フィルムBの面内位相差値Ro及び厚さ方向の位相差値Rtは、延伸温度と膜厚の制御により調整された態様であることが好ましい。 In the present invention, the in-plane retardation value Ro and the retardation value Rt in the thickness direction of the retardation film A are adjusted by the control by the draw ratio when the retardation film A is formed, and The in-plane retardation value Ro and the thickness direction retardation value Rt of the retardation film B are preferably adjusted by controlling the stretching temperature and the film thickness.
 本発明の垂直配向型液晶表示装置を製造する垂直配向型液晶表示装置の製造方法としては、前記位相差フィルムA及び位相差フィルムBのうち少なくとも一方の位相差フィルムを有する長尺ロール状偏光板を準備し、前記液晶セルに対してロールtoパネル製法で貼合する態様の製造方法であることが好ましい。 As a manufacturing method of the vertical alignment type liquid crystal display device for manufacturing the vertical alignment type liquid crystal display device of the present invention, a long roll-shaped polarizing plate having at least one of the retardation film A and the retardation film B is used. It is preferable that it is a manufacturing method of the aspect which prepares and is bonded with the roll to panel manufacturing method with respect to the said liquid crystal cell.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 (位相差フィルムA及びB)
 本発明の液晶表示装置においては、偏光板は、ポリビニルアルコール(PVA)を用いた偏光子を挟持する二枚の位相差フィルムを有しており、当該偏光膜の液晶セル側の位相差フィルムの面内遅相軸が当該偏光子の吸収軸と直交していることを特徴とする。
(Phase difference films A and B)
In the liquid crystal display device of the present invention, the polarizing plate has two retardation films sandwiching a polarizer using polyvinyl alcohol (PVA), and the retardation film on the liquid crystal cell side of the polarizing film The in-plane slow axis is perpendicular to the absorption axis of the polarizer.
 また、前記位相差フィルムのうち、一方の偏光板のカラーフィルタ側の位相差フィルムを位相差フィルムA、もう一方の偏光板の液晶セル側の位相差フィルムを位相差フィルムBとしたときに、測定波長590nmで測定した、当該位相差フィルムA及びBの、厚さ方向の位相差値Rtを、それぞれ、Rt(A)、Rt(B)とし、かつ面内の位相差値Roに対する当該厚さ方向の位相差値Rtの比の値を、それぞれ、Rt/Ro(A)、Rt/Ro(B)としたとき、下記(式1)~(式5)で表される関係が満たされていることを特徴とする。
(式1):Rt(A)<Rt(B)
(式2):70nm<Rt(A)<130nm
(式3):130nm<Rt(B)<200nm
(式4):20nm<Rt(B)-Rt(A)<130nm
(式5):Rt/Ro(A)<Rt/Ro(B)
 ただし、Ro及びRtは、下記式で定義される。
式(I):Ro=(n-n)×d(nm)
式(II):Rt={(n+n)/2-n}×d(nm)
 上記式中、Roは位相差フィルム内の面内位相差値を表し、Rtはフィルム内の厚さ方向の位相差値を表す。また、dは位相差フィルムの厚さを表し、nは位相差フィルムの面内の最大(遅相軸方向)の屈折率を表す。nは位相差フィルム面内で遅相軸に直角な方向(進相軸方向)の屈折率を表し、nは厚さ方向における位相差フィルムの屈折率を表す。なお、測定条件は、上記と同じである。
Also, among the retardation films, when the retardation film on the color filter side of one polarizing plate is the retardation film A, and the retardation film on the liquid crystal cell side of the other polarizing plate is the retardation film B, The retardation values Rt in the thickness direction of the retardation films A and B measured at a measurement wavelength of 590 nm are Rt (A) and Rt (B), respectively, and the thickness relative to the in-plane retardation value Ro. When the ratio value of the phase difference value Rt in the vertical direction is Rt / Ro (A) and Rt / Ro (B), the relations expressed by the following (Expression 1) to (Expression 5) are satisfied. It is characterized by.
(Formula 1): Rt (A) <Rt (B)
(Formula 2): 70 nm <Rt (A) <130 nm
(Formula 3): 130 nm <Rt (B) <200 nm
(Formula 4): 20 nm <Rt (B) −Rt (A) <130 nm
(Formula 5): Rt / Ro (A) <Rt / Ro (B)
However, Ro and Rt are defined by the following formula.
Formula (I): Ro = (n x −n y ) × d (nm)
Formula (II): Rt = {(n x + n y ) / 2−n z } × d (nm)
In the above formula, Ro represents the in-plane retardation value in the retardation film, and Rt represents the retardation value in the thickness direction in the film. Further, d represents the thickness of the retardation film, n x represents a refractive index of the maximum (slow axis direction) in a plane of the retardation film. n y represents a refractive index in the direction perpendicular to the slow axis in the retardation film plane (fast axis direction), n z represents the refractive index of the retardation film in the thickness direction. The measurement conditions are the same as above.
 本発明においては、上記(式2)~(式4)について、より好ましくは、80nm≦Rt(A)≦120nm、140nm≦Rt(B)≦185nm、かつ30nm<Rt(B)-Rt(A)<120nmである。 In the present invention, the above (formula 2) to (formula 4) are more preferably 80 nm ≦ Rt (A) ≦ 120 nm, 140 nm ≦ Rt (B) ≦ 185 nm, and 30 nm <Rt (B) −Rt (A ) <120 nm.
 更に好ましくは、85nm≦Rt(A)≦115nm、145nm≦Rt(B)≦170nm、かつ35nm<Rt(B)-Rt(A)<110nmである。
 また、本発明においては、前記位相差フィルムA及びBの面内の位相差値Roを、それぞれ、Ro(A)、Ro(B)としとき、下記(式6)~(式8)で表される関係が満たされていることが好ましい。
(式6):Ro(A)<Ro(B)
(式7):40nm<Ro(A)<90nm
(式8):45nm<Ro(B)<100nm
 本発明の液晶表示装置は、カラーフィルタ・オン・アレイ(COA)方式を採用した垂直配向型液晶セルを用いるものである。
More preferably, 85 nm ≦ Rt (A) ≦ 115 nm, 145 nm ≦ Rt (B) ≦ 170 nm, and 35 nm <Rt (B) −Rt (A) <110 nm.
In the present invention, when the in-plane retardation values Ro of the retardation films A and B are respectively Ro (A) and Ro (B), they are expressed by the following (Expression 6) to (Expression 8). It is preferable that the relationship to be satisfied is satisfied.
(Formula 6): Ro (A) <Ro (B)
(Formula 7): 40 nm <Ro (A) <90 nm
(Formula 8): 45 nm <Ro (B) <100 nm
The liquid crystal display device of the present invention uses a vertical alignment type liquid crystal cell adopting a color filter on array (COA) system.
 当該COA方式は、例えば、特開平10-206888号公報などに記載されているように、カラーフィルタが液晶セルの駆動側基板に直接形成されたカラーフィルタ一体型駆動基板と、対向電極(導電層)を備える対向基板とをスペーサを介在させて対向配置し、その間隙部に液晶材料を封入して構成されるものであり、カラーフィルタを反射電極の上に形成し、高精細時に貼り合わせマージンを広くして歩留まりや開口率を向上させることができる。 The COA method includes, for example, a color filter integrated drive substrate in which a color filter is directly formed on a drive side substrate of a liquid crystal cell, and a counter electrode (conductive layer) as described in JP-A-10-206888. ) And a counter substrate with a spacer interposed therebetween, and a liquid crystal material is sealed in the gap, and a color filter is formed on the reflective electrode, and a bonding margin is provided in high definition. The yield and aperture ratio can be improved by widening.
 本発明に係る位相差フィルムは、液晶セルの構成に対する配置が非常に重要である。 The arrangement of the retardation film according to the present invention with respect to the configuration of the liquid crystal cell is very important.
 本発明では、液晶セルの両側に位相差フィルムを配置することが必要であるが、厚さ方向の位相差値Rtについては、カラーフィルタの側が相対的に小さくなることが必要であり、その差は20nmより大きく130nm未満であり、より好ましくは30nmより大きく120nmより小さく、さらに好ましくは35nmより大きく110nmより小さいことである。この値が小さいと、液晶表示装置の正面コントラストの向上が見込めず、大きすぎると液晶表示装置のカラーシフトが大きくなってしまい、特に周辺から見た時の混色が著しく、液晶表示装置の表示品位を著しく低下させる。 In the present invention, it is necessary to dispose retardation films on both sides of the liquid crystal cell. However, regarding the retardation value Rt in the thickness direction, the color filter side needs to be relatively small, and the difference Is greater than 20 nm and less than 130 nm, more preferably greater than 30 nm and less than 120 nm, and even more preferably greater than 35 nm and less than 110 nm. If this value is small, the front contrast of the liquid crystal display device cannot be improved, and if it is too large, the color shift of the liquid crystal display device becomes large. Especially, the color mixture when viewed from the periphery is remarkable, and the display quality of the liquid crystal display device is high. Is significantly reduced.
 本発明の液晶表示装置で液晶セルの両側(二か所)に用いられる位相差フィルム(又は位相差層)のカラーフィルタ側のRtは70nmより大きく130nmより小さくする必要があり、液晶セルの反対の側の位相差フィルムのRtが130nmより大きく200nmより小さくする必要があり、より好ましくは、カラーフィルタの側のRtが80nm以上120nm以下であり、さらに好ましくは85nm以上115nm以下である。 The Rt on the color filter side of the retardation film (or retardation layer) used on both sides (two places) of the liquid crystal cell in the liquid crystal display device of the present invention must be larger than 70 nm and smaller than 130 nm, which is opposite to the liquid crystal cell. The Rt of the retardation film on the negative side needs to be larger than 130 nm and smaller than 200 nm, more preferably, the Rt on the color filter side is 80 nm or more and 120 nm or less, and more preferably 85 nm or more and 115 nm or less.
 それに対して液晶セルの反対の側の位相差フィルムのRtが140nm以上185nm以下であり、さらに好ましくは145nm以上170nm以下である。これらの2つの位相差フィルムの位相差値は、液晶表示装置の視野角に影響を与える。それぞれの位相差値が所望の範囲に入ることで、上下・左右がより対象に近い視野角特性を得ることができる。 On the other hand, the Rt of the retardation film on the opposite side of the liquid crystal cell is 140 nm or more and 185 nm or less, and more preferably 145 nm or more and 170 nm or less. The retardation value of these two retardation films affects the viewing angle of the liquid crystal display device. When each phase difference value falls within a desired range, it is possible to obtain viewing angle characteristics closer to the target in the vertical and horizontal directions.
 本発明の液晶表示装置で液晶セルの両側(二か所)に用いられる位相差フィルムのRt/Roの値は、液晶セルのカラーフィルタ側の方を小さくする必要がある。液晶セルの、カラーフィルタ側のRt/Roの値が大きくなると、カラーシフトが大きくなり、液晶表示装置の表示品位を著しく低下させる。 The Rt / Ro value of the retardation film used on both sides (two places) of the liquid crystal cell in the liquid crystal display device of the present invention needs to be smaller on the color filter side of the liquid crystal cell. When the value of Rt / Ro on the color filter side of the liquid crystal cell is increased, the color shift is increased and the display quality of the liquid crystal display device is remarkably lowered.
 また、本発明の液晶表示装置で液晶セルの両側(二か所)に用いられる位相差フィルムのRoはカラーフィルタの側が40nm<Ro<90nm、カラーフィルタと反対の側が45<Ro<100nmであり、カラーフィルタと反対の側が大きいことが好ましい。特にカラーフィルタと反対の側が大きく、45nm<Ro<100nmにすることで視野角を十分に広げることができ、カラーフィルタの側に相対的に小さいRoを配置することでカラーシフトを抑制することができる。 In the liquid crystal display device of the present invention, Ro of the retardation film used on both sides (two places) of the liquid crystal cell is 40 nm <Ro <90 nm on the color filter side and 45 <Ro <100 nm on the side opposite to the color filter. The side opposite to the color filter is preferably large. In particular, the side opposite to the color filter is large, the viewing angle can be sufficiently widened by setting 45 nm <Ro <100 nm, and the color shift can be suppressed by arranging a relatively small Ro on the color filter side. it can.
 本発明の液晶表示装置で液晶セルの両側(二か所)に用いられる位相差フィルムは、製膜方法によって作ることが好ましい。また、製膜時に位相差値を制御しながら作ることが好ましい。 The retardation film used on both sides (two places) of the liquid crystal cell in the liquid crystal display device of the present invention is preferably made by a film forming method. Moreover, it is preferable to make it while controlling the retardation value during film formation.
 本発明の液晶表示装置に用いられる位相差フィルムは、セルロースエステルフィルム、ポリエステルフィルム、シクロオレフィンフィルム、ポリカーボネートフィルム、ポリオレフィンフィルム、ポリアクリルフィルム、アクリル樹脂とセルロースエステル樹脂の混合樹脂フィルムなどが挙げられる。 Examples of the retardation film used in the liquid crystal display device of the present invention include a cellulose ester film, a polyester film, a cycloolefin film, a polycarbonate film, a polyolefin film, a polyacryl film, and a mixed resin film of an acrylic resin and a cellulose ester resin.
 位相差フィルムAとしては、ポリカーボネート系、セルロース系、ポリエチレン系、ポリプロピレン系樹脂を主成分とする高分子延伸フィルムが挙げられる。特に好ましくはセルロースエステル系樹脂である。 Examples of the retardation film A include a stretched polymer film mainly composed of a polycarbonate-based, cellulose-based, polyethylene-based, or polypropylene-based resin. Particularly preferred are cellulose ester resins.
 これらの位相差フィルムの位相差値制御方法は、例えばセルロースエルテルを用いる場合は、エステル置換度や置換基の変更、溶媒の変更、位相差値制御材料の添加、延伸条件の調整などを用いることができるが、本発明の液晶表示装置に用いる場合は、カラーフィルタ側に用いられる位相差フィルムの位相差値制御を主として延伸倍率による制御を行い、カラーフィルタと反対の側の位相差値制御を延伸温度と膜厚制御により行うことがより好ましい。この手段によって位相差値を制御した位相差値フィルムを用いることで、液晶パネルの反りを緩和できる場合が多い。この理由としては、位相差値制御の手段により、フィルムに残る歪みが変わり、カラーフィルタの側と、反対の側を前記方法で位相差値制御することによって液晶セルの両側で歪みのバランスが取れることで液晶セルの反りが緩和されるのではないかと推定している。 The retardation value control method for these retardation films is, for example, when using cellulose aether, changing the degree of ester substitution or substituent, changing the solvent, adding a retardation value control material, adjusting the stretching conditions, etc. However, when used in the liquid crystal display device of the present invention, the retardation value control of the retardation film used on the color filter side is mainly controlled by the draw ratio, and the retardation value control on the side opposite to the color filter is performed. More preferably, it is carried out by controlling the stretching temperature and the film thickness. By using a retardation film whose retardation value is controlled by this means, the warpage of the liquid crystal panel can often be alleviated. The reason for this is that the distortion remaining in the film changes depending on the retardation value control means, and the distortion can be balanced on both sides of the liquid crystal cell by controlling the retardation value on the color filter side and the opposite side by the above method. Therefore, it is estimated that the warpage of the liquid crystal cell may be alleviated.
 なお、本発明の液晶表示装置に用いられる位相差フィルム等に適する樹脂フィルムについての詳細は後述する。 The details of the resin film suitable for the retardation film used in the liquid crystal display device of the present invention will be described later.
 (偏光板)
 本発明に係る上記位相差フィルムを偏光子保護フィルムとして用いる場合、偏光板は一般的な方法で作製することができる。本発明に係る位相差フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。
(Polarizer)
When the retardation film according to the present invention is used as a polarizer protective film, the polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the retardation film according to the present invention, and is bonded to at least one surface of a polarizer produced by immersing and stretching in an iodine solution.
 もう一方の面には本発明に係る位相差フィルムを用いても、別の偏光子保護フィルムを用いてもよい。例えば、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。 On the other side, the retardation film according to the present invention may be used, or another polarizer protective film may be used. For example, a commercially available cellulose ester film (for example, Konica Minoltack KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4FR-4, KC4FR-3, KC4FR-3, KC4FR-4 -1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。 A polarizer, which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass. A typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。 The polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
 上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10~1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体又は架橋構造を形成する硬化型粘着剤が好適に用いられる。 As the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer, a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 × 10 4 to 1.0 × 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の2液型瞬間粘着剤等が挙げられる。 Specific examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types, Examples include anaerobic pressure-sensitive adhesives such as ester-based methacrylate type and oxidized polyether methacrylate, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-component instantaneous pressure-sensitive adhesives.
 上記粘着剤としては一液型であっても良いし、使用前に二液以上を混合して使用する型であっても良い。 The above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
 また、上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。 The pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or may be an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solventless type. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
 (垂直配向型液晶セル)
 本発明の液晶表示装置は、垂直配向型液晶セルを有することを特徴とするが、本発明に係る液晶セルとしては、従来公知の種々の液晶セルを用いることができる。
(Vertical alignment type liquid crystal cell)
The liquid crystal display device of the present invention is characterized by having a vertical alignment type liquid crystal cell, and various conventionally known liquid crystal cells can be used as the liquid crystal cell according to the present invention.
 ただし、本発明においては、誘電率異方性が負の液晶が二枚の透明基板で挟持されている構成の垂直配向型液晶セルを用いることを特徴とする。また、前記透明基板の一方は、薄膜トランジスタ(TFT)とカラーフィルタを有していることを特徴とする。この点については、特開2010-44362号公報に開示されている液晶表示装置の構成が参考となる。なお、透明基板としては、従来公知の透明なガラス又は樹脂を用いることができる。 However, the present invention is characterized in that a vertical alignment type liquid crystal cell having a configuration in which a liquid crystal having negative dielectric anisotropy is sandwiched between two transparent substrates is used. One of the transparent substrates has a thin film transistor (TFT) and a color filter. For this point, the configuration of the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2010-44362 is helpful. As the transparent substrate, conventionally known transparent glass or resin can be used.
 このようなガラス基板間に負の誘電率異方性を有するネマチック液晶を封入することで液晶セルを形成する。負の誘電率異方性を有するネマチック液晶としては、特開2004-204133号、特開2004-250668号、特開2005-047980号等各公報等に記載されている従来公知のものを用いることができる。 A liquid crystal cell is formed by enclosing a nematic liquid crystal having negative dielectric anisotropy between such glass substrates. As the nematic liquid crystal having negative dielectric anisotropy, conventionally known ones described in JP-A-2004-204133, JP-A-2004-250668, JP-A-2005-047980, etc. should be used. Can do.
 本発明において、当該液晶セルは、一例として上下基板間に、誘電異方性が負で、Δn=0.0815、Δε=-4.5程度のネマチック液晶材料などを用いることができる。 In the present invention, as the liquid crystal cell, for example, a nematic liquid crystal material having a negative dielectric anisotropy between Δn = 0.0815 and Δε = −4.5 can be used between the upper and lower substrates.
 液晶層の厚さdについては特に制限されないが、前記範囲の特性の液晶を用いる場合、例えば3.5μm程度に設定することができる。 The thickness d of the liquid crystal layer is not particularly limited, but can be set to, for example, about 3.5 μm when a liquid crystal having the above characteristics is used.
 なお、垂直配向型(VA型)液晶表示装置では、TNモードの液晶表示装置で一般的に使われているカイラル材の添加は、動的応答特性を劣化させるため用いることは少ないが、配向不良を低減するために添加されることもある。 Note that in a vertical alignment type (VA type) liquid crystal display device, the addition of a chiral material generally used in a TN mode liquid crystal display device is rarely used to degrade dynamic response characteristics, but alignment failure It may be added to reduce the amount.
 また、マルチドメイン構造とする場合には、各ドメイン間の境界領域の液晶分子の配向を調整するのに有利である。 Further, when the multi-domain structure is used, it is advantageous for adjusting the alignment of the liquid crystal molecules in the boundary region between the domains.
 なお、「マルチドメイン構造」とは、液晶表示装置の一画素を複数の領域に分割した構造をいう。例えば、垂直配向型(VA型)液晶表示装置において、白表示時には液晶分子が傾斜しているので、傾斜方向とその逆方向では、斜めから観察した時の液晶分子の複屈折の大きさが異なり、輝度や色調に差が生じるが、マルチドメイン構造にすると、輝度や色調の視野角特性が改善されるので好ましい。 Note that the “multi-domain structure” refers to a structure in which one pixel of a liquid crystal display device is divided into a plurality of regions. For example, in a vertical alignment type (VA type) liquid crystal display device, the liquid crystal molecules are tilted during white display, so the birefringence of the liquid crystal molecules when viewed from an oblique direction differs between the tilt direction and the opposite direction. Although a difference occurs in luminance and color tone, a multi-domain structure is preferable because viewing angle characteristics of luminance and color tone are improved.
 具体的には、画素のそれぞれを液晶分子の初期配向状態が互いに異なる二以上の領域で構成して平均化することで、視野角に依存した輝度や色調の偏りを低減することができる。また、それぞれの画素を、電圧印加状態において液晶分子の配向方向が連続的に変化する互いに異なる二以上の領域から構成しても同様の効果が得られる。 Specifically, each pixel is composed of two or more regions having different initial alignment states of liquid crystal molecules and averaged, whereby luminance and color tone bias depending on the viewing angle can be reduced. Further, the same effect can be obtained even if each pixel is constituted by two or more different regions where the orientation direction of the liquid crystal molecules continuously changes in a voltage application state.
 全方向で均等な視野角を得るにはこの分割数を多くすればよいが、4分割あるいは8分割以上とすることで、ほぼ均等な視野角が得られる。特に8分割時は偏光板吸収軸を任意の角度に設定できるので好ましい。 In order to obtain a uniform viewing angle in all directions, the number of divisions may be increased. However, a substantially uniform viewing angle can be obtained by using four or more divisions. In particular, it is preferable that the polarizing plate absorption axis can be set at an arbitrary angle when dividing into eight.
 (偏光板等に用いる樹脂フィルム基材)
 本発明に係る偏光板等に用いる樹脂フィルム基材としては、熱可塑性樹脂を用いることが好ましい。ここで、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂のことをいう。
(Resin film substrate used for polarizing plates, etc.)
As the resin film substrate used for the polarizing plate or the like according to the present invention, it is preferable to use a thermoplastic resin. Here, the “thermoplastic resin” refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into a desired shape.
 熱可塑性樹脂としては、一般的汎用樹脂としては、セルロースエステル、ポリエチレン(PE)、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)等があり、溶媒に可溶なものを適宜溶解して本発明の方法で処理することが好ましい。 General thermoplastic resins include cellulose esters, polyethylene (PE), high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene. (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin (PMMA), etc., soluble in solvents It is preferable to dissolve the material appropriately and treat it by the method of the present invention.
 また、強度や壊れにくさを特に要求される場合、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、環状ポリオレフィン(COP)等を用いることができる。 When strength and resistance to breakage are particularly required, polyamide (PA), nylon, polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, PPO), polybutylene terephthalate (PBT) ), Polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cyclic polyolefin (COP), and the like.
 さらに高い熱変形温度と長期使用できる特性を要求される場合は、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等を用いることができる。 If higher heat distortion temperature and long-term use characteristics are required, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone, amorphous polyarylate, liquid crystal polymer, polyetherether A ketone, thermoplastic polyimide (PI), polyamideimide (PAI), or the like can be used.
 なお、本発明の用途にそって樹脂の種類、分子量の組み合わせを行うことが可能である。 In addition, it is possible to combine the kind of resin and molecular weight according to the use of the present invention.
 樹脂フィルムの厚さは、用途に応じて、適宜、適当な厚さを選定することが好ましい。厚さの上限は、特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は150μm程度である。 It is preferable to select an appropriate thickness for the resin film according to the intended use. The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 150 μm from the viewpoint of applicability, foaming, solvent drying, and the like.
 樹脂基材は、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。 The resin substrate preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
 以下、本発明において、特に好適な樹脂について詳細な説明をする。 Hereinafter, a particularly suitable resin in the present invention will be described in detail.
 〈セルロースエステル樹脂〉
 本発明に記載の位相差フィルムに用いることができるセルロースエステル樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも一種であることが好ましい。
<Cellulose ester resin>
Cellulose ester resins that can be used in the retardation film described in the present invention are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, And at least one selected from cellulose phthalate.
 これらの中で特に好ましいセルロースエステルは、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。 Among these, particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
 混合脂肪酸エステルの置換度として、炭素原子数2~4のアシル基を置換基として有している場合、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(i)及び(ii)を同時に満たすセルロースエステルを含むセルロース樹脂であることが好ましい。 As the substitution degree of the mixed fatty acid ester, when an acyl group having 2 to 4 carbon atoms is used as a substituent, the substitution degree of the acetyl group is X, and the substitution degree of the propionyl group or butyryl group is Y. It is preferable that it is a cellulose resin containing the cellulose ester which satisfy | fills following formula (i) and (ii) simultaneously.
 式(i)  1.5≦X+Y≦3.0
 式(ii)  0≦X≦2.5
 さらに、本発明で用いられるセルロースエステルは、重量平均分子量Mw/数平均分子量Mn比が1.5~5.5のものが好ましく用いられ、特に好ましくは2.0~5.0であり、さらに好ましくは2.5~5.0であり、さらに好ましくは3.0~5.0のセルロースエステルが好ましく用いられる。
Formula (i) 1.5 ≦ X + Y ≦ 3.0
Formula (ii) 0 ≦ X ≦ 2.5
Further, the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0, The cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、あるいは単独で使用することができる。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 本発明において、セルロースエステル樹脂は、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて攪拌した時のpHが6~7、電気伝導度が1~100μS/cmであることが好ましい。 In the present invention, 1 g of cellulose ester resin is added to 20 ml of pure water (electric conductivity 0.1 μS / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. It is preferable that the electric conductivity is 1 to 100 μS / cm.
 《糖エステル化合物》
 本発明においては、セルロースエステル樹脂と、ピラノース構造又はフラノース構造の少なくとも一種を1個以上12個以下有しその構造のOH基の全て若しくは一部をエステル化したエステル化合物を含むことも好ましい。
《Sugar ester compound》
In the present invention, it is also preferable to include a cellulose ester resin and an ester compound in which at least one of the pyranose structure or the furanose structure is 1 to 12 and all or part of the OH groups in the structure are esterified.
 エステル化の割合としては、ピラノース構造又はフラノース構造内に存在するOH基の70%以上であることが好ましい。 The proportion of esterification is preferably 70% or more of the OH groups present in the pyranose structure or furanose structure.
 本発明に係るエステル化合物の例としては、例えば以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of the ester compound according to the present invention include the following, but the present invention is not limited to these.
 グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノースあるいはケストース挙げられる。 Glucose, galactose, mannose, fructose, xylose or arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose .
 この他、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。 Other examples include gentiobiose, gentiotriose, gentiotetraose, xylotriose, and galactosyl sucrose.
 これらの化合物の中で、特にピラノース構造とフラノース構造を両方有する化合物が好ましい。 Among these compounds, compounds having both a pyranose structure and a furanose structure are particularly preferable.
 例としては、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、更に好ましくは、スクロースである。 As examples, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
 本発明ピラノース構造又はフラノース構造中のOH基の全て若しくは一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。 The monocarboxylic acid used for esterifying all or part of the OH groups in the pyranose structure or furanose structure of the present invention is not particularly limited, and known aliphatic monocarboxylic acids, alicyclic monocarboxylic acids, An aromatic monocarboxylic acid or the like can be used. The carboxylic acid used may be one kind or a mixture of two or more kinds.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octenoic acid.
 好ましい脂環族モノカルボン酸の例としては、酢酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を2個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができ、より、具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸を挙げることができるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralin carboxylic acid, or derivatives thereof. More specifically, xylyl acid, hemelic acid, mesitylene acid, prenylic acid, γ-isoduric acid, jurylic acid, mesitic acid, α-isoduric acid, cumic acid, α-toluic acid, hydroatropic acid, atropic acid, hydrocinnamic acid, salicylic acid, o-anisic acid, m-anisic acid, p-anisic acid , Creosote acid, o-homosalicylic acid, m-homosalicylic acid, p-homosalicylic acid, o-pyroca Succinic acid, β-resorcylic acid, vanillic acid, isovanillic acid, veratromic acid, o-veratrumic acid, gallic acid, asaronic acid, mandelic acid, homoanisic acid, homovanillic acid, homoveratrumic acid, o-homoveratrumic acid, phthalonic acid, p- Although coumaric acid can be mentioned, benzoic acid is particularly preferable.
 オリゴ糖のエステル化合物を、本発明に係るピラノース構造又はフラノース構造の少なくとも一種を1~12個を有する化合物として適用できる。 Oligosaccharide ester compounds can be applied as compounds having 1 to 12 of at least one of the pyranose structure or furanose structure according to the present invention.
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるもので、本発明に適用できるオリゴ糖としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。 Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc. Examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltooligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylooligos. Sugar.
 また、前記エステル化合物は、下記一般式(A)で表されるピラノース構造又はフラノース構造の少なくとも一種を1個以上12個以下縮合した化合物である。ただし、R11~R15、R21~R25は、炭素数2~22のアシル基又は水素原子を、m、nはそれぞれ0~12の整数、m+nは1~12の整数を表す。 Moreover, the said ester compound is a compound which condensed 1 or more and 12 or less of at least 1 type of the pyranose structure or furanose structure represented with the following general formula (A). R 11 to R 15 and R 21 to R 25 each represents an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n each represents an integer of 0 to 12, and m + n represents an integer of 1 to 12.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 R11~R15、R21~R25は、ベンゾイル基、水素原子であることが好ましい。ベンゾイル基は更に置換基R26(pは0~5)を有していてもよく、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、更にこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。オリゴ糖も本発明に係るエステル化合物と同様な方法で製造することができる。 R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom. The benzoyl group may further have a substituent R 26 (p is 0 to 5), and examples thereof include an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group, and further, these alkyl groups, alkenyl groups, and phenyl groups. May have a substituent. Oligosaccharides can also be produced in the same manner as the ester compound according to the present invention.
 以下に、本発明に係るエステル化合物の具体例を挙げるが、本発明はこれに限定されるものではない。 Specific examples of the ester compound according to the present invention will be given below, but the present invention is not limited thereto.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 本発明に係るセルロースエステルフィルムは、位相差値の変動を抑制して、表示品位を安定化するために、本発明に係る糖エステル化合物を、セルロースエステルフィルムの0.5~30質量%含むことが好ましく、特には、5~30質量%含むことが好ましい。 The cellulose ester film according to the present invention contains the sugar ester compound according to the present invention in an amount of 0.5 to 30% by mass of the cellulose ester film in order to suppress the fluctuation of the retardation value and stabilize the display quality. In particular, it is preferable to contain 5 to 30% by mass.
 〈アクリル樹脂〉
 本発明の位相差フィルムや偏光板等に用いる樹脂フィルム基材に用いることができるアクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%、及びこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。
<acrylic resin>
Methacrylic resin is also contained in the acrylic resin which can be used for the resin film base material used for the phase difference film of this invention, a polarizing plate, etc. The resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは二種以上を併用して用いることができる。 Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Saturated acids, maleic acids, fumaric acids, divalent carboxylic acids containing unsaturated groups such as itaconic acid, aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene, α, β- such as acrylonitrile, methacrylonitrile, etc. Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
 これらの中でも、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate and the like are preferable, and methyl acrylate and n-butyl acrylate are particularly preferable.
 アクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。 Commercially available acrylic resins can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
 〈環状オレフィン樹脂〉
 本発明においては、環状オレフィン樹脂を用いることも好ましい。環状オレフィン樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
<Cyclic olefin resin>
In the present invention, it is also preferable to use a cyclic olefin resin. Examples of the cyclic olefin resin include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。 Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. An addition polymer of a monomer having a monomer, an addition copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof.
 これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。 Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
 ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。 Examples of the monomer having a norbornene structure include bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.1 2,5 ] deca-3,7-diene. (Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.0.1 2,5 ] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0. 1 2,5 . 1 7,10 ] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. In addition, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
 極性基の種類としては、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシ基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシ基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。 Examples of the polar group include heteroatoms or atomic groups having heteroatoms. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a carboxy group, a carbonyloxycarbonyl group, an epoxy group, a hydroxy group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類及びその誘導体、シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエン及びその誘導体などが挙げられる。 Other monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
 ノルボルネン構造を有する単量体の開環重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 A ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable, and ethylene is more preferable.
 ノルボルネン構造を有する単量体の付加重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、及びノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。 A hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure, a hydrogenated product of a ring-opening copolymer of a monomer having a norbornene structure and another monomer capable of ring-opening copolymerization thereof, Hydrogenated products of addition polymers of monomers having a norbornene structure, and hydrogenated products of addition copolymers of monomers having a norbornene structure and other monomers capable of addition copolymerization with these A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90質量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの質量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、長期的に寸法変化がなく、光学特性の安定性に優れる位相差フィルム(光学フィルム)を得ることができる。 Among norbornene-based resins, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.1 2,5 ] decane-7 are used as repeating units. , 9-diyl-ethylene structure, the content of these repeating units is 90% by mass or more based on the entire repeating units of the norbornene resin, and the X content ratio and the Y content ratio are The ratio of X: Y is preferably 100: 0 to 40:60. By using such a resin, it is possible to obtain a retardation film (optical film) having no dimensional change over a long period of time and having excellent optical property stability.
 本発明に用いる環状オレフィン樹脂の分子量は使用目的に応じて適宜選定される。溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量(Mw)で、通常20,000~150,000である。好ましくは25,000~100,000、より好ましくは30,000~80,000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成型加工性とが高度にバランスされ好適である。 The molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use. Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the film are highly balanced and suitable.
 環状オレフィン樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよい。耐久性及び延伸加工性の観点から、好ましくは130~160℃、より好ましくは135~150℃の範囲である。 The glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretchability, it is preferably in the range of 130 to 160 ° C, more preferably 135 to 150 ° C.
 環状オレフィン樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、緩和時間、生産性等の観点から、1.2~3.5、好ましくは1.5~3.0、さらに好ましくは1.8~2.7である。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is 1.2 to 3.5, preferably 1.5 to 3.0, from the viewpoint of relaxation time, productivity and the like. More preferably, it is 1.8 to 2.7.
 本発明に用いる環状オレフィン樹脂は、光弾性係数の絶対値が10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。 The cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 × 10 −12 Pa −1 or less, more preferably 7 × 10 −12 Pa −1 or less, and more preferably 4 × 10 12 It is particularly preferably −12 Pa −1 or less. The photoelastic coefficient C is a value represented by C = Δn / σ where birefringence is Δn and stress is σ.
 本発明において、環状オレフィン樹脂には、実質的に粒子を含まないことが好ましい。ここで、実質的に粒子を含まないとは、環状オレフィン樹脂からなるフィルムへ粒子を添加しても、未添加状態からのヘイズの上昇巾が0.05%以下の範囲である量までは許容できることを意味する。特に、脂環式ポリオレフィン樹脂は、多くの有機粒子や無機粒子との親和性に欠けるため、上記範囲を超えた粒子を添加した環状オレフィン樹脂フィルムを延伸すると、空隙が発生しやすく、その結果として、ヘイズの著しい上昇が生じるおそれがある。 In the present invention, it is preferable that the cyclic olefin resin does not substantially contain particles. Here, “substantially free of particles” means that even if particles are added to a film made of a cyclic olefin resin, the amount of increase in haze from the non-added state is allowed to be in the range of 0.05% or less. Means you can. In particular, the alicyclic polyolefin resin lacks affinity with many organic particles and inorganic particles. Therefore, when a cyclic olefin resin film to which particles exceeding the above range are added is stretched, voids are easily generated, and as a result, There is a risk that a significant increase in haze may occur.
 〈ポリカーボネート樹脂〉
 本発明では、種々の公知のポリカーボネート樹脂も使用することができる。本発明においては、特に芳香族ポリカーボネートを用いることが好ましい。当該芳香族ポリカーボネートについて特に制約はなく、所望するフィルムの諸特性が得られる芳香族ポリカーボネートであれば特に制約はない。
<Polycarbonate resin>
In the present invention, various known polycarbonate resins can also be used. In the present invention, it is particularly preferable to use an aromatic polycarbonate. There is no restriction | limiting in particular about the said aromatic polycarbonate, and there will be no restriction | limiting in particular if it is an aromatic polycarbonate from which the various characteristics of a desired film are acquired.
 一般に、ポリカーボネートと総称される高分子材料は、その合成手法において重縮合反応が用いられて、主鎖が炭酸結合で結ばれているものを総称するが、これらの内でも、一般に、フェノール誘導体と、ホスゲン、ジフェニルカーボネートらから重縮合で得られるものを意味する。通常、ビスフェノール-Aと呼称されている2,2-ビス(4-ヒドロキシフェニル)プロパンをビスフェノール成分とする繰り返し単位で表される芳香族ポリカーボネートが好ましく選ばれるが、適宜各種ビスフェノール誘導体を選択することで、芳香族ポリカーボネート共重合体を構成することができる。 In general, a polymer material collectively referred to as polycarbonate is a generic term for a polymer material in which a polycondensation reaction is used in its synthesis method and the main chain is linked by a carbonic acid bond. , Phosgene, diphenyl carbonate and the like obtained by polycondensation. Usually, an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected. Various bisphenol derivatives should be selected as appropriate. Thus, an aromatic polycarbonate copolymer can be constituted.
 かかる共重合成分としてこのビスフェノール-A以外に、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)-2-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフロロプロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)サルファイド、ビス(4-ヒドロキシフェニル)スルホン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等を挙げることができる。 In addition to this bisphenol-A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
 また、一部にテレフタル酸及び/又はイソフタル酸成分を含む芳香族ポリエステルカーボネートを使用することも可能である。このような構成単位をビスフェノール-Aからなる芳香族ポリカーボネートの構成成分の一部に使用することにより芳香族ポリカーボネートの性質、例えば耐熱性、溶解性を改良することができるが、このような共重合体についても本発明は有効である。 It is also possible to use an aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components. By using such a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved. The present invention is also effective for coalescence.
 ここで用いられる芳香族ポリカーボネートの粘度平均分子量は、10000以上、200000以下であれば好適に用いられる。粘度平均分子量20000~120000が特に好ましい。粘度平均分子量が10000より低い樹脂を使用すると得られるフィルムの機械的強度が不足する場合があり、また400000以上の高分子量になるとドープの粘度が大きくなり過ぎ取扱い上問題を生じるので好ましくない。粘度平均分子量は市販の高速液体クロマトグラフィ等で測定することができる。 The viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000. A viscosity average molecular weight of 20,000 to 120,000 is particularly preferred. If a resin having a viscosity average molecular weight lower than 10,000 is used, the mechanical strength of the resulting film may be insufficient, and if it has a high molecular weight of 400000 or more, the viscosity of the dope becomes too large, causing problems in handling. The viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
 本発明に係る芳香族ポリカーボネートのガラス転移温度は200℃以上であることが高耐熱性のフィルムを得る上で好ましく、より好ましくは230℃以上である。これらは、上記共重合成分を適宜選択して得ることができる。ガラス転移温度は、DSC装置(示差走査熱量分析装置)にて測定することができ、例えばセイコー電子工業株式会社製:RDC220にて、10℃/分の昇温条件によって求められる、ベースラインが偏奇し始める温度である。 The glass transition temperature of the aromatic polycarbonate according to the present invention is preferably 200 ° C. or higher in order to obtain a highly heat-resistant film, and more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component. The glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetric analyzer). For example, the baseline is unevenly determined by a temperature rising condition of 10 ° C./min with RDC220 manufactured by Seiko Instruments Inc. It is the temperature that begins to do.
 本発明において、上記芳香族ポリカーボネートを含むドープ組成物に用いる溶媒は、メチレンクロライド、及び炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールを4~14質量部含有する混合溶媒であることが好ましい。 In the present invention, the solvent used in the dope composition containing the aromatic polycarbonate is a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms. It is preferable.
 上記炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールの混合量は、好ましくは4~12質量部である。このような混合溶媒を用い、従来よりも高い残留溶媒濃度でウェブを剥離することにより、ウェブ剥離時の強い静電気の発生を抑制し、これによりベルトが損傷したり、フィルムのスジやムラ、微小傷の発生を防止することができる。 The mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass. By using such a mixed solvent, the web is peeled off at a higher residual solvent concentration than before, thereby suppressing the generation of strong static electricity when the web is peeled off, thereby causing damage to the belt, film streaks, unevenness, and minuteness. Scratches can be prevented from occurring.
 加えるアルコールの種類は用いる溶媒により制限される。アルコールと当該溶媒とが相溶性があることが必要条件である。これらは単独で加えても良いし、二種類以上組み合わせても問題ない。本発明におけるアルコールとしては、炭素数1~6、好ましくは1~4、より好ましくは2~4の鎖状、あるいは分岐した脂肪族アルコールが好ましい。具体的にはメタノール、エタノール、イソプロパノール、ターシャリ-ブタノールなどが挙げられる。これらのうちエタノール、イソプロパノール、ターシャリ-ブタノールはほぼ同等の効果が得られるが、メタノールはやや効果が低い。理由は明らかでないが溶媒の沸点、即ち乾燥時の飛び易さが関係しているものと推測している。それ以上の高級アルコールは、高沸点であるためフィルム製膜後も残留しやすくなるので好ましくない。 The type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more. The alcohol in the present invention is preferably a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms. Specific examples include methanol, ethanol, isopropanol, and tert-butanol. Of these, ethanol, isopropanol, and tertiary-butanol can achieve almost the same effect, but methanol is slightly less effective. Although the reason is not clear, it is presumed that the boiling point of the solvent, that is, the ease of flying during drying is related. Higher alcohols higher than that are not preferred because they have a high boiling point and are likely to remain after film formation.
 アルコールの添加量は慎重に選択されなければならない。これらのアルコールは芳香族ポリカーボネートに対する溶解性には全く乏しく、完全な貧溶媒である。従って余り多く加えることはできず、満足すべき剥離性が得られる最少量とすべきである。前述したようにメチレンクロライドに対して4~14質量部、好ましくは4~12質量部である。メチレンクロライド量に対しては、添加量が4~14質量部の範囲であると、当該溶媒のポリマーに対する溶解性、ドープ安定性が向上し、剥離性改善の効果が大きくなる。 The amount of alcohol to be added must be carefully selected. These alcohols are completely poor in solubility in aromatic polycarbonate and are completely poor solvents. Therefore, it cannot be added too much, and should be the minimum amount that can provide satisfactory peelability. As described above, it is 4 to 14 parts by mass, preferably 4 to 12 parts by mass with respect to methylene chloride. When the addition amount is in the range of 4 to 14 parts by mass with respect to the amount of methylene chloride, the solubility of the solvent in the polymer and the dope stability are improved, and the effect of improving the peelability is increased.
 本発明はドープ組成物中、上記メチレンクロライドと脂肪族アルコールで構成されるが、他の溶媒を使用することもできる。その他残りの溶媒としては芳香族ポリカーボネートを高濃度に溶解し、かつアルコールと相溶性があること、さらに低沸点溶媒であれば特に限定はない。例えば、芳香族ポリカーボネートに対して溶解力のある溶媒として、塩化メチレン以外にクロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼンなどのハロゲン系溶媒、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル系の溶媒、シクロヘキサノン等のケトン系の溶媒が挙げられる。 The present invention is composed of the above methylene chloride and aliphatic alcohol in the dope composition, but other solvents can also be used. The remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and is a low-boiling solvent. For example, as a solvent having a solubility in aromatic polycarbonate, in addition to methylene chloride, halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
 他の溶媒を使用する場合は特に限定はなく、効果を勘案して用いればよい。ここでいう効果とは、溶解性や安定性を犠牲にしない範囲で溶媒を混合することによる、例えば溶液流延法により製膜したフィルムの表面性の改善(レベリング効果)、蒸発速度や系の粘度調節、結晶化抑制効果などである。これらの効果の度合により混合する溶媒の種類や添加量を決定すればよく、また混合する溶媒として一種又は二種以上用いてもかまわない。 When using other solvents, there is no particular limitation, and the effect may be taken into consideration. The effects here include mixing the solvent within a range that does not sacrifice the solubility and stability, for example, improving the surface properties of the film formed by the solution casting method (leveling effect), the evaporation rate and the system These include viscosity adjustment and crystallization suppression effects. What is necessary is just to determine the kind and addition amount of the solvent to mix by the degree of these effects, and you may use 1 type, or 2 or more types as a solvent to mix.
 好適に用いられる他の溶媒としてはクロロホルム、1,2-ジクロロエタンなどのハロゲン系溶媒、トルエン、キシレンなどの炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチル、酢酸ブチルなどのエステル系溶媒、エチレングリコールジメチルエーテル、メトキシエチルアセテートなどのエーテル系溶媒が挙げられる。 Other solvents preferably used include halogen solvents such as chloroform and 1,2-dichloroethane, hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and butyl acetate. Examples include ester solvents, ether solvents such as ethylene glycol dimethyl ether and methoxyethyl acetate.
 本発明に係るドープ組成物は、結果としてヘイズの低い透明な溶液が得られればいかなる方法で調製してもよい。あらかじめある溶媒に溶解させた芳香族ポリカーボネート溶液に、アルコールを所定量添加してもよいし、アルコールを含む混合溶媒に芳香族ポリカーボネートを溶解させてもよい。ただ先にも述べた様にアルコールは貧溶媒であるため、前者の後から添加する方法ではポリマーの析出によるドープ白濁の可能性があるため、後者の混合溶媒に溶解させる方法が好ましい。 The dope composition according to the present invention may be prepared by any method as long as a transparent solution with low haze is obtained as a result. A predetermined amount of alcohol may be added to the aromatic polycarbonate solution dissolved in a certain solvent in advance, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol. However, as described above, since alcohol is a poor solvent, the method of adding the latter after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
 〈ポリエステル樹脂〉
 本発明において用いることができるポリエステル樹脂は、ジカルボン酸とジオールを重合することにより得られ、ジカルボン酸構成単位(ジカルボン酸に由来する構成単位)の70%以上が芳香族ジカルボン酸に由来し、かつジオール構成単位(ジオールに由来する構成単位)の70%以上が脂肪族ジオールに由来する。
<Polyester resin>
The polyester resin that can be used in the present invention is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of dicarboxylic acid structural units (constituent units derived from dicarboxylic acid) are derived from aromatic dicarboxylic acid, and 70% or more of the diol constituent units (constituent units derived from the diol) are derived from the aliphatic diol.
 芳香族ジカルボン酸に由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。 The proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
 脂肪族ジオールに由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。ポリエステル樹脂は、二種以上を併用してもよい。 The proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more. Two or more polyester resins may be used in combination.
 前記芳香族ジカルボン酸として、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸、4,4′-ビフェニルジカルボン酸、3,4′-ビフェニルジカルボン酸等及びこれらのエステル形成性誘導体が例示できる。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and the like, 4,4'-biphenyldicarboxylic acid 3,4'-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
 ポリエステル樹脂には本発明の目的を損なわない範囲でアジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸や安息香酸、プロピオン酸、酪酸等のモノカルボン酸を用いることができる。 As the polyester resin, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
 前記脂肪族ジオールとして、エチレングリコール、1,3-プロピレンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等及びこれらのエステル形成性誘導体が例示できる。 Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
 ポリエステル樹脂には本発明の目的を損なわない範囲でブチルアルコール、ヘキシルアルコール、オクチルアルコール等のモノアルコール類や、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類を用いることもできる。 As the polyester resin, monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
 ポリエステル樹脂の製造には、公知の方法である直接エステル化法やエステル交換法を適用することができる。ポリエステル樹脂の製造時に使用する重縮合触媒としては、公知の三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、酸化ゲルマニウム等のゲルマニウム化合物、酢酸チタン等のチタン化合物、塩化アルミニウム等のアルミニウム化合物等が例示できるが、これらに限定されない。 A known esterification method or transesterification method can be applied to the production of the polyester resin. Examples of the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
 好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリエチレン-2,6-ナフタレンジカルボキレート樹脂、ポリエチレン-2,6-ナフタレンジカルボキシレート-テレフタレート共重合樹脂、ポリエチレン-テレフタレート-4,4′-ビフェニルジカルボキシレート樹脂、ポリ-1,3-プロピレン-テレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレン-2,6-ナフタレンジカルボキシレート樹脂等がある。 Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
 より好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリブチレンテレフタレート樹脂及びポリエチレン-2,6-ナフタレンジカルボキシレート樹脂が挙げられる。 More preferable polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
 ポリエステル樹脂の固有粘度(フェノール/1,1,2,2-テトラクロロエタン=60/40質量比混合溶媒中、25℃で測定した値)は、0.7~2.0dl/gが好ましく、より好ましくは0.8~1.5dl/gである。固有粘度が0.7以上であるとポリエステル樹脂の分子量が充分に高いために、これを使用して得られるポリエステル樹脂組成物からなる成形物が成形物として必要な機械的性質を有すると共に、透明性が良好となる。固有粘度が2.0以下の場合、成形性が良好となる。 The intrinsic viscosity of the polyester resin (phenol / 1,1,2,2-tetrachloroethane = value measured at 25 ° C. in a 60/40 mass ratio mixed solvent) is preferably 0.7 to 2.0 dl / g, more Preferably, it is 0.8 to 1.5 dl / g. Since the molecular weight of the polyester resin is sufficiently high when the intrinsic viscosity is 0.7 or more, the molded product comprising the polyester resin composition obtained by using the polyester resin has mechanical properties necessary for the molded product and is transparent. Property is improved. When the intrinsic viscosity is 2.0 or less, the moldability is good.
 (その他添加剤)
 本発明に係る熱可塑性樹脂基材には、目的に応じて種々の化合物等を添加剤として含有させることができる。例えば、位相差(リターデーション)上昇剤、可塑剤、酸化防止剤、酸捕捉剤、光安定剤、紫外線吸収剤、光学異方性制御剤、マット剤、帯電防止剤、剥離剤、等を含有させることができる。
(Other additives)
The thermoplastic resin substrate according to the present invention can contain various compounds as additives depending on the purpose. For example, it contains retardation increasing agent, plasticizer, antioxidant, acid scavenger, light stabilizer, UV absorber, optical anisotropy control agent, matting agent, antistatic agent, release agent, etc. Can be made.
 位相差(リターデーション)上昇剤は、少なくとも二つの芳香族環を有する芳香族化合物が好ましい。芳香族化合物は、樹脂の100質量部に対して、0.01乃至20質量部の範囲で使用することが好ましい。そして、0.05乃至15質量部の範囲で使用することが好ましく、0.1乃至10質量部の範囲で使用することがさらに好ましい。二種類以上の芳香族化合物を併用してもよい。芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環及び1,3,5-トリアジン環が含まれる。これらについては、特開2004-109410号、特開2003-344655号、特開2000-275434号、特開2000-111914号、特開平12-275434号公報などに詳細が記載されている。 The retardation increasing agent is preferably an aromatic compound having at least two aromatic rings. The aromatic compound is preferably used in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin. And it is preferable to use in 0.05-15 mass parts, and it is still more preferable to use in 0.1-10 mass parts. Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic hetero ring in addition to the aromatic hydrocarbon ring. The aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring). The aromatic heterocycle is generally an unsaturated heterocycle. The aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring. Aromatic heterocycles generally have the most double bonds. As the hetero atom, a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable. Examples of aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring. Details of these are described in JP-A No. 2004-109410, JP-A No. 2003-344655, JP-A No. 2000-275434, JP-A No. 2000-1111914, JP-A No. 12-275434, and the like.
 (マット剤)
 本発明に係る熱可塑性樹脂基材には、作製されたフィルムがハンドリングされる際に、傷が付いたり、搬送性が悪化することを防止するために、マット剤として、微粒子を添加することも好ましい。
(Matting agent)
The thermoplastic resin substrate according to the present invention may be added with fine particles as a matting agent in order to prevent scratching or deterioration of transportability when the produced film is handled. preferable.
 微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子は珪素を含むものが、濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。 As fine particles, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
 微粒子の一次粒子の平均粒径は5~400nmが好ましく、更に好ましいのは10~300nmである。これらは主に粒径0.05~0.3μmの2次凝集体として含有されていてもよく、平均粒径80~400nmの粒子であれば凝集せずに一次粒子として含まれていることも好ましい。フィルム中のこれらの微粒子の含有量は0.01~1質量%であることが好ましく、特に0.05~0.5質量%が好ましい。共流延法による多層構成の位相差フィルム(光学フィルム)の場合は、表面にこの添加量の微粒子を含有することが好ましい。 The average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 μm, and may be contained as primary particles without being aggregated if the particles have an average particle size of 80 to 400 nm. preferable. The content of these fine particles in the film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of a retardation film (optical film) having a multilayer structure formed by the co-casting method, it is preferable that the surface contains this amount of fine particles.
 二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
 樹脂の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。 Examples of the resin include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
 これらの中でもアエロジル200V、アエロジルR972Vが位相差フィルム(光学フィルム)のヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明に係る位相差フィルム(光学フィルム)においては、少なくとも一方の面の動摩擦係数が0.2~1.0であることが好ましい。 Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the retardation film (optical film) low. In the retardation film (optical film) according to the present invention, the dynamic friction coefficient of at least one surface is preferably 0.2 to 1.0.
 (位相差フィルムの製造方法)
 本発明に係る樹脂フィルム基材をフィルムとして製造する方法としては、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液流延法、及び溶融流延法が好ましい。
(Method for producing retardation film)
As a method for producing the resin film substrate according to the present invention as a film, production methods such as a normal inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, and a hot press method can be used. However, the solution casting method by the casting method and the melt casting method are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
 以下、本発明に係る位相差フィルムを作製する場合の製造方法について詳述する。 Hereinafter, the production method for producing the retardation film according to the present invention will be described in detail.
 <溶液流延法による位相差フィルムの製造方法>
 《有機溶媒》
 本発明に係る位相差フィルム(光学フィルム)を溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースエステル樹脂等の熱可塑性樹脂を溶解するものであれば制限なく用いることができる。
<Method for producing retardation film by solution casting method>
《Organic solvent》
When the retardation film (optical film) according to the present invention is produced by the solution casting method, the organic solvent useful for forming the dope is not limited as long as it dissolves a thermoplastic resin such as a cellulose ester resin. Can be used.
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、乳酸エチル、乳酸、ジアセトンアルコール等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトン、乳酸エチル等を好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate, acetone, ethyl lactate, etc. Get.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させてもよい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels, facilitating peeling from the metal support, and when the proportion of alcohol is small, the dissolution of the thermoplastic resin in a non-chlorine organic solvent system is promoted. There is also a role.
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性樹脂は、少なくとも計10~45質量%溶解させたドープ組成物であることが好ましい。 In particular, the thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 以下、本発明に係る位相差フィルム(光学フィルム)(以下、単に「フィルム」ともいう。)の好ましい製膜方法について説明する。 Hereinafter, a preferred method for forming a retardation film (optical film) according to the present invention (hereinafter, also simply referred to as “film”) will be described.
 1)溶解工程
 熱可塑性樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で熱可塑性樹脂、その他の添加剤を攪拌しながら溶解しドープを形成する工程である。
1) Dissolution Step In this step, a thermoplastic resin and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
 熱可塑性樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反のことをいい、これも再使用される。 Recycled material is a finely pulverized film, which is generated when the film is formed, and has been cut off on both sides of the film, or a film original that has been speculated out due to scratches, etc. Reused.
 2)流延工程
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
2) Casting process An endless metal belt, such as a stainless steel belt or a rotating metal drum, which supports the dope is fed to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and supported infinitely. This is a step of casting a dope from a pressure die slit to a casting position on the body.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に2基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
3) Solvent evaporation step In this step, the web (the dope is cast on the casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent.
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法の乾燥効率が良く好ましい。また、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
4) Peeling process It is the process of peeling the web which the solvent evaporated on the metal support body in a peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、さらに好ましくは11~30℃である。 The temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、さらには、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。 The peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ˜166.6 N / m, and then peel at a minimum tension of ˜137.2 N / m, and particularly preferable to peel at a minimum tension of ˜100 N / m.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
 5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置を用いて、ウェブを乾燥する。
5) Drying and stretching step After peeling, using a drying device that alternately passes the web through rolls arranged in the drying device and / or a tenter stretching device that clips and transports both ends of the web with clips. Dry the web.
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥は出来上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥はおおむね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, drying is generally carried out at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。 When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 It is also preferable to provide a neutral zone between different temperature zones so that each zone does not cause interference.
 なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。 The stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
 この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。 In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
 ・流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 ・幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時二軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。
-Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction-Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction Simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になるまでテンターを掛けながら乾燥を行うことが好ましく、さらに好ましくは5質量%以下である。 When the tenter is used, the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while applying the tenter until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
 テンターを行う場合の乾燥温度は、30~160℃が好ましく、50~150℃がさらに好ましく、70~140℃が最も好ましい。 When performing the tenter, the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, and within ± 2 ° C. Is more preferable, and within ± 1 ° C. is most preferable.
 6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%で巻き取ることが好ましい。
6) Winding step This is a step of winding the film as a film by a winder after the amount of residual solvent in the web is 2% by mass or less. By reducing the amount of residual solvent to 0.4% by mass or less, dimensional stability can be improved. A good film can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 本発明に係るフィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The film according to the present invention is preferably a long film, specifically a film having a thickness of about 100 m to 5000 m, and usually in a form provided in a roll shape. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明に係るフィルムの膜厚に特に制限はないが、20~200μmであることが好ましい。 The film thickness according to the present invention is not particularly limited, but is preferably 20 to 200 μm.
 <溶融流延製膜法による位相差フィルムの製造方法>
 本発明に係る樹脂フィルム基材を、位相差フィルムとして、溶融流延製膜法により製造する場合の方法について説明する。
<Method for producing retardation film by melt casting method>
The method in the case of manufacturing the resin film base material which concerns on this invention as a retardation film by the melt-casting film forming method is demonstrated.
 〈溶融ペレット製造工程〉
 溶融押出に用いる熱可塑性樹脂フィルムを構成する組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
<Melted pellet manufacturing process>
The composition constituting the thermoplastic resin film used for melt extrusion is usually preferably kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥した熱可塑性樹脂と目的に応じて添加剤をフィーダーで押出機に供給し一軸や二軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, a dry thermoplastic resin and an additive depending on the purpose are fed to an extruder with a feeder and kneaded using a uniaxial or biaxial extruder, and then formed into a strand from a die. Can be extruded, water-cooled or air-cooled, and then cut.
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。 It is important to dry the raw material before extruding to prevent the raw material from being decomposed. In particular, since cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、こと前に混合しておくことが好ましい。 Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、あるいは噴霧して混合してもよい。 The antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したNガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer or the like is preferable because drying and mixing can be performed simultaneously. Further, if the contact with air, such as the exit from the feeder unit or die, it is preferable that the atmosphere such as dehumidified air and dehumidified N 2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、二軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 〈溶融混合物をダイから冷却ロールへ押し出す工程〉
 まず、作製したペレットを一軸や二軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
<Process for extruding molten mixture from die to cooling roll>
First, using a single-screw or twin-screw type extruder, the melt temperature Tm when extruding the pellets is about 200-300 ° C, filtered through a leaf disk type filter, etc. to remove foreign matter, Coextruded into a film, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
 供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such a defect is also called a die line, but in order to reduce surface defects such as the die line, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface processing that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 本発明において冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体又は冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。 In the present invention, there is no particular limitation on the cooling roll, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roll surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roll surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 本発明において、弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97/028950、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。 In the present invention, examples of the elastic touch roll include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747, A silicon rubber roll coated with a thin-film metal sleeve can be used as described in Japanese Unexamined Patent Application Publication No. 2002-36332, Japanese Patent Application Laid-Open No. 2005-172940 and Japanese Patent Application Laid-Open No. 2005-280217.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 〈延伸工程〉
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することもできる。
<Extension process>
In the present invention, the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
 好ましくは縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。 Preferably, the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。特に位相差フィルム(光学フィルム)が、偏光子保護フィルムを兼ねる場合は、延伸方向を巾方向とすることで偏光フィルムとの積層がロール形態でできるので好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. In particular, when the retardation film (optical film) also serves as a polarizer protective film, it is preferable to make the stretching direction the width direction because lamination with the polarizing film can be performed in a roll form.
 巾方向に延伸することで位相差フィルム(光学フィルム)の遅相軸は巾方向になる。 By stretching in the width direction, the slow axis of the retardation film (optical film) becomes the width direction.
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~2倍であり、延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+50℃の温度範囲で行われる。 Usually, the stretching ratio is 1.1 to 3.0 times, preferably 1.2 to 2 times, and the stretching temperature is usually a temperature of Tg to Tg + 50 ° C., preferably Tg to Tg + 50 ° C. of the resin constituting the film. Done in a range.
 延伸は、長手方向若しくは幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。 The stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction. The temperature is preferably within ± 2 ° C, more preferably within ± 1 ° C, and particularly preferably within ± 0.5 ° C.
 上記の方法で作製したフィルム状樹脂フィルムを位相差フィルムとして用いる場合、当該位相差フィルム(光学フィルム)の位相差(リターデーション)調整や寸法変化率を小さくする目的で、フィルムを長手方向や幅手方向に収縮させてもよい。 When the film-like resin film produced by the above method is used as a retardation film, the film is formed in the longitudinal direction or width for the purpose of adjusting the retardation (retardation) of the retardation film (optical film) and reducing the dimensional change rate. It may be contracted in the hand direction.
 長手方向に収縮するには、例えば、巾延伸を一時クリップアウトさせて長手方向に弛緩させる、又は横延伸機の隣り合うクリップの間隔を徐々に狭くすることによりフィルムを収縮させるという方法がある。 In order to shrink in the longitudinal direction, for example, there is a method in which the film is shrunk by temporarily clipping out the width stretching and relaxing in the longitudinal direction, or by gradually narrowing the interval between adjacent clips of the transverse stretching machine.
 遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が-5~+5°であることが好ましく、さらに-1~+1°の範囲にあることが好ましく、特に-0.5~+0.5°の範囲にあることが好ましく、特に-0.1~+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。 Uniformity in the slow axis direction is also important, and the angle is preferably −5 to + 5 ° with respect to the film width direction, more preferably in the range of −1 to + 1 °, particularly −0. A range of 5 to + 0.5 ° is preferable, and a range of −0.1 to + 0.1 ° is particularly preferable. These variations can be achieved by optimizing the stretching conditions.
 本発明に係る位相差フィルムは、長尺フィルムであることが好ましく、具体的には、100m~10000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2.5mであることがより好ましい。 The retardation film according to the present invention is preferably a long film. Specifically, the retardation film is about 100 m to 10000 m, and is usually in the form of a roll. The width of the film is preferably 1.3 to 4 m, more preferably 1.4 to 2.5 m.
 本発明に係る位相差フィルムの膜厚に特に制限はなく、目的に応じて変化させることが好ましい。例えば、偏光子保護フィルムに使用する場合は、20~200μmであることが好ましい。 The film thickness of the retardation film according to the present invention is not particularly limited and is preferably changed according to the purpose. For example, when used for a polarizer protective film, the thickness is preferably 20 to 200 μm.
 (液晶表示装置の製造方法)
 本発明に係る位相差フィルムは、ロールtoパネル製法で製造される液晶表示装置に特により好ましく用いられる。
(Manufacturing method of liquid crystal display device)
The retardation film according to the present invention is particularly preferably used for a liquid crystal display device produced by a roll-to-panel manufacturing method.
 なお、本願において、「ロールtoパネル製法」とは、ロール状の長尺偏光板を液晶セルの縦と横の両方のサイズにあらかじめカットすることなく、液晶セルの縦の幅と液晶セルの横の幅に相当する長尺ロールから直接偏光板を繰り出し、液晶セルに貼合したのち、レーザーカッターなどで液晶セルサイズにカットする製法である(図3参照)。この場合、液晶セルに偏光板を貼合する際に貼合ロールが押しあてられるが、長尺偏光板であるため、一般的には、貼合時に無理な力がかかりやすく偏光板にムラが生じやすいが、本発明に係る前記条件を満たす位相差フィルムを用いた場合には、ムラは生じ難く、光学的性能のロット間ばらつきは無視できる程度である。 In the present application, the “roll-to-panel manufacturing method” means that the length of the liquid crystal cell and the width of the liquid crystal cell are not cut in advance in both the vertical and horizontal sizes of the liquid crystal cell. This is a manufacturing method in which a polarizing plate is directly fed out from a long roll corresponding to the width of the film, and bonded to a liquid crystal cell, and then cut into a liquid crystal cell size with a laser cutter or the like (see FIG. 3). In this case, the laminating roll is pressed when laminating the polarizing plate to the liquid crystal cell, but since it is a long polarizing plate, generally an unreasonable force is easily applied at the time of laminating, and unevenness is present in the polarizing plate. Although it is likely to occur, when the retardation film satisfying the above-described conditions according to the present invention is used, unevenness is hardly generated, and variation in optical performance between lots is negligible.
 以下、本発明について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example is given and the present invention is explained, the present invention is not limited to these.
 (フィルム作製)
 <微粒子分散液の作製>
 微粒子(アエロジルR972V(日本アエロジル株式会社製))
                             11質量部
(1次粒子の平均径16nm、見掛け比重90g/リットル)
 エタノール                       89質量部
 以上をディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散し、微粒子分散液を得た。
(Film production)
<Preparation of fine particle dispersion>
Fine particles (Aerosil R972V (Nippon Aerosil Co., Ltd.))
11 parts by mass (average primary particle diameter 16 nm, apparent specific gravity 90 g / liter)
More than 89 parts by mass of ethanol was stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion.
 〈微粒子添加液〉
 メチレンクロライドを入れた溶解タンクにセルロースアセテート(アセチル基置換度2.10、Mn=140000を添加し、加熱して完全に溶解させた後、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した。濾過後のセルロースアセテート溶液を充分に攪拌しながら、ここに上記微粒子分散液をゆっくりと添加した。さらに、2次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
<Fine particle additive solution>
Cellulose acetate (acetyl group substitution degree 2.10, Mn = 14000) was added to a dissolution tank containing methylene chloride and heated to completely dissolve it, and this was then added to Azumi Filter Paper No. 244 manufactured by Azumi Filter Paper Co., Ltd. While finely stirring the filtered cellulose acetate solution, the fine particle dispersion was slowly added thereto, and an attritor was used so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
 (微粒子添加液の組成)
 メチレンクロライド                   99質量部
 セルロースアセテート(上記)               4質量部
 微粒子分散液                      11質量部
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースエステルを攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解し、更に可塑剤及び紫外線吸収剤を添加、溶解させた。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
(Composition of fine particle addition liquid)
Methylene chloride 99 parts by weight Cellulose acetate (above) 4 parts by weight Fine particle dispersion 11 parts by weight A main dope solution having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. The cellulose ester was added to the pressure dissolution tank containing the solvent while stirring. This was heated and stirred to completely dissolve, and a plasticizer and an ultraviolet absorber were further added and dissolved. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
 主ドープ液100質量部と微粒子添加液5質量部となるように加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合し、次いでベルト流延装置を用い、幅2mのステンレスバンド支持体に均一に流延した。ステンレスバンド支持体上で、残留溶媒量が110%になるまで溶媒を蒸発させ、ステンレスバンド支持体から剥離した。次いで、テンターでウェブ両端部を把持し、幅手方向に延伸し、延伸終了後に幅手を保持したまま4秒間保持し、幅方向の張力を緩和させた後幅保持を解放し、更に125℃に設定された第3乾燥ゾーンで30分間搬送させて乾燥を行い、幅1.49m、かつ端部に幅1cmのナーリングを有する保護フィルム101~122を、118は1000m、残りを500mずつ作製した。なお、以上の方法を「処方A」とする。 In addition to 100 parts by mass of the main dope solution and 5 parts by mass of the fine particle additive solution, thoroughly mix with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ), then use a belt casting device to It was cast uniformly on a 2 m stainless steel band support. On the stainless steel band support, the solvent was evaporated until the residual solvent amount became 110%, and the stainless steel band support was peeled off. Next, both ends of the web are gripped with a tenter, stretched in the width direction, held for 4 seconds with the width held after the stretching is finished, the width is released after the tension in the width direction is relaxed, and further 125 ° C. In the third drying zone set to 1, drying was carried out for 30 minutes, and protective films 101 to 122 having a width of 1.49 m and a knurling of 1 cm in width at the end were prepared, in which 118 was 1000 m and the remaining was 500 m. . The above method is referred to as “Prescription A”.
 延伸ゾーンの条件(延伸倍率、加熱温度)とテンターに入る時の残留溶媒量を表1及び表2に示す。 Table 1 and Table 2 show the conditions of the stretching zone (stretching ratio, heating temperature) and the amount of residual solvent when entering the tenter.
 〈主ドープ液の組成〉
 メチレンクロライド                  390質量部
 エタノール                       80質量部
 セルロースアセテート(総置換度2.48、アセチル基置換度1.58、
  プロピオニル基置換度0.90、Mn=160000) 100質量部
 スクロースベンゾエート(平均置換度5.5)     10.0質量部
 ドープ組成の、セルロースアセテート(総置換度2.41、アセチル置換度2.41、Mn=180000を使用した以外は同様にしてフィルム123~149を、148を1000m、残りを500mずつ作製した。なお、当該フィルム123~149の製法を「処方B」とする。
<Composition of main dope solution>
Methylene chloride 390 parts by mass Ethanol 80 parts by mass Cellulose acetate (total substitution degree 2.48, acetyl group substitution degree 1.58,
Propionyl group substitution degree 0.90, Mn = 16000) 100 parts by mass Sucrose benzoate (average substitution degree 5.5) 10.0 parts by mass Dope composition of cellulose acetate (total substitution degree 2.41, acetyl substitution degree 2.41) In the same manner except that Mn = 18000 was used, films 123 to 149 were prepared in increments of 1000 m for 148 and 500 m for the rest, and the manufacturing method of the films 123 to 149 is referred to as “Prescription B”.
 ドープ組成の、セルロースアセテートを総置換度1.90、アセチル置換度1.90、Mn=140000のものを使用し、スクロースベンゾエートを平均置換度5.1のものを使用した以外は同様にしてフィルム150~185を500mずつ作製した。なお、当該フィルム150~185の製法を処方Cとする。 The film was formed in the same manner except that cellulose acetate having a total substitution degree of 1.90, acetyl substitution degree of 1.90 and Mn = 14,000 was used, and sucrose benzoate having an average substitution degree of 5.1 was used. 150 to 185 were made 500 m each. The production method of the films 150 to 185 is defined as prescription C.
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 〈位相差フィルムの位相差値の測定〉
 作製した位相差フィルムを、23℃55%RHで調湿後、王子計測機器製KOBRA31WPRを用いて測定波長590nmで位相差値を測定した。Rt算出のために、平均屈折率はアッベ屈折計で3方向の屈折率を測定して平均し、Roと、遅相軸を傾斜軸に40°傾斜させた時の位相差値を用いてRtを算出した。
<Measurement of retardation value of retardation film>
After adjusting the humidity of the prepared retardation film at 23 ° C. and 55% RH, the retardation value was measured at a measurement wavelength of 590 nm using KOBRA 31WPR manufactured by Oji Scientific Instruments. For calculating Rt, the average refractive index is measured by measuring the refractive index in three directions with an Abbe refractometer and averaged using R 0 and the phase difference value when the slow axis is tilted by 40 ° with respect to the tilt axis. Was calculated.
 測定結果を表3及び表4に示す。 Table 3 and Table 4 show the measurement results.
 (偏光板の作製)
 作製した位相差フィルムと、コニカミノルタオプト製KC6UA-SWを50℃2NのKOH水溶液を用いて60秒間ケン化処理を行い、水洗、乾燥させ、以下のように偏光板加工を行った。
(Preparation of polarizing plate)
The prepared retardation film and Konica Minolta Op KC6UA-SW were saponified for 60 seconds using an aqueous KOH solution at 50 ° C. and 2N, washed with water and dried, and then subjected to polarizing plate processing as follows.
 厚さ、75μmのポリビニルアルコールフィルムを、35℃の水で膨潤させこれをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム3g、ホウ酸7.5g、水100gからなる45℃の水溶液に浸漬し一軸延伸(温度55℃、延伸倍率5倍)した。これを水洗、乾燥し偏光子を得た。 A polyvinyl alcohol film having a thickness of 75 μm was swollen with water at 35 ° C. and immersed in an aqueous solution consisting of 0.075 g of iodine, 5 g of potassium iodide, and 100 g of water, and then 3 g of potassium iodide and 7. It was immersed in a 45 ° C. aqueous solution consisting of 5 g and 100 g of water and uniaxially stretched (temperature 55 ° C., stretch ratio 5 times). This was washed with water and dried to obtain a polarizer.
 次いで、前記偏光子の両側に前記ケン化済み保護膜(KC6UA-SWと各位相差フィルム)を、水糊を用いて、両保護膜で偏光子をサンドイッチする形にして圧力20~30N/cm、搬送スピードは約10m/分で貼合し、70℃で約2分間、次いで60℃で約2分の乾燥処理を行い、巻取り、偏光板ロールを作製した。剥離加工したポリエチレンテレフタレートフィルムに粘着層を設け、得られた偏光板の、位相差フィルム側に粘着層の面を貼りつけ、粘着偏光板ロールを作製した。位相差フィルム(101~185)と偏光板(201~285)の対応関係を表3及び表4に示す。 Next, the saponified protective film (KC6UA-SW and each retardation film) is placed on both sides of the polarizer, and the pressure is 20-30 N / cm 2 in a form in which the polarizer is sandwiched between both protective films using water paste. The transfer speed was about 10 m / min, and a drying process was performed at 70 ° C. for about 2 minutes and then at 60 ° C. for about 2 minutes, and wound up to prepare a polarizing plate roll. An adhesive layer was provided on the peeled polyethylene terephthalate film, and the surface of the adhesive layer was attached to the retardation film side of the obtained polarizing plate to prepare an adhesive polarizing plate roll. Tables 3 and 4 show the correspondence between the retardation films (101 to 185) and the polarizing plates (201 to 285).
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 (液晶表示装置の作製)
 SONY社製BRAVIA KDL52W5の偏光板を剥離し、上記において作製した偏光板を表5、表6及び表7に記載した組合せでパネルに貼合し、液晶表示装置(1001~1072)を作製し、下記評価を行った。この液晶表示装置の液晶セルは、カラーフィルタと薄膜トランジスタが透明基板の一方に配置されており(図1参照)、本発明の液晶表示装置のセルであり、表5、表6及び表7にはWと記載してある。続いて、SONY社製BRAVIA KDL52V1の偏光板を剥離し、表5、表6及び表7の組合せでパネルに貼合し、液晶表示装置(3001~3004)を作製し、下記評価を行った。この液晶表示装置の液晶セルは、カラーフィルタと薄膜トランジスタが異なる透明基板に配置されており、本発明の液晶表示装置の液晶セルに対する比較例であり(図2参照)、表7にはVと記載してある。
(Production of liquid crystal display device)
Strip the polarizing plate of BRAVIA KDL52W5 manufactured by Sony, and paste the polarizing plate prepared above on the panel with the combinations described in Table 5, Table 6 and Table 7 to prepare liquid crystal display devices (1001 to 1072). The following evaluation was performed. The liquid crystal cell of this liquid crystal display device has a color filter and a thin film transistor disposed on one of the transparent substrates (see FIG. 1), and is a cell of the liquid crystal display device of the present invention. W is described. Subsequently, the polarizing plate of BRAVIA KDL52V1 manufactured by Sony was peeled off and bonded to the panel in the combinations of Table 5, Table 6 and Table 7 to prepare liquid crystal display devices (3001 to 3004), and the following evaluation was performed. The liquid crystal cell of this liquid crystal display device is a comparative example of the liquid crystal cell of the liquid crystal display device of the present invention in which the color filter and the thin film transistor are arranged on different transparent substrates (see FIG. 2). It is.
 (評価)
 〈正面コントラスト〉
 バックライトを点灯させた状態で白表示と黒表示を画面で表示させ、コニカミノルタセンシング製CS2000を用いて正面輝度を測定し、これを用いて正面コントラストを算出した。また、算出した値の10の位を25未満は切捨て、25以上50以下は50とし、それ以上は切り上げた数値を表に載せている。
(Evaluation)
<Front contrast>
With the backlight turned on, white display and black display were displayed on the screen, front luminance was measured using CS2000 manufactured by Konica Minolta Sensing, and front contrast was calculated using this. Also, the calculated value is rounded down to the nearest tenth, with 25 or more and 50 or less set to 50, and values above that are rounded up.
 正面コントラストを下記基準に従って評価した。
 ◎:3000以上
 ○:2500超3000未満
 ×:2500以下
 〈視野角〉
 ELDIM社製EZ-Contrast160Dを用いて、正面コントラスト測定と同様に白と黒を表示させて測定し、斜め20~70°の範囲でコントラスト50の最小角度を視野角とした。また、全方位で視野角が80°を超えている場合も80°と表記した。
The front contrast was evaluated according to the following criteria.
A: More than 3000 B: More than 2500 and less than 3000 X: 2500 or less <Viewing angle>
Using an EZ-Contrast 160D manufactured by ELDIM, white and black were displayed in the same manner as the front contrast measurement, and the minimum angle of contrast 50 in the range of 20 to 70 ° was set as the viewing angle. In addition, when the viewing angle exceeds 80 ° in all directions, it is described as 80 °.
 視野角を下記基準に従って評価した。
 ◎:70°以上
 ○:60°以上、70°未満
 ×:60°未満
 〈カラーシフト〉
 ELDIM社製EZ-Contrast160Dを用いて黒表示におけるカラーシフトを測定し、CIE1976UCS色度図の座標(u1’,v1’)で表し、液晶表示装置の法線から傾斜角60°で360°の測定座標の中で正面方向(u2’,v2’)と最も座標の距離が遠い値をカラーシフトとした。カラーシフト(ΔCS)=((u1’-u2’)+(v1’-v2’)1/2
 カラーシフト(ΔCS)を下記基準に従って評価した。
 ◎:0.040未満
 ○:0.040以上0.060以下
 ×:0.060超
 上記評価結果を表5~表9にまとめて示す。
The viewing angle was evaluated according to the following criteria.
◎: 70 ° or more ○: 60 ° or more, less than 70 ° ×: less than 60 ° <Color shift>
The color shift in black display was measured using EZ-Contrast 160D manufactured by ELDIM, and expressed as coordinates (u1 ′, v1 ′) in the CIE 1976 UCS chromaticity diagram, and measured at 360 ° with a tilt angle of 60 ° from the normal of the liquid crystal display device. Among the coordinates, a value having the longest distance between the front direction (u2 ′, v2 ′) and the coordinate is defined as a color shift. Color shift (ΔCS) = ((u1′−u2 ′) 2 + (v1′−v2 ′) 2 ) 1/2
Color shift (ΔCS) was evaluated according to the following criteria.
A: Less than 0.040 B: 0.040 or more and 0.060 or less X: More than 0.060 The above evaluation results are summarized in Tables 5 to 9.
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
 表5~表9に示した結果から明らかなように、本発明の垂直配向型液晶表示装置は、正面コントラスト、視野角、及びカラーシフトについての評価において優れていることが分かる。 As is apparent from the results shown in Tables 5 to 9, it can be seen that the vertical alignment type liquid crystal display device of the present invention is excellent in evaluation of front contrast, viewing angle, and color shift.
 (偏光板のスリット法と輝度ムラの関係)
 偏光板218を1151mm幅、偏光板248を647mm幅にレーザースリッターを用いてスリットし、それぞれ1151mm幅の偏光板ロール218A1、647mm幅の偏光板ロール248B1を作製し、偏光板ロールセット218A1-248B1とした。
(Relation between slit method of polarizing plate and uneven brightness)
The polarizing plate 218 is 1151 mm wide and the polarizing plate 248 is slit to a width of 647 mm using a laser slitter to prepare a polarizing plate roll 218A1 having a width of 1151 mm and a polarizing plate roll 248B1 having a width of 647 mm, and a polarizing plate roll set 218A1-248B1. did.
 これをロール状偏光板のパネル貼合装置である、液晶表示装置の製造システムにセットし、10枚の液晶セルにロール貼合した(液晶表示装置2001~2010)。また、偏光板218と248を52インチサイズに10枚ずつ断裁し、これを同じように10枚の液晶セルに枚葉貼合した(液晶表示装置2011~2020)。 This was set in a manufacturing system of a liquid crystal display device, which is a panel bonding device for roll-shaped polarizing plates, and roll-bonded to 10 liquid crystal cells (liquid crystal display devices 2001 to 2010). In addition, 10 polarizing plates 218 and 248 were cut into 52-inch sizes, and were similarly bonded to 10 liquid crystal cells (liquid crystal display devices 2011 to 2020).
 それぞれを元のバックライトの構成に戻し、輝度ムラの評価を行った。 Each was returned to the original backlight configuration and evaluated for uneven brightness.
 〈ムラ〉
 該当する液晶表示装置を50℃・90%RH24時間湿熱処理し、バックライト点灯2時間後の黒表示での輝度ムラ(強弱)と、画像表示した時の影響を、下記基準に従って、目視で評価した。
 ◎:輝度ムラが見えない
 ○:弱い輝度ムラが見えるが画像表示で気にならない
 △:輝度ムラが強いが、画像表示でほとんど気にならない
 ×:輝度ムラが強く、画像表示でも気になる
 上記評価結果を表10に示す。
<village>
Applicable liquid crystal display device is wet-heated at 50 ° C / 90% RH for 24 hours, and the luminance unevenness (strength) in black display 2 hours after lighting the backlight and the effect of displaying the image are visually evaluated according to the following criteria. did.
◎: Brightness unevenness is not visible ○: Weak brightness unevenness is visible but not noticeable in image display △: Brightness unevenness is strong, but hardly noticeable in image display ×: Brightness unevenness is strong, and even in image display Table 10 shows the evaluation results.
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
 表10に示した結果から明らかなように、本発明の垂直配向型液晶表示装置を製造する垂直配向型液晶表示装置の製造方法としては、前記位相差フィルムA及び位相差フィルムBのうち少なくとも一方の位相差フィルムを有する長尺ロール状偏光板を準備し、前記液晶セルに対してロールtoパネル製法で貼合する態様の製造方法が好ましいことが分かる。 As is apparent from the results shown in Table 10, as a method for manufacturing the vertical alignment type liquid crystal display device for manufacturing the vertical alignment type liquid crystal display device of the present invention, at least one of the retardation film A and the retardation film B is used. It turns out that the manufacturing method of the aspect which prepares the elongate roll-shaped polarizing plate which has this retardation film, and is bonded with the roll to panel manufacturing method with respect to the said liquid crystal cell is preferable.
 1、9 偏光子
 2 位相差フィルムB
 3、7 透明基板
 4 誘電率異方性が負の液晶
 5 カラーフィルタ
 6 薄膜トランジスタ
 8 位相差フィルムA
 10 バックライト
 11、13 偏光板
 12 液晶セル
 20 ロール状偏光板
 21 貼合ロール
 D 貼合ライン進行方向
1, 9 Polarizer 2 Retardation film B
3, 7 Transparent substrate 4 Liquid crystal with negative dielectric anisotropy 5 Color filter 6 Thin film transistor 8 Phase difference film A
DESCRIPTION OF SYMBOLS 10 Backlight 11, 13 Polarizing plate 12 Liquid crystal cell 20 Roll-shaped polarizing plate 21 Bonding roll D Bonding line advancing direction

Claims (5)

  1.  バックライトと、誘電率異方性が負の液晶が二枚の透明基板で挟持されている構成の垂直配向型液晶セルと、当該垂直配向型液晶セルの表示面側及びバックライト側に一枚ずつ偏光板を有する垂直配向型液晶表示装置であって、下記要件(a)~(c)を満たしていることを特徴とする垂直配向型液晶表示装置。
    (a)前記透明基板の一方は、薄膜トランジスタとカラーフィルタを有している。
    (b)前記偏光板は、ポリビニルアルコールを用いた偏光子を挟持する二枚の位相差フィルムを有しており、当該偏光膜の液晶セル側の位相差フィルムの面内遅相軸が当該偏光子の吸収軸と直交している。
    (c)前記位相差フィルムのうち、一方の偏光板のカラーフィルタ側の位相差フィルムを位相差フィルムA、もう一方の偏光板の液晶セル側の位相差フィルムを位相差フィルムBとしたときに、23℃・55%RHにおいて測定波長590nmで測定した、当該位相差フィルムA及びBの、厚さ方向の位相差値Rtを、それぞれ、Rt(A)、Rt(B)とし、かつ面内の位相差値Roに対する当該厚さ方向の位相差値Rtの比の値を、それぞれ、Rt/Ro(A)、Rt/Ro(B)としたとき、下記(式1)~(式5)で表される関係が満たされている。
    (式1):Rt(A)<Rt(B)
    (式2):70nm<Rt(A)<130nm
    (式3):130nm<Rt(B)<200nm
    (式4):20nm<Rt(B)-Rt(A)<130nm
    (式5):Rt/Ro(A)<Rt/Ro(B)
    〔ただし、Ro及びRtは、下記式で定義される。
    式(I):Ro=(n-n)×d(nm)
    式(II):Rt={(n+n)/2-n}×d(nm)
     上記式中、Roは位相差フィルム内の面内位相差値を表し、Rtはフィルム内の厚さ方向の位相差値を表す。また、dは位相差フィルムの厚さを表し、nは位相差フィルムの面内の最大(遅相軸方向)の屈折率を表す。nは位相差フィルム面内で遅相軸に直角な方向(進相軸方向)の屈折率を表し、nは厚さ方向における位相差フィルムの屈折率を表す。なお、測定条件は、上記と同じである。〕
    A vertical alignment type liquid crystal cell having a configuration in which a backlight and a liquid crystal having a negative dielectric anisotropy are sandwiched between two transparent substrates, and one sheet on the display surface side and the backlight side of the vertical alignment type liquid crystal cell A vertical alignment type liquid crystal display device having polarizing plates each satisfying the following requirements (a) to (c):
    (A) One of the transparent substrates has a thin film transistor and a color filter.
    (B) The polarizing plate has two retardation films sandwiching a polarizer using polyvinyl alcohol, and the in-plane slow axis of the retardation film on the liquid crystal cell side of the polarizing film is the polarized light. It is perpendicular to the absorption axis of the child.
    (C) When the retardation film on the color filter side of one polarizing plate is used as the retardation film A and the retardation film on the liquid crystal cell side of the other polarizing plate is used as the retardation film B. The retardation values Rt in the thickness direction of the retardation films A and B measured at a measurement wavelength of 590 nm at 23 ° C. and 55% RH are Rt (A) and Rt (B), respectively, and in-plane When the values of the ratio of the retardation value Rt in the thickness direction to the retardation value Ro of Rt / Ro (A) and Rt / Ro (B) are respectively expressed by the following (Expression 1) to (Expression 5) The relationship represented by is satisfied.
    (Formula 1): Rt (A) <Rt (B)
    (Formula 2): 70 nm <Rt (A) <130 nm
    (Formula 3): 130 nm <Rt (B) <200 nm
    (Formula 4): 20 nm <Rt (B) −Rt (A) <130 nm
    (Formula 5): Rt / Ro (A) <Rt / Ro (B)
    [However, Ro and Rt are defined by the following formulas.
    Formula (I): Ro = (n x −n y ) × d (nm)
    Formula (II): Rt = {(n x + n y ) / 2−n z } × d (nm)
    In the above formula, Ro represents an in-plane retardation value in the retardation film, and Rt represents a retardation value in the thickness direction in the film. Further, d represents the thickness of the retardation film, n x represents a refractive index of the maximum (slow axis direction) in a plane of the retardation film. n y represents a refractive index in the direction perpendicular to the slow axis in the retardation film plane (fast axis direction), n z represents the refractive index of the retardation film in the thickness direction. The measurement conditions are the same as above. ]
  2.  前記位相差フィルムA及びBの面内の位相差値Roを、それぞれ、Ro(A)、Ro(B)としとき、下記(式6)~(式8)で表される関係が満たされていることを特徴とする請求項1に記載の垂直配向型液晶表示装置。
    (式6):Ro(A)<Ro(B)
    (式7):40nm<Ro(A)<90nm
    (式8):45nm<Ro(B)<100nm
    When the in-plane retardation values Ro of the retardation films A and B are respectively Ro (A) and Ro (B), the relationships represented by the following (Expression 6) to (Expression 8) are satisfied. The vertical alignment type liquid crystal display device according to claim 1, wherein:
    (Formula 6): Ro (A) <Ro (B)
    (Formula 7): 40 nm <Ro (A) <90 nm
    (Formula 8): 45 nm <Ro (B) <100 nm
  3.  前記位相差フィルムA又は位相差フィルムBがセルロースエステル系樹脂を含有していることを特徴とする請求項1又は請求項2に記載の垂直配向型液晶表示装置。 The vertical alignment type liquid crystal display device according to claim 1 or 2, wherein the retardation film A or retardation film B contains a cellulose ester resin.
  4.  前記位相差フィルムAの面内位相差値Ro及び厚さ方向の位相差値Rtは、位相差フィルムAの製膜の際に延伸倍率による制御により調整され、かつ前記位相差フィルムBの面内位相差値Ro及び厚さ方向の位相差値Rtは、延伸温度と膜厚の制御により調整されたことを特徴とする請求項1から請求項3までのいずれか一項に記載の垂直配向型液晶表示装置。 The in-plane retardation value Ro and the thickness direction retardation value Rt of the retardation film A are adjusted by the control by the draw ratio when the retardation film A is formed, and the in-plane of the retardation film B The vertical alignment type according to any one of claims 1 to 3, wherein the retardation value Ro and the retardation value Rt in the thickness direction are adjusted by controlling the stretching temperature and the film thickness. Liquid crystal display device.
  5.  請求項1から請求項4までのいずれか一項に記載の垂直配向型液晶表示装置を製造する垂直配向型液晶表示装置の製造方法であって、前記位相差フィルムA及び位相差フィルムBのうち少なくとも一方の位相差フィルムを有する長尺ロール状偏光板を準備し、前記液晶セルに対してロールtoパネル製法で貼合することを特徴とする垂直配向型液晶表示装置の製造方法。 It is a manufacturing method of the vertical alignment type liquid crystal display device which manufactures the vertical alignment type liquid crystal display device as described in any one of Claim 1 to 4, Comprising: Among the said retardation film A and retardation film B A method for producing a vertical alignment type liquid crystal display device, comprising preparing a long roll-shaped polarizing plate having at least one retardation film and laminating the liquid crystal cell by a roll-to-panel manufacturing method.
PCT/JP2011/078866 2011-01-14 2011-12-14 Vertically aligned liquid crystal display device and method for manufacturing same WO2012096088A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180064737.4A CN103314325B (en) 2011-01-14 2011-12-14 Vertical orientating type liquid crystal display device and manufacture method thereof
KR1020137018008A KR101530797B1 (en) 2011-01-14 2011-12-14 Vertically aligned liquid crystal display device and method for manufacturing same
JP2012552650A JP5835230B2 (en) 2011-01-14 2011-12-14 Vertical alignment type liquid crystal display device and manufacturing method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-005544 2011-01-14
JP2011005544 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012096088A1 true WO2012096088A1 (en) 2012-07-19

Family

ID=46507001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078866 WO2012096088A1 (en) 2011-01-14 2011-12-14 Vertically aligned liquid crystal display device and method for manufacturing same

Country Status (4)

Country Link
JP (1) JP5835230B2 (en)
KR (1) KR101530797B1 (en)
CN (1) CN103314325B (en)
WO (1) WO2012096088A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885112A (en) * 2012-12-20 2014-06-25 第一毛织株式会社 Polarizing Plates And Optical Display Apparatuses Including The Polarizing Plates

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105885872B (en) * 2016-04-07 2018-11-23 深圳市华星光电技术有限公司 The production method of liquid crystal material, liquid crystal display panel and liquid crystal display panel
CN109884122B (en) * 2017-12-06 2021-04-20 天津大学 Organic gas detection chip based on rhenium sulfide nano device

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056568A1 (en) * 2006-11-10 2008-05-15 Konica Minolta Opto, Inc. Polarization plate and liquid crystal display device
JP2009053614A (en) * 2007-08-29 2009-03-12 Nitto Denko Corp Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device
JP2009128411A (en) * 2007-11-20 2009-06-11 Nitto Denko Corp Liquid crystal panel and liquid crystal display
JP2009134277A (en) * 2007-11-08 2009-06-18 Nitto Denko Corp Multilayer optical film and method for producing the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3264364B2 (en) * 1997-01-21 2002-03-11 シャープ株式会社 Manufacturing method of liquid crystal display device
KR100462327B1 (en) * 2003-01-28 2004-12-18 주식회사 엘지화학 Vertically aligned liquid crystal display having a bi-axial retardation compensation film
WO2009060925A1 (en) * 2007-11-08 2009-05-14 Nitto Denko Corporation Multilayer optical film and method for producing the same
KR101512710B1 (en) * 2009-01-20 2015-04-16 동우 화인켐 주식회사 Wideviewing vertical align liquid crystal display
JP5668593B2 (en) * 2011-04-25 2015-02-12 コニカミノルタ株式会社 Polarizing plate, manufacturing method thereof, and vertical alignment type liquid crystal display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008056568A1 (en) * 2006-11-10 2008-05-15 Konica Minolta Opto, Inc. Polarization plate and liquid crystal display device
JP2009053614A (en) * 2007-08-29 2009-03-12 Nitto Denko Corp Layered optical film, liquid crystal panel using layered optical film and liquid crystal display device
JP2009134277A (en) * 2007-11-08 2009-06-18 Nitto Denko Corp Multilayer optical film and method for producing the same
JP2009128411A (en) * 2007-11-20 2009-06-11 Nitto Denko Corp Liquid crystal panel and liquid crystal display

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103885112A (en) * 2012-12-20 2014-06-25 第一毛织株式会社 Polarizing Plates And Optical Display Apparatuses Including The Polarizing Plates
US10539717B2 (en) 2012-12-20 2020-01-21 Samsung Sdi Co., Ltd. Polarizing plates and optical display apparatuses including the polarizing plates

Also Published As

Publication number Publication date
JPWO2012096088A1 (en) 2014-06-09
JP5835230B2 (en) 2015-12-24
CN103314325A (en) 2013-09-18
CN103314325B (en) 2015-09-09
KR101530797B1 (en) 2015-06-22
KR20130106420A (en) 2013-09-27

Similar Documents

Publication Publication Date Title
JP5668593B2 (en) Polarizing plate, manufacturing method thereof, and vertical alignment type liquid crystal display device
TWI538944B (en) A cellulose ester film, a method for producing the same, and a polarizing plate
JP6428621B2 (en) Cellulose acylate film, polarizing plate and liquid crystal display device
JP5704173B2 (en) Optical display device manufacturing system and method
JP6493213B2 (en) Retardation film, polarizing plate and liquid crystal display device
JP5835230B2 (en) Vertical alignment type liquid crystal display device and manufacturing method thereof
JP2010085573A (en) Optical compensation film, method for manufacturing the same, and liquid crystal display device
JP5304722B2 (en) Polarizing plate protective film and polarizing plate using the same
JP2013137439A (en) Liquid crystal display device
JP2007256637A (en) Retardation film and manufacturing method thereof
JP5626133B2 (en) VA liquid crystal display device
JP5655706B2 (en) Liquid crystal display
JP2011232428A (en) Inclined retardation film and liquid crystal display device
WO2016111058A1 (en) Vertical alignment liquid crystal display device
JP5626134B2 (en) VA liquid crystal display device
JP2011248042A (en) Liquid crystal display device and manufacturing method thereof
WO2012114762A1 (en) Vertical alignment liquid-crystal display device and manufacturing method thereof
WO2008050525A1 (en) Retardation film
JP2008307730A (en) Method for manufacturing optical film, optical film, polarizing plate and liquid crystal display
JP2012198280A (en) Vertical alignment type liquid crystal display and method for manufacturing the same
WO2011093222A1 (en) Optical control film and manufacturing method therefor
JP5821850B2 (en) Manufacturing system of polarizing plate long roll and optical display device
WO2011148504A1 (en) Light diffusing film, method for manufacturing same, and polarizing plate, roll-shaped polarizing plate, and liquid crystal display device which employ same
JP5531929B2 (en) Light scattering film, light scattering polarizing plate, and liquid crystal display device
JP2011232429A (en) Method for manufacturing optical film, and polarizer and liquid crystal display which are provided with the optical film

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855564

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012552650

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137018008

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11855564

Country of ref document: EP

Kind code of ref document: A1