WO2012114762A1 - Vertical alignment liquid-crystal display device and manufacturing method thereof - Google Patents

Vertical alignment liquid-crystal display device and manufacturing method thereof Download PDF

Info

Publication number
WO2012114762A1
WO2012114762A1 PCT/JP2012/001250 JP2012001250W WO2012114762A1 WO 2012114762 A1 WO2012114762 A1 WO 2012114762A1 JP 2012001250 W JP2012001250 W JP 2012001250W WO 2012114762 A1 WO2012114762 A1 WO 2012114762A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid crystal
film
polarizer
vertical alignment
protective film
Prior art date
Application number
PCT/JP2012/001250
Other languages
French (fr)
Japanese (ja)
Inventor
梅田 博紀
Original Assignee
コニカミノルタオプト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタオプト株式会社 filed Critical コニカミノルタオプト株式会社
Publication of WO2012114762A1 publication Critical patent/WO2012114762A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation

Definitions

  • the present invention relates to a vertical alignment type liquid crystal display device that achieves an improvement in the use efficiency of a backlight and an improvement in front contrast leading to power saving, a small color shift, and a wide viewing angle, and a manufacturing method thereof.
  • liquid crystal display device is advantageous in that it is thinner and lighter than a CRT (Cathode Ray Tube), can be driven at a low voltage, and consumes less power. Therefore, liquid crystal display devices are used in various electronic devices such as televisions, notebook PCs (personal computers), desktop PCs, PDAs (mobile terminals), and mobile phones.
  • CTR Cathode Ray Tube
  • a vertical alignment type liquid crystal display device (also referred to as a “VA (vertical alignment) type”) liquid crystal display device using a vertical alignment type liquid crystal (liquid crystal having negative dielectric anisotropy) has been compared with a conventional TN type liquid crystal display device. Wide viewing angle due to its excellent viewing angle characteristics.
  • a method of suppressing depolarization by a protective film disposed between a polarizer (also referred to as a “polarizing film”) and a liquid crystal cell, such as a retardation film and a viewing angle widening film is used.
  • a polarizer also referred to as a “polarizing film”
  • a liquid crystal cell such as a retardation film and a viewing angle widening film
  • Patent Document 1 and Non-Patent Document 1 disclose that the front contrast is increased by the configuration of the retardation film. Although these methods suggest the possibility that the front contrast can be maintained even if the transmittance of the polarizing plate is increased, the front contrast improving means using these methods causes a very large color shift. Originally, the vertical alignment type liquid crystal display device has a small color shift, but with this configuration, the goodness inherent in the vertical alignment type liquid crystal display device is lost.
  • the use efficiency of the backlight is also effective for realizing power saving. Therefore, for example, by selectively reflecting the polarized light by the multilayer thin film structure, the polarized light is transmitted more efficiently on the backlight side than the polarizing plate, thereby preventing the loss of light and brightening the liquid crystal screen without disturbing the viewing angle.
  • the technology to do is known. However, in this case, the number of members increases, and the direction is opposite to the trend of thinning the liquid crystal TV.
  • a polarizing plate manufactured in a rolled state is referred to as a “rolled polarizing plate”, and a piece cut from the polarizing plate to a predetermined dimension is referred to as a “single sheet polarizing plate”.
  • the present invention has been made in view of the above circumstances, and its solution is to achieve an improvement in front contrast and transmittance (brightness) that lead to power savings, and to reduce the color shift and reduce the viewing angle.
  • a wide vertical alignment type liquid crystal display device and a manufacturing method thereof are provided.
  • a vertical alignment type liquid crystal display device having a vertical alignment type liquid crystal cell, a first polarizing plate and a second polarizing plate sandwiching the vertical alignment type liquid crystal cell, and a backlight.
  • the type liquid crystal cell includes two transparent substrates and a liquid crystal layer disposed between the two transparent substrates and including liquid crystal molecules, and a color filter is disposed on one of the two transparent substrates.
  • the first polarizing plate is disposed on the backlight side surface of the vertical alignment type liquid crystal cell, and includes a first polarizer containing polyvinyl alcohol, and the backlight side surface of the first polarizer.
  • a protective film F1 disposed on the surface of the first polarizer and a protective film F2 disposed on the surface of the first polarizer on the vertical alignment liquid crystal cell side, and the second polarizing plate includes the vertical alignment liquid crystal Placed on the visible side of the cell A second polarizer containing nyl alcohol, a protective film F3 disposed on the surface of the second polarizer on the side of the vertically aligned liquid crystal cell, and a surface on the viewing side of the second polarizer.
  • a protective film F4 the absorption axis of the first polarizer and the in-plane slow axis of the protective film F2 are orthogonal, and the absorption axis of the second polarizer and the protective film F3
  • An in-plane slow axis is orthogonal, and of the protective films F2 or F3, the one disposed on the transparent substrate side where the color filter is provided is the retardation film A, and the color filter is provided.
  • the one arranged on the transparent substrate side that is not formed is a retardation film B, and the retardation value Rt in the thickness direction of the retardation film A measured at a measurement wavelength of 590 nm at 23 ° C. and 55% RH is obtained.
  • Rt (A) in-plane direction
  • the retardation value Ro is set to Ro (A), and the retardation film B measured at a measurement wavelength of 590 nm at 23 ° C. and 55% RH has a thickness direction retardation value Rt of Rt (B).
  • nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the plane of the retardation film; ny is in the fast axis direction y orthogonal to the slow axis in the plane of the retardation film.
  • nz represents the refractive index in the thickness direction z of the retardation film
  • d represents the thickness of the retardation film
  • the refractive index in the direction parallel to the transmission axis of the first polarizer on the surface on the backlight side of the protective film F1 is smaller than the average refractive index of the protective film F2, and the average refractive index of the protective film F3.
  • Vertical alignment type liquid crystal display device smaller than the rate.
  • the refractive index in the direction parallel to the transmission axis of the second polarizer on the second polarizer side surface of the protective film F1 is np, and the second polarized light on the backlight side surface is np.
  • the protective film F2 is the retardation film A, and the retardation value Ro (A) in the in-plane direction of the retardation film A further satisfies the following formula (6): [1] to [ 3].
  • the vertical alignment type liquid crystal display device according to any one of [3].
  • a vertical alignment type liquid crystal display device that achieves an improvement in front contrast and transmittance (brightness) that leads to power saving, a small color shift, and a wide viewing angle by the above means of the present invention, and a method for manufacturing the same. Can be provided.
  • FIG. 1 is a conceptual diagram showing an example of a configuration of a vertical alignment type liquid crystal display device according to the present invention.
  • the conceptual diagram which shows the other example of a structure of the vertical alignment type liquid crystal display device based on this invention.
  • is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
  • the vertical alignment type liquid crystal display device of the present invention has a vertical alignment type liquid crystal cell, a first polarizing plate and a second polarizing plate sandwiching the vertical alignment type liquid crystal cell, and a backlight.
  • the vertical alignment type liquid crystal display device of the present invention preferably satisfies all the requirements a, b and c described below, and more preferably further satisfies the requirement d.
  • a vertical alignment type liquid crystal cell (also simply referred to as “liquid crystal cell”) includes two transparent substrates and a liquid crystal layer that is disposed between them and includes liquid crystal molecules.
  • a thin film transistor and a pixel electrode connected to the thin film transistor are arranged on one of the two transparent substrates.
  • the counter electrode may be disposed on the one transparent substrate, or may be disposed on the other transparent substrate, and may preferably be disposed on the one transparent substrate.
  • the transparent substrate may be a conventionally known transparent glass substrate or resin substrate.
  • the color filter is disposed on one of the two transparent substrates, and is disposed on the one transparent substrate in order to increase the aperture ratio of the liquid crystal cell; that is, on one of the two transparent substrates, a thin film transistor ( TFT) and a color filter are preferably arranged.
  • TFT thin film transistor
  • the vertical alignment type liquid crystal cell of the present invention preferably employs a color filter on array (hereinafter referred to as “COA”) system.
  • COA color filter on array
  • the COA method includes, for example, a color filter integrated drive substrate in which a color filter is directly formed on a drive side substrate of a liquid crystal cell, and a counter electrode (conductive layer) as described in JP-A-10-206888. And a counter substrate with a spacer interposed therebetween, and a liquid crystal material is sealed in the gap, and a color filter is formed on the reflective electrode to provide a bonding margin in high definition.
  • the yield and the aperture ratio can be improved by widening. Further, the configuration of the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2010-44362 is also helpful.
  • the liquid crystal molecules contained in the liquid crystal layer are preferably liquid crystal molecules having negative dielectric anisotropy, and more preferably nematic liquid crystals having negative dielectric anisotropy.
  • nematic liquid crystal having negative dielectric anisotropy conventionally known ones described in JP-A-2004-204133, JP-A-2004-250668, JP-A-2005-047980, etc. should be used. Can do.
  • the thickness d of the liquid crystal layer is not particularly limited, but can be set to about 3.5 ⁇ m, for example, when a liquid crystal having the above characteristics is used.
  • the liquid crystal layer may further include a chiral material generally used in a TN mode liquid crystal display device in order to reduce alignment failure of liquid crystal molecules while minimizing a decrease in dynamic response characteristics of the display device. Good.
  • the vertical alignment type liquid crystal cell has a multi-domain structure, it is advantageous for adjusting the alignment of the liquid crystal molecules in the boundary region between the domains.
  • the “multi-domain structure” refers to a structure in which one pixel of a liquid crystal display device is divided into a plurality of regions.
  • a vertical alignment type (VA type) liquid crystal display device the liquid crystal molecules are tilted during white display, so the birefringence of the liquid crystal molecules when viewed from an oblique direction differs between the tilt direction and the opposite direction.
  • VA type vertical alignment type
  • a multi-domain structure is preferable because viewing angle characteristics of luminance and color tone are improved.
  • each pixel is composed of two or more regions having different initial alignment states of liquid crystal molecules and averaged, whereby luminance and color tone bias depending on the viewing angle can be reduced. Further, the same effect can be obtained even if each pixel is constituted by two or more different regions where the orientation direction of the liquid crystal molecules continuously changes in a voltage application state.
  • the number of divisions may be increased.
  • a substantially uniform viewing angle can be obtained by using four or more divisions.
  • the polarizing plate absorption axis can be set at an arbitrary angle when dividing into eight.
  • the liquid crystal molecules are aligned so that their long axes are substantially perpendicular to the surface of the transparent substrate when no voltage is applied between the pixel electrode and the counter electrode.
  • the liquid crystal molecules are aligned so that the major axis thereof is substantially horizontal to the surface of the transparent substrate.
  • Such a vertically aligned liquid crystal cell can be obtained by enclosing a nematic liquid crystal having negative dielectric anisotropy in a space surrounded by two transparent substrates.
  • the first polarizing plate is disposed on the backlight side surface of the vertical alignment type liquid crystal cell, the first polarizer, and the protective film F1 disposed on the backlight side surface of the first polarizer. And a protective film F2 disposed on the liquid crystal cell side surface of the first polarizer.
  • the second polarizing plate is disposed on the viewing side surface of the vertical alignment type liquid crystal cell, the second polarizer, and the protective film F3 disposed on the liquid crystal cell side surface of the second polarizer, And a protective film F4 disposed on the viewing side surface of the second polarizer.
  • the protective films F2 and F3 are preferably retardation films.
  • the absorption axis of the first polarizer and the in-plane slow axis of the protective film F2 are orthogonal to each other; the absorption axis of the second polarizer and the in-plane of the protection film F3 (retardation film) It is orthogonal to the slow axis (requirement a).
  • FIG. 1 is a conceptual diagram showing an example of the configuration of a vertical alignment type liquid crystal display device according to the present invention.
  • the vertical alignment type liquid crystal display device 10 includes a vertical alignment type liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 sandwiching the vertical alignment type liquid crystal cell 30, and a backlight 90. .
  • the vertical alignment type liquid crystal cell 30 includes a first transparent substrate 31, a second transparent substrate 33, and a liquid crystal layer 35 having liquid crystal molecules 34 disposed therebetween.
  • a thin film transistor 37, a pixel electrode (not shown) connected to the thin film transistor 37, and a color filter 39 are disposed on the first transparent substrate 31. That is, the vertical alignment type liquid crystal cell 30 has a COA (color filter on array) structure.
  • the first polarizing plate 50 includes a first polarizer 52, a protective film 54 (F1) disposed on the backlight side surface, and a protective film 56 (F2) disposed on the liquid crystal cell side surface.
  • the second polarizing plate 70 includes a second polarizer 72, a protective film 74 (F3) disposed on the surface on the liquid crystal cell side, and a protective film 76 (F4) disposed on the surface on the viewing side.
  • the protective films 56 (F2) and 74 (F3) are preferably retardation films.
  • FIG. 2 is a conceptual diagram showing another example of the configuration of the vertical alignment type liquid crystal display device according to the present invention.
  • the vertical alignment type liquid crystal display device 10 ′ can be configured in the same manner as in FIG. 1 except that the vertical alignment type liquid crystal cell 30 is replaced with the vertical alignment type liquid crystal cell 30 ′.
  • the vertical alignment type liquid crystal cell 30 ′ has a first transparent substrate 31, a second transparent substrate 33, and a liquid crystal layer 35 having liquid crystal molecules 34 disposed therebetween.
  • a thin film transistor 37 and a pixel electrode (not shown) connected to the thin film transistor 37 are disposed on the first transparent substrate 31; a color filter 39 is disposed on the second transparent substrate 33.
  • the one disposed on the transparent substrate side (color filter side) provided with the color filter is referred to as a retardation film A; the transparent substrate side (not provided with the color filter) ( The one disposed on the side opposite to the color filter is referred to as a retardation film B.
  • the protective film F2 becomes the retardation film A; the protective film F3 becomes the retardation film B.
  • the protective film F3 becomes the retardation film A; the protective film F2 becomes the retardation film B.
  • the retardation value of retardation film A and B satisfy
  • Protective films F2 and F3 (retardation films A and B) Retardation values Rt in the thickness direction of the retardation films A and B measured at 23 ° C. and 55% RH at a measurement wavelength of 590 nm are respectively Rt ( A) and Rt (B); the in-plane retardation value Ro is assumed to be Ro (A) and Ro (B), respectively; the in-plane retardation value Ro of the thickness direction retardation value Rt.
  • the ratio to is Rt / Ro (A) and Rt / Ro (B), respectively, all the following formulas (1) to (5) are satisfied (requirement b).
  • Ro and Rt are defined by the following formula.
  • Formula (I): Ro (nx ⁇ ny) ⁇ d (nm)
  • Formula (II): Rt ⁇ (nx + ny) / 2 ⁇ nz ⁇ ⁇ d (nm)
  • nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the plane of the retardation film
  • ny represents the refractive index in the fast axis direction y perpendicular to the slow axis in the plane of the retardation film
  • nz represents the refractive index in the thickness direction z of the retardation film
  • d represents the thickness of the retardation film.
  • the measurement conditions are the same as above. ]
  • a thin film transistor and a color filter are disposed on one of the two transparent substrates, and the one transparent substrate is disposed on the backlight side (the embodiment in FIG. 1). That is, when the protective film F2 on the liquid crystal cell side of the polarizing plate on the backlight side (first polarizing plate) is the retardation film A, the retardation value Ro (A) in the in-plane direction of the retardation film A is It is preferable that the relationship represented by the following formula (6) is satisfied.
  • Formula (6) 40 nm ⁇ Ro (A) ⁇ 90 nm
  • the arrangement of the retardation film A or B according to the present invention with respect to the color filter of the liquid crystal cell is very important.
  • the retardation Rt (A) in the thickness direction of the retardation film A on the color filter side is equal to the retardation Rt in the thickness direction of the retardation film B on the opposite side to the color filter. It is necessary to make it relatively smaller than (B).
  • the difference between Rt (A) of the retardation film A and Rt (B) of the retardation film B (Rt (B) ⁇ Rt (A)) is more than 20 nm and less than 130 nm, more preferably more than 30 nm and more than 120 nm. It is smaller, more preferably larger than 35 nm and smaller than 110 nm. If this value is small, the front contrast of the liquid crystal display device cannot be improved, and if it is too large, the color shift of the liquid crystal display device becomes large. Especially, the color mixture when viewed from the periphery is remarkable, and the display quality of the liquid crystal display device is high. Is significantly reduced.
  • the Rt (A) of the retardation film A on the color filter side needs to be larger than 70 nm and smaller than 130 nm, more preferably. Is from 80 nm to 120 nm, more preferably from 85 nm to 115 nm.
  • the Rt (B) of the retardation film B on the side opposite to the color filter needs to be larger than 130 nm and smaller than 200 nm, preferably 140 nm or more and 185 nm or less, and more preferably 145 nm or more and 170 nm or less.
  • phase differences Ro and Rt of the phase difference films A and B affect the viewing angle of the liquid crystal display device. When each phase difference falls within a desired range, it is possible to obtain viewing angle characteristics that are closer to the target in the vertical and horizontal directions.
  • Rt / Ro (A) of the retardation film A on the color filter side is changed to Rt / Ro (B) of the retardation film B on the opposite side of the color filter.
  • Rt / Ro (A) of the phase difference film A on the color filter side of the liquid crystal cell is larger than the Rt / Ro (B) of the phase difference film B on the opposite side of the color filter, the color shift increases. The display quality of the liquid crystal display device is significantly reduced.
  • the Ro (A) of the retardation film A on the color filter side is more than the Ro (B) of the retardation film B on the opposite side to the color filter. Is preferably small.
  • the Ro (A) of the retardation film A on the color filter side is 40 nm ⁇ Ro (A) ⁇ 90 nm, and the Ro (B) of the retardation film B on the side opposite to the color filter is 45 ⁇ Ro (B) ⁇ 100 nm.
  • the Ro (B) of the retardation film B on the side opposite to the color filter is 45 nm ⁇ Ro (B) ⁇ 100 nm.
  • the viewing angle can be sufficiently widened, and the Ro of the retardation film A on the color filter side.
  • (A) relatively smaller than Ro (B) of the retardation film B on the side opposite to the color filter color shift can be suppressed.
  • the angle ⁇ 1 (orientation angle) formed by the in-plane slow axis of the retardation films A and B and the width direction of the film is preferably ⁇ 1 ° or more and + 1 ° or less, more preferably ⁇ 0.5 or more and +0. It is 5 ° or less, more preferably ⁇ 0.1 ° or more and + 0.1 ° or less.
  • the orientation angle ⁇ 1 of the retardation films A and B can be measured using an automatic birefringence meter KOBRA-WX (Oji Scientific Instruments). The orientation angle can be adjusted depending on the stretching conditions.
  • the retardation films A and B used on both sides of the liquid crystal cell in the liquid crystal display device of the present invention may be manufactured by various film forming methods, and it is preferable to control the phase difference during film formation.
  • the retardation films A and B used in the liquid crystal display device of the present invention are a cellulose ester film, a polyester film, a cycloolefin film, a polycarbonate film, a polyolefin film, a polyacryl film, a mixed resin film of an acrylic resin and a cellulose ester resin, and the like. It may be.
  • Examples of the retardation film A include stretched polymer films mainly composed of polycarbonate, cellulose ester resin, polyethylene, and polypropylene. Particularly preferred is a cellulose ester resin.
  • the retardation control method for these retardation films may include changing the degree of ester substitution or substituent, changing the solvent, adding a retardation control material, adjusting stretching conditions, and the like. it can.
  • the retardation control of the retardation film A on the color filter side used in the liquid crystal display device of the present invention is performed mainly by the stretching magnification, and the retardation control of the retardation film B on the side opposite to the color filter is performed by adjusting the stretching temperature and It is preferable to carry out by controlling the film thickness.
  • the retardation films A and B in which the retardation is controlled by this means it is often possible to alleviate the warpage of a liquid crystal panel having a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
  • the distortion remaining in the film differs depending on the phase difference control means. That is, the phase difference film A on the color filter side, the phase difference of which is controlled mainly by the stretching ratio, and the phase difference film B, the phase difference of which is controlled mainly by the stretching temperature and the film thickness control, on the side opposite to the color filter.
  • the remaining distortion on the film is different.
  • the retardation films A and B having different strains remaining in the film are arranged on both sides of the liquid crystal cell so as to cancel the warpage of the liquid crystal cell, so that the warpage of the liquid crystal cell is not alleviated. I guess.
  • composition of the retardation film used in the liquid crystal display device of the present invention will be described later.
  • Refractive index of protective film F1 The refractive index in the direction parallel to the transmission axis of the first polarizer on the backlight side surface of the protective film F1 constituting the first polarizing plate is the protective film F2 (first polarizer). It is also characterized by being smaller than the average refractive index of the retardation film on the liquid crystal cell side) and smaller than the average refractive index of the protective film F3 (the retardation film on the liquid crystal cell side of the second polarizer). c).
  • Average refractive index refers to the refractive index of the protective film in the three-axis direction (the x-axis direction in the film plane, the y-axis direction perpendicular to the film plane, and the z-axis direction parallel to the normal to the film plane) at a predetermined wavelength. And the refractive index calculated as the average value thereof.
  • the refractive index in the direction parallel to the transmission axis of the first polarizer on the backlight side surface of the protective film F1 is made smaller than the average refractive index of the protective film F2 and the protective film F3 (retardation films A and B).
  • the transmittance (white luminance) of the vertical alignment type liquid crystal display device can be increased.
  • the first polarizer transmits on the first polarizer side surface of the protective film F1 (the first polarizer backlight side protective film) constituting the first polarizing plate.
  • the refractive index in the direction parallel to the axis is np and the refractive index in the direction parallel to the transmission axis of the first polarizer on the backlight side surface is na, it is preferable that np is larger than na (requirement d). .
  • the refractive index in the direction parallel to the transmission axis of the first polarizer of the protective film F1 continuously changes in the thickness direction of the film.
  • the refractive index is changing continuously in the thickness direction of a film.
  • the film is sliced in parallel with the MD direction (slow axis direction) or TD direction (fast axis direction) so that the slice plane (cut plane) is inclined with respect to the film plane. obtain.
  • the length in the direction parallel to the slow axis of the slice plane (cut plane) obtained by cutting parallel to the TD direction (fast axis direction) is set to 5 mm.
  • the obtained sample film is placed on a sample stage of a lens reflectometer (for example, Olympus lens reflectometer USPM-RUIII).
  • the reflectance in the front direction of the slide surface is measured while sliding the sample stage in a direction corresponding to the thickness direction of the film (direction perpendicular to the MD direction or TD direction) one field of view.
  • the reflectance distribution in the thickness direction of the slide surface of the sample film can be measured. Thereby, it can confirm that the average refractive index in a film surface is changing continuously in the thickness direction.
  • the refractive index na of the surface of the protective film F1 on the backlight side (surface opposite to the first polarizer) in the direction parallel to the transmission axis of the first polarizer is 1.350 to It is preferable to be within the range of 1.480.
  • a method for reducing the refractive index of the protective film F1 a method using a resin film substrate having a low refractive index and a method of mixing an additive having a low refractive index are known, but there are various other methods. It can be carried out.
  • the refractive index can be lowered by providing a gap having a diameter sufficiently smaller than the wavelength of visible light in the film.
  • This void can be provided by mixing bubbles when kneading melts and kneading bubbles, or by adjusting the drying conditions to form bubbles when forming solution films. Alternatively, it can also be obtained by dispersing hollow fine particles in the form of primary particles.
  • bubbles are generated by solution casting, if bubbles are generated while the web is soft, bubbles are likely to be generated, but the bubbles are likely to become large, causing scattering and often causing deterioration of the LCD quality. . Therefore, it is preferable to generate bubbles by performing one or both of heating and depressurization of the film after reducing the residual solvent amount to 2% or less, which is a state in which the film has the required hardness.
  • the film is preferably heated at a temperature 20 ° C. or more higher than the glass transition temperature of the film, and the decompression treatment is preferably performed at a pressure lower than 0.7 atm.
  • a method for generating bubbles there is a method using a foaming agent. The generation of bubbles by the foaming agent is difficult to control the diameter of the bubbles, but the control by heating and decompression is preferable as in the case of generating bubbles by the solvent.
  • the refractive index can be lowered by making the plasticizer on one side of the film a high concentration and breaking the film orientation more actively. It is thought that it becomes.
  • the transmittance of the above-described vertical alignment type liquid crystal display device can be increased by, for example, 0.1%, which directly leads to power saving and longer life of the LCD. This effect is very large.
  • Protective film F1 or F4 When the above-described retardation film A or B is provided on one surface of a polarizer (first polarizer or second polarizer), the other surface of the polarizer is separately provided. A retardation film or a protective film may be used.
  • a protective film for example, commercially available cellulose ester films (for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4UE, KC4FR, KC4FR-4, KC4HR-1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used.
  • the protective film formed into a film by the method mentioned later can also be used.
  • a polarizer which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass.
  • a typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol.
  • iodine is dyed on a system film and one in which dichroic dye is dyed.
  • the polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
  • the polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the protective film used in the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
  • a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 ⁇ 10 4 to 1.0 ⁇ 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
  • urethane adhesives examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types
  • anaerobic pressure-sensitive adhesives such as ester-based methacrylate types and oxidized polyether methacrylates, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-pack type instantaneous pressure-sensitive adhesives.
  • the above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
  • the pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or may be an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solventless type.
  • concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
  • the protective films F1 to F4 (including the retardation films A and B) used in the present invention preferably contain a thermoplastic resin.
  • the “thermoplastic resin” refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into a desired shape.
  • thermoplastic resins include cellulose esters, polyethylene (PE), high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene. (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin (PMMA), etc., soluble in solvents It is preferable to dissolve the material appropriately and treat it by the method of the present invention.
  • PA polyamide
  • nylon polyacetal
  • PC polycarbonate
  • m-PPE modified polyphenylene ether
  • PBT polybutylene terephthalate
  • PET Polyethylene terephthalate
  • GF-PET glass fiber reinforced polyethylene terephthalate
  • COP cyclic polyolefin
  • polyphenylene sulfide PPS
  • polytetrafluoroethylene PTFE
  • polysulfone polyethersulfone
  • amorphous polyarylate liquid crystal polymer
  • polyetherether A ketone thermoplastic polyimide (PI)
  • PAI polyamideimide
  • the thickness of the protective film it is preferable to select an appropriate thickness according to the application.
  • the upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 150 ⁇ m from the viewpoint of applicability, foaming, solvent drying, and the like.
  • the protective film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
  • Cellulose ester resins that can be used in the protective film used in the present invention are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and It is preferably at least one selected from cellulose phthalates.
  • particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
  • substitution degree of the mixed fatty acid ester when an acyl group having 2 to 4 carbon atoms is used as a substituent, the substitution degree of the acetyl group is X, and the substitution degree of the propionyl group or butyryl group is Y. It is preferable that it is a cellulose resin containing the cellulose ester which satisfy
  • the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0, The cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
  • the raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable.
  • a cotton linter is preferably used from the viewpoint of peelability during film formation.
  • the cellulose ester made from these can be mixed suitably or can be used independently.
  • the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
  • cellulose ester resin 1 g is added to 20 ml of pure water (electric conductivity 0.1 ⁇ S / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. It is preferable that the electric conductivity is 1 to 100 ⁇ S / cm.
  • ⁇ Sugar ester compound> it is also preferable to include an ester compound in which at least one pyranose structure or furanose structure is one or more and twelve or less and all or part of the OH groups of the structure are esterified together with the cellulose ester resin.
  • the proportion of esterification is preferably 70% or more of the OH groups present in the pyranose structure or furanose structure.
  • ester compounds used in the present invention include the following, but the present invention is not limited to these.
  • Glucose galactose, mannose, fructose, xylose, or arabinose
  • lactose sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose Can be mentioned.
  • gentiobiose gentiotriose
  • gentiotetraose gentiotetraose
  • xylotriose galactosyl sucrose
  • sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
  • the monocarboxylic acid used for esterifying all or part of the OH group in the pyranose structure or furanose structure is not particularly limited, and is a known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic A monocarboxylic acid or the like can be used.
  • the carboxylic acid used may be one kind or a mixture of two or more kinds.
  • Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and oc
  • Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
  • aromatic monocarboxylic acids examples include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene.
  • aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof.
  • Oligosaccharide ester compounds can be applied as compounds having 1 to 12 of at least one of the pyranose structure or furanose structure according to the present invention.
  • Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc.
  • examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltooligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylooligos. Sugar.
  • the said ester compound is a compound which condensed 1 or more and 12 or less of at least 1 type of the pyranose structure or furanose structure represented with the following general formula (A).
  • R 11 to R 15 and R 21 to R 25 each represents an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n each represents an integer of 0 to 12, and m + n represents an integer of 1 to 12.
  • R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom.
  • the benzoyl group may further have a substituent, for example, an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group. Further, these alkyl group, alkenyl group, and phenyl group may have a substituent. Good. Oligosaccharides can also be produced in the same manner as the ester compound according to the present invention.
  • the protective film used in the present invention preferably contains the aforementioned sugar ester compound in an amount of 0.5 to 30% by mass of the protective film in order to stabilize the display quality by suppressing the fluctuation of the retardation value.
  • the content is preferably 5 to 30% by mass.
  • the protective film used in the present invention may contain an acrylic resin.
  • Acrylic resin also includes methacrylic resin.
  • the resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
  • Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid.
  • Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
  • methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate and the like are preferable, and methyl acrylate and n-butyl acrylate are particularly preferable.
  • acrylic resins can also be used.
  • Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
  • the protective film used in the present invention may contain a cyclic olefin resin.
  • the cyclic olefin resin include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof.
  • norbornene-based resins can be suitably used because of their good transparency and moldability.
  • Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure.
  • a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
  • bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring).
  • examples of the substituent include an alkyl group, an alkylene group, and a polar group.
  • these substituents may be the same or different and a plurality may be bonded to the ring.
  • Monomers having a norbornene structure can be used singly or in combination of two or more.
  • Examples of the polar group include heteroatoms or atomic groups having heteroatoms.
  • Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom.
  • Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
  • monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
  • a ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
  • Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, ⁇ -olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, ⁇ -olefin is preferable, and ethylene is more preferable.
  • An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
  • a known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
  • X bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.12,5] decane-7, 9-diyl-ethylene structure
  • the content of these repeating units is 90% by mass or more with respect to the entire repeating units of the norbornene resin
  • the content ratio of X and the content ratio of Y The ratio is preferably 100: 0 to 40:60 in terms of mass ratio of X: Y.
  • the molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use.
  • Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • Mw weight average molecular weight measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000.
  • the glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretchability, it is preferably in the range of 130 to 160 ° C, more preferably 135 to 150 ° C.
  • the molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is 1.2 to 3.5, preferably 1.5 to 3.0, from the viewpoint of relaxation time, productivity and the like. More preferably, it is 1.8 to 2.7.
  • the cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, more preferably 7 ⁇ 10 ⁇ 12 Pa ⁇ 1 or less, and more preferably 4 ⁇ 10 12 It is particularly preferably ⁇ 12 Pa ⁇ 1 or less.
  • the cyclic olefin resin does not substantially contain particles.
  • substantially free of particles means that even if particles are added to a film made of a cyclic olefin resin, the amount of increase in haze from the non-added state is allowed to be in the range of 0.05% or less. Means you can.
  • the alicyclic polyolefin resin lacks affinity with many organic particles and inorganic particles. Therefore, when a cyclic olefin resin film to which particles exceeding the above range are added is stretched, voids are easily generated, and as a result, There is a risk that a significant increase in haze may occur.
  • the protective film used in the present invention may contain various known polycarbonate resins.
  • a polymer material collectively referred to as polycarbonate is a generic term for a polymer material in which a polycondensation reaction is used in its synthesis method and the main chain is linked by a carbonic acid bond.
  • Phosgene, diphenyl carbonate and the like obtained by polycondensation.
  • an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected.
  • bisphenol derivatives should be selected as appropriate.
  • an aromatic polycarbonate copolymer can be constituted.
  • bisphenol-A bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
  • aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components.
  • a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved.
  • the present invention is also effective for coalescence.
  • the viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000.
  • a viscosity average molecular weight of 20,000 to 120,000 is particularly preferred. If a resin having a viscosity average molecular weight lower than 10,000 is used, the mechanical strength of the resulting film may be insufficient, and if it has a high molecular weight of 400000 or more, the viscosity of the dope becomes too large, causing problems in handling.
  • the viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
  • the glass transition temperature of the aromatic polycarbonate used in the present invention is preferably 200 ° C. or higher for obtaining a highly heat-resistant film, and more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component.
  • the glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetric analyzer). For example, the baseline is unevenly determined by a temperature rising condition of 10 ° C./min with RDC220 manufactured by Seiko Instruments Inc. It is the temperature that begins to do.
  • the polyester resin used in the present invention is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of the dicarboxylic acid structural unit (the structural unit derived from the dicarboxylic acid) is derived from the aromatic dicarboxylic acid, and the diol structure. More than 70% of the units (constituent units derived from the diol) are derived from the aliphatic diol.
  • the proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
  • the proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more. Two or more polyester resins may be used in combination.
  • aromatic dicarboxylic acid examples include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and the like, 4,4'-biphenyldicarboxylic acid 3,4'-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
  • polyester resin aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
  • Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
  • polyester resin monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
  • a known esterification method or transesterification method can be applied to the production of the polyester resin.
  • the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
  • Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
  • polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
  • the protective film used in the present invention can contain various compounds as additives depending on the purpose. For example, it contains retardation increasing agent, plasticizer, antioxidant, acid scavenger, light stabilizer, UV absorber, optical anisotropy control agent, matting agent, antistatic agent, release agent, etc. Can be made.
  • the retardation increasing agent is preferably an aromatic compound having at least two aromatic rings.
  • the aromatic compound is preferably used in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin. And it is preferable to use in 0.05-15 mass parts, and it is still more preferable to use in 0.1-10 mass parts. Two or more aromatic compounds may be used in combination.
  • the aromatic ring of the aromatic compound includes an aromatic hetero ring in addition to the aromatic hydrocarbon ring.
  • the aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring).
  • the aromatic heterocycle is generally an unsaturated heterocycle.
  • the aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring.
  • Aromatic heterocycles generally have the most double bonds.
  • a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable.
  • aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring. Details of these are described in JP-A No. 2004-109410, JP-A No. 2003-344655, JP-A No. 2000-275434, JP-A No. 2000-1111914, JP-A No. 12-275434, and the like.
  • ⁇ Matting agent> In the protective film used in the present invention, it is also preferable to add fine particles as a matting agent in order to prevent the produced film from being scratched or having poor transportability when handled.
  • examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
  • the average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 ⁇ m, and may be contained as primary particles without being aggregated if the particles have an average particle size of 80 to 400 nm. preferable.
  • the content of these fine particles in the film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of a protective film (optical film) having a multilayer structure by the co-casting method, it is preferable to contain the added amount of fine particles on the surface.
  • Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
  • Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
  • the resin examples include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
  • Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the protective film (optical film) low.
  • the dynamic friction coefficient of at least one surface is 0.2 to 1.0.
  • a method for producing the protective film used in the present invention production methods such as a normal inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, and a hot press method can be used.
  • the solution casting method by the casting method and the melt casting method are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
  • the organic solvent useful for forming the dope is one that dissolves a thermoplastic resin such as a cellulose ester resin. Can be used without limitation.
  • methylene chloride as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate,
  • the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • a linear or branched aliphatic alcohol having 1 to 4 carbon atoms.
  • thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
  • linear or branched aliphatic alcohol having 1 to 4 carbon atoms examples include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
  • the solvent used in the dope composition containing the aromatic polycarbonate is preferably a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms.
  • the mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass.
  • the type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more.
  • the alcohol in the present invention is preferably a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms. Specific examples include methanol, ethanol, isopropanol, and tertiary butanol. Of these, ethanol, isopropanol, and tertiary butanol can achieve almost the same effect, but methanol is slightly less effective. Although the reason is not clear, it is presumed that the boiling point of the solvent, that is, the ease of flying during drying is related. Higher alcohols higher than that are not preferred because they have a high boiling point and are likely to remain after film formation.
  • the amount of alcohol to be added must be carefully selected. These alcohols are completely poor in solubility in aromatic polycarbonate and are completely poor solvents. Therefore, it cannot be added too much, and should be the minimum amount that provides satisfactory peelability. As described above, it is 4 to 14 parts by mass, preferably 4 to 12 parts by mass with respect to methylene chloride. When the addition amount is in the range of 4 to 14 parts by mass with respect to the amount of methylene chloride, the solubility of the solvent in the polymer and the dope stability are improved, and the effect of improving the peelability is increased.
  • the dope composition is composed of the above methylene chloride and an aliphatic alcohol, but other solvents can also be used.
  • the remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and is a low-boiling solvent.
  • halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
  • the effects here include mixing the solvent without sacrificing solubility and stability, for example, improving the surface properties of the film formed by the solution casting method (leveling effect), evaporation rate and system These include viscosity adjustment and crystallization suppression effects. What is necessary is just to determine the kind and addition amount of the solvent to mix by the degree of these effects, and you may use 1 type, or 2 or more types as a solvent to mix.
  • solvents preferably used include halogen solvents such as chloroform and 1,2-dichloroethane, hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and butyl acetate.
  • halogen solvents such as chloroform and 1,2-dichloroethane
  • hydrocarbon solvents such as toluene and xylene
  • ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone
  • ethyl acetate and butyl acetate examples include ester solvents, ether solvents such as ethylene glycol dimethyl ether and methoxyethyl acetate.
  • the dope composition may be prepared by any method as long as a transparent solution having a low haze is obtained as a result.
  • a predetermined amount of alcohol may be added to the aromatic polycarbonate solution dissolved in a certain solvent in advance, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol.
  • alcohol is a poor solvent, the method of adding the latter after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
  • thermoplastic resin and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
  • thermoplastic resin For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
  • Recycled material is a finely pulverized film, which is generated when the film is formed, and has been cut off on both sides of the film, or a film original that has been speculated out due to scratches, etc. Reused.
  • ⁇ Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred.
  • the pressure die include a coat hanger die and a T die, and any of them is preferably used.
  • the surface of the metal support is a mirror surface.
  • two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
  • Solvent evaporation step This is a step in which a web (a dope is cast on a casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent. .
  • the web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
  • Peeling Step This is a step of peeling the web where the solvent has evaporated on the metal support at the peeling position. The peeled web is sent to the next process.
  • the temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
  • the amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
  • the amount of residual solvent in the web is defined by the following formula.
  • Residual solvent amount (%) (mass before web heat treatment ⁇ mass after web heat treatment) / (mass after web heat treatment) ⁇ 100 Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
  • the peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ⁇ 166.6 N / m, and then peel at a minimum tension of ⁇ 137.2 N / m, and particularly preferable to peel at a minimum tension of ⁇ 100 N / m.
  • the temperature at the peeling position on the metal support is preferably ⁇ 50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
  • the drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
  • tenter stretching apparatus When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
  • the stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction.
  • biaxial stretching When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
  • stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages.
  • stretching steps are possible. Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction. Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction.
  • simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension.
  • the preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
  • the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
  • the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
  • the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film.
  • the temperature distribution in the width direction in the tenter process is preferably within ⁇ 5 ° C, and within ⁇ 2 ° C. Is more preferable, and within ⁇ 1 ° C. is most preferable.
  • Winding process In this process, the amount of residual solvent in the web becomes 2% by mass or less and the film is wound by a winder. A film having good properties can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
  • a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
  • the protective film obtained after winding is preferably a long film.
  • the protective film has a thickness of about 100 m to 5000 m and is usually provided in a roll form.
  • the film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
  • the thickness of the protective film used in the present invention is not particularly limited, but is preferably 20 to 200 ⁇ m.
  • thermoplastic resin film used for melt extrusion is usually kneaded in advance and pelletized.
  • Pelletization may be performed by a known method. For example, a dry thermoplastic resin and an additive depending on the purpose are fed to an extruder with a feeder and kneaded using a uniaxial or biaxial extruder, and then formed into a strand from a die. Can be extruded, water-cooled or air-cooled, and then cut.
  • cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
  • Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
  • the antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
  • a vacuum nauter mixer is preferable because it can dry and mix simultaneously. Moreover, when touching with air, such as an exit from a feeder part or die
  • the extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.).
  • a twin screw extruder it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
  • Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
  • the melt temperature Tm when extruding is about 200 to 300 ° C. After removing foreign matter by filtering with a filter or the like, it is coextruded into a film form from a T-die, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
  • Tm is the temperature of the die exit portion of the extruder.
  • If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such a defect is also called a die line, but in order to reduce surface defects such as the die line, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
  • the inner surface that comes into contact with the molten resin is preferably subjected to surface processing that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy.
  • a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
  • the cooling roll there is no particular limitation on the cooling roll, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
  • the surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
  • the surface roughness of the cooling roll surface is preferably 0.1 ⁇ m or less in terms of Ra, and more preferably 0.05 ⁇ m or less.
  • the smoother the roll surface the smoother the surface of the resulting film.
  • the surface processed is further polished to have the above-described surface roughness.
  • examples of the elastic touch roll include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747,
  • a silicon rubber roll coated with a thin-film metal sleeve can be used as described in JP-A-2002-36332, JP-A-2005-172940, and JP-A-2005-280217.
  • the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
  • the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
  • the stretching method a known roll stretching machine or tenter can be preferably used.
  • the protective film optical film
  • the slow axis of the protective film becomes the width direction by stretching in the width direction.
  • the stretching ratio is 1.1 to 3.0 times, preferably 1.2 to 2 times
  • the stretching temperature is usually a temperature of Tg to Tg + 50 ° C., preferably Tg to Tg + 50 ° C. of the resin constituting the film. Done in a range.
  • the stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction.
  • the temperature is preferably within ⁇ 2 ° C, more preferably within ⁇ 1 ° C, and particularly preferably within ⁇ 0.5 ° C.
  • the film-like resin film produced by the above method is used as a retardation film
  • the film is formed in the longitudinal direction or width for the purpose of adjusting the retardation (retardation) of the retardation film (optical film) and reducing the dimensional change rate. It may be contracted in the hand direction.
  • Uniformity in the slow axis direction is also important, and the angle is preferably ⁇ 5 to + 5 ° with respect to the film width direction, more preferably in the range of ⁇ 1 to + 1 °, particularly ⁇ 0.
  • a range of 5 to + 0.5 ° is preferable, and a range of ⁇ 0.1 to + 0.1 ° is particularly preferable.
  • the protective film used in the present invention is preferably a long film.
  • the protective film has a thickness of about 100 m to 10000 m and is usually provided in a roll shape.
  • the width of the film is preferably 1.3 to 4 m, more preferably 1.4 to 2.5 m.
  • the film thickness of the protective film used in the present invention is preferably changed according to the purpose.
  • the thickness is preferably 20 to 200 ⁇ m.
  • a polarizing plate including a polarizer and a retardation film A or retardation film B disposed on at least one surface thereof is wound in a direction perpendicular to the width direction of the film. It can be manufactured through a step of preparing the taken long roll-shaped polarizing plate and 2) a step of bonding the polarizing plate and the liquid crystal cell unwound from the long roll-shaped polarizing plate with a roll-to-panel.
  • the “roll-to-panel manufacturing method” means that a long polarizing plate (rolled polarizing plate) wound in a roll shape is not cut into both the vertical and horizontal sizes of the liquid crystal cell in advance, This is a production method in which a polarizing plate is unwound directly from a roll-shaped polarizing plate, bonded to a liquid crystal cell, and then cut into the size of the liquid crystal cell with a laser cutter or the like.
  • FIG. 3 is a conceptual diagram showing an example of a roll-to-panel manufacturing method. As shown in FIG.
  • the vertical alignment type liquid crystal display device has a plurality of liquid crystal cells 110 arranged on the conveyor belt 100 and a long polarizing plate 130 ⁇ / b> A unwound from the roll-shaped polarizing plate 130. Bonding is performed with a matching roll 150.
  • the bonding roll 150 is pressed. Since the polarizing plate 130A is long, generally, an excessive force is easily applied to the polarizing plate 130A during bonding, and unevenness is likely to occur in the polarizing plate 130A. However, when the retardation film satisfying the above-mentioned formulas (1) to (5) used in the present invention is used, the unevenness of the polarizing plate 130A hardly occurs, and the variation in optical performance among lots can be ignored. It is.
  • Fine particles (Aerosil R972V (produced by Nippon Aerosil Co., Ltd.)): 11 parts by mass (average diameter of primary particles 16 nm, apparent specific gravity 90 g / liter) Ethanol: 89 parts by mass
  • the dope solution was obtained by sufficiently mixing with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ).
  • the obtained dope solution was uniformly cast on a stainless steel band support having a width of 2 m using a belt casting apparatus.
  • the solvent was evaporated until the residual solvent amount became 110%, and the stainless steel band support was peeled off.
  • both ends of the web were gripped with a tenter and stretched in the width direction. Thereafter, the film was held for 4 seconds while holding the end in the width direction of the film, and after the tension in the width direction was relaxed, the width holding was released.
  • the obtained film is transported in a third drying zone set at 125 ° C.
  • Prescription A a film 101 having a width of 1.49 m, a length of 500 m, and a knurling having a width of 1 cm at the end. did.
  • the above method is referred to as “Prescription A”.
  • Films 102 to 108 were the same as described above except that the conditions of the stretching zone (stretching ratio, heating temperature) and the residual solvent amount when entering the tenter were changed as shown in Tables 1 and 2. Was made.
  • the production method of the films 109 to 129 is referred to as “Prescription B”.
  • the average refractive index and retardation of the obtained film were measured by the following method.
  • phase difference After the prepared film was conditioned at 23 ° C. and 55% RH, the phase difference at a measurement wavelength of 590 nm was measured using KOBRA 31WPR manufactured by Oji Scientific Instruments. For calculating Rt, the average refractive index was measured in three directions with an Abbe refractometer, and the average value was used. Further, Rt was calculated by using the value of Ro and the retardation value when tilted by 40 ° with respect to the normal of the film surface with the slow axis in the film plane as the tilt axis.
  • Tables 3 and 4 show the measurement results of the retardation of the film.
  • a main dope liquid X having the following composition was prepared.
  • Composition of main dope liquid X Methylene chloride: 390 parts by mass
  • Ethanol 80 parts by mass
  • Cellulose acetate 100 parts by mass
  • Compound X 7 parts by mass
  • the dope liquid X is mixed thoroughly with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ). Obtained.
  • the obtained dope liquid X was cast on a stainless steel band support using a belt casting apparatus in the same manner as described above.
  • the surface that was in contact with the stainless steel band support at the time of film formation was defined as b surface, and the opposite surface as a surface, parallel to the transmission axis of the polarizer on each surface of the film X1.
  • the refractive index in the direction was measured by the following method, the refractive index of the a-plane was 1.474.
  • the reflectance was measured along the thickness direction, it was confirmed that the reflectance continuously changed from the a-plane toward the b-plane.
  • a polarizer was set on the eyepiece of the Abbe refractometer, and the refractive index on the surface affixed to the main prism surface was measured by optically contacting the a-plane or b-plane of the film with the main prism surface.
  • the film was arranged so that the direction parallel to the transmission axis of the polarizer was parallel to the short side of the main prism.
  • the main prism portion was cooled to 21 ° C.
  • the a-side of the film is the surface opposite to the surface that was in contact with the stainless steel band support during film formation; the b-side of the film was the surface that was in contact with the stainless steel band support. It is.
  • film X2 Manufacture of film X2
  • the method of manufacturing film X1 was the same as that of film X1, except that the temperature of the stainless steel band support was returned to the temperature at which the film 101 was manufactured, and the drying temperature after stretching with a tenter was 130 ° C.
  • a film X2 having a film thickness of 41 ⁇ m and a length of 500 m was produced.
  • the refractive index of the a surface is 1.480
  • the refractive index of the b surface is 1.482. From the reflectivity in the thickness direction, it was confirmed that the refractive index continuously changed in the film thickness direction.
  • the refractive index in the direction parallel to the transmission axis of the polarizer on each surface of the film X3 in the same manner as described above is 1.482 on both the a surface and the b surface, and from the reflectance in the thickness direction, A continuous change in the refractive index in the film thickness direction was not confirmed.
  • the obtained films X1 to X3 and commercially available films A1 to A3 are cut in accordance with the size of the liquid crystal cell to form a backlight side polarizing plate (first polarizing plate). It was set as protective film F1.
  • X1 (41 ⁇ m, refractive index: a-plane 1.474, b-plane 1.480)
  • X2 (41 ⁇ m, refractive index: a-plane 1.480, b-plane 1.482)
  • A2 NEOFRON PFA (25 ⁇ m, refractive index 1.342) manufactured by Daikin Industries, Ltd.
  • A3 TPX manufactured by Mitsui Chemicals, Inc. (50 ⁇ m, refractive index 1.464)
  • A4 Konica Minolta KC-8UX2MW (80 ⁇ m, refractive index 1.481)
  • Polarizer A 75 ⁇ m-thick polyvinyl alcohol film was swollen with water at 35 ° C. and immersed in an aqueous solution consisting of 0.075 g iodine, 5 g potassium iodide and 100 g water, and then iodinated. After immersing in a 45 ° C. aqueous solution composed of 3 g of potassium, 7.5 g of boric acid, and 100 g of water, the film was uniaxially stretched (temperature 55 ° C., stretch ratio 5 times). This was washed with water and dried to obtain a polarizer.
  • Polarizing plate on the viewing side (second polarizing plate)
  • the prepared films 101, 108 to 114, 119 to 120, 126 to 132, 134, 136 to 141, and 104 were prepared as the protective film F3 having a retardation function.
  • KC6UA-SW manufactured by Konica Minolta Opto was prepared as the protective film F4.
  • the produced film and KC6UA-SW were subjected to saponification treatment for 60 seconds using a 2N KOH aqueous solution at 50 ° C., washed with water and dried.
  • the saponified KC6UA-SW is applied to one surface of the prepared polarizer, and the saponified protective film F3 shown in Table 5 or 6 is applied to the other surface of the polarizer via water glue, respectively. Then, a laminate was obtained in which the polarizer was sandwiched between the protective film F3 shown in Table 5 or 6 and saponified KC6UA-SW. The laminate was bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 10 m / min, and subjected to a drying treatment at 70 ° C. for about 2 minutes and then at 60 ° C. for about 2 minutes.
  • An adhesive layer was provided on the peeled polyethylene terephthalate film, and the surface of the adhesive layer was attached to the protective film F3 side of the obtained polarizing plate.
  • the obtained polarizing plate was wound up in the direction perpendicular to the width direction of the film to prepare a roll-shaped adhesive polarizing plate.
  • the pressure-sensitive adhesive polarizing plate was bonded to the backlight side of the liquid crystal cell so that the pressure-sensitive adhesive layer unwound from the roll-shaped pressure-sensitive polarizing plate was in contact with the liquid crystal cell. Thereafter, a backlight-side protective film F1 (any one of films A1 to A4 and X1 to X3) shown in Table 5 or 6 is bonded onto the polarizer, and the backlight as shown in Table 5 or 6 is attached.
  • Side polarizing plates (first polarizing plates) 202 to 205, 207, 215 to 218, 221, 223 to 225, 233, 235, and 242 to 258 were obtained.
  • the liquid crystal cell of this liquid crystal display device is a cell in which a color filter and a thin film transistor are disposed on one of two transparent substrates (see FIG. 1), and is described as “Liquid Crystal Cell X” in Tables 7, 9, 10 and 12. did.
  • the liquid crystal cell of this liquid crystal display device is a cell in which a thin film transistor is disposed on one transparent substrate and a color filter is disposed on the other transparent substrate (see FIG. 2). It was described.
  • the front contrast was evaluated according to the following criteria. 1) In the case of liquid crystal cell X ⁇ : 5000 or more ⁇ : More than 4000 and less than 5000 ⁇ : 4000 or less 2) In the case of liquid crystal cell V ⁇ : 4000 or more ⁇ : More than 3000 and less than 4000 ⁇ : 3000 or less
  • the white luminance was evaluated as follows based on the luminance of the product. 1) In the case of liquid crystal cell X Luminance of X (KDL-46HX800): With respect to 400 cd / m 2 ⁇ : Product ratio over 103% ⁇ : Product ratio 100 to 103% ⁇ : Less than 100% product ratio 2) In case of liquid crystal cell V V (KDL-40V5) brightness: 300 cd / m 2 ⁇ : Product ratio over 103% ⁇ : Product ratio 100-103% ⁇ : Less than 100% of product ratio
  • the luminance in a direction oblique to the surface of the display screen when the screen was displayed in white was measured in the same manner as the front contrast measurement.
  • the measurement of the luminance in the oblique direction was performed in the range where the inclination angle with respect to the display screen was 0 to 80 °.
  • the luminance in a direction oblique to the surface of the display screen when the screen was displayed in black was measured.
  • the viewing angle exceeds 80 ° in all directions, it is described as 80 °.
  • the viewing angle was evaluated according to the following criteria. ⁇ : 60 ° or more ⁇ : 50 ° or more, less than 60 ° ⁇ : less than 50 °
  • the vertical alignment type liquid crystal display device of the present invention is excellent in evaluation of front contrast, viewing angle, and color shift.
  • the polarizing plate 218 produced above is slit to 1151 mm width and the polarizing plate 228 to a width of 647 mm using a laser slitter to produce a roll-shaped polarizing plate 218A1 having a width of 1151 mm and a roll-shaped polarizing plate 228B1 having a width of 647 mm, respectively.
  • a set of polarizing plates 218A1-228B1 was obtained.
  • liquid crystal panel (a laminate of a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell) was peeled off from BRAVIA KDL-46HX8001 manufactured by Sony. Then, the liquid crystal panel obtained above was incorporated into the liquid crystal display device described above, and liquid crystal display devices 2001 to 2010 were manufactured.
  • the luminance unevenness of the obtained liquid crystal display device was evaluated by the following method.

Abstract

An objective of the present invention is to provide a vertical alignment liquid-crystal display device whereby improved frontal contrast and transmittance is achieved, as well as reduced color shift and wide viewing angle. This vertical alignment liquid-crystal display device comprises vertically aligned liquid-crystal cells, a pair of polarizing plates which sandwich same, and a backlight. The backlight-side polarizing plate further comprises a protective film (F2) which is positioned on the liquid-crystal cell side. The viewing-side polarizing plate further comprises a protective film (F3) which is positioned on the liquid-crystal cell side. The closer of the protective film (F2) or (F3) to the color filter is a phase difference film (A), and the further thereof from the color filter is a phase difference film (B). At least all of the following formulae are satisfied thereby: (1) Rt (A) < Rt (B); (2) 70nm < Rt (A) < 130nm; (3) 130nm < Rt (B) < 200nm; (4) 20nm < Rt (B) - Rt (A) < 130nm; (5) Rt / Ro (A) < Rt/Ro (B).

Description

垂直配向型液晶表示装置とその製造方法Vertical alignment type liquid crystal display device and manufacturing method thereof
 本発明は、省電力化につながるバックライトの利用効率の向上及び正面コントラストの向上を達成し、かつカラーシフトを小さくして、視野角を広くした垂直配向型液晶表示装置とその製造方法に関する。 The present invention relates to a vertical alignment type liquid crystal display device that achieves an improvement in the use efficiency of a backlight and an improvement in front contrast leading to power saving, a small color shift, and a wide viewing angle, and a manufacturing method thereof.
 液晶表示装置は、CRT(Cathode Ray Tube)に比べて薄くて軽量であり、低電圧で駆動できて消費電力が小さいという利点がある。そのため、液晶表示装置は、テレビ、ノート型PC(パーソナルコンピュータ)、デスクトップ型PC、PDA(携帯端末)及び携帯電話など、種々の電子機器に使用されている。 The liquid crystal display device is advantageous in that it is thinner and lighter than a CRT (Cathode Ray Tube), can be driven at a low voltage, and consumes less power. Therefore, liquid crystal display devices are used in various electronic devices such as televisions, notebook PCs (personal computers), desktop PCs, PDAs (mobile terminals), and mobile phones.
 近年、垂直配向型液晶(誘電率異方性が負の液晶)を利用した垂直配向型(「VA(Vertical Alignment)型」ともいう)液晶表示装置が、従来のTN型液晶表示装置に比べて視野角特性が優れていることから、広く使用されるようになった。 In recent years, a vertical alignment type liquid crystal display device (also referred to as a “VA (vertical alignment) type”) liquid crystal display device using a vertical alignment type liquid crystal (liquid crystal having negative dielectric anisotropy) has been compared with a conventional TN type liquid crystal display device. Wide viewing angle due to its excellent viewing angle characteristics.
 近年、垂直配向型液晶表示装置において、更に省電力化の要求が高まっており、遮光部分の極小化やカラーフィルターオンアレイ(COA)などによる高開口率化が進められている。 In recent years, there has been an increasing demand for power saving in vertical alignment type liquid crystal display devices, and miniaturization of light shielding portions and higher aperture ratios by color filter on array (COA) have been promoted.
 また、省電力化の手段として偏光板の透過率を高くする方法が提案されているが、偏光板の透過率だけを高くすると、偏光度が下がり、正面コントラストが低くなってしまうという問題が発生する。 In addition, a method of increasing the transmittance of the polarizing plate has been proposed as a means of saving power, but if only the transmittance of the polarizing plate is increased, there is a problem that the degree of polarization decreases and the front contrast decreases. To do.
 これを解決するには、位相差フィルム、視野角拡大フィルムなど、偏光子(「偏光膜」ともいう)と液晶セルとの間に配置される保護フィルムによって、偏光解消を抑える方法が用いられているが、それだけでは要求を満たすことができなくなっている。 In order to solve this, a method of suppressing depolarization by a protective film disposed between a polarizer (also referred to as a “polarizing film”) and a liquid crystal cell, such as a retardation film and a viewing angle widening film, is used. However, it is not possible to meet the demand by itself.
 特許文献1及び非特許文献1には、位相差フィルムの構成によって正面コントラストが上がることが開示されている。これらの方法は、偏光板の透過率を上げても正面コントラストが維持できる可能性を示唆しているが、これらの方法による正面コントラスト向上手段では、カラーシフトが非常に大きくなってしまう。本来、垂直配向型液晶表示装置はカラーシフトが小さいが、この構成では垂直配向型液晶表示装置が本来持っている良さを無くしてしまう。 Patent Document 1 and Non-Patent Document 1 disclose that the front contrast is increased by the configuration of the retardation film. Although these methods suggest the possibility that the front contrast can be maintained even if the transmittance of the polarizing plate is increased, the front contrast improving means using these methods causes a very large color shift. Originally, the vertical alignment type liquid crystal display device has a small color shift, but with this configuration, the goodness inherent in the vertical alignment type liquid crystal display device is lost.
 一方、省電力化を実現するためには、バックライトの利用効率を上げることも効果がある。そのため、例えば、多層薄膜構造によって偏光を選択的に反射させることで、偏光板よりもバックライト側で効率よく偏光を透過させて、光の損失を防ぎ、視野角を妨げることなく液晶画面を明るくする技術が知られている。しかし、この場合には、部材が増えてしまい、液晶TVの薄型化の流れと反対の方向になってしまう。 On the other hand, increasing the use efficiency of the backlight is also effective for realizing power saving. Therefore, for example, by selectively reflecting the polarized light by the multilayer thin film structure, the polarized light is transmitted more efficiently on the backlight side than the polarizing plate, thereby preventing the loss of light and brightening the liquid crystal screen without disturbing the viewing angle. The technology to do is known. However, in this case, the number of members increases, and the direction is opposite to the trend of thinning the liquid crystal TV.
 一方、液晶表示装置に含まれる偏光板の保護フィルムのうち、最もバックライト側に配置される保護フィルムの表面を反射防止加工(AR加工、LR加工)する方法もある。この方法では、保護フィルムの表面の反射率を下げることにより、透過率の向上が見込めるが、コスト高となってしまう。 On the other hand, there is also a method of performing antireflection processing (AR processing, LR processing) on the surface of the protective film disposed on the most backlight side among the protective films of the polarizing plate included in the liquid crystal display device. In this method, the transmittance can be improved by reducing the reflectance of the surface of the protective film, but the cost becomes high.
 また、偏光子の染色を薄くすることで、偏光板の透過率を上げることが可能であるが、コントラストが低下し、液晶表示装置の性能が下がってしまう。 Further, it is possible to increase the transmittance of the polarizing plate by thinning the dyeing of the polarizer, but the contrast is lowered and the performance of the liquid crystal display device is lowered.
 従って、上記方法とは異なる方法によるバックライト利用効率の向上、それによる省電力化が望まれている。 Therefore, it is desired to improve the backlight utilization efficiency by a method different from the above method and thereby save power.
 また、近年、液晶表示装置の製造工程において、液晶パネルに、枚葉状偏光板を貼合する方法に代わって、ロール状の偏光板を直接貼合する「ロールtoパネル製法」が採用され始めているが、このような製法においても、偏光板のロット間の光学的性能のばらつきがないことが要望されている。 In recent years, in the manufacturing process of liquid crystal display devices, a “roll-to-panel manufacturing method” in which a roll-shaped polarizing plate is directly bonded instead of a method of bonding a sheet-shaped polarizing plate to a liquid crystal panel has begun to be adopted. However, even in such a manufacturing method, it is desired that there is no variation in optical performance between lots of polarizing plates.
 なお、本願では、ロール状に巻かれた状態で製造される偏光板を「ロール状偏光板」と呼び、そこから所定寸法に切断されたものを「枚葉状偏光板」と呼ぶこととする。 In the present application, a polarizing plate manufactured in a rolled state is referred to as a “rolled polarizing plate”, and a piece cut from the polarizing plate to a predetermined dimension is referred to as a “single sheet polarizing plate”.
特開2010-54736号公報JP 2010-54736 A
 本発明は、上記事情にかんがみてなされたものであり、その解決課題は、省電力化につながる正面コントラストと透過率(輝度)の向上を達成し、かつカラーシフトを小さくして、視野角を広くした垂直配向型液晶表示装置とその製造方法を提供することである。 The present invention has been made in view of the above circumstances, and its solution is to achieve an improvement in front contrast and transmittance (brightness) that lead to power savings, and to reduce the color shift and reduce the viewing angle. A wide vertical alignment type liquid crystal display device and a manufacturing method thereof are provided.
 本発明に係る上記課題は、以下の手段により解決される。
 [1] 垂直配向型液晶セルと、前記垂直配向型液晶セルを挟持する第一の偏光板および第二の偏光板と、バックライトとを有する垂直配向型液晶表示装置であって、前記垂直配向型液晶セルは、二つの透明基板と、前記二つの透明基板の間に配置され、液晶分子を含む液晶層と、を有し、前記二つの透明基板のうち一方には、カラーフィルタが配置され、前記第一の偏光板は、前記垂直配向型液晶セルの前記バックライト側の面に配置され、ポリビニルアルコールを含む第一の偏光子と、前記第一の偏光子の前記バックライト側の面に配置された保護フィルムF1と、前記第一の偏光子の前記垂直配向型液晶セル側の面に配置された保護フィルムF2とを有し、前記第二の偏光板は、前記垂直配向型液晶セルの視認側の面に配置され、ポリビニルアルコールを含む第二の偏光子と、前記第二の偏光子の前記垂直配向型液晶セル側の面に配置された保護フィルムF3と、前記第二の偏光子の視認側の面に配置された保護フィルムF4とを有し、前記第一の偏光子の吸収軸と前記保護フィルムF2の面内遅相軸とが直交し、かつ前記第二の偏光子の吸収軸と前記保護フィルムF3の面内遅相軸とが直交しており、前記保護フィルムF2またはF3のうち、前記カラーフィルタが設けられた前記透明基板側に配置される方は位相差フィルムAであり、前記カラーフィルタが設けられていない前記透明基板側に配置される方は位相差フィルムBであり、23℃、55%RHにおいて測定波長590nmで測定される前記位相差フィルムAの、厚さ方向の位相差値RtをRt(A)、面内方向の位相差値RoをRo(A)とし、23℃、55%RHにおいて測定波長590nmで測定される前記位相差フィルムBの、厚さ方向の位相差値RtをRt(B)、面内方向の位相差値RoをRo(B)としたとき、
 下記式(1)~式(5)の全てを満たし、
 式(1):Rt(A)<Rt(B)
 式(2):70nm<Rt(A)<130nm
 式(3):130nm<Rt(B)<200nm
 式(4):20nm<Rt(B)-Rt(A)<130nm
 式(5):Rt/Ro(A)<Rt/Ro(B)〔RoおよびRtは、下記式で定義される。
 式(I):Ro=(nx-ny)×d(nm)
 式(II):Rt={(nx+ny)/2-nz}×d(nm)
 式(I)および(II)中、
 nxは、位相差フィルムの面内において屈折率が最大になる遅相軸方向xの屈折率を表し;nyは、位相差フィルムの面内において前記遅相軸と直交する進相軸方向yの屈折率を表し;nzは、位相差フィルムの厚さ方向zの屈折率を表し;dは、位相差フィルムの厚さを表す〕
 前記保護フィルムF1の前記バックライト側の面における、前記第一の偏光子の透過軸と平行方向の屈折率が、前記保護フィルムF2の平均屈折率よりも小さく、かつ前記保護フィルムF3の平均屈折率よりも小さい、垂直配向型液晶表示装置。
 [2] 前記二つの透明基板のうち一方には、薄膜トランジスタと、前記カラーフィルタとが配置されている、[1]に記載の垂直配向型液晶表示装置。
 [3] 前記保護フィルムF1の、前記第二の偏光子側の面における前記第二の偏光子の透過軸と平行方向の屈折率をnpとし、前記バックライト側の面における前記第二の偏光子の透過軸と平行方向の屈折率をnaとしたとき、npがnaよりも大きい、[1]または[2]に記載の垂直配向型液晶表示装置。
 [4] 前記保護フィルムF2が、前記位相差フィルムAであり、前記位相差フィルムAの面内方向の位相差値Ro(A)が、下記式(6)をさらに満たす、[1]~[3]のいずれかに記載の垂直配向型液晶表示装置。
 式(6):40nm<Ro(A)<90nm
 [5] 前記保護フィルムF1の前記第二の偏光子の透過軸と平行方向の屈折率が、フィルムの厚さ方向に連続的に変化している、[1]~[4]のいずれかに記載の垂直配向型液晶表示装置。
 [6] 前記保護フィルムF1の前記バックライト側の面における、前記第二の偏光子の透過軸と平行方向の屈折率naが、1.350~1.480の範囲である、[1]~[5]のいずれかに記載の垂直配向型液晶表示装置。
 [7] [1]~[6]のいずれかに記載の垂直配向型液晶表示装置の製造方法であって、偏光子と、前記偏光子の少なくとも一方の面に配置された前記位相差フィルムAまたは位相差フィルムBとを含む偏光板が、フィルムの幅方向に対して垂直方向に巻き取られたロール状偏光板を準備するステップと、前記ロール状偏光板から巻き出された偏光板と前記垂直配向型液晶セルとを、ロールtoパネルで貼り合わせるステップと、を含む、垂直配向型液晶表示装置の製造方法。
The above-mentioned problem according to the present invention is solved by the following means.
[1] A vertical alignment type liquid crystal display device having a vertical alignment type liquid crystal cell, a first polarizing plate and a second polarizing plate sandwiching the vertical alignment type liquid crystal cell, and a backlight. The type liquid crystal cell includes two transparent substrates and a liquid crystal layer disposed between the two transparent substrates and including liquid crystal molecules, and a color filter is disposed on one of the two transparent substrates. The first polarizing plate is disposed on the backlight side surface of the vertical alignment type liquid crystal cell, and includes a first polarizer containing polyvinyl alcohol, and the backlight side surface of the first polarizer. A protective film F1 disposed on the surface of the first polarizer and a protective film F2 disposed on the surface of the first polarizer on the vertical alignment liquid crystal cell side, and the second polarizing plate includes the vertical alignment liquid crystal Placed on the visible side of the cell A second polarizer containing nyl alcohol, a protective film F3 disposed on the surface of the second polarizer on the side of the vertically aligned liquid crystal cell, and a surface on the viewing side of the second polarizer. A protective film F4, the absorption axis of the first polarizer and the in-plane slow axis of the protective film F2 are orthogonal, and the absorption axis of the second polarizer and the protective film F3 An in-plane slow axis is orthogonal, and of the protective films F2 or F3, the one disposed on the transparent substrate side where the color filter is provided is the retardation film A, and the color filter is provided. The one arranged on the transparent substrate side that is not formed is a retardation film B, and the retardation value Rt in the thickness direction of the retardation film A measured at a measurement wavelength of 590 nm at 23 ° C. and 55% RH is obtained. Rt (A), in-plane direction The retardation value Ro is set to Ro (A), and the retardation film B measured at a measurement wavelength of 590 nm at 23 ° C. and 55% RH has a thickness direction retardation value Rt of Rt (B). When the phase difference value Ro is Ro (B),
Satisfy all of the following formulas (1) to (5),
Formula (1): Rt (A) <Rt (B)
Formula (2): 70 nm <Rt (A) <130 nm
Formula (3): 130 nm <Rt (B) <200 nm
Formula (4): 20 nm <Rt (B) -Rt (A) <130 nm
Formula (5): Rt / Ro (A) <Rt / Ro (B) [Ro and Rt are defined by the following formulas.
Formula (I): Ro = (nx−ny) × d (nm)
Formula (II): Rt = {(nx + ny) / 2−nz} × d (nm)
In the formulas (I) and (II)
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the plane of the retardation film; ny is in the fast axis direction y orthogonal to the slow axis in the plane of the retardation film. Represents the refractive index; nz represents the refractive index in the thickness direction z of the retardation film; d represents the thickness of the retardation film]
The refractive index in the direction parallel to the transmission axis of the first polarizer on the surface on the backlight side of the protective film F1 is smaller than the average refractive index of the protective film F2, and the average refractive index of the protective film F3. Vertical alignment type liquid crystal display device smaller than the rate.
[2] The vertical alignment liquid crystal display device according to [1], wherein a thin film transistor and the color filter are arranged on one of the two transparent substrates.
[3] The refractive index in the direction parallel to the transmission axis of the second polarizer on the second polarizer side surface of the protective film F1 is np, and the second polarized light on the backlight side surface is np. The vertical alignment liquid crystal display device according to [1] or [2], wherein np is larger than na, where na is a refractive index in a direction parallel to the transmission axis of the child.
[4] The protective film F2 is the retardation film A, and the retardation value Ro (A) in the in-plane direction of the retardation film A further satisfies the following formula (6): [1] to [ 3]. The vertical alignment type liquid crystal display device according to any one of [3].
Formula (6): 40 nm <Ro (A) <90 nm
[5] The refractive index of the protective film F1 in the direction parallel to the transmission axis of the second polarizer continuously changes in the thickness direction of the film. The vertical alignment type liquid crystal display device described.
[6] The refractive index na in the direction parallel to the transmission axis of the second polarizer on the backlight side surface of the protective film F1 is in the range of 1.350 to 1.480. [5] The vertical alignment type liquid crystal display device according to any one of [5].
[7] The method for producing a vertical alignment type liquid crystal display device according to any one of [1] to [6], wherein the retardation film A is disposed on a polarizer and at least one surface of the polarizer. Or the polarizing plate containing retardation film B prepares the roll-shaped polarizing plate wound up in the perpendicular | vertical direction with respect to the width direction of a film, The polarizing plate unwound from the said roll-shaped polarizing plate, and the said A method of manufacturing a vertical alignment type liquid crystal display device, comprising: bonding a vertical alignment type liquid crystal cell to each other by a roll-to-panel.
 本発明の上記手段により、省電力化につながる正面コントラストと透過率(輝度)の向上を達成し、かつカラーシフトを小さくして、視野角を広くした垂直配向型液晶表示装置とその製造方法を提供することができる。 A vertical alignment type liquid crystal display device that achieves an improvement in front contrast and transmittance (brightness) that leads to power saving, a small color shift, and a wide viewing angle by the above means of the present invention, and a method for manufacturing the same. Can be provided.
本発明に係る垂直配向型液晶表示装置の構成の一例を示す概念図1 is a conceptual diagram showing an example of a configuration of a vertical alignment type liquid crystal display device according to the present invention. 本発明に係る垂直配向型液晶表示装置の構成の他の例を示す概念図The conceptual diagram which shows the other example of a structure of the vertical alignment type liquid crystal display device based on this invention. ロールtoパネル製法を示す概念図Conceptual diagram showing the roll-to-panel manufacturing method
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” is used to mean that the numerical values described before and after it are included as a lower limit value and an upper limit value.
 本発明の垂直配向型液晶表示装置は、垂直配向型液晶セルと、それを挟持する第一の偏光板および第二の偏光板と、バックライトとを有する。そして、本発明の垂直配向型液晶表示装置は、後述する要件a、bおよびcを全て満たすことが好ましく、要件dをさらに満たすことがより好ましい。 The vertical alignment type liquid crystal display device of the present invention has a vertical alignment type liquid crystal cell, a first polarizing plate and a second polarizing plate sandwiching the vertical alignment type liquid crystal cell, and a backlight. The vertical alignment type liquid crystal display device of the present invention preferably satisfies all the requirements a, b and c described below, and more preferably further satisfies the requirement d.
 (垂直配向型液晶セル)
 垂直配向型液晶セル(単に「液晶セル」ともいう)は、二枚の透明基板と、それらの間に配置され、液晶分子を含む液晶層とを含む。
(Vertical alignment type liquid crystal cell)
A vertical alignment type liquid crystal cell (also simply referred to as “liquid crystal cell”) includes two transparent substrates and a liquid crystal layer that is disposed between them and includes liquid crystal molecules.
 二枚の透明基板のうち一方には、薄膜トランジスタと、それと接続された画素電極とが配置されている。対向電極は、前記一方の透明基板に配置されてもよいし、他方の透明基板に配置されてもよく、好ましくは前記一方の透明基板に配置されうる。透明基板は、従来公知の透明なガラス基板又は樹脂基板でありうる。 A thin film transistor and a pixel electrode connected to the thin film transistor are arranged on one of the two transparent substrates. The counter electrode may be disposed on the one transparent substrate, or may be disposed on the other transparent substrate, and may preferably be disposed on the one transparent substrate. The transparent substrate may be a conventionally known transparent glass substrate or resin substrate.
 カラーフィルタは、二つの透明基板のうち一方に配置され、液晶セルの開口率を高めるためには、前記一方の透明基板に配置されること;即ち、二つの透明基板のうち一方に、薄膜トランジスタ(TFT)とカラーフィルタとが配置されることが好ましい。 The color filter is disposed on one of the two transparent substrates, and is disposed on the one transparent substrate in order to increase the aperture ratio of the liquid crystal cell; that is, on one of the two transparent substrates, a thin film transistor ( TFT) and a color filter are preferably arranged.
 即ち、本発明の垂直配向型液晶セルは、カラーフィルタ・オン・アレイ(以下において「COA」と称す)方式を採用したものであることが好ましい。 That is, the vertical alignment type liquid crystal cell of the present invention preferably employs a color filter on array (hereinafter referred to as “COA”) system.
 COA方式は、例えば、特開平10-206888号公報などに記載されているように、カラーフィルタが液晶セルの駆動側基板に直接形成されたカラーフィルタ一体型駆動基板と、対向電極(導電層)を備える対向基板とをスペーサを介在させて対向配置し、その間隙部に液晶材料を封入して構成されるものであり、カラーフィルタを反射電極の上に形成し、高精細時に貼り合わせマージンを広くして歩留まりや開口率を向上させることができる。また、特開2010-44362号公報に開示されている液晶表示装置の構成なども参考となる。 The COA method includes, for example, a color filter integrated drive substrate in which a color filter is directly formed on a drive side substrate of a liquid crystal cell, and a counter electrode (conductive layer) as described in JP-A-10-206888. And a counter substrate with a spacer interposed therebetween, and a liquid crystal material is sealed in the gap, and a color filter is formed on the reflective electrode to provide a bonding margin in high definition. The yield and the aperture ratio can be improved by widening. Further, the configuration of the liquid crystal display device disclosed in Japanese Patent Application Laid-Open No. 2010-44362 is also helpful.
 液晶層に含まれる液晶分子は、負の誘電率異方性を有する液晶分子であることが好ましく、負の誘電率異方性を有するネマチック液晶であることがより好ましい。負の誘電率異方性を有するネマチック液晶としては、特開2004-204133号、特開2004-250668号、特開2005-047980号等各公報等に記載されている従来公知のものを用いることができる。 The liquid crystal molecules contained in the liquid crystal layer are preferably liquid crystal molecules having negative dielectric anisotropy, and more preferably nematic liquid crystals having negative dielectric anisotropy. As the nematic liquid crystal having negative dielectric anisotropy, conventionally known ones described in JP-A-2004-204133, JP-A-2004-250668, JP-A-2005-047980, etc. should be used. Can do.
 具体的には、誘電異方性が負であり、Δn=0.0815、Δε=-4.5程度のネマチック液晶材料などが好ましく用いられる。 Specifically, a nematic liquid crystal material having a negative dielectric anisotropy and Δn = 0.0815 and Δε = −4.5 is preferably used.
 液晶層の厚さdは、特に制限されないが、前記範囲の特性の液晶を用いる場合、例えば3.5μm程度に設定することができる。 The thickness d of the liquid crystal layer is not particularly limited, but can be set to about 3.5 μm, for example, when a liquid crystal having the above characteristics is used.
 液晶層は、表示装置の動的応答特性の低下を最小限にしつつ、液晶分子の配向不良を低減するために、TNモードの液晶表示装置で一般的に使われているカイラル材をさらに含んでもよい。 The liquid crystal layer may further include a chiral material generally used in a TN mode liquid crystal display device in order to reduce alignment failure of liquid crystal molecules while minimizing a decrease in dynamic response characteristics of the display device. Good.
 垂直配向型液晶セルは、マルチドメイン構造を有する場合には、各ドメイン間の境界領域の液晶分子の配向を調整するのに有利である。 When the vertical alignment type liquid crystal cell has a multi-domain structure, it is advantageous for adjusting the alignment of the liquid crystal molecules in the boundary region between the domains.
 なお、「マルチドメイン構造」とは、液晶表示装置の一画素を複数の領域に分割した構造をいう。例えば、垂直配向型(VA型)液晶表示装置において、白表示時には液晶分子が傾斜しているので、傾斜方向とその逆方向では、斜めから観察した時の液晶分子の複屈折の大きさが異なり、輝度や色調に差が生じるが、マルチドメイン構造にすると、輝度や色調の視野角特性が改善されるので好ましい。 Note that the “multi-domain structure” refers to a structure in which one pixel of a liquid crystal display device is divided into a plurality of regions. For example, in a vertical alignment type (VA type) liquid crystal display device, the liquid crystal molecules are tilted during white display, so the birefringence of the liquid crystal molecules when viewed from an oblique direction differs between the tilt direction and the opposite direction. Although a difference occurs in luminance and color tone, a multi-domain structure is preferable because viewing angle characteristics of luminance and color tone are improved.
 具体的には、画素のそれぞれを液晶分子の初期配向状態が互いに異なる二以上の領域で構成して平均化することで、視野角に依存した輝度や色調の偏りを低減することができる。また、それぞれの画素を、電圧印加状態において液晶分子の配向方向が連続的に変化する互いに異なる二以上の領域から構成しても同様の効果が得られる。 Specifically, each pixel is composed of two or more regions having different initial alignment states of liquid crystal molecules and averaged, whereby luminance and color tone bias depending on the viewing angle can be reduced. Further, the same effect can be obtained even if each pixel is constituted by two or more different regions where the orientation direction of the liquid crystal molecules continuously changes in a voltage application state.
 全方向で均等な視野角を得るにはこの分割数を多くすればよいが、4分割あるいは8分割以上とすることで、ほぼ均等な視野角が得られる。特に8分割時は偏光板吸収軸を任意の角度に設定できるので好ましい。 In order to obtain a uniform viewing angle in all directions, the number of divisions may be increased. However, a substantially uniform viewing angle can be obtained by using four or more divisions. In particular, it is preferable that the polarizing plate absorption axis can be set at an arbitrary angle when dividing into eight.
 垂直配向型液晶セルでは、画素電極と対向電極との間に電圧が印加されていない状態では、液晶分子は、その長軸が透明基板の表面に対して略垂直になるように配向している。そして、画素電極と対向電極との間に電圧が印加されると、液晶分子が、その長軸が透明基板の表面に対して略水平となるように配向する。それにより、各副画素の透過率および反射率を変化させて画像表示を行う。 In the vertical alignment type liquid crystal cell, the liquid crystal molecules are aligned so that their long axes are substantially perpendicular to the surface of the transparent substrate when no voltage is applied between the pixel electrode and the counter electrode. . When a voltage is applied between the pixel electrode and the counter electrode, the liquid crystal molecules are aligned so that the major axis thereof is substantially horizontal to the surface of the transparent substrate. Thereby, image display is performed by changing the transmittance and reflectance of each sub-pixel.
 このような垂直配向型液晶セルは、二枚の透明基板で囲まれた空間に、負の誘電率異方性を有するネマチック液晶を封入することによって得ることができる。 Such a vertically aligned liquid crystal cell can be obtained by enclosing a nematic liquid crystal having negative dielectric anisotropy in a space surrounded by two transparent substrates.
 第一の偏光板は、垂直配向型液晶セルのバックライト側の面に配置されており、第一の偏光子と、第一の偏光子のバックライト側の面に配置された保護フィルムF1と、第一の偏光子の液晶セル側の面に配置された保護フィルムF2とを有する。第二の偏光板は、垂直配向型液晶セルの視認側の面に配置されており、第二の偏光子と、第二の偏光子の液晶セル側の面に配置された保護フィルムF3と、第二の偏光子の視認側の面に配置された保護フィルムF4とを有する。保護フィルムF2およびF3は、好ましくは位相差フィルムである。 The first polarizing plate is disposed on the backlight side surface of the vertical alignment type liquid crystal cell, the first polarizer, and the protective film F1 disposed on the backlight side surface of the first polarizer. And a protective film F2 disposed on the liquid crystal cell side surface of the first polarizer. The second polarizing plate is disposed on the viewing side surface of the vertical alignment type liquid crystal cell, the second polarizer, and the protective film F3 disposed on the liquid crystal cell side surface of the second polarizer, And a protective film F4 disposed on the viewing side surface of the second polarizer. The protective films F2 and F3 are preferably retardation films.
 第一の偏光子の吸収軸と保護フィルムF2(位相差フィルム)の面内遅相軸とは直交しており;第二の偏光子の吸収軸と保護フィルムF3(位相差フィルム)の面内遅相軸とは直交している(要件a)。 The absorption axis of the first polarizer and the in-plane slow axis of the protective film F2 (retardation film) are orthogonal to each other; the absorption axis of the second polarizer and the in-plane of the protection film F3 (retardation film) It is orthogonal to the slow axis (requirement a).
 図1は、本発明に係る垂直配向型液晶表示装置の構成の一例を示す概念図である。図1に示されるように、垂直配向型液晶表示装置10は、垂直配向型液晶セル30と、それを挟持する第一の偏光板50および第二の偏光板70と、バックライト90とを有する。 FIG. 1 is a conceptual diagram showing an example of the configuration of a vertical alignment type liquid crystal display device according to the present invention. As shown in FIG. 1, the vertical alignment type liquid crystal display device 10 includes a vertical alignment type liquid crystal cell 30, a first polarizing plate 50 and a second polarizing plate 70 sandwiching the vertical alignment type liquid crystal cell 30, and a backlight 90. .
 垂直配向型液晶セル30は、第一の透明基板31と、第二の透明基板33と、それらの間に配置され、液晶分子34を有する液晶層35とを有する。そして、第一の透明基板31には、薄膜トランジスタ37と、それと接続される画素電極(不図示)と、カラーフィルタ39とが配置されている。即ち、垂直配向型液晶セル30は、COA(カラーフィルタ・オン・アレイ)構造を有している。 The vertical alignment type liquid crystal cell 30 includes a first transparent substrate 31, a second transparent substrate 33, and a liquid crystal layer 35 having liquid crystal molecules 34 disposed therebetween. A thin film transistor 37, a pixel electrode (not shown) connected to the thin film transistor 37, and a color filter 39 are disposed on the first transparent substrate 31. That is, the vertical alignment type liquid crystal cell 30 has a COA (color filter on array) structure.
 第一の偏光板50は、第一の偏光子52と、そのバックライト側の面に配置された保護フィルム54(F1)と、液晶セル側の面に配置された保護フィルム56(F2)とを有する。第二の偏光板70は、第二の偏光子72と、その液晶セル側の面に配置された保護フィルム74(F3)と、視認側の面に配置された保護フィルム76(F4)とを有する。保護フィルム56(F2)および74(F3)は、好ましくは位相差フィルムである。 The first polarizing plate 50 includes a first polarizer 52, a protective film 54 (F1) disposed on the backlight side surface, and a protective film 56 (F2) disposed on the liquid crystal cell side surface. Have The second polarizing plate 70 includes a second polarizer 72, a protective film 74 (F3) disposed on the surface on the liquid crystal cell side, and a protective film 76 (F4) disposed on the surface on the viewing side. Have. The protective films 56 (F2) and 74 (F3) are preferably retardation films.
 図2は、本発明に係る垂直配向型液晶表示装置の構成の他の例を示す概念図である。図2に示されるように、垂直配向型液晶表示装置10’は、垂直配向型液晶セル30を垂直配向型液晶セル30’とした以外は図1と同様に構成されうる。 FIG. 2 is a conceptual diagram showing another example of the configuration of the vertical alignment type liquid crystal display device according to the present invention. As shown in FIG. 2, the vertical alignment type liquid crystal display device 10 ′ can be configured in the same manner as in FIG. 1 except that the vertical alignment type liquid crystal cell 30 is replaced with the vertical alignment type liquid crystal cell 30 ′.
 垂直配向型液晶セル30’は、第一の透明基板31と、第二の透明基板33と、それらの間に配置され、液晶分子34を有する液晶層35とを有する。第一の透明基板31には、薄膜トランジスタ37と、それと接続される画素電極(不図示)とが配置されており;第二の透明基板33には、カラーフィルタ39が配置されている。 The vertical alignment type liquid crystal cell 30 ′ has a first transparent substrate 31, a second transparent substrate 33, and a liquid crystal layer 35 having liquid crystal molecules 34 disposed therebetween. A thin film transistor 37 and a pixel electrode (not shown) connected to the thin film transistor 37 are disposed on the first transparent substrate 31; a color filter 39 is disposed on the second transparent substrate 33.
 垂直配向型液晶表示装置の正面コントラストを高めようとすると、カラーシフトが大きくなりやすい。即ち、高い透過率と高い正面コントラストを有しつつ、カラーシフトが低減された垂直配向型液晶表示装置が求められている。 When trying to increase the front contrast of a vertical alignment type liquid crystal display device, the color shift tends to increase. That is, there is a demand for a vertical alignment type liquid crystal display device having a high transmittance and a high front contrast and a reduced color shift.
 そこで本発明では、保護フィルムF2またはF3のうち、カラーフィルタが設けられた透明基板側(カラーフィルタ側)に配置される方を位相差フィルムAとし;カラーフィルタが設けられていない透明基板側(カラーフィルタとは反対側)に配置される方を位相差フィルムBとする。例えば、図1では、保護フィルムF2が位相差フィルムAとなり;保護フィルムF3が位相差フィルムBとなる。図2では、保護フィルムF3が位相差フィルムAとなり;保護フィルムF2が位相差フィルムBとなる。そして、位相差フィルムAとBの位相差値が、特定の関係を満たすことを特徴とする。 Therefore, in the present invention, of the protective films F2 or F3, the one disposed on the transparent substrate side (color filter side) provided with the color filter is referred to as a retardation film A; the transparent substrate side (not provided with the color filter) ( The one disposed on the side opposite to the color filter is referred to as a retardation film B. For example, in FIG. 1, the protective film F2 becomes the retardation film A; the protective film F3 becomes the retardation film B. In FIG. 2, the protective film F3 becomes the retardation film A; the protective film F2 becomes the retardation film B. And the retardation value of retardation film A and B satisfy | fills a specific relationship, It is characterized by the above-mentioned.
 保護フィルムF2およびF3(位相差フィルムAおよびB)について
 23℃・55%RHにおいて測定波長590nmで測定した、当該位相差フィルムAおよびBの、厚さ方向の位相差値Rtを、それぞれRt(A)およびRt(B)とし;面内方向の位相差値Roを、それぞれRo(A)およびRo(B)としたとし;厚さ方向の位相差値Rtの面内方向の位相差値Roに対する比を、それぞれRt/Ro(A)およびRt/Ro(B)としたとき、下記式(1)~(5)を全て満たすことを特徴とする(要件b)。
 式(1):Rt(A)<Rt(B)
 式(2):70nm<Rt(A)<130nm
 式(3):130nm<Rt(B)<200nm
 式(4):20nm<Rt(B)-Rt(A)<130nm
 式(5):Rt/Ro(A)<Rt/Ro(B)
Protective films F2 and F3 (retardation films A and B) Retardation values Rt in the thickness direction of the retardation films A and B measured at 23 ° C. and 55% RH at a measurement wavelength of 590 nm are respectively Rt ( A) and Rt (B); the in-plane retardation value Ro is assumed to be Ro (A) and Ro (B), respectively; the in-plane retardation value Ro of the thickness direction retardation value Rt. When the ratio to is Rt / Ro (A) and Rt / Ro (B), respectively, all the following formulas (1) to (5) are satisfied (requirement b).
Formula (1): Rt (A) <Rt (B)
Formula (2): 70 nm <Rt (A) <130 nm
Formula (3): 130 nm <Rt (B) <200 nm
Formula (4): 20 nm <Rt (B) -Rt (A) <130 nm
Formula (5): Rt / Ro (A) <Rt / Ro (B)
 RoおよびRtは、下記式で定義される。
 式(I):Ro=(nx-ny)×d(nm)
 式(II):Rt={(nx+ny)/2-nz}×d(nm)
 〔上記式中、
 nxは、位相差フィルムの面内において屈折率が最大になる遅相軸方向xの屈折率を表し;
 nyは、位相差フィルムの面内において前記遅相軸と直交する進相軸方向yの屈折率を表し;
 nzは、位相差フィルムの厚さ方向zの屈折率を表し;
 dは、位相差フィルムの厚さを表す。なお、測定条件は、上記と同じである。〕
Ro and Rt are defined by the following formula.
Formula (I): Ro = (nx−ny) × d (nm)
Formula (II): Rt = {(nx + ny) / 2−nz} × d (nm)
[In the above formula,
nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the plane of the retardation film;
ny represents the refractive index in the fast axis direction y perpendicular to the slow axis in the plane of the retardation film;
nz represents the refractive index in the thickness direction z of the retardation film;
d represents the thickness of the retardation film. The measurement conditions are the same as above. ]
 本発明においては、前記二枚の透明基板のうちの一方に、薄膜トランジスタとカラーフィルタが配置され、かつ当該一方の透明基板がバックライト側に配置されること(図1の態様)が好ましい。即ち、バックライト側の偏光板(第一の偏光板)の液晶セル側の保護フィルムF2を位相差フィルムAとしたとき、当該位相差フィルムAの面内方向の位相差値Ro(A)が、下記式(6)で表される関係を満たすことが好ましい。
 式(6):40nm<Ro(A)<90nm
In the present invention, it is preferable that a thin film transistor and a color filter are disposed on one of the two transparent substrates, and the one transparent substrate is disposed on the backlight side (the embodiment in FIG. 1). That is, when the protective film F2 on the liquid crystal cell side of the polarizing plate on the backlight side (first polarizing plate) is the retardation film A, the retardation value Ro (A) in the in-plane direction of the retardation film A is It is preferable that the relationship represented by the following formula (6) is satisfied.
Formula (6): 40 nm <Ro (A) <90 nm
 本発明に係る位相差フィルムAまたはBは、液晶セルのカラーフィルタに対する配置が非常に重要である。 The arrangement of the retardation film A or B according to the present invention with respect to the color filter of the liquid crystal cell is very important.
 本発明では、液晶セルの両側に位相差フィルムを配置することが必要である。厚さ方向の位相差Rtについては、カラーフィルタ側の位相差フィルムAの厚さ方向の位相差Rt(A)が、カラーフィルタとは反対側の位相差フィルムBの厚さ方向の位相差Rt(B)よりも相対的に小さくなることが必要である。 In the present invention, it is necessary to dispose retardation films on both sides of the liquid crystal cell. Regarding the retardation Rt in the thickness direction, the retardation Rt (A) in the thickness direction of the retardation film A on the color filter side is equal to the retardation Rt in the thickness direction of the retardation film B on the opposite side to the color filter. It is necessary to make it relatively smaller than (B).
 位相差フィルムAのRt(A)と位相差フィルムBのRt(B)の差(Rt(B)-Rt(A))は、20nmより大きく130nm未満であり、より好ましくは30nmより大きく120nmより小さく、さらに好ましくは35nmより大きく110nmより小さいことである。この値が小さいと、液晶表示装置の正面コントラストの向上が見込めず、大きすぎると液晶表示装置のカラーシフトが大きくなってしまい、特に周辺から見た時の混色が著しく、液晶表示装置の表示品位を著しく低下させる。 The difference between Rt (A) of the retardation film A and Rt (B) of the retardation film B (Rt (B) −Rt (A)) is more than 20 nm and less than 130 nm, more preferably more than 30 nm and more than 120 nm. It is smaller, more preferably larger than 35 nm and smaller than 110 nm. If this value is small, the front contrast of the liquid crystal display device cannot be improved, and if it is too large, the color shift of the liquid crystal display device becomes large. Especially, the color mixture when viewed from the periphery is remarkable, and the display quality of the liquid crystal display device is high. Is significantly reduced.
 液晶セルの両側に用いられる位相差フィルムAおよびB(又は位相差層)のうち、カラーフィルタ側の位相差フィルムAのRt(A)は、70nmより大きく130nmより小さくする必要があり、より好ましくは80nm以上120nm以下であり、さらに好ましくは85nm以上115nm以下である。 Of the retardation films A and B (or retardation layer) used on both sides of the liquid crystal cell, the Rt (A) of the retardation film A on the color filter side needs to be larger than 70 nm and smaller than 130 nm, more preferably. Is from 80 nm to 120 nm, more preferably from 85 nm to 115 nm.
 カラーフィルタとは反対側の位相差フィルムBのRt(B)は、130nmより大きく200nmより小さくする必要があり、好ましくは140nm以上185nm以下であり、さらに好ましくは145nm以上170nm以下である。 The Rt (B) of the retardation film B on the side opposite to the color filter needs to be larger than 130 nm and smaller than 200 nm, preferably 140 nm or more and 185 nm or less, and more preferably 145 nm or more and 170 nm or less.
 位相差フィルムAおよびBの位相差RoおよびRtは、液晶表示装置の視野角に影響を与える。それぞれの位相差が所望の範囲に入ることで、上下・左右がより対象に近い視野角特性を得ることができる。 The phase differences Ro and Rt of the phase difference films A and B affect the viewing angle of the liquid crystal display device. When each phase difference falls within a desired range, it is possible to obtain viewing angle characteristics that are closer to the target in the vertical and horizontal directions.
 液晶セルの両側に用いられる位相差フィルムAおよびBのうち、カラーフィルタ側の位相差フィルムAのRt/Ro(A)を、カラーフィルタとは反対側の位相差フィルムBのRt/Ro(B)よりも小さくする必要がある。液晶セルの、カラーフィルタ側の位相差フィルムAのRt/Ro(A)が、カラーフィルタとは反対側の位相差フィルムBのRt/Ro(B)よりも大きくなると、カラーシフトが大きくなり、液晶表示装置の表示品位を著しく低下させる。 Of the retardation films A and B used on both sides of the liquid crystal cell, Rt / Ro (A) of the retardation film A on the color filter side is changed to Rt / Ro (B) of the retardation film B on the opposite side of the color filter. ) Must be smaller. When the Rt / Ro (A) of the phase difference film A on the color filter side of the liquid crystal cell is larger than the Rt / Ro (B) of the phase difference film B on the opposite side of the color filter, the color shift increases. The display quality of the liquid crystal display device is significantly reduced.
 また、液晶セルの両側に用いられる位相差フィルムAおよびBのうち、カラーフィルタ側の位相差フィルムAのRo(A)が、カラーフィルタとは反対側の位相差フィルムBのRo(B)よりも小さいことが好ましい。 Of the retardation films A and B used on both sides of the liquid crystal cell, the Ro (A) of the retardation film A on the color filter side is more than the Ro (B) of the retardation film B on the opposite side to the color filter. Is preferably small.
 カラーフィルタ側の位相差フィルムAのRo(A)が、40nm<Ro(A)<90nm、カラーフィルタと反対側の位相差フィルムBのRo(B)が、45<Ro(B)<100nmであることが好ましい。カラーフィルタと反対側の位相差フィルムBのRo(B)を45nm<Ro(B)<100nmにすることで、視野角を十分に広げることができ、かつカラーフィルタ側の位相差フィルムAのRo(A)を、カラーフィルタとは反対側の位相差フィルムBのRo(B)よりも相対的に小さくすることで、カラーシフトを抑制することができる。 The Ro (A) of the retardation film A on the color filter side is 40 nm <Ro (A) <90 nm, and the Ro (B) of the retardation film B on the side opposite to the color filter is 45 <Ro (B) <100 nm. Preferably there is. By setting the Ro (B) of the retardation film B on the side opposite to the color filter to 45 nm <Ro (B) <100 nm, the viewing angle can be sufficiently widened, and the Ro of the retardation film A on the color filter side. By making (A) relatively smaller than Ro (B) of the retardation film B on the side opposite to the color filter, color shift can be suppressed.
 位相差フィルムAおよびBの面内遅相軸とフィルムの幅方向とのなす角θ1(配向角)は、好ましくは-1°以上+1°以下であり、より好ましくは-0.5以上+0.5°以下であり、さらに好ましくは-0.1°以上+0.1°以下である。位相差フィルムAおよびBの配向角θ1の測定は、自動複屈折計KOBRA-WX(王子計測機器)を用いて測定することができる。配向角は、延伸条件によって調整されうる。 The angle θ1 (orientation angle) formed by the in-plane slow axis of the retardation films A and B and the width direction of the film is preferably −1 ° or more and + 1 ° or less, more preferably −0.5 or more and +0. It is 5 ° or less, more preferably −0.1 ° or more and + 0.1 ° or less. The orientation angle θ1 of the retardation films A and B can be measured using an automatic birefringence meter KOBRA-WX (Oji Scientific Instruments). The orientation angle can be adjusted depending on the stretching conditions.
 本発明の液晶表示装置で液晶セルの両側に用いられる位相差フィルムAおよびBは、種々の製膜方法により製造されてよく、製膜時に位相差を制御することが好ましい。 The retardation films A and B used on both sides of the liquid crystal cell in the liquid crystal display device of the present invention may be manufactured by various film forming methods, and it is preferable to control the phase difference during film formation.
 本発明の液晶表示装置に用いられる位相差フィルムAおよびBは、セルロースエステルフィルム、ポリエステルフィルム、シクロオレフィンフィルム、ポリカーボネートフィルム、ポリオレフィンフィルム、ポリアクリルフィルム、アクリル樹脂とセルロースエステル樹脂の混合樹脂フィルムなどであってよい。 The retardation films A and B used in the liquid crystal display device of the present invention are a cellulose ester film, a polyester film, a cycloolefin film, a polycarbonate film, a polyolefin film, a polyacryl film, a mixed resin film of an acrylic resin and a cellulose ester resin, and the like. It may be.
 位相差フィルムAとしては、ポリカーボネート、セルロースエステル樹脂、ポリエチレン、ポリプロピレンを主成分とする高分子延伸フィルムが挙げられる。特に好ましくはセルロースエステル樹脂である。 Examples of the retardation film A include stretched polymer films mainly composed of polycarbonate, cellulose ester resin, polyethylene, and polypropylene. Particularly preferred is a cellulose ester resin.
 これらの位相差フィルムの位相差制御方法は、例えばセルロースエステル樹脂を用いる場合は、エステル置換度や置換基の変更、溶媒の変更、位相差制御材料の添加、延伸条件の調整などを用いることができる。本発明の液晶表示装置に用いられる、カラーフィルタ側の位相差フィルムAの位相差制御は、主として延伸倍率によって行い、カラーフィルタとは反対側の位相差フィルムBの位相差制御は、延伸温度と膜厚制御により行うことが好ましい。この手段によって位相差を制御した位相差フィルムAおよびBを用いることで、液晶セルと、それを挟持する一対の偏光板とを有する液晶パネルの反りを緩和できる場合が多い。 For example, when using a cellulose ester resin, the retardation control method for these retardation films may include changing the degree of ester substitution or substituent, changing the solvent, adding a retardation control material, adjusting stretching conditions, and the like. it can. The retardation control of the retardation film A on the color filter side used in the liquid crystal display device of the present invention is performed mainly by the stretching magnification, and the retardation control of the retardation film B on the side opposite to the color filter is performed by adjusting the stretching temperature and It is preferable to carry out by controlling the film thickness. By using the retardation films A and B in which the retardation is controlled by this means, it is often possible to alleviate the warpage of a liquid crystal panel having a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell.
 この理由としては、位相差制御の手段によって、フィルムに残る歪みが異なるためと考えられる。即ち、主として延伸倍率によって位相差が制御されたカラーフィルタ側の位相差フィルムAと、主として延伸温度と膜厚制御によって位相差が制御された、カラーフィルタとは反対側の位相差フィルムBとでは、フィルムに残る歪みが異なる。このように、フィルムに残る歪みが互いに異なる位相差フィルムAとBを、液晶セルの両側に、当該液晶セルの反りを打ち消すように配置することで、液晶セルの反りが緩和されるのではないかと推定している。 This is probably because the distortion remaining in the film differs depending on the phase difference control means. That is, the phase difference film A on the color filter side, the phase difference of which is controlled mainly by the stretching ratio, and the phase difference film B, the phase difference of which is controlled mainly by the stretching temperature and the film thickness control, on the side opposite to the color filter. The remaining distortion on the film is different. Thus, the retardation films A and B having different strains remaining in the film are arranged on both sides of the liquid crystal cell so as to cancel the warpage of the liquid crystal cell, so that the warpage of the liquid crystal cell is not alleviated. I guess.
 なお、本発明の液晶表示装置に用いられる位相差フィルムの組成などは、後述する。 The composition of the retardation film used in the liquid crystal display device of the present invention will be described later.
 保護フィルムF1の屈折率について
 第一の偏光板を構成する保護フィルムF1のバックライト側の面における第一の偏光子の透過軸と平行方向の屈折率が、保護フィルムF2(第一の偏光子の液晶セル側の位相差フィルム)の平均屈折率よりも小さく、かつ保護フィルムF3(第二の偏光子の液晶セル側の位相差フィルム)の平均屈折率よりも小さいことも特徴とする(要件c)。
Refractive index of protective film F1 The refractive index in the direction parallel to the transmission axis of the first polarizer on the backlight side surface of the protective film F1 constituting the first polarizing plate is the protective film F2 (first polarizer). It is also characterized by being smaller than the average refractive index of the retardation film on the liquid crystal cell side) and smaller than the average refractive index of the protective film F3 (the retardation film on the liquid crystal cell side of the second polarizer). c).
 「平均屈折率」とは、保護フィルムの所定波長における3軸方向(フィルム面内のx軸方向、それと直交するy軸方向、フィルム面の法線と平行なz軸方向)の屈折率を測定し、それらの平均値として算出される屈折率を示す。 “Average refractive index” refers to the refractive index of the protective film in the three-axis direction (the x-axis direction in the film plane, the y-axis direction perpendicular to the film plane, and the z-axis direction parallel to the normal to the film plane) at a predetermined wavelength. And the refractive index calculated as the average value thereof.
 保護フィルムF1のバックライト側の面における第一の偏光子の透過軸と平行方向の屈折率を、保護フィルムF2および保護フィルムF3(位相差フィルムAおよびB)の平均屈折率よりも小さくすることで、垂直配向型液晶表示装置の透過率(白輝度)を高めることができる。 The refractive index in the direction parallel to the transmission axis of the first polarizer on the backlight side surface of the protective film F1 is made smaller than the average refractive index of the protective film F2 and the protective film F3 (retardation films A and B). Thus, the transmittance (white luminance) of the vertical alignment type liquid crystal display device can be increased.
 また、本発明においては、第一の偏光板を構成する保護フィルムF1(第一の偏光子のバックライト側の保護フィルム)の、第一の偏光子側の面における第一の偏光子の透過軸と平行方向の屈折率をnpとし、バックライト側の面における第一の偏光子の透過軸と平行方向の屈折率をnaとしたとき、npがnaよりも大きいことが好ましい(要件d)。 In the present invention, the first polarizer transmits on the first polarizer side surface of the protective film F1 (the first polarizer backlight side protective film) constituting the first polarizing plate. When the refractive index in the direction parallel to the axis is np and the refractive index in the direction parallel to the transmission axis of the first polarizer on the backlight side surface is na, it is preferable that np is larger than na (requirement d). .
 保護フィルムF1の第一の偏光子の透過軸と平行方向の屈折率が、フィルムの厚さ方向に連続的に変化していることが好ましい。 It is preferable that the refractive index in the direction parallel to the transmission axis of the first polarizer of the protective film F1 continuously changes in the thickness direction of the film.
 なお、屈折率が、フィルムの厚さ方向で連続的に変化しているかどうかは、以下の手順で測定することができる。
 1)当該フィルムをMD方向(遅相軸方向)またはTD方向(進相軸方向)に平行に、スライス面(切断面)が、フィルム面に対して傾斜するようにスライスして、試料フィルムを得る。例えば、TD方向(進相軸方向)に平行に切断して得られるスライス面(切断面)の遅相軸と平行な方向の長さが5mmとなるようにする。
 2)そして、得られた試料フィルムを、レンズ反射率測定機(例えば、オリンパスのレンズ反射率測定機 USPM-RUIII)の試料ステージに置く。そして、試料ステージを一視野ずつフィルムの厚さ方向に相当する方向(MD方向またはTD方向と直交する方向)にスライドさせながら、スライド面の正面方向の反射率を測定する。このようにして、試料フィルムのスライド面の、厚さ方向での反射率の分布を測定できる。それにより、フィルム面内の平均屈折率が、厚さ方向で連続的に変化していることを確認できる。
In addition, it can be measured in the following procedures whether the refractive index is changing continuously in the thickness direction of a film.
1) The film is sliced in parallel with the MD direction (slow axis direction) or TD direction (fast axis direction) so that the slice plane (cut plane) is inclined with respect to the film plane. obtain. For example, the length in the direction parallel to the slow axis of the slice plane (cut plane) obtained by cutting parallel to the TD direction (fast axis direction) is set to 5 mm.
2) Then, the obtained sample film is placed on a sample stage of a lens reflectometer (for example, Olympus lens reflectometer USPM-RUIII). Then, the reflectance in the front direction of the slide surface is measured while sliding the sample stage in a direction corresponding to the thickness direction of the film (direction perpendicular to the MD direction or TD direction) one field of view. In this manner, the reflectance distribution in the thickness direction of the slide surface of the sample film can be measured. Thereby, it can confirm that the average refractive index in a film surface is changing continuously in the thickness direction.
 本発明においては、保護フィルムF1のバックライト側の面(第一の偏光子とは反対側の面)の、第一の偏光子の透過軸と平行方向の屈折率naが、1.350~1.480の範囲内であることが好ましい。 In the present invention, the refractive index na of the surface of the protective film F1 on the backlight side (surface opposite to the first polarizer) in the direction parallel to the transmission axis of the first polarizer is 1.350 to It is preferable to be within the range of 1.480.
 本発明では、保護フィルムF1のバックライト側の面の、第一の偏光子の透過軸と平行方向の屈折率を低くすることが重要である。 In the present invention, it is important to lower the refractive index of the surface on the backlight side of the protective film F1 in the direction parallel to the transmission axis of the first polarizer.
 保護フィルムF1の屈折率を低下させる方法としては、屈折率の小さい樹脂フィルム基材を用いる方法や、低屈折率の添加剤を混ぜる方法が知られているが、それ以外にも様々な方法で行うことができる。 As a method for reducing the refractive index of the protective film F1, a method using a resin film substrate having a low refractive index and a method of mixing an additive having a low refractive index are known, but there are various other methods. It can be carried out.
 例えば、フィルム中に可視光の波長よりも充分に小さい径の空隙を設けることで屈折率を下げることができる。この空隙は、溶融製膜を行う場合、泡を混入させて混錬したり、溶液製膜する場合に乾燥条件を調整して気泡を発生させたりすることによって設けることができる。あるいは、中空微粒子を1次粒子の状態で分散することでも得ることができる。 For example, the refractive index can be lowered by providing a gap having a diameter sufficiently smaller than the wavelength of visible light in the film. This void can be provided by mixing bubbles when kneading melts and kneading bubbles, or by adjusting the drying conditions to form bubbles when forming solution films. Alternatively, it can also be obtained by dispersing hollow fine particles in the form of primary particles.
 溶液製膜で気泡を発生させる場合、ウェブが柔らかい状態で気泡を発生させると、気泡を発生させ易いが気泡が大きくなりやすく、散乱を生じて、LCDの品位を低下させる要因となる場合が多い。そのため、気泡は、フィルムが必要な硬さが得られる状態である、残留溶媒量を2%以下にした後、フィルムの加熱と減圧の片方もしくは両方の処理を行うことで発生させることが好ましい。 When bubbles are generated by solution casting, if bubbles are generated while the web is soft, bubbles are likely to be generated, but the bubbles are likely to become large, causing scattering and often causing deterioration of the LCD quality. . Therefore, it is preferable to generate bubbles by performing one or both of heating and depressurization of the film after reducing the residual solvent amount to 2% or less, which is a state in which the film has the required hardness.
 フィルムの加熱は、フィルムのガラス転移温度より20℃以上高い温度で行うことが好ましく、減圧処理は、0.7気圧より低くすることが好ましい。あるいは、気泡発生の方法として、発泡剤を用いる方法がある。発泡剤による気泡発生は、気泡の径の制御が難しいが、溶媒による気泡発生と同様に、加熱と減圧による制御が好ましい。 The film is preferably heated at a temperature 20 ° C. or more higher than the glass transition temperature of the film, and the decompression treatment is preferably performed at a pressure lower than 0.7 atm. Alternatively, as a method for generating bubbles, there is a method using a foaming agent. The generation of bubbles by the foaming agent is difficult to control the diameter of the bubbles, but the control by heating and decompression is preferable as in the case of generating bubbles by the solvent.
 あるいは、フィルムの製膜方法による低屈折率化も可能である。フィルムの配向性を緩和するような添加剤を加えることで、フィルムの屈折率を素材の平均屈折率よりも下げることが可能であり、さらに、そのような材料を製膜方法の調整により局在化させることで、より効果的に屈折率を下げることが可能である。典型的な例としては、屈折率が、樹脂の屈折率と比較的近い可塑剤を利用する方法がある。 Alternatively, it is possible to reduce the refractive index by a film forming method. By adding an additive that relaxes the orientation of the film, it is possible to lower the refractive index of the film below the average refractive index of the material, and to further localize such material by adjusting the film forming method. By making it, it is possible to lower the refractive index more effectively. A typical example is a method using a plasticizer whose refractive index is relatively close to that of the resin.
 例えば、溶液流延法によって、乾燥過程の速度を調整することで、フィルムの片面側の可塑剤を高濃度にして、フィルムの配向をより積極的に崩すことにより、屈折率を下げることが可能になると考えられる。 For example, by adjusting the speed of the drying process by the solution casting method, the refractive index can be lowered by making the plasticizer on one side of the film a high concentration and breaking the film orientation more actively. It is thought that it becomes.
 なお、屈折率が0.01程度下がることで、前述の垂直配向型液晶表示装置の透過率を、例えば0.1%上げることができ、それはLCDの省電力化や長寿命化に直接つながるため、この効果は非常に大きい。 Note that, by reducing the refractive index by about 0.01, the transmittance of the above-described vertical alignment type liquid crystal display device can be increased by, for example, 0.1%, which directly leads to power saving and longer life of the LCD. This effect is very large.
 保護フィルムF1またはF4について
 偏光子(第一の偏光子または第二の偏光子)の一方の面に、前述の位相差フィルムAまたはBを設けた場合、偏光子の他方の面には、別の位相差フィルムや保護フィルムを用いてもよい。例えば、保護フィルムとしては、市販のセルロースエステルフィルム(例えば、コニカミノルタタック KC8UX、KC4UX、KC5UX、KC8UY、KC4UY、KC12UR、KC8UCR-3、KC8UCR-4、KC8UCR-5、KC8UE、KC4UE、KC4FR-3、KC4FR-4、KC4HR-1、KC8UY-HA、KC8UX-RHA、以上コニカミノルタオプト(株)製)等が好ましく用いられる。また、後述する方法で製膜される保護フィルムも用いることができる。
Protective film F1 or F4 When the above-described retardation film A or B is provided on one surface of a polarizer (first polarizer or second polarizer), the other surface of the polarizer is separately provided. A retardation film or a protective film may be used. For example, as a protective film, commercially available cellulose ester films (for example, Konica Minoltak KC8UX, KC4UX, KC5UX, KC8UY, KC4UY, KC12UR, KC8UCR-3, KC8UCR-4, KC8UCR-5, KC8UE, KC4UE, KC4FR, KC4FR-4, KC4HR-1, KC8UY-HA, KC8UX-RHA, manufactured by Konica Minolta Opto Co., Ltd.) and the like are preferably used. Moreover, the protective film formed into a film by the method mentioned later can also be used.
 偏光板の主たる構成要素である偏光子とは、一定方向の偏波面の光だけを通す素子であり、現在知られている代表的な偏光子は、ポリビニルアルコール系偏光フィルムで、これはポリビニルアルコール系フィルムにヨウ素を染色させたものと二色性染料を染色させたものがある。 A polarizer, which is a main component of a polarizing plate, is an element that allows only light of a plane of polarization in a certain direction to pass. A typical polarizer currently known is a polyvinyl alcohol-based polarizing film, which is polyvinyl alcohol. There are one in which iodine is dyed on a system film and one in which dichroic dye is dyed.
 偏光子は、ポリビニルアルコール水溶液を製膜し、これを一軸延伸させて染色するか、染色した後一軸延伸してから、好ましくはホウ素化合物で耐久性処理を行ったものが用いられている。 The polarizer is formed by forming a polyvinyl alcohol aqueous solution into a film and dyeing the film by uniaxial stretching or dyeing or uniaxially stretching, and then performing a durability treatment with a boron compound.
 偏光板は一般的な方法で作製することができる。本発明に用いられる保護フィルムの裏面側に粘着層を設け、沃素溶液中に浸漬延伸して作製した偏光子の少なくとも一方の面に、貼り合わせることが好ましい。 The polarizing plate can be produced by a general method. It is preferable that an adhesive layer is provided on the back side of the protective film used in the present invention, and is bonded to at least one surface of a polarizer produced by immersion and stretching in an iodine solution.
 上記粘着層に用いられる粘着剤としては、粘着層の少なくとも一部分において25℃での貯蔵弾性率が1.0×10~1.0×10Paの範囲である粘着剤が用いられていることが好ましく、粘着剤を塗布し、貼り合わせた後に種々の化学反応により高分子量体又は架橋構造を形成する硬化型粘着剤が好適に用いられる。 As the pressure-sensitive adhesive used in the pressure-sensitive adhesive layer, a pressure-sensitive adhesive having a storage elastic modulus at 25 ° C. in the range of 1.0 × 10 4 to 1.0 × 10 9 Pa in at least a part of the pressure-sensitive adhesive layer is used. It is preferable to use a curable pressure-sensitive adhesive that forms a high molecular weight body or a crosslinked structure by various chemical reactions after the pressure-sensitive adhesive is applied and bonded.
 具体例としては、例えば、ウレタン系粘着剤、エポキシ系粘着剤、水性高分子-イソシアネート系粘着剤、熱硬化型アクリル粘着剤等の硬化型粘着剤、湿気硬化ウレタン粘着剤、ポリエーテルメタクリレート型、エステル系メタクリレート型、酸化型ポリエーテルメタクリレート等の嫌気性粘着剤、シアノアクリレート系の瞬間粘着剤、アクリレートとペルオキシド系の二液型瞬間粘着剤等が挙げられる。 Specific examples include, for example, urethane adhesives, epoxy adhesives, aqueous polymer-isocyanate adhesives, curable adhesives such as thermosetting acrylic adhesives, moisture-curing urethane adhesives, polyether methacrylate types, Examples include anaerobic pressure-sensitive adhesives such as ester-based methacrylate types and oxidized polyether methacrylates, cyanoacrylate-based instantaneous pressure-sensitive adhesives, and acrylate-peroxide-based two-pack type instantaneous pressure-sensitive adhesives.
 上記粘着剤としては一液型であっても良いし、使用前に二液以上を混合して使用する型であっても良い。 The above-mentioned pressure-sensitive adhesive may be a one-component type or a type in which two or more components are mixed before use.
 また、上記粘着剤は有機溶剤を媒体とする溶剤系であってもよいし、水を主成分とする媒体であるエマルジョン型、コロイド分散液型、水溶液型などの水系であってもよいし、無溶剤型であってもよい。上記粘着剤液の濃度は、粘着後の膜厚、塗布方法、塗布条件等により適宜決定されれば良く、通常は0.1~50質量%である。 The pressure-sensitive adhesive may be a solvent system using an organic solvent as a medium, or may be an aqueous system such as an emulsion type, a colloidal dispersion type, or an aqueous solution type that is a medium containing water as a main component. It may be a solventless type. The concentration of the pressure-sensitive adhesive liquid may be appropriately determined depending on the film thickness after adhesion, the coating method, the coating conditions, and the like, and is usually 0.1 to 50% by mass.
 保護フィルムF1~F4の組成について
 本発明に用いられる保護フィルムF1~F4(位相差フィルムAおよびBも含む)は、熱可塑性樹脂を含むことが好ましい。ここで、「熱可塑性樹脂」とは、ガラス転移温度又は融点まで加熱することによって軟らかくなり、目的の形に成形できる樹脂のことをいう。
About Composition of Protective Films F1 to F4 The protective films F1 to F4 (including the retardation films A and B) used in the present invention preferably contain a thermoplastic resin. Here, the “thermoplastic resin” refers to a resin that becomes soft when heated to the glass transition temperature or melting point and can be molded into a desired shape.
 熱可塑性樹脂としては、一般的汎用樹脂としては、セルロースエステル、ポリエチレン(PE)、高密度ポリエチレン、中密度ポリエチレン、低密度ポリエチレン、ポリプロピレン(PP)、ポリ塩化ビニル(PVC)、ポリ塩化ビニリデン、ポリスチレン(PS)、ポリ酢酸ビニル(PVAc)、テフロン(登録商標)(ポリテトラフルオロエチレン、PTFE)、ABS樹脂(アクリロニトリルブタジエンスチレン樹脂)、AS樹脂、アクリル樹脂(PMMA)等があり、溶媒に可溶なものを適宜溶解して本発明の方法で処理することが好ましい。 General thermoplastic resins include cellulose esters, polyethylene (PE), high density polyethylene, medium density polyethylene, low density polyethylene, polypropylene (PP), polyvinyl chloride (PVC), polyvinylidene chloride, polystyrene. (PS), polyvinyl acetate (PVAc), Teflon (registered trademark) (polytetrafluoroethylene, PTFE), ABS resin (acrylonitrile butadiene styrene resin), AS resin, acrylic resin (PMMA), etc., soluble in solvents It is preferable to dissolve the material appropriately and treat it by the method of the present invention.
 また、強度や壊れにくさを特に要求される場合、ポリアミド(PA)、ナイロン、ポリアセタール(POM)、ポリカーボネート(PC)、変性ポリフェニレンエーテル(m-PPE、変性PPE、PPO)、ポリブチレンテレフタレート(PBT)、ポリエチレンテレフタレート(PET)、グラスファイバー強化ポリエチレンテレフタレート(GF-PET)、環状ポリオレフィン(COP)等を用いることができる。 When strength and resistance to breakage are particularly required, polyamide (PA), nylon, polyacetal (POM), polycarbonate (PC), modified polyphenylene ether (m-PPE, modified PPE, PPO), polybutylene terephthalate (PBT) ), Polyethylene terephthalate (PET), glass fiber reinforced polyethylene terephthalate (GF-PET), cyclic polyolefin (COP), and the like.
 さらに高い熱変形温度と長期使用できる特性を要求される場合は、ポリフェニレンスルファイド(PPS)、ポリテトラフロロエチレン(PTFE)、ポリスルホン、ポリエーテルサルフォン、非晶ポリアリレート、液晶ポリマー、ポリエーテルエーテルケトン、熱可塑性ポリイミド(PI)、ポリアミドイミド(PAI)等を用いることができる。 If higher heat distortion temperature and long-term use characteristics are required, polyphenylene sulfide (PPS), polytetrafluoroethylene (PTFE), polysulfone, polyethersulfone, amorphous polyarylate, liquid crystal polymer, polyetherether A ketone, thermoplastic polyimide (PI), polyamideimide (PAI), or the like can be used.
 なお、本発明の用途にそって樹脂の種類、分子量の組み合わせを行うことが可能である。 In addition, it is possible to combine the kind of resin and molecular weight according to the use of the present invention.
 保護フィルムの厚さは、用途に応じて、適宜、適当な厚さを選定することが好ましい。厚さの上限は、特に限定される物ではないが、溶液製膜法でフィルム化する場合は、塗布性、発泡、溶媒乾燥などの観点から、上限は150μm程度である。 As for the thickness of the protective film, it is preferable to select an appropriate thickness according to the application. The upper limit of the thickness is not particularly limited, but in the case of forming a film by a solution casting method, the upper limit is about 150 μm from the viewpoint of applicability, foaming, solvent drying, and the like.
 保護フィルムは、その全光線透過率が90%以上であることが好ましく、より好ましくは93%以上である。また、現実的な上限としては、99%程度である。かかる全光線透過率にて表される優れた透明性を達成するには、可視光を吸収する添加剤や共重合成分を導入しないようにすることや、ポリマー中の異物を高精度濾過により除去し、フィルム内部の光の拡散や吸収を低減させることが有効である。 The protective film preferably has a total light transmittance of 90% or more, more preferably 93% or more. Moreover, as a realistic upper limit, it is about 99%. In order to achieve excellent transparency expressed by such total light transmittance, it is necessary not to introduce additives and copolymerization components that absorb visible light, or to remove foreign substances in the polymer by high-precision filtration. It is effective to reduce the diffusion and absorption of light inside the film.
 以下、本発明において、特に好適な樹脂について詳細な説明をする。 Hereinafter, a particularly suitable resin in the present invention will be described in detail.
 <セルロースエステル樹脂>
 本発明に用いられる保護フィルムに用いることができるセルロースエステル樹脂は、セルロース(ジ、トリ)アセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネート、セルロースアセテートブチレート、セルロースアセテートフタレート、及びセルロースフタレートから選ばれる少なくとも一種であることが好ましい。
<Cellulose ester resin>
Cellulose ester resins that can be used in the protective film used in the present invention are cellulose (di, tri) acetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, cellulose acetate butyrate, cellulose acetate phthalate, and It is preferably at least one selected from cellulose phthalates.
 これらの中で特に好ましいセルロースエステルは、セルローストリアセテート、セルロースプロピオネート、セルロースブチレート、セルロースアセテートプロピオネートやセルロースアセテートブチレートが挙げられる。 Among these, particularly preferred cellulose esters include cellulose triacetate, cellulose propionate, cellulose butyrate, cellulose acetate propionate, and cellulose acetate butyrate.
 混合脂肪酸エステルの置換度として、炭素原子数2~4のアシル基を置換基として有している場合、アセチル基の置換度をXとし、プロピオニル基又はブチリル基の置換度をYとした時、下記式(i)及び(ii)を同時に満たすセルロースエステルを含むセルロース樹脂であることが好ましい。 As the substitution degree of the mixed fatty acid ester, when an acyl group having 2 to 4 carbon atoms is used as a substituent, the substitution degree of the acetyl group is X, and the substitution degree of the propionyl group or butyryl group is Y. It is preferable that it is a cellulose resin containing the cellulose ester which satisfy | fills following formula (i) and (ii) simultaneously.
 式(i)  1.5≦X+Y≦3.0
 式(ii)  0≦X≦2.5
 さらに、本発明で用いられるセルロースエステルは、重量平均分子量Mw/数平均分子量Mn比が1.5~5.5のものが好ましく用いられ、特に好ましくは2.0~5.0であり、さらに好ましくは2.5~5.0であり、さらに好ましくは3.0~5.0のセルロースエステルが好ましく用いられる。
Formula (i) 1.5 ≦ X + Y ≦ 3.0
Formula (ii) 0 ≦ X ≦ 2.5
Further, the cellulose ester used in the present invention preferably has a weight average molecular weight Mw / number average molecular weight Mn ratio of 1.5 to 5.5, particularly preferably 2.0 to 5.0, The cellulose ester is preferably 2.5 to 5.0, more preferably 3.0 to 5.0.
 本発明で用いられるセルロースエステルの原料セルロースは、木材パルプでも綿花リンターでもよく、木材パルプは針葉樹でも広葉樹でもよいが、針葉樹の方がより好ましい。製膜の際の剥離性の点からは綿花リンターが好ましく用いられる。これらから作られたセルロースエステルは適宜混合して、或いは単独で使用することができる。 The raw material cellulose of the cellulose ester used in the present invention may be wood pulp or cotton linter, and the wood pulp may be softwood or hardwood, but softwood is more preferable. A cotton linter is preferably used from the viewpoint of peelability during film formation. The cellulose ester made from these can be mixed suitably or can be used independently.
 例えば、綿花リンター由来セルロースエステル:木材パルプ(針葉樹)由来セルロースエステル:木材パルプ(広葉樹)由来セルロースエステルの比率が100:0:0、90:10:0、85:15:0、50:50:0、20:80:0、10:90:0、0:100:0、0:0:100、80:10:10、85:0:15、40:30:30で用いることができる。 For example, the ratio of cellulose ester derived from cellulose linter: cellulose ester derived from wood pulp (coniferous): cellulose ester derived from wood pulp (hardwood) is 100: 0: 0, 90: 10: 0, 85: 15: 0, 50:50: 0, 20: 80: 0, 10: 90: 0, 0: 100: 0, 0: 0: 100, 80:10:10, 85: 0: 15, 40:30:30.
 本発明において、セルロースエステル樹脂は、20mlの純水(電気伝導度0.1μS/cm以下、pH6.8)に1g投入し、25℃、1hr、窒素雰囲気下にて攪拌した時のpHが6~7、電気伝導度が1~100μS/cmであることが好ましい。 In the present invention, 1 g of cellulose ester resin is added to 20 ml of pure water (electric conductivity 0.1 μS / cm or less, pH 6.8), and the pH is 6 when stirred in a nitrogen atmosphere at 25 ° C. for 1 hr. It is preferable that the electric conductivity is 1 to 100 μS / cm.
 <糖エステル化合物>
 本発明においては、セルロースエステル樹脂とともに、ピラノース構造又はフラノース構造の少なくとも一種を1個以上12個以下有しその構造のOH基のすべてもしくは一部をエステル化したエステル化合物を含むことも好ましい。
<Sugar ester compound>
In the present invention, it is also preferable to include an ester compound in which at least one pyranose structure or furanose structure is one or more and twelve or less and all or part of the OH groups of the structure are esterified together with the cellulose ester resin.
 エステル化の割合としては、ピラノース構造又はフラノース構造内に存在するOH基の70%以上であることが好ましい。 The proportion of esterification is preferably 70% or more of the OH groups present in the pyranose structure or furanose structure.
 本発明に用いられるエステル化合物の例としては、例えば、以下のようなものを挙げることができるが、本発明はこれらに限定されるものではない。 Examples of ester compounds used in the present invention include the following, but the present invention is not limited to these.
 グルコース、ガラクトース、マンノース、フルクトース、キシロース、あるいはアラビノース、ラクトース、スクロース、ニストース、1F-フラクトシルニストース、スタキオース、マルチトール、ラクチトール、ラクチュロース、セロビオース、マルトース、セロトリオース、マルトトリオース、ラフィノースあるいはケストースなどが挙げられる。 Glucose, galactose, mannose, fructose, xylose, or arabinose, lactose, sucrose, nystose, 1F-fructosyl nystose, stachyose, maltitol, lactitol, lactulose, cellobiose, maltose, cellotriose, maltotriose, raffinose or kestose Can be mentioned.
 この他、ゲンチオビオース、ゲンチオトリオース、ゲンチオテトラオース、キシロトリオース、ガラクトシルスクロースなども挙げられる。 Other examples include gentiobiose, gentiotriose, gentiotetraose, xylotriose, and galactosyl sucrose.
 これらの化合物の中で、特にピラノース構造とフラノース構造を両方有する化合物が好ましい。 Among these compounds, compounds having both a pyranose structure and a furanose structure are particularly preferable.
 例としては、スクロース、ケストース、ニストース、1F-フラクトシルニストース、スタキオースなどが好ましく、更に好ましくは、スクロースである。 As examples, sucrose, kestose, nystose, 1F-fructosyl nystose, stachyose and the like are preferable, and sucrose is more preferable.
 ピラノース構造又はフラノース構造中のOH基のすべてもしくは一部をエステル化するのに用いられるモノカルボン酸としては、特に制限はなく、公知の脂肪族モノカルボン酸、脂環族モノカルボン酸、芳香族モノカルボン酸等を用いることができる。用いられるカルボン酸は一種類でもよいし、二種以上の混合であってもよい。 The monocarboxylic acid used for esterifying all or part of the OH group in the pyranose structure or furanose structure is not particularly limited, and is a known aliphatic monocarboxylic acid, alicyclic monocarboxylic acid, aromatic A monocarboxylic acid or the like can be used. The carboxylic acid used may be one kind or a mixture of two or more kinds.
 好ましい脂肪族モノカルボン酸としては、酢酸、プロピオン酸、酪酸、イソ酪酸、吉草酸、カプロン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリン酸、2-エチル-ヘキサンカルボン酸、ウンデシル酸、ラウリン酸、トリデシル酸、ミリスチン酸、ペンタデシル酸、パルミチン酸、ヘプタデシル酸、ステアリン酸、ノナデカン酸、アラキン酸、ベヘン酸、リグノセリン酸、セロチン酸、ヘプタコサン酸、モンタン酸、メリシン酸、ラクセル酸等の飽和脂肪酸、ウンデシレン酸、オレイン酸、ソルビン酸、リノール酸、リノレン酸、アラキドン酸、オクテン酸等の不飽和脂肪酸等を挙げることができる。 Preferred aliphatic monocarboxylic acids include acetic acid, propionic acid, butyric acid, isobutyric acid, valeric acid, caproic acid, enanthic acid, caprylic acid, pelargonic acid, capric acid, 2-ethyl-hexanecarboxylic acid, undecylic acid, lauric acid , Saturated fatty acids such as tridecylic acid, myristic acid, pentadecylic acid, palmitic acid, heptadecylic acid, stearic acid, nonadecanoic acid, arachidic acid, behenic acid, lignoceric acid, serotic acid, heptacosanoic acid, montanic acid, melicic acid, and laccelic acid, Examples include unsaturated fatty acids such as undecylenic acid, oleic acid, sorbic acid, linoleic acid, linolenic acid, arachidonic acid and octenoic acid.
 好ましい脂環族モノカルボン酸の例としては、酢酸、シクロペンタンカルボン酸、シクロヘキサンカルボン酸、シクロオクタンカルボン酸、又はそれらの誘導体を挙げることができる。 Examples of preferable alicyclic monocarboxylic acids include acetic acid, cyclopentanecarboxylic acid, cyclohexanecarboxylic acid, cyclooctanecarboxylic acid, and derivatives thereof.
 好ましい芳香族モノカルボン酸の例としては、安息香酸、トルイル酸等の安息香酸のベンゼン環にアルキル基、アルコキシ基を導入した芳香族モノカルボン酸、ケイ皮酸、ベンジル酸、ビフェニルカルボン酸、ナフタリンカルボン酸、テトラリンカルボン酸等のベンゼン環を二個以上有する芳香族モノカルボン酸、又はそれらの誘導体を挙げることができ、より、具体的には、キシリル酸、ヘメリト酸、メシチレン酸、プレーニチル酸、γ-イソジュリル酸、ジュリル酸、メシト酸、α-イソジュリル酸、クミン酸、α-トルイル酸、ヒドロアトロパ酸、アトロパ酸、ヒドロケイ皮酸、サリチル酸、o-アニス酸、m-アニス酸、p-アニス酸、クレオソート酸、o-ホモサリチル酸、m-ホモサリチル酸、p-ホモサリチル酸、o-ピロカテク酸、β-レソルシル酸、バニリン酸、イソバニリン酸、ベラトルム酸、o-ベラトルム酸、没食子酸、アサロン酸、マンデル酸、ホモアニス酸、ホモバニリン酸、ホモベラトルム酸、o-ホモベラトルム酸、フタロン酸、p-クマル酸を挙げることができるが、特に安息香酸が好ましい。 Examples of preferred aromatic monocarboxylic acids include aromatic monocarboxylic acids having an alkyl group or alkoxy group introduced into the benzene ring of benzoic acid such as benzoic acid and toluic acid, cinnamic acid, benzylic acid, biphenylcarboxylic acid, and naphthalene. Examples thereof include aromatic monocarboxylic acids having two or more benzene rings such as carboxylic acid and tetralincarboxylic acid, or derivatives thereof. More specifically, xylyl acid, hemelic acid, mesitylene acid, prenicylic acid, γ-isoduric acid, jurylic acid, mesitic acid, α-isoduric acid, cumic acid, α-toluic acid, hydroatropic acid, atropic acid, hydrocinnamic acid, salicylic acid, o-anisic acid, m-anisic acid, p-anisic acid , Creosote acid, o-homosalicylic acid, m-homosalicylic acid, p-homosalicylic acid, o-pyroca Succinic acid, β-resorcylic acid, vanillic acid, isovanillic acid, veratromic acid, o-veratrumic acid, gallic acid, asaronic acid, mandelic acid, homoanisic acid, homovanillic acid, homoveratrumic acid, o-homoveratrumic acid, phthalonic acid, p- Although coumaric acid can be mentioned, benzoic acid is particularly preferable.
 オリゴ糖のエステル化合物を、本発明に係るピラノース構造又はフラノース構造の少なくとも一種を1~12個を有する化合物として適用できる。 Oligosaccharide ester compounds can be applied as compounds having 1 to 12 of at least one of the pyranose structure or furanose structure according to the present invention.
 オリゴ糖は、澱粉、ショ糖等にアミラーゼ等の酵素を作用させて製造されるもので、本発明に適用できるオリゴ糖としては、例えば、マルトオリゴ糖、イソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、キシロオリゴ糖が挙げられる。 Oligosaccharides are produced by allowing an enzyme such as amylase to act on starch, sucrose, etc. Examples of oligosaccharides that can be applied to the present invention include maltooligosaccharides, isomaltooligosaccharides, fructooligosaccharides, galactooligosaccharides, and xylooligos. Sugar.
 また、前記エステル化合物は、下記一般式(A)で表されるピラノース構造又はフラノース構造の少なくとも一種を1個以上12個以下縮合した化合物である。ただし、R11~R15、R21~R25は、炭素数2~22のアシル基又は水素原子を、m、nはそれぞれ0~12の整数、m+nは1~12の整数を表す。 Moreover, the said ester compound is a compound which condensed 1 or more and 12 or less of at least 1 type of the pyranose structure or furanose structure represented with the following general formula (A). R 11 to R 15 and R 21 to R 25 each represents an acyl group having 2 to 22 carbon atoms or a hydrogen atom, m and n each represents an integer of 0 to 12, and m + n represents an integer of 1 to 12.
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 R11~R15、R21~R25は、ベンゾイル基、水素原子であることが好ましい。ベンゾイル基は更に置換基を有していてもよく、例えばアルキル基、アルケニル基、アルコキシル基、フェニル基が挙げられ、更にこれらのアルキル基、アルケニル基、フェニル基は置換基を有していてもよい。オリゴ糖も本発明に係るエステル化合物と同様な方法で製造することができる。 R 11 to R 15 and R 21 to R 25 are preferably a benzoyl group or a hydrogen atom. The benzoyl group may further have a substituent, for example, an alkyl group, an alkenyl group, an alkoxyl group, and a phenyl group. Further, these alkyl group, alkenyl group, and phenyl group may have a substituent. Good. Oligosaccharides can also be produced in the same manner as the ester compound according to the present invention.
 以下に、本発明に用いられるエステル化合物の具体例を挙げるが、本発明はこれに限定されるものではない。
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Although the specific example of the ester compound used for this invention below is given, this invention is not limited to this.
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
 本発明に用いられる保護フィルムは、位相差値の変動を抑制して、表示品位を安定化する為に、前述の糖エステル化合物を、保護フィルムの0.5~30質量%含むことが好ましく、特には、5~30質量%含むことが好ましい。 The protective film used in the present invention preferably contains the aforementioned sugar ester compound in an amount of 0.5 to 30% by mass of the protective film in order to stabilize the display quality by suppressing the fluctuation of the retardation value. In particular, the content is preferably 5 to 30% by mass.
 <アクリル樹脂>
 本発明に用いられる保護フィルムは、アクリル樹脂を含有していてもよい。アクリル樹脂には、メタクリル樹脂も含まれる。樹脂としては特に制限されるものではないが、メチルメタクリレート単位50~99質量%、及びこれと共重合可能な他の単量体単位1~50質量%からなるものが好ましい。
<Acrylic resin>
The protective film used in the present invention may contain an acrylic resin. Acrylic resin also includes methacrylic resin. The resin is not particularly limited, but a resin comprising 50 to 99% by mass of methyl methacrylate units and 1 to 50% by mass of other monomer units copolymerizable therewith is preferable.
 共重合可能な他の単量体としては、アルキル数の炭素数が2~18のアルキルメタクリレート、アルキル数の炭素数が1~18のアルキルアクリレート、アクリル酸、メタクリル酸等のα,β-不飽和酸、マレイン酸、フマル酸、イタコン酸等の不飽和基含有二価カルボン酸、スチレン、α-メチルスチレン、核置換スチレン等の芳香族ビニル化合物、アクリロニトリル、メタクリロニトリル等のα,β-不飽和ニトリル、無水マレイン酸、マレイミド、N-置換マレイミド、グルタル酸無水物等が挙げられ、これらは単独で、あるいは二種以上を併用して用いることができる。 Examples of other copolymerizable monomers include alkyl methacrylates having 2 to 18 alkyl carbon atoms, alkyl acrylates having 1 to 18 carbon atoms, alkyl acrylates such as acrylic acid and methacrylic acid. Saturated acids, maleic acids, fumaric acids, divalent carboxylic acids containing unsaturated groups such as itaconic acid, aromatic vinyl compounds such as styrene, α-methylstyrene, and nucleus-substituted styrene, α, β- such as acrylonitrile, methacrylonitrile, etc. Examples thereof include unsaturated nitrile, maleic anhydride, maleimide, N-substituted maleimide, glutaric anhydride, and the like. These can be used alone or in combination of two or more.
 これらの中でも、メチルアクリレート、エチルアクリレート、n-プロピルアクリレート、n-ブチルアクリレート、s-ブチルアクリレート、2-エチルヘキシルアクリレート等が好ましく、メチルアクリレートやn-ブチルアクリレートが特に好ましく用いられる。 Among these, methyl acrylate, ethyl acrylate, n-propyl acrylate, n-butyl acrylate, s-butyl acrylate, 2-ethylhexyl acrylate and the like are preferable, and methyl acrylate and n-butyl acrylate are particularly preferable.
 アクリル樹脂としては、市販のものも使用することができる。例えば、デルペット60N、80N(旭化成ケミカルズ(株)製)、ダイヤナールBR52、BR80、BR83、BR85、BR88(三菱レイヨン(株)製)、KT75(電気化学工業(株)製)等が挙げられる。 Commercially available acrylic resins can also be used. For example, Delpet 60N, 80N (Asahi Kasei Chemicals Co., Ltd.), Dianal BR52, BR80, BR83, BR85, BR88 (Mitsubishi Rayon Co., Ltd.), KT75 (Electrochemical Industry Co., Ltd.) and the like can be mentioned. .
 <環状オレフィン樹脂>
 本発明に用いられる保護フィルムは、環状オレフィン樹脂を含有していてもよい。環状オレフィン樹脂としては、ノルボルネン系樹脂、単環の環状オレフィン系樹脂、環状共役ジエン系樹脂、ビニル脂環式炭化水素系樹脂、及び、これらの水素化物等を挙げることができる。これらの中で、ノルボルネン系樹脂は、透明性と成形性が良好なため、好適に用いることができる。
<Cyclic olefin resin>
The protective film used in the present invention may contain a cyclic olefin resin. Examples of the cyclic olefin resin include norbornene resins, monocyclic olefin resins, cyclic conjugated diene resins, vinyl alicyclic hydrocarbon resins, and hydrides thereof. Among these, norbornene-based resins can be suitably used because of their good transparency and moldability.
 ノルボルネン系樹脂としては、例えば、ノルボルネン構造を有する単量体の開環重合体若しくはノルボルネン構造を有する単量体と他の単量体との開環共重合体又はそれらの水素化物、ノルボルネン構造を有する単量体の付加重合体若しくはノルボルネン構造を有する単量体と他の単量体との付加共重合体又はそれらの水素化物等を挙げることができる。 Examples of the norbornene-based resin include a ring-opening polymer of a monomer having a norbornene structure, a ring-opening copolymer of a monomer having a norbornene structure and another monomer, a hydride thereof, and a norbornene structure. An addition polymer of a monomer having a monomer, an addition copolymer of a monomer having a norbornene structure and another monomer, or a hydride thereof.
 これらの中で、ノルボルネン構造を有する単量体の開環(共)重合体水素化物は、透明性、成形性、耐熱性、低吸湿性、寸法安定性、軽量性などの観点から、特に好適に用いることができる。 Among these, a ring-opening (co) polymer hydride of a monomer having a norbornene structure is particularly suitable from the viewpoints of transparency, moldability, heat resistance, low hygroscopicity, dimensional stability, lightness, and the like. Can be used.
 ノルボルネン構造を有する単量体としては、ビシクロ[2.2.1]ヘプト-2-エン(慣用名:ノルボルネン)、トリシクロ[4.3.0.12,5]デカ-3,7-ジエン(慣用名:ジシクロペンタジエン)、7,8-ベンゾトリシクロ[4.3.0.12,5]デカ-3-エン(慣用名:メタノテトラヒドロフルオレン)、テトラシクロ[4.4.0.12,5.17,10]ドデカ-3-エン(慣用名:テトラシクロドデセン)、及びこれらの化合物の誘導体(例えば、環に置換基を有するもの)などを挙げることができる。ここで、置換基としては、例えばアルキル基、アルキレン基、極性基などを挙げることができる。また、これらの置換基は、同一又は相異なって複数個が環に結合していてもよい。ノルボルネン構造を有する単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。 As monomers having a norbornene structure, bicyclo [2.2.1] hept-2-ene (common name: norbornene), tricyclo [4.3.0.12,5] deca-3,7-diene ( Common name: dicyclopentadiene), 7,8-benzotricyclo [4.3.12,5] dec-3-ene (common name: methanotetrahydrofluorene), tetracyclo [4.4.0.12, 5.17,10] dodec-3-ene (common name: tetracyclododecene) and derivatives of these compounds (for example, those having a substituent in the ring). Here, examples of the substituent include an alkyl group, an alkylene group, and a polar group. In addition, these substituents may be the same or different and a plurality may be bonded to the ring. Monomers having a norbornene structure can be used singly or in combination of two or more.
 極性基の種類としては、ヘテロ原子、又はヘテロ原子を有する原子団などが挙げられる。ヘテロ原子としては、例えば、酸素原子、窒素原子、硫黄原子、ケイ素原子、ハロゲン原子などが挙げられる。極性基の具体例としては、カルボキシル基、カルボニルオキシカルボニル基、エポキシ基、ヒドロキシル基、オキシ基、エステル基、シラノール基、シリル基、アミノ基、ニトリル基、スルホン基などが挙げられる。 Examples of the polar group include heteroatoms or atomic groups having heteroatoms. Examples of the hetero atom include an oxygen atom, a nitrogen atom, a sulfur atom, a silicon atom, and a halogen atom. Specific examples of the polar group include a carboxyl group, a carbonyloxycarbonyl group, an epoxy group, a hydroxyl group, an oxy group, an ester group, a silanol group, a silyl group, an amino group, a nitrile group, and a sulfone group.
 ノルボルネン構造を有する単量体と開環共重合可能な他の単量体としては、シクロヘキセン、シクロヘプテン、シクロオクテンなどのモノ環状オレフィン類及びその誘導体、シクロヘキサジエン、シクロヘプタジエンなどの環状共役ジエン及びその誘導体などが挙げられる。 Other monomers capable of ring-opening copolymerization with monomers having a norbornene structure include monocyclic olefins such as cyclohexene, cycloheptene, and cyclooctene and derivatives thereof, cyclic conjugated dienes such as cyclohexadiene, cycloheptadiene, and the like. And derivatives thereof.
 ノルボルネン構造を有する単量体の開環重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との開環共重合体は、単量体を公知の開環重合触媒の存在下に(共)重合することにより得ることができる。 A ring-opening polymer of a monomer having a norbornene structure and a ring-opening copolymer of a monomer having a norbornene structure and another monomer copolymerizable with the monomer have a known ring-opening polymerization catalyst. It can be obtained by (co) polymerization in the presence.
 ノルボルネン構造を有する単量体と付加共重合可能な他の単量体としては、例えば、エチレン、プロピレン、1-ブテンなどの炭素数2~20のα-オレフィン及びこれらの誘導体;シクロブテン、シクロペンテン、シクロヘキセンなどのシクロオレフィン及びこれらの誘導体;1,4-ヘキサジエン、4-メチル-1,4-ヘキサジエン、5-メチル-1,4-ヘキサジエンなどの非共役ジエンなどが挙げられる。これらの単量体は一種単独で、あるいは二種以上を組み合わせて用いることができる。これらの中でも、α-オレフィンが好ましく、エチレンがより好ましい。 Examples of other monomers that can be addition-copolymerized with a monomer having a norbornene structure include, for example, α-olefins having 2 to 20 carbon atoms such as ethylene, propylene, and 1-butene, and derivatives thereof; cyclobutene, cyclopentene, Examples thereof include cycloolefins such as cyclohexene and derivatives thereof; non-conjugated dienes such as 1,4-hexadiene, 4-methyl-1,4-hexadiene, and 5-methyl-1,4-hexadiene. These monomers can be used alone or in combination of two or more. Among these, α-olefin is preferable, and ethylene is more preferable.
 ノルボルネン構造を有する単量体の付加重合体及びノルボルネン構造を有する単量体と共重合可能な他の単量体との付加共重合体は、単量体を公知の付加重合触媒の存在下に重合することにより得ることができる。 An addition polymer of a monomer having a norbornene structure and an addition copolymer of another monomer copolymerizable with a monomer having a norbornene structure can be used in the presence of a known addition polymerization catalyst. It can be obtained by polymerization.
 ノルボルネン構造を有する単量体の開環重合体の水素添加物、ノルボルネン構造を有する単量体とこれと開環共重合可能なその他の単量体との開環共重合体の水素添加物、ノルボルネン構造を有する単量体の付加重合体の水素添加物、及びノルボルネン構造を有する単量体とこれと付加共重合可能なその他の単量体との付加共重合体の水素添加物は、これらの重合体の溶液に、ニッケル、パラジウムなどの遷移金属を含む公知の水素添加触媒を添加し、炭素-炭素不飽和結合を好ましくは90%以上水素添加することによって得ることができる。 A hydrogenated product of a ring-opening polymer of a monomer having a norbornene structure, a hydrogenated product of a ring-opening copolymer of a monomer having a norbornene structure and another monomer capable of ring-opening copolymerization thereof, Hydrogenated products of addition polymers of monomers having a norbornene structure, and hydrogenated products of addition copolymers of monomers having a norbornene structure and other monomers capable of addition copolymerization with these A known hydrogenation catalyst containing a transition metal such as nickel or palladium is added to the polymer solution, and the carbon-carbon unsaturated bond is preferably hydrogenated by 90% or more.
 ノルボルネン系樹脂の中でも、繰り返し単位として、X:ビシクロ[3.3.0]オクタン-2,4-ジイル-エチレン構造と、Y:トリシクロ[4.3.0.12,5]デカン-7,9-ジイル-エチレン構造とを有し、これらの繰り返し単位の含有量が、ノルボルネン系樹脂の繰り返し単位全体に対して90質量%以上であり、かつ、Xの含有割合とYの含有割合との比が、X:Yの質量比で100:0~40:60であるものが好ましい。このような樹脂を用いることにより、長期的に寸法変化がなく、光学特性の安定性に優れる保護フィルム(光学フィルム)を得ることができる。 Among norbornene-based resins, as a repeating unit, X: bicyclo [3.3.0] octane-2,4-diyl-ethylene structure and Y: tricyclo [4.3.0.12,5] decane-7, 9-diyl-ethylene structure, the content of these repeating units is 90% by mass or more with respect to the entire repeating units of the norbornene resin, and the content ratio of X and the content ratio of Y The ratio is preferably 100: 0 to 40:60 in terms of mass ratio of X: Y. By using such a resin, it is possible to obtain a protective film (optical film) having no dimensional change in the long term and excellent optical property stability.
 本発明に用いる環状オレフィン樹脂の分子量は使用目的に応じて適宜選定される。溶媒としてシクロヘキサン(重合体樹脂が溶解しない場合はトルエン)を用いるゲル・パーミエーション・クロマトグラフィーで測定したポリイソプレン又はポリスチレン換算の重量平均分子量(Mw)で、通常20,000~150,000である。好ましくは25,000~100,000、より好ましくは30,000~80,000である。重量平均分子量がこのような範囲にあるときに、フィルムの機械的強度及び成型加工性が高度にバランスされ好適である。 The molecular weight of the cyclic olefin resin used in the present invention is appropriately selected according to the purpose of use. Polyisoprene or polystyrene-equivalent weight average molecular weight (Mw) measured by gel permeation chromatography using cyclohexane (toluene if the polymer resin does not dissolve) as a solvent, usually 20,000 to 150,000. . It is preferably 25,000 to 100,000, more preferably 30,000 to 80,000. When the weight average molecular weight is in such a range, the mechanical strength and molding processability of the film are highly balanced and suitable.
 環状オレフィン樹脂のガラス転移温度は、使用目的に応じて適宜選択されればよい。耐久性及び延伸加工性の観点から、好ましくは130~160℃、より好ましくは135~150℃の範囲である。 The glass transition temperature of the cyclic olefin resin may be appropriately selected according to the purpose of use. From the viewpoint of durability and stretchability, it is preferably in the range of 130 to 160 ° C, more preferably 135 to 150 ° C.
 環状オレフィン樹脂の分子量分布(重量平均分子量(Mw)/数平均分子量(Mn))は、緩和時間、生産性等の観点から、1.2~3.5、好ましくは1.5~3.0、さらに好ましくは1.8~2.7である。 The molecular weight distribution (weight average molecular weight (Mw) / number average molecular weight (Mn)) of the cyclic olefin resin is 1.2 to 3.5, preferably 1.5 to 3.0, from the viewpoint of relaxation time, productivity and the like. More preferably, it is 1.8 to 2.7.
 本発明に用いる環状オレフィン樹脂は、光弾性係数の絶対値が10×10-12Pa-1以下であることが好ましく、7×10-12Pa-1以下であることがより好ましく、4×10-12Pa-1以下であることが特に好ましい。光弾性係数Cは、複屈折をΔn、応力をσとしたとき、C=Δn/σで表される値である。 The cyclic olefin resin used in the present invention preferably has an absolute value of photoelastic coefficient of 10 × 10 −12 Pa −1 or less, more preferably 7 × 10 −12 Pa −1 or less, and more preferably 4 × 10 12 It is particularly preferably −12 Pa −1 or less. The photoelastic coefficient C is a value represented by C = Δn / σ where birefringence is Δn and stress is σ.
 本発明において、環状オレフィン樹脂には、実質的に粒子を含まないことが好ましい。ここで、実質的に粒子を含まないとは、環状オレフィン樹脂からなるフィルムへ粒子を添加しても、未添加状態からのヘイズの上昇巾が0.05%以下の範囲である量までは許容できることを意味する。特に、脂環式ポリオレフィン樹脂は、多くの有機粒子や無機粒子との親和性に欠けるため、上記範囲を超えた粒子を添加した環状オレフィン樹脂フィルムを延伸すると、空隙が発生しやすく、その結果として、ヘイズの著しい上昇が生じるおそれがある。 In the present invention, it is preferable that the cyclic olefin resin does not substantially contain particles. Here, “substantially free of particles” means that even if particles are added to a film made of a cyclic olefin resin, the amount of increase in haze from the non-added state is allowed to be in the range of 0.05% or less. Means you can. In particular, the alicyclic polyolefin resin lacks affinity with many organic particles and inorganic particles. Therefore, when a cyclic olefin resin film to which particles exceeding the above range are added is stretched, voids are easily generated, and as a result, There is a risk that a significant increase in haze may occur.
 <ポリカーボネート樹脂>
 本発明で用いられる保護フィルムは、種々の公知のポリカーボネート樹脂を含有してもよい。本発明においては、特に芳香族ポリカーボネートを用いることが好ましい。当該芳香族ポリカーボネートについて特に制約はなく、所望するフィルムの諸特性が得られる芳香族ポリカーボネートであれば特に制約はない。
<Polycarbonate resin>
The protective film used in the present invention may contain various known polycarbonate resins. In the present invention, it is particularly preferable to use an aromatic polycarbonate. There is no restriction | limiting in particular about the said aromatic polycarbonate, and there will be no restriction | limiting in particular if it is an aromatic polycarbonate from which the various characteristics of a desired film are acquired.
 一般に、ポリカーボネートと総称される高分子材料は、その合成手法において重縮合反応が用いられて、主鎖が炭酸結合で結ばれているものを総称するが、これらの内でも、一般に、フェノール誘導体と、ホスゲン、ジフェニルカーボネートらから重縮合で得られるものを意味する。通常、ビスフェノール-Aと呼称されている2,2-ビス(4-ヒドロキシフェニル)プロパンをビスフェノール成分とする繰り返し単位で表される芳香族ポリカーボネートが好ましく選ばれるが、適宜各種ビスフェノール誘導体を選択することで、芳香族ポリカーボネート共重合体を構成することができる。 In general, a polymer material collectively referred to as polycarbonate is a generic term for a polymer material in which a polycondensation reaction is used in its synthesis method and the main chain is linked by a carbonic acid bond. , Phosgene, diphenyl carbonate and the like obtained by polycondensation. Usually, an aromatic polycarbonate represented by a repeating unit having 2,2-bis (4-hydroxyphenyl) propane called bisphenol-A as a bisphenol component is preferably selected. Various bisphenol derivatives should be selected as appropriate. Thus, an aromatic polycarbonate copolymer can be constituted.
 かかる共重合成分としてこのビスフェノール-A以外に、ビス(4-ヒドロキシフェニル)メタン、1,1-ビス(4-ヒドロキシフェニル)シクロヘキサン、9,9-ビス(4-ヒドロキシフェニル)フルオレン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、2,2-ビス(4-ヒドロキシ-3-メチルフェニル)プロパン、2,2-ビス(4-ヒドロキシフェニル)-2-フェニルエタン、2,2-ビス(4-ヒドロキシフェニル)-1,1,1,3,3,3-ヘキサフロロプロパン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)サルファイド、ビス(4-ヒドロキシフェニル)スルホン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン等を挙げることができる。 In addition to this bisphenol-A, bis (4-hydroxyphenyl) methane, 1,1-bis (4-hydroxyphenyl) cyclohexane, 9,9-bis (4-hydroxyphenyl) fluorene, 1,1 -Bis (4-hydroxyphenyl) -3,3,5-trimethylcyclohexane, 2,2-bis (4-hydroxy-3-methylphenyl) propane, 2,2-bis (4-hydroxyphenyl) -2-phenyl Ethane, 2,2-bis (4-hydroxyphenyl) -1,1,1,3,3,3-hexafluoropropane, bis (4-hydroxyphenyl) diphenylmethane, bis (4-hydroxyphenyl) sulfide, bis ( 4-hydroxyphenyl) sulfone, 1,1-bis (4-hydroxyphenyl) -3,3,5-to It can be exemplified methyl cyclohexane.
 また、一部にテレフタル酸及び/又はイソフタル酸成分を含む芳香族ポリエステルカーボネートを使用することも可能である。このような構成単位をビスフェノール-Aからなる芳香族ポリカーボネートの構成成分の一部に使用することにより芳香族ポリカーボネートの性質、例えば耐熱性、溶解性を改良することができるが、このような共重合体についても本発明は有効である。 It is also possible to use an aromatic polyester carbonate partially containing terephthalic acid and / or isophthalic acid components. By using such a structural unit as a part of the structural component of the aromatic polycarbonate composed of bisphenol-A, the properties of the aromatic polycarbonate, such as heat resistance and solubility, can be improved. The present invention is also effective for coalescence.
 ここで用いられる芳香族ポリカーボネートの粘度平均分子量は、10000以上、200000以下であれば好適に用いられる。粘度平均分子量20000~120000が特に好ましい。粘度平均分子量が10000より低い樹脂を使用すると得られるフィルムの機械的強度が不足する場合があり、また400000以上の高分子量になるとドープの粘度が大きくなり過ぎ取扱い上問題を生じるので好ましくない。粘度平均分子量は市販の高速液体クロマトグラフィ等で測定することができる。 The viscosity average molecular weight of the aromatic polycarbonate used here is preferably 10,000 to 200,000. A viscosity average molecular weight of 20,000 to 120,000 is particularly preferred. If a resin having a viscosity average molecular weight lower than 10,000 is used, the mechanical strength of the resulting film may be insufficient, and if it has a high molecular weight of 400000 or more, the viscosity of the dope becomes too large, causing problems in handling. The viscosity average molecular weight can be measured by commercially available high performance liquid chromatography.
 本発明に用いられる芳香族ポリカーボネートのガラス転移温度は200℃以上であることが高耐熱性のフィルムを得る上で好ましく、より好ましくは230℃以上である。これらは、上記共重合成分を適宜選択して得ることができる。ガラス転移温度は、DSC装置(示差走査熱量分析装置)にて測定することができ、例えばセイコー電子工業株式会社製:RDC220にて、10℃/分の昇温条件によって求められる、ベースラインが偏奇し始める温度である。 The glass transition temperature of the aromatic polycarbonate used in the present invention is preferably 200 ° C. or higher for obtaining a highly heat-resistant film, and more preferably 230 ° C. or higher. These can be obtained by appropriately selecting the copolymerization component. The glass transition temperature can be measured with a DSC apparatus (differential scanning calorimetric analyzer). For example, the baseline is unevenly determined by a temperature rising condition of 10 ° C./min with RDC220 manufactured by Seiko Instruments Inc. It is the temperature that begins to do.
 <ポリエステル樹脂>
 本発明に用いられるポリエステル樹脂は、ジカルボン酸とジオールを重合することにより得られ、ジカルボン酸構成単位(ジカルボン酸に由来する構成単位)の70%以上が芳香族ジカルボン酸に由来し、かつジオール構成単位(ジオールに由来する構成単位)の70%以上が脂肪族ジオールに由来する。
<Polyester resin>
The polyester resin used in the present invention is obtained by polymerizing a dicarboxylic acid and a diol, and 70% or more of the dicarboxylic acid structural unit (the structural unit derived from the dicarboxylic acid) is derived from the aromatic dicarboxylic acid, and the diol structure. More than 70% of the units (constituent units derived from the diol) are derived from the aliphatic diol.
 芳香族ジカルボン酸に由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。 The proportion of the structural unit derived from the aromatic dicarboxylic acid is 70% or more, preferably 80% or more, and more preferably 90% or more.
 脂肪族ジオールに由来する構成単位の割合は70%以上、好ましくは80%以上、さらに好ましくは90%以上である。ポリエステル樹脂は、二種以上を併用してもよい。 The proportion of the structural unit derived from the aliphatic diol is 70% or more, preferably 80% or more, and more preferably 90% or more. Two or more polyester resins may be used in combination.
 前記芳香族ジカルボン酸として、テレフタル酸、イソフタル酸、2,6-ナフタレンジカルボン酸、1,5-ナフタレンジカルボン酸、2,7-ナフタレンジカルボン酸等のナフタレンジカルボン酸、4,4′-ビフェニルジカルボン酸、3,4′-ビフェニルジカルボン酸等及びこれらのエステル形成性誘導体が例示できる。 Examples of the aromatic dicarboxylic acid include terephthalic acid, isophthalic acid, 2,6-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,7-naphthalenedicarboxylic acid, and the like, 4,4'-biphenyldicarboxylic acid 3,4'-biphenyldicarboxylic acid and the like, and ester-forming derivatives thereof.
 ポリエステル樹脂には本発明の目的を損なわない範囲でアジピン酸、アゼライン酸、セバシン酸等の脂肪族ジカルボン酸や安息香酸、プロピオン酸、酪酸等のモノカルボン酸を用いることができる。 As the polyester resin, aliphatic dicarboxylic acids such as adipic acid, azelaic acid, and sebacic acid, and monocarboxylic acids such as benzoic acid, propionic acid, and butyric acid can be used without departing from the object of the present invention.
 前記脂肪族ジオールとして、エチレングリコール、1,3-プロピレンジオール、1,4-ブタンジオール、1,4-シクロヘキサンジメタノール、1,6-ヘキサンジオール等及びこれらのエステル形成性誘導体が例示できる。 Examples of the aliphatic diol include ethylene glycol, 1,3-propylene diol, 1,4-butanediol, 1,4-cyclohexanedimethanol, 1,6-hexanediol, and ester-forming derivatives thereof.
 ポリエステル樹脂には本発明の目的を損なわない範囲でブチルアルコール、ヘキシルアルコール、オクチルアルコール等のモノアルコール類や、トリメチロールプロパン、グリセリン、ペンタエリスリトール等の多価アルコール類を用いることもできる。 As the polyester resin, monoalcohols such as butyl alcohol, hexyl alcohol, and octyl alcohol, and polyhydric alcohols such as trimethylolpropane, glycerin, and pentaerythritol can be used as long as the object of the present invention is not impaired.
 ポリエステル樹脂の製造には、公知の方法である直接エステル化法やエステル交換法を適用することができる。ポリエステル樹脂の製造時に使用する重縮合触媒としては、公知の三酸化アンチモン、五酸化アンチモン等のアンチモン化合物、酸化ゲルマニウム等のゲルマニウム化合物、酢酸チタン等のチタン化合物、塩化アルミニウム等のアルミニウム化合物等が例示できるが、これらに限定されない。 A known esterification method or transesterification method can be applied to the production of the polyester resin. Examples of the polycondensation catalyst used in the production of the polyester resin include known antimony compounds such as antimony trioxide and antimony pentoxide, germanium compounds such as germanium oxide, titanium compounds such as titanium acetate, and aluminum compounds such as aluminum chloride. Although it can, it is not limited to these.
 好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリエチレン-2,6-ナフタレンジカルボキレート樹脂、ポリエチレン-2,6-ナフタレンジカルボキシレート-テレフタレート共重合樹脂、ポリエチレン-テレフタレート-4,4′-ビフェニルジカルボキシレート樹脂、ポリ-1,3-プロピレン-テレフタレート樹脂、ポリブチレンテレフタレート樹脂、ポリブチレン-2,6-ナフタレンジカルボキシレート樹脂等がある。 Preferred polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polyethylene-2,6-naphthalene dicarboxylate resin, polyethylene-2, 6-naphthalene dicarboxylate-terephthalate copolymer resin, polyethylene-terephthalate-4,4'-biphenyldicarboxylate resin, poly-1,3-propylene-terephthalate resin, polybutylene terephthalate resin, polybutylene-2,6-naphthalene There are dicarboxylate resins and the like.
 より好ましいポリエステル樹脂としては、ポリエチレンテレフタレート樹脂、ポリエチレンテレフタレート-イソフタレート共重合樹脂、ポリエチレン-1,4-シクロヘキサンジメチレン-テレフタレート共重合樹脂、ポリブチレンテレフタレート樹脂及びポリエチレン-2,6-ナフタレンジカルボキシレート樹脂が挙げられる。 More preferable polyester resins include polyethylene terephthalate resin, polyethylene terephthalate-isophthalate copolymer resin, polyethylene-1,4-cyclohexanedimethylene-terephthalate copolymer resin, polybutylene terephthalate resin, and polyethylene-2,6-naphthalene dicarboxylate. Resin.
 ポリエステル樹脂の固有粘度(フェノール/1,1,2,2-テトラクロロエタン=60/40質量比混合溶媒中、25℃で測定した値)は、0.7~2.0dl/gが好ましく、より好ましくは0.8~1.5dl/gである。固有粘度が0.7以上であるとポリエステル樹脂の分子量が充分に高いために、これを使用して得られるポリエステル樹脂組成物からなる成形物が成形物として必要な機械的性質を有すると共に、透明性が良好となる。固有粘度が2.0以下の場合、成形性が良好となる。 The intrinsic viscosity of the polyester resin (phenol / 1,1,2,2-tetrachloroethane = value measured at 25 ° C. in a 60/40 mass ratio mixed solvent) is preferably 0.7 to 2.0 dl / g, more Preferably, it is 0.8 to 1.5 dl / g. Since the molecular weight of the polyester resin is sufficiently high when the intrinsic viscosity is 0.7 or more, the molded product comprising the polyester resin composition obtained by using the polyester resin has mechanical properties necessary for the molded product and is transparent. Property is improved. When the intrinsic viscosity is 2.0 or less, the moldability is good.
 <その他添加剤>
 本発明に用いられる保護フィルムには、目的に応じて種々の化合物等を添加剤として含有させることができる。例えば、位相差(リターデーション)上昇剤、可塑剤、酸化防止剤、酸捕捉剤、光安定剤、紫外線吸収剤、光学異方性制御剤、マット剤、帯電防止剤、剥離剤、等を含有させることができる。
<Other additives>
The protective film used in the present invention can contain various compounds as additives depending on the purpose. For example, it contains retardation increasing agent, plasticizer, antioxidant, acid scavenger, light stabilizer, UV absorber, optical anisotropy control agent, matting agent, antistatic agent, release agent, etc. Can be made.
 位相差(リターデーション)上昇剤は、少なくとも二つの芳香族環を有する芳香族化合物が好ましい。芳香族化合物は、樹脂の100質量部に対して、0.01乃至20質量部の範囲で使用することが好ましい。そして、0.05乃至15質量部の範囲で使用することが好ましく、0.1乃至10質量部の範囲で使用することがさらに好ましい。二種類以上の芳香族化合物を併用してもよい。芳香族化合物の芳香族環には、芳香族炭化水素環に加えて、芳香族性ヘテロ環を含む。芳香族炭化水素環は、6員環(すなわち、ベンゼン環)であることが特に好ましい。芳香族性ヘテロ環は一般に、不飽和ヘテロ環である。芳香族性ヘテロ環は、5員環、6員環又は7員環であることが好ましく、5員環又は6員環であることがさらに好ましい。芳香族性ヘテロ環は一般に、最多の二重結合を有する。ヘテロ原子としては、窒素原子、酸素原子及び硫黄原子が好ましく、窒素原子が特に好ましい。芳香族性ヘテロ環の例には、フラン環、チオフェン環、ピロール環、オキサゾール環、イソオキサゾール環、チアゾール環、イソチアゾール環、イミダゾール環、ピラゾール環、フラザン環、トリアゾール環、ピラン環、ピリジン環、ピリダジン環、ピリミジン環、ピラジン環及び1,3,5-トリアジン環が含まれる。これらについては、特開2004-109410号、特開2003-344655号、特開2000-275434号、特開2000-111914号、特開平12-275434号の各公報などに詳細が記載されている。 The retardation increasing agent is preferably an aromatic compound having at least two aromatic rings. The aromatic compound is preferably used in the range of 0.01 to 20 parts by mass with respect to 100 parts by mass of the resin. And it is preferable to use in 0.05-15 mass parts, and it is still more preferable to use in 0.1-10 mass parts. Two or more aromatic compounds may be used in combination. The aromatic ring of the aromatic compound includes an aromatic hetero ring in addition to the aromatic hydrocarbon ring. The aromatic hydrocarbon ring is particularly preferably a 6-membered ring (that is, a benzene ring). The aromatic heterocycle is generally an unsaturated heterocycle. The aromatic heterocycle is preferably a 5-membered ring, 6-membered ring or 7-membered ring, more preferably a 5-membered ring or 6-membered ring. Aromatic heterocycles generally have the most double bonds. As the hetero atom, a nitrogen atom, an oxygen atom and a sulfur atom are preferable, and a nitrogen atom is particularly preferable. Examples of aromatic heterocycles include furan ring, thiophene ring, pyrrole ring, oxazole ring, isoxazole ring, thiazole ring, isothiazole ring, imidazole ring, pyrazole ring, furazane ring, triazole ring, pyran ring, pyridine ring , Pyridazine ring, pyrimidine ring, pyrazine ring and 1,3,5-triazine ring. Details of these are described in JP-A No. 2004-109410, JP-A No. 2003-344655, JP-A No. 2000-275434, JP-A No. 2000-1111914, JP-A No. 12-275434, and the like.
 <マット剤>
 本発明に用いられる保護フィルムには、作製されたフィルムがハンドリングされる際に、傷が付いたり、搬送性が悪化することを防止するために、マット剤として、微粒子を添加することも好ましい。
<Matting agent>
In the protective film used in the present invention, it is also preferable to add fine particles as a matting agent in order to prevent the produced film from being scratched or having poor transportability when handled.
 微粒子としては、無機化合物の例として、二酸化珪素、二酸化チタン、酸化アルミニウム、酸化ジルコニウム、炭酸カルシウム、炭酸カルシウム、タルク、クレイ、焼成カオリン、焼成ケイ酸カルシウム、水和ケイ酸カルシウム、ケイ酸アルミニウム、ケイ酸マグネシウム及びリン酸カルシウム等を挙げることができる。微粒子は珪素を含むものが、濁度が低くなる点で好ましく、特に二酸化珪素が好ましい。 As fine particles, examples of inorganic compounds include silicon dioxide, titanium dioxide, aluminum oxide, zirconium oxide, calcium carbonate, calcium carbonate, talc, clay, calcined kaolin, calcined calcium silicate, hydrated calcium silicate, aluminum silicate, Examples thereof include magnesium silicate and calcium phosphate. Fine particles containing silicon are preferable in terms of low turbidity, and silicon dioxide is particularly preferable.
 微粒子の一次粒子の平均粒径は5~400nmが好ましく、更に好ましいのは10~300nmである。これらは主に粒径0.05~0.3μmの2次凝集体として含有されていてもよく、平均粒径80~400nmの粒子であれば凝集せずに一次粒子として含まれていることも好ましい。フィルム中のこれらの微粒子の含有量は0.01~1質量%であることが好ましく、特に0.05~0.5質量%が好ましい。共流延法による多層構成の保護フィルム(光学フィルム)の場合は、表面にこの添加量の微粒子を含有することが好ましい。 The average primary particle size of the fine particles is preferably 5 to 400 nm, and more preferably 10 to 300 nm. These may be mainly contained as secondary aggregates having a particle size of 0.05 to 0.3 μm, and may be contained as primary particles without being aggregated if the particles have an average particle size of 80 to 400 nm. preferable. The content of these fine particles in the film is preferably 0.01 to 1% by mass, particularly preferably 0.05 to 0.5% by mass. In the case of a protective film (optical film) having a multilayer structure by the co-casting method, it is preferable to contain the added amount of fine particles on the surface.
 二酸化珪素の微粒子は、例えば、アエロジルR972、R972V、R974、R812、200、200V、300、R202、OX50、TT600(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Silicon dioxide fine particles are commercially available, for example, under the trade names Aerosil R972, R972V, R974, R812, 200, 200V, 300, R202, OX50, TT600 (manufactured by Nippon Aerosil Co., Ltd.). it can.
 酸化ジルコニウムの微粒子は、例えば、アエロジルR976及びR811(以上日本アエロジル(株)製)の商品名で市販されており、使用することができる。 Zirconium oxide fine particles are commercially available under the trade names of Aerosil R976 and R811 (manufactured by Nippon Aerosil Co., Ltd.) and can be used.
 樹脂の例として、シリコーン樹脂、フッ素樹脂及びアクリル樹脂を挙げることができる。シリコーン樹脂が好ましく、特に三次元の網状構造を有するものが好ましく、例えば、トスパール103、同105、同108、同120、同145、同3120及び同240(以上東芝シリコーン(株)製)の商品名で市販されており、使用することができる。 Examples of the resin include silicone resin, fluororesin and acrylic resin. Silicone resins are preferable, and those having a three-dimensional network structure are particularly preferable. For example, Tospearl 103, 105, 108, 120, 145, 3120, and 240 (manufactured by Toshiba Silicone Co., Ltd.) It is marketed by name and can be used.
 これらの中でもアエロジル200V、アエロジルR972Vが保護フィルム(光学フィルム)のヘイズを低く保ちながら、摩擦係数を下げる効果が大きいため特に好ましく用いられる。本発明に用いられる保護フィルム(光学フィルム)においては、少なくとも一方の面の動摩擦係数が0.2~1.0であることが好ましい。 Among these, Aerosil 200V and Aerosil R972V are particularly preferably used because they have a large effect of reducing the friction coefficient while keeping the haze of the protective film (optical film) low. In the protective film (optical film) used in the present invention, it is preferable that the dynamic friction coefficient of at least one surface is 0.2 to 1.0.
 保護フィルムの製造方法
 本発明に用いられる保護フィルムの製造方法は、通常のインフレーション法、T-ダイ法、カレンダー法、切削法、流延法、エマルジョン法、ホットプレス法等の製造法が使用できるが、着色抑制、異物欠点の抑制、ダイラインなどの光学欠点の抑制などの観点から流延法による溶液流延法、及び溶融流延法が好ましい。
Method for Producing Protective Film As a method for producing the protective film used in the present invention, production methods such as a normal inflation method, a T-die method, a calendar method, a cutting method, a casting method, an emulsion method, and a hot press method can be used. However, the solution casting method by the casting method and the melt casting method are preferable from the viewpoints of suppression of coloring, suppression of defects of foreign matters, suppression of optical defects such as die lines, and the like.
 以下、本発明に用いられる保護フィルムを、溶液流延法により製造する方法について詳述する。 Hereinafter, a method for producing the protective film used in the present invention by the solution casting method will be described in detail.
 <溶液流延法>
 有機溶媒について
 本発明に係る保護フィルム(光学フィルム)を溶液流延法で製造する場合、ドープを形成するのに有用な有機溶媒は、セルロースエステル樹脂等の熱可塑性樹脂を溶解するものであれば制限なく用いることができる。
<Solution casting method>
Regarding the organic solvent When the protective film (optical film) according to the present invention is produced by the solution casting method, the organic solvent useful for forming the dope is one that dissolves a thermoplastic resin such as a cellulose ester resin. Can be used without limitation.
 例えば、塩素系有機溶媒としては、塩化メチレン、非塩素系有機溶媒としては、酢酸メチル、酢酸エチル、酢酸アミル、アセトン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサン、シクロヘキサノン、ギ酸エチル、2,2,2-トリフルオロエタノール、2,2,3,3-ヘキサフルオロ-1-プロパノール、1,3-ジフルオロ-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-メチル-2-プロパノール、1,1,1,3,3,3-ヘキサフルオロ-2-プロパノール、2,2,3,3,3-ペンタフルオロ-1-プロパノール、ニトロエタン、乳酸エチル、乳酸、ジアセトンアルコール等を挙げることができ、塩化メチレン、酢酸メチル、酢酸エチル、アセトン、乳酸エチル等を好ましく使用し得る。 For example, as a chlorinated organic solvent, methylene chloride, as a non-chlorinated organic solvent, methyl acetate, ethyl acetate, amyl acetate, acetone, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane, cyclohexanone, ethyl formate, 2,2,2-trifluoroethanol, 2,2,3,3-hexafluoro-1-propanol, 1,3-difluoro-2-propanol, 1,1,1,3,3,3-hexafluoro- 2-methyl-2-propanol, 1,1,1,3,3,3-hexafluoro-2-propanol, 2,2,3,3,3-pentafluoro-1-propanol, nitroethane, ethyl lactate, lactic acid , Diacetone alcohol, etc., preferably methylene chloride, methyl acetate, ethyl acetate, acetone, ethyl lactate, etc. Get.
 ドープには、上記有機溶媒の他に、1~40質量%の炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有させてもよい。ドープ中のアルコールの比率が高くなるとウェブがゲル化し、金属支持体からの剥離が容易になり、また、アルコールの割合が少ない時は非塩素系有機溶媒系での熱可塑性樹脂の溶解を促進する役割もある。 In addition to the organic solvent, the dope may contain 1 to 40% by mass of a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. When the proportion of alcohol in the dope increases, the web gels, facilitating peeling from the metal support, and when the proportion of alcohol is small, the dissolution of the thermoplastic resin in a non-chlorine organic solvent system is promoted. There is also a role.
 特に、メチレンクロライド、及び炭素数1~4の直鎖又は分岐鎖状の脂肪族アルコールを含有する溶媒に、熱可塑性樹脂は、少なくとも計10~45質量%溶解させたドープ組成物であることが好ましい。 In particular, the thermoplastic resin should be a dope composition in which at least 10 to 45% by mass of the thermoplastic resin is dissolved in a solvent containing methylene chloride and a linear or branched aliphatic alcohol having 1 to 4 carbon atoms. preferable.
 炭素原子数1~4の直鎖又は分岐鎖状の脂肪族アルコールとしては、メタノール、エタノール、n-プロパノール、iso-プロパノール、n-ブタノール、sec-ブタノール、tert-ブタノールを挙げることができる。これらの内ドープの安定性、沸点も比較的低く、乾燥性もよいこと等からエタノールが好ましい。 Examples of the linear or branched aliphatic alcohol having 1 to 4 carbon atoms include methanol, ethanol, n-propanol, iso-propanol, n-butanol, sec-butanol, and tert-butanol. Ethanol is preferred because of the stability of these dopes, the relatively low boiling point, and good drying properties.
 芳香族ポリカーボネートを含むドープ組成物に用いる溶媒は、メチレンクロライド、及び炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールを4~14質量部含有する混合溶媒であることが好ましい。 The solvent used in the dope composition containing the aromatic polycarbonate is preferably a mixed solvent containing 4 to 14 parts by mass of methylene chloride and a linear or branched aliphatic alcohol having 1 to 6 carbon atoms.
 上記炭素数1~6の直鎖又は分岐鎖状の脂肪族アルコールの混合量は、好ましくは4~12質量部である。このような混合溶媒を用い、従来よりも高い残留溶媒濃度でウェブを剥離することにより、ウェブ剥離時の強い静電気の発生を抑制し、これによりベルトが損傷したり、フィルムのスジやムラ、微小傷の発生を防止することができる。 The mixing amount of the linear or branched aliphatic alcohol having 1 to 6 carbon atoms is preferably 4 to 12 parts by mass. By using such a mixed solvent, the web is peeled off at a higher residual solvent concentration than before, thereby suppressing the generation of strong static electricity when the web is peeled off, thereby causing damage to the belt, film streaks, unevenness, and minuteness. Scratches can be prevented from occurring.
 加えるアルコールの種類は用いる溶媒により制限される。アルコールと当該溶媒とが相溶性があることが必要条件である。これらは単独で加えても良いし、二種類以上組み合わせても問題ない。本発明におけるアルコールとしては、炭素数1~6、好ましくは1~4、より好ましくは2~4の鎖状、或いは分岐した脂肪族アルコールが好ましい。具体的にはメタノール、エタノール、イソプロパノール、ターシャリーブタノールなどが挙げられる。これらのうちエタノール、イソプロパノール、ターシャリーブタノールはほぼ同等の効果が得られるが、メタノールはやや効果が低い。理由は明らかでないが溶媒の沸点、即ち乾燥時の飛び易さが関係しているものと推測している。それ以上の高級アルコールは、高沸点であるためフィルム製膜後も残留しやすくなるので好ましくない。 The type of alcohol added is limited by the solvent used. It is a necessary condition that the alcohol and the solvent are compatible. These may be added alone or in combination of two or more. The alcohol in the present invention is preferably a linear or branched aliphatic alcohol having 1 to 6, preferably 1 to 4, more preferably 2 to 4 carbon atoms. Specific examples include methanol, ethanol, isopropanol, and tertiary butanol. Of these, ethanol, isopropanol, and tertiary butanol can achieve almost the same effect, but methanol is slightly less effective. Although the reason is not clear, it is presumed that the boiling point of the solvent, that is, the ease of flying during drying is related. Higher alcohols higher than that are not preferred because they have a high boiling point and are likely to remain after film formation.
 アルコールの添加量は慎重に選択されなければならない。これらのアルコールは芳香族ポリカーボネートに対する溶解性には全く乏しく、完全な貧溶媒である。従ってあまり多く加えることはできず、満足すべき剥離性が得られる最少量とすべきである。前述したようにメチレンクロライドに対して4~14質量部、好ましくは4~12質量部である。メチレンクロライド量に対しては、添加量が4~14質量部の範囲であると、当該溶媒のポリマーに対する溶解性、ドープ安定性が向上し、剥離性改善の効果が大きくなる。 The amount of alcohol to be added must be carefully selected. These alcohols are completely poor in solubility in aromatic polycarbonate and are completely poor solvents. Therefore, it cannot be added too much, and should be the minimum amount that provides satisfactory peelability. As described above, it is 4 to 14 parts by mass, preferably 4 to 12 parts by mass with respect to methylene chloride. When the addition amount is in the range of 4 to 14 parts by mass with respect to the amount of methylene chloride, the solubility of the solvent in the polymer and the dope stability are improved, and the effect of improving the peelability is increased.
 本発明では、ドープ組成物中、上記メチレンクロライドと脂肪族アルコールで構成されるが、他の溶媒を使用することもできる。その他残りの溶媒としては芳香族ポリカーボネートを高濃度に溶解し、かつアルコールと相溶性があること、さらに低沸点溶媒であれば特に限定はない。例えば、芳香族ポリカーボネートに対して溶解力のある溶媒として、塩化メチレン以外にクロロホルム、1,2-ジクロロエタン、1,1,2-トリクロロエタン、クロロベンゼンなどのハロゲン系溶媒、1,3-ジオキソラン、1,4-ジオキサン、テトラヒドロフラン等の環状エーテル系の溶媒、シクロヘキサノン等のケトン系の溶媒が挙げられる。 In the present invention, the dope composition is composed of the above methylene chloride and an aliphatic alcohol, but other solvents can also be used. The remaining solvent is not particularly limited as long as it dissolves the aromatic polycarbonate at a high concentration and is compatible with alcohol, and is a low-boiling solvent. For example, as a solvent having a solubility in aromatic polycarbonate, in addition to methylene chloride, halogen solvents such as chloroform, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, 1,3-dioxolane, 1, Examples include cyclic ether solvents such as 4-dioxane and tetrahydrofuran, and ketone solvents such as cyclohexanone.
 他の溶媒を使用する場合は特に限定はなく、効果を勘案して用いればよい。ここでいう効果とは、溶解性や安定性を犠牲にしない範囲で溶媒を混合することによる、たとえば溶液流延法により製膜したフィルムの表面性の改善(レベリング効果)、蒸発速度や系の粘度調節、結晶化抑制効果などである。これらの効果の度合により混合する溶媒の種類や添加量を決定すればよく、また混合する溶媒として一種又は二種以上用いてもかまわない。 When using other solvents, there is no particular limitation, and the effect may be taken into consideration. The effects here include mixing the solvent without sacrificing solubility and stability, for example, improving the surface properties of the film formed by the solution casting method (leveling effect), evaporation rate and system These include viscosity adjustment and crystallization suppression effects. What is necessary is just to determine the kind and addition amount of the solvent to mix by the degree of these effects, and you may use 1 type, or 2 or more types as a solvent to mix.
 好適に用いられる他の溶媒としてはクロロホルム、1,2-ジクロロエタンなどのハロゲン系溶媒、トルエン、キシレンなどの炭化水素系溶媒、アセトン、メチルエチルケトン、シクロヘキサノンなどのケトン系溶媒、酢酸エチル、酢酸ブチルなどのエステル系溶媒、エチレングリコールジメチルエーテル、メトキシエチルアセテートなどのエーテル系溶媒が挙げられる。 Other solvents preferably used include halogen solvents such as chloroform and 1,2-dichloroethane, hydrocarbon solvents such as toluene and xylene, ketone solvents such as acetone, methyl ethyl ketone and cyclohexanone, ethyl acetate and butyl acetate. Examples include ester solvents, ether solvents such as ethylene glycol dimethyl ether and methoxyethyl acetate.
 ドープ組成物は、結果としてヘイズの低い透明な溶液が得られればいかなる方法で調製してもよい。あらかじめある溶媒に溶解させた芳香族ポリカーボネート溶液に、アルコールを所定量添加してもよいし、アルコールを含む混合溶媒に芳香族ポリカーボネートを溶解させてもよい。ただ先にも述べた様にアルコールは貧溶媒であるため、前者の後から添加する方法ではポリマーの析出によるドープ白濁の可能性があるため、後者の混合溶媒に溶解させる方法が好ましい。 The dope composition may be prepared by any method as long as a transparent solution having a low haze is obtained as a result. A predetermined amount of alcohol may be added to the aromatic polycarbonate solution dissolved in a certain solvent in advance, or the aromatic polycarbonate may be dissolved in a mixed solvent containing alcohol. However, as described above, since alcohol is a poor solvent, the method of adding the latter after the former may cause clouding of the dope due to the precipitation of the polymer. Therefore, the method of dissolving in the latter mixed solvent is preferable.
 1-1)溶解工程
 熱可塑性樹脂に対する良溶媒を主とする有機溶媒に、溶解釜中で熱可塑性樹脂、その他の添加剤を攪拌しながら溶解しドープを形成する工程である。
1-1) Dissolution Step In this step, a thermoplastic resin and other additives are dissolved in an organic solvent mainly composed of a good solvent for the thermoplastic resin while stirring to form a dope.
 熱可塑性樹脂の溶解には、常圧で行う方法、主溶媒の沸点以下で行う方法、主溶媒の沸点以上で加圧して行う方法、特開平9-95544号公報、特開平9-95557号公報、又は特開平9-95538号公報に記載の如き冷却溶解法で行う方法、特開平11-21379号公報に記載の如き高圧で行う方法等種々の溶解方法を用いることができるが、特に主溶媒の沸点以上で加圧して行う方法が好ましい。 For the dissolution of the thermoplastic resin, a method carried out at normal pressure, a method carried out below the boiling point of the main solvent, a method carried out under pressure above the boiling point of the main solvent, JP-A-9-95544, JP-A-9-95557 Alternatively, various dissolution methods such as a method using a cooling dissolution method as described in JP-A-9-95538 and a method using a high pressure as described in JP-A-11-21379 can be used. The method of pressurizing at a boiling point or higher is preferred.
 返材とは、フィルムを細かく粉砕した物で、フィルムを製膜するときに発生する、フィルムの両サイド部分を切り落とした物や、擦り傷などでスペックアウトしたフィルム原反のことをいい、これも再使用される。 Recycled material is a finely pulverized film, which is generated when the film is formed, and has been cut off on both sides of the film, or a film original that has been speculated out due to scratches, etc. Reused.
 1-2)流延工程
 ドープを、送液ポンプ(例えば、加圧型定量ギヤポンプ)を通して加圧ダイに送液し、無限に移送する無端の金属ベルト、例えばステンレスベルト、あるいは回転する金属ドラム等の金属支持体上の流延位置に、加圧ダイスリットからドープを流延する工程である。
1-2) Casting Step An endless metal belt such as a stainless steel belt or a rotating metal drum that feeds the dope to a pressure die through a liquid feed pump (for example, a pressurized metering gear pump) and transfers it indefinitely. This is a step of casting a dope from a pressure die slit to a casting position on a metal support.
 ダイの口金部分のスリット形状を調整でき、膜厚を均一にし易い加圧ダイが好ましい。加圧ダイには、コートハンガーダイやTダイ等があり、いずれも好ましく用いられる。金属支持体の表面は鏡面となっている。製膜速度を上げるために加圧ダイを金属支持体上に二基以上設け、ドープ量を分割して重層してもよい。あるいは複数のドープを同時に流延する共流延法によって積層構造のフィルムを得ることも好ましい。 ¡Pressure dies that can adjust the slit shape of the die base and make the film thickness uniform are preferred. Examples of the pressure die include a coat hanger die and a T die, and any of them is preferably used. The surface of the metal support is a mirror surface. In order to increase the film forming speed, two or more pressure dies may be provided on the metal support, and the dope amount may be divided and stacked. Or it is also preferable to obtain the film of a laminated structure by the co-casting method which casts several dope simultaneously.
 1-3)溶媒蒸発工程
 ウェブ(流延用支持体上にドープを流延し、形成されたドープ膜をウェブと呼ぶ)を流延用支持体上で加熱し、溶媒を蒸発させる工程である。
1-3) Solvent evaporation step This is a step in which a web (a dope is cast on a casting support and the formed dope film is called a web) is heated on the casting support to evaporate the solvent. .
 溶媒を蒸発させるには、ウェブ側から風を吹かせる方法及び/又は支持体の裏面から液体により伝熱させる方法、輻射熱により表裏から伝熱する方法等があるが、裏面液体伝熱方法の乾燥効率が良く好ましい。又、それらを組み合わせる方法も好ましく用いられる。流延後の支持体上のウェブを40~100℃の雰囲気下、支持体上で乾燥させることが好ましい。40~100℃の雰囲気下に維持するには、この温度の温風をウェブ上面に当てるか赤外線等の手段により加熱することが好ましい。 To evaporate the solvent, there are a method of blowing air from the web side and / or a method of transferring heat from the back side of the support by a liquid, a method of transferring heat from the front and back by radiant heat, etc. High efficiency and preferable. A method of combining them is also preferably used. The web on the support after casting is preferably dried on the support in an atmosphere of 40 to 100 ° C. In order to maintain the atmosphere at 40 to 100 ° C., it is preferable to apply hot air at this temperature to the upper surface of the web or heat by means such as infrared rays.
 面品質、透湿性、剥離性の観点から、30~120秒以内で該ウェブを支持体から剥離することが好ましい。 From the viewpoint of surface quality, moisture permeability, and peelability, it is preferable to peel the web from the support within 30 to 120 seconds.
 1-4)剥離工程
 金属支持体上で溶媒が蒸発したウェブを、剥離位置で剥離する工程である。剥離されたウェブは次工程に送られる。
1-4) Peeling Step This is a step of peeling the web where the solvent has evaporated on the metal support at the peeling position. The peeled web is sent to the next process.
 金属支持体上の剥離位置における温度は好ましくは10~40℃であり、さらに好ましくは11~30℃である。 The temperature at the peeling position on the metal support is preferably 10 to 40 ° C, more preferably 11 to 30 ° C.
 なお、剥離する時点での金属支持体上でのウェブの剥離時残留溶媒量は、乾燥の条件の強弱、金属支持体の長さ等により50~120質量%の範囲で剥離することが好ましいが、残留溶媒量がより多い時点で剥離する場合、ウェブが柔らか過ぎると剥離時平面性を損ね、剥離張力によるツレや縦スジが発生し易いため、経済速度と品質との兼ね合いで剥離時の残留溶媒量が決められる。 The amount of residual solvent at the time of peeling of the web on the metal support at the time of peeling is preferably 50 to 120% by mass depending on the strength of drying conditions, the length of the metal support, and the like. If the web is peeled off at a time when the amount of residual solvent is larger, if the web is too soft, the flatness at the time of peeling will be lost, and slippage and vertical stripes are likely to occur due to the peeling tension. The amount of solvent is determined.
 ウェブの残留溶媒量は下記式で定義される。 The amount of residual solvent in the web is defined by the following formula.
 残留溶媒量(%)=(ウェブの加熱処理前質量-ウェブの加熱処理後質量)/(ウェブの加熱処理後質量)×100
 なお、残留溶媒量を測定する際の加熱処理とは、115℃で1時間の加熱処理を行うことを表す。
Residual solvent amount (%) = (mass before web heat treatment−mass after web heat treatment) / (mass after web heat treatment) × 100
Note that the heat treatment for measuring the residual solvent amount represents performing heat treatment at 115 ° C. for 1 hour.
 金属支持体とフィルムを剥離する際の剥離張力は、通常、196~245N/mであるが、剥離の際に皺が入り易い場合、190N/m以下の張力で剥離することが好ましく、さらには、剥離できる最低張力~166.6N/m、次いで、最低張力~137.2N/mで剥離することが好ましいが、特に好ましくは最低張力~100N/mで剥離することである。 The peeling tension at the time of peeling the metal support and the film is usually 196 to 245 N / m. However, if wrinkles easily occur at the time of peeling, it is preferable to peel with a tension of 190 N / m or less. It is preferable to peel at a minimum tension of ˜166.6 N / m, and then peel at a minimum tension of ˜137.2 N / m, and particularly preferable to peel at a minimum tension of ˜100 N / m.
 本発明においては、当該金属支持体上の剥離位置における温度を-50~40℃とするのが好ましく、10~40℃がより好ましく、15~30℃とするのが最も好ましい。 In the present invention, the temperature at the peeling position on the metal support is preferably −50 to 40 ° C., more preferably 10 to 40 ° C., and most preferably 15 to 30 ° C.
 1-5)乾燥及び延伸工程
 剥離後、ウェブを乾燥装置内に複数配置したロールに交互に通して搬送する乾燥装置、及び/又はクリップでウェブの両端をクリップして搬送するテンター延伸装置を用いて、ウェブを乾燥する。
1-5) Drying and stretching step After peeling, a drying device that alternately conveys the web through a plurality of rolls arranged in the drying device and / or a tenter stretching device that clips and conveys both ends of the web with a clip is used. And dry the web.
 乾燥手段はウェブの両面に熱風を吹かせるのが一般的であるが、風の代わりにマイクロウェーブを当てて加熱する手段もある。余り急激な乾燥はでき上がりのフィルムの平面性を損ね易い。高温による乾燥は残留溶媒が8質量%以下くらいから行うのがよい。全体を通し、乾燥は概ね40~250℃で行われる。特に40~160℃で乾燥させることが好ましい。 The drying means is generally to blow hot air on both sides of the web, but there is also a means to heat by applying microwaves instead of wind. Too rapid drying tends to impair the flatness of the finished film. Drying at a high temperature is preferably performed from about 8% by mass or less of the residual solvent. Throughout, drying is generally performed at 40-250 ° C. In particular, drying at 40 to 160 ° C. is preferable.
 テンター延伸装置を用いる場合は、テンターの左右把持手段によってフィルムの把持長(把持開始から把持終了までの距離)を左右で独立に制御できる装置を用いることが好ましい。また、テンター工程において、平面性を改善するため意図的に異なる温度を持つ区画を作ることも好ましい。 When using a tenter stretching apparatus, it is preferable to use an apparatus that can independently control the film gripping length (distance from the start of gripping to the end of gripping) left and right by the left and right gripping means of the tenter. In the tenter process, it is also preferable to intentionally create sections having different temperatures in order to improve planarity.
 また、異なる温度区画の間にそれぞれの区画が干渉を起こさないように、ニュートラルゾーンを設けることも好ましい。 It is also preferable to provide a neutral zone between different temperature zones so that each zone does not cause interference.
 なお、延伸操作は多段階に分割して実施してもよく、流延方向、幅手方向に二軸延伸を実施することも好ましい。また、二軸延伸を行う場合には同時二軸延伸を行ってもよいし、段階的に実施してもよい。 The stretching operation may be performed in multiple stages, and it is also preferable to perform biaxial stretching in the casting direction and the width direction. When biaxial stretching is performed, simultaneous biaxial stretching may be performed or may be performed stepwise.
 この場合、段階的とは、例えば、延伸方向の異なる延伸を順次行うことも可能であるし、同一方向の延伸を多段階に分割し、かつ異なる方向の延伸をそのいずれかの段階に加えることも可能である。即ち、例えば、次のような延伸ステップも可能である。
 流延方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
 幅手方向に延伸-幅手方向に延伸-流延方向に延伸-流延方向に延伸
In this case, stepwise means that, for example, stretching in different stretching directions can be sequentially performed, stretching in the same direction is divided into multiple stages, and stretching in different directions is added to any one of the stages. Is also possible. That is, for example, the following stretching steps are possible.
Stretch in the casting direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction Stretch in the width direction-Stretch in the width direction-Stretch in the casting direction-Stretch in the casting direction
 また、同時二軸延伸には、一方向に延伸し、もう一方を、張力を緩和して収縮させる場合も含まれる。同時二軸延伸の好ましい延伸倍率は幅手方向、長手方向ともに×1.01倍~×1.5倍の範囲でとることができる。 Also, simultaneous biaxial stretching includes stretching in one direction and contracting the other while relaxing the tension. The preferred draw ratio for simultaneous biaxial stretching can be in the range of x1.01 to x1.5 in both the width direction and the longitudinal direction.
 テンターを行う場合のウェブの残留溶媒量は、テンター開始時に20~100質量%であるのが好ましく、かつウェブの残留溶媒量が10質量%以下になる迄テンターを掛けながら乾燥を行うことが好ましく、さらに好ましくは5質量%以下である。 When the tenter is used, the amount of residual solvent in the web is preferably 20 to 100% by mass at the start of the tenter, and drying is preferably performed while the tenter is applied until the amount of residual solvent in the web is 10% by mass or less. More preferably, it is 5% by mass or less.
 テンターを行う場合の乾燥温度は、30~160℃が好ましく、50~150℃がさらに好ましく、70~140℃が最も好ましい。 When performing the tenter, the drying temperature is preferably 30 to 160 ° C., more preferably 50 to 150 ° C., and most preferably 70 to 140 ° C.
 テンター工程において、雰囲気の幅手方向の温度分布が少ないことが、フィルムの均一性を高める観点から好ましく、テンター工程での幅手方向の温度分布は、±5℃以内が好ましく、±2℃以内がより好ましく、±1℃以内が最も好ましい。 In the tenter process, it is preferable that the temperature distribution in the width direction of the atmosphere is small from the viewpoint of improving the uniformity of the film. The temperature distribution in the width direction in the tenter process is preferably within ± 5 ° C, and within ± 2 ° C. Is more preferable, and within ± 1 ° C. is most preferable.
 1-6)巻き取り工程
 ウェブ中の残留溶媒量が2質量%以下となってからフィルムとして巻き取り機により巻き取る工程であり、残留溶媒量を0.4質量%以下にすることにより寸法安定性の良好なフィルムを得ることができる。特に0.00~0.10質量%で巻き取ることが好ましい。
1-6) Winding process In this process, the amount of residual solvent in the web becomes 2% by mass or less and the film is wound by a winder. A film having good properties can be obtained. It is particularly preferable to wind up at 0.00 to 0.10% by mass.
 巻き取り方法は、一般に使用されているものを用いればよく、定トルク法、定テンション法、テーパーテンション法、内部応力一定のプログラムテンションコントロール法等があり、それらを使いわければよい。 As a winding method, a generally used one may be used, and there are a constant torque method, a constant tension method, a taper tension method, a program tension control method with a constant internal stress, etc., and these may be used properly.
 巻き取り後に得られる保護フィルムは、長尺フィルムであることが好ましく、具体的には、100m~5000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2mであることがより好ましい。 The protective film obtained after winding is preferably a long film. Specifically, the protective film has a thickness of about 100 m to 5000 m and is usually provided in a roll form. The film width is preferably 1.3 to 4 m, more preferably 1.4 to 2 m.
 本発明に用いられる保護フィルムの膜厚に特に制限はないが、20~200μmであることが好ましい。 The thickness of the protective film used in the present invention is not particularly limited, but is preferably 20 to 200 μm.
 <溶融流延法>
 本発明に用いられる保護フィルムを、溶融流延法により製造する場合の方法について説明する。
<Melt casting method>
The method in the case of manufacturing the protective film used for this invention by the melt casting method is demonstrated.
 2-1)溶融ペレット製造工程
 溶融押出に用いる熱可塑性樹脂フィルムを構成する組成物は、通常あらかじめ混錬してペレット化しておくことが好ましい。
2-1) Melt Pellet Production Process It is preferable that the composition constituting the thermoplastic resin film used for melt extrusion is usually kneaded in advance and pelletized.
 ペレット化は、公知の方法でよく、例えば、乾燥した熱可塑性樹脂と目的に応じて添加剤をフィーダーで押出機に供給し一軸や二軸の押出機を用いて混錬し、ダイからストランド状に押出し、水冷又は空冷し、カッティングすることでできる。 Pelletization may be performed by a known method. For example, a dry thermoplastic resin and an additive depending on the purpose are fed to an extruder with a feeder and kneaded using a uniaxial or biaxial extruder, and then formed into a strand from a die. Can be extruded, water-cooled or air-cooled, and then cut.
 原材料は、押出する前に乾燥しておくことが原材料の分解を防止する上で重要である。特にセルロースエステルは吸湿しやすいので、除湿熱風乾燥機や真空乾燥機で70~140℃で3時間以上乾燥し、水分率を200ppm以下、さらに100ppm以下にしておくことが好ましい。 It is important to dry the raw material before extruding to prevent the raw material from being decomposed. In particular, since cellulose ester easily absorbs moisture, it is preferable to dry it at 70 to 140 ° C. for 3 hours or more with a dehumidifying hot air dryer or a vacuum dryer so that the moisture content is 200 ppm or less, and further 100 ppm or less.
 添加剤は、押出機に供給押出機合しておいてもよいし、それぞれ個別のフィーダーで供給してもよい。酸化防止剤等少量の添加剤は、均一に混合するため、こと前に混合しておくことが好ましい。 Additives may be fed into the extruder and fed into the extruder, or may be fed through individual feeders. In order to mix a small amount of additives such as an antioxidant uniformly, it is preferable to mix them in advance.
 酸化防止剤の混合は、固体同士で混合してもよいし、必要により、酸化防止剤を溶剤に溶解しておき、熱可塑性樹脂に含浸させて混合してもよく、あるいは噴霧して混合してもよい。 The antioxidant may be mixed with each other, and if necessary, the antioxidant may be dissolved in a solvent, impregnated with a thermoplastic resin and mixed, or mixed by spraying. May be.
 真空ナウターミキサーなどが乾燥と混合を同時にできるので好ましい。また、フィーダー部やダイからの出口など空気と触れる場合は、除湿空気や除湿したN2ガスなどの雰囲気下にすることが好ましい。 A vacuum nauter mixer is preferable because it can dry and mix simultaneously. Moreover, when touching with air, such as an exit from a feeder part or die | dye, it is preferable to set it as atmosphere, such as dehumidified air and dehumidified N2 gas.
 押出機は、せん断力を抑え、樹脂が劣化(分子量低下、着色、ゲル生成等)しないようにペレット化可能でなるべく低温で加工することが好ましい。例えば、二軸押出機の場合、深溝タイプのスクリューを用いて、同方向に回転させることが好ましい。混錬の均一性から、噛み合いタイプが好ましい。 The extruder is preferably processed at as low a temperature as possible so as to be able to be pelletized so that the shear force is suppressed and the resin does not deteriorate (molecular weight reduction, coloring, gel formation, etc.). For example, in the case of a twin screw extruder, it is preferable to rotate in the same direction using a deep groove type screw. From the uniformity of kneading, the meshing type is preferable.
 以上のようにして得られたペレットを用いてフィルム製膜を行う。ペレット化せず、原材料の粉末をそのままフィーダーで押出機に供給し、そのままフィルム製膜することも可能である。 Film formation is performed using the pellets obtained as described above. It is also possible to feed the raw material powder directly to the extruder with a feeder and form a film as it is without pelletization.
 2-2)溶融混合物をダイから冷却ロールへ押し出す工程
 まず、作製したペレットを一軸や二軸タイプの押出機を用いて、押し出す際の溶融温度Tmを200~300℃程度とし、リーフディスクタイプのフィルターなどでろ過し異物を除去した後、Tダイからフィルム状に共押出し、冷却ロール上で固化し、弾性タッチロールと押圧しながら流延する。
2-2) Extruding the molten mixture from a die to a cooling roll First, using a uniaxial or biaxial type extruder, the melt temperature Tm when extruding is about 200 to 300 ° C. After removing foreign matter by filtering with a filter or the like, it is coextruded into a film form from a T-die, solidified on a cooling roll, and cast while pressing with an elastic touch roll.
 供給ホッパーから押出機へ導入する際は真空下又は減圧下や不活性ガス雰囲気下にして酸化分解等を防止することが好ましい。なお、Tmは、押出機のダイ出口部分の温度である。 When introducing into the extruder from the supply hopper, it is preferable to prevent oxidative decomposition or the like under vacuum, reduced pressure, or inert gas atmosphere. Tm is the temperature of the die exit portion of the extruder.
 ダイに傷や可塑剤の凝結物等の異物が付着するとスジ状の欠陥が発生する場合がある。このような欠陥のことをダイラインとも呼ぶが、ダイライン等の表面の欠陥を小さくするためには、押出機からダイまでの配管には樹脂の滞留部が極力少なくなるような構造にすることが好ましい。ダイの内部やリップにキズ等が極力無いものを用いることが好ましい。 ∙ If foreign matter such as scratches or plasticizer aggregates adheres to the die, streaky defects may occur. Such a defect is also called a die line, but in order to reduce surface defects such as the die line, it is preferable to have a structure in which the resin retention portion is minimized in the piping from the extruder to the die. . It is preferable to use a die that has as few scratches as possible inside the lip.
 押出機やダイなどの溶融樹脂と接触する内面は、表面粗さを小さくしたり、表面エネルギーの低い材質を用いるなどして、溶融樹脂が付着し難い表面加工が施されていることが好ましい。具体的には、ハードクロムメッキやセラミック溶射したものを表面粗さ0.2S以下となるように研磨したものが挙げられる。 The inner surface that comes into contact with the molten resin, such as an extruder or a die, is preferably subjected to surface processing that makes it difficult for the molten resin to adhere to the surface by reducing the surface roughness or using a material with low surface energy. Specifically, a hard chrome plated or ceramic sprayed material is polished so that the surface roughness is 0.2 S or less.
 本発明において冷却ロールには特に制限はないが、高剛性の金属ロールで内部に温度制御可能な熱媒体又は冷媒体が流れるような構造を備えるロールであり、大きさは限定されないが、溶融押し出されたフィルムを冷却するのに十分な大きさであればよく、通常冷却ロールの直径は100mmから1m程度である。 In the present invention, there is no particular limitation on the cooling roll, but it is a roll having a structure in which a heat medium or a coolant that can be controlled in temperature flows with a highly rigid metal roll, and the size is not limited. It is sufficient that the film is large enough to cool the film, and the diameter of the cooling roll is usually about 100 mm to 1 m.
 冷却ロールの表面材質は、炭素鋼、ステンレス、アルミニウム、チタンなどが挙げられる。さらに表面の硬度を上げたり、樹脂との剥離性を改良するため、ハードクロムメッキや、ニッケルメッキ、非晶質クロムメッキなどや、セラミック溶射等の表面処理を施すことが好ましい。 The surface material of the cooling roll includes carbon steel, stainless steel, aluminum, titanium and the like. Further, in order to increase the hardness of the surface or improve the releasability from the resin, it is preferable to perform a surface treatment such as hard chrome plating, nickel plating, amorphous chrome plating, or ceramic spraying.
 冷却ロール表面の表面粗さは、Raで0.1μm以下とすることが好ましく、さらに0.05μm以下とすることが好ましい。ロール表面が平滑であるほど、得られるフィルムの表面も平滑にできるのである。もちろん表面加工した表面はさらに研磨し上述した表面粗さとすることが好ましい。 The surface roughness of the cooling roll surface is preferably 0.1 μm or less in terms of Ra, and more preferably 0.05 μm or less. The smoother the roll surface, the smoother the surface of the resulting film. Of course, it is preferable that the surface processed is further polished to have the above-described surface roughness.
 本発明において、弾性タッチロールとしては、特開平03-124425号、特開平08-224772号、特開平07-100960号、特開平10-272676号、WO97/028950、特開平11-235747号、特開2002-36332号、特開2005-172940号や特開2005-280217号の各公報に記載されているような表面が薄膜金属スリーブ被覆シリコンゴムロールを使用することができる。 In the present invention, examples of the elastic touch roll include JP-A-03-124425, JP-A-08-224772, JP-A-07-1000096, JP-A-10-272676, WO97 / 028950, JP-A-11-235747, A silicon rubber roll coated with a thin-film metal sleeve can be used as described in JP-A-2002-36332, JP-A-2005-172940, and JP-A-2005-280217.
 冷却ロールからフィルムを剥離する際は、張力を制御してフィルムの変形を防止することが好ましい。 When peeling the film from the cooling roll, it is preferable to control the tension to prevent deformation of the film.
 2-3)延伸工程
 本発明では、上記のようにして得られたフィルムは冷却ロールに接する工程を通過後、さらに少なくとも1方向に1.01~3.0倍延伸することもできる。
2-3) Stretching Step In the present invention, the film obtained as described above can be further stretched 1.01 to 3.0 times in at least one direction after passing through the step of contacting the cooling roll.
 好ましくは縦(フィルム搬送方向)、横(巾方向)両方向にそれぞれ1.1~2.0倍延伸することが好ましい。 Preferably, the film is stretched 1.1 to 2.0 times in both the longitudinal (film transport direction) and lateral (width direction) directions.
 延伸する方法は、公知のロール延伸機やテンターなどを好ましく用いることができる。特に保護フィルム(光学フィルム)が、偏光子保護フィルムを兼ねる場合は、延伸方向を巾方向とすることで、偏光フィルムとの積層がロール形態で、できるので好ましい。 As the stretching method, a known roll stretching machine or tenter can be preferably used. In particular, when the protective film (optical film) also serves as the polarizer protective film, it is preferable to make the stretching direction the width direction because lamination with the polarizing film can be performed in a roll form.
 巾方向に延伸することで保護フィルム(光学フィルム)の遅相軸は巾方向になる。 The slow axis of the protective film (optical film) becomes the width direction by stretching in the width direction.
 通常、延伸倍率は1.1~3.0倍、好ましくは1.2~2倍であり、延伸温度は、通常、フィルムを構成する樹脂のTg~Tg+50℃、好ましくはTg~Tg+50℃の温度範囲で行われる。 Usually, the stretching ratio is 1.1 to 3.0 times, preferably 1.2 to 2 times, and the stretching temperature is usually a temperature of Tg to Tg + 50 ° C., preferably Tg to Tg + 50 ° C. of the resin constituting the film. Done in a range.
 延伸は、長手方向もしくは幅手方向で制御された均一な温度分布下で行うことが好ましい。好ましくは±2℃以内、さらに好ましくは±1℃以内、特に好ましくは±0.5℃以内である。 The stretching is preferably performed under a uniform temperature distribution controlled in the longitudinal direction or the width direction. The temperature is preferably within ± 2 ° C, more preferably within ± 1 ° C, and particularly preferably within ± 0.5 ° C.
 上記の方法で作製したフィルム状樹脂フィルムを位相差フィルムとして用いる場合、当該位相差フィルム(光学フィルム)の位相差(リターデーション)調整や寸法変化率を小さくする目的で、フィルムを長手方向や幅手方向に収縮させてもよい。 When the film-like resin film produced by the above method is used as a retardation film, the film is formed in the longitudinal direction or width for the purpose of adjusting the retardation (retardation) of the retardation film (optical film) and reducing the dimensional change rate. It may be contracted in the hand direction.
 長手方向に収縮するには、例えば、巾延伸を一時クリップアウトさせて長手方向に弛緩させる、又は横延伸機の隣り合うクリップの間隔を徐々に狭くすることによりフィルムを収縮させるという方法がある。 In order to shrink in the longitudinal direction, for example, there is a method in which the film is shrunk by temporarily clipping out the width stretching and relaxing in the longitudinal direction, or by gradually narrowing the interval between adjacent clips of the transverse stretching machine.
 遅相軸方向の均一性も重要であり、フィルム巾方向に対して、角度が-5~+5°であることが好ましく、さらに-1~+1°の範囲にあることが好ましく、特に-0.5~+0.5°の範囲にあることが好ましく、特に-0.1~+0.1°の範囲にあることが好ましい。これらのばらつきは延伸条件を最適化することで達成できる。 Uniformity in the slow axis direction is also important, and the angle is preferably −5 to + 5 ° with respect to the film width direction, more preferably in the range of −1 to + 1 °, particularly −0. A range of 5 to + 0.5 ° is preferable, and a range of −0.1 to + 0.1 ° is particularly preferable. These variations can be achieved by optimizing the stretching conditions.
 本発明に用いられる保護フィルムは、長尺フィルムであることが好ましく、具体的には、100m~10000m程度のものを示し、通常、ロール状で提供される形態のものである。また、フィルムの幅は1.3~4mであることが好ましく、1.4~2.5mであることがより好ましい。 The protective film used in the present invention is preferably a long film. Specifically, the protective film has a thickness of about 100 m to 10000 m and is usually provided in a roll shape. The width of the film is preferably 1.3 to 4 m, more preferably 1.4 to 2.5 m.
 本発明に用いられる保護フィルムの膜厚に特に制限はなく、目的に応じて変化させることが好ましい。例えば、偏光子保護フィルムに使用する場合は、20~200μmであることが好ましい。 There is no particular limitation on the film thickness of the protective film used in the present invention, and it is preferably changed according to the purpose. For example, when used for a polarizer protective film, the thickness is preferably 20 to 200 μm.
 (垂直配向型液晶表示装置の製造方法)
 垂直配向型液晶表示装置は、1)偏光子と、その少なくとも一方の面に配置された位相差フィルムAまたは位相差フィルムBとを含む偏光板が、フィルムの幅方向に対して垂直方向に巻き取られた長尺ロール状偏光板を準備するステップと、2)長尺ロール状偏光板から巻き出された偏光板と液晶セルとを、ロールtoパネルで貼り合わせるステップとを経て製造されうる。
(Manufacturing method of vertical alignment type liquid crystal display device)
In the vertical alignment type liquid crystal display device, 1) a polarizing plate including a polarizer and a retardation film A or retardation film B disposed on at least one surface thereof is wound in a direction perpendicular to the width direction of the film. It can be manufactured through a step of preparing the taken long roll-shaped polarizing plate and 2) a step of bonding the polarizing plate and the liquid crystal cell unwound from the long roll-shaped polarizing plate with a roll-to-panel.
 なお、本願において、「ロールtoパネル製法」とは、ロール状に巻き取られた長尺の偏光板(ロール状偏光板)を液晶セルの縦と横の両方のサイズにあらかじめカットすることなく、ロール状偏光板から直接、偏光板を巻き出し、液晶セルに貼合した後、レーザーカッターなどで液晶セルのサイズにカットする製法である。図3は、ロールtoパネル製法の一例を示す概念図である。図3に示されるように、垂直配向型液晶表示装置は、搬送ベルト100上に複数配置された液晶セル110と、ロール状偏光板130から巻き出された長尺の偏光板130Aと、を貼り合わせロール150にて貼り合わせる。 In the present application, the “roll-to-panel manufacturing method” means that a long polarizing plate (rolled polarizing plate) wound in a roll shape is not cut into both the vertical and horizontal sizes of the liquid crystal cell in advance, This is a production method in which a polarizing plate is unwound directly from a roll-shaped polarizing plate, bonded to a liquid crystal cell, and then cut into the size of the liquid crystal cell with a laser cutter or the like. FIG. 3 is a conceptual diagram showing an example of a roll-to-panel manufacturing method. As shown in FIG. 3, the vertical alignment type liquid crystal display device has a plurality of liquid crystal cells 110 arranged on the conveyor belt 100 and a long polarizing plate 130 </ b> A unwound from the roll-shaped polarizing plate 130. Bonding is performed with a matching roll 150.
 このように、液晶セル110に偏光板130Aを貼り合わせる際に、貼り合わせロール150が押しあてられる。偏光板130Aは、長尺状であるため、一般的には、貼り合わせ時に、偏光板130Aに無理な力がかかりやすく、偏光板130Aにムラが生じやすい。しかしながら、本発明に用いられる、前述の式(1)~(5)を満たす位相差フィルムを用いた場合には、偏光板130Aのムラは生じ難く、光学的性能のロット間ばらつきは無視できる程度である。 Thus, when the polarizing plate 130A is bonded to the liquid crystal cell 110, the bonding roll 150 is pressed. Since the polarizing plate 130A is long, generally, an excessive force is easily applied to the polarizing plate 130A during bonding, and unevenness is likely to occur in the polarizing plate 130A. However, when the retardation film satisfying the above-mentioned formulas (1) to (5) used in the present invention is used, the unevenness of the polarizing plate 130A hardly occurs, and the variation in optical performance among lots can be ignored. It is.
 以下、本発明について実施例を挙げて説明するが、本発明はこれらに限定されるものではない。 Hereinafter, although an example is given and the present invention is explained, the present invention is not limited to these.
 1.保護フィルムF2またはF3の製造
 フィルム101の製造
 微粒子分散液の調製
 下記成分を、ディゾルバーで50分間攪拌混合した後、マントンゴーリンで分散し、微粒子分散液を得た。
 (微粒子分散液の組成)
 微粒子(アエロジルR972V(日本アエロジル株式会社製)):11質量部(1次粒子の平均径16nm、見掛け比重90g/リットル)
 エタノール:89質量部
1. Production of protective film F2 or F3 Production of film 101 Preparation of fine particle dispersion The following components were stirred and mixed with a dissolver for 50 minutes, and then dispersed with Manton Gorin to obtain a fine particle dispersion.
(Composition of fine particle dispersion)
Fine particles (Aerosil R972V (produced by Nippon Aerosil Co., Ltd.)): 11 parts by mass (average diameter of primary particles 16 nm, apparent specific gravity 90 g / liter)
Ethanol: 89 parts by mass
 微粒子添加液の調製
 メチレンクロライドを入れた溶解タンクにセルロースアセテート(アセチル基置換度2.10、Mn=140000)を添加し、加熱して完全に溶解させた後、これを安積濾紙(株)製の安積濾紙No.244を使用して濾過した。濾過後のセルロースアセテート溶液を充分に攪拌しながら、ここに上記微粒子分散液をゆっくりと添加した。さらに、2次粒子の粒径が所定の大きさとなるようにアトライターにて分散を行った。これを日本精線(株)製のファインメットNFで濾過し、微粒子添加液を調製した。
 (微粒子添加液の組成)
 メチレンクロライド:99質量部
 セルロースアセテート(上記):4質量部
 微粒子分散液:11質量部
Preparation of fine particle additive liquid Cellulose acetate (acetyl group substitution degree 2.10, Mn = 14000) was added to a dissolution tank containing methylene chloride, and heated to completely dissolve, then, this was manufactured by Azumi Filter Paper Co., Ltd. No. Azumi filter paper No. Filtered using 244. While finely stirring the filtered cellulose acetate solution, the fine particle dispersion was slowly added thereto. Further, the particles were dispersed by an attritor so that the secondary particles had a predetermined particle size. This was filtered through Finemet NF manufactured by Nippon Seisen Co., Ltd. to prepare a fine particle additive solution.
(Composition of fine particle addition liquid)
Methylene chloride: 99 parts by mass Cellulose acetate (above): 4 parts by mass Fine particle dispersion: 11 parts by mass
 主ドープ液の調製
 下記組成の主ドープ液を調製した。まず加圧溶解タンクにメチレンクロライドとエタノールを添加した。溶剤の入った加圧溶解タンクにセルロースアセテート(総置換度2.48、アセチル基置換度1.58、プロピオニル基置換度0.90、Mn=160000)を攪拌しながら投入した。これを加熱し、攪拌しながら、完全に溶解させ、更に可塑剤としての平均置換度5.5のスクロースベンゾエートを添加、溶解させた。これを安積濾紙(株)製の安積濾紙No.244を使用して濾過し、主ドープ液を調製した。
 (主ドープ液の組成)
 メチレンクロライド:390質量部
 エタノール:80質量部
 セルロースアセテート(総置換度2.48、アセチル基置換度1.58、プロピオニル基置換度0.90、Mn=160000):100質量部
 スクロースベンゾエート(平均置換度5.5):10.0質量部
Preparation of main dope liquid A main dope liquid having the following composition was prepared. First, methylene chloride and ethanol were added to the pressure dissolution tank. Cellulose acetate (total substitution degree 2.48, acetyl group substitution degree 1.58, propionyl group substitution degree 0.90, Mn = 16000) was added to the pressure dissolution tank containing the solvent with stirring. This was heated and stirred to be completely dissolved, and sucrose benzoate having an average substitution degree of 5.5 as a plasticizer was added and dissolved. This was designated as Azumi Filter Paper No. The main dope solution was prepared by filtration using 244.
(Main dope composition)
Methylene chloride: 390 parts by mass Ethanol: 80 parts by mass Cellulose acetate (total substitution degree 2.48, acetyl group substitution degree 1.58, propionyl group substitution degree 0.90, Mn = 16000): 100 parts by mass Sucrose benzoate (average substitution) Degree 5.5): 10.0 parts by mass
 主ドープ液100質量部と微粒子添加液5質量部となるように加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合してドープ液を得た。 In addition to 100 parts by mass of the main dope solution and 5 parts by mass of the fine particle additive solution, the dope solution was obtained by sufficiently mixing with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ).
 次いで、得られたドープ液を、ベルト流延装置を用いて、幅2mのステンレスバンド支持体に均一に流延した。ステンレスバンド支持体上で、残留溶媒量が110%になるまで溶媒を蒸発させ、ステンレスバンド支持体から剥離した。次いで、テンターでウェブ両端部を把持し、幅手方向に延伸した。その後、フィルムの幅方向端部を保持したまま4秒間保持し、幅方向の張力を緩和させた後、幅保持を解放した。得られたフィルムを、125℃に設定された第3乾燥ゾーンで30分間搬送させてさらに乾燥を行い、幅1.49m、長さ500m、かつ端部に幅1cmのナーリングを有するフィルム101を作製した。なお、以上の方法を「処方A」とする。 Next, the obtained dope solution was uniformly cast on a stainless steel band support having a width of 2 m using a belt casting apparatus. On the stainless steel band support, the solvent was evaporated until the residual solvent amount became 110%, and the stainless steel band support was peeled off. Next, both ends of the web were gripped with a tenter and stretched in the width direction. Thereafter, the film was held for 4 seconds while holding the end in the width direction of the film, and after the tension in the width direction was relaxed, the width holding was released. The obtained film is transported in a third drying zone set at 125 ° C. for 30 minutes and further dried to produce a film 101 having a width of 1.49 m, a length of 500 m, and a knurling having a width of 1 cm at the end. did. The above method is referred to as “Prescription A”.
 フィルム102~108の製造
 延伸ゾーンの条件(延伸倍率、加熱温度)とテンターに入る時の残留溶媒量を表1及び表2に示されるように変更した以外は前述と同様にしてフィルム102~108を作製した。
Production of films 102 to 108 Films 102 to 108 were the same as described above except that the conditions of the stretching zone (stretching ratio, heating temperature) and the residual solvent amount when entering the tenter were changed as shown in Tables 1 and 2. Was made.
 フィルム109~129の製造
 主ドープ組成に含まれるセルロースアセテートを、セルロースアセテート(総置換度2.41、アセチル置換度2.41、Mn=180000)に変更した以外はフィルム101の製造方法と同様にしてフィルム109~129、118と128を作製した。フィルム109~129の長さを500mとし、フィルム118と128の長さを1000mとした。なお、当該フィルム109~129の製法を「処方B」とする。
Production of films 109 to 129 The same method as the production of film 101 except that the cellulose acetate contained in the main dope composition was changed to cellulose acetate (total substitution degree 2.41, acetyl substitution degree 2.41, Mn = 18000). Thus, films 109 to 129, 118 and 128 were produced. The lengths of the films 109 to 129 were 500 m, and the lengths of the films 118 and 128 were 1000 m. The production method of the films 109 to 129 is referred to as “Prescription B”.
 フィルム130~141の製造
 主ドープ組成に含まれるセルロースアセテートを、セルロースアセテート(総置換度1.90、アセチル置換度1.90、Mn=140000)に変更し、かつ平均置換度5.5のスクロースベンゾエートを、平均置換度5.1のスクロースベンゾエートに変更した以外はフィルム101の製造方法と同様にして、長さ500mのフィルム130~141をそれぞれ作製した。なお、当該フィルム130~141の製法を「処方C」とする。
Production of Films 130 to 141 The cellulose acetate contained in the main dope composition was changed to cellulose acetate (total substitution degree 1.90, acetyl substitution degree 1.90, Mn = 14000), and sucrose having an average substitution degree of 5.5 Films 500 to 141 each having a length of 500 m were prepared in the same manner as the film 101 manufacturing method except that the benzoate was changed to sucrose benzoate having an average substitution degree of 5.1. The manufacturing method of the films 130 to 141 is “prescription C”.
 得られたフィルムの平均屈折率と位相差を、以下の方法で測定した。 The average refractive index and retardation of the obtained film were measured by the following method.
 (フィルムの平均屈折率の測定)
 得られたフィルムの、測定波長590nmにおける3軸方向(フィルム面内のx軸方向、それと直交するy軸方向、フィルム面の法線と平行なz軸方向)の屈折率を、アッベ屈折計を用いて測定し、それらの平均値を「平均屈折率」とした。
(Measurement of average refractive index of film)
The refractive index of the obtained film in the triaxial direction at the measurement wavelength of 590 nm (the x-axis direction in the film plane, the y-axis direction perpendicular to the film plane, and the z-axis direction parallel to the normal to the film plane) The average value thereof was defined as “average refractive index”.
 得られたフィルムの平均屈折率の測定結果を、表1および2に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
The measurement results of the average refractive index of the obtained film are shown in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 (位相差の測定)
 作製したフィルムを、23℃55%RHで調湿後、王子計測機器製KOBRA31WPRを用いて測定波長590nmでの位相差を測定した。Rt算出のために、平均屈折率はアッベ屈折計で3方向の屈折率を測定し、それらの平均値を用いた。また、Roの値と、フィルム面内の遅相軸を傾斜軸としてフィルム表面の法線に対して40°傾斜させたときの位相差値を用いてRtを算出した。
(Measurement of phase difference)
After the prepared film was conditioned at 23 ° C. and 55% RH, the phase difference at a measurement wavelength of 590 nm was measured using KOBRA 31WPR manufactured by Oji Scientific Instruments. For calculating Rt, the average refractive index was measured in three directions with an Abbe refractometer, and the average value was used. Further, Rt was calculated by using the value of Ro and the retardation value when tilted by 40 ° with respect to the normal of the film surface with the slow axis in the film plane as the tilt axis.
 フィルムの位相差の測定結果を、表3および表4に示す。
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Tables 3 and 4 show the measurement results of the retardation of the film.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 2.保護フィルムF1の製造
 (化合物Xの作製)
 メチルアクリレート:100質量部
 和光純薬社製 V65:5質量部
 メタノール:500質量部
 を調製し、窒素雰囲気化で攪拌しながら55℃に昇温し4時間攪拌を続けた。続いて冷水に投入し、析出したものを、5℃で水とメタノールで洗浄し、乾燥させた。
2. Production of protective film F1 (Preparation of compound X)
Methyl acrylate: 100 parts by mass Wako Pure Chemical Industries, Ltd. V65: 5 parts by mass Methanol: 500 parts by mass were prepared, heated to 55 ° C. with stirring in a nitrogen atmosphere, and stirred for 4 hours. Subsequently, it was poured into cold water, and the deposited one was washed with water and methanol at 5 ° C. and dried.
 分子量測定(GPC)において、ポリスチレン換算での化合物Xの重量平均分子量は、920であった。 In molecular weight measurement (GPC), the weight average molecular weight of Compound X in terms of polystyrene was 920.
 フィルムX1の製造
 以下の組成を有する主ドープ液Xを調製した。
 (主ドープ液Xの組成)
 メチレンクロライド:390質量部
 エタノール:80質量部
 セルロースアセテート(総置換度2.79、アセチル基置換度2.79、Mn=140000):100質量部
 前記化合物X:7質量部
Production of Film X1 A main dope liquid X having the following composition was prepared.
(Composition of main dope liquid X)
Methylene chloride: 390 parts by mass Ethanol: 80 parts by mass Cellulose acetate (total substitution degree 2.79, acetyl group substitution degree 2.79, Mn = 14000): 100 parts by mass Compound X: 7 parts by mass
 主ドープ液X100質量部と、前述で調製した微粒子添加液5質量部となるように加えて、インラインミキサー(東レ静止型管内混合機 Hi-Mixer、SWJ)で十分に混合してドープ液Xを得た。 In addition to 100 parts by mass of the main dope liquid X and 5 parts by mass of the fine particle addition liquid prepared above, the dope liquid X is mixed thoroughly with an in-line mixer (Toray static type in-pipe mixer Hi-Mixer, SWJ). Obtained.
 得られたドープ液Xを、ベルト流延装置を用いて、前述と同様にして、ステンレスバンド支持体上に流延させた。ステンレスバンド支持体の温度を、フィルム101製造時の温度よりも全体で2℃低下させ、テンターで延伸した後の乾燥温度を140℃で乾燥時間10分として、膜厚41μm、長さ1000mのフィルムX1を作製した。 The obtained dope liquid X was cast on a stainless steel band support using a belt casting apparatus in the same manner as described above. A film having a thickness of 41 μm and a length of 1000 m, the temperature of the stainless steel band support is lowered by 2 ° C. as a whole from the temperature at the time of manufacturing the film 101, and the drying temperature after stretching with a tenter is 140 ° C. and the drying time is 10 minutes X1 was produced.
 得られたフィルムX1の面のうち、フィルム製膜時に、ステンレスバンド支持体に接触していた面をb面、反対の面をa面として、フィルムX1の各面における偏光子の透過軸と平行方向の屈折率を、以下の方法で測定したところ、a面の屈折率は1.474であった。また、厚さ方向に沿って反射率を測定したところ、a面からb面に向けて反射率が連続的に変化していることが確認された。 Of the surfaces of the obtained film X1, the surface that was in contact with the stainless steel band support at the time of film formation was defined as b surface, and the opposite surface as a surface, parallel to the transmission axis of the polarizer on each surface of the film X1. When the refractive index in the direction was measured by the following method, the refractive index of the a-plane was 1.474. Moreover, when the reflectance was measured along the thickness direction, it was confirmed that the reflectance continuously changed from the a-plane toward the b-plane.
(フィルム面内の、偏光子の透過軸と平行方向の屈折率の測定)
 アッベ屈折計の接眼部分に偏光子をセットし、フィルムのa面またはb面を、主プリズム面と光学密着させて、主プリズム面に貼り付けられた面における屈折率を測定した。その際、フィルムの、偏光子の透過軸と平行になる方向が、主プリズムの短辺と平行になるように配置した。また、主プリズム部分を21℃になるように冷却した。また、フィルムのa面とは、フィルム製膜時に、ステンレスバンド支持体に接触していた面とは反対側の面であり;フィルムのb面とは、ステンレスバンド支持体に接触していた面である。
(Measurement of refractive index in the plane of the film parallel to the transmission axis of the polarizer)
A polarizer was set on the eyepiece of the Abbe refractometer, and the refractive index on the surface affixed to the main prism surface was measured by optically contacting the a-plane or b-plane of the film with the main prism surface. At that time, the film was arranged so that the direction parallel to the transmission axis of the polarizer was parallel to the short side of the main prism. The main prism portion was cooled to 21 ° C. Also, the a-side of the film is the surface opposite to the surface that was in contact with the stainless steel band support during film formation; the b-side of the film was the surface that was in contact with the stainless steel band support. It is.
 フィルムX2の製造
 ステンレスバンド支持体の温度をフィルム101製造時の温度に戻し、かつテンターで延伸した後の乾燥温度を130℃、乾燥時間を12分とした以外はフィルムX1の製造方法と同様にして、膜厚41μm、長さ500mのフィルムX2を作製した。
Manufacture of film X2 The method of manufacturing film X1 was the same as that of film X1, except that the temperature of the stainless steel band support was returned to the temperature at which the film 101 was manufactured, and the drying temperature after stretching with a tenter was 130 ° C. Thus, a film X2 having a film thickness of 41 μm and a length of 500 m was produced.
 フィルムX2の各面における偏光子の透過軸と平行方向の屈折率を、前述と同様に測定した結果、a面の屈折率は1.480であり、b面の屈折率は1.482であり、厚さ方向の反射率からフィルム膜厚方向で屈折率が連続的に変化していることが確認された。 As a result of measuring the refractive index in the direction parallel to the transmission axis of the polarizer on each surface of the film X2 in the same manner as described above, the refractive index of the a surface is 1.480, and the refractive index of the b surface is 1.482. From the reflectivity in the thickness direction, it was confirmed that the refractive index continuously changed in the film thickness direction.
 フィルムX3の製造
 ステンレスバンド支持体の温度を、フィルム101製造時の温度よりも2℃上昇させ、かつテンターで延伸した後の乾燥温度を125℃、乾燥時間を14分とした以外はフィルムX1の製造方法と同様にして、膜厚41μm、長さ500mのフィルムX3を作製した。
Production of Film X3 The temperature of the stainless steel band support was raised by 2 ° C. above the temperature at the time of production of the film 101, and the drying temperature after stretching with a tenter was 125 ° C. and the drying time was 14 minutes. In the same manner as in the manufacturing method, a film X3 having a film thickness of 41 μm and a length of 500 m was produced.
 フィルムX3の各面における偏光子の透過軸と平行方向の屈折率を、前述と同様に測定した結果、a面、b面とも屈折率は1.482であり、厚さ方向の反射率から、フィルム膜厚方向で屈折率が連続変化は確認されなかった。 As a result of measuring the refractive index in the direction parallel to the transmission axis of the polarizer on each surface of the film X3 in the same manner as described above, the refractive index is 1.482 on both the a surface and the b surface, and from the reflectance in the thickness direction, A continuous change in the refractive index in the film thickness direction was not confirmed.
 フィルムY1の製造
 特開2007-3766号公報の段落〔0266〕の記載を参考にして、中空微粒子を調製した。そして、前記主ドープ液Xに、セルロースアセテートに対して0.5質量%の中空微粒子を添加して、主ドープ液Yを作製した。そして、主ドープ液Xを主ドープ液Yに変更した以外はフィルムX3の製造方法と同様にして、長さ500mのフィルムY1を作製した。
Production of Film Y1 Hollow fine particles were prepared with reference to the description in paragraph [0266] of JP-A-2007-3766. Then, 0.5% by mass of hollow fine particles with respect to cellulose acetate was added to the main dope liquid X to prepare main dope liquid Y. And the film Y1 of length 500m was produced like the manufacturing method of the film X3 except having changed the main dope liquid X into the main dope liquid Y.
 得られたフィルムY1のa面における偏光子の透過軸と平行方向の屈折率を、前述と同様に測定した結果、1.452であった。 As a result of measuring the refractive index in the direction parallel to the transmission axis of the polarizer on the a-plane of the obtained film Y1 in the same manner as described above, it was 1.452.
 得られたフィルムX1~X3と、市販品のフィルムA1~A3とを、液晶セルのサイズに合わせて断裁して、バックライト側の偏光板(第一の偏光板)を構成するバックライト側の保護フィルムF1とした。
 X1:(41μm,屈折率:a面1.474,b面1.480)
 X2:(41μm,屈折率:a面1.480,b面1.482)
 X3:(41μm,屈折率:a面1.481,b面1.481)
 A1:ダイキン工業株式会社製ネオフロンETFE(25μm,屈折率1.401)
 A2:ダイキン工業株式会社製ネオフロンPFA(25μm,屈折率1.342)
 A3:三井化学株式会社製TPX(50μm,屈折率1.464)
 A4:コニカミノルタ製 KC-8UX2MW(80μm,屈折率1.481)
The obtained films X1 to X3 and commercially available films A1 to A3 are cut in accordance with the size of the liquid crystal cell to form a backlight side polarizing plate (first polarizing plate). It was set as protective film F1.
X1: (41 μm, refractive index: a-plane 1.474, b-plane 1.480)
X2: (41 μm, refractive index: a-plane 1.480, b-plane 1.482)
X3: (41 μm, refractive index: a-plane 1.481, b-plane 1.481)
A1: NEOFRON ETFE (25 μm, refractive index 1.401) manufactured by Daikin Industries, Ltd.
A2: NEOFRON PFA (25 μm, refractive index 1.342) manufactured by Daikin Industries, Ltd.
A3: TPX manufactured by Mitsui Chemicals, Inc. (50 μm, refractive index 1.464)
A4: Konica Minolta KC-8UX2MW (80μm, refractive index 1.481)
 3.偏光板の作製
 偏光子の作製
 厚さ75μmのポリビニルアルコールフィルムを、35℃の水で膨潤させこれをヨウ素0.075g、ヨウ化カリウム5g、水100gからなる水溶液に60秒間浸漬し、次いでヨウ化カリウム3g、ホウ酸7.5g、水100gからなる45℃の水溶液に浸漬した後、一軸延伸(温度55℃、延伸倍率5倍)した。これを水洗、乾燥して偏光子を得た。
3. Production of Polarizing Plate Production of Polarizer A 75 μm-thick polyvinyl alcohol film was swollen with water at 35 ° C. and immersed in an aqueous solution consisting of 0.075 g iodine, 5 g potassium iodide and 100 g water, and then iodinated. After immersing in a 45 ° C. aqueous solution composed of 3 g of potassium, 7.5 g of boric acid, and 100 g of water, the film was uniaxially stretched (temperature 55 ° C., stretch ratio 5 times). This was washed with water and dried to obtain a polarizer.
 1)視認側の偏光板(第二の偏光板)
 位相差機能を有する保護フィルムF3として、作製したフィルム101、108~114、119~120、126~132、134、136~141および104を準備した。一方、保護フィルムF4として、コニカミノルタオプト製KC6UA-SWを準備した。そして、作製したフィルムと、KC6UA-SWとを、50℃2NのKOH水溶液を用いて60秒間ケン化処理を行い、水洗、乾燥させた。
1) Polarizing plate on the viewing side (second polarizing plate)
The prepared films 101, 108 to 114, 119 to 120, 126 to 132, 134, 136 to 141, and 104 were prepared as the protective film F3 having a retardation function. On the other hand, KC6UA-SW manufactured by Konica Minolta Opto was prepared as the protective film F4. The produced film and KC6UA-SW were subjected to saponification treatment for 60 seconds using a 2N KOH aqueous solution at 50 ° C., washed with water and dried.
 上記作製した偏光子の一方の面に前記ケン化済みのKC6UA-SWを;偏光子の他方の面に表5または6で示される前記ケン化済みの保護フィルムF3を、水糊を介してそれぞれ配置して、偏光子を表5または6で示される保護フィルムF3と、ケン化済みのKC6UA-SWとで挟んだ積層物を得た。当該積層物を、圧力20~30N/cm、搬送スピードは約10m/分で貼合し、70℃で約2分間、次いで60℃で約2分の乾燥処理を行って、表5または6で示されるような視認側の偏光板(第二の偏光板)201、208~214、219~220、226~232、234および236~241および259を得た。 The saponified KC6UA-SW is applied to one surface of the prepared polarizer, and the saponified protective film F3 shown in Table 5 or 6 is applied to the other surface of the polarizer via water glue, respectively. Then, a laminate was obtained in which the polarizer was sandwiched between the protective film F3 shown in Table 5 or 6 and saponified KC6UA-SW. The laminate was bonded at a pressure of 20 to 30 N / cm 2 and a conveyance speed of about 10 m / min, and subjected to a drying treatment at 70 ° C. for about 2 minutes and then at 60 ° C. for about 2 minutes. The polarizing plates (second polarizing plates) 201, 208 to 214, 219 to 220, 226 to 232, 234 and 236 to 241 and 259 on the viewing side as shown in FIG.
 剥離加工したポリエチレンテレフタレートフィルムに粘着層を設け、得られた偏光板の、保護フィルムF3側に粘着層の面を貼りつけた。得られた偏光板を、フィルムの幅方向に垂直方向に巻き取って、ロール状粘着偏光板を作製した。 An adhesive layer was provided on the peeled polyethylene terephthalate film, and the surface of the adhesive layer was attached to the protective film F3 side of the obtained polarizing plate. The obtained polarizing plate was wound up in the direction perpendicular to the width direction of the film to prepare a roll-shaped adhesive polarizing plate.
 2)バックライト側の偏光板(第一の偏光板)の作製
 位相差機能を有する保護フィルムF2として、作製したフィルム102~105、107、115~118、121、123~125、133、135および109を準備した。
2) Production of backlight side polarizing plate (first polarizing plate) As protective film F2 having a retardation function, produced films 102 to 105, 107, 115 to 118, 121, 123 to 125, 133, 135 and 109 was prepared.
 これらのフィルムを、視認側の偏光板の作製と同じように、ケン化処理した。次いで、上記作製した偏光子の片側のみに、表5または6で示される保護フィルムF2を貼り合わせた後、乾燥させた。そして、保護フィルム側に、視認側の偏光板と同様に粘着加工を行い、偏光子の片側のみに保護フィルムを有する粘着偏光板を作製し、ロール状に巻き取り、ロール状粘着偏光板を得た。 These films were saponified in the same manner as the production of the polarizing plate on the viewing side. Next, the protective film F2 shown in Table 5 or 6 was bonded to only one side of the produced polarizer, and then dried. Then, on the protective film side, adhesive processing is performed in the same manner as the polarizing plate on the viewing side, and an adhesive polarizing plate having a protective film on only one side of the polarizer is produced and wound into a roll to obtain a roll-shaped adhesive polarizing plate. It was.
 このロール状粘着偏光板から巻き出された粘着偏光板の粘着層が液晶セルと接するように、粘着偏光板を、液晶セルのバックライト側に貼り合わせた。その後、偏光子上に、表5または6に示されるバックライト側の保護フィルムF1(フィルムA1~A4およびX1~X3のいずれか)を貼り合わせて、表5または6に示されるようなバックライト側の偏光板(第一の偏光板)202~205、207、215~218、221、223~225、233、235、および242~258を得た。 The pressure-sensitive adhesive polarizing plate was bonded to the backlight side of the liquid crystal cell so that the pressure-sensitive adhesive layer unwound from the roll-shaped pressure-sensitive polarizing plate was in contact with the liquid crystal cell. Thereafter, a backlight-side protective film F1 (any one of films A1 to A4 and X1 to X3) shown in Table 5 or 6 is bonded onto the polarizer, and the backlight as shown in Table 5 or 6 is attached. Side polarizing plates (first polarizing plates) 202 to 205, 207, 215 to 218, 221, 223 to 225, 233, 235, and 242 to 258 were obtained.
 得られた偏光板201~259の構成を、表5および6に示す。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
The structures of the obtained polarizing plates 201 to 259 are shown in Tables 5 and 6.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 4.液晶表示装置の作製
 1)COA構造を有する液晶表示装置の作製
 SONY社製BRAVIA KDL-46HX800の二つの偏光板を剥離し、上記で作製した第一および第二の偏光板を、表7および10に記載した組合せとなるように、液晶セルの両面に貼り合わせて、液晶表示装置(1001~1051)を作製し、下記評価を行った。作製した偏光板の貼り合わせは、作製した偏光板の吸収軸と、予め貼り合わされていた偏光板の吸収軸とが平行になるように行った。また、偏光子の吸収軸と、偏光子の液晶セル側に配置される保護フィルム(位相差フィルム)の面内遅相軸とは直交していた。この液晶表示装置の液晶セルは、カラーフィルタと薄膜トランジスタが二つの透明基板の一方に配置されたセルであり(図1参照)、表7、9、10および12には「液晶セルX」と記載した。
4). Production of liquid crystal display device 1) Production of liquid crystal display device having COA structure The two polarizing plates of BRAVIA KDL-46HX800 manufactured by Sony Corporation were peeled off, and the first and second polarizing plates produced above were shown in Tables 7 and 10 The liquid crystal display devices (1001 to 1051) were manufactured by being attached to both surfaces of the liquid crystal cell so that the combination described in the above was obtained, and the following evaluation was performed. The produced polarizing plates were bonded so that the absorption axis of the produced polarizing plate and the absorption axis of the previously bonded polarizing plate were parallel to each other. Moreover, the absorption axis of the polarizer and the in-plane slow axis of the protective film (retardation film) disposed on the liquid crystal cell side of the polarizer were orthogonal to each other. The liquid crystal cell of this liquid crystal display device is a cell in which a color filter and a thin film transistor are disposed on one of two transparent substrates (see FIG. 1), and is described as “Liquid Crystal Cell X” in Tables 7, 9, 10 and 12. did.
 2)COA構造を有しない液晶表示装置の作製
 SONY社製BRAVIA KDL40V5の二つの偏光板を剥離し、上記で作製した第一および第二の偏光板を、表10の組合せで液晶セルの両面に貼り合わせて、液晶表示装置(3001~3006)を作製し、下記評価を行った。作製した偏光板の貼り合わせは、作製した偏光板の吸収軸と、予め貼り合わされていた偏光板の吸収軸とが平行になるように行った。また、偏光子の吸収軸と、偏光子の液晶セル側に配置される保護フィルム(位相差フィルム)の面内遅相軸とは直交していた。この液晶表示装置の液晶セルは、薄膜トランジスタが一方の透明基板に配置され、カラーフィルタが他方の透明基板に配置されたセルであり(図2参照)、表10および12には「液晶セルV」と記載した。
2) Production of a liquid crystal display device having no COA structure The two polarizing plates of BRAVIA KDL40V5 manufactured by SONY were peeled off, and the first and second polarizing plates produced above were combined on both sides of the liquid crystal cell in the combination of Table 10 The liquid crystal display devices (3001 to 3006) were manufactured by bonding, and the following evaluation was performed. The produced polarizing plates were bonded so that the absorption axis of the produced polarizing plate and the absorption axis of the previously bonded polarizing plate were parallel to each other. Moreover, the absorption axis of the polarizer and the in-plane slow axis of the protective film (retardation film) disposed on the liquid crystal cell side of the polarizer were orthogonal to each other. The liquid crystal cell of this liquid crystal display device is a cell in which a thin film transistor is disposed on one transparent substrate and a color filter is disposed on the other transparent substrate (see FIG. 2). It was described.
 〈正面コントラストおよび白輝度〉
 バックライトを点灯させた状態で、画面を白表示させたときの正面輝度を、コニカミノルタセンシング製CS2000を用いて1mの距離から測定した。同様にして、バックライトを点灯させた状態で、画面を黒表示させたときの正面輝度を測定した。これらの測定結果を用いて正面コントラスト(=白表示させたときの正面輝度/黒表示させたときの正面輝度)を算出した。また、算出した値の10の位を25未満は切り捨て、25以上50以下は50とし、それ以上は切り上げた数値を表に載せた。
<Front contrast and white brightness>
The front luminance when the screen was displayed in white with the backlight turned on was measured from a distance of 1 m using CS2000 manufactured by Konica Minolta Sensing. Similarly, the front luminance when the screen was displayed in black with the backlight on was measured. Using these measurement results, the front contrast (= front brightness when displaying white / front brightness when displaying black) was calculated. In addition, the calculated value is rounded down to the nearest 10th place, rounded down from 25 to 50, and rounded up to 50.
 正面コントラストを下記基準に従って評価した。
 1)液晶セルXの場合
 ◎:5000以上
 ○:4000超5000未満
 ×:4000以下
 2)液晶セルVの場合
 ◎:4000以上
 ○:3000超4000未満
 ×:3000以下
The front contrast was evaluated according to the following criteria.
1) In the case of liquid crystal cell X ◎: 5000 or more ○: More than 4000 and less than 5000 ×: 4000 or less 2) In the case of liquid crystal cell V ◎: 4000 or more ○: More than 3000 and less than 4000 ×: 3000 or less
 白輝度は、製品の輝度を基準として、以下のように評価した。
 1)液晶セルXの場合
 X(KDL-46HX800)の輝度:400cd/mに対して
 ◎:製品比 103%超
 ○:製品比 100~103%
 ×:製品比 100%未満
 2)液晶セルVの場合
 V(KDL-40V5)の輝度:300cd/mに対して
 ◎:製品比 103%超
 ○:製品比 100~103%
 ×:製品比 100%未満
The white luminance was evaluated as follows based on the luminance of the product.
1) In the case of liquid crystal cell X Luminance of X (KDL-46HX800): With respect to 400 cd / m 2 ◎: Product ratio over 103% ○: Product ratio 100 to 103%
×: Less than 100% product ratio 2) In case of liquid crystal cell V V (KDL-40V5) brightness: 300 cd / m 2 ◎: Product ratio over 103% ○: Product ratio 100-103%
×: Less than 100% of product ratio
 (視野角)
 ELDIM社製EZ-Contrast160Dを用いて、正面コントラスト測定と同様に、画面を白表示させたときの、表示画面の表面に対して斜め方向の輝度を測定した。斜め方向の輝度の測定は、表示画面に対する傾斜角度が0~80°の範囲で行った。同様に、画面を黒表示させたときの、表示画面の表面に対して斜め方向の輝度を測定した。そして、各傾斜角度でのコントラスト(=白表示さえたときの輝度/黒表示させたときの輝度)を算出し、コントラストが100となる傾斜角度のうち最小の角度を視野角とした。また、全方位で視野角が80°を超えている場合も80°と表記した。視野角を下記基準に従って評価した。
 ◎:60°以上
 ○:50°以上、60°未満
 ×:50°未満
(Viewing angle)
Using an EZ-Contrast 160D manufactured by ELDIM, the luminance in a direction oblique to the surface of the display screen when the screen was displayed in white was measured in the same manner as the front contrast measurement. The measurement of the luminance in the oblique direction was performed in the range where the inclination angle with respect to the display screen was 0 to 80 °. Similarly, the luminance in a direction oblique to the surface of the display screen when the screen was displayed in black was measured. Then, the contrast at each tilt angle (= brightness when displaying white / brightness when displaying black) was calculated, and the minimum angle among the tilt angles at which the contrast was 100 was defined as the viewing angle. In addition, when the viewing angle exceeds 80 ° in all directions, it is described as 80 °. The viewing angle was evaluated according to the following criteria.
◎: 60 ° or more ○: 50 ° or more, less than 60 ° ×: less than 50 °
 (カラーシフト)
 ELDIM社製EZ-Contrast160Dを用いて、黒表示させたときの、液晶表示装置の表示画面の法線から傾斜角60°で方位角360°の色味をそれぞれ測定し、CIE1976UCS色度図の座標(u1’,v1’)で表した。そして、傾斜角60°で測定された座標(u1’,v1’)の中から、正面方向の色味の座標(u2’,v2’)と最も距離が大きい値をカラーシフトΔCSとした。
 カラーシフト(ΔCS)=((u1’-u2’)+(v1’-v2’)1/2
 カラーシフト(ΔCS)を下記基準に従って評価した。
 ◎:0.040未満
 ○:0.040以上0.060以下
 ×:0.060超
(Color shift)
Using the EZ-Contrast 160D manufactured by ELDIM, the hue of the azimuth 360 ° and the azimuth 360 ° is measured from the normal line of the display screen of the liquid crystal display device when displaying black. (U1 ′, v1 ′). Then, the color shift ΔCS is a value having the largest distance from the color coordinates (u2 ′, v2 ′) in the front direction among the coordinates (u1 ′, v1 ′) measured at an inclination angle of 60 °.
Color shift (ΔCS) = ((u1′−u2 ′) 2 + (v1′−v2 ′) 2 ) 1/2
Color shift (ΔCS) was evaluated according to the following criteria.
◎: Less than 0.040 ○: 0.040 or more and 0.060 or less ×: More than 0.060
 (総合評価)
 正面コントラスト、白輝度、視野角、及びカラーシフトの評価項目の中で一つでも×となる項目があるものは×、それ以外は○として、総合評価をした。
(Comprehensive evaluation)
Of the evaluation items of front contrast, white luminance, viewing angle, and color shift, the evaluation was evaluated as x when there was an item that was at x, and the other was evaluated as o.
 上記評価結果等を表7~12にまとめて示す。
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
The above evaluation results are summarized in Tables 7-12.
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
 表7~12に示した結果から明らかなように、本発明の垂直配向型液晶表示装置は、正面コントラスト、視野角、及びカラーシフトについての評価において優れていることが分かる。 As is apparent from the results shown in Tables 7 to 12, it can be seen that the vertical alignment type liquid crystal display device of the present invention is excellent in evaluation of front contrast, viewing angle, and color shift.
 (偏光板のスリット法と輝度ムラの関係)
 上記で作製した偏光板218を1151mm幅、偏光板228を647mm幅にレーザースリッターを用いてスリットし、それぞれ1151mm幅のロール状偏光板218A1、647mm幅のロール状偏光板228B1を作製し、ロール状偏光板のセット218A1-228B1とした。
(Relation between slit method of polarizing plate and uneven brightness)
The polarizing plate 218 produced above is slit to 1151 mm width and the polarizing plate 228 to a width of 647 mm using a laser slitter to produce a roll-shaped polarizing plate 218A1 having a width of 1151 mm and a roll-shaped polarizing plate 228B1 having a width of 647 mm, respectively. A set of polarizing plates 218A1-228B1 was obtained.
 これらのロール状偏光板を、パネル貼合装置である、液晶表示装置の製造システムにセットした。そして、ロール状偏光板から巻き出された偏光板と、10枚の液晶セルとを、ロールtoパネル製法で貼り合わせて、液晶パネルを得た。 These roll-shaped polarizing plates were set in a liquid crystal display manufacturing system, which is a panel laminating apparatus. And the polarizing plate unwound from the roll-shaped polarizing plate and 10 liquid crystal cells were bonded together by the roll to panel manufacturing method, and the liquid crystal panel was obtained.
 そして、SONY社製BRAVIA KDL-46HX8001から、液晶パネル(液晶セルと、それを挟持する一対の偏光板との積層物)を剥がしとった。そして、前述で得られた液晶パネルを、上記の液晶表示装置に組み込んで、液晶表示装置2001~2010を作製した。 Then, a liquid crystal panel (a laminate of a liquid crystal cell and a pair of polarizing plates sandwiching the liquid crystal cell) was peeled off from BRAVIA KDL-46HX8001 manufactured by Sony. Then, the liquid crystal panel obtained above was incorporated into the liquid crystal display device described above, and liquid crystal display devices 2001 to 2010 were manufactured.
 また、上記で作製した偏光板218と228を52インチサイズに10枚ずつ断裁し、枚葉状偏光板を得た。得られた枚葉状偏光板を、前述のパネル貼合装置を用いて、10枚の液晶セルにそれぞれ貼り合わせて、液晶パネルを得た。そして、前述と同様にして、液晶表示装置2011~2020を作製した。 Further, 10 pieces of the polarizing plates 218 and 228 produced above were cut into 52-inch sizes to obtain a sheet-like polarizing plate. The obtained sheet-like polarizing plate was bonded to each of 10 liquid crystal cells using the panel bonding apparatus described above to obtain a liquid crystal panel. Then, liquid crystal display devices 2011 to 2020 were manufactured in the same manner as described above.
 得られた液晶表示装置の輝度ムラを、以下の方法で評価した。 The luminance unevenness of the obtained liquid crystal display device was evaluated by the following method.
 (ムラ)
 得られた液晶表示装置を50℃・90%RH24時間湿熱処理した後、バックライトを2時間点灯させた後の、黒表示での輝度ムラ(強弱)と、画像表示した時の影響を、下記基準に従って、目視で評価した。
 ◎:輝度ムラが見えない
 ○:弱い輝度ムラが見えるが画像表示で気にならない
 △:輝度ムラが強いが、画像表示でほとんど気にならない
 ×:輝度ムラが強く、画像表示でも気になる
(village)
The obtained liquid crystal display device was subjected to wet heat treatment at 50 ° C. and 90% RH for 24 hours, and then the backlight was turned on for 2 hours. Visual evaluation was made according to the criteria.
◎: Brightness unevenness is not visible ○: Weak brightness unevenness is visible, but it is not bothered by image display △: Brightness unevenness is strong, but it is hardly anxious about image display ×: Brightness unevenness is strong, and image display is bothering
 上記評価結果を表13に示す。
Figure JPOXMLDOC01-appb-T000013
The evaluation results are shown in Table 13.
Figure JPOXMLDOC01-appb-T000013
 表13に示した結果から明らかなように、本発明の垂直配向型液晶表示装置を製造する垂直配向型液晶表示装置の製造方法としては、前記位相差フィルムA及び位相差フィルムBのうち少なくとも一方の位相差フィルムを有する長尺ロール状偏光板を準備し、前記液晶セルに対してロールtoパネル製法で貼合する態様の製造方法が好ましいことが分かる。 As apparent from the results shown in Table 13, as a method for manufacturing the vertical alignment type liquid crystal display device for manufacturing the vertical alignment type liquid crystal display device of the present invention, at least one of the retardation film A and the retardation film B is used. It turns out that the manufacturing method of the aspect which prepares the elongate roll-shaped polarizing plate which has this retardation film, and is bonded with the roll to panel manufacturing method with respect to the said liquid crystal cell is preferable.
 本出願は、2011年2月24日出願の特願2011-037986に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2011-037986 filed on Feb. 24, 2011. The contents described in the application specification and the drawings are all incorporated herein.
 10、10’ 垂直配向型液晶表示装置
 30、30’ 垂直配向型液晶セル
 31 第一の透明基板
 33 第二の透明基板
 34 液晶分子
 35 液晶層
 37 薄膜トランジスタ
 39 カラーフィルタ
 50 第一の偏光板
 52 第一の偏光子
 54 保護フィルム(F1)
 56 保護フィルム(F2)(位相差フィルム)
 70 第二の偏光板
 72 第二の偏光子
 74 保護フィルム(F3)(位相差フィルム)
 76 保護フィルム(F4)
 90 バックライト
 100 搬送ベルト
 110 液晶セル
 130 ロール状偏光板
 130A 偏光板
 150 貼り合わせロール
10, 10 ′ Vertical alignment type liquid crystal display device 30, 30 ′ Vertical alignment type liquid crystal cell 31 First transparent substrate 33 Second transparent substrate 34 Liquid crystal molecule 35 Liquid crystal layer 37 Thin film transistor 39 Color filter 50 First polarizing plate 52 First One polarizer 54 protective film (F1)
56 Protective film (F2) (retardation film)
70 Second polarizing plate 72 Second polarizer 74 Protective film (F3) (retardation film)
76 Protective film (F4)
90 Backlight 100 Conveying belt 110 Liquid crystal cell 130 Roll-shaped polarizing plate 130A Polarizing plate 150 Bonding roll

Claims (7)

  1.  垂直配向型液晶セルと、前記垂直配向型液晶セルを挟持する第一の偏光板および第二の偏光板と、バックライトとを有する垂直配向型液晶表示装置であって、
     前記垂直配向型液晶セルは、二つの透明基板と、前記二つの透明基板の間に配置され、液晶分子を含む液晶層と、を有し、
     前記二つの透明基板のうち一方には、カラーフィルタが配置され、
     前記第一の偏光板は、前記垂直配向型液晶セルの前記バックライト側の面に配置され、ポリビニルアルコールを含む第一の偏光子と、前記第一の偏光子の前記バックライト側の面に配置された保護フィルムF1と、前記第一の偏光子の前記垂直配向型液晶セル側の面に配置された保護フィルムF2とを有し、
     前記第二の偏光板は、前記垂直配向型液晶セルの視認側の面に配置され、ポリビニルアルコールを含む第二の偏光子と、前記第二の偏光子の前記垂直配向型液晶セル側の面に配置された保護フィルムF3と、前記第二の偏光子の視認側の面に配置された保護フィルムF4とを有し、
     前記第一の偏光子の吸収軸と前記保護フィルムF2の面内遅相軸とが直交し、かつ前記第二の偏光子の吸収軸と前記保護フィルムF3の面内遅相軸とが直交しており、
     前記保護フィルムF2またはF3のうち、前記カラーフィルタが設けられた前記透明基板側に配置される方は位相差フィルムAであり、前記カラーフィルタが設けられていない前記透明基板側に配置される方は位相差フィルムBであり、
     23℃、55%RHにおいて測定波長590nmで測定される前記位相差フィルムAの、厚さ方向の位相差値RtをRt(A)、面内方向の位相差値RoをRo(A)とし、23℃、55%RHにおいて測定波長590nmで測定される前記位相差フィルムBの、厚さ方向の位相差値RtをRt(B)、面内方向の位相差値RoをRo(B)としたとき、
     下記式(1)~式(5)の全てを満たし、
     式(1):Rt(A)<Rt(B)
     式(2):70nm<Rt(A)<130nm
     式(3):130nm<Rt(B)<200nm
     式(4):20nm<Rt(B)-Rt(A)<130nm
     式(5):Rt/Ro(A)<Rt/Ro(B)〔RoおよびRtは、下記式で定義される。
     式(I):Ro=(nx-ny)×d(nm)
     式(II):Rt={(nx+ny)/2-nz}×d(nm)
     式(I)および(II)中、
     nxは、位相差フィルムの面内において屈折率が最大になる遅相軸方向xの屈折率を表し;
     nyは、位相差フィルムの面内において前記遅相軸と直交する進相軸方向yの屈折率を表し;
     nzは、位相差フィルムの厚さ方向zの屈折率を表し;
     dは、位相差フィルムの厚さを表す〕
     前記保護フィルムF1の前記バックライト側の面における、前記第一の偏光子の透過軸と平行方向の屈折率が、前記保護フィルムF2の平均屈折率よりも小さく、かつ前記保護フィルムF3の平均屈折率よりも小さい、垂直配向型液晶表示装置。
    A vertical alignment type liquid crystal display device comprising a vertical alignment type liquid crystal cell, a first polarizing plate and a second polarizing plate sandwiching the vertical alignment type liquid crystal cell, and a backlight,
    The vertical alignment type liquid crystal cell includes two transparent substrates, and a liquid crystal layer disposed between the two transparent substrates and including liquid crystal molecules,
    A color filter is disposed on one of the two transparent substrates,
    The first polarizing plate is disposed on the backlight side surface of the vertical alignment type liquid crystal cell, and includes a first polarizer containing polyvinyl alcohol, and a surface of the first polarizer on the backlight side. A protective film F1 disposed, and a protective film F2 disposed on the surface of the first polarizer on the vertical alignment liquid crystal cell side;
    The second polarizing plate is disposed on a viewing side surface of the vertical alignment type liquid crystal cell, and includes a second polarizer containing polyvinyl alcohol, and a surface of the second polarizer on the vertical alignment type liquid crystal cell side. A protective film F3 disposed on the viewing side of the second polarizer, and a protective film F4 disposed on the viewing side of the second polarizer,
    The absorption axis of the first polarizer and the in-plane slow axis of the protective film F2 are orthogonal to each other, and the absorption axis of the second polarizer and the in-plane slow axis of the protective film F3 are orthogonal to each other. And
    Of the protective films F2 or F3, the one disposed on the transparent substrate side provided with the color filter is the retardation film A, and the one disposed on the transparent substrate side not provided with the color filter. Is retardation film B,
    For the retardation film A measured at 23 ° C. and 55% RH at a measurement wavelength of 590 nm, the retardation value Rt in the thickness direction is Rt (A), the retardation value Ro in the in-plane direction is Ro (A), In the retardation film B measured at 23 ° C. and 55% RH at a measurement wavelength of 590 nm, the retardation value Rt in the thickness direction was Rt (B), and the retardation value Ro in the in-plane direction was Ro (B). When
    Satisfy all of the following formulas (1) to (5),
    Formula (1): Rt (A) <Rt (B)
    Formula (2): 70 nm <Rt (A) <130 nm
    Formula (3): 130 nm <Rt (B) <200 nm
    Formula (4): 20 nm <Rt (B) -Rt (A) <130 nm
    Formula (5): Rt / Ro (A) <Rt / Ro (B) [Ro and Rt are defined by the following formulas.
    Formula (I): Ro = (nx−ny) × d (nm)
    Formula (II): Rt = {(nx + ny) / 2−nz} × d (nm)
    In the formulas (I) and (II)
    nx represents the refractive index in the slow axis direction x where the refractive index is maximum in the plane of the retardation film;
    ny represents the refractive index in the fast axis direction y perpendicular to the slow axis in the plane of the retardation film;
    nz represents the refractive index in the thickness direction z of the retardation film;
    d represents the thickness of the retardation film]
    The refractive index in the direction parallel to the transmission axis of the first polarizer on the surface on the backlight side of the protective film F1 is smaller than the average refractive index of the protective film F2, and the average refractive index of the protective film F3. Vertical alignment type liquid crystal display device smaller than the rate.
  2.  前記二つの透明基板のうち一方には、薄膜トランジスタと、前記カラーフィルタとが配置されている、請求項1に記載の垂直配向型液晶表示装置。 2. The vertical alignment type liquid crystal display device according to claim 1, wherein a thin film transistor and the color filter are disposed on one of the two transparent substrates.
  3.  前記保護フィルムF1の、前記第二の偏光子側の面における前記第二の偏光子の透過軸と平行方向の屈折率をnpとし、前記バックライト側の面における前記第二の偏光子の透過軸と平行方向の屈折率をnaとしたとき、npがnaよりも大きい、請求項1に記載の垂直配向型液晶表示装置。 The protective film F1 has a refractive index np parallel to the transmission axis of the second polarizer on the second polarizer side surface, and the second polarizer transmits on the backlight side surface. 2. The vertical alignment liquid crystal display device according to claim 1, wherein np is larger than na, where na is a refractive index in a direction parallel to the axis.
  4.  前記保護フィルムF2が、前記位相差フィルムAであり、
     前記位相差フィルムAの面内方向の位相差値Ro(A)が、下記式(6)をさらに満たす、請求項2に記載の垂直配向型液晶表示装置。
     式(6):40nm<Ro(A)<90nm
    The protective film F2 is the retardation film A,
    The vertical alignment liquid crystal display device according to claim 2, wherein the retardation value Ro (A) in the in-plane direction of the retardation film A further satisfies the following formula (6).
    Formula (6): 40 nm <Ro (A) <90 nm
  5.  前記保護フィルムF1の前記第二の偏光子の透過軸と平行方向の屈折率が、フィルムの厚さ方向に連続的に変化している、請求項1に記載の垂直配向型液晶表示装置。 The vertical alignment type liquid crystal display device according to claim 1, wherein the refractive index of the protective film F1 in the direction parallel to the transmission axis of the second polarizer continuously changes in the thickness direction of the film.
  6.  前記保護フィルムF1の前記バックライト側の面における、前記第二の偏光子の透過軸と平行方向の屈折率naが、1.350~1.480の範囲である、請求項1に記載の垂直配向型液晶表示装置。 The vertical axis according to claim 1, wherein a refractive index na in a direction parallel to a transmission axis of the second polarizer on a surface on the backlight side of the protective film F1 is in a range of 1.350 to 1.480. Alignment type liquid crystal display device.
  7.  請求項1に記載の垂直配向型液晶表示装置の製造方法であって、
     偏光子と、前記偏光子の少なくとも一方の面に配置された前記位相差フィルムAまたは位相差フィルムBとを含む偏光板が、フィルムの幅方向に対して垂直方向に巻き取られたロール状偏光板を準備するステップと、
     前記ロール状偏光板から巻き出された偏光板と前記垂直配向型液晶セルとを、ロールtoパネルで貼り合わせるステップと、を含む、垂直配向型液晶表示装置の製造方法。
     
    A method of manufacturing a vertical alignment type liquid crystal display device according to claim 1,
    A roll-shaped polarized light in which a polarizing plate including a polarizer and the retardation film A or the retardation film B disposed on at least one surface of the polarizer is wound in a direction perpendicular to the width direction of the film Preparing the board,
    And a step of bonding the polarizing plate unwound from the roll-shaped polarizing plate and the vertical alignment type liquid crystal cell with a roll to panel.
PCT/JP2012/001250 2011-02-24 2012-02-23 Vertical alignment liquid-crystal display device and manufacturing method thereof WO2012114762A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011037986A JP2014095729A (en) 2011-02-24 2011-02-24 Vertical alignment type liquid crystal display device and method for manufacturing the same
JP2011-037986 2011-02-24

Publications (1)

Publication Number Publication Date
WO2012114762A1 true WO2012114762A1 (en) 2012-08-30

Family

ID=46720552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/001250 WO2012114762A1 (en) 2011-02-24 2012-02-23 Vertical alignment liquid-crystal display device and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP2014095729A (en)
WO (1) WO2012114762A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234431A (en) * 2004-02-23 2005-09-02 Konica Minolta Opto Inc Liquid crystal display and polarizing plate set
JP2007047382A (en) * 2005-08-09 2007-02-22 Konica Minolta Opto Inc Polarizing plate and liquid crystal display
JP2007292944A (en) * 2006-04-24 2007-11-08 Fujifilm Corp Liquid crystal display device
WO2008044463A1 (en) * 2006-10-05 2008-04-17 Konica Minolta Opto, Inc. Liquid crystal display device of transverse electric field switching mode type
JP2010044362A (en) * 2008-08-11 2010-02-25 Samsung Electronics Co Ltd Thin-film transistor display panel, liquid crystal display device having the same and method of manufacturing liquid crystal display device
JP2010054736A (en) * 2008-08-27 2010-03-11 Fujifilm Corp Retardation film and polarizing plate using the same, liquid crystal display device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005234431A (en) * 2004-02-23 2005-09-02 Konica Minolta Opto Inc Liquid crystal display and polarizing plate set
JP2007047382A (en) * 2005-08-09 2007-02-22 Konica Minolta Opto Inc Polarizing plate and liquid crystal display
JP2007292944A (en) * 2006-04-24 2007-11-08 Fujifilm Corp Liquid crystal display device
WO2008044463A1 (en) * 2006-10-05 2008-04-17 Konica Minolta Opto, Inc. Liquid crystal display device of transverse electric field switching mode type
JP2010044362A (en) * 2008-08-11 2010-02-25 Samsung Electronics Co Ltd Thin-film transistor display panel, liquid crystal display device having the same and method of manufacturing liquid crystal display device
JP2010054736A (en) * 2008-08-27 2010-03-11 Fujifilm Corp Retardation film and polarizing plate using the same, liquid crystal display device

Also Published As

Publication number Publication date
JP2014095729A (en) 2014-05-22

Similar Documents

Publication Publication Date Title
JP5668593B2 (en) Polarizing plate, manufacturing method thereof, and vertical alignment type liquid crystal display device
TWI538944B (en) A cellulose ester film, a method for producing the same, and a polarizing plate
JP5704173B2 (en) Optical display device manufacturing system and method
JP6428621B2 (en) Cellulose acylate film, polarizing plate and liquid crystal display device
JP6493213B2 (en) Retardation film, polarizing plate and liquid crystal display device
JP5835230B2 (en) Vertical alignment type liquid crystal display device and manufacturing method thereof
TWI637850B (en) Polarizing plate and liquid crystal display device
JP2010085573A (en) Optical compensation film, method for manufacturing the same, and liquid crystal display device
JP2008191217A (en) Manufacturing method of retardation film, retardation film, polarizing plate and liquid crystal display
JP2008268419A (en) Manufacturing method of retardation film, retardation film, polarizing plate, and liquid crystal display device
JP5304722B2 (en) Polarizing plate protective film and polarizing plate using the same
JPWO2016199509A1 (en) Highly oriented film in which different kinds of resins are unevenly distributed, manufacturing method thereof, polarizing plate using the same, liquid crystal display device, decorative film, and gas barrier film
JP2007256637A (en) Retardation film and manufacturing method thereof
JP2011232428A (en) Inclined retardation film and liquid crystal display device
WO2012114762A1 (en) Vertical alignment liquid-crystal display device and manufacturing method thereof
JP5626133B2 (en) VA liquid crystal display device
JP2011248042A (en) Liquid crystal display device and manufacturing method thereof
WO2008050525A1 (en) Retardation film
JP2008307730A (en) Method for manufacturing optical film, optical film, polarizing plate and liquid crystal display
WO2016111058A1 (en) Vertical alignment liquid crystal display device
JP5821850B2 (en) Manufacturing system of polarizing plate long roll and optical display device
JP2012198280A (en) Vertical alignment type liquid crystal display and method for manufacturing the same
JP5626134B2 (en) VA liquid crystal display device
WO2011148504A1 (en) Light diffusing film, method for manufacturing same, and polarizing plate, roll-shaped polarizing plate, and liquid crystal display device which employ same
JP5531929B2 (en) Light scattering film, light scattering polarizing plate, and liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12749992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12749992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP