WO2012095049A2 - 一种mimo模式配置方法及通信设备 - Google Patents

一种mimo模式配置方法及通信设备 Download PDF

Info

Publication number
WO2012095049A2
WO2012095049A2 PCT/CN2012/071660 CN2012071660W WO2012095049A2 WO 2012095049 A2 WO2012095049 A2 WO 2012095049A2 CN 2012071660 W CN2012071660 W CN 2012071660W WO 2012095049 A2 WO2012095049 A2 WO 2012095049A2
Authority
WO
WIPO (PCT)
Prior art keywords
mimo mode
cluster
cell
user
preset
Prior art date
Application number
PCT/CN2012/071660
Other languages
English (en)
French (fr)
Other versions
WO2012095049A3 (zh
Inventor
朱孝龙
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to PCT/CN2012/071660 priority Critical patent/WO2012095049A2/zh
Priority to EP12734049.5A priority patent/EP2802164A4/en
Priority to CN201280000164.3A priority patent/CN102742175B/zh
Publication of WO2012095049A2 publication Critical patent/WO2012095049A2/zh
Publication of WO2012095049A3 publication Critical patent/WO2012095049A3/zh
Priority to US14/456,229 priority patent/US20140348017A1/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0689Hybrid systems, i.e. switching and simultaneous transmission using different transmission schemes, at least one of them being a diversity transmission scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/083Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability for increasing network speed
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/08Configuration management of networks or network elements
    • H04L41/0803Configuration setting
    • H04L41/0823Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability
    • H04L41/0833Configuration setting characterised by the purposes of a change of settings, e.g. optimising configuration for enhancing reliability for reduction of network energy consumption
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/345Interference values

Definitions

  • the present invention relates to the field of communications, and in particular, to a MIMO mode configuration method and a communication device.
  • MIMO Multiple-Input Multiple-Output
  • the transmission modes of the commonly used MIMO technology include transmit diversity, spatial multiplexing, and beamforming.
  • the MIMO technology is further divided into an open loop MIMO mode and a closed loop MIMO mode according to whether the receiving end feeds back the channel quality information to the transmitting end.
  • the transmit diversity is improved by reducing the bit error performance of the system, typically used for poor channel conditions of the scene, such as lower channel SINR (Signal to Interference plus Noise Ratio , the signal-to-interference Qiao sound ratio plus 51), channel correlation Strong; spatial multiplexing improves system performance by increasing the data transmission rate. It is usually used in scenarios with good channel conditions, such as scenarios with high SNR (Signal to Noise Ratio) and low channel correlation.
  • SINR Signal to Interference plus Noise Ratio
  • SNR Signal to Noise Ratio
  • the shape is used in a scene with high channel correlation; the closed-loop MIMO mode depends on the channel quality feedback at the receiving end, so it is usually applied to low-speed scenes.
  • the system independently configures the MIMO mode for users of each cell or each sector according to the CQI (Channel Quality Indicator) of the user served by each cell and/or the channel-related measurement of the base station.
  • CQI Channel Quality Indicator
  • the system performs independent MIMO mode configuration for a certain user of a certain cell, and does not consider that the user performs information in the MIMO mode of the application configuration.
  • Embodiments of the present invention provide a MIMO mode configuration method and a communication device, which can be lowered
  • the users of the co-channels in the low neighboring cells have channel interference with each other when transmitting in the MIMO mode configured by the application, thereby improving system performance.
  • An aspect of the present invention provides a MIMO mode configuration method, including:
  • the preset MIMO mode combination is: a pre-configured preset MIMO mode of all users in all cells in the cluster
  • the collection, the preset MIMO mode is a MIMO mode that can be adopted by a user
  • a preset MIMO mode of each user in the cluster is set to an actual MIMO mode of the user.
  • Another aspect of the present invention provides a MIMO mode configuration method, including: determining a fixed-point cell in a cluster;
  • the preset MIMO mode combination is: a collection of preset MIMO modes pre-configured by all users in the selected cell in the cluster, where the preset MIMO mode is MIMO that can be used by the user Mode
  • the preset MIMO mode of each user in the selected cell is set as the actual MIMO of the user. mode.
  • Another aspect of the present invention provides a communication device, including:
  • a processor configured to calculate a throughput or an interference quantity of the cluster in each preset MIMO mode combination in the cluster;
  • the preset MIMO mode combination is: pre-configured by all users in all cells in the cluster a preset MIMO mode, where the preset MIMO mode is a MIMO mode that can be adopted by a user;
  • the processor is further configured to: in a preset MIMO mode combination corresponding to a maximum throughput or a minimum interference of the cluster, a preset MIMO mode of each user in the cluster is set to an actual MIMO mode of the user.
  • Another aspect of the present invention provides a communication device, including:
  • a processor configured to determine a fixed-point cell in the cluster; the cluster is composed of at least two cell groups to make;
  • the processor is further configured to determine one or more cells in the cluster except the fixed-point cell as a selected cell, and calculate the fixed-point cell and each preset MIMO mode combination in the selected cell. Selecting a sum of throughputs of the cells or a sum of interferences; the preset MIMO mode combination is: a collection of preset MIMO modes pre-configured by all users in the selected cell in the cluster, where the preset MIMO mode is MIMO mode that can be adopted by users;
  • the processor is further configured to combine, in the preset MIMO mode corresponding to the maximum throughput or the minimum interference amount of the selected cell in the cluster, the preset MIMO mode of each user in the selected cell. Set to the actual MIMO mode of the user.
  • the MIMO mode configuration method and the communication device provided by the foregoing technical solution can perform MIMO mode configuration on the user in combination with multiple cells, thereby reducing channel interference between users in the adjacent cell when transmitting in the MIMO mode of the application configuration. In turn, improve system performance.
  • FIG. 1 is a schematic flowchart of a MIMO mode configuration method according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a communication device according to an embodiment of the present invention
  • FIG. 3 is a schematic flowchart of a MIMO mode configuration method according to another embodiment of the present invention.
  • An embodiment of the present invention provides a MIMO mode configuration method. As shown in FIG. 1, the method includes the following steps:
  • the cluster is composed of at least two cells, and the cells included in the cluster may be a plurality of cells adjacent to each other, or may be multiple cells connected to each other.
  • the cells in the cluster may be a plurality of cells belonging to different base stations, or may be multiple cells belonging to the same base station, which are determined according to specific conditions, and are not limited herein.
  • Each cluster is configured with a communication device that configures MIMO mode for users in the cluster.
  • the preset MIMO mode combination is: a collection of preset MIMO modes pre-configured by all users in all cells in the cluster, and the preset MIMO mode is a MIMO mode that can be adopted by a user. It is assumed that in the communication system, the MIMO mode configured for the user is a fixed N (N>1) type, and the MIMO mode configuration unit can randomly select each of the fixed N types of MIMO modes for each user of each cell in the cluster. As a preset MIMO mode of a certain user, the MIMO mode configuration unit combines the preset MIMO modes selected by all users in the cluster each time as a preset MIMO mode combination. Since there are N types of MIMO modes in the system, there are various preset MIMO modes for each user, and thus there are various combinations of the preset MIMO modes.
  • the communications device may obtain channel related information of each user in each cell in the cluster from the serving base station of the intra-cluster cell, where the channel related information includes a channel response matrix, a CQI (Channel Quality Indicator) At least one of a channel quality indicator, a PMI (Precoding Matrix Indicator), and an RI ( Rank Indicator).
  • the channel-related information includes, but is not limited to, the above-mentioned types, and the channel-related information herein is clearly understood by those skilled in the art, which is not limited herein.
  • the channel related information may be measured by the base station itself, or may be feedback from the user of the intra-cluster cell to the base station.
  • the communication device may calculate channel throughput or interference amount for each of the preset MIMO mode combinations using channel related information. For example, first, according to the channel phase of the user The information of at least one of the channel response matrix, CQI, PMI, RI, and the like is calculated to calculate the throughput of the user, and then the throughput of all users in the cluster is added together to be the throughput of the cluster. Similarly, the amount of interference of the fixed-point cell and the selected cell in the cluster may also be calculated in sequence.
  • the algorithm for calculating the user throughput is as follows:
  • the channel related information is CQI
  • RI, S RI+ 1
  • kCQI ⁇ + b
  • CQI is the CQI reported by the user received by the jth antenna
  • k, b is between CQI and SINR Linear fitting parameters.
  • the channel related information is a channel response matrix
  • the calculation method is different for different receiver types, and the MMSE receiver is taken as an example here. Assume that the antenna is configured for 2 rounds and 2 receive, when the user of the cell
  • the channel gain between the jth transmit antenna and the mth receive antenna of the m neighbor base stations on the kth subcarrier is obtained in the jth column of the reconstructed channel matrix of the cell, and is obtained by the channel response matrix of the local cell.
  • ⁇ 2 is the noise power, / is the unit matrix, or is calculated for the conjugate.
  • a preset MIMO mode of each user in the cluster is set to an actual MIMO mode of the user.
  • Each of the preset MIMO mode combinations corresponds to a throughput or amount of interference of the cluster.
  • the preset MIMO mode corresponding to the maximum throughput or the smallest interference of the cluster
  • the communication device may maximize the throughput of the cluster or minimize the interference amount of the preset MIMO mode
  • the preset MIMO mode of each user of each cell in the combination is sent to the home base station of each cell, and the base station configures an actual MIMO mode for each user of the cell in the cluster.
  • the embodiment further provides a communication device, which can be used to implement the method provided by the foregoing method embodiment.
  • the device may be an access network device in a communication system such as an RNC (Radio Network Controller) or a BSC (Base Station Controller) or other device capable of configuring a MIMO mode for a user.
  • RNC Radio Network Controller
  • BSC Base Station Controller
  • the communication device includes: a processor 201.
  • the processor 201 is configured to calculate a throughput or an interference quantity of the cluster in each preset MIMO mode combination in the cluster; the preset MIMO mode combination is: pre-configuring all users in all cells in the cluster A collection of preset MIMO modes, which are MIMO modes that can be adopted by a user.
  • one communication device is configured in each cluster.
  • the communication device can implement management and control of a plurality of base stations as prior art.
  • the MIMO mode configured for the user is a fixed N (N>1) type, and the MIMO mode configuration unit can randomly select each of the fixed N MIMO modes for each user of each cell in the cluster.
  • the MIMO mode configuration unit combines the preset MIMO modes selected by all users in the cluster each time as a preset MIMO mode combination. Since there are N types of MIMO modes in the system, there are various preset MIMO modes for each user, and thus there are various combinations of the preset MIMO modes.
  • the processor 201 in the communications device may obtain channel related information of each user in each cell in the cluster from a serving base station of the intra-cluster cell, where the channel related information includes a channel response matrix, a CQI At least one of PMI, RI.
  • the channel-related information includes, but is not limited to, the above-mentioned types, and the channel-related information herein is clearly understood by those skilled in the art, which is not limited herein.
  • the channel related information may be measured by the base station itself, or may be fed back to the base station by the user of the intra-cluster cell.
  • the processor 201 can calculate each preset MIMO by using channel related information.
  • the throughput or amount of interference of the cluster under the combination of modes. For example, first, calculating the throughput of the user according to at least one of the channel related information of the user, that is, the channel response matrix, CQI, PMI, RI, etc., and then adding the throughputs of all users in the cluster together The throughput of the cluster.
  • the amount of interference of the fixed-point cell and the selected cell in the cluster may also be calculated in sequence.
  • the algorithm for calculating the user throughput by the processor 201 is as follows:
  • the channel related information is CQI
  • RI RI+ 1
  • kCQ ⁇ + b
  • CQIj is the CQI reported by the user received by the jth antenna
  • k and b are linear between CQI and SINR. Fit the parameters.
  • the calculation method is different for different receiver types, and the MMSE receiver is taken as an example here. Assume that the antenna configuration is 2 transmit 2 and receive, when the user MIMO mode of the cell is SFBC, the user MIMO mode of all neighboring cells
  • h k + 1) , h ⁇ , , m is the channel gain between the jth transmit antenna and the mth receive antenna of the m neighbor base stations on the kth subcarrier, which is the jth column of the reconstructed channel matrix of the cell , obtained by the channel response matrix of the cell.
  • ⁇ 2 is the noise power, / is the unit matrix, or is calculated for the conjugate.
  • the processor 201 is further configured to: in the preset MIMO mode combination that corresponds to the maximum throughput or the minimum interference amount of the cluster, the preset MIMO mode of each user in the cluster is set as the actual MIMO mode.
  • the preset MIM0 mode combinations corresponds to a throughput or interference amount of the cluster.
  • the preset MIMO mode corresponding to the maximum throughput or the minimum amount of interference of the cluster is a combination of MIMO modes that each user in the cluster needs to configure when the system performance is optimal, and the processor 201
  • the preset MIMO mode of each user of each cell in the preset MIMO mode combination when the throughput of the cluster is the largest or the interference is the smallest is sent to the home base station of each cell, where the base station is in the cluster
  • Each user of the cell configures the actual MIMO mode.
  • the processor 201 in this embodiment may be composed of two sub-processors for performing steps 101 and 102 in the method implemented by the processor, respectively.
  • the throughput or the interference amount of the cluster under each preset MIMO mode combination in the cluster is calculated, and the maximum throughput of the cluster or In a preset MIMO mode combination corresponding to the minimum interference amount, a method in which a preset MIMO mode of each user in the cluster is set to an actual MIMO mode of the user, and a plurality of cells are combined to perform MIMO mode configuration on the user, thereby reducing phase Users in the same cell in the neighboring cell transmit channel interference when transmitting in the MIMO mode configured by the application, thereby improving system performance.
  • Another embodiment of the present invention provides a MIMO mode configuration method. As shown in FIG. 3, the method includes the following steps:
  • the cluster is composed of at least two cells, and the cells included in the cluster may be a plurality of cells adjacent to each other, or may be multiple cells connected to each other.
  • the cell in the cluster may be a plurality of cells belonging to different base stations, or may be a plurality of cells belonging to the same base station, which is specific, and is not limited herein.
  • one communication device is configured in each cluster.
  • the communication device is used to implement management and control of a plurality of base stations, which is prior art.
  • the communication device may obtain channel related information of each user of each cell in the cluster from a serving base station of the intra-cluster cell, where the channel related information includes at least one of a channel response matrix, a CQI, a PMI, and an RI.
  • the channel-related information includes, but is not limited to, the above-mentioned types, and the channel-related information herein is clearly understood by those skilled in the art, which is not limited herein.
  • the channel related information may be measured by the base station itself, or may be fed back to the base station by the user of the intra-cluster cell.
  • each user of each cell in the first cluster does not perform MIMO mode configuration, one cell is randomly selected in the cluster, and according to the prior art, the channel related information of the user of the cell is independent.
  • Each user in the cell configures a MIMO mode, and the cell in which the MIMO mode is configured is determined as a fixed cell.
  • the cell in which the user who has configured the MIMO mode is determined is determined as the fixed cell.
  • 302. Determine one or more cells in the cluster except the fixed-point cell as the selected cell, and calculate a throughput of the fixed-point cell and the selected cell in each preset MIMO mode combination of the selected cell. The sum of the sum or the amount of interference.
  • the preset MIMO mode combination is: a collection of preset MIMO modes pre-configured by all users in the selected cell in the cluster, where the preset MIMO mode is a MIMO mode that can be adopted by a user. It is assumed that in the communication system, the MIMO mode configured for the user is a fixed N (N>1) type, and the MIMO mode configuration unit can randomly select each of the fixed N types of MIMO modes for each user of each cell in the cluster. As a preset MIMO mode of a certain user, the MIMO mode configuration unit combines the preset MIMO modes selected by all users of the selected cells in the cluster each time as a preset MIMO mode combination. Since there are N types of MIMO modes in the system, there are many preset MIMO modes for each user, and there are many combinations of preset MIMO modes.
  • the communication device may calculate channel throughput or interference amount of each of the preset MIMO mode combinations by using channel related information. For example, first, the throughput of the user is calculated according to at least one of channel correlation matrix, CQI, PMI, RI, etc., of the user, and then the fixed-point cell in the cluster and all users of the selected cell are The throughput together is the throughput of the fixed cell in the cluster and the selected cell. Similarly, the amount of interference of the fixed-point cell and the selected cell in the cluster may also be calculated in sequence.
  • the algorithm for calculating the user throughput is as follows:
  • the channel related information is CQI
  • RI, S RI+ 1
  • kCQI ⁇ + b
  • CQ1 j is the CQI reported by the user received by the jth antenna
  • k, b is between CQI and SINR Linear simulation Combined parameters.
  • the channel related information is a channel response matrix
  • the calculation method is different for different receiver types, and the MMSE receiver is taken as an example here.
  • Support antenna configuration is 2 rounds 2, when this small
  • m is the channel gain between the jth transmit antenna and the mth receive antenna of the m neighbor base stations on the kth subcarrier, and is the jth column of the reconstructed channel matrix of the cell, and is obtained by the channel response matrix of the local cell.
  • ⁇ 2 is the noise power, / is the unit matrix, or is calculated for the conjugate.
  • the preset MIMO mode of each user in the selected cell is set as the user. Actual MIMO mode.
  • each preset MIMO mode combination of the user of the selected cell corresponds to a sum of throughputs or interference amounts of the fixed-point cell and the selected cell.
  • the preset MIMO mode corresponding to the sum of the fixed cell and the selected cell throughput is the smallest or the sum of the interference amounts is the MIMO that needs to be configured for each user of the selected cell in the cluster when the system performance is optimal a combination of modes
  • the communication device may send a preset MIMO mode of each user of each selected cell in the preset MIMO mode combination when the throughput of the cluster is the largest or the interference amount is the smallest
  • the home base station of the cell is selected, and the base station configures an actual MIMO mode for each user of the selected cell in the cluster.
  • the steps 301 to 303 are continued until each user of each cell in the cluster performs MIMO mode configuration.
  • the embodiment of the invention further provides a communication device, which can be used to implement the method provided by the foregoing method embodiment.
  • the device may be an access network device in a communication system such as an RNC, a BSC, or other device capable of configuring a MIMO mode for a user.
  • the communication device includes: a processor 201.
  • the processor 201 is configured to determine a fixed-point cell in the cluster; the cluster is composed of at least two cells.
  • the processor 201 randomly selects one cell in the cluster, according to the prior art according to the cell.
  • the channel related information of the user independently configures a MIMO mode for each user in the cell, and determines the cell in which the MIMO mode has been configured as a fixed cell.
  • the processor 201 When each user of the cell in the cluster performs MIMO mode configuration, the processor 201 is configured to determine a cell in which the user who has configured the MIMO mode is located as a fixed cell.
  • the processor 201 is further configured to determine, in the cluster, one or more cells except the fixed-point cell as the selected cell, and calculate, in each preset MIMO mode combination of the selected cell, The sum of the throughputs of the fixed-point cells and the selected cells or the sum of the interferences; the preset MIMO mode combination is: a collection of preset MIMO modes pre-configured by all users in the selected cells in the cluster, the preset The MIMO mode is a MIMO mode that can be used by users.
  • the MIMO mode configured for the user is a fixed N (N>1) type
  • the MIMO mode configuration unit may be in the fixed N MIMO modes for each user of each cell in the cluster. Randomly selecting a preset MIMO mode as a certain user, and the MIMO mode configuration unit combines preset MIMO modes selected by all users of the selected cell in the cluster each time as a preset MIMO mode combination. . Since there are N types of MIMO modes in the system, there are various preset MIMO modes for each user, and thus there are various combinations of the preset MIMO modes.
  • the processor 201 may calculate channel throughput or interference amount of each of the preset MIMO mode combinations by using channel related information. For example, first, the throughput of the user is calculated according to at least one of channel correlation information, that is, a channel response matrix, CQI, PMI, RI, and the like of the user, and then the fixed-point cell in the cluster and all users of the selected cell are further selected. The throughput together is the throughput of the fixed cell in the cluster and the selected cell. Similarly, it can also The interference amount of the fixed-point cell and the selected cell in the cluster is calculated.
  • channel correlation information that is, a channel response matrix, CQI, PMI, RI, and the like of the user
  • the algorithm for calculating the user throughput by the processor 201 is as follows:
  • CQIj is the CQI reported by the user received by the jth antenna
  • k and b are linear between CQI and SINR. Fit the parameters.
  • the processor 201 is further configured to combine, in the preset MIMO mode corresponding to the fixed-point cell in the cluster and the maximum throughput or the minimum interference amount of the selected cell, the preset MIMO mode setting of each user in the selected cell. The actual MIMO mode for this user.
  • each preset MIMO mode combination of the user of the selected cell corresponds to a sum of throughputs or interference amounts of the fixed-point cell and the selected cell.
  • the preset MIMO mode corresponding to the sum of the fixed cell and the selected cell throughput is the smallest or the sum of the interference amounts is the MIMO that needs to be configured for each user of the selected cell in the cluster when the system performance is optimal a combination of modes, where the processor 201 sends a preset MIMO mode of each user of each selected cell in the preset MIMO mode combination when the throughput of the cluster is the largest or the interference is minimized to each selected cell.
  • the home base station, the base station configures an actual MIMO mode for each user of the selected cell in the cluster.
  • the processor 201 may continue to perform MIMO mode configuration on the user of the cell in the cluster that is not configured with the MIMO mode until the cluster is configured.
  • Each user of each cell has a MIMO mode configuration.
  • the processor 201 in this embodiment may be composed of three sub-processors for performing step 301, step 302 and step 303 in the method implemented by the processor, respectively.
  • the sum of the throughputs of the fixed-point cells and the selected cells and the interference amount determined by each predetermined MIMO mode combination in the determined selected cell are calculated. And combining, in the preset MIMO mode corresponding to the fixed-point cell in the cluster and the maximum throughput or the minimum interference amount of the selected cell, The preset MIMO mode of each user in the selected cell is set to the actual MIMO mode of the user, until all users in the cluster are configured with the MIMO mode, and the multiple cells are combined to perform MIMO mode configuration on the user, thereby reducing the phase.
  • Channel-to-channel interference between users in the same cell in the neighboring cell when transmitting in the MIMO mode configured by the application thereby improving systemicity

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Description

一种 MIMO模式配置方法及通信设备 技术领域
本发明涉及通信领域, 尤其涉及一种 MIMO 模式配置方法及通信设 备。
背景技术
多输入多输出 ( Multiple-Input Multiple-output, MIMO )技术通过在 发射端和接收端配置多个天线, 能够在不增加系统带宽和天线发射功率 情况下成倍的提高无线信道容量, 因而成为未来无线通信的一项关键技 术。 目前常用的 MIMO技术的传输模式包括发射分集、 空间复用以及波 束赋形, 另外, MIMO 技术还根据接收端是否向发送端反馈信道质量信 息而分为开环 MIMO模式和闭环 MIMO模式。 其中, 发射分集是通过降 低误码来提高系统性能, 通常用于信道条件较差的场景, 例如信道 SINR ( Signal to Interference plus Noise Ratio , 信号与干扰加51喿声比 )较低、 信 道相关性较强; 空间复用通过提高数据传输速率来提高系统性能, 通常 用于信道条件较好的场景, 例如 SNR ( Signal to Noise Ratio, 信噪比)较 高、 信道相关性较低的场景; 波束赋形用于信道相关性较高的场景; 闭 环 MIMO模式依赖于接收端信道质量反馈, 故通常应用于低速场景。
由于不同的 MIMO 模式适用于不同的信道条件, 所以有必要根据不 同的信道条件配置合适的 MIMO模式以获得最优的系统性能。现有技术中, 系统根据各小区所服务用户的 CQI ( Channel quality indicator, 信道质量指 示) 和 /或基站的信道相关测量, 独立的对各小区或各扇区的用户进行 MIMO模式配置。
在实现上述 MIMO 模式配置的过程中, 发明人发现现有技术中至少 存在如下问题: 系统对某小区的某个用户进行独立的 MIMO模式配置, 没 有考虑所述用户在应用配置的 MIMO模式进行信息传输时, 对邻近小区中 处于同一信道的用户产生的信道干扰。
发明内容
本发明的实施例提供一种 MIMO模式配置方法及通信设备,可以降 低相邻小区中同信道的用户在应用配置的 MIMO模式进行传输时相互间的 信道干扰, 从而提高系统性能。
本发明的一方面提供了一种 MIMO模式配置方法, 包括:
计算簇内每一种预设 MIMO 模式组合下的所述簇的吞吐量或干扰 量; 所述预设 MIMO模式组合为: 所述簇内所有小区中的所有用户预配 置的预设 MIMO 模式的合集, 所述预设 MIMO 模式为可被用户采用的 MIMO模式;
将所述簇的最大吞吐量或最小干扰量对应的预设 MIMO模式组合中, 所述簇内的每个用户的预设 MIMO模式设置为该用户的实际 MIMO模式。
本发明的另一方面提供了一种 MIMO模式配置方法, 包括: 确定簇中的定点小区;
将所述簇内除所述定点小区外的一个或多个小区确定为选择小区, 计 算在所述选择小区的每一种预设 MIMO模式组合下所述定点小区和选择小 区的吞吐量之和或干扰量之和; 所述预设 MIMO模式组合为: 所述簇内的 选择小区中的所有用户预配置的预设 MIMO模式的合集, 所述预设 MIMO 模式为可被用户釆用的 MIMO模式;
将所述簇内所述定点小区以及选择小区的最大吞吐量或最小干扰量 对应的预设 MIMO模式组合中, 所述选择小区中的每个用户的预设 MIMO 模式设置为该用户的实际 MIMO模式。
本发明的另一方面提供了一种通信设备, 包括:
处理器, 用于计算簇内每一种预设 MIMO模式组合下的所述簇的吞 吐量或干扰量; 所述预设 MIMO模式组合为: 所述簇内所有小区中的所 有用户预配置的预设 MIMO模式的合集, 所述预设 MIMO模式为可被用 户采用的 MIMO模式;
所述处理器还用于将所述簇的最大吞吐量或最小干扰量对应的预设 MIMO模式组合中, 所述簇内的每个用户的预设 MIMO模式设置为该用 户的实际 MIMO模式。
本发明的另一方面提供了一种通信设备, 包括:
处理器, 用于确定簇中的定点小区; 所述簇由至少两个小区组 成;
所述处理器还用于将所述簇内除所述定点小区外的一个或多个小区 确定为选择小区,计算在所述选择小区的每一种预设 MIMO模式组合下所 述定点小区和选择小区的吞吐量之和或干扰量之和; 所述预设 MIMO模式 组合为: 所述簇内的选择小区中的所有用户预配置的预设 MIMO模式的合 集, 所述预设 MIMO模式为可被用户采用的 MIMO模式;
所述处理器还用于将所述簇内所述定点小区以及选择小区的最大吞 吐量或最小干扰量对应的预设 MIMO模式组合中, 所述选择小区中的每个 用户的预设 MIMO模式设置为该用户的实际 MIMO模式。
上述技术方案提供的 MIMO 模式配置方法及通信设备, 可以联合多 个小区对用户进行 MIMO模式配置, 从而降低相邻小区中同信道的用户在 应用配置的 MIMO模式进行传输时相互间的信道干扰,进而提高系统性能。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案, 下 面将对实施例或现有技术描述中所需要使用的附图作简单地介绍, 显而易见地, 下面描述中的附图仅仅是本发明的一些实施例, 对于 本领域普通技术人员来讲, 在不付出创造性劳动的前提下, 还可以 根据这些附图获得其他的附图。
图 1为本发明的一个实施例提供的一种 MIMO模式配置方法流 程示意图;
图 2为本发明的一个实施例提供的一种通信设备的结构框图; 图 3为本发明的另一个实施例提供的一种 MIMO模式配置方法 流程示意图。
具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术 方案进行清楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明 一部分实施例, 而不是全部的实施例。 基于本发明中的实施例, 本 领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他 实施例, 都属于本发明保护的范围。 本发明的一个实施例提供了一种 MIMO模式配置方法,如图 1所 示, 所述方法包括以下步骤:
101、 计算簇内每一种预设 MIMO模式组合下的所述簇的吞吐量或干 扰量。
本实施例中, 所述簇由至少两个小区组成, 所述簇中包含的小区可以 是两两相邻的多个小区, 也可以是相互连接在一起的多个小区。 所述簇中 的小区可以是归属于不同基站多个小区, 也可以是归属于同一个基站的多 个小区, 视具体情况而定, 在此不作限制。
每个簇中都配置有一个给簇中用户配置 MIMO模式的通信设备。 每个通信系统中都有一个这样的通信设备, 用于实施对多个基站进行管理 和控制, 为现有技术。
所述预设 MIMO模式组合为: 所述簇内所有小区中的所有用户预配 置的预设 MIMO 模式的合集, 所述预设 MIMO 模式为可被用户采用的 MIMO模式。 假设在通信系统中, 为用户配置的 MIMO模式是固定的 N ( N>1 )种, MIMO模式配置单元可以为簇内每个小区的每个用户在所述 固定的 N种 MIMO模式中随机选择一种作为某个用户的预设 MIMO模 式, MIMO模式配置单元每一次为所述簇中所有用户选择的预设 MIMO 模式组合在一起称为一种预设 MIMO模式组合。 由于系统中的 MIMO模 式有 N种,故每个用户的预设 MIMO模式也有多种,从而所述预设 MIMO 模式组合也有多种。
本实施例中, 所述通信设备可以从所述簇内小区的服务基站处获得 簇内每个小区的每个用户的信道相关信息, 所述信道相关信息包括信道 响应矩阵、 CQI ( Channel Quality Indicator, 信道质量指示符) 、 PMI ( Precoding Matrix Indicator, 预编码矩阵指示符) 、 RI ( Rank Indicator, 秩指示符) 中的至少一个。 当然所述信道相关信息包括但不限于以上述 几种, 本领域技术人员清楚了解此处的信道相关信息, 在此不做限定。 所述信道相关信息可以是基站自己测量的, 也可以是所述簇内小区的用 户反馈给基站的。
所述通信设备可以利用信道相关信息计算每一种预设 MIMO模式组 合下的所述簇的吞吐量或干扰量。 例如, 首先, 根据所述用户的信道相 关信息即信道响应矩阵、 CQI、 PMI、 RI等中的至少一个算出所述用户的 吞吐量, 然后再将簇内所有用户的吞吐量后加在一起就是所述簇的吞吐 量。 同理, 也可依次来计算簇内所述定点小区以及选择小区的干扰量。
可选的, 计算所述用户吞吐量的算法如下:
所述用户吞吐量的计算公式为: r = f;/s log2(l + ) , /:为带宽, S 为数 据流个数, ^为第 j根天线的接收 SINR Signal to Interference plus Noise Ratio , 信号干扰噪声比) 。
在所述信道相关信息为 CQI , RI的情况下, S=RI+ 1 , γ = kCQI } + b , CQI〗 为第 j根天线接收到的用户上报的 CQI , k、 b为 CQI和 SINR之间线性拟 合参数。
在所述信道相关信息为信道响应矩阵的情况下, 针对不同的接收机类 型, 计算方法也不同, 在此以 MMSE接收机为例。 假设天线配置为 2发 2 收, 当本小区用户
是 SFBC时, S=2 ,
区个数, ^为第
记为子载波 k和 k
Figure imgf000007_0001
为第 k个子载波上 m个邻区基站的第 j根发射天线到第 m根接收天线 间的信道增益, 为本小区重构信道矩阵的第 j 列, 由本小区的信道响应 矩阵获得。 σ2为噪声功率, /为单位矩阵, 或 为取共轭计算。
计算所述用户吞吐量在多种情况下有多种算法,此处不再赘述。 1 02、 将所述簇的最大吞吐量或最小干扰量对应的预设 MIMO模式组 合中 , 所述簇内的每个用户的预设 MIMO模式设置为该用户的实际 MIMO 模式。
每一种预设 MIMO 模式组合都对应有一个所述簇的吞吐量或干扰 量。 所述簇的吞吐量最大或干扰量最小时所对应的所述预设 MIMO模式 组合为使系统性能最优时所述簇中每个用户需要配置的 MIMO模式的一 种组合, 所述通信设备可以将所述簇的吞吐量最大或干扰量最小时的所 述预设 MIMO模式组合中每个小区的每个用户的预设 MIMO模式发送给 每个小区的归属基站, 所述基站给所述簇中小区的每个用户配置实际 MIMO模式。
本实施例还提供了一种通信设备, 可以用于实现上述方法实施例提 供的方法。 该设备可以是 RNC ( Radio Network Controller, 无线网络控制 器) 、 BSC ( Base Station Controller, 基站控制器) 等通信系统中的接入 网设备或其他能够为用户配置 MIMO模式的设备。 如图 2所示, 所述通 信设备包括: 处理器 201。
处理器 201 ,用于计算簇内每一种预设 MIMO模式组合下的所述簇的 吞吐量或干扰量; 所述预设 MIMO模式组合为: 所述簇内所有小区中的所 有用户预配置的预设 MIMO模式的合集,所述预设 MIMO模式为可被用户 采用的 MIMO模式。
本实施例中, 每个簇中都配置有一个通信设备。 该通信设备可以 实施对多个基站进行管理和控制, 为现有技术。
假设在通信系统中, 为用户配置的 MIMO模式是固定的 N ( N>1 ) 种, MIMO模式配置单元可以为簇内每个小区的每个用户在所述固定的 N 种 MIMO模式中随机选择一种作为某个用户的预设 MIMO模式, MIMO 模式配置单元每一次为所述簇中所有用户选择的预设 MIMO模式组合在 一起称为一种预设 MIMO模式组合。 由于系统中的 MIMO模式有 N种, 故每个用户的预设 MIMO模式也有多种, 从而所述预设 MIMO模式组合 也有多种。
可选的, 所述通信设备中的处理器 201 可以从所述簇内小区的服务 基站处获得簇内每个小区的每个用户的信道相关信息, 所述信道相关信 息包括信道响应矩阵、 CQI、 PMI、 RI中的至少一个。 当然所述信道相关 信息包括但不限于以上述几种, 本领域技术人员清楚了解此处的信道相 关信息, 在此不做限定。 所述信道相关信息可以是基站自己测量的, 也 可以是所述簇内小区的用户反馈给基站的。
可选的, 处理器 201可以利用信道相关信息计算每一种预设 MIMO 模式组合下的所述簇的吞吐量或干扰量。 例如, 首先, 根据所述用户的 信道相关信息即信道响应矩阵、 CQI、 PMI、 RI等中的至少一个算出所述 用户的吞吐量, 然后再将簇内所有用户的吞吐量后加在一起就是所述簇 的吞吐量。 同理, 也可依次来计算簇内所述定点小区以及选择小区的干 扰量。
可选的, 处理器 201计算所迷用户吞吐量的算法如下:
所述用户吞吐量的计算公式为: r = ^y iOg2(i + ? ) , /:为带宽, S 为数 据流个数, ^为第 j根天线的接收 SINR Signal to Interference plus Noise
Ratio , 信号干扰噪声比) 。
在所述信道相关信息为 CQI , RI的情况下, S=RI+ 1 , γ = kCQ^ + b , CQIj 为第 j根天线接收到的用户上报的 CQI , k、 b为 CQI和 SINR之间线性拟 合参数。
在所述信道相关信息为信道响应矩阵的情况下, 针对不同的接收机类 型, 计算方法也不同, 在此以 MMSE接收机为例。 假设天线配置为 2发 2 收, 当本小区用户 MIMO模式是 SFBC , 相邻所有小区的用户 MIMO模式 一
是 SFBC时, S=2 , 则 , = ¾(^/+∑HmH 其中, M为本小区的干扰邻 区个数, Hm为第 个邻区经过重构的信道矩阵,在连续两个子载波上发送, 记为子载波 k和 k+1 ,
H„ =
h k + 1) , h〃、, m为第 k个子载波上 m个邻区基站的第 j根发射天线到第 m根接收天线 间的信道增益, 为本小区重构信道矩阵的第 j 列, 由本小区的信道响应 矩阵获得。 σ2为噪声功率, /为单位矩阵, 或 为取共轭计算。
计算所述用户吞吐量在多种情况下有多种算法,此处不再赘述。 可选的, 处理器 201 还用于将所述簇的最大吞吐量或最小干扰量对 应的预设 MIMO模式组合中, 所述簇内的每个用户的预设 MIMO模式设 置为该用户的实际 MIMO模式。 每一种预设 MIM0 模式组合都对应有一个所述簇的吞吐量或干扰 量。 所述簇的吞吐量最大或干扰量最小时所对应的所述预设 MIMO模式 组合为使系统性能最优时所述簇中每个用户需要配置的 MIMO模式的一 种组合, 处理器 201 将所述簇的吞吐量最大或干扰量最小时的所述预设 MIMO模式组合中每个小区的每个用户的预设 MIMO模式发送给每个小 区的归属基站, 所述基站给所述簇中小区的每个用户配置实际 MIMO模 式。
本实施例中的处理器 201 可以由两个子处理器组成, 这两子处理器 分别用于执行该处理器实现的方法中的步骤 101和步骤 102。
在本发明实施例提供的 MIMO模式配制方法及通信设备中, 通过计 算簇内每一种预设 MIMO模式组合下的所述簇的吞吐量或干扰量, 并将 所述簇的最大吞吐量或最小干扰量对应的预设 MIMO模式组合中, 所述 簇内的每个用户的预设 MIMO模式设置为该用户的实际 MIMO模式的方 法, 联合多个小区对用户进行 MIMO模式配置, 从而降低相邻小区中同 信道的用户在应用配置的 MIMO模式进行传输时相互间的信道干扰, 进 而提高系统性能。
本发明的另一个实施例提供了一种 MIMO模式配置方法,如图 3 所示, 所述方法包括以下步骤:
301、 确定簇中的定点小区。
本实施例中, 所述簇由至少两个小区组成, 所述簇中包含的小区可以 是两两相邻的多个小区, 也可以是相互连接在一起的多个小区。 所述簇内 中小区可以是归属于不同基站多个小区, 也可以是归属于同一个基站的多 个小区, 是具体情况而定, 在此不作限制。
本实施例中, 每个簇中都配置有一个通信设备。 该通信设备用于实 施对多个基站进行管理和控制, 为现有技术。 所述通信设备可以从所述簇 内小区的服务基站处获得簇内每个小区的每个用户的信道相关信息, 所述 信道相关信息包括信道响应矩阵、 CQI、 PMI、 RI中的至少一个。 当然所 述信道相关信息包括但不限于以上述几种, 本领域技术人员清楚了解此处 的信道相关信息, 在此不做限定。 所述信道相关信息可以是基站自己测量 的, 也可以是所述簇内小区的用户反馈给基站的。 在最初所述簇内的每个小区的每个用户都未进行 MIMO模式配置时, 在所述簇内随机选择一个小区, 按照现有技术根据所述小区的用户的信道 相关信息独立的为所述小区内的每个用户配置 MIMO 模式, 将已配置 MIMO模式的所述小区确定为定点小区。
当所述簇内存在有小区的每个用户进行了 MIMO 模式配置时, 将已 配置 MIMO模式的用户所在的小区确定为定点小区。
302、将所述簇内除所述定点小区外的一个或多个小区确定为选择小 区, 计算在所述选择小区的每一种预设 MIMO模式组合下所述定点小区 和选择小区的吞吐量之和或干扰量之和。
所述预设 MIMO 模式组合为: 所述簇内的选择小区中的所有用户预 配置的预设 MIMO模式的合集, 所述预设 MIMO模式为可被用户采用的 MIMO 模式。 假设在通信系统中, 为用户配置的 MIMO 模式是固定的 N ( N>1 ) 种, MIMO 模式配置单元可以为簇内每个小区的每个用户在所述 固定的 N种 MIMO模式中随机选择一种作为某个用户的预设 MIMO模式, MIMO模式配置单元每一次为所述簇中选择小区的所有用户选择的的预设 MIMO 模式组合在一起称为一种预设 MIMO 模式组合。 由于系统中的 MIMO模式有 N种, 故每个用户的预设 MIMO模式也有多种, 从而所迷预 设 MIMO模式组合也有多种。
可选的, 所迷通信设备可以利用信道相关信息计算每一种预设 MIMO 模式组合下的所述簇的吞吐量或干扰量。 例如, 首先, 根据所述 用户的信道相关信息即信道响应矩阵、 CQI、 PMI、 RI等中的至少一个算 出所述用户的吞吐量, 然后再将簇内所述定点小区以及选择小区的所有 用户的吞吐量加在一起就是簇内所述定点小区以及选择小区的吞吐量。 同理, 也可依次来计算簇内所述定点小区以及选择小区的干扰量。
可选的, 计算所述用户吞吐量的算法如下:
所述用户吞吐量的计算公式为: = /s log2(l + ? ) , S为数据流个数, /:为带宽, 为第 j根天线的接收 SINR ( Signal to Interference plus Noise Ratio , 信号干扰噪声比) 。
在所述信道相关信息为 CQI , RI的情况下, S=RI+ 1 , γ = kCQI } + b , CQ1 j 为第 j根天线接收到的用户上报的 CQI , k、 b为 CQI和 SINR之间线性拟 合参数。
在所述信道相关信息为信道响应矩阵的情况下, 针对不同的接收机类 型, 计算方法也不同, 在此以 MMSE接收机为例。 支设天线配置为 2发 2 收, 当本小
是 SFBC时
区个数, Hm
记为子载波
Figure imgf000012_0001
m为第 k个子载波上 m个邻区基站的第 j根发射天线到第 m根接收天线 间的信道增益, 为本小区重构信道矩阵的第 j 列, 由本小区的信道响应 矩阵获得。 σ2为噪声功率, /为单位矩阵, 或 为取共轭计算。
计算所述用户吞吐量在多种情况下有多种算法,此处不再赘述。 303、 将所述簇内所述定点小区以及选择小区的最大吞吐量或最小干 扰量对应的预设 MIMO 模式组合中, 所述选择小区中的每个用户的预设 MIMO模式设置为该用户的实际 MIMO模式。
本实施例中, 所述选择小区的用户的每一种预设 MIMO模式组合都 对应有一个所述定点小区以及选择小区的吞吐量之和或干扰量之和。 所 述定点小区以及选择小区吞吐量之和最大或干扰量之和最小时所对应的 所述预设 MIMO模式组合为使系统性能最优时所述簇内选择小区的每个 用户需要配置的 MIMO模式的一种组合, 所述通信设备可以将所述簇的 吞吐量最大或干扰量最小时的所述预设 MIMO模式组合中每个选择小区 的每个用户的预设 MIMO模式发送给每个选择小区的归属基站, 所述基 站给所述簇中选择小区的每个用户配置实际 MIMO模式。
可选的, 给所述选择小区的用户进行 MIMO模式配置完成后, 继续 步骤 301~303 , 直至将所述簇内的每个小区的每个用户都进行了 MIMO 模式配置。 本发明实施例还提供了一种通信设备, 可以用于实现上述方法实施 例提供的方法。 该设备可以是 RNC、 BSC等通信系统中的接入网设备或 其他能够为用户配置 MIMO模式的设备。 如图 2所示, 所述通信设备包 括: 处理器 201。
处理器 201 , 用于确定簇中的定点小区; 所述簇由至少两个小区 组成。
在本实施例中, 在最初所述簇内的每个小区的每个用户都未进行 MIMO模式配置时, 处理器 201在所述簇内随机选择一个小区, 按照现有 技术根据所述小区的用户的信道相关信息独立的为所述小区内的每个用户 配置 MIMO模式, 将已配置 MIMO模式的所述小区确定为定点小区。
当所述簇内存在有小区的每个用户进行了 MIMO 模式配置时, 处理 器 201用于将已配置 MIMO模式的用户所在的小区确定为定点小区。
可选的, 处理器 201还用于将所述簇内除所述定点小区外的一个或多 个小区确定为选择小区, 计算在所述选择小区的每一种预设 MIMO模式组 合下所述定点小区和选择小区的吞吐量之和或干扰量之和; 所述预设 MIMO 模式组合为: 所述簇内的选择小区中的所有用户预配置的预设 MIMO模式的合集, 所述预设 MIMO模式为可被用户釆用的 MIMO模式。
可选的, 在通信系统中, 为用户配置的 MIMO模式是固定的 N ( N>1 ) 种, MIMO模式配置单元可以为簇内每个小区的每个用户在所述固定的 N 种 MIMO模式中随机选择一种作为某个用户的预设 MIMO模式, MIMO 模式配置单元每一次为所述簇中选择小区的所有用户选择的的预设 MIMO 模式组合在一起称为一种预设 MIMO模式组合。由于系统中的 MIMO模式 有 N种, 故每个用户的预设 MIMO模式也有多种, 从而所述预设 MIMO 模式组合也有多种。
可选的, 处理器 201 可以利用信道相关信息计算每一种预设 MIMO 模式组合下的所述簇的吞吐量或干扰量。 例如, 首先, 根据所述用户的信 道相关信息即信道响应矩阵、 CQI、 PMI、 RI 等中的至少一个算出所述用 户的吞吐量, 然后再将簇内所述定点小区以及选择小区的所有用户的吞吐 量加在一起就是簇内所述定点小区以及选择小区的吞吐量。 同理, 也可依 次来计算簇内所述定点小区以及选择小区的干扰量。
可选的, 处理器 201计算所迷用户吞吐量的算法如下:
所述用户吞吐量的计算公式为:: T = /s lOg2(l + ? ) , S为数据流个数,
/:为带宽, ^为第 j根天线的接收 SINR ]( Signal to Interference plus Noise
Ratio , 信号干扰噪声比) 。
在所述信道相关信息为 CQI , RI的情况下, S=RI+ 1 , γ = kCQl } + b , CQIj 为第 j根天线接收到的用户上报的 CQI , k、 b为 CQI和 SINR之间线性拟 合参数。
计算所述用户吞吐量在多种情况下有多种算法,此处不再赘述。 处理器 201 还用于将所述簇内所述定点小区以及选择小区的最大吞 吐量或最小干扰量对应的预设 MIMO模式组合中 , 所述选择小区中的每个 用户的预设 MIMO模式设置为该用户的实际 MIMO模式。
本实施例中, 所述选择小区的用户的每一种预设 MIMO模式组合都 对应有一个所述定点小区以及选择小区的吞吐量之和或干扰量之和。 所 述定点小区以及选择小区吞吐量之和最大或干扰量之和最小时所对应的 所述预设 MIMO模式组合为使系统性能最优时所述簇内选择小区的每个 用户需要配置的 MIMO模式的一种组合, 处理器 201将所述簇的吞吐量 最大或干扰量最小时的所述预设 MIMO模式组合中每个选择小区的每个 用户的预设 MIMO模式发送给每个选择小区的归属基站, 所述基站给所 述簇中该选择小区的每个用户配置实际 MIMO模式。
可选的, 处理器 201给所述选择小区的用户进行 MIMO模式配置完 成后, 可以继续给所述簇内的未进行 MIMO模式配置的小区的用户进行 MIMO模式配置,直至将所述簇内的每个小区的每个用户都进行了 MIMO 模式配置。
本实施例中的处理器 201 可以由三个子处理器组成, 这三个子处理 器分别用于执行该处理器实现的方法中的步骤 301、步骤 302和步驟 303。
在本发明实施例提供的 MIMO模式配制方法及通信设备中, 通过计 算在确定的选择小区的每一种预设 MIMO模式组合下已确定的定点小区 和选择小区的吞吐量之和或干扰量之和, 并将所述簇内所述定点小区以 及选择小区的最大吞吐量或最小干扰量对应的预设 MIMO模式组合中, 所述选择小区中的每个用户的预设 MIMO 模式设置为该用户的实际 MIMO模式, 直至簇内所有用户都配置好 MIMO模式的方法, 联合多个 小区对用户进行 MIMO模式配置, 从而降低相邻小区中同信道的用户在 应用配置的 MIMO模式进行传输时相互间的信道干扰, 进而提高系统性
R 。
本领域普通技术人员可以理解: 实现上述方法实施例的全部或部分 步驟可以通过程序指令相关的硬件来完成, 前述的程序可以存储于一计 算机可读取存储介质中, 该程序在执行时, 执行包括上述方法实施例的 步骤; 而前述的存储介质包括: ROM、 RAM, 磁碟或者光盘等各种可 以存储程序代码的介质。
以上所述, 仅为本发明的具体实施方式, 但本发明的保护范围 并不局限于此, 任何熟悉本技术领域的技术人员在本发明揭露的技 术范围内, 可轻易想到的变化或替换, 都应涵盖在本发明的保护范 围之内。 因此, 本发明的保护范围应所述以权利要求的保护范围为

Claims

权 利 要 求 书
1、 一种 MIMO模式配置方法, 其特征在于, 包括:
计算簇内每一种预设 MIMO 模式组合下的所述簇的吞吐量或干扰 量; 所述预设 MIMO模式组合为: 所述簇内所有小区中的所有用户预配 置的预设 MIMO 模式的合集, 所述预设 MIMO 模式为可被用户采用的 MIMO模式;
将所述簇的最大吞吐量或最小干扰量对应的预设 MIMO模式组合中, 所述簇内的每个用户的预设 MIMO模式设置为该用户的实际 MIMO模式。
2、 根据权利要求 1 所述, 所述簇由至少两个小区组成。
3、 一种 MIMO模式配置方法, 其特征在于, 包括:
确定簇中的定点小区;
将所述簇内除所述定点小区外的一个或多个小区确定为选择小区, 计 算在所述选择小区的每一种预设 MIMO模式组合下所述定点小区和选择小 区的吞吐量之和或干扰量之和; 所述预设 MIMO模式组合为: 所述簇内的 选择小区中的所有用户预配置的预设 MIMO模式的合集, 所述预设 MIMO 模式为可被用户采用的 MIMO模式;
将所述簇内所述定点小区以及选择小区的最大吞吐量或最小干扰量 对应的预设 MIMO模式组合中, 所迷选择小区中的每个用户的预设 MIMO 模式设置为该用户的实际 MIMO模式。
4、 根据权利要求 3所述, 所述簇由至少两个小区组成。
5、 根据权利要求 3或 4所迷, 所述确定簇中的定点小区包括: 在所述簇内随机选择一个小区, 为所述小区内的每个用户配置
MIMO 模式, 将配置了 MIMO 模式的用户所在的小区确定为定点小 区; 或
将所述簇内已配置 MIMO模式的用户所在的小区确定为定点小区。
6、 一种通信设备, 其特征在于, 包括:
处理器,用于计算簇内每一种预设 MIMO模式组合下的所述簇的吞吐 量或干扰量; 所述预设 MIMO模式组合为: 所述簇内所有小区中的所有用 户预配置的预设 MIMO模式的合集,所述预设 MIMO模式为可被用户采用 的 MIMO模式;
所述处理器还用于将所述簇的最大吞吐量或最小干扰量对应的预设 MIMO模式组合中, 所述簇内的每个用户的预设 MIMO模式设置为该用 户的实际 MIMO模式。
7、 一种通信设备, 其特征在于, 包括:
处理器, 用于确定簇中的定点小区;
所述处理器还用于将所述簇内除所述定点小区外的一个或多个小区 确定为选择小区, 计算在所述选择小区的每一种预设 MIMO模式组合下所 述定点小区和选择小区的吞吐量之和或干扰量之和; 所述预设 MIMO模式 组合为: 所述簇内的选择小区中的所有用户预配置的预设 MIMO模式的合 集, 所述预设 MIMO模式为可被用户采用的 MIMO模式;
所述处理器还用于将所述簇内所述定点小区以及选择小区的最大吞 吐量或最小干扰量对应的预设 MIMO模式组合中, 所述选择小区中的每个 用户的预设 MIMO模式设置为该用户的实际 MIMO模式。
8、 根据权利要求 7所述, 所述处理器还用于:
在所述簇内随机选择一个小区, 为所述小区内的每个用户配置 MIMO 模式, 将配置了 MIMO 模式的用户所在的小区确定为定点小 区;或,将所述簇内已配置 MIMO模式的用户所在的小区确定为定点小区。
PCT/CN2012/071660 2012-02-27 2012-02-27 一种mimo模式配置方法及通信设备 WO2012095049A2 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2012/071660 WO2012095049A2 (zh) 2012-02-27 2012-02-27 一种mimo模式配置方法及通信设备
EP12734049.5A EP2802164A4 (en) 2012-02-27 2012-02-27 MIMO MODE CONFIGURATION METHOD AND DEVICE THEREFOR
CN201280000164.3A CN102742175B (zh) 2012-02-27 2012-02-27 一种mimo模式配置方法及通信设备
US14/456,229 US20140348017A1 (en) 2012-02-27 2014-08-11 Mimo mode configuration method and communication device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2012/071660 WO2012095049A2 (zh) 2012-02-27 2012-02-27 一种mimo模式配置方法及通信设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US14/456,229 Continuation US20140348017A1 (en) 2012-02-27 2014-08-11 Mimo mode configuration method and communication device

Publications (2)

Publication Number Publication Date
WO2012095049A2 true WO2012095049A2 (zh) 2012-07-19
WO2012095049A3 WO2012095049A3 (zh) 2013-01-24

Family

ID=46507496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2012/071660 WO2012095049A2 (zh) 2012-02-27 2012-02-27 一种mimo模式配置方法及通信设备

Country Status (4)

Country Link
US (1) US20140348017A1 (zh)
EP (1) EP2802164A4 (zh)
CN (1) CN102742175B (zh)
WO (1) WO2012095049A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080423A1 (zh) * 2015-11-12 2017-05-18 中兴通讯股份有限公司 一种基于d2d的虚拟mimo通信方法、装置及系统

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103368670B (zh) * 2013-07-05 2016-06-15 上海华为技术有限公司 一种产生模拟干扰的方法及装置
CN104601281A (zh) 2014-12-31 2015-05-06 北京智谷睿拓技术服务有限公司 传输控制方法及传输控制装置
CN116326172A (zh) * 2020-10-16 2023-06-23 三星电子株式会社 最大化在多rat模式下运行的设备的吞吐量的方法和系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070147536A1 (en) * 2005-12-27 2007-06-28 Ezer Melzer Wireless communication device employing interference-sensitive mode selection and associated methods
CN101459635B (zh) * 2007-12-14 2011-03-16 华为技术有限公司 空分多址接入系统提高吞吐量性能的方法、系统及装置
EP2112771A1 (en) * 2008-04-07 2009-10-28 Alcatel Lucent Adaptive MIMO mode selection method and apparatus thereof
CN101729119B (zh) * 2008-10-15 2014-06-11 中兴通讯股份有限公司 一种下行多输入多输出模式自适应切换的方法和系统
US8725084B2 (en) * 2009-11-23 2014-05-13 Cisco Technology, Inc. MIMO mode switch management for beamformed MIMO systems
US8885750B2 (en) * 2010-01-27 2014-11-11 Zte Corporation Method and system for transmitting data using collaborative multiple input multiple output beamforming
CN102244566B (zh) * 2010-05-11 2014-03-12 中兴通讯股份有限公司 用于多输入多输出系统的下行传输方法和基站
KR101678610B1 (ko) * 2010-07-27 2016-11-23 삼성전자주식회사 롱텀 채널 정보를 기반으로 다중 노드 간 서브밴드 별 협력 통신을 수행하는 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
None
See also references of EP2802164A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017080423A1 (zh) * 2015-11-12 2017-05-18 中兴通讯股份有限公司 一种基于d2d的虚拟mimo通信方法、装置及系统

Also Published As

Publication number Publication date
CN102742175B (zh) 2014-08-20
US20140348017A1 (en) 2014-11-27
EP2802164A2 (en) 2014-11-12
EP2802164A4 (en) 2015-02-18
WO2012095049A3 (zh) 2013-01-24
CN102742175A (zh) 2012-10-17

Similar Documents

Publication Publication Date Title
US8369429B2 (en) Method and apparatus for transmitting precoding matrix index in a wireless communication system using CoMP scheme
US9723615B2 (en) Channel rank updates in multiple-input multiple-output communication systems
US9407343B2 (en) Method and apparatus for mitigating downlink interference
JP5538551B2 (ja) CoMP動作を行う無線通信システムで端末がフィードバック情報を転送する方法及び装置
US8688105B2 (en) Method for setting control multi point in wireless communication system and apparatus thereof
JP5550200B2 (ja) 多入力多出力システムにおけるダウンリンク伝送方法及び基地局
TWI517620B (zh) 在多輸入多輸出(mimo)網路中通信的方法及裝置
JP5872538B2 (ja) セカンダリ局を動作させるための方法
CN103326761B (zh) 信道状态信息处理方法及装置
TWI538428B (zh) 在網路中通信的方法、副站台及主站台
JP6054972B2 (ja) 通信システムにおけるフィードバック生成方法及び装置
WO2011038623A1 (zh) 确定上行链路发射分集方式的方法、通信装置、终端和通信系统
US20110158189A1 (en) Methods and Apparatus for Multi-Transmitter Collaborative Communications Systems
US10511366B2 (en) Signaling transmission method and device for multiple-input multiple-output system
WO2016078615A1 (en) System and method for intelligent channel state information selection
WO2012095049A2 (zh) 一种mimo模式配置方法及通信设备
JP5567673B2 (ja) 信号伝送方法及びユーザ端末
WO2013064044A1 (zh) 预编码控制指示反馈方法、用户设备及基站
CN102158270A (zh) 一种多用户mimo系统的子信道选择和发送预编码方法
CN115039349B (zh) 一种对多播传输进行波束成形的方法
CN109547278B (zh) 一种提升超级小区网络吞吐量的方法及装置
US8908548B2 (en) Method and apparatus for feedback of channel state information in a distributed antenna system (DAS)— based wireless communication system
WO2016015307A1 (zh) 一种信号发送方法及相关设备
Zhang et al. A rank adaptive beamforming scheme for TDD LTE system with imperfect CSI

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201280000164.3

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12734049

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 2012734049

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE