WO2012094850A1 - 超声聚焦换能器 - Google Patents

超声聚焦换能器 Download PDF

Info

Publication number
WO2012094850A1
WO2012094850A1 PCT/CN2011/071993 CN2011071993W WO2012094850A1 WO 2012094850 A1 WO2012094850 A1 WO 2012094850A1 CN 2011071993 W CN2011071993 W CN 2011071993W WO 2012094850 A1 WO2012094850 A1 WO 2012094850A1
Authority
WO
WIPO (PCT)
Prior art keywords
piezoelectric ceramic
petal
ring
outer casing
spherical outer
Prior art date
Application number
PCT/CN2011/071993
Other languages
English (en)
French (fr)
Inventor
丁星
张学勇
Original Assignee
深圳市普罗惠仁医学科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市普罗惠仁医学科技有限公司 filed Critical 深圳市普罗惠仁医学科技有限公司
Publication of WO2012094850A1 publication Critical patent/WO2012094850A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N7/02Localised ultrasound hyperthermia
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B8/00Diagnosis using ultrasonic, sonic or infrasonic waves
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0056Beam shaping elements
    • A61N2007/0065Concave transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0078Ultrasound therapy with multiple treatment transducers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N7/00Ultrasound therapy
    • A61N2007/0086Beam steering
    • A61N2007/0095Beam steering by modifying an excitation signal

Definitions

  • the present invention relates to an ultrasound focus transducer, and more particularly to a medical ultrasound focus transducer.
  • Ultrasound focusing transducers have been used in medical applications.
  • high-intensity ultrasound focused tumor therapy technology is an emerging medical technology that has developed rapidly in recent years. It uses ultrasound to treat patients, and ultrasonic focusing transducers are the technology.
  • the core part is directly related to the safety and therapeutic effect of the medical technology in clinical application.
  • the existing ultrasonic focusing transducer is divided into two types: unit transducer and multi-element transducer.
  • the unit transducer is divided into two types: a planar lens shape and a curved surface self-focusing type.
  • the current technologies mainly include the following:
  • the flat piezoelectric ceramic piece is supplemented with an acoustic lens transducer, and a large-aperture planar disk piezoelectric ceramic transducer is combined with a fixed acoustic lens to achieve focusing. This method results in large ultrasonic attenuation and difficulty in improving efficiency.
  • the phase-controlled focusing array ultrasonic transducer is mounted on a large-aperture rigid focusing spherical body with a plurality of small-plane piezoelectric ceramic sheets (discrete or continuous distribution), and the normal lines of the piezoelectric ceramic sheets are concentrated at a focal point.
  • This method has a large focal spot, and the production, installation, commissioning and maintenance are complicated and costly.
  • the application number is 200410017185.3, and the phase-controlled focusing high-intensity ultrasonic transducer is displayed.
  • the multi-ring circular secondary-focusing ultrasonic transducer fixes a plurality of concave spherical piezoelectric ceramic sheets on a large ring, so that their respective focal points converge at one point to achieve secondary focusing.
  • the drawback of this method is that the process of secondary focus focusing is more complicated, and the generated sound field is not uniform, which affects the therapeutic effect.
  • the application number is 03158000.9, multi-focus multi-focus ultrasonic transducer; application number is 200510038963.1, piezoelectric multi-array high-intensity focused ultrasound transducer and focusing method.
  • the above ultrasonic transducer is either excessively excited by the insufficient dispersion of the ultrasonic wave, or the skin can be damaged by the partial passage of the ultrasonic wave when entering the human body, thereby causing damage to the skin or the channel nerve.
  • the overall treatment dose is lowered, which seriously affects the treatment effect.
  • the invention provides an ultrasonic focusing transducer comprising a spherical outer casing, a ring-shaped piezoelectric ceramic piece and a plurality of petal piezoelectric ceramic sheets, wherein:
  • the spherical outer casing is provided with a circular hole on the spherical cap for mounting the ultrasonic probe;
  • the ring-shaped piezoelectric ceramic piece adopts a circular ring structure and is disposed on the inner side of the spherical outer casing, and an inner circle of the ring is consistent with the size of the circular hole;
  • the petal piezoelectric ceramic sheets are respectively disposed inside the spherical outer casing and surround the outer circumference of the ring-shaped piezoelectric ceramic sheet;
  • the ring-shaped piezoelectric ceramic sheets and each of the petal piezoelectric ceramic sheets are respectively connected to a control device of the ultrasonic focusing transducer.
  • the petal piezoelectric ceramic sheet adopts a thick and uniform circular arc structure and has the same radius curvature as the spherical outer casing.
  • each of the petal piezoelectric ceramic sheets has a uniform size.
  • the ring-shaped piezoelectric ceramic piece and each of the petal piezoelectric ceramic sheets are not in contact with each other.
  • the spherical outer casing is made of a metal material or a rubber material.
  • the invention further proposes another embodiment of an ultrasonic focusing transducer comprising a control device, a spherical outer casing, a ring-shaped piezoelectric ceramic piece and a plurality of petal piezoelectric ceramic sheets, wherein:
  • the spherical outer casing is provided with a circular hole on the spherical cap for mounting the ultrasonic probe;
  • the ring-shaped piezoelectric ceramic piece adopts a circular ring structure and is disposed on the inner side of the spherical outer casing, and an inner circle of the ring is consistent with the size of the circular hole;
  • the petal piezoelectric ceramic sheets are respectively disposed inside the spherical outer casing and surround the outer circumference of the ring-shaped piezoelectric ceramic sheet;
  • the control device includes:
  • the controller uniformly controls the adjustment of the operating frequency and phase of the direct digital frequency synthesizer
  • a direct digital frequency synthesizer controlled by the controller to generate a synchronization enable signal in the same number as the ring piezoelectric ceramic piece and the petal piezoelectric ceramic piece;
  • a clock signal generator that controls the direct digital frequency synthesizer to operate under the same time reference signal
  • a power amplification module amplifying the output power of the direct digital frequency synthesizer by the same number as the direct digital frequency synthesizer, respectively, and the ring piezoelectric ceramic piece and each of the petal piezoelectric ceramic sheets connection.
  • the petal piezoelectric ceramic sheet adopts a thick and uniform circular arc structure and has the same radius curvature as the spherical outer casing.
  • each of the petal piezoelectric ceramic sheets has a uniform size.
  • the ring-shaped piezoelectric ceramic piece and each of the petal piezoelectric ceramic sheets are not in contact with each other.
  • the spherical outer casing is made of a metal material or a rubber material.
  • the ultrasonic focusing transducer of the present invention is provided with a ring-shaped piezoelectric ceramic piece and a plurality of individually-established petal piezoelectric ceramic sheets in a spherical outer casing, and the ultrasonic wave-shaped piezoelectric ceramic sheets and each of the petal piezoelectric ceramic sheets can be independently controlled to generate ultrasonic waves; The production cost and manufacturing difficulty of the petal piezoelectric ceramic sheet are also reduced.
  • the ultrasound focusing transducer is used, the radiation is more dispersed when focusing on the therapeutic dose, and the therapeutic dose can be selectively adjusted so as not to affect the ablation effect on the lesion, and the skin is reduced while ensuring the therapeutic dose.
  • the stimulation, in the treatment channel, such as sensitive nerves, can also choose to close the piezoelectric ceramic sheets at different positions, avoiding the damage to the nerve tissue in the treatment channel and improving the patient's therapeutic tolerance, ensuring the dosage of the patient during treatment. Need, safety and comfort are greatly improved, which further reflects the advantages of non-invasive and painless treatment of ultrasound.
  • FIG. 1 is a schematic structural view showing an embodiment of a ring-shaped piezoelectric ceramic piece and a petal piezoelectric ceramic piece of the ultrasonic focusing transducer of the present invention disposed on a spherical outer casing;
  • Figure 2 is a cross-sectional view taken along line A-A of Figure 1;
  • FIG 3 is a schematic structural view of an embodiment of an ultrasonic focusing transducer circuit connection of the present invention.
  • an embodiment of an ultrasonic focusing transducer of the present invention which includes a spherical outer casing 30, a ring-shaped piezoelectric ceramic sheet 10 and a plurality of petal piezoelectric ceramic sheets 20, wherein:
  • a circular hole 40 is provided in the spherical cap for mounting the ultrasonic probe.
  • the ring-shaped piezoelectric ceramic sheet 10 has a circular ring structure and has the same radius curvature as that of the spherical outer casing 30, and is disposed inside the spherical outer casing 30.
  • the inner circumference of the circular ring is equal to the size of the circular hole 40.
  • the primary function of the ring-shaped piezoelectric ceramic sheet 10 is to produce the lowest basic dose of therapeutic ultrasound. According to different treatment items, the ultrasonic focusing transducers are provided with different sizes of the ring-shaped piezoelectric ceramic sheets 10 to ensure the lowest ultrasonic dose.
  • the petal piezoelectric ceramic sheets 20 are respectively disposed inside the spherical outer casing 30 and surround the outer circumference of the ring-shaped piezoelectric ceramic sheet 10; the petal piezoelectric ceramic sheets 20 can be designed and manufactured according to actual clinical needs. When the total area is constant, the more the number of petal piezoelectric ceramic sheets 20, the easier the adjustment of the dose control range during treatment.
  • the petal piezoelectric ceramic sheet 20 adopts a thick and uniform circular arc-shaped structure and has the same radius curvature as that of the spherical outer casing 30, so as to be easily crimped or bonded to the spherical outer casing 30.
  • the ring piezoelectric ceramic piece 10 and each of the above-mentioned petal piezoelectric ceramic sheets 20 are respectively connected to a control device of an ultrasonic focusing transducer, and the control device can respectively control the connection of the ring-shaped piezoelectric ceramic piece 10 and each of the petal piezoelectric ceramic sheets 20
  • the control circuit When the control circuit is turned on, it is possible to arbitrarily select which piezoelectric ceramic piece works to generate ultrasonic waves.
  • the ultrasonic focusing transducer of the present invention can generate ultrasonic waves from the individually controlled ring-shaped piezoelectric ceramic sheets 10 and each of the petal piezoelectric ceramic sheets 20.
  • the provision of a plurality of petal piezoelectric ceramic sheets 20 also reduces the production cost and manufacturing difficulty, since each of the individual petal piezoelectric ceramic sheets 20 is reduced in area to avoid the problem of easy damage; selective use of the petal piezoelectric ceramic sheets 20 Work is not easy to cause fatigue damage to the equipment.
  • the radiation is more dispersed when the therapeutic dose is ensured, and the therapeutic dose can be selectively adjusted so as not to affect the ablation effect on the lesion, and the treatment dose is reduced while reducing the skin.
  • Stimulation targeted reduction of the dose of the sensitive area, in the treatment channel, if there is sensitive nerves, you can also choose to close the piezoelectric ceramic sheet 20 at different positions, avoiding damage to the nerve tissue in the treatment channel and improving the treatment of the patient.
  • Tolerance to ensure the patient's dose requirements during treatment, safety and comfort are greatly improved, which further reflects the advantages of non-invasive and painless treatment of ultrasound.
  • each of the above-mentioned petal piezoelectric ceramic sheets 20 of the present example has the same size, so that the controllers of the same power can be controlled by the controller of the same power, and the piezoelectric ceramic sheets 20 of different sizes can also be different, but need to be controlled by controllers with different powers respectively. .
  • the ring-shaped piezoelectric ceramic sheet 10 and each of the above-mentioned petal piezoelectric ceramic sheets 20 are not in contact with each other, and each of the piezoelectric ceramic sheets does not contact each other to avoid mutual influence of the generation of ultrasonic waves.
  • the spherical outer casing 30 is made of a material such as metal or rubber.
  • another embodiment of the ultrasonic focusing transducer which comprises a control device, a spherical outer casing 30, and a ring-shaped piezoelectric ceramic.
  • a circular hole 40 is provided in the spherical cap for mounting the ultrasonic probe.
  • the ring-shaped piezoelectric ceramic sheet 10 is configured to be disposed inside the spherical outer casing 30 by a circular ring structure, and an inner circle of the ring coincides with the size of the circular hole 40.
  • the above-mentioned petal piezoelectric ceramic sheets 20 are respectively disposed inside the spherical outer casing 30 and surround the outer circumference of the ring-shaped piezoelectric ceramic sheet 10.
  • the above-described petal piezoelectric ceramic sheet 20 has a thick and uniform circular arc-shaped structure and has the same radius curvature as that of the spherical outer casing 30 described above.
  • Each of the above-mentioned petal piezoelectric ceramic sheets 20 has the same size; the above-mentioned ring-shaped piezoelectric ceramic sheet 10 and each of the above-mentioned petal piezoelectric ceramic sheets 20 are not in contact with each other; and the spherical outer casing 30 is made of a metal material or a rubber material.
  • the above control device comprises:
  • DDS Direct Digital The operating frequency and phase of the Synthesizer are adjusted so that the individual piezoelectric ceramic sheets operate synchronously at the same electrical frequency and phase to produce ultrasonic waves of the same frequency.
  • the direct digital frequency synthesizer 300 is controlled by the controller 100 to generate a synchronization enable signal.
  • the number of the direct digital frequency synthesizers 300 is the same as the number of the ring-shaped piezoelectric ceramic sheets 10 and the petal piezoelectric ceramic sheets 20 described above. The same, easy to use.
  • the clock signal generator 200 can issue the same clock signal for controlling the direct digital frequency synthesizer 300 to operate at the same time reference signal.
  • the power amplifying module 400 amplifies the output power of the direct digital frequency synthesizer 300, and the number of the power amplifying module 400 is the same as the number of the direct digital frequency synthesizer 300, which is convenient for use.
  • the power amplifying module 400 respectively has the above
  • the ring-shaped piezoelectric ceramic sheet 10 is connected to each of the above-mentioned petal piezoelectric ceramic sheets 20, and the amplified electrical signals cause the piezoelectric ceramic sheets connected thereto to generate desired ultrasonic waves.
  • a piezoelectric ceramic piece, a direct digital frequency synthesizer 300, and a power amplifying module 400 constitute an independent ultrasonic generating device, and the controller 100 can selectively control the operation of any one of the independent ultrasonic generating devices.
  • the control device of the present invention can independently control the ring-shaped piezoelectric ceramic sheet 10 and each of the petal piezoelectric ceramic sheets 20 to generate ultrasonic waves.
  • the ultrasonic wave generated by the ring-shaped piezoelectric ceramic sheet 10 can ensure the basic dose of the treatment, and a set of petal piezoelectric ceramic sheets 20 can be arbitrarily opened or closed to generate ultrasonic waves, and the therapeutic dose can be selectively adjusted. Therefore, it will not affect the ablation effect of the lesion, reduce the stimulation of the skin while ensuring the therapeutic dose, and reduce the dose of the sensitive area in a targeted manner.
  • the treatment channel if there is a sensitive nerve, it is also possible to selectively close the flap at different positions.
  • Piezoelectric ceramic sheet 20 avoids nerve damage on the treatment channel and improves the patient's therapeutic tolerance, ensures the dosage requirement of the patient during treatment, greatly improves safety and comfort, and further embodies the non-invasive and painless treatment of ultrasound. Advantage.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Surgical Instruments (AREA)
  • Thermotherapy And Cooling Therapy Devices (AREA)

Description

超声聚焦换能器
技术领域
本发明涉及超声聚焦换能器,特别涉及一种医疗用的超声聚焦换能器。
背景技术
超声聚焦换能器已用于医疗上,如高强度超声聚焦肿瘤治疗技术是近年来发展很快的新兴医疗技术,它是使用超声波对病人进行治疗,而超声聚焦换能器是这项技术的核心部分,直接关系到该医疗技术在临床应用上的安全性及治疗效果。现有超声聚焦换能器分为单元换能器与多元换能器两类,单元换能器又分为平面透镜形和曲面自聚焦型两种,目前技术主要有以下几种:
平板压电陶瓷片附加声透镜换能器,用大孔径平面圆盘压电陶瓷换能器与固定声透镜组合实现聚焦,这种方法导致超声波衰减大,效率难以提高。
相控聚焦阵列式超声换能器,用若干小平面压电陶瓷片(离散或连续分布)安装在一个大孔径刚性聚焦球面体上,各压电陶瓷片的法线汇于一处焦点。这种方法焦斑较大,而且生产、安装、调试和维修等都很复杂,且成本高,如:申请号为200410017185.3,相控聚焦高强度超声换能器陈列。
多元环形二次聚焦超声换能器,将若干个凹球面压电陶瓷片固定在一个大圆环上,使其各自的焦点汇聚于一点,实现二次聚焦。这种方法的缺陷是二次聚焦对准焦点的过程较为复杂,而且所产生的声场不均匀,影响治疗效果。如:申请号为03158000.9,多焦点多重聚焦超声换能器;申请号为200510038963.1,压电式多阵元高强度聚焦超声换能器及聚焦方法。
上述超声换能器在治疗应用中,要么因超声波射线不够分散对皮肤剌激过大,要么因超声波射线进入人体时不能够选择部分通道闭合会造成对皮肤或通道神经的伤害,因而在临床实践中往往会选择整体调低治疗剂量,从而严重影响治疗的效果。
因此,如何实现在保证治疗剂量的情况下使聚焦的射线更加分散,可选择性地自由调节通道剂量来减少超声波对患者的伤害是业内亟待解决的技术问题。
发明内容
本发明的主要目的是提供一种医疗用的超声聚焦换能器,旨在实现在保证治疗剂量的情况下使聚焦的射线更加分散,可选择性地自由调节治疗通道的剂量来减少超声波对患者的伤害。
本发明提出一种超声聚焦换能器,其包括球面外壳、环压电陶瓷片和若干个瓣压电陶瓷片,其中:
所述球面外壳,球冠上设置有圆孔,以供安装超声探测器;
所述环压电陶瓷片,采用圆环形结构,适配设置在所述球面外壳内侧,圆环的内圆与所述圆孔大小相一致;
所述瓣压电陶瓷片,分别设置在所述球面外壳内侧,环绕在所述环压电陶瓷片的外圆周上;
所述环压电陶瓷片和各个所述瓣压电陶瓷片分别与超声聚焦换能器的控制装置连接。
优选地,所述瓣压电陶瓷片采用厚薄均匀的圆弧形结构并与所述球面外壳的半径曲率相同。
优选地,各个所述瓣压电陶瓷片的大小一致。
优选地,所述环压电陶瓷片和各个所述瓣压电陶瓷片的相互之间不接触。
优选地,所述球面外壳采用金属材料或橡胶材料制成。
本发明又提出一种超声聚焦换能器的另一实施方案,其包括控制装置、球面外壳、环压电陶瓷片和若干个瓣压电陶瓷片,其中:
所述球面外壳,球冠上设置有圆孔,以供安装超声探测器;
所述环压电陶瓷片,采用圆环形结构,适配设置在所述球面外壳内侧,圆环的内圆与所述圆孔大小相一致;
所述瓣压电陶瓷片,分别设置在所述球面外壳内侧,环绕在所述环压电陶瓷片的外圆周上;
所述控制装置包括:
控制器,统一控制直接数字式频率合成器的工作频率和相位的调整;
直接数字式频率合成器,由所述控制器进行控制,产生同步使能信号,数量与所述环压电陶瓷片和瓣压电陶瓷片的数量相同;
时钟信号发生器,控制所述直接数字式频率合成器在相同的时间基准信号下工作;
功率放大模块,将所述直接数字式频率合成器的输出功率放大,数量与所述直接数字式频率合成器的数量相同,分别与所述环压电陶瓷片和各个所述瓣压电陶瓷片连接。
优选地,所述瓣压电陶瓷片采用厚薄均匀的圆弧形结构并与所述球面外壳的半径曲率相同。
优选地,各个所述瓣压电陶瓷片的大小一致。
优选地,所述环压电陶瓷片和各个所述瓣压电陶瓷片的相互之间不接触。
优选地,所述球面外壳采用金属材料或橡胶材料制成。
本发明超声聚焦换能器在球面外壳内设置一个环压电陶瓷片和若干个单独设立的瓣压电陶瓷片,可以分别独立控制环压电陶瓷片和每一个瓣压电陶瓷片产生超声波;瓣压电陶瓷片的生产成本和制造难度也降低了。使用超声聚焦换能器时,在保证治疗剂量的情况下聚焦时射线更加分散,还可以选择性地调整治疗剂量,从而不会影响对病灶的消融效果,在保证治疗剂量的同时减少了对皮肤的刺激,在治疗通道如有敏感神经还可以选择关闭不同位置的分瓣压电陶瓷片,避免了治疗通道上对神经组织的伤害和提高了患者的治疗耐受力,保证患者治疗时的剂量需要,安全性与舒适性大大提高,更加体现了超声无创无痛治疗的优势。
附图说明
图1为本发明超声聚焦换能器的环压电陶瓷片和瓣压电陶瓷片设置在球面外壳上的一实施例的结构示意图;
图2为图1中沿A-A向的剖视图;
图3为本发明超声聚焦换能器电路连接一实施例的结构示意图。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
具体实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
参照图1、图2,提出本发明的一种超声聚焦换能器的一实施例,其包括球面外壳30、环压电陶瓷片10和若干个瓣压电陶瓷片20,其中:
上述球面外壳30,球冠上设置有圆孔40,以供安装超声探测器。
上述环压电陶瓷片10,采用圆环形结构,与上述球面外壳30的半径曲率相同,适配设置在上述球面外壳30内侧,圆环的内圆与上述圆孔40大小相一致。环压电陶瓷片10的主要作用是产生最低的基本剂量的治疗超声波,根据不同的治疗项目,超声聚焦换能器设置不同大小的环压电陶瓷片10保证最低超声波剂量。
上述瓣压电陶瓷片20,分别设置在上述球面外壳30内侧,环绕在上述环压电陶瓷片10的外圆周上;瓣压电陶瓷片20可根据实际临床需要设计制造不同大小的规格。总面积不变时,瓣压电陶瓷片20数量越多,在治疗时剂量的控制幅度越方便调整。上述瓣压电陶瓷片20采用厚薄均匀的圆弧形结构并与上述球面外壳30的半径曲率相同,便于与上述球面外壳30相匹配压接或粘接在一起。
上述环压电陶瓷片10和各个上述瓣压电陶瓷片20分别与超声聚焦换能器的控制装置连接,该控制装置可以分别控制上述环压电陶瓷片10和各个瓣压电陶瓷片20连接的控制电路的开启,即可任意选择哪一个压电陶瓷片工作产生超声波。
本发明超声聚焦换能器可以分别独立控制的环压电陶瓷片10和每一个瓣压电陶瓷片20产生超声波。设置若干个瓣压电陶瓷片20使生产成本和加工制造难度也降低了,因每一个独立的瓣压电陶瓷片20面积缩小而避免了容易损坏的问题;选择性使用瓣压电陶瓷片20工作不容易造成设备的疲劳损坏。
使用超声聚焦换能器时,在保证治疗剂量的情况下聚焦时射线更加分散,可以选择性地调整治疗剂量,从而不会影响对病灶的消融效果,在保证治疗剂量的同时减少了对皮肤的刺激,有针对性的降低敏感区域的剂量,在治疗通道如有敏感神经还可以选择关闭不同位置的分瓣压电陶瓷片20,避免了治疗通道上对神经组织的伤害和提高了患者的治疗耐受力,保证患者治疗时的剂量需要,安全性与舒适性大大提高,更加体现了超声无创无痛治疗的优势。
进一步,本实例的各个上述瓣压电陶瓷片20的大小一致,以便于采用相同功率的控制器控制,各个大小瓣压电陶瓷片20也可以不相同,但需要分别使用不同功率的控制器控制。
上述环压电陶瓷片10和各个上述瓣压电陶瓷片20的相互之间不接触,每一个压电陶瓷片相互之间不接触,避免相互影响超声波的产生。
上述球面外壳30采用金属或橡胶等材料制成。
参照图3,在上实施例的基础上,即包括了上述实施例的技术方案,又提出一种超声聚焦换能器的另一实施例,其包括控制装置、球面外壳30、环压电陶瓷片10和若干个瓣压电陶瓷片20,其中:
上述球面外壳30,球冠上设置有圆孔40,以供安装超声探测器。
上述环压电陶瓷片10,采用圆环形结构,适配设置在上述球面外壳30内侧,圆环的内圆与上述圆孔40大小相一致。
上述瓣压电陶瓷片20,分别设置在上述球面外壳30内侧,环绕在上述环压电陶瓷片10的外圆周上。
上述瓣压电陶瓷片20采用厚薄均匀的圆弧形结构并与上述球面外壳30的半径曲率相同。
各个上述瓣压电陶瓷片20的大小一致;上述环压电陶瓷片10和各个上述瓣压电陶瓷片20的相互之间不接触;上述球面外壳30采用金属材料或橡胶材料制成。
与上述实施例技术方案相同的部分所达到的技术效果也相同,在此不再赘述。
上述控制装置包括:
控制器100,用于统一控制直接数字式频率合成器300 DDS(Direct Digital Synthesizer)的工作频率和相位的调整,使各个压电陶瓷片以相同的电频率和相位进行同步工作产生同频率的超声波。
直接数字式频率合成器300,其由上述控制器100进行控制,产生同步使能信号,该直接数字式频率合成器300的数量与上述环压电陶瓷片10和瓣压电陶瓷片20的数量相同,便于配套使用。
时钟信号发生器200,可发出同一时钟信号,用于控制上述直接数字式频率合成器300在相同的时间基准信号下工作。
功率放大模块400,将上述直接数字式频率合成器300的输出功率放大,功率放大模块400的数量与上述直接数字式频率合成器300的数量相同,便于配套使用,该功率放大模块400分别与上述环压电陶瓷片10和各个上述瓣压电陶瓷片20连接,将放大后的电信号使与其连接的压电陶瓷片产生所需要的超声波。
一个压电陶瓷片、一个直接数字式频率合成器300和一个功率放大模块400构成一个独立的超声波发生装置,通过控制器100可选择性控制任意一个该独立的超声波发生装置工作。
本发明控制装置可以分别独立控制环压电陶瓷片10和每一个瓣压电陶瓷片20产生超声波。使用超声聚焦换能器时,由环压电陶瓷片10产生的超声波可保证治疗的基本剂量,还可以任意开或关一组瓣压电陶瓷片20工作产生超声波,进行选择性地调整治疗剂量,从而不会影响对病灶的消融效果,在保证治疗剂量的同时减少了对皮肤的刺激,有针对性的降低敏感区域的剂量,在治疗通道如有敏感神经还可以选择关闭不同位置的分瓣压电陶瓷片20,避免了治疗通道上对神经的伤害和提高了患者的治疗耐受力,保证患者治疗时的剂量需要,安全性与舒适性大大提高,更加体现了超声无创无痛治疗的优势。
以上所述仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其它相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (10)

  1. 一种超声聚焦换能器,其特征在于,包括球面外壳、至少一个环压电陶瓷片和若干个瓣压电陶瓷片,其中:
    所述球面外壳,球冠上设置有圆孔,以供安装超声探测器;
    所述环压电陶瓷片,采用圆环形结构,适配设置在所述球面外壳内侧,圆环的内圆与所述圆孔大小相一致;
    所述瓣压电陶瓷片,分别设置在所述球面外壳内侧,环绕在所述环压电陶瓷片的外圆周上;
    所述环压电陶瓷片和各个所述瓣压电陶瓷片分别与超声聚焦换能器的控制装置连接。
  2. 根据权利要求1所述的超声聚焦换能器,其特征在于,所述瓣压电陶瓷片采用厚薄均匀的圆弧形结构并与所述球面外壳的半径曲率相同。
  3. 根据权利要求2所述的超声聚焦换能器,其特征在于,各个所述瓣压电陶瓷片的大小相一致。
  4. 根据权利要求1至3中任一项所述的超声聚焦换能器,其特征在于,所述环压电陶瓷片和各个所述瓣压电陶瓷片的相互之间不接触。
  5. 根据权利要求4所述的超声聚焦换能器,其特征在于,所述球面外壳采用金属材料或橡胶材料制成。
  6. 一种超声聚焦换能器,其特征在于,包括控制装置、球面外壳、环压电陶瓷片和若干个瓣压电陶瓷片,其中:
    所述球面外壳,球冠上设置有圆孔,以供安装超声探测器;
    所述环压电陶瓷片,采用圆环形结构,适配设置在所述球面外壳内侧,圆环的内圆与所述圆孔大小相一致;
    所述瓣压电陶瓷片,分别设置在所述球面外壳内侧,环绕在所述环压电陶瓷片的外圆周上;
    所述控制装置包括:
    控制器,统一控制直接数字式频率合成器的工作频率和相位的调整;
    直接数字式频率合成器,由所述控制器进行控制,产生同步使能信号,其数量与所述环压电陶瓷片和瓣压电陶瓷片的数量相同;
    时钟信号发生器,控制所述直接数字式频率合成器在相同的时间基准信号下工作;
    功率放大模块,将所述直接数字式频率合成器的输出功率放大,其数量与所述直接数字式频率合成器的数量相同,分别与所述环压电陶瓷片和各个所述瓣压电陶瓷片连接。
  7. 根据权利要求6所述的超声聚焦换能器,其特征在于,所述瓣压电陶瓷片采用厚薄均匀的圆弧形结构并与所述球面外壳的半径曲率相同。
  8. 根据权利要求7所述的超声聚焦换能器,其特征在于,各个所述瓣压电陶瓷片的大小一致。
  9. 根据权利要求6至8中任一项所述的超声聚焦换能器,其特征在于,所述环压电陶瓷片和各个所述瓣压电陶瓷片的相互之间不接触。
  10. 根据权利要求9所述的超声聚焦换能器,其特征在于,所述球面外壳采用金属材料或橡胶材料制成。
PCT/CN2011/071993 2011-01-14 2011-03-21 超声聚焦换能器 WO2012094850A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201110008132.5A CN102579127B (zh) 2011-01-14 2011-01-14 超声聚焦换能器
CN201110008132.5 2011-01-14

Publications (1)

Publication Number Publication Date
WO2012094850A1 true WO2012094850A1 (zh) 2012-07-19

Family

ID=46468757

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/071993 WO2012094850A1 (zh) 2011-01-14 2011-03-21 超声聚焦换能器

Country Status (2)

Country Link
CN (1) CN102579127B (zh)
WO (1) WO2012094850A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113633900A (zh) * 2021-08-04 2021-11-12 四川泰猷科技有限公司 基于医用超声治疗装置的不同频段频率和功率调整方法

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107661853A (zh) * 2017-11-13 2018-02-06 深圳市普罗医学股份有限公司 环形自聚焦超声相控阵列换能器
CN108671426B (zh) * 2018-07-17 2023-12-05 重庆医科大学 超声换能器
CN109044403B (zh) * 2018-08-31 2021-03-16 重庆医科大学 数控式低强度聚焦超声波激发与成像系统
CN109433570B (zh) * 2019-01-07 2023-06-16 中国科学院声学研究所北海研究站 一种多面体球形换能器及其制作方法
CN110478633B (zh) * 2019-09-02 2021-08-10 重庆医科大学 聚焦超声换能器的固定架及超声换能系统
CN110721066B (zh) * 2019-09-05 2021-11-16 深圳先进技术研究院 超声足疗装置
CN110756418A (zh) * 2019-10-29 2020-02-07 海鹰企业集团有限责任公司 调节高频曲面换能器频率的方法
CN111012318B (zh) * 2020-01-18 2022-10-28 中川新迈科技有限公司 一种用于光声乳腺成像的面聚焦阵列探测器及系统
CN112263353A (zh) * 2020-11-27 2021-01-26 昆明医科大学 一种脑出血动物模型造模方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178096A (ja) * 1997-12-11 1999-07-02 Toshiba Ceramics Co Ltd 超音波発生装置
US6039689A (en) * 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
CN1470299A (zh) * 2003-06-19 2004-01-28 上海交通大学 高强度聚焦超声肿瘤治疗用换能器阵列
CN1562411A (zh) * 2004-03-25 2005-01-12 上海交通大学 相控聚焦高强度超声换能器阵列
US20060058678A1 (en) * 2004-08-26 2006-03-16 Insightec - Image Guided Treatment Ltd. Focused ultrasound system for surrounding a body tissue mass
CN2796747Y (zh) * 2005-05-26 2006-07-19 深圳市普罗惠仁医学科技有限公司 球冠式凹球面超声换能器
CN101306419A (zh) * 2007-05-18 2008-11-19 天津医科大学 相位控制圆环状超声聚焦方法
CN201379912Y (zh) * 2008-12-30 2010-01-13 北京奥麦特科技有限公司 一种自聚焦超声换能器
US20100228126A1 (en) * 2009-03-06 2010-09-09 Mirabilis Medica Inc. Ultrasound treatment and imaging applicator

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3732131A1 (de) * 1987-09-24 1989-04-06 Wolf Gmbh Richard Fokussierender ultraschallwandler
US5743862A (en) * 1994-09-19 1998-04-28 Kabushiki Kaisha Toshiba Ultrasonic medical treatment apparatus
US7245063B2 (en) * 2004-11-12 2007-07-17 Honeywell International, Inc. Optimized ultrasonic phased array transducer for the inspection of billet material
CN1879976A (zh) * 2005-06-14 2006-12-20 深圳市普罗伊学科技发展有限公司 球冠式凹球面超声换能器
CN202052685U (zh) * 2011-01-14 2011-11-30 深圳市普罗惠仁医学科技有限公司 超声聚焦换能器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11178096A (ja) * 1997-12-11 1999-07-02 Toshiba Ceramics Co Ltd 超音波発生装置
US6039689A (en) * 1998-03-11 2000-03-21 Riverside Research Institute Stripe electrode transducer for use with therapeutic ultrasonic radiation treatment
CN1470299A (zh) * 2003-06-19 2004-01-28 上海交通大学 高强度聚焦超声肿瘤治疗用换能器阵列
CN1562411A (zh) * 2004-03-25 2005-01-12 上海交通大学 相控聚焦高强度超声换能器阵列
US20060058678A1 (en) * 2004-08-26 2006-03-16 Insightec - Image Guided Treatment Ltd. Focused ultrasound system for surrounding a body tissue mass
CN2796747Y (zh) * 2005-05-26 2006-07-19 深圳市普罗惠仁医学科技有限公司 球冠式凹球面超声换能器
CN101306419A (zh) * 2007-05-18 2008-11-19 天津医科大学 相位控制圆环状超声聚焦方法
CN201379912Y (zh) * 2008-12-30 2010-01-13 北京奥麦特科技有限公司 一种自聚焦超声换能器
US20100228126A1 (en) * 2009-03-06 2010-09-09 Mirabilis Medica Inc. Ultrasound treatment and imaging applicator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113633900A (zh) * 2021-08-04 2021-11-12 四川泰猷科技有限公司 基于医用超声治疗装置的不同频段频率和功率调整方法
CN113633900B (zh) * 2021-08-04 2024-01-26 四川泰猷科技有限公司 基于医用超声治疗装置的不同频段频率和功率调整方法

Also Published As

Publication number Publication date
CN102579127B (zh) 2014-09-03
CN102579127A (zh) 2012-07-18

Similar Documents

Publication Publication Date Title
WO2012094850A1 (zh) 超声聚焦换能器
WO2013077506A1 (ko) 고강도 집속 초음파용 트랜스듀서
CN1296420A (zh) 光基体装置
WO2011028082A2 (ko) 고주파 치료 장치 및 방법
CN202020798U (zh) 新一代乳腺病治疗仪
CN111888619B (zh) 一种穿戴式颈椎康复睡眠仪
JP2024501373A (ja) マイクロ波理学療法の鍼治療器及びその使用方法
CN213724273U (zh) 一种便携式声波治疗仪
CN111714354B (zh) 智能超声止痛装置
WO2022114550A2 (ko) 초음파 마사지 장치
CN104188789A (zh) 鸣天鼓智能鼓膜按摩仪
CN213489698U (zh) 一种穿戴式颈椎康复睡眠仪
CN110090364B (zh) 一种贴壁充电式超声正性肌力治疗装置
CN102397633A (zh) 超声波治疗阴道炎、附件炎的方法及装置
CN208927030U (zh) 一种耳廓按摩器
CN100435886C (zh) 超声肿瘤治疗机换能器
CN2928131Y (zh) 一种多头超声波治疗装置治疗头
TWI822515B (zh) 抑制腸道發炎因子及/或改善神經發炎之超音波產生裝置及系統
CN107335148B (zh) 一种用于肠胃调理的红外理疗仪及使用方法
CN220370007U (zh) 医用听诊器
CN217611958U (zh) 一种带有电缆的冲击波治疗仪
CN213491519U (zh) 一种基于多种物理因子的复合理疗电极及复合理疗装置
CN216571259U (zh) 循环式聚焦超声波子宫复旧装置
CN102100632B (zh) 耳穴康复器
CN203017162U (zh) 脑血管病治疗仪

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11855652

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 20/09/2013)

122 Ep: pct application non-entry in european phase

Ref document number: 11855652

Country of ref document: EP

Kind code of ref document: A1