WO2012093715A1 - Steel wire material and method for producing same - Google Patents

Steel wire material and method for producing same Download PDF

Info

Publication number
WO2012093715A1
WO2012093715A1 PCT/JP2012/050155 JP2012050155W WO2012093715A1 WO 2012093715 A1 WO2012093715 A1 WO 2012093715A1 JP 2012050155 W JP2012050155 W JP 2012050155W WO 2012093715 A1 WO2012093715 A1 WO 2012093715A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
scale
amount
steel wire
excluding
Prior art date
Application number
PCT/JP2012/050155
Other languages
French (fr)
Japanese (ja)
Inventor
武田 実佳子
昌平 中久保
和彦 桐原
雅之 遠藤
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to KR1020137017580A priority Critical patent/KR20130087613A/en
Priority to KR1020147014715A priority patent/KR20140076642A/en
Priority to CN201280004664.4A priority patent/CN103314125B/en
Priority to US13/995,739 priority patent/US20130272914A1/en
Priority to EP12732406.9A priority patent/EP2662468A4/en
Publication of WO2012093715A1 publication Critical patent/WO2012093715A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel

Definitions

  • the present invention relates to a steel wire and a method for producing the same, and in particular, a hot-rolled steel wire formed with a thin scale that can be easily removed by mechanical descaling without being peeled off during cooling after hot rolling or during storage and transportation. (Hereinafter simply referred to as “wire”) and its manufacturing method.
  • a scale is usually formed on the surface of the wire manufactured by hot rolling, and it is necessary to remove this scale before subjecting the wire to secondary processing such as wire drawing.
  • a method for removing scale before such secondary processing a batch-type pickling method has been used in the past, but in recent years, from the viewpoint of pollution problems and cost reduction, a mechanical descaling (hereinafter referred to as MD) method is used. Is being used. Therefore, it is requested
  • Patent Documents 1 to 5 can be cited as methods for producing a wire having a scale with good MD properties.
  • the scale amount remaining in the wire after MD is reduced by forming a thick scale with a high FeO ratio.
  • Patent Literature 3 by reducing the interface roughness, the propagation of cracks generated at the scale interface is promoted, and the residual scale amount is reduced.
  • Patent Documents 4 and 5 the peelability of the scale is improved by controlling the area ratio of the pores in the scale.
  • Patent Documents 1 to 5 described above have the following problems.
  • the yield is lowered, and the scale is peeled off during the cooling process, storage and transportation, and rust is generated.
  • the scale is thick, it is difficult to completely remove the scale even if bending strain is applied to the wire by the MD method and further the surface of the wire is brushed. That is, unlike the batch type pickling method, the MD method is difficult to remove the entire scale uniformly and stably, and even if MD is applied to a wire having a thick scale, the surface of the wire In some cases, finely crushed scale powder is scattered. In this way, when the residual scale remaining locally increases, problems such as wrinkles due to poor lubrication and a decrease in the die life may occur in secondary processing such as wire drawing.
  • Patent Documents 1 to 5 do not consider any scale peeling due to the compressive stress generated during cooling, and the scale peels during cooling, storage, or transportation, and rust is generated on the wire before MD. There was a problem to do.
  • the present invention has been made in view of the above circumstances, and the purpose thereof is a wire rod formed with a scale that does not peel off during cooling after hot rolling or during storage / transport, but easily peels off during MD, And a manufacturing method thereof.
  • the steel wire rod according to the present invention that has achieved the above-mentioned problems is: C: 0.05 to 1.2% (meaning mass%, hereinafter the same for chemical components), Si: 0.01 to 0.5%, Mn: 0.1 to 1.5%, P: 0.02% or less (not including 0%), S: 0.02% or less (not including 0%), N: 0.005% or less (0% Steel wire with the balance being iron and inevitable impurities, the scale having a thickness of 7.0 ⁇ m or less, and the FeO ratio in the scale being 30 to 80% by volume, Fe 2 SiO 4 ratio is less than 0.1% by volume.
  • the steel wire rod according to the present invention includes (a) Cr: 0.3% or less (not including 0%) and / or Ni: 0.3% or less (not including 0%), (b) Cu as required. : 0.2% or less (excluding 0%), (c) at least one element selected from the group consisting of Nb, V, Ti, Hf, and Zr is 0.1% or less in total (0 %), (D) Al: 0.1% or less (not including 0%), (e) B: 0.005% or less (not including 0%), (f) Ca: 0.01 % Or less (not including 0%) and / or Mg: 0.01% or less (not including 0%) may be contained.
  • the present invention provides a mixed gas of oxygen and an inert gas in which the steel having any one of the chemical components described above is rolled up at 750 to 880 ° C. after hot rolling and the oxygen fraction is less than 20% by volume, Or the manufacturing method of the steel wire which cools, spraying an inert gas is also included.
  • the inert gas is preferably nitrogen.
  • the wire rod of the present invention has a thin (7.0 ⁇ m or less) scale in which the FeO ratio is appropriately controlled (30 to 80% by volume) within a predetermined range. Therefore, the scale does not peel off during cooling after hot rolling or during storage / transport, and rusting can be prevented. Furthermore, according to the present invention, since the scale is easily peeled off at the time of MD, sufficient peelability can be ensured with a simple descaling device, and adverse effects during secondary processing such as wire drawing (the surface of the wire surface due to leftover of the scale, It is possible to provide a high quality steel wire rod without causing poor lubrication. Further, since the scale loss is small, the yield can be maintained high.
  • FIG. 1 is a graph showing the relationship between the FeO ratio in the scale and the residual scale area ratio after MD.
  • FIG. 2 is a graph showing the relationship between the scale thickness and the scale peeling rate of the rolled material.
  • the MD method is a method in which a wire is distorted to cause cracks in the scale or at the interface between the ground iron and the scale, and the scale is peeled off.
  • the ratio of FeO in the scale has been improved. This is because the adhesion strength of FeO to the ground iron is smaller than that of Fe 2 O 3 or Fe 3 O 4 , so increasing the FeO ratio in the scale is effective in improving the scale peelability during MD. Because it is considered.
  • a thick scale peels off during the cooling process, storage and transportation. That is, it was extremely difficult to reduce the thickness of the scale and to secure the FeO ratio in the scale.
  • the coiling temperature after hot rolling is set to a relatively low temperature, and then cooling while injecting a mixed gas or inert gas of oxygen and inert gas having a low oxygen fraction.
  • the scale can be thinned and the FeO ratio in the scale can be secured at a predetermined level or more.
  • the scale thickness is preferably 6.5 ⁇ m or less, more preferably 6.0 ⁇ m or less (particularly 5.5 ⁇ m or less).
  • the lower limit of the scale thickness is not particularly limited, but is usually about 0.9 ⁇ m.
  • FIG. 1 is a graph showing the relationship between the FeO ratio in the scale and the area ratio of the scale remaining after MD.
  • FIG. 1 shows that if the FeO ratio in the scale is 30 to 80% by volume, the amount of residual scale after MD can be sufficiently reduced.
  • the FeO ratio is preferably 35% by volume or more and 75% by volume or less, more preferably 40% by volume or more and 70% by volume or less, and further preferably 45% by volume or more and 65% by volume or less.
  • the proportion of Fe 2 SiO 4 (firelite) in the scale is less than 0.1% by volume.
  • Fe 2 SiO 4 is generated excessively, it is generated non-uniformly at the interface between the scale and the ground iron, and the scale is exfoliated unevenly during MD, so that the MD property deteriorates.
  • the Fe 2 SiO 4 ratio is preferably 0.09% by volume or less, more preferably 0.08% by volume or less, and still more preferably 0.07% by volume or less.
  • Fe 2 SiO 4 in the scale is an oxide that is brittle and easily peeled off, and if it is a trace amount, it is uniformly thinly formed, so that it has an effect of improving MD properties. In order to effectively exhibit such an action, it is preferable to ensure 0.01% by volume or more, more preferably 0.02% by volume or more, and further preferably 0.03% by volume or more.
  • the scale in the present invention includes Fe 2 O 3 , Fe 3 O 4 and the like in addition to FeO and Fe 2 SiO 4 .
  • the amount of residual scale after MD can be reduced to 30% or less in terms of the area ratio with respect to the amount of scale before MD. This corresponds to approximately 0.05% by mass or less in the remaining scale amount with respect to the mass of the steel wire.
  • the residual scale amount is preferably 25 area% or less, more preferably 20 area% or less.
  • a steel having the chemical composition described later is hot-rolled, wound at a relatively low temperature (750 to 880 ° C.), and then mixed with oxygen and an inert gas having a low oxygen fraction. It is important to cool while spraying gas or inert gas.
  • the scale can be thinned by winding at a low temperature. Further, by blowing and cooling a gas having a low oxygen fraction or containing no oxygen as described above, the generated FeO can be secured at a predetermined level or more without changing to Fe 3 O 4 .
  • the coiling temperature after hot rolling exceeds 880 ° C.
  • the scale thickness exceeds 7.0 ⁇ m
  • the FeO ratio in the scale exceeds 80% by volume
  • the MD property deteriorates.
  • the coiling temperature exceeds 880 ° C., it may exceed 0.1% by volume, and Fe 2 SiO 4 (firelight) is generated unevenly at the interface between the scale and the ground iron. Unevenly peels off and MD properties deteriorate.
  • the coiling temperature is lower than 750 ° C., the FeO ratio cannot be ensured by 30% by volume or more, and the MD property deteriorates.
  • the winding temperature is preferably 770 ° C. or higher and 875 ° C. or lower, more preferably 790 ° C. or higher and 860 ° C. or lower.
  • Cooling after hot rolling is performed while spraying a mixed gas of oxygen and an inert gas having an oxygen fraction of less than 20% by volume, or an inert gas.
  • the oxygen fraction is preferably 10% by volume or less, more preferably 5% by volume or less, and still more preferably 0% by volume (that is, only inert gas).
  • the inert gas include argon, nitrogen and the like, preferably nitrogen.
  • the cooling stop temperature of the cooling performed by spraying the gas is not particularly limited. For example, the cooling may be performed while spraying the gas up to about 550 to 650 ° C., and then cooling to room temperature in the atmosphere.
  • C 0.05 to 1.2% C is an element that greatly affects the mechanical properties of steel.
  • the C content was set to 0.05% or more.
  • the amount of C is preferably 0.15% or more, and more preferably 0.3% or more.
  • the C amount is set to 1.2% or less.
  • the amount of C is preferably 1.1% or less, and more preferably 1.0% or less.
  • Si 0.01 to 0.5% Si is an element necessary for deoxidation of steel, and if its content is too small, the production of Fe 2 SiO 4 (firelight) becomes insufficient and the MD property deteriorates. Therefore, the Si amount is determined to be 0.01% or more.
  • the amount of Si is preferably 0.1% or more, and more preferably 0.2% or more.
  • the Si amount is set to 0.5% or less.
  • the amount of Si is preferably 0.45% or less, and more preferably 0.4% or less.
  • Mn 0.1 to 1.5% Mn is an element useful for securing the hardenability of steel and increasing the strength. In order to effectively exhibit such an action, the amount of Mn was determined to be 0.1% or more. The amount of Mn is preferably 0.2% or more, and more preferably 0.4% or more. On the other hand, when the amount of Mn is excessive, segregation occurs in the cooling process after hot rolling, and a supercooled structure (such as martensite) that is harmful to wire drawing workability is likely to occur. Therefore, the amount of Mn is set to 1.5% or less. The amount of Mn is preferably 1.4% or less, more preferably 1.2% or less.
  • P 0.02% or less (excluding 0%)
  • P is an element that deteriorates the toughness and ductility of steel.
  • the P content is set to 0.02% or less.
  • the amount of P is preferably 0.01% or less, and more preferably 0.005% or less.
  • the lower limit of the amount of P is not particularly limited, but is usually about 0.001%.
  • S 0.02% or less (excluding 0%) S, like P, is an element that degrades the toughness and ductility of steel. In order to prevent disconnection in the wire drawing or the subsequent twisting process, the S content is set to 0.02% or less.
  • the amount of S is preferably 0.01% or less, and more preferably 0.005% or less.
  • the lower limit of the amount of S is not particularly limited, but is usually about 0.001%.
  • N 0.005% or less (excluding 0%)
  • N is an element that deteriorates the ductility of steel when the content is excessive. Therefore, the N amount is set to 0.005% or less.
  • the amount of N is preferably 0.004% or less, and more preferably 0.003% or less.
  • the lower limit of the N amount is not particularly limited, but is usually about 0.001%.
  • the basic components of the steel wire rod of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that the inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. are included in the steel wire. Furthermore, it is also recommended to add the following elements as necessary within a range not impeding the effects of the present invention.
  • Cr 0.3% or less (not including 0%) and / or Ni: 0.3% or less (not including 0%) Cr and Ni are both elements that increase the hardenability of steel and contribute to the improvement of strength.
  • the Cr content is preferably 0.05% or more, and the Ni content is preferably 0.03% or more. More preferably, the Cr amount and the Ni amount are both 0.10% or more, and more preferably both are 0.12% or more.
  • the Cr content and the Ni content are both 0.3% or less. More preferably, the Cr content and the Ni content are both 0.25% or less, more preferably 0.20% or less.
  • Cu 0.2% or less (excluding 0%) Cu is an element having an action of promoting scale peeling.
  • the amount of Cu is preferably 0.01% or more.
  • the amount of Cu is more preferably 0.05% or more, and further preferably 0.10% or more.
  • the amount of Cu becomes excessive, peeling of the scale is excessively promoted, the scale is peeled off during rolling, and another thin scale with high adhesion is generated on the peeled surface, and the wire coil is stored and transported. Rust is generated when Therefore, the amount of Cu is preferably 0.2% or less.
  • the amount of Cu is more preferably 0.17% or less, and still more preferably 0.15% or less.
  • Nb, V, Ti, Hf, and Zr are all elements that form fine carbonitrides and contribute to high strength.
  • the Nb amount, the V amount, the Ti amount, the Hf amount, and the Zr amount are all 0.003% or more.
  • the Nb amount, V amount, Ti amount, Hf amount, and Zr amount are all preferably 0.007% or more, and more preferably 0.01% or more.
  • the total amount of these elements is preferably 0.1% or less.
  • the total amount of these elements is more preferably 0.08% or less, still more preferably 0.06% or less.
  • Al 0.1% or less (excluding 0%) Al is an element effective as a deoxidizer.
  • the Al content is preferably 0.001% or more.
  • the amount of Al is more preferably 0.005% or more, and still more preferably 0.01% or more.
  • the Al content is preferably 0.1% or less.
  • the amount of Al is more preferably 0.08% or less, and still more preferably 0.06% or less.
  • B 0.005% or less (excluding 0%)
  • B is an element that suppresses the formation of ferrite by being present as free B that dissolves in steel (B that does not form a compound), and is particularly effective for high-strength wires that require suppression of longitudinal cracks. It is.
  • the B content is preferably 0.0001% or more.
  • the amount of B is more preferably 0.0005% or more, and further preferably 0.0010% or more.
  • the B content is preferably 0.005% or less, more preferably 0.0040% or less, and still more preferably 0.0035% or less.
  • Ca and Mg are both elements that have the effect of increasing the ductility by controlling the form of inclusions. Moreover, Ca also has the effect
  • both the Ca content and the Mg content are preferably 0.001% or more.
  • Ca and Mg are both preferably 0.002% or more, and more preferably 0.003% or more.
  • both the Ca content and the Mg content are preferably 0.01% or less.
  • the Ca content and the Mg content are both preferably 0.008% or less, and more preferably 0.005% or less.
  • the obtained steel wire was measured by the following method.
  • No. 3, 29, 33, 36, 40, 43, 46, 47, and 49 have deteriorated MD properties because the manufacturing conditions do not satisfy the requirements of the present invention.
  • No. 3, 29, 36, 40, 43, 46, and 47 are examples in which air was blown and cooled after hot rolling, and FeO became Fe 3 O 4 during cooling, so that the FeO fraction was It could not be secured, and the MD property deteriorated.
  • No. No. 33 is an example in which the coiling temperature after hot rolling was high. The scale thickness was increased, the FeO ratio was too large, and the Fe 2 SiO 4 ratio was also high, so the MD property deteriorated.
  • No. Nos. 50 to 54 are examples in which the coiling temperature after hot rolling was higher, the scale thickness exceeded 7.0 ⁇ m, the scale peeling rate of the rolled material increased, and rust was generated. That is, no. Nos. 50 to 54 are considered to cause rust due to dropping of the scale during cooling after hot rolling or during storage and transportation.
  • FIG. 2 shows the relationship between the scale thickness and the scale peeling rate of the rolled material. It can be seen that when the scale thickness exceeds 7.0 ⁇ m, the scale peeling rate of the rolled material increases.
  • the steel wire rod of the present invention is excellent in mechanical descaling after hot rolling (before wire drawing), it cuts automobile tire cords (steel cords, bead wires), hose wires, semiconductor silicon, etc. It is useful as a material such as saw wire used in

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

The steel wire material of the present invention contains 0.05 to 1.2% of C (mass%; same for the chemical components hereafter), 0.01 to 0.5% of Si, 0.1 to 1.5% of Mn, 0.02% or less (but not 0%) of P, 0.02% or less (but not 0%) of S, and 0.005% or less (but not 0%) of N, with the balance being iron and inevitable impurities. The wire material has a scale layer that is no thicker than 7.0 µm or less. The scale layer has an FeO percentage of 30 to 80 vol% and an Fe2SiO4 percentage of less than 0.1 vol%. The scale layer that is formed will not peel when cooled after hot rolling or during storage and transport, but will easily peel during mechanical descaling.

Description

鋼線材及びその製造方法Steel wire rod and manufacturing method thereof
 本発明は鋼線材及びその製造方法に関するものであり、特に熱間圧延後の冷却中や保管・搬送時には剥離せず、メカニカルデスケーリングによって容易に除去できる薄いスケールが形成された熱間圧延鋼線材(以下、単に「線材」と呼ぶ)と、その製造方法に関するものである。 TECHNICAL FIELD The present invention relates to a steel wire and a method for producing the same, and in particular, a hot-rolled steel wire formed with a thin scale that can be easily removed by mechanical descaling without being peeled off during cooling after hot rolling or during storage and transportation. (Hereinafter simply referred to as “wire”) and its manufacturing method.
 熱間圧延によって製造された線材の表面には、通常、スケールが形成されており、線材に伸線等の二次加工を施す前に、このスケールを除去することが必要である。このような二次加工前のスケール除去方法として、従来はバッチ式の酸洗法が用いられていたが、近年は公害問題やコスト低減の観点から、メカニカルデスケーリング(以下、MDと呼ぶ)法が用いられつつある。そのため、線材にはMD性が良好なスケールが形成されていることが要求されている。 A scale is usually formed on the surface of the wire manufactured by hot rolling, and it is necessary to remove this scale before subjecting the wire to secondary processing such as wire drawing. As a method for removing scale before such secondary processing, a batch-type pickling method has been used in the past, but in recent years, from the viewpoint of pollution problems and cost reduction, a mechanical descaling (hereinafter referred to as MD) method is used. Is being used. Therefore, it is requested | required that the scale with favorable MD property should be formed in the wire.
 MD性の良好なスケールが形成された線材の製造方法として、例えば特許文献1~5が挙げられる。特許文献1、2では、FeO比率が高く、且つ、厚いスケールを形成させることによって、MD後の線材に残留するスケール量を低減している。特許文献3では、界面粗度を小さくすることによって、スケールの界面に生じる割れの伝搬を促進し、残留スケール量を低減している。特許文献4、5では、スケール中の空孔の面積率を制御してスケールの剥離性を改善している。 For example, Patent Documents 1 to 5 can be cited as methods for producing a wire having a scale with good MD properties. In Patent Documents 1 and 2, the scale amount remaining in the wire after MD is reduced by forming a thick scale with a high FeO ratio. In Patent Literature 3, by reducing the interface roughness, the propagation of cracks generated at the scale interface is promoted, and the residual scale amount is reduced. In Patent Documents 4 and 5, the peelability of the scale is improved by controlling the area ratio of the pores in the scale.
 しかし、上記した特許文献1~5では以下のような問題点がある。特許文献1、2のようにスケールを厚く形成させる方法では、歩留まりの低下を引き起こすとともに、冷却過程や保管・搬送時にスケールが剥離して錆が発生する。また、スケールが厚いと、MD法によって線材に曲げ歪を加え、さらに線材表面のブラッシングを行っても、スケールを完全に除去することは困難である。すなわち、MD法は、バッチ式の酸洗法とは異なって、スケールの全体を均一かつ安定的に除去することが困難であり、厚いスケールの形成した線材にMDを行っても、線材の表面に微細に砕けたスケールの粉が点在する場合がある。このように局部的に残存する残留スケールが多くなると、伸線等の二次加工において、潤滑不良による疵が発生したり、ダイス寿命が低下するなどの問題を引き起こしてしまう。 However, Patent Documents 1 to 5 described above have the following problems. In the method of forming the scale thick as in Patent Documents 1 and 2, the yield is lowered, and the scale is peeled off during the cooling process, storage and transportation, and rust is generated. Further, if the scale is thick, it is difficult to completely remove the scale even if bending strain is applied to the wire by the MD method and further the surface of the wire is brushed. That is, unlike the batch type pickling method, the MD method is difficult to remove the entire scale uniformly and stably, and even if MD is applied to a wire having a thick scale, the surface of the wire In some cases, finely crushed scale powder is scattered. In this way, when the residual scale remaining locally increases, problems such as wrinkles due to poor lubrication and a decrease in the die life may occur in secondary processing such as wire drawing.
 また、特許文献3などの界面粗度を低減する方法では、界面粗度を安定的に低減させることが困難であり、特許文献4、5のようにスケール中に空孔を形成させる方法についても安定的に空孔を形成させることが困難であり、これら技術はいずれもスケール残存量を安定して低減させることが難しい。 In addition, in the method of reducing the interface roughness such as Patent Document 3, it is difficult to stably reduce the interface roughness, and the method of forming voids in the scale as in Patent Documents 4 and 5 is also included. It is difficult to stably form vacancies, and it is difficult for any of these techniques to stably reduce the residual amount of scale.
 さらにこれら特許文献1~5では、冷却中に発生する圧縮応力によるスケール剥離については何ら考慮しておらず、冷却中や保管・搬送時にスケールが剥離することによって、MD前に線材に錆が発生するという問題があった。 Furthermore, these Patent Documents 1 to 5 do not consider any scale peeling due to the compressive stress generated during cooling, and the scale peels during cooling, storage, or transportation, and rust is generated on the wire before MD. There was a problem to do.
日本国特開平4-293721号公報Japanese Laid-Open Patent Publication No. 4-293721 日本国特開平11-172332号公報Japanese Laid-Open Patent Publication No. 11-172332 日本国特開平8-295992号公報Japanese Unexamined Patent Publication No. 8-295992 日本国特開平10-324923号公報Japanese Unexamined Patent Publication No. 10-324923 日本国特開2006-28619号公報Japanese Unexamined Patent Publication No. 2006-28619
 本発明は、上記事情に鑑みてなされたものであり、その目的は、熱延後の冷却中や、保管・搬送時には剥離せず、MDの際に容易に剥離するスケールが形成された線材、及びその製造方法を提供することにある。 The present invention has been made in view of the above circumstances, and the purpose thereof is a wire rod formed with a scale that does not peel off during cooling after hot rolling or during storage / transport, but easily peels off during MD, And a manufacturing method thereof.
 上記課題を達成した本発明の鋼線材は、C:0.05~1.2%(質量%の意味。以下、化学成分について同じ。)、Si:0.01~0.5%、Mn:0.1~1.5%、P:0.02%以下(0%を含まない)、S:0.02%以下(0%を含まない)、N:0.005%以下(0%を含まない)を含有し、残部が鉄及び不可避不純物である鋼線材であって、厚さ7.0μm以下のスケールを有し、且つ、該スケール中のFeO比率が30~80体積%であり、FeSiO比率が0.1体積%未満であることを特徴とする。 The steel wire rod according to the present invention that has achieved the above-mentioned problems is: C: 0.05 to 1.2% (meaning mass%, hereinafter the same for chemical components), Si: 0.01 to 0.5%, Mn: 0.1 to 1.5%, P: 0.02% or less (not including 0%), S: 0.02% or less (not including 0%), N: 0.005% or less (0% Steel wire with the balance being iron and inevitable impurities, the scale having a thickness of 7.0 μm or less, and the FeO ratio in the scale being 30 to 80% by volume, Fe 2 SiO 4 ratio is less than 0.1% by volume.
 本発明の鋼線材は、必要に応じて(a)Cr:0.3%以下(0%を含まない)及び/又はNi:0.3%以下(0%を含まない)、(b)Cu:0.2%以下(0%を含まない)、(c)Nb、V、Ti、Hf、及びZrよりなる群から選択される少なくとも1種の元素を、合計で0.1%以下(0%を含まない)、(d)Al:0.1%以下(0%を含まない)、(e)B:0.005%以下(0%を含まない)、(f)Ca:0.01%以下(0%を含まない)及び/又はMg:0.01%以下(0%を含まない)を含有していていもよい。 The steel wire rod according to the present invention includes (a) Cr: 0.3% or less (not including 0%) and / or Ni: 0.3% or less (not including 0%), (b) Cu as required. : 0.2% or less (excluding 0%), (c) at least one element selected from the group consisting of Nb, V, Ti, Hf, and Zr is 0.1% or less in total (0 %), (D) Al: 0.1% or less (not including 0%), (e) B: 0.005% or less (not including 0%), (f) Ca: 0.01 % Or less (not including 0%) and / or Mg: 0.01% or less (not including 0%) may be contained.
 また、本発明は、上記したいずれかの化学成分の鋼を、熱間圧延後、750~880℃で巻取り、酸素分率が20体積%未満である酸素と不活性ガスとの混合ガス、又は不活性ガスを噴きつけながら冷却する鋼線材の製造方法も包含する。前記不活性ガスは窒素であることが好ましい。 Further, the present invention provides a mixed gas of oxygen and an inert gas in which the steel having any one of the chemical components described above is rolled up at 750 to 880 ° C. after hot rolling and the oxygen fraction is less than 20% by volume, Or the manufacturing method of the steel wire which cools, spraying an inert gas is also included. The inert gas is preferably nitrogen.
 本発明の線材は、FeO比率が所定範囲に適切に制御(30~80体積%)され、且つ、薄い(7.0μm以下)スケールを有している。従って、熱延後の冷却中や、保管・搬送時にはスケールが剥離せず、錆の発生を防ぐことができる。さらに、本発明によれば、MD時には容易にスケールが剥離するため、簡便なデスケーリング装置で十分な剥離性が確保でき、伸線などの二次加工時に悪影響(スケールの取り残しによる線材表面疵、潤滑不良など)を及ぼすことがなく、品質の高い鋼線材を提供できる。また、スケールロスが少ないため、歩留まりを高く維持できる。 The wire rod of the present invention has a thin (7.0 μm or less) scale in which the FeO ratio is appropriately controlled (30 to 80% by volume) within a predetermined range. Therefore, the scale does not peel off during cooling after hot rolling or during storage / transport, and rusting can be prevented. Furthermore, according to the present invention, since the scale is easily peeled off at the time of MD, sufficient peelability can be ensured with a simple descaling device, and adverse effects during secondary processing such as wire drawing (the surface of the wire surface due to leftover of the scale, It is possible to provide a high quality steel wire rod without causing poor lubrication. Further, since the scale loss is small, the yield can be maintained high.
図1は、スケール中のFeO比率とMD後の残留スケール面積率との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the FeO ratio in the scale and the residual scale area ratio after MD. 図2は、スケール厚さと圧延材のスケール剥離率との関係を示すグラフである。FIG. 2 is a graph showing the relationship between the scale thickness and the scale peeling rate of the rolled material.
 線材の製造プロセス中の冷却工程においては、通常、地鉄とスケールとの熱膨張係数の差に起因して、スケール中に圧縮応力が発生する。その結果、冷却工程、又はその後に線材を保管・搬送する際に、スケールが自然に剥離し、これが錆の発生原因となっていた。また、線材は、伸線などの二次加工をする前にMDでスケールを除去することが行われており、MD後にスケールが残存すると、ダイス寿命を低下させてしまう。したがって、製造プロセス中の冷却工程や、保管・搬送時には剥離せず、MD時に容易に剥離するスケールを有する線材が望まれていた。 In the cooling process during the manufacturing process of the wire rod, compressive stress is usually generated in the scale due to the difference in thermal expansion coefficient between the base iron and the scale. As a result, when the wire material was stored and transported after the cooling step, the scale naturally peeled off, which caused rust. In addition, the scale of the wire is removed by MD before secondary processing such as wire drawing. If the scale remains after MD, the die life is reduced. Therefore, there has been a demand for a wire having a scale that does not peel off during the cooling process during the manufacturing process or during storage and transport, but easily peels off during MD.
 MD法は、線材に歪みを与えてスケール内、又は地鉄とスケールとの界面に亀裂を発生させ、スケールを剥離させる方法である。従来から、スケールの剥離性を向上させるため、スケール中のFeO比率を向上させることが行われている。これはFeOの地鉄との密着強度がFeや、Feに比べて小さいことから、スケール中のFeO比率を高めることが、MD時のスケール剥離性向上に有効であると考えられているからである。スケール中のFeO比率を高めるためには、通常、高温でスケール(仕上圧延前のデスケーリング以降に形成される二次スケール)を形成する必要があるが、高温でスケールを形成させると、スケールの厚さが増してスケールロスが多くなる上に、厚いスケールは冷却過程や保管・搬送時に剥離するという問題があった。つまり、スケールの厚さを薄くして、且つスケール中のFeO比率を確保することは極めて困難であった。 The MD method is a method in which a wire is distorted to cause cracks in the scale or at the interface between the ground iron and the scale, and the scale is peeled off. Conventionally, in order to improve the peelability of the scale, the ratio of FeO in the scale has been improved. This is because the adhesion strength of FeO to the ground iron is smaller than that of Fe 2 O 3 or Fe 3 O 4 , so increasing the FeO ratio in the scale is effective in improving the scale peelability during MD. Because it is considered. In order to increase the ratio of FeO in the scale, it is usually necessary to form a scale (secondary scale formed after descaling before finish rolling) at a high temperature. In addition to an increase in thickness and an increase in scale loss, there is a problem that a thick scale peels off during the cooling process, storage and transportation. That is, it was extremely difficult to reduce the thickness of the scale and to secure the FeO ratio in the scale.
 そこで、本発明者らが検討した結果、熱間圧延後の巻取温度を比較的低温にし、その後、酸素分率が低い酸素と不活性ガスとの混合ガス又は不活性ガスを噴きつけながら冷却すれば、スケールを薄くできるとともに、スケール中のFeO比率を所定以上確保することができることを見出した。 Therefore, as a result of the study by the present inventors, the coiling temperature after hot rolling is set to a relatively low temperature, and then cooling while injecting a mixed gas or inert gas of oxygen and inert gas having a low oxygen fraction. As a result, it was found that the scale can be thinned and the FeO ratio in the scale can be secured at a predetermined level or more.
 スケールの厚さについてより詳細に検討したところ、スケールの厚さは、7.0μm以下であれば、地鉄との密着性が良好であり、冷却途中や保管・搬送時に剥離しないことが明らかとなった。スケール厚さは好ましくは6.5μm以下であり、より好ましくは6.0μm以下(特に5.5μm以下)である。スケール厚さの下限は特に限定されないが、通常、0.9μm程度である。 When the thickness of the scale is examined in more detail, it is clear that if the thickness of the scale is 7.0 μm or less, the adhesiveness with the base iron is good and does not peel off during cooling, storage or transportation. became. The scale thickness is preferably 6.5 μm or less, more preferably 6.0 μm or less (particularly 5.5 μm or less). The lower limit of the scale thickness is not particularly limited, but is usually about 0.9 μm.
 さらに、本発明者らは、スケール中のFeO比率とMD性の関係について調べた。より詳細には、0.9%C-0.25%Si-0.86%Mn-0.007%P-0.0063%S-0.002%Nの組成の、長さ200mmの線材を用い、巻取り温度条件を変化させてスケールの組成を調整したサンプルを作製した。なお、巻取り温度は700~1000℃の範囲で変化させ、巻取り後の冷却にはN-10体積%Oガスを用いた。作製したサンプルに、MDに相当する変形歪(6%)を与えてスケールを剥離させ、後記する実施例と同様に、画像処理によって残留したスケール量(面積率)を測定した。図1は、スケール中のFeO比率と、MD後に残留したスケールの面積率との関係を示すグラフである。 Furthermore, the present inventors investigated the relationship between the FeO ratio in the scale and the MD property. More specifically, a wire with a length of 200 mm having a composition of 0.9% C-0.25% Si-0.86% Mn-0.007% P-0.0063% S-0.002% N is used. A sample in which the composition of the scale was adjusted by changing the winding temperature condition was prepared. Note that the winding temperature was changed in the range of 700 to 1000 ° C., and N 2 -10 vol% O 2 gas was used for cooling after winding. The produced sample was given a deformation strain (6%) corresponding to MD to cause the scale to peel off, and the amount of scale (area ratio) remaining by image processing was measured in the same manner as in Examples described later. FIG. 1 is a graph showing the relationship between the FeO ratio in the scale and the area ratio of the scale remaining after MD.
 図1によれば、スケール中のFeO比率が30~80体積%であれば、MD後の残留スケール量を十分に低減できることが分かる。FeO比率は、好ましくは35体積%以上、75体積%以下であり、より好ましくは40体積%以上、70体積%以下であり、さらに好ましくは45体積%以上、65体積%以下である。 FIG. 1 shows that if the FeO ratio in the scale is 30 to 80% by volume, the amount of residual scale after MD can be sufficiently reduced. The FeO ratio is preferably 35% by volume or more and 75% by volume or less, more preferably 40% by volume or more and 70% by volume or less, and further preferably 45% by volume or more and 65% by volume or less.
 また、スケール中のFeSiO(ファイアライト)比率は0.1体積%未満とする。FeSiOは、過剰に生成すると、スケールと地鉄との界面に不均一に生成し、MD時にスケールが不均一に剥離するため、MD性が悪化する。FeSiO比率は、好ましくは0.09体積%以下であり、より好ましくは0.08体積%以下、さらに好ましくは0.07体積%以下である。一方、スケール中のFeSiOは脆く剥離しやすい酸化物であり、微量であれば均一に薄く生成するため、MD性を改善させるという作用を有する。このような作用を有効に発揮させるためには、0.01体積%以上確保することが好ましく、より好ましくは0.02体積%以上であり、さらに好ましくは0.03体積%以上である。 Further, the proportion of Fe 2 SiO 4 (firelite) in the scale is less than 0.1% by volume. When Fe 2 SiO 4 is generated excessively, it is generated non-uniformly at the interface between the scale and the ground iron, and the scale is exfoliated unevenly during MD, so that the MD property deteriorates. The Fe 2 SiO 4 ratio is preferably 0.09% by volume or less, more preferably 0.08% by volume or less, and still more preferably 0.07% by volume or less. On the other hand, Fe 2 SiO 4 in the scale is an oxide that is brittle and easily peeled off, and if it is a trace amount, it is uniformly thinly formed, so that it has an effect of improving MD properties. In order to effectively exhibit such an action, it is preferable to ensure 0.01% by volume or more, more preferably 0.02% by volume or more, and further preferably 0.03% by volume or more.
 本発明におけるスケールには、FeO及びFeSiOの他、Fe、Feなどが含まれる。 The scale in the present invention includes Fe 2 O 3 , Fe 3 O 4 and the like in addition to FeO and Fe 2 SiO 4 .
 スケールの厚み及び組成を上記のようにすることによって、MD後の残留スケール量を、MD前のスケール量に対して、面積率で30%以下とすることができる。これは、鋼線材の質量に対する残存スケール量でおよそ0.05質量%以下に相当する。残留スケール量は、好ましくは25面積%以下であり、より好ましくは20面積%以下である。 By adjusting the thickness and composition of the scale as described above, the amount of residual scale after MD can be reduced to 30% or less in terms of the area ratio with respect to the amount of scale before MD. This corresponds to approximately 0.05% by mass or less in the remaining scale amount with respect to the mass of the steel wire. The residual scale amount is preferably 25 area% or less, more preferably 20 area% or less.
 上記したスケールを形成させるためには、後記する化学成分の鋼を熱間圧延後、比較的低温(750~880℃)で巻取り、その後、酸素分率の低い酸素と不活性ガスとの混合ガス又は不活性ガスを噴きつけながら冷却することが重要である。低温で巻取ることによってスケールを薄くすることができる。さらに上記したような酸素分率の低い又は酸素が含まれていないガスを噴きつけて冷却することによって、生成したFeOをFeに変化させることなく所定以上確保することができる。 In order to form the scale described above, a steel having the chemical composition described later is hot-rolled, wound at a relatively low temperature (750 to 880 ° C.), and then mixed with oxygen and an inert gas having a low oxygen fraction. It is important to cool while spraying gas or inert gas. The scale can be thinned by winding at a low temperature. Further, by blowing and cooling a gas having a low oxygen fraction or containing no oxygen as described above, the generated FeO can be secured at a predetermined level or more without changing to Fe 3 O 4 .
 熱間圧延後の巻取り温度が880℃を超えると、スケール厚さが7.0μmを超えたり、スケール中のFeO比率が80体積%を超え、MD性が悪化する。また、巻取り温度が880℃を超えると、0.1体積%を超える場合があり、FeSiO(ファイアライト)が、スケールと地鉄の界面に不均一に生成し、MD時にスケールが不均一に剥がれてMD性が悪化する。一方、巻取り温度が750℃を下回ると、FeO比率を30体積%以上確保することができず、MD性が劣化する。巻取り温度は、好ましくは770℃以上、875℃以下であり、より好ましくは790℃以上、860℃以下である。 When the coiling temperature after hot rolling exceeds 880 ° C., the scale thickness exceeds 7.0 μm, the FeO ratio in the scale exceeds 80% by volume, and the MD property deteriorates. In addition, when the coiling temperature exceeds 880 ° C., it may exceed 0.1% by volume, and Fe 2 SiO 4 (firelight) is generated unevenly at the interface between the scale and the ground iron. Unevenly peels off and MD properties deteriorate. On the other hand, if the coiling temperature is lower than 750 ° C., the FeO ratio cannot be ensured by 30% by volume or more, and the MD property deteriorates. The winding temperature is preferably 770 ° C. or higher and 875 ° C. or lower, more preferably 790 ° C. or higher and 860 ° C. or lower.
 熱間圧延後の冷却は、酸素分率が20体積%未満である酸素と不活性ガスとの混合ガス、又は不活性ガスを噴きつけながら行う。このように酸素分率が低い又は酸素が含まれていないガスを噴きつけて冷却することによって、既に生成したFeOがFe化することを防止でき、スケール中のFeO比率を確保することができる。酸素分率は、好ましくは10体積%以下であり、より好ましくは5体積%以下であり、さらに好ましくは0体積%(すなわち不活性ガスのみ)である。上記不活性ガスとしては、アルゴン、窒素などが挙げられ、好ましくは窒素である。上記したガスを噴きつけて行う冷却の冷却停止温度は特に限定されないが、例えば550~650℃程度まで上記ガスを噴きつけながら冷却し、その後は大気中で室温まで冷却しても良い。 Cooling after hot rolling is performed while spraying a mixed gas of oxygen and an inert gas having an oxygen fraction of less than 20% by volume, or an inert gas. In this way, by blowing and cooling a gas having a low oxygen fraction or containing no oxygen, it is possible to prevent the FeO that has already been produced from becoming Fe 3 O 4, and to secure the FeO ratio in the scale. Can do. The oxygen fraction is preferably 10% by volume or less, more preferably 5% by volume or less, and still more preferably 0% by volume (that is, only inert gas). Examples of the inert gas include argon, nitrogen and the like, preferably nitrogen. The cooling stop temperature of the cooling performed by spraying the gas is not particularly limited. For example, the cooling may be performed while spraying the gas up to about 550 to 650 ° C., and then cooling to room temperature in the atmosphere.
 以下、本発明の鋼線材の化学組成について説明する。 Hereinafter, the chemical composition of the steel wire rod of the present invention will be described.
C:0.05~1.2% 
 Cは、鋼の機械的性質に大きく影響する元素である。線材の強度を確保するため、C量を0.05%以上と定めた。C量は好ましくは0.15%以上であり、より好ましくは0.3%以上である。一方、C量が過剰になると、線材製造時の熱間加工性が劣化する。そこでC量を1.2%以下と定めた。C量は、好ましくは1.1%以下であり、より好ましくは1.0%以下である。
C: 0.05 to 1.2%
C is an element that greatly affects the mechanical properties of steel. In order to ensure the strength of the wire, the C content was set to 0.05% or more. The amount of C is preferably 0.15% or more, and more preferably 0.3% or more. On the other hand, when the amount of C becomes excessive, hot workability at the time of manufacturing the wire is deteriorated. Therefore, the C amount is set to 1.2% or less. The amount of C is preferably 1.1% or less, and more preferably 1.0% or less.
Si:0.01~0.5%
 Siは、鋼の脱酸のために必要な元素であり、その含有量が少なすぎると、FeSiO(ファイアライト)の生成が不十分となって、MD性が劣化する。そこで、Si量を0.01%以上と定めた。Si量は、好ましくは0.1%以上であり、より好ましくは0.2%以上である。一方、Si量が過剰になると、FeSiO(ファイアライト)の過剰生成によって、MD性が著しく劣化する他、表面脱炭層が生成するなどの問題が生じる。そこで、Si量を0.5%以下と定めた。Si量は、好ましくは0.45%以下であり、より好ましくは0.4%以下である。 
Si: 0.01 to 0.5%
Si is an element necessary for deoxidation of steel, and if its content is too small, the production of Fe 2 SiO 4 (firelight) becomes insufficient and the MD property deteriorates. Therefore, the Si amount is determined to be 0.01% or more. The amount of Si is preferably 0.1% or more, and more preferably 0.2% or more. On the other hand, when the amount of Si is excessive, problems such as excessive degradation of Fe 2 SiO 4 (firelite) cause significant deterioration of MD properties and formation of a surface decarburized layer. Therefore, the Si amount is set to 0.5% or less. The amount of Si is preferably 0.45% or less, and more preferably 0.4% or less.
Mn:0.1~1.5%
 Mnは、鋼の焼入れ性を確保し、強度を高めるのに有用な元素である。このような作用を有効に発揮させるため、Mn量を0.1%以上と定めた。Mn量は、好ましくは0.2%以上であり、より好ましくは0.4%以上である。一方、Mn量が過剰になると、熱間圧延後の冷却過程で偏析を起こし、伸線加工性等に有害な過冷組織(マルテンサイト等)が発生しやすくなる。そこでMn量を1.5%以下と定めた。Mn量は、好ましくは1.4%以下であり、より好ましくは1.2%以下である。
Mn: 0.1 to 1.5%
Mn is an element useful for securing the hardenability of steel and increasing the strength. In order to effectively exhibit such an action, the amount of Mn was determined to be 0.1% or more. The amount of Mn is preferably 0.2% or more, and more preferably 0.4% or more. On the other hand, when the amount of Mn is excessive, segregation occurs in the cooling process after hot rolling, and a supercooled structure (such as martensite) that is harmful to wire drawing workability is likely to occur. Therefore, the amount of Mn is set to 1.5% or less. The amount of Mn is preferably 1.4% or less, more preferably 1.2% or less.
P:0.02%以下(0%を含まない) 
 Pは、鋼の靭性及び延性を劣化させる元素である。伸線工程等における断線を防止するため、P量を0.02%以下と定めた。P量は好ましくは0.01%以下であり、より好ましくは0.005%以下である。P量の下限は特に限定されないが、通常0.001%程度である。
P: 0.02% or less (excluding 0%)
P is an element that deteriorates the toughness and ductility of steel. In order to prevent disconnection in the wire drawing process or the like, the P content is set to 0.02% or less. The amount of P is preferably 0.01% or less, and more preferably 0.005% or less. The lower limit of the amount of P is not particularly limited, but is usually about 0.001%.
S:0.02%以下(0%を含まない) 
 Sは、Pと同様に、鋼の靭性及び延性を劣化させる元素である。伸線やその後の撚り工程における断線を防止するため、S量を0.02%以下と定めた。S量は、好ましくは0.01%以下であり、より好ましくは0.005%以下である。S量の下限は特に限定されないが、通常、0.001%程度である。
S: 0.02% or less (excluding 0%)
S, like P, is an element that degrades the toughness and ductility of steel. In order to prevent disconnection in the wire drawing or the subsequent twisting process, the S content is set to 0.02% or less. The amount of S is preferably 0.01% or less, and more preferably 0.005% or less. The lower limit of the amount of S is not particularly limited, but is usually about 0.001%.
N:0.005%以下(0%を含まない) 
 Nは、含有量が過剰になると、鋼の延性を劣化させる元素である。そこで、N量を0.005%以下と定めた。N量は、好ましくは0.004%以下であり、より好ましくは0.003%以下である。N量の下限は特に限定されないが、通常、0.001%程度である。
N: 0.005% or less (excluding 0%)
N is an element that deteriorates the ductility of steel when the content is excessive. Therefore, the N amount is set to 0.005% or less. The amount of N is preferably 0.004% or less, and more preferably 0.003% or less. The lower limit of the N amount is not particularly limited, but is usually about 0.001%.
 本発明の鋼線材の基本成分は上記の通りであり、残部は実質的に鉄である。但し、原料、資材、製造設備等の状況によって持ち込まれる不可避不純物が鋼線材中に含まれることは当然に許容される。さらに、本発明の作用効果を阻害しない範囲で、必要に応じて下記の元素を添加することも推奨される。 The basic components of the steel wire rod of the present invention are as described above, and the balance is substantially iron. However, it is naturally allowed that the inevitable impurities brought in depending on the situation of raw materials, materials, manufacturing facilities, etc. are included in the steel wire. Furthermore, it is also recommended to add the following elements as necessary within a range not impeding the effects of the present invention.
Cr:0.3%以下(0%を含まない)及び/又はNi:0.3%以下(0%を含まない)
 Cr及びNiは、いずれも鋼の焼入れ性を高めて、強度の向上に寄与する元素である。このような作用を有効に発揮させるためCr量は0.05%以上であることが好ましく、Ni量は0.03%以上であることが好ましい。より好ましいCr量、Ni量はいずれも0.10%以上であり、さらに好ましくはいずれも0.12%以上である。一方、Cr量及びNi量が過剰になると、マルテンサイト組織が発生しやすくなる上、スケールの地鉄との密着性が高まり過ぎて、MD時のスケールの剥離性が劣化する。そこで、Cr量、Ni量はいずれも0.3%以下であるのが好ましい。より好ましいCr量、Ni量はいずれも0.25%以下であり、さらに好ましくはいずれも0.20%以下である。 
Cr: 0.3% or less (not including 0%) and / or Ni: 0.3% or less (not including 0%)
Cr and Ni are both elements that increase the hardenability of steel and contribute to the improvement of strength. In order to effectively exhibit such an action, the Cr content is preferably 0.05% or more, and the Ni content is preferably 0.03% or more. More preferably, the Cr amount and the Ni amount are both 0.10% or more, and more preferably both are 0.12% or more. On the other hand, when the amount of Cr and the amount of Ni are excessive, a martensite structure is likely to be generated, and the adhesion of the scale to the ground iron is excessively increased, so that the peelability of the scale during MD deteriorates. Therefore, it is preferable that the Cr content and the Ni content are both 0.3% or less. More preferably, the Cr content and the Ni content are both 0.25% or less, more preferably 0.20% or less.
Cu:0.2%以下(0%を含まない) 
 Cuは、スケール剥離を促進する作用を有する元素である。このような作用を有効に発揮させるため、Cu量は0.01%以上であることが好ましい。Cu量は、より好ましくは0.05%以上であり、さらに好ましくは0.10%以上である。一方、Cu量が過剰になると、スケールの剥離が過剰に促進され、圧延中にスケールが剥離してその剥離面に薄くて密着性の高い別のスケールが発生する他、線材コイルを保管・搬送する際に錆が発生する。そこで、Cu量は0.2%以下であることが好ましい。Cu量は、より好ましくは0.17%以下であり、さらに好ましくは0.15%以下である。
Cu: 0.2% or less (excluding 0%)
Cu is an element having an action of promoting scale peeling. In order to effectively exhibit such an action, the amount of Cu is preferably 0.01% or more. The amount of Cu is more preferably 0.05% or more, and further preferably 0.10% or more. On the other hand, when the amount of Cu becomes excessive, peeling of the scale is excessively promoted, the scale is peeled off during rolling, and another thin scale with high adhesion is generated on the peeled surface, and the wire coil is stored and transported. Rust is generated when Therefore, the amount of Cu is preferably 0.2% or less. The amount of Cu is more preferably 0.17% or less, and still more preferably 0.15% or less.
Nb、V、Ti、Hf、及びZrよりなる群から選択される少なくとも1種の元素を、合計で0.1%以下(0%を含まない)
 Nb、V、Ti、Hf、及びZrは、いずれも微細な炭窒化物を形成して、高強度化に寄与する元素である。このような作用を有効に発揮させるため、Nb量、V量、Ti量、Hf量、及びZr量はいずれも、0.003%以上であることが好ましい。Nb量、V量、Ti量、Hf量、及びZr量はいずれも、より好ましくは0.007%以上であり、さらに好ましくは0.01%以上である。一方、これらの元素が過剰なると、延性が劣化するため、これらの合計量は0.1%以下であることが好ましい。これら元素の合計量は、より好ましくは0.08%以下であり、さらに好ましくは0.06%以下である。
A total of at least one element selected from the group consisting of Nb, V, Ti, Hf, and Zr is 0.1% or less (excluding 0%)
Nb, V, Ti, Hf, and Zr are all elements that form fine carbonitrides and contribute to high strength. In order to effectively exhibit such an action, it is preferable that the Nb amount, the V amount, the Ti amount, the Hf amount, and the Zr amount are all 0.003% or more. The Nb amount, V amount, Ti amount, Hf amount, and Zr amount are all preferably 0.007% or more, and more preferably 0.01% or more. On the other hand, if these elements are excessive, the ductility deteriorates, so the total amount of these elements is preferably 0.1% or less. The total amount of these elements is more preferably 0.08% or less, still more preferably 0.06% or less.
Al:0.1%以下(0%を含まない)
 Alは、脱酸剤として有効な元素である。このような作用を有効に発揮させるため、Al量は0.001%以上であることが好ましい。Al量は、より好ましくは0.005%以上であり、さらに好ましくは0.01%以上である。一方、Al量が過剰になると、Al等の酸化物系介在物が多くなり、伸線加工時などに断線が多発する。そこで、Al量は0.1%以下であることが好ましい。Al量は、より好ましくは0.08%以下であり、さらに好ましくは0.06%以下である。
Al: 0.1% or less (excluding 0%)
Al is an element effective as a deoxidizer. In order to effectively exhibit such an action, the Al content is preferably 0.001% or more. The amount of Al is more preferably 0.005% or more, and still more preferably 0.01% or more. On the other hand, when the amount of Al becomes excessive, oxide inclusions such as Al 2 O 3 increase, and disconnection frequently occurs during wire drawing. Therefore, the Al content is preferably 0.1% or less. The amount of Al is more preferably 0.08% or less, and still more preferably 0.06% or less.
B:0.005%以下(0%を含まない) 
 Bは、鋼中に固溶するフリーなB(化合物を形成しないB)として存在することにより、フェライトの生成を抑制する元素であり、特に縦割れの抑制が必要な高強度線材で有効な元素である。このような作用を有効に発揮させるため、B量は0.0001%以上であることが好ましい。B量は、より好ましくは0.0005%以上であり、さらに好ましくは0.0010%以上である。一方、B量が過剰になると、延性が劣化する。そこでB量は、0.005%以下であることが好ましく、より好ましくは0.0040%以下であり、さらに好ましくは0.0035%以下である。
B: 0.005% or less (excluding 0%)
B is an element that suppresses the formation of ferrite by being present as free B that dissolves in steel (B that does not form a compound), and is particularly effective for high-strength wires that require suppression of longitudinal cracks. It is. In order to effectively exhibit such an action, the B content is preferably 0.0001% or more. The amount of B is more preferably 0.0005% or more, and further preferably 0.0010% or more. On the other hand, when the amount of B becomes excessive, ductility deteriorates. Therefore, the B content is preferably 0.005% or less, more preferably 0.0040% or less, and still more preferably 0.0035% or less.
Ca:0.01%以下(0%を含まない)及び/又はMg:0.01%以下(0%を含まない)
 CaとMgは、いずれも介在物の形態を制御して、延性を高める作用を有する元素である。また、Caは鋼材の耐食性を高める作用も有する。このような作用を有効に発揮させるため、Ca量及びMg量はいずれも0.001%以上であることが好ましい。Ca及びMgは、いずれも0.002%以上であることがより好ましく、さらに好ましくは0.003%以上である。一方、これらの元素が過剰になると、加工性が劣化する。そこで、Ca量、Mg量は、いずれも0.01%以下であることが好ましい。Ca量、Mg量は、いずれも0.008%以下であることがより好ましく、0.005%以下であることがさらに好ましい。
Ca: 0.01% or less (not including 0%) and / or Mg: 0.01% or less (not including 0%)
Ca and Mg are both elements that have the effect of increasing the ductility by controlling the form of inclusions. Moreover, Ca also has the effect | action which improves the corrosion resistance of steel materials. In order to effectively exhibit such an action, both the Ca content and the Mg content are preferably 0.001% or more. Ca and Mg are both preferably 0.002% or more, and more preferably 0.003% or more. On the other hand, when these elements are excessive, workability deteriorates. Therefore, both the Ca content and the Mg content are preferably 0.01% or less. The Ca content and the Mg content are both preferably 0.008% or less, and more preferably 0.005% or less.
 以下、実施例を挙げて本発明をより具体的に説明する。本発明は以下の実施例によって制限を受けるものではなく、前記、後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。 Hereinafter, the present invention will be described more specifically with reference to examples. The present invention is not limited by the following examples, and can of course be implemented with appropriate modifications within a range that can be adapted to the above-described gist. Included in the range.
 表1、2に示す化学組成の鋼を、通常の溶製法に従って溶製した後、150mm×150mmのビレットを作製し、加熱炉内で加熱した。その後、加熱炉内で生成した一次スケールを高圧水を用いてデスケーリングし、表3に示した条件(熱間圧延後の巻取り温度、及び冷却に用いたガス)で熱間圧延を行って、φ5.5mmの鋼線材を得た。なお、表3に示したガスを用いた冷却はいずれも600℃程度まで行い、その後は大気中で放冷した。 Steels having chemical compositions shown in Tables 1 and 2 were melted according to a normal melting method, and then billets of 150 mm × 150 mm were produced and heated in a heating furnace. Thereafter, the primary scale generated in the heating furnace is descaled using high-pressure water, and hot rolling is performed under the conditions shown in Table 3 (winding temperature after hot rolling and gas used for cooling). A steel wire rod with a diameter of 5.5 mm was obtained. In addition, all the cooling using the gas shown in Table 3 was performed to about 600 degreeC, and it stood to cool in air | atmosphere after that.
 得られた鋼線材を、以下の方法で測定した。 The obtained steel wire was measured by the following method.
(1)スケールの厚みの測定
 コイルの前端、中央部、後端のそれぞれから、長さ10mmのサンプルを採取し、各々のサンプルから任意の3箇所のスケール断面を走査型電子顕微鏡(SEM)で観察した(観察倍率:5000倍)。各測定箇所について、鋼線材周方向長さ100μmで10点スケール厚さを測定して、そのスケール平均厚さを求め、3箇所の平均値を各サンプルのスケール厚さとした。さらに各サンプル(コイル前端、中央部、後端)の平均値を算出して、各試験No.のスケール厚さとした。
(1) Measurement of scale thickness Samples with a length of 10 mm were taken from each of the front end, center portion, and rear end of the coil, and arbitrary three scale sections were taken from each sample with a scanning electron microscope (SEM). Observed (observation magnification: 5000 times). About each measurement location, 10-point scale thickness was measured by the steel wire material circumferential direction length of 100 micrometers, the scale average thickness was calculated | required, and the average value of 3 locations was made into the scale thickness of each sample. Furthermore, the average value of each sample (coil front end, center part, rear end) was calculated, and each test No. And the scale thickness.
(2)スケールの組成の測定 
 上記(1)と同様に、コイルの前端、中央部、後端のそれぞれから、長さ10mmのサンプルを採取し、各々のサンプルから任意の3箇所のスケール断面について、X線回折を行い、FeO、FeSiO、Fe、及びFeのピーク強度比から、FeO及びFeSiOの比率(体積%)を求めた。3箇所の平均値を、各サンプルのFeO比率及びFeSiO比率とした。さらに各サンプル(コイル前端、中央部、後端)の平均値を算出して、各試験No.のFeO比率及びFeSiO比率とした。
(2) Measurement of scale composition
Similarly to the above (1), samples having a length of 10 mm are taken from the front end, the central portion, and the rear end of the coil, and X-ray diffraction is performed on any three scale sections from each sample, and FeO From the peak intensity ratio of Fe 2 SiO 4 , Fe 2 O 3 , and Fe 3 O 4 , the ratio (volume%) of FeO and Fe 2 SiO 4 was determined. The average value of three, and the FeO ratio and Fe 2 SiO 4 ratio of each sample. Furthermore, the average value of each sample (coil front end, center part, rear end) was calculated, and each test No. FeO ratio and Fe 2 SiO 4 ratio.
(3)圧延材のスケール剥離性の測定 
 コイルの前端、中央部、後端のそれぞれから、長さ200mmのサンプルを採取し、サンプルに風を吹きかけて鋼線材表面のスケールを吹き飛ばした。デジタルカメラによって、風を吹きかける前後の外観を写真撮影し、画像解析で両者を比較することによって、剥離したスケールの面積率を求めた。
(3) Measurement of scale peelability of rolled material
A sample having a length of 200 mm was taken from each of the front end, center portion, and rear end of the coil, and the sample was blown to blow off the scale on the surface of the steel wire. The appearance of the wind before and after blowing was photographed with a digital camera, and the area ratio of the peeled scale was determined by comparing the two with image analysis.
(4)MD性の測定 
 コイルの前端、中央部、後端のそれぞれから、長さ250mmのサンプルを採取し、引張試験機で6%の変形歪を与えて、チャックから取り出した後、サンプルに風を吹きかけて鋼線材表面のスケールを吹き飛ばした。デジタルカメラによって、歪付与前後の外観を写真撮影し、画像解析で両者を比較することによって残留スケール面積率を算出した。
(4) MD measurement
Samples with a length of 250 mm were taken from the front end, center, and rear end of the coil, subjected to 6% deformation strain with a tensile tester, taken out from the chuck, and then air blown over the sample to surface the steel wire Blowed off the scale. The external appearance before and after applying the distortion was photographed with a digital camera, and the residual scale area ratio was calculated by comparing the two by image analysis.
 結果を表4、5、及び図2に示す。  The results are shown in Tables 4 and 5 and FIG.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 表4、5のNo.1、2、4~28、30~32、34、35、37~39、41、42、44、45、48は、本発明の要件を満たす例であり、スケール厚さ及びスケールの組成が適切であるため、MD性が良好である。 No. in Tables 4 and 5. 1, 2, 4 to 28, 30 to 32, 34, 35, 37 to 39, 41, 42, 44, 45, 48 are examples that satisfy the requirements of the present invention, and the scale thickness and scale composition are appropriate. Therefore, MD property is favorable.
 一方、No.3、29、33、36、40、43、46、47、49は、製造条件が本発明の要件を満たさないため、MD性が劣化した。
 No.3、29、36、40、43、46、47は、熱間圧延後、大気を噴きつけて冷却した例であり、冷却中にFeOがFeとなったことによって、FeO分率が確保できず、MD性が劣化した。No.33は、熱間圧延後の巻取り温度が高かった例であり、スケール厚さが厚くなるとともに、FeO比率が大きくなりすぎ、さらにFeSiO比率も高かったため、MD性が劣化した。No.49は、熱間圧延後の巻取り温度が低かった例であり、FeO比率が確保できず、MD性が劣化した。No.50~54は、熱間圧延後の巻取り温度がさらに高かった例であり、スケール厚さが7.0μmを超え、圧延材のスケール剥離率が上昇し、錆が発生していた。すなわち、No.50~54は熱間圧延後の冷却中や保管・搬送時にスケールが脱落して、錆が発生するものと考えられる。
On the other hand, no. 3, 29, 33, 36, 40, 43, 46, 47, and 49 have deteriorated MD properties because the manufacturing conditions do not satisfy the requirements of the present invention.
No. 3, 29, 36, 40, 43, 46, and 47 are examples in which air was blown and cooled after hot rolling, and FeO became Fe 3 O 4 during cooling, so that the FeO fraction was It could not be secured, and the MD property deteriorated. No. No. 33 is an example in which the coiling temperature after hot rolling was high. The scale thickness was increased, the FeO ratio was too large, and the Fe 2 SiO 4 ratio was also high, so the MD property deteriorated. No. No. 49 is an example in which the coiling temperature after hot rolling was low, the FeO ratio could not be ensured, and the MD property deteriorated. No. Nos. 50 to 54 are examples in which the coiling temperature after hot rolling was higher, the scale thickness exceeded 7.0 μm, the scale peeling rate of the rolled material increased, and rust was generated. That is, no. Nos. 50 to 54 are considered to cause rust due to dropping of the scale during cooling after hot rolling or during storage and transportation.
 また、図2にスケール厚さと圧延材のスケール剥離率との関係を示す。スケール厚さが7.0μmを超えて厚くなると、圧延材のスケール剥離率が大きくなることが分かる。 FIG. 2 shows the relationship between the scale thickness and the scale peeling rate of the rolled material. It can be seen that when the scale thickness exceeds 7.0 μm, the scale peeling rate of the rolled material increases.
 本発明を詳細にまた特定の実施態様を参照して説明したが、本発明の精神と範囲を逸脱することなく様々な変更や修正を加えることができることは当業者にとって明らかである。
 本出願は、2011年1月7日出願の日本特許出願(特願2011-002014に基づくものであり、その内容はここに参照として取り込まれる。
Although the present invention has been described in detail and with reference to specific embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the invention.
This application is based on a Japanese patent application filed on Jan. 7, 2011 (Japanese Patent Application No. 2011-002014), the contents of which are incorporated herein by reference.
 本発明の鋼線材は、熱間圧延後(伸線加工前)のメカニカルデスケーリング性に優れているため、自動車のタイヤコード(スチールコード、ビードワイヤ)やホースワイヤの他、半導体用シリコンなどの切断に用いられるソーワイヤなどの素材として有用である。 Since the steel wire rod of the present invention is excellent in mechanical descaling after hot rolling (before wire drawing), it cuts automobile tire cords (steel cords, bead wires), hose wires, semiconductor silicon, etc. It is useful as a material such as saw wire used in

Claims (4)

  1.  C :0.05~1.2%(質量%の意味。以下、化学成分について同じ。)、 
     Si:0.01~0.5%、 
     Mn:0.1~1.5%、 
     P :0.02%以下(0%を含まない)、 
     S :0.02%以下(0%を含まない)、 
     N :0.005%以下(0%を含まない)を含有し、残部が鉄及び不可避不純物である鋼線材であって、 
     厚さ7.0μm以下のスケールを有し、且つ、該スケール中のFeO比率が30~80体積%であり、FeSiO比率が0.1体積%未満であることを特徴とする鋼線材。
    C: 0.05 to 1.2% (meaning mass%, hereinafter the same for chemical components),
    Si: 0.01 to 0.5%,
    Mn: 0.1 to 1.5%
    P: 0.02% or less (excluding 0%),
    S: 0.02% or less (excluding 0%),
    N: a steel wire containing 0.005% or less (excluding 0%), the balance being iron and inevitable impurities,
    A steel wire having a scale with a thickness of 7.0 μm or less, an FeO ratio in the scale of 30 to 80% by volume, and an Fe 2 SiO 4 ratio of less than 0.1% by volume .
  2.  更に、下記(1)~(6)の少なくとも1つを含有する請求項1に記載の鋼線材。
    (1)Cr:0.3%以下(0%を含まない)及び/又はNi:0.3%以下(0%を含まない)
    (2)Cu:0.2%以下(0%を含まない)
    (3)Nb、V、Ti、Hf、及びZrよりなる群から選択される少なくとも1種の元素を、合計で0.1%以下(0%を含まない)
    (4)Al:0.1%以下(0%を含まない)
    (5)B:0.005%以下(0%を含まない)
    (6)Ca:0.01%以下(0%を含まない)及び/又はMg:0.01%以下(0%を含まない)
    The steel wire according to claim 1, further comprising at least one of the following (1) to (6).
    (1) Cr: 0.3% or less (not including 0%) and / or Ni: 0.3% or less (not including 0%)
    (2) Cu: 0.2% or less (excluding 0%)
    (3) A total of at least one element selected from the group consisting of Nb, V, Ti, Hf, and Zr is 0.1% or less (excluding 0%)
    (4) Al: 0.1% or less (excluding 0%)
    (5) B: 0.005% or less (excluding 0%)
    (6) Ca: 0.01% or less (not including 0%) and / or Mg: 0.01% or less (not including 0%)
  3.  請求項1または2に記載の化学成分の鋼を、 
     熱間圧延後、750~880℃で巻取り、 
     酸素分率が20体積%未満である酸素と不活性ガスとの混合ガス、又は不活性ガスを噴きつけながら冷却することを特徴とする鋼線材の製造方法。
    The chemical component steel according to claim 1 or 2,
    After hot rolling, it is wound at 750-880 ° C,
    A method for producing a steel wire material, characterized by cooling while spraying a mixed gas of oxygen and an inert gas having an oxygen fraction of less than 20% by volume, or an inert gas.
  4.  前記不活性ガスが窒素である請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the inert gas is nitrogen.
PCT/JP2012/050155 2011-01-07 2012-01-06 Steel wire material and method for producing same WO2012093715A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
KR1020137017580A KR20130087613A (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same
KR1020147014715A KR20140076642A (en) 2011-01-07 2012-01-06 Method for producing steel wire material
CN201280004664.4A CN103314125B (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same
US13/995,739 US20130272914A1 (en) 2011-01-07 2012-01-06 Steel wire material and method for manufacturing same
EP12732406.9A EP2662468A4 (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-002014 2011-01-07
JP2011002014A JP4980471B1 (en) 2011-01-07 2011-01-07 Steel wire rod and manufacturing method thereof

Publications (1)

Publication Number Publication Date
WO2012093715A1 true WO2012093715A1 (en) 2012-07-12

Family

ID=46457565

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/050155 WO2012093715A1 (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same

Country Status (6)

Country Link
US (1) US20130272914A1 (en)
EP (1) EP2662468A4 (en)
JP (1) JP4980471B1 (en)
KR (2) KR20130087613A (en)
CN (1) CN103314125B (en)
WO (1) WO2012093715A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194038A1 (en) * 2017-04-17 2018-10-25 株式会社ブリヂストン Cable bead and airplane tire using same

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088063B (en) * 2014-05-19 2017-04-26 上海梅山钢铁股份有限公司 Work-hardening high-strength steel and manufacturing method thereof
CN105316573B (en) * 2014-06-23 2017-07-21 鞍钢股份有限公司 A kind of 80 grades of Wire Rod Steel for Curtain String Purpose and its production method suitable for Pickling Descaling
EP3205731B8 (en) * 2014-10-08 2020-03-11 Nippon Steel Corporation Heat-treated steel product having high strength and excellent chemical conversion processability, and manufacturing method for same
US10563281B2 (en) 2015-04-08 2020-02-18 Nippon Steel Corporation Heat-treated steel sheet member and method for producing the same
MX2017012873A (en) 2015-04-08 2018-01-15 Nippon Steel & Sumitomo Metal Corp Heat-treated steel sheet member, and production method therefor.
KR102021687B1 (en) 2015-04-08 2019-09-16 닛폰세이테츠 가부시키가이샤 Hot Rolled Steel Sheets For Heat Treatment
KR101676201B1 (en) * 2015-12-07 2016-11-15 주식회사 포스코 High carbon steel wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof
JP6757194B2 (en) * 2016-07-11 2020-09-16 日本パーカライジング株式会社 Pre-heat treatment carbon steel with excellent scale removal properties, post-heat treatment carbon steel and their manufacturing methods, scale removal methods and easily descalable film forming agents
WO2018198776A1 (en) 2017-04-28 2018-11-01 株式会社ブリヂストン Steel cord for reinforcing rubber article, method for manufacturing same, and tire
WO2020065372A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
DK3674425T3 (en) * 2018-12-31 2022-05-23 Baker Hughes Energy Tech Uk Limited Stålwire
CN110560495A (en) * 2019-09-17 2019-12-13 安徽工业大学 Laboratory scale removal experiment platform and experiment method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293721A (en) 1991-03-22 1992-10-19 Nippon Steel Corp Production of soft steel wire rod excellent in mechanical descaling property
JPH07331384A (en) * 1994-06-03 1995-12-19 Nippon Steel Corp Wire rod excellent in mechanical descaling property and rod drawability
JPH08295992A (en) 1995-04-21 1996-11-12 Nippon Steel Corp Wire rod to be descaled
JPH10324923A (en) 1997-05-27 1998-12-08 Nippon Steel Corp Wire rod for steel wire
JPH11172332A (en) 1997-12-15 1999-06-29 Sumitomo Metal Ind Ltd High carbon steel wire rod
JP2000246322A (en) * 1999-02-25 2000-09-12 Kobe Steel Ltd Rolled wire rod superior in acid pickling property, and its manufacturing method
JP2001032042A (en) * 1999-07-19 2001-02-06 Kobe Steel Ltd Steel wire rod excellent in scale peelability at the time of mechanical descaling
JP2001071019A (en) * 1999-09-09 2001-03-21 Nkk Corp Production of high carbon hot rolled steel plate excellent in scale adhesibility
JP2005281793A (en) * 2004-03-30 2005-10-13 Sumitomo Metal Ind Ltd Method for producing wire rod for steel wire, and wire rod for steel wire
JP2006028619A (en) 2004-07-21 2006-02-02 Sumitomo Metal Ind Ltd High strength low alloy steel wire rod
JP2007070728A (en) * 2005-08-12 2007-03-22 Kobe Steel Ltd Steel wire rod excellent in mechanical de-scaling property, and producing method therefor
JP2008049391A (en) * 2006-08-28 2008-03-06 Kobe Steel Ltd Method of manufacturing steel excellent in scale strippability
JP2008069376A (en) * 2006-09-12 2008-03-27 Kobe Steel Ltd Steel wire rod excellent in wire drawability, and producing method therefor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1921172B1 (en) * 2005-08-12 2012-11-28 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Method for production of steel material having excellent scale detachment property, and steel wire material having excellent scale detachment property

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04293721A (en) 1991-03-22 1992-10-19 Nippon Steel Corp Production of soft steel wire rod excellent in mechanical descaling property
JPH07331384A (en) * 1994-06-03 1995-12-19 Nippon Steel Corp Wire rod excellent in mechanical descaling property and rod drawability
JPH08295992A (en) 1995-04-21 1996-11-12 Nippon Steel Corp Wire rod to be descaled
JPH10324923A (en) 1997-05-27 1998-12-08 Nippon Steel Corp Wire rod for steel wire
JPH11172332A (en) 1997-12-15 1999-06-29 Sumitomo Metal Ind Ltd High carbon steel wire rod
JP2000246322A (en) * 1999-02-25 2000-09-12 Kobe Steel Ltd Rolled wire rod superior in acid pickling property, and its manufacturing method
JP2001032042A (en) * 1999-07-19 2001-02-06 Kobe Steel Ltd Steel wire rod excellent in scale peelability at the time of mechanical descaling
JP2001071019A (en) * 1999-09-09 2001-03-21 Nkk Corp Production of high carbon hot rolled steel plate excellent in scale adhesibility
JP2005281793A (en) * 2004-03-30 2005-10-13 Sumitomo Metal Ind Ltd Method for producing wire rod for steel wire, and wire rod for steel wire
JP2006028619A (en) 2004-07-21 2006-02-02 Sumitomo Metal Ind Ltd High strength low alloy steel wire rod
JP2007070728A (en) * 2005-08-12 2007-03-22 Kobe Steel Ltd Steel wire rod excellent in mechanical de-scaling property, and producing method therefor
JP2008049391A (en) * 2006-08-28 2008-03-06 Kobe Steel Ltd Method of manufacturing steel excellent in scale strippability
JP2008069376A (en) * 2006-09-12 2008-03-27 Kobe Steel Ltd Steel wire rod excellent in wire drawability, and producing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2662468A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018194038A1 (en) * 2017-04-17 2018-10-25 株式会社ブリヂストン Cable bead and airplane tire using same

Also Published As

Publication number Publication date
US20130272914A1 (en) 2013-10-17
EP2662468A4 (en) 2015-05-27
KR20140076642A (en) 2014-06-20
EP2662468A1 (en) 2013-11-13
JP2012144756A (en) 2012-08-02
JP4980471B1 (en) 2012-07-18
CN103314125B (en) 2015-05-27
KR20130087613A (en) 2013-08-06
CN103314125A (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP4980471B1 (en) Steel wire rod and manufacturing method thereof
JP4958998B1 (en) Steel wire rod and manufacturing method thereof
KR101103233B1 (en) Steel wire rod
JP5179331B2 (en) Hot rolled wire rod excellent in wire drawing workability and mechanical descaling property and manufacturing method thereof
KR101699194B1 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
TWI665313B (en) Non-oriented electromagnetic steel plate and manufacturing method thereof
EP1921172B1 (en) Method for production of steel material having excellent scale detachment property, and steel wire material having excellent scale detachment property
JP6127440B2 (en) Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same
WO2011055746A1 (en) High-carbon steel wire material with excellent processability
KR101870063B1 (en) Filament for high strength steel cord
EP3366802A1 (en) Steel wire for wire drawing
JP5297849B2 (en) Method for producing high carbon steel wire rod excellent in wire drawability
CN112840044A (en) Hot-rolled wire
JP2007070728A (en) Steel wire rod excellent in mechanical de-scaling property, and producing method therefor
JP4891700B2 (en) Steel wire rod for mechanical descaling
JP4971720B2 (en) Steel wire rod for mechanical descaling

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12732406

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13995739

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012732406

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20137017580

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1301003787

Country of ref document: TH

NENP Non-entry into the national phase

Ref country code: DE