KR20140076642A - Method for producing steel wire material - Google Patents

Method for producing steel wire material Download PDF

Info

Publication number
KR20140076642A
KR20140076642A KR1020147014715A KR20147014715A KR20140076642A KR 20140076642 A KR20140076642 A KR 20140076642A KR 1020147014715 A KR1020147014715 A KR 1020147014715A KR 20147014715 A KR20147014715 A KR 20147014715A KR 20140076642 A KR20140076642 A KR 20140076642A
Authority
KR
South Korea
Prior art keywords
scale
less
steel wire
amount
wire rod
Prior art date
Application number
KR1020147014715A
Other languages
Korean (ko)
Inventor
미카코 다케다
쇼헤이 나카쿠보
가즈히코 기리하라
마사유키 엔도
Original Assignee
가부시키가이샤 고베 세이코쇼
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 가부시키가이샤 고베 세이코쇼 filed Critical 가부시키가이샤 고베 세이코쇼
Publication of KR20140076642A publication Critical patent/KR20140076642A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/74Methods of treatment in inert gas, controlled atmosphere, vacuum or pulverulent material
    • C21D1/76Adjusting the composition of the atmosphere
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/561Continuous furnaces for strip or wire with a controlled atmosphere or vacuum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/562Details
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/20Ferrous alloys, e.g. steel alloys containing chromium with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/24Ferrous alloys, e.g. steel alloys containing chromium with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/066Reinforcing cords for rubber or plastic articles the wires being made from special alloy or special steel composition
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2205/00Rope or cable materials
    • D07B2205/30Inorganic materials
    • D07B2205/3021Metals
    • D07B2205/3025Steel

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)

Abstract

본 발명의 강선재는, C: 0.05 내지 1.2%(질량%의 의미임. 이하, 화학 성분에 대하여 동일함), Si: 0.01 내지 0.5%, Mn: 0.1 내지 1.5%, P: 0.02% 이하(0%를 포함하지 않음), S: 0.02% 이하(0%를 포함하지 않음), N: 0.005% 이하(0%를 포함하지 않음)를 함유하고, 잔량부가 철 및 불가피 불순물인 강선재로, 두께 7.0㎛ 이하의 스케일을 갖고, 또한, 상기 스케일 중의 FeO 비율이 30 내지 80체적%이며, Fe2SiO4 비율이 0.1 체적% 미만이고, 열연 후의 냉각 중이나, 보관 및 반송 시에는 박리되지 않으며, MD 시에 용이하게 박리되는 스케일이 형성된다.The steel wire rod according to the present invention is characterized in that the steel wire rod has a composition of C: 0.05 to 1.2% (in mass%, the same applies to chemical components), Si: 0.01 to 0.5%, Mn: 0.1 to 1.5% %), S: not more than 0.02% (not including 0%), N: not more than 0.005% (not including 0%) and the balance being iron and inevitable impurities, And a Fe 2 SiO 4 ratio of less than 0.1% by volume, and is not peeled off during cooling after hot rolling, during storage and transportation, and has an MD A scale which is easily peeled off is formed.

Description

강선재의 제조 방법{METHOD FOR PRODUCING STEEL WIRE MATERIAL}METHOD FOR PRODUCING STEEL WIRE MATERIAL [0001]

본 발명은 강선재 및 그 제조 방법에 관한 것이며, 특히 열간 압연 후의 냉각 중이나 보관 및 반송 시에는 박리되지 않고, 메커니컬 디스케일링에 의해 용이하게 제거할 수 있는 얇은 스케일이 형성된 열간 압연 강선재(이하, 간단히 「선재」라고 칭함)과, 그 제조 방법에 관한 것이다.The present invention relates to a steel wire rod and a method of manufacturing the same, and particularly relates to a steel wire rod and a method for manufacturing the same, Simply referred to as " wire rod "), and a manufacturing method thereof.

열간 압연에 의해 제조된 선재의 표면에는, 통상, 스케일이 형성되어 있으며, 선재에 신선 등의 2차 가공을 실시하기 전에, 이 스케일을 제거할 필요가 있다. 이러한 2차 가공 전의 스케일 제거 방법으로서, 종래는 배치식의 산세법이 사용되고 있었으나, 최근은 공해 문제나 비용 저감의 관점에서, 메커니컬 디스케일링(이하, MD라고 칭함)법이 사용되고 있다. 그로 인해, 선재에는 MD성이 양호한 스케일이 형성되어 있을 것이 요구되고 있다.Scales are usually formed on the surface of the wire rod produced by hot rolling and it is necessary to remove the scale before the wire rod is subjected to secondary working such as drawing. Conventionally, a batch-type pickling method has been used as a scale removing method before the secondary processing. Recently, mechanical descaling (hereinafter referred to as MD) method is used from the viewpoint of pollution problem and cost reduction. Therefore, it is required that a wire having good MD property is formed on the wire.

MD성이 양호한 스케일이 형성된 선재의 제조 방법으로서, 예를 들어 특허문헌 1 내지 5를 들 수 있다. 특허문헌 1, 2에서는, FeO 비율이 높고, 또한, 두꺼운 스케일을 형성시킴으로써 MD 후의 선재에 잔류하는 스케일량을 저감시키고 있다. 특허문헌 3에서는, 계면 조도를 작게 함으로써, 스케일의 계면에 발생하는 균열의 전반을 촉진하여, 잔류 스케일량을 저감시키고 있다. 특허문헌 4, 5에서는, 스케일 중의 공공의 면적률을 제어하여 스케일의 박리성을 개선하고 있다.As a method for producing a wire having a scale with good MD characteristics, for example, Patent Documents 1 to 5 can be mentioned. In Patent Documents 1 and 2, the amount of scale remaining in the wire after MD is reduced by forming a high scale FeO ratio and a large scale. In Patent Document 3, by reducing the interfacial roughness, the entirety of the cracks generated at the scale interface is promoted to reduce the residual scale amount. In Patent Documents 4 and 5, the peelability of the scale is improved by controlling the area ratio of the holes in the scale.

그러나, 상기한 특허문헌 1 내지 5에서는 이하와 같은 문제점이 있다. 특허문헌 1, 2와 같이 스케일을 두껍게 형성시키는 방법에서는, 수율의 저하를 초래하는 동시에, 냉각 과정이나 보관 및 반송 시에 스케일이 박리되어 녹이 발생한다. 또한, 스케일이 두꺼우면, MD법에 의해 선재에 굽힘 변경을 가하고, 또한 선재 표면의 브러싱을 행해도, 스케일을 완전히 제거하는 것은 곤란하다. 즉, MD법은, 배치식의 산세법과는 달리, 스케일 전체를 균일하고 또한 안정적으로 제거하는 것이 곤란하며, 두꺼운 스케일이 형성된 선재에 MD를 행해도, 선재의 표면에 미세하게 부서진 스케일의 가루가 점재하는 경우가 있다. 이렇게 국부적으로 잔존하는 잔류 스케일이 많아지면, 신선 등의 2차 가공에 있어서, 윤활 불량에 의한 흠집이 발생하거나, 다이스 수명이 저하하는 등의 문제를 야기시킨다.However, the above-described Patent Documents 1 to 5 have the following problems. In the method of forming a large scale as in Patent Documents 1 and 2, the yield is lowered and the scale is peeled off during the cooling process, storage and transportation, and rust is generated. In addition, if the scale is thick, it is difficult to remove the scale completely even if bending modification is applied to the wire by the MD method and brushing of the wire surface is performed. In other words, unlike the batch-type pickling method, the MD method is difficult to uniformly and stably remove the entire scale, and even if MD is applied to a wire material having a thick scale, a fine- It may be dotted. If the residual scale remaining locally increases, problems such as scratches due to defective lubrication or deterioration of die life are caused in secondary processing such as drawing.

또한, 특허문헌 3 등의 계면 조도를 저감시키는 방법으로는, 계면 조도를 안정적으로 저감시키는 것이 곤란하고, 특허문헌 4, 5와 같이 스케일 중에 공공을 형성시키는 방법에 대해서도 안정적으로 공공을 형성시키는 것이 곤란하여, 이들 기술은 모두 스케일 잔존량을 안정되게 저감시키는 것이 어렵다.As a method for reducing the interfacial roughness of Patent Document 3 and the like, it is difficult to stably reduce the interfacial roughness, and it is difficult to stably form a void even in the method of forming the void in the scale as in Patent Documents 4 and 5 All of these techniques are difficult to stably reduce the scale remaining amount.

또한 이들 특허문헌 1 내지 5에서는, 냉각 중에 발생하는 압축 응력에 의한 스케일 박리에 대해서는 전혀 고려되어 있지 않으며, 냉각 중이나 보관 및 반송 시에 스케일이 박리됨으로써, MD 전에 선재에 녹이 발생한다는 문제가 있었다.In these Patent Documents 1 to 5, scale peeling due to the compressive stress generated during cooling is not taken into consideration at all, and scale is peeled off during cooling, storage and transportation, thereby causing rust in the wire rod before MD.

일본 특허 공개평4-293721호 공보Japanese Patent Application Laid-Open No. 4-293721 일본 특허 공개평11-172332호 공보Japanese Patent Application Laid-Open No. 11-172332 일본 특허 공개평8-295992호 공보Japanese Patent Laid-Open No. 8-295992 일본 특허 공개평10-324923호 공보Japanese Unexamined Patent Application Publication No. 10-324923 일본 특허 공개2006-28619호 공보Japanese Patent Laid-Open No. 2006-28619

본 발명은 상기 사정을 감안하여 이루어진 것이며, 그 목적은, 열연 후의 냉각 중이나, 보관 및 반송 시에는 박리되지 않고, MD 시에 용이하게 박리되는 스케일이 형성된 선재, 및 그 제조 방법을 제공하는 데 있다.The present invention has been made in view of the above circumstances, and an object thereof is to provide a wire having a scale which is not peeled during cooling after hot rolling, during storage and transportation, and easily peeled off at the time of MD, and a manufacturing method thereof .

상기 과제를 달성한 본 발명의 강선재는, C: 0.05 내지 1.2%(질량%의 의미임. 이하, 화학 성분에 대하여 동일함), Si: 0.01 내지 0.5%, Mn: 0.1 내지 1.5%, P: 0.02% 이하(0%를 포함하지 않음), S: 0.02% 이하(0%를 포함하지 않음), N: 0.005% 이하(0%를 포함하지 않음)를 함유하고, 잔량부가 철 및 불가피 불순물인 강선재이며, 두께 7.0㎛ 이하의 스케일을 갖고, 또한, 상기 스케일 중의 FeO 비율이 30 내지 80체적%이며, Fe2SiO4 비율이 0.1체적% 미만인 것을 특징으로 한다.The steel wire rod according to the present invention which achieves the above object is characterized by containing 0.05 to 1.2% of C, 0.1 to 1.5% of Si, 0.1 to 1.5% of Si, 0.02% or less (not including 0%), S: not more than 0.02% (excluding 0%), N: 0.005% or less (not including 0%) and the balance being iron and inevitable impurities The steel wire rod has a scale of 7.0 탆 or less in thickness, FeO ratio in the scale is 30 to 80% by volume, and Fe 2 SiO 4 ratio is less than 0.1% by volume.

본 발명의 강선재는, 필요에 따라 (a) Cr: 0.3% 이하(0%를 포함하지 않음) 및/또는 Ni: 0.3% 이하(0%를 포함하지 않음), (b) Cu: 0.2% 이하(0%를 포함하지 않음), (c) Nb, V, Ti, Hf 및 Zr을 포함하여 이루어지는 군으로부터 선택되는 적어도 1종의 원소를, 합계 0.1% 이하(0%를 포함하지 않음), (d) Al: 0.1% 이하(0%를 포함하지 않음), (e) B: 0.005% 이하(0%를 포함하지 않음), (f) Ca: 0.01% 이하(0%를 포함하지 않음) 및/또는 Mg: 0.01% 이하(0%를 포함하지 않음)를 함유하고 있어도 된다.(A) 0.3% or less of Cr (not including 0%) and / or Ni of 0.3% or less (excluding 0%), (b) 0.2% or less of Cu (Excluding 0%), (c) at least one element selected from the group consisting of Nb, V, Ti, Hf and Zr in a total amount of not more than 0.1% d) Al: not more than 0.1% (not including 0%), (e) B: not more than 0.005% (not including 0%), (f) Ca: not more than 0.01% And / or Mg: not more than 0.01% (not including 0%).

또한, 본 발명은 상기한 어느 하나의 화학 성분의 강을, 열간 압연 후, 750 내지 880℃에서 권취하고, 산소 분율이 20체적% 미만인 산소와 불활성 가스의 혼합 가스, 또는 불활성 가스를 분출하면서 냉각하는 강선재의 제조 방법도 포함한다. 상기 불활성 가스는 질소인 것이 바람직하다.Further, the present invention is characterized in that the steel of any one of the chemical components described above is hot-rolled and then rolled at 750 to 880 DEG C, and a mixed gas of oxygen and an inert gas having an oxygen fraction of less than 20% And a method of manufacturing a steel wire rod. The inert gas is preferably nitrogen.

본 발명의 선재는, FeO 비율이 소정 범위로 적절하게 제어(30 내지 80체적%)되고, 또한, 얇은(7.0㎛ 이하) 스케일을 갖고 있다. 따라서, 열연 후의 냉각 중이나, 보관 및 반송 시에는 스케일이 박리되지 않아, 녹의 발생을 방지할 수 있다. 또한, 본 발명에 따르면, MD 시에는 용이하게 스케일이 박리되기 때문에, 간편한 디스케일링 장치로 충분한 박리성을 확보할 수 있으며, 신선 등의 2차 가공 시에 악영향(잔류 스케일에 의한 선재 표면 흠집, 윤활 불량 등)을 미치는 경우가 없어, 품질이 높은 강선재를 제공할 수 있다. 또한, 스케일 손실이 적기 때문에, 수율을 높게 유지할 수 있다.The wire of the present invention has a FeO ratio appropriately controlled (30 to 80% by volume) in a predetermined range, and has a thin (7.0 탆 or less) scale. Therefore, the scales do not peel off during cooling after the hot rolling, storage and transportation, and the occurrence of rust can be prevented. Further, according to the present invention, since the scale is easily peeled off during MD, a satisfactory peeling property can be secured by a simple descaling device, and adverse effects (secondary scratches on the surface of the wire due to residual scale, Lubrication failure, etc.), and a steel wire rod of high quality can be provided. In addition, since the scale loss is small, the yield can be kept high.

도 1은, 스케일 중의 FeO 비율과 MD 후의 잔류 스케일 면적률의 관계를 나타낸 그래프이다.
도 2는, 스케일 두께와 압연재의 스케일 박리율의 관계를 나타낸 그래프이다.
1 is a graph showing the relationship between the FeO ratio in the scale and the residual scale area ratio after MD.
2 is a graph showing the relationship between the scale thickness and the scale peel ratio of the rolled material.

선재의 제조 프로세스 중의 냉각 공정에 있어서는, 통상, 지철과 스케일의 열팽창 계수의 차에 기인하여 스케일 중에 압축 응력이 발생한다. 그 결과, 냉각 공정, 또는 그 후에 선재를 보관 및 반송할 때, 스케일이 자연히 박리되고, 이것이 녹의 발생 원인이 되고 있었다. 또한, 선재는, 신선 등의 2차 가공을 하기 전에 MD로 스케일을 제거하는 것이 행해지고 있으며, MD 후에 스케일이 잔존하면, 다이스 수명을 저하시켜 버린다. 따라서, 제조 프로세스 중의 냉각 공정이나, 보관 및 반송 시에는 박리되지 않고, MD 시에 용이하게 박리되는 스케일을 갖는 선재가 요망되고 있었다.In the cooling step during the manufacturing process of the wire rod, a compressive stress is generally generated in the scale due to the difference in coefficient of thermal expansion between the steel strip and the scale. As a result, when the wire rod is stored and transported in the cooling step or thereafter, the scale is naturally peeled off, which causes rust. In addition, the wire rod is scaled down by MD before secondary processing such as drawing, and if the scale remains after MD, the dice life is lowered. Therefore, there has been a demand for a wire material having a scale that is not peeled off during the cooling process during the manufacturing process, storage and transportation, and easily peeled off at the time of MD.

MD법은, 선재에 변형을 부여하여 스케일 내, 또는 지철과 스케일의 계면에 균열을 발생시켜, 스케일을 박리시키는 방법이다. 종래부터, 스케일의 박리성을 향상시키기 위하여, 스케일 중의 FeO 비율을 향상시키는 것이 행해지고 있다. 이는 FeO의 지철과의 밀착 강도가 Fe2O3이나, Fe3O4에 비하여 작은 점에서, 스케일 중의 FeO 비율을 높이는 것이, MD 시의 스케일 박리성 향상에 유효하다고 생각되고 있기 때문이다. 스케일 중의 FeO 비율을 높이기 위해서는, 통상, 고온에서 스케일(마무리 압연 전의 디스케일링 이후에 형성되는 2차 스케일)을 형성할 필요가 있지만, 고온에서 스케일을 형성시키면, 스케일의 두께가 증가하여 스케일 손실이 많아지는 데다 두꺼운 스케일은 냉각 과정이나 보관 및 반송 시에 박리된다는 문제가 있었다. 즉, 스케일의 두께를 얇게 하고, 또한 스케일 중의 FeO 비율을 확보하는 것은 극히 곤란하였다.The MD method is a method in which deformation is imparted to a wire to generate a crack in the scale or at the interface between the steel and the scale, thereby peeling the scale. Conventionally, in order to improve the peelability of the scale, the FeO ratio in the scale is improved. This is because it is believed that increasing the FeO ratio in the scale is effective for improving the scale peelability at the time of MD because the adhesion strength of FeO with the iron base is smaller than that of Fe 2 O 3 or Fe 3 O 4 . In order to increase the FeO ratio in the scale, it is usually necessary to form a scale (a secondary scale formed after descaling before finishing rolling) at a high temperature. However, if a scale is formed at a high temperature, And the thick scale is peeled off during the cooling process, storage and transportation. That is, it is extremely difficult to make the thickness of the scale thin and secure the FeO ratio in the scale.

따라서, 본 발명자들이 검토한 결과, 열간 압연 후의 권취 온도를 비교적 저온으로 하고, 그 후, 산소 분율이 낮은 산소와 불활성 가스의 혼합 가스 또는 불활성 가스를 분출하면서 냉각하면, 스케일을 얇게 할 수 있음과 아울러, 스케일 중의 FeO 비율을 소정 이상 확보할 수 있음을 발견하였다.Therefore, as a result of the investigation by the present inventors, it has been found that if the coiling temperature after hot rolling is set to a relatively low temperature and thereafter the mixed gas of inert gas and inert gas having a low oxygen fraction or inert gas is cooled while being sprayed, Further, it has been found that the FeO ratio in the scale can be secured to a predetermined value or more.

스케일의 두께에 대하여 보다 상세하게 검토한 바, 스케일의 두께는, 7.0㎛ 이하이면 지철과의 밀착성이 양호하여, 냉각 도중이나 보관 및 반송 시에 박리되지 않는 것이 명확해졌다. 스케일 두께는 바람직하게는 6.5㎛ 이하이고, 보다 바람직하게는 6.0㎛ 이하(특히 5.5㎛ 이하)이다. 스케일 두께의 하한은 특별히 한정되지 않지만, 통상, 0.9㎛ 정도이다.When the thickness of the scale is examined in more detail, it has become clear that the scale has a good adhesion with the base metal when the thickness is 7.0 탆 or less, and is not peeled off during cooling, storage and transportation. The scale thickness is preferably 6.5 μm or less, more preferably 6.0 μm or less (particularly 5.5 μm or less). The lower limit of the scale thickness is not particularly limited, but is usually about 0.9 mu m.

또한, 본 발명자들은, 스케일 중의 FeO 비율과 MD성의 관계에 대하여 조사하였다. 보다 상세하게는, 0.9%C-0.25%Si-0.86%Mn-0.007%P-0.0063%S-0.002%N의 조성의, 길이 200㎜의 선재를 사용하여, 권취 온도 조건을 변화시켜 스케일의 조성을 조정한 샘플을 제작하였다. 또한, 권취 온도는 700 내지 1000℃의 범위에서 변화시키고, 권취 후의 냉각에는 N2-10체적%O2 가스를 사용하였다. 제작한 샘플에, MD에 상당하는 변형 왜곡(6%)을 부여하고 스케일을 박리시켜, 후기하는 실시예와 마찬가지로, 화상 처리에 의해 잔류한 스케일량(면적률)을 측정하였다. 도 1은 스케일 중의 FeO 비율과, MD 후에 잔류한 스케일의 면적률의 관계를 나타낸 그래프이다.Further, the present inventors investigated the relationship between the FeO ratio and the MD property in the scale. More specifically, a wire having a composition of 0.9% C-0.25% Si-0.86% Mn-0.007% P-0.0063% S-0.002% N and having a length of 200 mm was used to change the coiling temperature The adjusted sample was prepared. The coiling temperature was varied in the range of 700 to 1000 캜, and N 2 -10% by volume O 2 gas was used for cooling after coiling. Deformation distortion (6%) corresponding to the MD was given to the produced sample and the scale was peeled off. The scale amount (area ratio) remained by image processing was measured in the same manner as in the later example. 1 is a graph showing the relationship between the FeO ratio in the scale and the area ratio of the scale remaining after MD.

도 1에 의하면, 스케일 중의 FeO 비율이 30 내지 80체적%이면, MD 후의 잔류 스케일량을 충분히 저감시킬 수 있음을 알 수 있다. FeO 비율은, 바람직하게는 35체적% 이상, 75체적% 이하이고, 보다 바람직하게는 40체적% 이상, 70체적% 이하이며, 더욱 바람직하게는 45체적% 이상, 65체적% 이하이다.According to Fig. 1, it can be seen that if the FeO ratio in the scale is 30 to 80% by volume, the residual scale amount after MD can be sufficiently reduced. The FeO ratio is preferably 35 vol% or more and 75 vol% or less, more preferably 40 vol% or more and 70 vol% or less, and further preferably 45 vol% or more and 65 vol% or less.

또한, 스케일 중의 Fe2SiO4(페이알라이트) 비율은 0.1체적% 미만으로 한다. Fe2SiO4는, 과잉으로 생성되면, 스케일과 지철의 계면에 불균일하게 생성되어, MD 시에 스케일이 불균일하게 박리되기 때문에, MD성이 악화된다. Fe2SiO4 비율은, 바람직하게는 0.09체적% 이하이고, 보다 바람직하게는 0.08체적% 이하, 더욱 바람직하게는 0.07체적% 이하이다. 한편, 스케일 중의 Fe2SiO4는 무르고 박리되기 쉬운 산화물이며, 미량이면 균일하게 얇게 생성되기 때문에, MD성을 개선시킨다는 작용을 갖는다. 이러한 작용을 유효하게 발휘시키기 위해서는, 0.01체적% 이상 확보하는 것이 바람직하고, 보다 바람직하게는 0.02체적% 이상이며, 더욱 바람직하게는 0.03체적% 이상이다.In addition, the Fe 2 SiO 4 (Fealite) ratio in the scale is set to be less than 0.1% by volume. If excess Fe 2 SiO 4 is produced, the scale is irregularly generated at the interface between the scale and the iron, and the scale is unevenly peeled off at the time of MD, so that the MD property is deteriorated. The Fe 2 SiO 4 ratio is preferably 0.09% by volume or less, more preferably 0.08% by volume or less, and still more preferably 0.07% by volume or less. On the other hand, Fe 2 SiO 4 in the scale is an oxide which is easy to peel off, and if it is a very small amount, Fe 2 SiO 4 is produced uniformly thinly, and therefore has an effect of improving the MD property. In order to effectively exhibit such an action, it is preferable to secure at least 0.01% by volume, more preferably at least 0.02% by volume, and still more preferably at least 0.03% by volume.

본 발명에 있어서의 스케일에는, FeO 및 Fe2SiO4 외에, Fe2O3, Fe3O4 등이 포함된다.The scale of the present invention includes Fe 2 O 3 , Fe 3 O 4 and the like in addition to FeO and Fe 2 SiO 4 .

스케일의 두께 및 조성을 상기와 같이 함으로써, MD 후의 잔류 스케일량을, MD 전의 스케일량에 대하여 면적률로 30% 이하로 할 수 있다. 이는, 강선재의 질량에 대한 잔존 스케일량으로 약 0.05질량% 이하에 상당한다. 잔류 스케일량은, 바람직하게는 25 면적% 이하이고, 보다 바람직하게는 20 면적% 이하이다.By adjusting the thickness and composition of the scale as described above, the residual scale after MD can be made 30% or less in terms of area ratio with respect to the scale before MD. This corresponds to about 0.05 mass% or less in terms of the residual scale amount with respect to the mass of the steel wire rods. The residual scale amount is preferably 25% by area or less, more preferably 20% by area or less.

상기한 스케일을 형성시키기 위해서는, 후기하는 화학 성분의 강을 열간 압연 후, 비교적 저온(750 내지 880℃)에서 권취하고, 그 후, 산소 분율이 낮은 산소와 불활성 가스의 혼합 가스 또는 불활성 가스를 분출하면서 냉각하는 것이 중요하다. 저온에서 권취함으로써 스케일을 얇게 할 수 있다. 또한 상기한 바와 같은 산소 분율이 낮거나 또는 산소가 포함되어 있지 않은 가스를 분출하여 냉각함으로써, 생성된 FeO를 Fe3O4로 변화시키지 않고 소정 이상 확보할 수 있다.In order to form the above-described scale, a steel having a chemical composition of a later stage is hot-rolled and then rolled at a relatively low temperature (750 to 880 DEG C), and then a mixed gas or inert gas of oxygen and an inert gas, It is important to cool it. The scale can be thinned by winding at a low temperature. In addition, it is possible to secure a predetermined amount or more of the generated FeO without changing the FeO into Fe 3 O 4 by jetting and cooling the gas having a low oxygen content or containing no oxygen as described above.

열간 압연 후의 권취 온도가 880℃를 초과하면, 스케일 두께가 7.0㎛를 초과하거나, 스케일 중의 FeO 비율이 80체적%를 초과하여, MD성이 악화된다. 또한, 권취 온도가 880℃를 초과하면, 0.1체적%를 초과하는 경우가 있으며, Fe2SiO4(페이알라이트)가 스케일과 지철의 계면에 불균일하게 생성되어, MD 시에 스케일이 불균일하게 박리되어 MD성이 악화된다. 한편, 권취 온도가 750℃를 하회하면, FeO 비율을 30체적% 이상 확보할 수 없어, MD성이 열화된다. 권취 온도는, 바람직하게는 770℃ 이상, 875℃ 이하이고, 보다 바람직하게는 790℃ 이상, 860℃ 이하이다.When the coiling temperature after hot rolling exceeds 880 캜, the MD thickness is deteriorated when the scale thickness exceeds 7.0 탆 or when the FeO ratio in the scale exceeds 80% by volume. If the coiling temperature exceeds 880 占 폚, it may exceed 0.1% by volume, Fe 2 SiO 4 (Fealite) may be generated nonuniformly at the interface between the scale and the iron, and the scale may be unevenly peeled And the MD property deteriorates. On the other hand, if the coiling temperature is lower than 750 캜, the FeO ratio can not be ensured by 30% by volume or more, and the MD property is deteriorated. The coiling temperature is preferably 770 DEG C or more and 875 DEG C or less, and more preferably 790 DEG C or more and 860 DEG C or less.

열간 압연 후의 냉각은, 산소 분율이 20체적% 미만인 산소와 불활성 가스의 혼합 가스, 또는 불활성 가스를 분출하면서 행한다. 이렇게 산소 분율이 낮거나 또는 산소가 포함되어 있지 않은 가스를 자주 분출하여 냉각함으로써, 이미 생성된 FeO가 Fe3O4화하는 것을 방지할 수 있어, 스케일 중의 FeO 비율을 확보할 수 있다. 산소 분율은, 바람직하게는 10체적% 이하이고, 보다 바람직하게는 5체적% 이하이며, 더욱 바람직하게는 0체적%(즉 불활성 가스만)이다. 상기 불활성 가스로서는, 아르곤, 질소 등을 들 수 있으며, 바람직하게는 질소이다. 상기한 가스를 분출하여 행하는 냉각의 냉각 정지 온도는 특별히 한정되지 않지만, 예를 들어 550 내지 650℃ 정도까지 상기 가스를 분출하면서 냉각하고, 그 후에는 대기 중에서 실온까지 냉각해도 된다.The cooling after the hot rolling is performed while spraying a mixed gas of oxygen and an inert gas having an oxygen fraction of less than 20% by volume, or an inert gas. In this way, it is possible to prevent the already formed FeO from being converted to Fe 3 O 4 by lowering the oxygen fraction or by frequently jetting the gas containing no oxygen, and cooling it, and it is possible to secure the FeO ratio in the scale. The oxygen fraction is preferably 10 vol% or less, more preferably 5 vol% or less, and still more preferably 0 vol% (that is, inert gas only). Examples of the inert gas include argon and nitrogen, and preferably nitrogen. The cooling stop temperature of the cooling to be performed by blowing out the above-mentioned gas is not particularly limited, but it may be cooled to a temperature of, for example, 550 to 650 ° C while spraying the gas, and then cooled to room temperature in the atmosphere.

이하, 본 발명의 강선재의 화학 조성에 대하여 설명한다.Hereinafter, the chemical composition of the steel wire rod of the present invention will be described.

C: 0.05 내지 1.2%C: 0.05 to 1.2%

C는, 강의 기계적 성질에 크게 영향을 미치는 원소이다. 선재의 강도를 확보하기 위하여, C량을 0.05% 이상으로 정하였다. C량은 바람직하게는 0.15% 이상이며, 보다 바람직하게는 0.3% 이상이다. 한편, C량이 과잉으로 되면, 선재 제조 시의 열간 가공성이 열화된다. 따라서 C량을 1.2% 이하로 정하였다. C량은, 바람직하게는 1.1% 이하이고, 보다 바람직하게는 1.0% 이하이다.
C is an element that greatly affects the mechanical properties of steel. In order to secure the strength of the wire rod, the C content was set to 0.05% or more. The amount of C is preferably 0.15% or more, and more preferably 0.3% or more. On the other hand, if the amount of C becomes excessive, the hot workability at the time of producing the wire is deteriorated. Therefore, the C content was set at 1.2% or less. The C content is preferably 1.1% or less, and more preferably 1.0% or less.

*Si: 0.01 내지 0.5%Si: 0.01 to 0.5%

Si는, 강의 탈산을 위하여 필요한 원소이며, 그 함유량이 너무 적으면, Fe2SiO4(페이알라이트)의 생성이 불충분해져, MD성이 열화된다. 따라서, Si량을0.01% 이상으로 정하였다. Si량은, 바람직하게는 0.1% 이상이며, 보다 바람직하게는 0.2% 이상이다. 한편, Si량이 과잉으로 되면, Fe2SiO4(페이알라이트)의 과잉 생성에 의해, MD성이 현저하게 열화되는 것 외에, 표면 탈탄층이 생성되는 등의 문제가 발생한다. 따라서, Si량을 0.5% 이하로 정하였다. Si량은, 바람직하게는 0.45% 이하이고, 보다 바람직하게는 0.4% 이하이다.Si is an element necessary for deoxidation of steel. If the content is too small, the production of Fe 2 SiO 4 (featherite) becomes insufficient and the MD property is deteriorated. Therefore, the amount of Si was set to 0.01% or more. The amount of Si is preferably 0.1% or more, and more preferably 0.2% or more. On the other hand, if the amount of Si becomes excessive, excessive production of Fe 2 SiO 4 (FeAl) causes not only the MD property to deteriorate remarkably but also a problem such as generation of a surface decarburization layer occurs. Therefore, the amount of Si was set to 0.5% or less. The amount of Si is preferably 0.45% or less, and more preferably 0.4% or less.

Mn: 0.1 내지 1.5%Mn: 0.1 to 1.5%

Mn은, 강의 켄칭성을 확보하고, 강도를 높이는 데 유용한 원소이다. 이러한 작용을 유효하게 발휘시키기 위하여, Mn량을 0.1% 이상으로 정하였다. Mn량은, 바람직하게는 0.2% 이상이며, 보다 바람직하게는 0.4% 이상이다. 한편, Mn량이 과잉으로 되면, 열간 압연 후의 냉각 과정에서 편석을 일으켜, 신선 가공성 등에 유해한 과냉 조직(마르텐사이트 등)이 발생하기 쉬워진다. 따라서 Mn량을 1.5% 이하로 정하였다. Mn량은, 바람직하게는 1.4% 이하이고, 보다 바람직하게는 1.2% 이하이다.Mn is an element useful for ensuring the quenching of the steel and for increasing the strength. In order to exhibit such an effect effectively, the amount of Mn is set to 0.1% or more. The amount of Mn is preferably 0.2% or more, and more preferably 0.4% or more. On the other hand, when the amount of Mn becomes excessive, segregation occurs in the cooling process after hot rolling, and supercooled structure (martensite or the like) which is detrimental to drafting workability tends to be generated. Therefore, the Mn content was set at 1.5% or less. The amount of Mn is preferably 1.4% or less, and more preferably 1.2% or less.

P: 0.02% 이하(0%를 포함하지 않음)P: not more than 0.02% (not including 0%)

P는, 강의 인성 및 연성을 열화시키는 원소이다. 신선 공정 등에 있어서의 단선을 방지하기 위하여, P량을 0.02% 이하로 정하였다. P량은 바람직하게는 0.01% 이하이고, 보다 바람직하게는 0.005% 이하이다. P량의 하한은 특별히 한정되지 않지만, 통상 0.001% 정도이다.P is an element that deteriorates toughness and ductility of steel. In order to prevent disconnection in a drawing process or the like, the amount of P is set to 0.02% or less. The P content is preferably 0.01% or less, more preferably 0.005% or less. The lower limit of the amount of P is not particularly limited, but is usually about 0.001%.

S: 0.02% 이하(0%를 포함하지 않음)S: 0.02% or less (not including 0%)

S는, P와 마찬가지로, 강의 인성 및 연성을 열화시키는 원소이다. 신선이나 그 후의 스트랜딩에 있어서의 단선을 방지하기 위하여, S량을 0.02% 이하로 정하였다. S량은, 바람직하게는 0.01% 이하이고, 보다 바람직하게는 0.005% 이하이다. S량의 하한은 특별히 한정되지 않지만, 통상, 0.001% 정도이다.S, like P, is an element that deteriorates toughness and ductility of steel. In order to prevent breakage in drawing or subsequent stranding, the amount of S is set to 0.02% or less. The amount of S is preferably 0.01% or less, and more preferably 0.005% or less. The lower limit of the amount of S is not particularly limited, but is usually about 0.001%.

N: 0.005% 이하(0%를 포함하지 않음)N: 0.005% or less (not including 0%)

N은, 함유량이 과잉으로 되면, 강의 연성을 열화시키는 원소이다. 따라서, N량을 0.005% 이하로 정하였다. N량은, 바람직하게는 0.004% 이하이고, 보다 바람직하게는 0.003% 이하이다. N량의 하한은 특별히 한정되지 않지만, 통상, 0.001% 정도이다.N is an element that deteriorates the ductility of steel when the content is excessive. Therefore, the N content was set to 0.005% or less. The N content is preferably 0.004% or less, and more preferably 0.003% or less. The lower limit of the amount of N is not particularly limited, but is usually about 0.001%.

본 발명의 강선재의 기본 성분은 상기와 같으며, 잔량부는 실질적으로 철이다. 단, 원료, 자재, 제조 설비 등의 상황에 따라 반입되는 불가피 불순물이 강선재 중에 포함되는 것은 당연히 허용된다. 또한, 본 발명의 작용 효과를 저해하지 않는 범위에서, 필요에 따라 하기의 원소를 첨가하는 것도 권장된다.The basic components of the steel wire rod of the present invention are as described above, and the remainder portion is substantially iron. However, it is a matter of course that inevitable impurities brought in according to the conditions of raw materials, materials, manufacturing facilities, etc. are included in the steel wire rod. In addition, it is also recommended to add the following elements as necessary insofar as the effect of the present invention is not impaired.

Cr: 0.3% 이하(0%를 포함하지 않음) 및/또는 Ni: 0.3% 이하(0%를 포함하지 않음)Not more than 0.3% Cr (not including 0%) and / or Ni: not more than 0.3% (not including 0%).

Cr 및 Ni는, 모두 강의 켄칭성을 높이고, 강도의 향상에 기여하는 원소이다. 이러한 작용을 유효하게 발휘시키기 위하여 Cr량은 0.05% 이상인 것이 바람직하고, Ni량은 0.03% 이상인 것이 바람직하다. 보다 바람직한 Cr량, Ni량은 모두 0.10% 이상이며, 더욱 바람직하게는 모두 0.12% 이상이다. 한편, Cr량 및 Ni량이 과잉으로 되면, 마르텐사이트 조직이 발생하기 쉬워지는 데다, 스케일의 지철과의 밀착성이 너무 높아져, MD 시의 스케일의 박리성이 열화된다. 따라서, Cr량, Ni량은 모두 0.3% 이하인 것이 바람직하다. 보다 바람직한 Cr량, Ni량은 모두 0.25% 이하이고, 더욱 바람직하게는 모두 0.20% 이하이다.Both Cr and Ni are elements that enhance the quenching of the steel and contribute to the improvement of strength. In order to effectively exhibit such action, the amount of Cr is preferably 0.05% or more, and the amount of Ni is preferably 0.03% or more. The more preferable amounts of Cr and Ni are all 0.10% or more, and more preferably 0.12% or more. On the other hand, if the Cr amount and the Ni amount are excessive, the martensite structure tends to occur and the adhesion of the scale to the base metal becomes too high, and the peelability of scale at the time of MD deteriorates. Therefore, it is preferable that the Cr amount and the Ni amount are all 0.3% or less. More preferred amounts of Cr and Ni are all 0.25% or less, and more preferably 0.20% or less.

Cu: 0.2% 이하(0%를 포함하지 않음)Cu: not more than 0.2% (not including 0%)

Cu는, 스케일 박리를 촉진하는 작용을 갖는 원소이다. 이러한 작용을 유효하게 발휘시키기 위하여, Cu량은 0.01% 이상인 것이 바람직하다. Cu량은, 보다 바람직하게는 0.05% 이상이며, 더욱 바람직하게는 0.10% 이상이다. 한편, Cu량이 과잉으로 되면, 스케일의 박리가 과잉으로 촉진되고, 압연 중에 스케일이 박리되어 그 박리면에 얇고 밀착성이 높은 다른 스케일이 발생하는 것 외에, 선재 코일을 보관 및 반송할 때 녹이 발생한다. 따라서, Cu량은 0.2% 이하인 것이 바람직하다. Cu량은, 보다 바람직하게는 0.17% 이하이고, 더욱 바람직하게는 0.15% 이하이다.Cu is an element having an action to promote scale separation. In order to effectively exhibit such action, the amount of Cu is preferably 0.01% or more. The amount of Cu is more preferably 0.05% or more, and still more preferably 0.10% or more. On the other hand, when the amount of Cu is excessive, scale separation is excessively promoted, scale is peeled off during rolling, and other scales with thin and high adhesion are generated on the peeling surface, and rust is generated when the wire rod coils are stored and transported . Therefore, the amount of Cu is preferably 0.2% or less. The amount of Cu is more preferably 0.17% or less, and still more preferably 0.15% or less.

Nb, V, Ti, Hf 및 Zr을 포함하여 이루어지는 군으로부터 선택되는 적어도 1종의 원소를, 합계 0.1% 이하(0%를 포함하지 않음)At least one element selected from the group consisting of Nb, V, Ti, Hf and Zr in a total amount of not more than 0.1% (not including 0%),

Nb, V, Ti, Hf 및 Zr는, 모두 미세한 탄질화물을 형성하여, 고강도화에 기여하는 원소이다. 이러한 작용을 유효하게 발휘시키기 위하여, Nb량, V량, Ti량, Hf량 및 Zr량은 모두, 0.003% 이상인 것이 바람직하다. Nb량, V량, Ti량, Hf량 및 Zr량은 모두, 보다 바람직하게는 0.007% 이상이며, 더욱 바람직하게는 0.01% 이상이다. 한편, 이들 원소가 과잉으로 되면, 연성이 열화되기 때문에, 이들의 합계량은 0.1% 이하인 것이 바람직하다. 이들 원소의 합계량은, 보다 바람직하게는 0.08% 이하이고, 더욱 바람직하게는 0.06% 이하이다.Nb, V, Ti, Hf, and Zr all form fine carbonitride and contribute to high strength. To effectively exert such an effect, it is preferable that the amounts of Nb, V, Ti, Hf and Zr are all 0.003% or more. The amount of Nb, V, Ti, Hf and Zr is more preferably 0.007% or more, and still more preferably 0.01% or more. On the other hand, if these elements are excessive, ductility deteriorates, and therefore the total amount thereof is preferably 0.1% or less. The total amount of these elements is more preferably 0.08% or less, and still more preferably 0.06% or less.

Al: 0.1% 이하(0%를 포함하지 않음)Al: not more than 0.1% (not including 0%)

Al은, 탈산제로서 유효한 원소이다. 이러한 작용을 유효하게 발휘시키기 위하여, Al량은 0.001% 이상인 것이 바람직하다. Al량은, 보다 바람직하게는 0.005% 이상이며, 더욱 바람직하게는 0.01% 이상이다. 한편, Al량이 과잉으로 되면, Al2O3 등의 산화물계 개재물이 많아져, 신선 가공 시 등에 단선이 다발한다. 따라서, Al량은 0.1% 이하인 것이 바람직하다. Al량은, 보다 바람직하게는 0.08% 이하이고, 더욱 바람직하게는 0.06% 이하이다.Al is an effective element as a deoxidizer. In order to effectively exhibit such an effect, the amount of Al is preferably 0.001% or more. The amount of Al is more preferably 0.005% or more, and still more preferably 0.01% or more. On the other hand, when the amount of Al becomes excessive, oxide inclusions such as Al 2 O 3 are increased, and disconnection occurs frequently during drawing processing. Therefore, the amount of Al is preferably 0.1% or less. The amount of Al is more preferably 0.08% or less, and still more preferably 0.06% or less.

B: 0.005% 이하(0%를 포함하지 않음)B: not more than 0.005% (not including 0%)

B는, 강 중에 고용되는 자유로운 B(화합물을 형성하지 않는 B)로서 존재함으로써, 페라이트의 생성을 억제하는 원소이며, 특히 세로 균열의 억제가 필요한 고강도 선재에서 유효한 원소이다. 이러한 작용을 유효하게 발휘시키기 위하여, B량은 0.0001% 이상인 것이 바람직하다. B량은, 보다 바람직하게는 0.0005% 이상이며, 더욱 바람직하게는 0.0010% 이상이다. 한편, B량이 과잉으로 되면, 연성이 열화된다. 따라서 B량은, 0.005% 이하인 것이 바람직하고, 보다 바람직하게는 0.0040% 이하이고, 더욱 바람직하게는 0.0035% 이하이다.B is an element that inhibits the formation of ferrite by being present as free B (compound B not formed) that is solidly dissolved in steel, and is an effective element in high-strength wire rods which require suppression of vertical cracks. To effectively exhibit such action, the amount of B is preferably 0.0001% or more. The amount of B is more preferably 0.0005% or more, and still more preferably 0.0010% or more. On the other hand, if the amount of B becomes excessive, the ductility deteriorates. Therefore, the amount of B is preferably 0.005% or less, more preferably 0.0040% or less, still more preferably 0.0035% or less.

Ca: 0.01% 이하(0%를 포함하지 않음) 및/또는 Mg: 0.01% 이하(0%를 포함하지 않음)Ca: not more than 0.01% (not including 0%) and / or Mg: not more than 0.01% (not including 0%)

Ca와 Mg는, 모두 개재물의 형태를 제어하고, 연성을 높이는 작용을 갖는 원소이다. 또한, Ca는 강재의 내식성을 높이는 작용도 갖는다. 이러한 작용을 유효하게 발휘시키기 위하여, Ca량 및 Mg량은 모두 0.001% 이상인 것이 바람직하다. Ca 및 Mg는, 모두 0.002% 이상인 것이 보다 바람직하고, 더욱 바람직하게는 0.003% 이상이다. 한편, 이들 원소가 과잉으로 되면, 가공성이 열화된다. 따라서, Ca량, Mg량은, 모두 0.01% 이하인 것이 바람직하다. Ca량, Mg량은, 모두 0.008% 이하인 것이 보다 바람직하고, 0.005% 이하인 것이 더욱 바람직하다.Ca and Mg are both elements that control the shape of inclusions and enhance ductility. Ca also has an effect of enhancing the corrosion resistance of the steel material. In order to effectively exhibit such an effect, it is preferable that both the Ca amount and the Mg amount are 0.001% or more. More preferably, Ca and Mg are both 0.002% or more, and more preferably 0.003% or more. On the other hand, if these elements are excessive, the workability is deteriorated. Therefore, it is preferable that the Ca amount and the Mg amount are all 0.01% or less. The amount of Ca and Mg is more preferably 0.008% or less, and still more preferably 0.005% or less.

실시예Example

이하, 실시예를 들어 본 발명을 보다 구체적으로 설명한다. 본 발명은 이하의 실시예에 의해 제한을 받는 것이 아니며, 상기, 후술하는 취지에 적합한 범위에서 적당히 변경을 가하여 실시하는 것도 물론 가능하고, 그들은 모두 본 발명의 기술적 범위에 포함된다.Hereinafter, the present invention will be described more specifically by way of examples. The present invention is not limited to the following embodiments, and it is of course possible to carry out the present invention by appropriately modifying it within a range suitable for the purpose described below, and they are all included in the technical scope of the present invention.

표 1, 2에 나타낸 화학 조성의 강을, 통상의 용제법에 따라 용제한 후, 150㎜×150㎜의 빌렛을 제작하고, 가열로 내에서 가열하였다. 그 후, 가열로 내에서 생성된 1차 스케일을 고압수를 사용하여 디스케일링하고, 표 3에 나타낸 조건(열간 압연 후의 권취 온도 및 냉각에 사용한 가스)으로 열간 압연을 행하여, φ5.5㎜의 강선재를 얻었다. 또한, 표 3에 나타낸 가스를 사용한 냉각은 모두 600℃ 정도까지 행하고, 그 후에는 대기 중에서 방냉하였다.A steel having the chemical composition shown in Tables 1 and 2 was dissolved in a usual solvent method and then a billet having a size of 150 mm x 150 mm was prepared and heated in a heating furnace. Thereafter, the primary scale generated in the heating furnace was descaled using high-pressure water, and hot-rolled under the conditions shown in Table 3 (the coiling temperature after hot rolling and the gas used for cooling) Steel wire rods were obtained. The cooling using the gas shown in Table 3 was carried out all the way up to about 600 ° C, and after that, it was allowed to cool in the air.

얻어진 강선재를, 이하의 방법으로 측정하였다.The obtained steel wire rod was measured by the following method.

(1) 스케일의 두께의 측정(1) Measurement of scale thickness

코일의 전단부, 중앙부, 후단부 각각으로부터, 길이 10㎜의 샘플을 채취하고, 각각의 샘플로부터 임의의 3개소의 스케일 단면을 주사형 전자 현미경(SEM)으로 관찰하였다(관찰 배율: 5000배). 각 측정 개소에 대해서, 강선재 주방향 길이 100㎛에서 10점 스케일 두께를 측정하고, 그 스케일 평균 두께를 구하여, 3개소의 평균값을 각 샘플의 스케일 두께로 하였다. 또한 각 샘플(코일 전단부, 중앙부, 후단부)의 평균값을 산출하고, 각 시험No.의 스케일 두께로 하였다.Samples having a length of 10 mm were taken from each of the front end, the center and the rear end of the coil, and arbitrary three scale cross sections of each sample were observed with a scanning electron microscope (SEM) (observation magnification: 5000 times) . For each measurement point, a 10-point scale thickness was measured at a length of 100 μm in the main direction of the steel wire rod, and the average scale thickness was obtained. The average value of the three points was defined as the scale thickness of each sample. Further, an average value of each sample (front end portion, center portion, and rear end portion of the coil) was calculated and used as the scale thickness of each test No..

(2) 스케일의 조성의 측정(2) Measurement of composition of scale

상기 (1)과 마찬가지로, 코일의 전단부, 중앙부, 후단부 각각으로부터, 길이 10㎜의 샘플을 채취하고, 각각의 샘플로부터 임의의 3개소의 스케일 단면에 대해서, X선 회절을 행하여, FeO, Fe2SiO4, Fe2O3 및 Fe3O4의 피크 강도비로부터, FeO 및 Fe2SiO4의 비율(체적%)을 구하였다. 3개소의 평균값을, 각 샘플의 FeO 비율 및 Fe2SiO4 비율로 하였다. 또한 각 샘플(코일 전단부, 중앙부, 후단부)의 평균값을 산출하여, 각 시험 No.의 FeO 비율 및 Fe2SiO4 비율로 하였다.Samples having a length of 10 mm were collected from each of the front end, the center and the rear end of the coil in the same manner as in the above (1), and X-ray diffraction was performed on arbitrary three scale cross- The ratio (volume%) of FeO and Fe 2 SiO 4 was determined from the peak intensity ratio of Fe 2 SiO 4 , Fe 2 O 3 and Fe 3 O 4 . The average value of the three portions was determined as the FeO ratio and the Fe 2 SiO 4 ratio of each sample. Further, an average value of each sample (the front end portion, the center portion and the rear end portion of the coil) was calculated, and the FeO ratio and the Fe 2 SiO 4 ratio of each test No. were determined.

(3) 압연재의 스케일 박리성의 측정(3) Measurement of scale removability of rolled material

코일의 전단부, 중앙부, 후단부 각각으로부터, 길이 200㎜의 샘플을 채취하고, 샘플에 바람을 세차게 내뿜어 강선재 표면의 스케일을 날려 버렸다. 디지털 카메라에 의해, 바람을 세차게 내뿜기 전후의 외관을 사진 촬영하여, 화상 해석으로 양자를 비교함으로써, 박리한 스케일의 면적률을 구하였다.A sample having a length of 200 mm was sampled from each of the front end portion, the center portion, and the rear end portion of the coil, and the scale of the surface of the steel wire material was blown away by blowing wind to the sample. The appearance before and after the wind was blown away by the digital camera was photographed and the area ratio of the peeled scale was obtained by comparing the both by image analysis.

(4) MD성의 측정(4) Measurement of MD property

코일의 전단부, 중앙부, 후단부 각각으로부터, 길이 250㎜의 샘플을 채취하여, 인장 시험기로 6%의 변형 왜곡을 부여하고, 척으로부터 취출한 후, 샘플에 바람을 세차게 내뿜어 강선재 표면의 스케일을 날려 버렸다. 디지털 카메라에 의해, 변형 부여 전후의 외관을 사진 촬영하여, 화상 해석으로 양자를 비교함으로써 잔류 스케일 면적률을 산출하였다.A sample having a length of 250 mm was sampled from each of the front end portion, the center portion, and the rear end portion of the coil, and strain distortion of 6% was given to the specimen by a tensile tester. After being taken out from the chuck, . The appearance of the appearance before and after the application of the deformation was photographed by a digital camera, and the residual scale area ratio was calculated by comparing the images by image analysis.

결과를 표 4, 5, 및 도 2에 도시한다.The results are shown in Tables 4, 5 and 2.

Figure pat00001
Figure pat00001

Figure pat00002
Figure pat00002

Figure pat00003
Figure pat00003

Figure pat00004
Figure pat00004

Figure pat00005
Figure pat00005

표 4, 5의 No. 1, 2, 4 내지 28, 30 내지 32, 34, 35, 37 내지 39, 41, 42, 44, 45, 48은, 본 발명의 요건을 만족하는 예이며, 스케일 두께 및 스케일의 조성이 적절하기 때문에, MD성이 양호하다.No. of Tables 4 and 5. 1, 2, 4 to 28, 30 to 32, 34, 35, 37 to 39, 41, 42, 44, 45 and 48 are examples satisfying the requirements of the present invention, Therefore, the MD property is good.

한편, No. 3, 29, 33, 36, 40, 43, 46, 47, 49는, 제조 조건이 본 발명의 요건을 만족하지 않기 때문에, MD성이 열화되었다.On the other hand, 3, 29, 33, 36, 40, 43, 46, 47, and 49 had poor MD characteristics because the production conditions did not satisfy the requirements of the present invention.

No. 3, 29, 36, 40, 43, 46, 47은, 열간 압연 후, 대기를 분출하여 냉각한 예이며, 냉각 중에 FeO가 Fe3O4가 됨으로써, FeO 분율을 확보할 수 없어, MD성이 열화되었다. No. 33은, 열간 압연 후의 권취 온도가 높았던 예이며, 스케일 두께가 두꺼워짐과 아울러, FeO 비율이 지나치게 커졌고, 또한 Fe2SiO4 비율도 높았기 때문에, MD성이 열화되었다. No. 49는, 열간 압연 후의 권취 온도가 낮았던 예이며, FeO 비율을 확보할 수 없어, MD성이 열화되었다. No. 50 내지 54는 열간 압연 후의 권취 온도가 더욱 높았던 예이며, 스케일 두께가 7.0㎛를 초과하고, 압연재의 스케일 박리율이 상승하였으며, 녹이 발생되어 있었다. 즉, No. 50 내지 54는 열간 압연 후의 냉각 중이나 보관 및 반송 시에 스케일이 탈락하여, 녹이 발생하는 것으로 생각된다.No. 3, 29, 36, 40, 43, 46, and 47 are examples in which hot air is blown out after hot rolling and FeO is changed to Fe 3 O 4 during cooling. As a result, the FeO fraction can not be ensured, Deteriorated. No. 33 is an example in which the coiling temperature after hot rolling is high. Since the scale thickness becomes thick, the FeO ratio becomes too large, and the Fe 2 SiO 4 ratio becomes high, the MD property deteriorates. No. 49 was an example in which the coiling temperature after hot rolling was low and the FeO ratio could not be secured and the MD property deteriorated. No. 50 to 54 are examples in which the coiling temperature after hot rolling was higher, the scale thickness exceeded 7.0 mu m, the scale peeling ratio of the rolled material was increased, and rust was generated. That is, No. From 50 to 54, it is considered that scales fall off during cooling after hot rolling or during storage and transportation, and rust is generated.

또한, 도 2에 스케일 두께와 압연재의 스케일 박리율의 관계를 도시한다. 스케일 두께가 7.0㎛를 초과하여 두꺼워지면, 압연재의 스케일 박리율이 커지는 것을 알 수 있다.Fig. 2 shows the relationship between the scale thickness and the scale peel ratio of the rolled material. It can be seen that when the scale thickness exceeds 7.0 占 퐉, the scale removal rate of the rolled material becomes large.

본 발명을 상세하게 또한 특정한 실시 형태를 참조하여 설명했지만, 본 발명의 정신과 범위를 일탈하지 않고 여러 변형이나 수정을 가할 수 있음은 당업자에게 있어 명확하다.While the present invention has been described in detail with reference to specific embodiments thereof, it is evident to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention.

본 출원은, 2011년 1월 7일 출원된 일본 특허 출원(일본 특허 출원 제2011-002014에 기초하는 것이며, 그 내용은 여기에 참조로서 도입된다.This application is based on Japanese patent application filed on January 7, 2011 (Japanese Patent Application No. 2011-002014, the content of which is incorporated herein by reference).

본 발명의 강선재는, 열간 압연 후(신선 가공 전)의 메커니컬 디스케일링성이 우수하기 때문에, 자동차의 타이어 코드(스틸 코드, 비드 와이어)나 호스 와이어 외에, 반도체용 실리콘 등의 절단에 사용되는 와이어 쏘 등의 소재로서 유용하다.Since the steel wire material of the present invention is excellent in mechanical descalability after hot rolling (before the drawing process), it is possible to use a wire used for cutting silicon for semiconductor and the like in addition to a tire cord (steel cord, bead wire) It is useful as a material for saws and the like.

Claims (8)

두께 7.0㎛ 이하의 스케일을 갖고, 또한 상기 스케일 중의 FeO 비율이 30 내지 80 체적%이며, Fe2SiO4 비율이 0.1 체적% 미만인 강선재를 제조하는 방법에 있어서,
C: 0.05 내지 1.2%(질량%의 의미. 이하, 화학 성분에 대하여 동일함),
Si: 0.01 내지 0.5%,
Mn: 0.1 내지 1.5%,
P: 0.02% 이하(0%를 포함하지 않음),
S: 0.02% 이하(0%를 포함하지 않음),
N: 0.005% 이하(0%를 포함하지 않음)를 함유하고, 잔량부가 철 및 불가피 불순물인 강을,
열간 압연 후, 750 내지 880℃에서 권취하고,
적어도 650℃까지 권취 후의 강재의 온도가 낮아지기까지는, 산소 분율이 20체적% 미만인 산소와 불활성 가스의 혼합가스, 또는 불활성 가스를 분출하면서 냉각하는 것을 특징으로 하는 강선재의 제조방법.
A method for producing a steel wire rod having a scale of 7.0 탆 or less in thickness and FeO ratio in the scale of 30 to 80% by volume and Fe 2 SiO 4 ratio of less than 0.1%
C: 0.05 to 1.2% (meaning% by mass, hereinafter the same with respect to the chemical components)
0.01 to 0.5% of Si,
Mn: 0.1 to 1.5%
P: not more than 0.02% (not including 0%),
S: not more than 0.02% (not including 0%),
N: 0.005% or less (not including 0%) and the balance being iron and unavoidable impurities,
After hot rolling, the steel sheet was rolled at 750 to 880 캜,
Wherein the steel wire rod is cooled while spraying a mixed gas of oxygen and an inert gas or an inert gas having an oxygen fraction of less than 20% by volume until the temperature of the steel material after winding up to at least 650 캜 is lowered.
제1항에 있어서,
상기 강선재는 Cr: 0.3% 이하(0%를 포함하지 않음)와 Ni: 0.3% 이하(0%를 포함하지 않음) 중 하나 이상을 더 함유하는, 강선재의 제조방법.
The method according to claim 1,
Wherein the steel wire material further contains at least one of Cr: not more than 0.3% (not including 0%) and Ni: not more than 0.3% (not including 0%).
제1항 또는 제2항에 있어서,
상기 강선재는 Cu: 0.2% 이하(0%를 포함하지 않음)를 더 함유하는, 강선재의 제조방법.
3. The method according to claim 1 or 2,
Wherein the steel wire material further contains 0.2% or less of Cu (not including 0%).
제1항 또는 제2항에 있어서,
상기 강선재는 Nb, V, Ti, Hf 및 Zr를 포함하여 이루어지는 군으로부터 선택되는 적어도 1종의 원소를, 합계 0.1% 이하(0%를 포함하지 않음)를 더 함유하는, 강선재의 제조방법.
3. The method according to claim 1 or 2,
Wherein the steel wire rod further contains at least one element selected from the group consisting of Nb, V, Ti, Hf and Zr in a total amount of not more than 0.1% (not including 0%).
제1항 또는 제2항에 있어서,
상기 강선재는 Al: 0.1% 이하(0%를 포함하지 않음)를 더 함유하는, 강선재의 제조방법.
3. The method according to claim 1 or 2,
Wherein the steel wire rod further contains 0.1% or less Al (not including 0%) of Al.
제1항 또는 제2항에 있어서,
상기 강선재는 B: 0.005% 이하(0%를 포함하지 않음)를 더 함유하는, 강선재의 제조방법.
3. The method according to claim 1 or 2,
Wherein the steel wire material further contains B: 0.005% or less (not including 0%).
제1항 또는 제2항에 있어서,
상기 강선재는 Ca: 0.01% 이하(0%를 포함하지 않음)와 Mg: 0.01% 이하(0%를 포함하지 않음) 중 하나 이상을 더 함유하는, 강선재의 제조방법.
3. The method according to claim 1 or 2,
Wherein the steel wire material further contains at least one of Ca: 0.01% or less (not including 0%) and Mg: 0.01% or less (excluding 0%).
제1항에 있어서, 상기 불활성 가스가 질소인, 강선재의 제조방법.

The method of producing a steel wire rod according to claim 1, wherein the inert gas is nitrogen.

KR1020147014715A 2011-01-07 2012-01-06 Method for producing steel wire material KR20140076642A (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JPJP-P-2011-002014 2011-01-07
JP2011002014A JP4980471B1 (en) 2011-01-07 2011-01-07 Steel wire rod and manufacturing method thereof
PCT/JP2012/050155 WO2012093715A1 (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020137017580A Division KR20130087613A (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same

Publications (1)

Publication Number Publication Date
KR20140076642A true KR20140076642A (en) 2014-06-20

Family

ID=46457565

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020137017580A KR20130087613A (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same
KR1020147014715A KR20140076642A (en) 2011-01-07 2012-01-06 Method for producing steel wire material

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020137017580A KR20130087613A (en) 2011-01-07 2012-01-06 Steel wire material and method for producing same

Country Status (6)

Country Link
US (1) US20130272914A1 (en)
EP (1) EP2662468A4 (en)
JP (1) JP4980471B1 (en)
KR (2) KR20130087613A (en)
CN (1) CN103314125B (en)
WO (1) WO2012093715A1 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105088063B (en) * 2014-05-19 2017-04-26 上海梅山钢铁股份有限公司 Work-hardening high-strength steel and manufacturing method thereof
CN105316573B (en) * 2014-06-23 2017-07-21 鞍钢股份有限公司 A kind of 80 grades of Wire Rod Steel for Curtain String Purpose and its production method suitable for Pickling Descaling
CN106661649B (en) * 2014-10-08 2019-05-03 新日铁住金株式会社 Heat- treated steel product and its manufacturing method with high-intensitive and excellent chemical convertibility
CN107429363B (en) 2015-04-08 2019-08-23 日本制铁株式会社 Heat- treated steel board member and its manufacturing method
EP3282029B1 (en) 2015-04-08 2020-02-12 Nippon Steel Corporation Steel sheet for heat treatment
KR102034127B1 (en) 2015-04-08 2019-10-18 닛폰세이테츠 가부시키가이샤 Heat-treated steel sheet member and its manufacturing method
KR101676201B1 (en) * 2015-12-07 2016-11-15 주식회사 포스코 High carbon steel wire rod and steel wire having excellent hydrogen induced cracking resistance and method for manufacturing thereof
JP6757194B2 (en) * 2016-07-11 2020-09-16 日本パーカライジング株式会社 Pre-heat treatment carbon steel with excellent scale removal properties, post-heat treatment carbon steel and their manufacturing methods, scale removal methods and easily descalable film forming agents
JP7123038B2 (en) * 2017-04-17 2022-08-22 株式会社ブリヂストン Cable bead and aircraft tire using the same
CN110546324B (en) 2017-04-28 2022-02-18 株式会社普利司通 Steel cord for reinforcing rubber article, method for producing same, and tire
WO2020065372A1 (en) * 2018-09-25 2020-04-02 Arcelormittal High strength hot rolled steel having excellent scale adhesivness and a method of manufacturing the same
EP3674425B1 (en) * 2018-12-31 2022-05-04 Baker Hughes Energy Technology UK Limited Steel wire
CN110560495A (en) * 2019-09-17 2019-12-13 安徽工业大学 Laboratory scale removal experiment platform and experiment method thereof

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2969293B2 (en) 1991-03-22 1999-11-02 新日本製鐵株式会社 Manufacturing method of mild steel wire rod with excellent mechanical descaling
JP3265123B2 (en) * 1994-06-03 2002-03-11 新日本製鐵株式会社 Wire material with excellent mechanical descaling and drawing properties
JP3434080B2 (en) 1995-04-21 2003-08-04 新日本製鐵株式会社 Wire for descaling
JPH10324923A (en) 1997-05-27 1998-12-08 Nippon Steel Corp Wire rod for steel wire
JPH11172332A (en) 1997-12-15 1999-06-29 Sumitomo Metal Ind Ltd High carbon steel wire rod
JP2000246322A (en) * 1999-02-25 2000-09-12 Kobe Steel Ltd Rolled wire rod superior in acid pickling property, and its manufacturing method
JP4159706B2 (en) * 1999-07-19 2008-10-01 株式会社神戸製鋼所 Steel wire rod with excellent scale peelability during mechanical descaling
JP3744279B2 (en) * 1999-09-09 2006-02-08 Jfeスチール株式会社 Method for producing high carbon hot-rolled steel sheet with excellent scale adhesion
JP2005281793A (en) * 2004-03-30 2005-10-13 Sumitomo Metal Ind Ltd Method for producing wire rod for steel wire, and wire rod for steel wire
JP4375149B2 (en) 2004-07-21 2009-12-02 住友金属工業株式会社 High strength low alloy steel wire
JP4971719B2 (en) * 2005-08-12 2012-07-11 株式会社神戸製鋼所 Steel wire rod for mechanical descaling
CN101208440B (en) * 2005-08-12 2012-12-12 株式会社神户制钢所 Steel wire rod excellent in mechanical de-scaling property, and producing method thereof
JP4704978B2 (en) * 2006-08-28 2011-06-22 株式会社神戸製鋼所 A method for producing steel with excellent scale peelability.
JP5084206B2 (en) * 2006-09-12 2012-11-28 株式会社神戸製鋼所 Manufacturing method of steel wire with excellent drawability

Also Published As

Publication number Publication date
US20130272914A1 (en) 2013-10-17
JP2012144756A (en) 2012-08-02
KR20130087613A (en) 2013-08-06
CN103314125B (en) 2015-05-27
EP2662468A4 (en) 2015-05-27
EP2662468A1 (en) 2013-11-13
JP4980471B1 (en) 2012-07-18
CN103314125A (en) 2013-09-18
WO2012093715A1 (en) 2012-07-12

Similar Documents

Publication Publication Date Title
KR20140076642A (en) Method for producing steel wire material
KR101330375B1 (en) Steel wire material and production method for same
KR101103233B1 (en) Steel wire rod
JP5179331B2 (en) Hot rolled wire rod excellent in wire drawing workability and mechanical descaling property and manufacturing method thereof
KR101699194B1 (en) Hot-rolled steel sheet for producing non-oriented electrical steel sheet and method of producing same
US8210231B2 (en) Cast slab of non-oriented electrical steel and manufacturing method thereof
EP1921172B1 (en) Method for production of steel material having excellent scale detachment property, and steel wire material having excellent scale detachment property
JP6127440B2 (en) Hot rolled steel sheet for manufacturing non-oriented electrical steel sheet and method for manufacturing the same
KR20030082997A (en) Steel wire rod excellent in mechanical descalability and manufacturing method thereof
JP4375149B2 (en) High strength low alloy steel wire
EP3561100A1 (en) Wire rod
JP2010222630A (en) Method for producing high-carbon steel wire rod excellent in drawability
JP2007297674A (en) High-carbon steel wire rod superior in cuppy break resistance
CN112840044A (en) Hot-rolled wire
EP4108790A1 (en) Steel sheet for non-oriented electromagnetic steel sheet
US9382597B2 (en) Steel sheet for enamel having no surface defects and method of manufacturing the same

Legal Events

Date Code Title Description
A107 Divisional application of patent
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20150330

Effective date: 20160422