WO2012093654A1 - 波長掃引光源 - Google Patents

波長掃引光源 Download PDF

Info

Publication number
WO2012093654A1
WO2012093654A1 PCT/JP2012/000017 JP2012000017W WO2012093654A1 WO 2012093654 A1 WO2012093654 A1 WO 2012093654A1 JP 2012000017 W JP2012000017 W JP 2012000017W WO 2012093654 A1 WO2012093654 A1 WO 2012093654A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength
resonator
light source
light
frequency
Prior art date
Application number
PCT/JP2012/000017
Other languages
English (en)
French (fr)
Inventor
豊田 誠治
長沼 和則
勇一 岡部
八木 生剛
加藤 和利
上野 雅浩
坂本 尊
今井 欽之
純 宮津
野口 一人
茂雄 石橋
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to US13/978,122 priority Critical patent/US9372339B2/en
Priority to EP12731920.0A priority patent/EP2662683B1/en
Priority to JP2012551855A priority patent/JP5913135B2/ja
Publication of WO2012093654A1 publication Critical patent/WO2012093654A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/06Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the phase of light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/107Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using electro-optic devices, e.g. exhibiting Pockels or Kerr effect
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/143Littman-Metcalf configuration, e.g. laser - grating - mirror
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08018Mode suppression
    • H01S3/08022Longitudinal modes
    • H01S3/08027Longitudinal modes by a filter, e.g. a Fabry-Perot filter is used for wavelength setting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/105Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/14External cavity lasers
    • H01S5/141External cavity lasers using a wavelength selective device, e.g. a grating or etalon
    • H01S5/142External cavity lasers using a wavelength selective device, e.g. a grating or etalon which comprises an additional resonator

Definitions

  • the present invention relates to a light source that can be used for an optical device, an electronic device, or the like. More specifically, the present invention relates to a wavelength swept light source that can be used for imaging using wavelength swept light.
  • Imaging technology using optical devices is spreading not only to consumer electronic devices such as cameras, printers and facsimiles, but also to the medical field.
  • X-ray imaging using X-rays and diagnosis using ultrasonic waves are already widely used.
  • the use frequency and the use site are greatly limited, and the resolution is limited to the resolution of the same magnification photographing of the film.
  • the resolution is usually only about 1 cm. Therefore, imaging at the cell level size is impossible.
  • OCT optical coherence tomography
  • OCT uses the principle of a Michelson interferometer, and uses low-coherence light as a light source to irradiate the living body with this low-coherence light. Based on the interference light between the reference light and the reflected light from the living body, an image of the living body under the skin is obtained. OCT has been put to practical use as an indispensable diagnostic instrument in ophthalmology for retinal diagnosis.
  • FIG. 13 is a diagram for explaining the basic principle of OCT (Non-Patent Document 1).
  • Low-coherence light having a coherence length ⁇ lC is supplied as incident light to the living body 4.
  • the outgoing light 6 from the light source 1 enters the beam splitter 2 and is divided into two equal parts.
  • One of the halved lights 7 travels to the movable mirror 3, is reflected by the movable mirror 3, and travels again to the beam splitter 2 as reference light 8.
  • the other light 9 of the bisected light is reflected on the reflection surfaces A, B, or C at different depths inside the living body 4 to obtain signal lights 11a, 11b, and 11c, respectively.
  • Each signal light interferes with the reference light 10 through the beam splitter 2. By this interference, the reflected light whose wavefront is distorted due to excessive scattering in the living body is removed, and only the reflected light maintaining the original plane wave is selectively detected.
  • the light reflected by the reflecting surface A causes interference when the movable mirror 3 is at the position A ′.
  • the distance between the center of the beam splitter 2 and the movable mirror 3 is LR
  • the distance between the center of the beam splitter 2 and the reflecting surface A is LS
  • the reference light and the signal light are An electric signal is obtained from the photodetector 5 due to interference.
  • the above equation is established in a one-to-one correspondence with each of the reflecting surface A and the movable mirror position A ′, the reflecting surface B and the movable mirror position B ′, and the reflecting surface C and the movable mirror position C ′. Accordingly, by continuously moving the movable mirror 3 at a constant speed v, the reflected light intensity distribution under the living body surface along the optical axis (z-axis) direction in the living body 4 is measured with a spatial resolution of ⁇ lc. Can do. By scanning the incident light on the living body in the x direction with a scanning mirror or the like, a reflected light intensity distribution under the surface of the living body in the xz plane is obtained, and this becomes a final OCT image.
  • the configuration of the Michelson interferometer in FIG. 13 can use an optical fiber coupler, so that an inspection instrument that can be used in clinical settings is realized.
  • the OCT having the configuration shown in FIG. 13 is called a time domain (TD) OCT (hereinafter referred to as TD-OCT) because image data is acquired in time series by moving a movable mirror.
  • TD-OCT time domain OCT
  • the scanning speed is limited.
  • OCT has been requested to acquire information in the depth direction as quickly as possible.
  • FD-OCT Fourier domain
  • a spectroscope that decomposes signal light from a living body into light of each wavelength is arranged in front of the photodetector 5 in FIG. 13, and an interference spectrum is detected by a detector element array of the photodetector. . That is, an interference spectrum is obtained by a parallel detector in which a large number of detector element elements corresponding to each wavelength are arranged. The spectrum detected by the parallel detector is Fourier transformed to obtain a reflected light intensity portion distribution along the optical axis.
  • a parallel detector having a large number of detector element elements is required. In many cases, it is necessary to detect signals of respective wavelengths simultaneously in more than 1000 detector element elements.
  • Such a parallel detector is only realized by a silicon CCD or CMOS in a wavelength band of 1.1 ⁇ m or less, and it is difficult to obtain a parallel detector at a longer wavelength.
  • FD-OCT can be applied to retinal diagnosis where visible light can be used, but cannot be applied to OCT for tissues such as skin that require operation in a longer wavelength region.
  • absorption by hemoglobin cannot be ignored unless light on the long wavelength side is used up to about 1.3 ⁇ m due to the scattering of red blood cells by hemoglobin.
  • the wavelength of the light source reaches about 1.5 ⁇ m, the absorption by water becomes remarkable. If it exceeds 1.6 ⁇ m, it will be difficult to obtain a photodetector. For these reasons, there has been a demand for using a light source in the 1.3 ⁇ m band in order to use OCT on the skin and the like.
  • SS-OCT swept light source
  • signal light obtained by irradiating a living body with light from a coherence light source as in FD-OCT is split by a spectroscope to generate a plurality of wavelength signals at one time. Sweep regularly.
  • a single detector can be used to detect signals of each wavelength in a time division manner.
  • wavelength division is performed by a spectroscope according to a spatial position
  • SS-OCT wavelength division is performed by time
  • a single detector can be used. Since a parallel detector having a large number of detector element elements is not required and there is no restriction on the selection of detectors, a light source of 1.3 ⁇ m band can also be used.
  • FIG. 14 is a diagram schematically showing the principle of SS-OCT (Non-patent Document 1).
  • SS-OCT an optical signal 26 in which the optical frequency is swept linearly with respect to time is supplied from the optical frequency (wavelength) sweep light source 21 to the living body 24.
  • the optical frequency sweep light source 21 for example, a wavelength variable laser is used.
  • the difference in optical frequency between the reference light 28 and the reflected lights 29b and 29c from the reflecting surface 32 and the reflecting surface 33 in the living body is constant regardless of time. If the difference between these optical frequencies is f2 and f3, signal light in which beat frequencies f2 and f3 corresponding to the reflecting surface 32 and the reflecting surface 33 are mixed is obtained by interference between the reference light 28 and the reflected light 29b and 29c. It is done. When this signal light is Fourier transformed, the reflected light intensity at beat frequencies f2 and f3 is obtained. If the optical frequency from the light source 21 is swept linearly, the beat frequencies f2 and f3 are directly proportional to the depth d2 and the depth d3. In the living body, reflected light is generated from various places. Therefore, the reflected light intensity distribution along the optical axis (z-axis) direction can be obtained by Fourier transforming the interference light. If beam scanning is performed also in the x-axis direction, an OCT image in the xz plane can be obtained.
  • the photodetector 25 only needs to detect signal light mixed with interference light having different beat frequencies with a single detection element, and therefore, no parallel detector is required as in the conventional FD-OCT. It is possible to use a 1.3 ⁇ m band swept light source suitable for diagnosing skin and the like.
  • SS-OCT is being put to practical use in areas other than ophthalmology because of its stable configuration using optical fiber couplers, high-speed image acquisition due to the absence of movable mirrors, and the ease of use of various photodetectors. It has been.
  • the sweep and light wavelength sweep light source is one of the important components.
  • a light wavelength sweeping light source in the prior art for example, a light source using a polygon mirror has been used.
  • FIG. 15 is a diagram showing a configuration of a wavelength swept light source using a conventional polygon mirror.
  • the wavelength swept light source 100 includes a polygon mirror 120 and a laser oscillator including a diffraction grating 106 and a gain medium 101 arranged in a Littrow configuration.
  • the laser oscillator includes condensing lenses 102 and 111 at both ends of the gain medium 101, and output light 113 is obtained from the output coupling mirror 112.
  • is the pitch of the diffraction grating
  • is the oscillation wavelength
  • m the diffraction order.
  • the oscillation light is reflected by the diffraction grating 106 at the same exit angle ⁇ as the incident angle, and reciprocates in the optical path between the diffraction grating 106 and the output coupling mirror 112. Since the polygon mirror 120 rotates at a constant speed in the direction 121, the incident / reflection angle of the oscillation light on the reflection surface A of the polygon mirror 120 changes periodically with rotation. Therefore, the oscillation wavelength ⁇ determined by the equation (2) changes with rotation according to the incident angle ⁇ to the diffraction grating 106. Since the polygon mirror 120 rotates at a constant rotation speed, the incident (reflection) angle ⁇ to the diffraction grating 106 changes at a constant speed. Therefore, the oscillation wavelength ⁇ of the wavelength swept light source 100 changes substantially linearly with respect to time.
  • FIG. 16 is a diagram showing a change over time in the oscillation wavelength obtained by a conventional wavelength swept light source using a polygon mirror.
  • the oscillation wavelength is slightly convex with respect to the time t on the horizontal axis and changes in a substantially linear (linear) manner.
  • the time change profile of the wavelength required for SS-OCT is different from the time change in which the oscillation wavelength changes linearly as obtained by the wavelength swept light source using the polygon mirror. .
  • the basic principle of OCT described with reference to FIG. 13 will be referred to again.
  • OCT in order to linearly scan the inside of a living body in the optical axis (z-axis) direction with good linearity, the delay times of the reference beams 7 and 8 need to change linearly.
  • the position of the movable mirror 3 moves at a constant speed from A ′ to C ′ over the entire movable range, so that the living body is also scanned at a constant speed.
  • Such an operation is most ideal from the viewpoint of the linearity of the OCT image. If the mirror does not move at a constant speed, the resulting OCT image will be non-linearly distorted in the optical axis (z-axis) direction.
  • the wavelength change when the wave number changes linearly with respect to time is simultaneously shown as a desirable wavelength change by a broken line 41.
  • the rate of change increases as the oscillation wavelength becomes longer (the upper side of the vertical axis in FIG. 16) is curved downward.
  • a suitable wavelength change profile is appropriate.
  • the upward convex and substantially linear wavelength change is a shape derived from the sin term of the diffraction grating equation of Equation (2), The direction of the curve cannot be changed even if the above means is used.
  • the wavelength swept light source of the prior art cannot realize a wavelength change suitable for SS-OCT, and has a problem that a sharp OCT image cannot be obtained.
  • the present invention has been made in view of the above-described problems, and can eliminate the distortion of linearity in the depth direction of the OCT image, obtain a sharp OCT image, and can be applied to SS-OCT.
  • An object is to provide a possible wavelength swept light source.
  • an oscillator unit including an electro-optic deflector and a power component of the sawtooth waveform are superimposed in addition to the main sawtooth waveform.
  • a wavelength-swept light source comprising a control voltage generation unit that generates a control voltage to be applied to the electro-optic deflector.
  • potassium tantalate niobate (KTa1-x NbxO3 (0 ⁇ x ⁇ 1): KTN) or lithium-doped (K1-yLiyTa1-xNbxO3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1)) is preferably used.
  • the invention according to claim 2 is the wavelength-swept light source according to claim 1, wherein the oscillator unit includes a gain medium and a diffraction grating on which light from one end of the gain medium is incident.
  • a diffraction grating and an optically connected resonator, and the electro-optic deflector is disposed between the gain medium and the diffraction grating on an optical path formed by the resonator;
  • a square component having a coefficient represented by is superimposed.
  • the control voltage generation unit can be configured by an analog electronic circuit, and can be configured by combining sawtooth waveform generation, a multiplier, and an adder.
  • a high voltage amplifier is preferably included to generate the control voltage.
  • the control voltage versus angle sensitivity ⁇ ⁇ ⁇ [rad / V] includes the gain A of the high voltage amplifier.
  • An arbitrary waveform generator can also be used as the control voltage generator.
  • the invention according to claim 3 is the wavelength swept light source according to claim 2, wherein, as the power component of the sawtooth waveform, in addition to the square component, a formula
  • the invention according to claim 4 is the wavelength swept light source according to claim 1, wherein the oscillator unit includes a gain medium, a diffraction grating on which light from one end of the gain medium is incident, and the incident light to the diffraction grating. And an end mirror to which the diffracted light of the incident light is directly incident, and is configured by a resonator in which the gain medium and the end mirror are optically connected via the diffraction grating.
  • the light incident angle from the electro-optic deflector side to the diffraction grating is ⁇
  • the control voltage versus angle sensitivity of the electro-optic deflector is ⁇ [rad / V]
  • a square component having a coefficient represented by is superimposed.
  • the invention according to claim 5 is the wavelength swept light source according to claim 4, wherein the power component of the sawtooth waveform is an expression in addition to the square component. Further, a cube component having a coefficient represented by is further superimposed.
  • the present invention can provide a wavelength swept light source that realizes a wavelength change suitable for SS-OCT.
  • a wavelength sweep having a profile in which the wavelength change on the time axis changes linearly with respect to the wave number, the linearity of the OCT image can be greatly improved and a sharp OCT image can be obtained.
  • FIG. 6 is a diagram showing a point image obtained by OCT using the wavelength swept light source of Example 3. It is a figure explaining the basic principle of OCT. It is the figure which showed the principle of SS-OCT typically. It is the figure which showed the structure of the wavelength swept light source using the polygon mirror of a prior art. It is the figure which showed the time change of the oscillation wavelength obtained by the wavelength swept light source using the polygon mirror of a prior art.
  • FIG. 17 It is a figure which shows the time dependence of a wave number. In the case of FIG. 17, it is a figure which shows the superimposition waveform to the 10th harmonic. It is a figure which shows the structure of the wavelength sweep light source of 3rd Embodiment. It is a figure which shows the resonance characteristic of an etalon filter. It is a figure which shows the output light of a wavelength sweep light source. It is a figure which shows the frequency characteristic of the output light of a wavelength sweep light source. It is a figure which shows the frequency characteristic of the output light of a wavelength sweep light source, when not arrange
  • 3rd Embodiment it is a figure which shows an example of the relationship between the input wavelength of the etalon filter actually inserted, and the transmittance
  • 3rd Embodiment it is a figure which shows an example of each wavelength sweep characteristic measured before insertion of an etalon filter.
  • 3rd Embodiment it is a figure which shows an example of each wavelength sweep characteristic measured at the time of insertion of an etalon filter. It is a figure which shows the example which expanded the wavelength sweep characteristic measured at the time of etalon filter insertion with respect to the wavelength. It is a figure which shows the mode of the wavelength when not using an etalon filter.
  • FIG. 30 is a diagram showing an enlarged example of 1319.9 nm to 132.15 nm among the wavelength sweep characteristics shown in FIG. 29B.
  • the wave number changes linearly with respect to time by appropriately shaping the waveform of the control voltage applied to the electro-optic deflector. It is characterized by causing such a wavelength change.
  • the configuration of the wavelength swept light source of the embodiment will be described in detail first.
  • the configuration and operation of the electro-optic deflector will be described.
  • a control voltage control method unique to the embodiment of the present invention that gives a wavelength change in which the wave number changes linearly with respect to time will be described.
  • FIG. 1 is a diagram showing a first configuration of a wavelength swept light source according to the present invention.
  • the wavelength sweep light source 200 includes an oscillator unit 201 and a control voltage generation unit 202.
  • the oscillator unit 201 is a Littrow laser oscillator, and the gain medium 101 is disposed between the first condenser lens 111 and the second condenser lens 102.
  • the diffraction grating 109 is arranged at a position such that a Littrow arrangement in which incident light and diffracted light are input and output in the same direction with respect to the gain medium 101.
  • the gain medium 101 and the diffraction grating 109 are optically connected to form an optical resonator.
  • An electro-optic deflector 103 is disposed between the condenser lens 102 and the diffraction grating 109 on the optical path formed by the resonator.
  • the first condensing lens 111 is opposed to the output coupling mirror 112, and thus an optical resonator having the output coupling mirror 112 and the diffraction grating 109 as both ends is configured. From the output coupling mirror 112, output light 113 is obtained by the laser action of this optical resonator.
  • the oscillation wavelength is swept by deflecting the incident light beam to the diffraction grating 109 through the control voltage 104 connected to the electro-optic deflector 103 from the control voltage generator 202. That is, the incident angle to the diffraction grating 109 is changed by the deflection by the electro-optic deflector 103.
  • the wavelength can be swept at high speed without the intervention of the movable part.
  • a specific configuration of the electro-optic deflector will be described in detail later.
  • the control voltage generator 202 generates a control voltage 104 unique to the present invention for the electro-optic deflector.
  • the sawtooth waveform output from the sawtooth waveform generator 115 is connected to two inputs of the first multiplier 116.
  • the output of the first multiplier 116 is input to one input of the second multiplier 118 and the first adder 117.
  • the sawtooth waveform output from the sawtooth waveform generator 115 is also connected to the other input of the second multiplier 118.
  • the output of the second multiplier 118 is input to the second adder 119.
  • the sawtooth waveform generator 115, the first adder 117, and the second adder 119 are cascaded.
  • a square component of a sawtooth waveform is obtained at the output of the first adder 117, and the output of the second adder 119 is A cube component of a sawtooth waveform is obtained.
  • the output of the second adder 119 is input to a high voltage amplifier 120 having a voltage gain A, and after being amplified to a required voltage level, a control voltage 104 is obtained.
  • the electro-optic deflector 103 preferably uses an electro-optic crystal such as potassium tantalate niobate (KTN), a voltage level of about several hundred volts is required.
  • KTN potassium tantalate niobate
  • the first multiplier 116 and the second multiplier 118 are not explicitly shown in FIG. 1, but each can set a gain and can be turned off.
  • the output of the second adder 119 has a main sawtooth waveform, a square component of the sawtooth waveform, and a sawtooth waveform.
  • a waveform in which the cube component of the waveform is superimposed with a desired coefficient is obtained.
  • the oscillation wavelength is slightly convex upward with respect to the time t on the horizontal axis as shown in FIG. Therefore, it changes almost linearly (linearly).
  • the control voltage generator 202 in FIG. 1 controls the oscillator unit 201 by setting the gains of the first multiplier 116 and the second multiplier 118 to zero. That is, as the control voltage 104, only a sawtooth waveform is applied to the electro-optic deflector 103.
  • the electro-optic deflector 103 is controlled by correcting the control voltage and using a waveform obtained by superimposing the square component of the sawtooth waveform and the cube component of the sawtooth waveform in addition to the sawtooth waveform. . Details of this correction of the control voltage will be described later.
  • FIG. 2 is a diagram showing a second configuration of the wavelength swept light source of the present invention.
  • the wavelength sweep light source 300 includes an oscillator unit 301 and a control voltage generation unit 302.
  • the oscillator unit 301 is a Litman-configured laser oscillator and has a configuration different from that of the first-configuration oscillator unit 201 having a Littrow configuration, but the control voltage generation unit 302 is the same as the control voltage generation unit 202 of the first configuration. is there. Therefore, only the configuration of the oscillator unit 301 will be described next.
  • the gain medium 101 is disposed between the first condenser lens 111 and the second condenser lens 102.
  • the gain medium 101 is coupled to a wavelength filter including an electro-optic deflector 103, a diffraction grating 106, and a direct incident end mirror 110 through a second condenser lens 102.
  • the gain medium 101 and the end mirror 110 are optically connected via the diffraction grating 106 to form a resonator.
  • the first condenser lens 111 is opposed to the output coupling mirror 112, and as a whole, an optical resonator having both the output coupling mirror 112 and the end mirror 110 as both ends is configured.
  • output light 113 is obtained by the laser action of this optical resonator.
  • the electro-optic deflector 103 is disposed between the gain medium 101 and the diffraction grating 106 and on the optical path formed by the resonator.
  • the incident angle ⁇ from the side facing the condenser lens 102 to the diffraction grating 106 there is no particular limitation between the incident angle ⁇ from the side facing the condenser lens 102 to the diffraction grating 106 and the incident angle ⁇ from the side facing the end mirror 110.
  • the incident angle ⁇ from the side facing the condenser lens 102 to the diffraction grating 106 is equal to the incident angle ⁇ from the side facing the end mirror 110. It is preferable that the absolute value is set larger than that.
  • the diffraction grating outgoing light beam 108 is expanded as compared with the diffraction grating incident light beam 107 to the diffraction grating 106, and is reflected by the end mirror 110 as a thick light beam having a small divergence angle. Therefore, the selected wavelength width of the wavelength filter can be narrowed.
  • the oscillation wavelength is swept by deflecting the diffraction grating incident light beam 107 through the control voltage source 104 connected to the electro-optic deflector 103.
  • the incident angle ⁇ to the diffraction grating 106 is changed by the deflection by the electro-optic deflector 103.
  • the wavelength swept light source of the present invention by changing the voltage 104 applied to the electro-optic deflector 103, the wavelength can be swept at high speed without the intervention of a movable part.
  • FIG. 3 is a diagram for explaining the configuration and operation of a deflector used in the wavelength swept light source of the present invention.
  • FIG. 3 illustrates the basic configuration and operation of the deflector as viewed in the deflection plane.
  • an electrode 302 and a ground electrode 303 are formed, respectively.
  • Incident light 305 propagates along a central optical axis 308 that passes between these two electrodes.
  • the control voltage source 304 when a voltage is applied to the electrode 302 by the control voltage source 304, the light beam in the crystal follows the deflection optical path 307 bent toward the negative electrode (the ground electrode 303 in FIG. The light is emitted from the crystal 301 as the incident light 306.
  • the polarization optical path 307 When the polarization optical path 307 is observed on the “crystal side (inside)” of the emission end face A, it appears as if light rays are emitted from the polarization center 310 located at the crystal center. That is, the light beam appears to rotate around the polarization center 310 due to the deflection action. When this is observed with respect to the outgoing light 306 “outside” the crystal, it now appears to rotate around the exit center 309 due to the deflection action.
  • Such an exit center 309 approaches the exit end face side due to the refraction action at the exit end face A, and is located at L / (2n) from the exit end face A when the crystal length is L.
  • n is the refractive index of the crystal.
  • the above-described deflection amount obtained in the electro-optic deflector is proportional to the crystal length.
  • the apparent power required for the control voltage source 304 increases because the capacitance increases.
  • the high-speed driving of the electro-optic deflector is hindered.
  • an effect equivalent to increasing the crystal length can be obtained by using the folding of the optical path by internal reflection. it can.
  • is an incident angle change amount to the diffraction grating received by the electro-optic deflector.
  • control voltage is a positive voltage. It becomes.
  • the relationship between the control voltage 104 and ⁇ is considered to be approximately linear. That is, it is assumed that the control voltage 104 and ⁇ are in a directly proportional relationship.
  • the control voltage 104 may be controlled so that the rate of change of the oscillation wavelength increases as the oscillation wavelength is swept to the longer wavelength side. If the control voltage is corrected in this way, the longer the oscillation wavelength is, the faster the oscillation wavelength changes, and the time variation of the oscillation wavelength becomes a downwardly convex shape.
  • the sweep wavelength is controlled so that the wave number linearly changes on the time axis. Therefore, when the present invention is applied to SS-OCT, a linear OCT image with good linearity in the depth direction of the living body of the object can be obtained.
  • the control voltage to the electro-optic deflector is not the control signal of the sawtooth waveform used in the prior art, but the power component of the sawtooth waveform is added to a predetermined coefficient (amplitude) in addition to the main sawtooth waveform. Ratio).
  • This realizes a control voltage profile of the wavelength swept light source suitable for application to SS-OCT.
  • the time variation of the oscillation wavelength has a downwardly convex shape.
  • the time change of the wavelength is controlled so as to change linearly with respect to the wave number.
  • FIG. 4A is a diagram showing a first example of a time change of a wavelength used in the wavelength-swept light source having the first configuration of the present invention
  • FIG. 4B is a diagram showing a control voltage used in the wavelength-swept light source having the first configuration of the present invention.
  • It is a figure which shows the 1st example of a time change.
  • 4 and 4B show control voltage waveforms when only the square component of the sawtooth waveform is superimposed on the main sawtooth waveform.
  • 4A shows the time change of the wavelength
  • FIG. 4B shows the time change of the control voltage given by the control voltage generator.
  • a broken line waveform a indicates a case of only a sawtooth waveform (ramp waveform) according to the prior art.
  • the solid line waveform of b shows a case where only the square component of this example is superimposed.
  • the dotted waveform of c shows the desired wavelength change.
  • the square component is superimposed with the following amplitude ratio.
  • the incident angle of light from the electro-optic deflector 103 to the diffraction grating 109 is ⁇ .
  • the voltage gain of the high-voltage amplifier 120 is A
  • a value obtained by multiplying the control voltage versus deflection angle sensitivity of the electro-optic deflector 103 by A is ⁇ (rad / V).
  • corresponds to a value obtained by dividing the deflection angle by the voltage applied to the deflector.
  • V 0 is a first-order coefficient of time
  • t is time
  • V 1 is a second-order coefficient of time
  • V 2 is a third-order coefficient of time.
  • the control voltage waveform b in FIG. 4B is obtained by adjusting the gain of the first multiplier 116 so that the coefficient of the square component of the sawtooth waveform is as follows.
  • FIG. 5A is a diagram showing a second example of a time change of a wavelength frequently used in the wavelength-swept light source having the first configuration of the present invention
  • FIG. 5B is a diagram showing control voltages frequently used in the wavelength-swept light source having the first configuration of the present invention. It is a figure which shows the 2nd example of a time change.
  • 5A and 5B show control voltage waveforms in the case where the square component of the sawtooth waveform and the cube component of the sawtooth waveform are superimposed on the main sawtooth waveform.
  • FIG. 5A shows the time change of the wavelength
  • FIG. 5B shows the time change of the control voltage given by the control voltage generator.
  • a broken line waveform a indicates a case of only a sawtooth waveform (ramp waveform) according to the prior art.
  • the waveform of the solid line b shows the case where the square component and the cube component of this example are superimposed.
  • the dotted waveform of c shows the desired wavelength change.
  • the cube component is superimposed with the following amplitude ratio.
  • the incident angle of light from the electro-optic deflector 103 to the diffraction grating 109 is ⁇ .
  • the voltage gain of the high-voltage amplifier 120 is A
  • a value obtained by multiplying the control voltage versus deflection angle sensitivity of the electro-optic deflector 103 by A is ⁇ (rad / V).
  • the control voltage waveform b in FIG. 5B is obtained by adjusting the gain of the first multiplier 116 so as to become the coefficient represented by the equation (4) and adjusting the gain of the second multiplier 118.
  • the coefficient of the cube component of the wavy waveform is expressed by the following equation.
  • Equation (4) The above equation can be obtained by the same procedure as the derivation of Equation (4) described above, and further by obtaining a condition in which the third-order differentiation with respect to t of wave number 1 / ⁇ is zero.
  • FIG. 6A is a diagram showing an example of the time change of the wavelength used for the wavelength-swept light source of the second configuration of the present invention
  • FIG. 6B is the time change of the control voltage used for the wavelength-swept light source of the second configuration of the present invention. It is a figure which shows an example. 6A and 6B show control voltage waveforms when only the square component of the sawtooth waveform is superimposed on the main sawtooth waveform.
  • FIG. 6A shows the time change of the wavelength
  • FIG. 6B shows the time change of the control voltage given by the control voltage generator.
  • a broken line waveform a indicates a case of only a sawtooth waveform (ramp waveform) according to the prior art.
  • the waveform of the solid line b shows a case where the square component of the sawtooth waveform of this example is superimposed.
  • the desired wavelength change is not shown because it matches the waveform of the present invention of b to the extent that it is difficult to distinguish and draw on the figure.
  • the electro-optic deflector uses KTN, and the control voltage versus angle sensitivity ⁇ is 0.17 mrad / V.
  • the square component is superimposed with the following amplitude ratio.
  • the light incident angle from the electro-optic deflector 103 to the diffraction grating 106 is ⁇
  • the light incident angle from the end mirror 110 to the diffraction grating 106 is ⁇ .
  • the voltage gain of the high-voltage amplifier 120 is A
  • a value obtained by multiplying the control voltage versus deflection angle sensitivity of the electro-optic deflector 103 by A is ⁇ (rad / V).
  • the control voltage waveform b in FIG. 6B is obtained by adjusting the gain of the first multiplier 116 so that the coefficient of the square component of the sawtooth waveform is expressed by the following equation.
  • the main sawtooth waveform has a sawtooth waveform having a coefficient represented by Equation (6).
  • Equation (6) By superimposing only the square component, a control voltage generally matching the desired waveform can be obtained.
  • the cube component of the coefficient represented by the following expression may be further superimposed.
  • the gain of the first multiplier 116 is adjusted so as to be the coefficient represented by the equation (6)
  • the gain of the second multiplier 118 is adjusted to The coefficient may be expressed by the following equation.
  • the method for correcting the control voltage of the electro-optic deflector according to the present invention is such that the power component (square component, cube component) of the sawtooth waveform to be superimposed is an oscillator. It is determined only by the arrangement configuration ( ⁇ , ⁇ ) around the diffraction gratings 106 and 109 in the sections 201 and 301. Therefore, the control voltage waveform can be corrected without depending on the amplitude and period of the main sawtooth waveform for performing the wavelength sweep.
  • the wavelength sweep range can be freely changed by changing the amplitude of the sawtooth waveform.
  • a desired control voltage waveform can be generated simply by adjusting the gains of the multipliers 116 and 118 and setting the coefficients of the square component and the cube component.
  • the longer the oscillation wavelength is, the faster the oscillation wavelength changes, and the time variation of the oscillation wavelength has a downwardly convex shape. That is, control is performed so that the time change of the oscillation wavelength changes linearly with respect to the wave number.
  • a simple OCT image can be obtained.
  • FIG. 7 is a diagram illustrating a wavelength error when the control voltage is corrected only for the square component in the first embodiment using the wavelength-swept light source having the first configuration.
  • the gain of the first multiplier 116 is adjusted so that only the square component has a coefficient represented by the equation (4).
  • the broken line a shows the error from the desired wavelength change of the wavelength change when swept with the control voltage of the sawtooth waveform according to the prior art.
  • the solid line b shows the error from the desired wavelength change when the wavelength component is corrected by superimposing only the square component.
  • a substantially ideal wavelength change is obtained in the range of 100 nm width centering on the wavelength of 1.35 ⁇ m.
  • FIG. 8 is a diagram illustrating a wavelength error when correction including the third power component is performed in the first embodiment using the wavelength-swept light source having the first configuration.
  • the gain of the second multiplier 118 was adjusted so as to have a coefficient represented by Equation (5).
  • the broken line a shows the error from the desired wavelength change of the wavelength change when swept with the control voltage of the sawtooth waveform according to the prior art.
  • the solid line b shows the error from the desired wavelength change of the wavelength change when correction is performed by superimposing the square component and the cube component.
  • a substantially ideal wavelength change is obtained in the range of the width 200 nm which is wider than that of FIG.
  • the wavelength error is remarkably improved in comparison with a wavelength swept light source in the case where a conventional polygon mirror is used or a control voltage including only a simple sawtooth waveform is applied to the electro-optic deflector. ing. ⁇ Example 2>
  • FIG. 9 is a diagram showing the wavelength error of Example 2 by the wavelength-swept light source having the second configuration.
  • This embodiment is based on the second configuration shown in FIG. 2, and the diffraction grating has a line marking density of 300 l / mm, the incident angle ⁇ is 72.2 °, and the incident angle ⁇ is ⁇ 33.8 °.
  • the central wavelength is 1.32 ⁇ m.
  • the power component is the first multiplier 116 so that the square component has a coefficient represented by Expression (6), and the second multiplier so that the cube component has a coefficient represented by Expression (7).
  • the gain of 118 was adjusted respectively.
  • the broken line a indicates the error from the desired wavelength change of the wavelength change when swept with the control voltage of the sawtooth waveform according to the prior art.
  • the solid line b shows the error from the desired wavelength change when the wavelength component is corrected by superimposing only the square component.
  • the solid line c indicates the error in wavelength change when correction is performed by superimposing the cube component in addition to the square component. The wavelength change closer to the ideal is realized in a wider range by performing the correction including the cube component.
  • FIG. 10 is a diagram showing a point image obtained by OCT using the wavelength swept light source of Example 2.
  • the point image (PSF: Point Spread ⁇ ⁇ ⁇ ⁇ Function) in FIG. 10 is an OCT image obtained when there is a single reflecting surface at a constant depth of the object in SS-OCT using the wavelength swept light source of Example 2. Show. This point image is obtained by calculating an SS-OCT interference waveform from a wavelength swept light source that indicates a temporal change in wavelength caused by the control voltage generated by the configuration of the second embodiment, and performing discrete Fourier transform on the interference waveform.
  • the reflection surface depth was 1.5 mm in air (optical path length difference: 3.0 mm), and 1000 points of interference data were collected at equal time intervals during a 100 nm wavelength sweep. In this case, it corresponds to acquiring 1000 points of interference data during one scan of the control voltage applied to the electro-optic deflector.
  • an OCT image composed of 500 points is obtained in the depth direction within the object.
  • the calculated Fourier amplitude is displayed in terms of dB on the vertical axis.
  • the plots of the four types of waveforms a to d are displayed while being shifted by 20 dB in the vertical axis direction so as to be easily discriminated.
  • a dotted line a indicates a point image in the case of sweeping with a control voltage including only a conventional sawtooth waveform.
  • the solid line b shows a point image when swept with a control voltage corrected by superimposing only the square component, and corresponds to the case of the wavelength error b in FIG.
  • the solid line of c shows a point image when swept with a control voltage corrected by superimposing the square component and the cube component, and corresponds to the wavelength error of c in FIG.
  • a broken line d indicates a point image when sweeping with a control voltage having an ideal desirable wavelength change.
  • Example 3 As can be seen from each point image in FIG. 10, when the control voltage of Example 2 is applied to the electro-optic deflector, compared to the case of the prior art in which the point image spreads in the depth direction, the point image is It is sharp. In particular, in the case of c including up to the third power component, it is very close to the ideal state. ⁇ Example 3>
  • FIG. 11 is a diagram showing the wavelength error of Example 3 by the wavelength swept light source having the second configuration.
  • This embodiment is based on the second configuration shown in FIG. 2, and the diffraction grating has a line marking density of 600 l / mm, the incident angle ⁇ is 52.31 °, and the incident angle ⁇ is 0.04 °. The wavelength is 1.32 ⁇ m. Compared with Example 2, the incident angle ⁇ is smaller and the engraving density of the diffraction grating is doubled.
  • each power component is adjusted by adjusting the gain of the first multiplier 116 so that the square component has a coefficient represented by Equation (6), and the cube component is represented by Equation (7).
  • the gain of the second multiplier 118 was adjusted so as to have a coefficient.
  • the broken line a indicates the error from the desired wavelength change of the wavelength change when swept with the control voltage of the sawtooth waveform according to the prior art.
  • the solid line b shows the error from the desired wavelength change when the wavelength component is corrected by superimposing only the square component.
  • the solid line c indicates the error in wavelength change when correction is performed by superimposing the cube component in addition to the square component.
  • is the pitch of the diffraction grating
  • is the oscillation wavelength
  • m is the diffraction order.
  • ⁇ and ⁇ are the incident angle and the exit angle to the diffraction grating as shown in FIG.
  • is an incident angle change amount to the diffraction grating received by the electro-optic deflector.
  • the changing shape of the wavelength ⁇ is affected by the sin term including ⁇ on the left side of Expression (8).
  • the incident angle ⁇ could be reduced.
  • the reduction in the wavelength error in Example 3 described above is considered to be due to the fact that the upwardly convex and undesirable change shape (curvature) derived from the sin term is originally smaller as ⁇ is smaller.
  • FIG. 12 is a diagram showing a point image obtained by OCT using the wavelength swept light source of Example 3.
  • FIG. Similar to FIG. 10, the vertical axis shows the Fourier amplitude calculated in dB.
  • the plots of the four types of waveforms a to d are displayed by being shifted by 20 dB on the vertical axis for easy identification.
  • a dotted line a indicates a point image when swept with a control voltage having a sawtooth waveform of the prior art.
  • the solid line b shows a point image when swept with a control voltage corrected by superimposing only the square component, and corresponds to the case of the wavelength error of b in FIG.
  • a solid line “c” indicates a point image when sweeping with a control voltage corrected by superimposing a square component and a cube component, and corresponds to the wavelength error of “c” in FIG.
  • a broken line d indicates a point image when sweeping with a control voltage having an ideal desirable wavelength change.
  • a sharper point image can be obtained in both cases of the waveform b in which only the square component is superimposed and the waveform c in which only the square component is superimposed. ing.
  • the point image becomes extremely sharp and is very close to an ideal OCT image.
  • the image can be kept sharp.
  • the correction of the control voltage can be easily generated by superimposing the power component of the sawtooth waveform on the main sawtooth waveform. Specifically, it is sufficient to superimpose only the square component of the sawtooth waveform or the square component and the cube component on the main sawtooth waveform.
  • the control voltage corrected as described above is used, in the wavelength swept light source, the longer the oscillation wavelength is, the faster the oscillation wavelength changes, and the time variation of the oscillation wavelength becomes a downwardly convex shape.
  • the sweep wavelength is controlled so as to change linearly with respect to the wave number on the time axis.
  • control voltage generators 202 and 302 in order to generate a power component of a sawtooth waveform and correct the control voltage, a multiplier, an adder, etc.
  • the analog electronic circuit is used.
  • the generation / addition of the power component is not limited to this method.
  • the control voltage can be generated by an arbitrary waveform generator based on numerically calculated data.
  • the coefficient (ratio) of the power component to be superimposed depends only on the arrangement around the diffraction grating, and does not depend on the amplitude or period of the sawtooth waveform. Accordingly, the wavelength sweep range can be freely changed by changing the amplitude of the sawtooth waveform.
  • the configurations of the oscillator units 201 and 301 can be variously modified and are not limited to the configurations shown in FIGS. That is, when the oscillation wavelength ⁇ of the wavelength swept light source 100 changes substantially linearly with respect to time with respect to the control voltage, the control voltage is given so as to change the wavelength so that the wave number changes linearly with respect to time. It should be noted that there is a feature of the present invention in that the correction is made.
  • the wave number ( ⁇ ) of the laser oscillation is expressed using a function of the deflection angle ( ⁇ ) of the light emitted from the KTN deflector as shown in the equation (9).
  • is a function of the voltage (V) applied to the KTN deflector, and ideally ⁇ and V are proportional.
  • V voltage
  • ⁇ and V are proportional.
  • the KTN deflector is electrically equivalent to a capacitor having a capacitance of several nF.
  • driving a KTN deflector with a voltage of several hundreds of volts at a frequency of several hundred kHz, it is better to drive it with a resonant circuit consisting of capacitors, resistors and coils than a power supply that generates an arbitrary waveform by reducing the output impedance. This is advantageous from the viewpoint of power consumption and size of the power supply.
  • the KTN deflector is driven only with the above-described resonance circuit, only a sine wave can be generated. Therefore, the resonance frequency is the fundamental wave, and its harmonics are superimposed with the DC voltage while adjusting the amplitude and / or phase. It is a realistic technique to do.
  • the wavelength sweep is periodically performed at an angular frequency ⁇ , when the fundamental wave and the harmonic are superimposed on the DC offset voltage, the voltage pattern is expressed by the following equation (12).
  • Equation 9 the wave number is given as a function of time with each frequency component and phase of the applied voltage as parameters.
  • ⁇ k i ⁇ to each frequency component, ⁇ theta i ⁇ , it becomes complex function comprising components of ⁇ V i ⁇ .
  • the phase delay or amplitude of each harmonic depends on the value of the load or voltage.
  • the actual value of the wave number time dependence is determined. It is effective to perform feedback control to approach the time dependence having a predetermined value.
  • the coefficients ⁇ f m ⁇ and ⁇ m ⁇ shown in Equation 15 are determined by using the wave number (k) as a function of each frequency component ⁇ f m ⁇ of the applied voltage and the phase shift ⁇ m ⁇ . Equivalent to.
  • M is an upper limit value indicating how much harmonics are applied.
  • M 10.
  • Equation 19 is used for the initial values of the amplitude and phase for each of the fundamental wave and harmonics of the applied voltage.
  • the wave number of the output light changes according to the above voltage pattern.
  • the change in the wave number at this time is measured using the method disclosed in the following document (that is, the method of sampling the voltage waveform so as to have an equal wave number interval) (step 1).
  • the wave number change is represented by the following equation (20).
  • Equation 17 the Fourier transform (K m ) of the wave number change expressed by Equation 20 is calculated in accordance with Equation 17 (Step 2).
  • FIG. 19 is a diagram showing a configuration of the wavelength swept light source 1b according to the present embodiment.
  • This wavelength swept light source 1b outputs only the resonator 300, the first condenser lens 111 that emits the light incident from the resonator 300 as parallel light, and the light incident from the first condenser lens 111. And an optical isolator 112 that transmits light s1.
  • the resonator 300 includes an electro-optic deflector 301 and a control voltage source 302 connected to the electro-optic deflector 301.
  • the electro-optic deflector 301 includes, for example, potassium tantalate niobate (KTa 1-x Nb x O 3 (0 ⁇ x ⁇ 1): KTN) crystal, (K 1-y Li y Ta 1- It is a deflector using x Nb x O 3 (0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1): KLTN) crystal or the like. Since the KTN crystal and the KLTN crystal have a large dielectric constant and a high electro-optic effect, the refractive index can be changed by an applied voltage. In FIG. 19, as an example, the case where the resonator 300 is configured by a Littman arrangement is illustrated.
  • an LD (Laser Diode) 101 having a laser medium for exciting a gain medium is provided.
  • a partial reflection coating (HR) is applied to the first end face 101 ⁇ / b> A of the LD located outside the resonator 100, and the second end face 101 ⁇ / b> B of the LD located inside the resonator 100 is An antireflective coating (AR) is applied.
  • the resonator 300 includes a second condenser lens 102, an etalon filter 103 (second resonator), a diffraction grating 104, and a mirror 105 (reflecting mirror).
  • the second condenser lens 102 that enters the light that passes through the second end face 101B of the LD emits the light as parallel light.
  • the etalon filter 103 is configured to transmit only light in a specific frequency range (wavelength range) from the light oscillated in the resonator 100.
  • the etalon filter 103 is formed of a rectangular parallelepiped glass, and about 30% of a reflection film is applied to both end faces of the coating that transmit light. The light output characteristics of the etalon filter 103 will be described later.
  • the diffraction grating 104 selects the wavelength of incident light.
  • a diffraction grating 104 having a sawtooth groove diffracts incident light having a desired wavelength.
  • the refractive index of the electro-optic deflector 301 changes, and the path of light transmitted through the electro-optic deflector 301 also changes.
  • FIG. 19 is a diagram showing the resonator length and the etalon filter length. As shown in FIG. 19, the resonator length of the resonator 100 is a distance d between the first end face 101 ⁇ / b> A and the mirror 105.
  • the etalon filter length of the etalon filter 103 is a distance d1 between both end faces of the coating.
  • the distance d is 10 cm and the distance d1 is 5 mm. That is, d1 ⁇ d holds.
  • FIG. 20 is a diagram showing the resonance characteristics of the etalon filter. This output characteristic shows a characteristic in which the horizontal axis represents the frequency of light transmitted through the etalon filter 103 and the vertical axis represents the intensity of light transmitted through the etalon filter length d1 in FIG.
  • the output characteristic of the etalon filter 103 is a comb-type characteristic that transmits only a specific frequency, as shown in FIG.
  • the frequency interval of c / (2d1) is 20 GHz.
  • FIG. 21 is a diagram showing the output light of the wavelength swept light source.
  • 21A is a diagram showing the oscillation mode of the resonator
  • FIG. 21B is a diagram showing the oscillation mode of the etalon filter
  • FIG. 21C is a diagram showing the output light s1 of the wavelength swept light source 1. .
  • the frequency is on the horizontal axis and the light intensity is on the vertical axis.
  • the frequency interval is the frequency shown in FIG. It becomes longer than the interval.
  • the output light s1 of the wavelength swept light source (shown by a straight line for the sake of simplicity) is oscillated by the resonator as shown in FIG. Oscillation is performed at a frequency (for example, fa) at which the mode matches the oscillation mode of the etalon filter. Therefore, the wavelength swept light source 1 can intermittently output light at the frequency interval of the oscillation mode of the etalon filter.
  • the frequency of the oscillation mode of the resonator in FIG. 21B is drawn toward the center frequency of the oscillation mode. Thereby, the power of the output light s1 in FIG. 21C is stabilized.
  • FIG. 22 is a diagram showing the frequency characteristics of the output light s1 of the wavelength swept light source. This frequency characteristic is shown in FIG. 19 (when the etalon filter 103 is present and the etalon filter length is d1), the center frequencies of the oscillation modes of the etalon filter 103 are fa, fb, fc, fd, fe,. In the case of fh, the characteristics are shown with the horizontal axis representing the output time t of the output light s1 of the wavelength swept light source 1, and the vertical axis representing the oscillation frequency of each output light. In the frequency characteristics shown in FIG. 22, the output characteristics (light intensity is indicated on the horizontal axis and the oscillation frequency is indicated on the vertical axis) 501 of the etalon filter 103 are indicated by broken lines.
  • FIG. 22 shows a part of the frequency characteristic of the output light s1 of the wavelength swept light source, but in the description of this embodiment, as an example, from 240 THz (wavelength is 1250 nm) to 222 THz (wavelength is 1350 nm).
  • the frequency width is a part of the frequency characteristic of the output light s1 of the wavelength swept light source, but in the description of this embodiment, as an example, from 240 THz (wavelength is 1250 nm) to 222 THz (wavelength is 1350 nm).
  • the frequency width is a part of the frequency characteristic of the output light s1 of the wavelength swept light source, but in the description of this embodiment, as an example, from 240 THz (wavelength is 1250 nm) to 222 THz (wavelength is 1350 nm).
  • the output light s1 of the wavelength swept light source 1 is intermittently oscillated at a frequency having an interval of c / (2d1). Therefore, the frequency bandwidth of each output light becomes narrow.
  • the frequency characteristic of the output light of the wavelength swept light source is not changed because the frequency interval of the oscillation mode of the resonator is not changed, as shown in FIG. Characteristics. Therefore, the output light of the wavelength swept light source when the etalon filter 103 is not arranged has a wider frequency bandwidth (frequency spectrum width) than that of the output light s1 in FIG. A measurement error due to a change in the value and the measurement end value is likely to occur. In addition, it becomes difficult to intermittently observe output light having only a desired frequency.
  • Example 6 In the wavelength-swept light source according to the third embodiment, the case where one etalon filter is provided has been described. However, a plurality of etalon filters may be provided inside or outside the resonator.
  • the oscillation frequency can output light having a desired frequency at a constant frequency interval.
  • a plurality of etalon filters may be provided in a distributed manner inside and outside the resonator according to the third embodiment.
  • Example 7 The case where light having a desired frequency is intermittently output at a constant frequency interval has been described above with reference to the third embodiment. However, it has been confirmed that the wavelength swept light source of each embodiment also has an aspect that the coherence length at the time of the wavelength sweep does not deteriorate as compared with that before the wavelength sweep. That is, it was confirmed that the line width of the oscillation spectrum did not change compared with before the wavelength sweep and during the wavelength sweep.
  • the wavelength swept light source 1b of this embodiment includes a resonator 300, condenser lenses 102 and 111, an etalon filter 103, a diffraction grating 104, a mirror 105, an optical isolator 112, and an electro-optic deflector 301.
  • a semiconductor optical amplifier SOA: Semiconductor Optical Amplifier
  • SOA Semiconductor Optical Amplifier
  • the etalon filter 103 of this example has a glass with a thickness of 2.0 mm and a refractive index of 1.5.
  • the glass was designed such that the reflectance of the light incident surface and the light exit surface were both 30%.
  • FIG. 24 is a diagram illustrating an example of the relationship between the input wavelength of the etalon filter 103 and the transmittance.
  • the horizontal axis indicates the wavelength, and the vertical axis indicates the transmittance.
  • the transmittance changes periodically with respect to the wavelength.
  • the full width at half maximum of the transmission spectrum in each cycle is always constant.
  • the grating pitch was 600 lines / mm, for example.
  • the electro-optic deflector 301 for example, a KTN optical scanner capable of high-speed deflection operation was used.
  • the KTN optical scanner changes the angle of incidence on the diffraction grating 104 to vary the oscillation wavelength.
  • the chip shape of the KTN optical scanner for example, a flat plate structure of 4 (l) X3 (w) X1 (t) mm3 is used.
  • a Ti / Pt / Au electrode was formed on a 4 (l) ⁇ 3 (w) mm 2 surface (front and back 2 surfaces) of the KTN crystal, and an electric field was applied in the thickness direction.
  • the dielectric constant is set to about 20000 by controlling the operating temperature of KTN using a Peltier temperature controller.
  • the wavelength sweep light source 1b of the present embodiment can perform wavelength sweep at a high frequency of 200 kHz and in a wide band.
  • the wavelength sweeping characteristic was observed by operating the wavelength sweeping light source 1b of this example and measuring with an optical spectrum analyzer. Hereinafter, the observation result will be described.
  • FIG. 25A is a diagram showing a wavelength sweep characteristic before the etalon filter 103 is inserted
  • FIG. 25B is a diagram showing a wavelength sweep characteristic when the etalon filter 103 is inserted.
  • the horizontal axis represents the wavelength
  • the vertical axis represents the light intensity.
  • the wavelength sweep characteristic is shown in relation to the wavelength of 1320 nm to 1350 nm. At the time of observation, the wavelength sweep characteristic was confirmed over a wavelength width of 100 nm or more.
  • the wavelength sweep characteristic before inserting the etalon filter 103 was such that the light intensity was always about ⁇ 25 dB to ⁇ 22 dB. This is because the line width of the oscillation spectrum was wide during the wavelength sweep, and individual peaks could not be observed.
  • the wavelength is continuously swept, but in the optical spectrum analyzer, the wavelength acquisition time is much longer than the sweep time. Therefore, the light intensity shown in FIG. 25A is a superposition of the light spectra swept by the KTN optical scanner, that is, a time average of the integrated spectrum.
  • each line width at the time of oscillation is affected, so that it is more possible than before the wavelength sweep. Interference may be reduced.
  • the wavelength sweep characteristic shown in FIG. 25A since the wavelength sweep was performed at high speed, the waveform during oscillation could not be observed.
  • the coherence length was measured by a known Mach-Zehnder interferometry, it was confirmed that the coherence length at the time of wavelength sweeping was deteriorated as compared with that before the wavelength sweeping.
  • the wavelength sweep characteristics when the etalon filter 103 was inserted were intermittent with the oscillation spectrum having a constant wavelength interval and a constant line width, as shown in FIG. 25B.
  • the light intensity is approximately ⁇ 33 dB to ⁇ 20 dB.
  • FIG. 26 is a diagram showing an enlarged example of the wavelength sweep characteristic shown in FIG. 25B.
  • the full width at half maximum was 0.1 nm.
  • the line width of the oscillation spectrum is always 0.1 nm or less. This was almost the same as the line width of the oscillation spectrum before the wavelength sweep. That is, when the etalon filter 103 is inserted, even if a KTN optical scanner variation, a resonator 300 variation, or the like occurs during the wavelength sweep, the influence of the etalon filter 103 is reduced due to the transmission characteristics of the etalon filter 103. It was confirmed that it was possible to always maintain a good coherence length.
  • each wavelength sweep light source in each embodiment is also provided with the etalon filter 103 configured so that the half width of the transmission spectrum is always constant, it is possible to always obtain an oscillation characteristic having a good coherence length. It is considered possible. That is, the wavelength swept light source of each embodiment intermittently outputs light having a desired frequency at a constant frequency interval and at a constant spectral half width.
  • the etalon filter 103 that is the second resonator controls not only the oscillation frequency interval but also the half width of the oscillation spectrum. Even if an event that degrades the coherence of light occurs during the wavelength sweep, the coherency of the light is guaranteed at the fixed interval of oscillation wavelength (oscillation frequency) defined by the second resonator, and the entire sweep bandwidth It is possible to maintain high coherence over the entire range.
  • the position where the etalon filter is provided is not limited to the position illustrated in FIG.
  • the etalon filter may be provided between the diffraction grating 104 and the mirror 105, or may be provided between the LD 101 and the condenser lens 111.
  • the etalon filter shown in FIG. 19 may be provided between the electro-optic deflector 301 and the diffraction grating 104.
  • various parameters such as the chip shape and applied waveform of the KTN optical scanner, various characteristics of the etalon filter (thickness, reflectance, etc.), the grating pitch of the diffraction grating 104, and the operating frequency can be variously changed.
  • the resonator of FIG. 19 exemplifies a Littman arrangement, for example, but can also be implemented by a Littrow arrangement in which the diffraction grating also has a mirror function.
  • the electro-optic deflector 301 is described by taking a KTN scanner having an electro-optic effect as an example.
  • an electro-optic deflector using other materials may be applied.
  • what is shown in FIG. 19 can also be implemented using deflectors, such as a galvanometer mirror and a MESM type
  • the present invention can be implemented even if a plurality of etalon filters are used.
  • the etalon filter is used in the wavelength swept light source described above, but the present invention is not limited to this. If intermittent output light is obtained by changing the frequency interval of the oscillation mode of the resonator, for example, a Michelson interferometer may be used.
  • the etalon filter 103 is provided inside the resonator 300 in the wavelength swept light source 1b of the third embodiment.
  • the configuration is such that it is set outside the resonator 300 (for example, the output side position of the optical isolator 112). May be.
  • the wavelength swept light source 1b of this embodiment includes a resonator 300, condenser lenses 102 and 111, an etalon filter 103, a diffraction grating 104, a mirror 105, an optical isolator 112, and an electro-optic deflector 301.
  • a semiconductor optical amplifier SOA: Semiconductor Optical Amplifier
  • SOA Semiconductor Optical Amplifier
  • the filter characteristic of the resonator 300 as a whole is a superposition of the filter characteristic by the wavelength selection of the diffraction grating 104 and the filter characteristic of the etalon filter 103, and spreads.
  • the etalon filter suppresses part of the filter characteristics of the diffraction grating 104.
  • the silicon etalon filter is more effective than the glass etalon filter for the following three points.
  • the etalon filter 103 of the present embodiment was made of silicon (refractive index 3.5), thickness 3 mm, and reflectance of both surfaces 31% (silicon etalon filter).
  • Silicon has a higher refractive index than glass.
  • the refractive index of glass is 1.5, whereas the refractive index of silicon is 3.5.
  • the silicon etalon filter is relatively high in robustness against changes in verticality and displacement when inserted into an optical system. Accordingly, the silicon etalon filter is more effective than the glass etalon in terms of ease of optical alignment.
  • silicon has a high refractive index
  • Fresnel loss is high and reflectivity is high.
  • FIG. 28 is a diagram showing an example of the relationship between the input wavelength of the etalon filter 103 and the transmittance.
  • the horizontal axis indicates the wavelength, and the vertical axis indicates the transmittance.
  • the transmittance changes periodically with respect to the wavelength.
  • the full width at half maximum of the transmission spectrum in each cycle is always constant.
  • the grating pitch was set to, for example, 950 lines / mm.
  • the electro-optic deflector 301 for example, a KTN optical scanner capable of high-speed deflection operation is used.
  • the KTN optical scanner changes the angle of incidence on the diffraction grating 104 to vary the oscillation wavelength.
  • the chip shape of the KTN optical scanner for example, a flat plate structure of 4 (l) X3 (w) X1.5 (t) mm 3 was used.
  • Ti / Pt / Au electrodes were formed on a 4 (l) ⁇ 3 (w) mm 2 surface (front and back 2 surfaces) of the KTN crystal, and an electric field was applied in the thickness direction.
  • the dielectric constant is set to about 20000 by controlling the operating temperature of KTN using a Peltier temperature controller.
  • the wavelength sweep light source 1b of the present embodiment can perform wavelength sweep at a high frequency of 200 kHz and in a wide band.
  • the wavelength sweeping characteristic was observed by operating the wavelength sweeping light source 1b of this example and measuring with an optical spectrum analyzer. Hereinafter, the observation result will be described.
  • FIG. 29A is a diagram illustrating an example of each wavelength sweep characteristic of the wavelength sweep light source 1b before the insertion of the etalon filter 103
  • FIG. 29B is a diagram illustrating the wavelength sweep characteristic when the etalon filter 103 is inserted.
  • the horizontal axis represents the wavelength and the vertical axis represents the light intensity.
  • the wavelength sweep characteristic is shown in relation to the wavelength of 1315 nm to 1320 nm.
  • the light intensity is always about ⁇ 30 dB to ⁇ 25 dB. This is because the line width of the oscillation spectrum was wide during the wavelength sweep, and individual peaks could not be observed.
  • the wavelength is continuously swept, but in the optical spectrum analyzer, the wavelength acquisition time is much longer than the sweep time. Therefore, the light intensity shown in FIG. 29A is a superposition of the light spectra swept by the KTN optical scanner, that is, the time average of the integrated spectrum.
  • each line width at the time of oscillation is affected, so that it is more possible than before the wavelength sweep. Interference may be reduced.
  • the wavelength sweep characteristic shown in FIG. 29A since the wavelength sweep was performed at high speed, the waveform during oscillation could not be observed.
  • the coherence length was measured by a known Mach-Zehnder interferometry, it was confirmed that the coherence length at the time of wavelength sweeping was deteriorated as compared with that before the wavelength sweeping.
  • the wavelength sweep characteristics when the etalon filter 103 was inserted were intermittent, with the oscillation spectrum having a constant wavelength interval and a constant line width, as shown in FIG. 29B.
  • FIG. 30 is a diagram showing an enlarged example of 1319.9 nm to 132.15 nm among the wavelength sweep characteristics shown in FIG. 29B.
  • the full width at half maximum was about 0.025 nm.
  • the line width of the oscillation spectrum is always 0.025 nm or less. This was almost the same as the line width of the oscillation spectrum before the wavelength sweep. That is, when the etalon filter 103 is inserted, even if a KTN optical scanner variation, a resonator 300 variation, or the like occurs during the wavelength sweep, the influence of the etalon filter 103 is reduced due to the transmission characteristics of the etalon filter 103. It was confirmed that it was possible to always maintain a good coherence length.
  • each wavelength sweep light source in each embodiment is also provided with the etalon filter 103 configured so that the half width of the transmission spectrum is always constant, it is possible to always obtain an oscillation characteristic having a good coherence length. It is considered possible. That is, the wavelength swept light source of each embodiment intermittently outputs light having a desired frequency at a constant frequency interval and at a constant spectral half width.
  • the coherence length that can be used for the measurement is limited to the length related to the optical path length of the inserted etalon filter.
  • Equation 23 When the coherent length obtained by OCT measurement is lc, the thickness of the etalon filter is d, and the refractive index is n, the relationship of Equation 23 is established.
  • the present invention can be used for an optical signal processing apparatus.
  • it can be used for optical coherent tomography.

Abstract

 ポリゴンミラーを用いた従来技術の波長掃引光源では、発振波長は、時間に対してやや上に凸で概ね線形的に変化する。一方、SS-OCTの波長掃引光源では、時間軸上で、波数(波長の逆数)が直線的に変化するように、波長変化することが求められる。従来技術の波長掃引光源ではこのような波長変化を実現できず、得られるOCTイメージに非線形な歪が生じ、点像をシャープに保つことができない問題があった。本発明は、KTNなどを含む電気光学偏向器を利用した波長掃引光源において、電気光学偏向器の制御電圧に、主たる鋸波状波形と、鋸波状波形のべき乗成分を含む補正を加えることにより、波数が時間軸に対して直線的に変化するような波長変化を生じさせる。制御電圧は、掃引される発振波長が長波長側に掃引されるほど、発振波長の変化率が大きくなるように制御される。この制御電圧により、発振波長が長波長側となるほど、発振波長がより速く変化して、発振波長の時間変化は、下に凸の形状となる。

Description

波長掃引光源
 本発明は、光学機器や電子機器等に使用可能な光源に関する。より詳細には、波長掃引した光を利用したイメージングに使用可能な波長掃引光源に関する。
 光学機器を使ったイメージング技術は、カメラやプリンタ、ファクシミリなどの民生用の電子機器だけでなく、医療分野にも広がっている。生体内部の断層を非侵襲的にイメージングするために、既に、X線を使用したX線撮影や超音波を使用した診断が広く利用されている。X線を使用した方法は、被爆の問題のため使用頻度や使用部位に大幅な制限があり、また、その分解能はフィルムの等倍撮影の分解能に制限される。超音波を使用した方法は、被爆の問題がないためX線のような使用の制限は無いが、分解能は通常1cm程度に過ぎない。したがって、細胞レベルサイズでのイメージングは不可能である。
 医療現場では、生体表皮下の断層イメージをミクロンオーダーの分解能で生成することのできる新たな技術が望まれていた。これを実現する技術として、1990年代から開発が進められてきた光コヒーレントトモグラフィー(Optical Coherence Tomography:以下OCTと呼ぶ)が知られている。
 OCTは、マイケルソン干渉計の原理を利用しており、低コヒーレンスな光を光源として使用して、この低コヒーレンス光を生体へ照射する。参照光と生体からの反射光との干渉光に基づいて、生体表皮下のイメージが得られる。OCTは、網膜の診断のために眼科の必須の診断機器として実用化されている。
 図13は、OCTの基本原理を説明する図である(非特許文献1)。以下、簡単に基本原理の概要のみを述べる。低コヒーレンス光源1からは、コヒーレンス長ΔlCを持つ低コヒーレンスな光が、生体4への入射光として供給される。光源1からの出射光6は、ビームスプリッタ2に入射して2等分される。2等分された光の一方の光7は可動ミラー3へ進み、可動ミラー3において反射して、再び参照光8としてビームスプリッタ2へ向かう。2等分された光のもう一方の光9は、生体4の内部の異なる深さの反射面A、BまたはCにおいて反射を受け、それぞれ信号光11a、11b、11cが得られる。各信号光は、ビームスプリッタ2を経て、参照光10と干渉する。この干渉によって、生体中の余分な散乱によって波面が歪んだ反射光は取り除かれ、元の平面波を維持した反射光のみが選択的に検出される。
 ここで、反射面Aで反射する光が干渉を生じるのは可動ミラー3がA´の位置にある場合である。このときビームスプリッタ2の中心と可動ミラー3との距離をLR、ビームスプリッタ2の中心と反射面Aとの距離をLSとすると、次式の関係を満たすときに、参照光と信号光とが干渉して、光検出器5から電気信号が得られる。
|LR―LS|<ΔlC      式(1)
 上式は、反射面Aおよび可動ミラーの位置A´、反射面Bおよび可動ミラーの位置B´、反射面Cおよび可動ミラーの位置C´に、それぞれ一対一に対応して成り立つ。従って、可動ミラー3を連続的に一定速度vで移動させることによって、生体4内の光軸(z軸)方向に沿った生体表皮下の反射光強度分布を、ΔlCの空間分解能で測定することができる。スキャンミラーなどによって生体への入射光をx方向にスキャンすることによって、x-z面内の生体表皮下の反射光強度分布が得られ、これが最終的なOCTイメージとなる。図13におけるマイケルソン干渉計の構成は、光ファイバカップラーを利用することができるため、臨床現場にも十分利用可能な検査機器が実現されている。
 図13に示した構成のOCTでは、可動ミラーを移動させてイメージデータを時系列に取得するため、時間領域(Time Domain:TD)OCT(以下TD-OCT)と呼ばれる。TD-OCTでは、質量を持つ可動ミラーを移動する必要があるため、スキャン速度に限界がある。ところが、検査の状況によって生体自体を完全に固定するのが難しいことが多く、できるだけ短時間でスキャンを行なって必要なイメージデータを得るのが好ましい。また、生体内で血管が存在する深さの部分までスキャンを行うと、血管内を移動する赤血球による散乱のためにイメージ取得に困難が生じる。このため、OCTでは、できるだけ速く深さ方向の情報を取得したい要請があった。
 そこで、干渉信号をフーリエ変換して光軸に沿った反射光強度を求めるフーリエ領域(Fourier Domain:FD)-OCT(以下FD-OCT)が提案された。FD-OCTでは、図13の光検出器5の前に、生体からの信号光を各波長の光に分解する分光器を配置して、干渉スペクトルを光検出器の検出器要素アレイで検出する。すなわち各波長に対応した、多数の検出器要素素子が配置された並列ディテクタによって、干渉スペクトルを求める。並列ディテクタで検出したスペクトルをフーリエ変換して、光軸に沿った反射光強度部分布が得られる。しかしながら、FD-OCTにおいては、多数の検出器要素素子を持った並列ディテクタが必要となる。多い場合には1000個を越える検出器要素素子において、同時に、各波長の信号を検出する必要がある。このような並列ディテクタは、1.1μm以下の波長帯域でシリコンCCDまたはCMOSによるものが実現されているだけであって、より長い波長においては並列ディテクタの入手が難しい。
 従って現時点でFD-OCTは、可視光が利用可能な網膜診断などには適用可能であるが、より長波長領域での動作を必要とする皮膚等の組織に対するOCTには適用できない。また、血管の断層イメージングなどに適用するにあたっては、赤血球のヘモグロビンによる散乱のために1.3μm程度まで長波長側の光を使用しないと、ヘモグロビンによる吸収が無視できない。一方で、光源の波長が1.5μm近傍にまで至ると、今度は水による吸収が顕著となる。1.6μmを越えると、光検出器の入手に困難が生じる。これらの理由のため、皮膚等に対してOCTを利用するためには、1.3μm帯の光源を使用したい要請があった。
 そこで新たに注目されているのが、FD-OCTを変形して、光源の周波数の掃引を行う掃引光源(Swept Source:SS)―OCT(以下SS-OCT)である。SS-OCTでは、FD-OCTのようにコヒーレンス光源からの光を生体に照射して得られた信号光を分光器によって分光して、一度に多数に波長の信号を生成するのでなく、光源波長を規則正しく掃引する。光源からの光の波長掃引を行うことによって、1つの検出器を使用して、時分割で各波長の信号を検出できる。すなわち、FD-OCTでは分光器によって空間的な位置によって波長分割していたのに対して、SS-OCTでは時間によって波長分割を行って、検出器を1つで済ませることができる。多数の検出器要素素子を持った並列ディテクタが不要となり、検出器の選択の制限が無くなるため、1.3μm帯域の光源も使用できる。
 図14は、SS-OCTの原理を説明するための模式的に示した図である(非特許文献1)。SS-OCTでは、生体24に対して、光周波数(波長)掃引光源21から、時間に対して直線的にその光周波数を掃引した光信号26を供給する。光周波数掃引光源21は、例えば、波長可変レーザが使用される。図14に示したSS-OCTにおいては、ミラー23はその位置を固定されている。ビームスプリッタ22の中心とミラー23の距離をLR、ビームスプリッタ22の中心と生体表面31との距離をLSとすると、LR=LSとなるように各要素が配置されている。
 このとき、参照光28と、生体内の反射面32および反射面33からのそれぞれの反射光29b、29cとの光周波数の差は、時間に関係なく一定となる。これらの光周波数の差をf2およびf3とすれば、参照光28と反射光29b、29cとの干渉によって、反射面32および反射面33に対応したビート周波数f2、f3が混在した信号光が得られる。
この信号光をフーリエ変換すると、ビート周波数f2、f3における反射光強度が得られる。光源21からの光周波数が直線的に掃引されれば、ビート周波数f2、f3と、深さd2、深さd3は正比例する。生体内では、各所から反射光が生じるため、干渉光をフーリエ変換することによって、光軸(z軸)方向に沿った、反射光強度の分布を得ることができる。x軸方向にもビームスキャンを行えば、x-z面内でのOCTイメージが得られる。
 SS-OCTでは、光検出器25は、異なるビート周波数の干渉光が混在した信号光を単一の検出素子で検出すれば良いので、従来のFD-OCTのように並列ディテクタが不要となる。皮膚等の診断に好適な1.3μm帯域の掃引光源を使用することが可能となる。SS-OCTは、光ファイバカプラを使用した安定な構成、可動ミラーが不要なことによる高速イメージ取得、および多様な光検出器の利用容易性から、眼科診療以外の領域においてもさらに実用化が進められている。
国際公開公報WO2006/137408 明細書
春名正光 「光コヒーレンストモグラフィーの進展」、応用物理第77巻 第9号、p1085-1092、2008年
 上述のSS-OCTにおいては掃引、光波長掃引光源が重要な構成要素の一つとなる。従来技術における光波長掃引光源としては、例えば、ポリゴンミラーを用いたものが用いられていた。
 図15は、従来技術のポリゴンミラーを用いた波長掃引光源の構成を示した図である。この波長掃引光源100は、ポリゴンミラー120と、リトロー構成で配置された回折格子106および利得媒質101などからなるレーザ発振器とから構成される。レーザ発振器は、利得媒質101の両端に集光レンズ102、111を備え、出力結合鏡112から出力光113が得られる。利得媒質101からの入射光はポリゴンミラー120の反射面Aにおいて反射して、次の回折格子方程式の条件を満たす入射角θ(110)で回折格子106に入射する。 
 2Λsinθ=mλ       式(2)
上式で、Λは回折格子のピッチであり、λは発振波長、mは回折次数である。
 発振光は、回折格子106において入射角と同じ出射角θで反射して、回折格子106と出力結合鏡112との間の光路を往復する。ポリゴンミラー120は、一定速度で方向121の向きに回転するため、ポリゴンミラー120の反射面Aにおける発振光の入射・反射角が回転と共に周期的に変化する。従って、回折格子106への入射角θによって、回転とともに、式(2)によって決まる発振波長λが変化する。ポリゴンミラー120は、一定回転速度で回転するため、回折格子106への入射(反射)角θは、等速に変化する。従って、波長掃引光源100の発振波長λは時間に対して概ね直線的に変化する。
 図16は、ポリゴンミラーを用いた従来技術の波長掃引光源によって得られる発振波長の時間変化を示した図である。実線40で示したように発振波長は、横軸の時間tに対してやや上に凸であって概ね線形的(直線的)に変化している。しかしながら、SS-OCTに対して求められる波長の時間変化のプロファイルは、ポリゴンミラーを用いた波長掃引光源によって得られるような、発振波長が線形に変化するような時間変化とは異なるものであった。
 ここで、再び図13で説明したOCTの基本原理を参照する。OCTにおいては、生体内部を光軸(z軸)方向に直線性良く線形的にスキャンするためには、参照光7、8の遅延時間が線形的に変化する必要がある。言い換えると、可動ミラー3の位置が、可動範囲の全域においてA´からC´に向かって等速に移動することによって、生体内も等速にスキャンされる。このような動作が、OCTイメージの線形性の観点から、最も理想的となる。ミラーが等速に移動しないと、結果として得られるOCTイメージは、光軸(z軸)方向について非線形で歪曲したものとなる。
 さらに、上記の可動ミラーの等速移動の理想動作を、図14のSS-OCTの構成へ適合する場合を考える。ミラーの位置をフーリエ変換すると、位置の逆数となる。位置の逆数は、すなわち波数に相当する。したがって、時間とともに、波数(波長の逆数)が直線的に変化するように、波長が変化するような波長掃引光源が理想的となる。そうでないと、生体内の一つの反射面に対応するビート周波数が単一でなくなり、その結果、OCTイメージの尖鋭度が損なわれる。
 図16には、波数が時間に対して直線的に変化する場合の波長変化を、破線41によって、望ましい波長変化として同時に示してある。ポリゴンミラーを用いた従来技術の波長掃引光源の場合の波高変化と見比べて、下に凸に湾曲し、発振波長が長波長側(図16の縦軸の上方側)となるほど変化率が増えるような波長変化プロファイルが適切である。
 しかしながら、ポリゴンミラーを用いている場合、ポリゴンミラーは大きな慣性モーメントを持っているため、一定回転速度以外の方法で回転速度を制御することは極めて困難である。また、図16に示したポリゴンミラーを使用した従来技術による、上に凸であって概ね直線状の波長変化は、式(2)の回折格子方程式のsin項に由来する形状であって、通常の手段を用いてもこの湾曲の向きを変えることは出来ない。
 上述のように、従来技術の波長掃引光源では、SS-OCTに適合した波長変化を実現することができず、尖鋭なOCTイメージが得られない問題があった。
 本発明は、上述のような問題に鑑みてなされたもので、OCTイメージの深さ方向の線形性のひずみを排除し、尖鋭なOCTイメージを得ることが可能であって、SS-OCTに適用可能な波長掃引光源を提供することを目的とする。
 請求項1に係る発明は、時間的に出力波長が周期的に変化する光源において、電気光学偏向器を含む発振器部と、主たる鋸歯状波形に加え、該鋸歯状波形のべき乗成分が重畳された、前記電気光学偏向器へ印加する制御電圧を生成する制御電圧生成部とを備えたことを特徴とする波長掃引光源である。
 電気光学偏向器としては、タンタル酸ニオブ酸カリウム(KTa1-x NbxO3 (0<x<1):KTN)や、さらにリチウムをドープした(K1-yLiyTa1-xNbxO3(0<x<1、0<y<1))を利用するのが好ましい。
 請求項2に係る発明は、請求項1の波長掃引光源であって、前記発振器部は、利得媒質と、前記利得媒質の一端からの光が入射する回折格子とを含み、前記利得媒質と前記回折格子とが光学的に接続された共振器から構成され、前記電気光学偏向器は、前記利得媒質と前記回折格子との間であって、前記共振器により形成される光路上に配置され、前記回折格子への前記電気光学偏向器側からの光入射角をθ、前記電気光学偏向器の制御電圧対角度感度をγ [rad/V]とするとき、前記鋸歯状波形の前記べき乗成分として、式
Figure JPOXMLDOC01-appb-M000001
で表される係数を有する二乗成分が重畳されることを特徴とする。
 制御電圧生成部は、アナログ電子回路によって構成可能であり、鋸波状波形発生、乗算器、加算器を組み合わせて構成できる。KTNなどの電気光学偏向器を利用する場合には、制御電圧の生成のために高電圧増幅器が含まれるのが好ましい。このとき、制御電圧対角度感度γ [rad/V]には、高電圧増幅器のゲインAが含まれるものとする。制御電圧生成部として、任意波形発生器も利用できる。
 請求項3に係る発明は、請求項2の波長掃引光源であって、前記鋸歯状波形の前記べき乗成分として、前記二乗成分に加えて、式
Figure JPOXMLDOC01-appb-M000002
で表される係数を有する三乗成分がさらに重畳されることを特徴とする。
 請求項4に係る発明は、請求項1の波長掃引光源であって、前記発振器部は、利得媒質と、前記利得媒質の一端からの光が入射する回折格子と、前記回折格子への前記入射光の回折光が直入射する端面鏡とを含み、前記回折格子を介して、前記利得媒質と前記端面鏡とが光学的に接続された共振器から構成され、前記電気光学偏向器は、前記利得媒質と前記回折格子との間であって、前記共振器により形成される光路上に配置され、前記回折格子への前記電気光学偏向器側からの光入射角をθ、前記回折格子への前記端面鏡側からの光入射角をφ、前記電気光学偏向器の制御電圧対角度感度をγ[rad/V]とするとき、前記鋸歯状波形の前記べき乗成分として、式
Figure JPOXMLDOC01-appb-M000003
で表される係数を有する二乗成分が重畳されることを特徴とする。
 請求項5に係る発明は、請求項4の波長掃引光源であって、前記鋸歯状波形の前記べき乗成分として、前記二乗成分に加えて、式
Figure JPOXMLDOC01-appb-M000004
で表される係数を有する三乗成分がさらに重畳されることを特徴とする。
 以上説明したように、本発明は、SS-OCTに適合した波長変化を実現する波長掃引光源を提供することができる。時間軸上の波長変化が、波数について直線的に変化するプロファイルを持つ波長掃引を実現することで、OCTイメージの線形性を大幅に改善し尖鋭なOCTイメージを得ることができる。
本発明の波長掃引光源の第1の構成を示す図である。 本発明の波長掃引光源の第2の構成を示す図である。 本発明の波長掃引光源に使用される偏向器の構成および動作を説明する図である。 本発明の第1の構成の波長掃引光源に使用される波長の時間変化の第1の例を示す図である。 本発明の第1の構成の波長掃引光源に使用される制御電圧の時間変化の第1の例を示す図である。 本発明の第1の構成の波長掃引光源に使用される波長の時間変化の第2の例を示す図である。 本発明の第1の構成の波長掃引光源に使用される制御電圧の時間変化の第2の例を示す図である。 本発明の第2の構成の波長掃引光源に使用される波長の時間変化の例を示す図である。 本発明の第2の構成の波長掃引光源に使用される制御電圧の時間変化の例を示す図である。 第1の構成による実施例1の波長掃引光源において、二乗成分のみを含む補正の場合の波長誤差を示す図である。 第1の構成による実施例1の波長掃引光源において、三乗成分まで含めた補正の場合の波長誤差を示す図である。 第2の構成による実施例2の波長掃引光源における波長誤差を示す図である。 実施例2の波長掃引光源を用いたOCTにより得られる点像を示す図である。 第2の構成による実施例3の波長掃引光源における波長誤差を示す図である。 実施例3の波長掃引光源を用いたOCTにより得られる点像を示す図である。 OCTの基本原理を説明する図である。 SS-OCTの原理を模式的に示した図である。 従来技術のポリゴンミラーを用いた波長掃引光源の構成を示した図である。 従来技術のポリゴンミラーを用いた波長掃引光源によって得られる発振波長の時間変化を示した図である。 波数の時間依存性を示す図である。 図17の場合において、10次高調波までの重畳波形を示す図である。 第3実施形態の波長掃引光源の構成を示す図である。 エタロンフィルタの共振特性を示す図である。 波長掃引光源の出力光を示す図である。 波長掃引光源の出力光の周波数特性を示す図である。 図19の共振器内にエタロンフィルタを配置しない場合において、波長掃引光源の出力光の周波数特性を示す図である。 第3実施形態において、実際に挿入されたエタロンフィルタの入力波長と透過率との関係の一例を示す図である。 第3実施形態において、エタロンフィルタの挿入前に測定された各波長掃引特性の一例を示す図である。 第3実施形態において、エタロンフィルタの挿入時に測定された各波長掃引特性の一例を示す図である。 エタロンフィルタ挿入時に測定された波長掃引特性を波長に対して拡大した例を示す図である。 エタロンフィルタを使用しないときの波長の様子を示す図である。 エタロンフィルタを使用したときの波長の様子を示す図である。 エタロンフィルタの入力波長と透過率との関係の一例を示す図である。 エタロンフィルタの挿入前の波長掃引光源の各波長掃引特性の一例を示す図である。 エタロンフィルタを挿入したときの波長掃引特性を示す図である。 図29Bに示した波長掃引特性のうち1319.9nm~1320.15nmの拡大例を示す図である。
 本発明は、KTNなどを含む電気光学偏向器を利用した波長掃引光源において、電気光学偏向器に印加する制御電圧の波形を適切に成形することによって、波数が時間に対して直線的に変化するような波長変化を生じさせることを特徴とする。以下、最初に実施形態の波長掃引光源の構成について詳細に説明する。次に、電気光学偏向器の構成および動作について説明する。最後に、波数が時間に対して直線的に変化するような波長変化を与える、本発明の実施形態特有の制御電圧の制御方法について説明する。
 <第1実施形態>
 図1は、本発明の波長掃引光源の第1の構成を示す図である。波長掃引光源200は、発振器部201および制御電圧生成部202から構成される。発振器部201は、リトロー構成のレーザ発振器であり、利得媒質101は、第1の集光レンズ111および第2の集光レンズ102の間に配置される。回折格子109は、利得媒質101に対して、入射光と回折光が同一方向に入出力するリトロー配置となるような位置に配置される。利得媒質101および回折格子109が光学的に接続され、光共振器が構成される。集光レンズ102と回折格子109との間であって、共振器により形成される光路上には、電気光学偏向器103が配置される。第1の集光レンズ111は、出力結合鏡112に相対し、このようにして出力結合鏡112と回折格子109とを両端とする光共振器が構成される。出力結合鏡112からは、この光共振器によるレーザ作用による出力光113が得られる。
 発振波長の掃引は、制御電圧生成部202から電気光学偏向器103に結線された制御電圧104を通じ、回折格子109への入射光束を偏向することにより行われる。すなわち、電気光学偏向器103による偏向によって、回折格子109への入射角を変化させる。本発明の構成においては、電気光学偏向器103に印可する電圧を変えることによって、可動部の介在なしに高速に波長を掃引することができる。電気光学偏向器の具体構成については、後に詳細に説明する。
 制御電圧生成部202は、電気光学偏向器に対する本発明に特有の制御電圧104を生成する。制御電圧生成部202では、鋸波状波形発生器115からの鋸波状波形出力が、第1の乗算器116の2つの入力に接続される。第1の乗算器116の出力は、第2の乗算器118の一方の入力および第1の加算器117に入力される。鋸波状波形発生器115からの鋸波状波形出力は、第2の乗算器118のもう一方の入力にも接続される。第2の乗算器118の出力は、第2の加算器119へ入力される。鋸波状波形発生器115と、第1の加算器117と、第2の加算器119とは縦続従属されている。
 図1に示した制御電圧生成部202の構成から明らかなように、第1の加算器117の出力には、鋸波状波形の二乗成分が得られ、第2の加算器119の出力には、鋸波状波形の三乗成分が得られる。第2の加算器119の出力は、電圧利得Aを持つ高電圧増幅器120へ入力され、必要な電圧レベルまで増幅された後、制御電圧104が得られる。後述するように、電気光学偏向器103は、タンタル酸ニオブ酸カリウム(KTN)などの電気光学結晶を利用するのが望ましいので、数100V程度の電圧レベルが必要となる。第1の乗算器116および第2の乗算器118は、図1に明示的に示してはいないが、それぞれゲインを設定可能であって、オフとすることもできる。
 第1の乗算器116および第2の乗算器118の各ゲインを適切に設定することによって、第2の加算器119の出力には、主たる鋸波状波形に、鋸波状波形の二乗成分と鋸波状波形の三乗成分とがそれぞれ所望の係数を以って重畳された波形が得られる。
 本発明の課題において説明したように、SS-OCTに利用されていた従来技術の波長可変光源では、発振波長は、図16に示したように横軸の時間tに対してやや上に凸であって概ね線形的(直線的)に変化している。これは、図1の制御電圧生成部202において、第1の乗算器116および第2の乗算器118の各ゲインを0として、発振器部201を制御する場合に相当する。すなわち、制御電圧104として、鋸波状波形のみが電気光学偏向器103に印加される状態に対応する。後述するように本発明では、制御電圧を補正して、鋸波状波形に加えて、鋸波状波形の二乗成分および鋸波状波形の三乗成分を重畳した波形によって、電気光学偏向器103を制御する。制御電圧のこの補正の詳細については、後述する。
 <第2実施形態>
 図2は、本発明の波長掃引光源の第2の構成を示す図である。波長掃引光源300は、発振器部301および制御電圧生成部302から構成される。発振器部301は、リトマン構成のレーザ発振器であり、リトロー構成である第1の構成の発振器部201と構成は異なるが、制御電圧生成部302は第1の構成の制御電圧生成部202と同一である。従って、次に発振器部301の構成のみ説明する。
 図2において、利得媒質101は、第1の集光レンズ111および第2の集光レンズ102の間に配置される。利得媒質101は、第2の集光レンズ102を経て、電気光学偏向器103、回折格子106および直入射する端面鏡110から構成される波長フィルタに結合されている。また、回折格子106を介して、利得媒質101と端面鏡110とが光学的に接続され、共振器が構成される。さらに、第1の集光レンズ111は、出力結合鏡112に相対し、全体で、出力結合鏡112と端面鏡110を両端とする光共振器が構成される。出力結合鏡112からは、この光共振器によるレーザ作用による出力光113が得られる。電気光学偏向器103は、利得媒質101と回折格子106との間であって、共振器により形成される光路上に配置されている。
 本発明の波長掃引光源においては、回折格子106への集光レンズ102に面する側からの入射角θと、端面鏡110に面する側からの入射角φとの間に特段の制限は無い。しかし、より強いフィルタ効果を得る観点からは、上述の波長フィルタにおいて、回折格子106への集光レンズ102に面する側からの入射角θは、端面鏡110に面する側からの入射角φと比較して、絶対値が大きく設定されるのが好ましい。その結果、回折格子106への回折格子入射光束107に比して、回折格子出射光束108が伸張され、太く広がり角の小さい光束として端面鏡110で反射される。したがって、波長フィルタの選択波長幅を狭窄化することができる。発振波長の掃引は、電気光学偏向器103に結線された制御電圧源104を通じ、回折格子入射光束107を偏向することにより行われる。
 すなわち、電気光学偏向器103による偏向によって、回折格子106への入射角θを変化させる。本発明の波長掃引光源においては、電気光学偏向器103に印加する電圧104を変えることによって、可動部の介在なしに高速に波長を掃引することができる。次に、本発明の波長可変光源に使用するのに好適な電気光学偏向器について説明する。
 最近、特定の電気光学効果結晶において、新たな現象が見出された。この電気光学効果結晶では、電圧印加による電界に伴って、結晶に電荷の注入が行なわれる。その結果、結晶内に、その注入電荷の形成する空間電荷分布、または、注入電荷がさらに電気光学結晶中に捕捉されて生成されるトラップ電荷分布が生じる。そして、この電荷分布による非一様な電界分布が屈折率の勾配を惹起し、この勾配に直交する光線の進路を屈曲させる現象が生じる。
 この現象の発生には、屈折率変化か電界の二乗に比例して生じる2次の電気光学効果が必要である。さらに、この効果を示す結晶が、大きい誘電率および小さい易動度を有して初めて、現実的な値の印加電圧や電流に伴って、この偏向現象が発現する。この種の結晶の代表的な例として、タンタル酸ニオブ酸カリウム(KTa1-x NbxO3 (0<x<1):KTN)や、さらにリチウムをドープした(K1-yLiyTa1-xNbxO3(0<x<1、0<y<1))が知られている。
 このような結晶においては、結晶内のすべての部分が偏向作用を担う。光線の伝搬経路上の各部分での作用が累積された偏向を受けて、光線は結晶から出射する。即ち、得られる偏向量は結晶内の光の伝搬長に比例する。この点において、従来用いられていたプリズム型の光偏向器と比べて、その動作機序を全く異にしている。その特有の偏向機序の結果、偏向動作が高速であって、かつ、偏向角範囲が大きく取れるという特徴を有する。このような電気光学偏向器は、特許文献1に詳細が開示されている。
 図3は、本発明の波長掃引光源に使用される偏向器の構成および動作を説明する図である。図3は、偏向器の偏向面内を見た、基本的な構成および動作を説明している。電気光学結晶301の対向面には、それぞれ電極302および接地電極303が形成される。入射光305は、これら2つの電極の中間を通る中心光軸308に沿って伝搬する。ここで、制御電圧源304によって電極302に電圧を印加すると、結晶内の光線は負極(正電圧印加時を示す図3では、接地電極303)側に屈曲した偏向光路307を辿り、偏向した出射光306として結晶301から出射する。
 偏光光路307を出射端面Aの「結晶側(内部)」において観察すると、あたかも結晶中心に位置する偏光中心310から、光線が発しているように見える。すなわち、偏向作用によって光線が、この偏光中心310の周りに回転するように見える。これを結晶の「外部」の出射光306について観察すると、今度は、あたかも偏向作用によって射出中心309の周りに回転するように見える。このような射出中心309は、出射端面Aにおける屈折作用によって出射端面側に近づき、結晶長をLとすると、出射端面AからL/(2n)の場所に位置する。ここでnは結晶の屈折率である。
 電気光学偏向器において得られる上述の偏向量は結晶長に比例する。しかしながら、結晶を長くしようとすると、結晶の均一性の確保がより困難となる。また、結晶を長くすると、静電容量が大きくなるため制御電圧源304に要求される皮相電力が増加する。この結果、電気光学偏向器の高速駆動に障害を来す。このような種類の電気光学偏向器では、実際に必要な長さの結晶を用いる替わりに、内部反射による光路の折り返しを利用することによって、結晶長を増したのと等価な効果を得ることもできる。
 次に、本発明の波長掃引光源の動作について、制御電圧生成部202、302から電気光学偏向器103に与えられる制御電圧104を詳細に説明する。ここで、δを、電気光学偏向器によって受ける回折格子への入射角変化量とする。
 一般に、KTNなどを利用した電気光学偏向器では、電気光学偏向器内の光路が、図1または図2のy軸の下方側に偏向してδが負となるとき、制御電圧は正の電圧となる。簡単のため、制御電圧104とδの関係は、概ね線形であると考える。すなわち、制御電圧104とδとは正比例の関係にあるものとする。
 図1または図2に示した構成の場合では、δが正の値となるに従ってδの変化率が大きくなるような制御電圧104をKTNに印加することによって、発振波長の時間変化が下に凸となるような波長掃引プロファイルを得ることができる。言い換えると、制御電圧は、発振波長が長波長側に掃引されるほど、発振波長の変化率が大きくなるように制御されれば良い。このように制御電圧が補正されれば、発振波長が長波長側となるほど、発振波長がより速く変化して、発振波長の時間変化は、下に凸の形状となる。このとき、本発明の波長掃引光源では、時間軸上で波数が線形的に変化するように掃引波長が制御される。したがって、本発明をSS-OCTに適用すれば、対象物の生体の深さ方向について線形性が良く、尖鋭なOCTイメージが得られる。
 本発明では、電気光学偏向器への制御電圧として、従来技術で使用されていた鋸波状波形の制御信号ではなく、主たる鋸波状波形に加えて、鋸波状波形のべき乗成分を所定の係数(振幅比)で重畳させる。これによって、SS-OCTへ適用するのに好適な、波長掃引光源の制御電圧プロファイルを実現する。鋸波状波形のべき乗成分を所定の係数(振幅比)で重畳させる補正を行う結果、発振波長の時間変化は、下に凸の形状となる。このとき、本発明の波長掃引光源において、波長の時間変化は、波数に対して線形的に変化するように制御される。
 図4Aは本発明の第1の構成の波長掃引光源に使用する波長の時間変化の第1の例を示す図、図4Bは本発明の第1の構成の波長掃引光源に使用する制御電圧の時間変化の第1の例を示す図である。図4および図4Bでは、主たる鋸波状波形に、鋸波状波形の二乗成分のみを重畳した場合の制御電圧波形を示している。図4Aは波長の時間変化を示し、図4Bは制御電圧発生部により与えられる制御電圧の時間変化を示す。aの破線の波形は、従来技術による鋸波状波形のみの場合(ランプ波形)を示している。bの実線の波形は、本例の二乗成分のみを重畳した場合を示している。cの点線の波形は、望ましい波長変化を示したものである。
 本例では、二乗成分を以下の振幅比で重畳する。図1において、回折格子109への電気光学偏向器103からの光入射角をθとする。高電圧増幅器120の電圧ゲインをAとしたので、電気光学偏向器103の単体での制御電圧対偏向角度感度をA倍したものを、γ(rad/V)とする。ここでγは、偏向角を偏向器への印加電圧で割った値に相当する。以下、制御電圧をV(t)=V0×t+V1×t2+V2×t3とした時の二乗成分および三乗成分の係数の決定法について述べる。ここで、V0は時間の1次の係数、tは時間、V1は時間の2次の係数、V2は時間の3次の係数を示している。図4Bの制御電圧波形bは、第1の乗算器116のゲインを調整して、鋸波状波形の二乗成分の係数が次式となるようにしたものである。
Figure JPOXMLDOC01-appb-M000005
 上式は、式(2)にδを顕に含めて2Λsin(θ+δ)=mλと書き、時間tの関数δ(t)の零点の周りで、波数1/λのtについての2階微分が零となる条件を求めることによって求められる。
 二乗成分を所定の振幅比で重畳することにより、bの実線で示した波長の時間変化は下に凸となり、cの点線で示した望ましい波長変化に大分近づくことが分かる。しかしながら、短波長側で変化率が過剰である一方、長波長側では変化率が不足しており、さらなる改善が望まれる。
 図5Aは本発明の第1の構成の波長掃引光源に多用する波長の時間変化の第2の例を示す図、図5Bは本発明の第1の構成の波長掃引光源に多用する制御電圧の時間変化の第2の例を示す図である。図5Aおよび図5Bでは、主たる鋸波状波形に、鋸波状波形の二乗成分および鋸波状波形の三乗成分を重畳した場合の制御電圧波形を示している。図5Aは波長の時間変化を示し、図5Bは制御電圧発生部により与えられる制御電圧の時間変化を示す。aの破線の波形は、従来技術による鋸波状波形のみの場合(ランプ波形)を示している。bの実線の波形は、本例の二乗成分および三乗成分を重畳した場合を示している。cの点線の波形は、望ましい波長変化を示したものである。
 本例では、式(4)で表される係数の二乗成分に加えて、以下の振幅比で三乗成分を重畳する。図1において、回折格子109への電気光学偏向器103からの光入射角をθとする。高電圧増幅器120の電圧ゲインをAとしたので、電気光学偏向器103の単体での制御電圧対偏向角度感度をA倍したものを、γ(rad/V)とする。図5Bの制御電圧波形bは、第1の乗算器116のゲインを式(4)で表される係数となるように調整し、かつ、第2の乗算器118のゲインを調整して、鋸波状波形の三乗成分の係数が次式で表されるようにしたものである。
Figure JPOXMLDOC01-appb-M000006
 上式は、上述した式(4)の導出と同じ手順で、さらに、波数1/λのtについての3階微分が零となる条件を求めることによって求められる。
 図6Aは本発明の第2の構成の波長掃引光源に使用する波長の時間変化の例を示す図、図6Bは本発明の第2の構成の波長掃引光源に使用する制御電圧の時間変化の例を示す図である。図6Aおよび図6Bでは、主たる鋸波状波形に、鋸波状波形の二乗成分のみを重畳した場合の制御電圧波形を示している。図6Aは波長の時間変化を示し、図6Bは制御電圧発生部により与えられる制御電圧の時間変化を示す。aの破線の波形は、従来技術による鋸波状波形のみの場合(ランプ波形)を示している。bの実線の波形は、本例の鋸波状波形の二乗成分を重畳した場合を示している。本例では、望ましい波長変化は、bの本発明による波形と図上に区別して描くのが困難な程一致するので示していない。
 本例の具体的な構成を述べれば、回折格子は300l/mmの線刻密度を持ち、入射角θ=72.2°、入射角φ=-33.8°動作中心波長は1.35μmである。また、電気光学偏向器は、KTNを使用しており、制御電圧対角度感度γは、0.17mrad/Vである。
 本例では、二乗成分を以下の振幅比で重畳する。図2において、回折格子106への電気光学偏向器103からの光入射角をθ、回折格子106への端面鏡110からの光入射角をφとする。高電圧増幅器120の電圧ゲインをAとしたので、電気光学偏向器103の単体での制御電圧対偏向角度感度をA倍したものを、γ(rad/V)とする。図6Bの制御電圧波形bは、第1の乗算器116のゲインを調整して、鋸波状波形の二乗成分の係数が次式で表されるようにしたものである。
Figure JPOXMLDOC01-appb-M000007
 上式は、この第2の構成についての回折格子方程式のΛ(sin(θ+δ)+sinφ)=mλについて、時間tの関数δ(t)の零点の周りで、波数1/λのtについての2階微分が零となる条件を求めることによって求められる。
 図6Aおよび図6Bから明らかなように、本発明の第2の構成(リトマン構成)の波長掃引光源では、主たる鋸波状波形に、式(6)で表される係数を持った鋸波状波形の二乗成分のみを重畳することによって、概ね、望ましい波形に一致する制御電圧が得られる。
 しかしながら、さらなる改善のために、第1の構成と同じように、式(6)で表される係数の二乗成分に加えて、次式で表される係数の三乗成分をさらに重畳するのが好ましい。すなわち、第1の乗算器116のゲインを式(6)で表される係数となるように調整し、かつ、第2の乗算器118のゲインを調整して、鋸波状波形の三乗成分の係数が次式で表されるようにすれば良い。
Figure JPOXMLDOC01-appb-M000008
 上式は、上述した式(6)の導出と同じ手順で、さらに、波数1/λのtについての3階微分が零となる条件を求めることによって求められる。
式(4)~式(7)からわかるように、本発明により電気光学偏向器の制御電圧を補正する方法は、重畳すべき鋸波状波形のべき乗成分(二乗成分、三乗成分)が、発振器部201、301における回折格子106、109周辺の配置構成(θ、φ)によってのみ決定される。したがって、波長掃引を実行するための主たる鋸波状波形の振幅や周期には依存せずに、制御電圧波形の補正を行なうことができる。この結果、鋸波状波形の振幅を変えることによって、波長掃引範囲を自由に変えることができる。乗算器116、118のゲインを調整して、二乗成分および三乗成分の係数を設定するだけで、望ましい制御電圧波形を生成することができる。この結果、発振波長が長波長側となるほど、発振波長がより速く変化して、発振波長の時間変化は、下に凸の形状となる。すなわち、発振波長の時間変化が、波数に対して線形的に変化するように制御が行なわれるので、SS-OCTに適用する場合に、対象物の生体の深さ方向について、線形性が良く尖鋭なOCTイメージが得られる。
 以下、より具体的な実施例について述べる。
<実施例1>
 図7は、第1の構成の波長掃引光源による実施例1で、制御電圧に二乗成分のみの補正を施した場合の波長誤差を示す図である。本実施例は、図1に示した第1の構成によるもので、回折格子は300l/mmの線刻密度を持ち、入射角θ=35.0°、動作中心波長は1.35μmである。べき乗成分は、二乗成分のみを式(4)で示す係数を持つように第1の乗算器116のゲインを調整した。aの破線は、従来技術による鋸波状波形の制御電圧で掃引した場合の波長変化の、望ましい波長変化からの誤差を示した。bの実線は、二乗成分のみを重畳して補正した場合の波長変化の、望ましい波長変化からの誤差を示した。本実施例によれば、波長1.35μmを中心として、幅100nmの範囲においてほぼ理想的な波長変化が得られている。
 図8は、第1の構成の波長掃引光源による実施例1において、三乗成分まで含めた補正を行った場合の波長誤差を示す図である。図7に示した二乗成分に追加して、さらに三乗成分を重畳するため、式(5)で示す係数を持つように第2の乗算器118のゲインを調整した。aの破線は、従来技術による鋸波状波形の制御電圧で掃引した場合の波長変化の、望ましい波長変化からの誤差を示した。bの実線は、二乗成分および三乗成分を重畳して補正した場合の波長変化の、望ましい波長変化からの誤差を示した。本実施例によれば、波長1.35μmを中心として、図7よりもさらに広い範囲の幅200nmの範囲においてほぼ理想的な波長変化が得られている。本実施例では、従来技術のポリゴンミラーを用いた場合や、単純な鋸波状波形のみを含む制御電圧を電気光学偏向器に印加した場合の波長掃引光源と比べて、顕著に波長誤差を改善している。
<実施例2>
 図9は、第2の構成の波長掃引光源による実施例2の波長誤差を示す図である。本実施例は、図2に示した第2の構成によるもので、回折格子は300l/mmの線刻密度を持ち、入射角θは72.2°、入射角φは-33.8°動作中心波長は1.32μmである。べき乗成分は、二乗成分が式(6)で表される係数を持つように第1の乗算器116を、三乗成分が式(7)で表される係数を持つように第2の乗算器118をのゲインを、それぞれ調整した。
 aの破線は、従来技術による鋸波状波形の制御電圧で掃引した場合の波長変化の、望ましい波長変化からの誤差を示した。bの実線は、二乗成分のみを重畳して補正した場合の波長変化の、望ましい波長変化からの誤差を示した。cの実線は、二乗成分に加えて三乗成分も重畳して補正した場合の波長変化の誤差を示した。三乗成分まで含めて補正を行うほうが、広い範囲で理想により近い波長変化が実現されている。
 図10は、実施例2の波長掃引光源を用いたOCTにより得られる点像を示す図である。図10における点像(PSF:Point Spread Function)は、実施例2の波長掃引光源を用いたSS-OCTにおいて、対象物の一定深さに単一の反射面があるときに得られるOCTイメージを示している。この点像は、実施例2の構成によって生成した制御電圧によって生じる波長の時間変化を示す波長掃引光源によるSS-OCTの干渉波形を計算し、その干渉波形を離散フーリエ変換することによって得られる。より具体的には、反射面深さを空気中で1.5mm(光路長差3.0mm)とし、100nmの波長掃引中に、1000点の干渉データを等時間間隔で採取した。この場合、電気光学偏向器に印加する制御電圧の1スキャンの間に1000点の干渉データを取得することに相当する。離散フーリエ変換することによって、対象物内の深さ方向について、500点から構成されるOCTイメージが得られる。
 図10では、縦軸に、計算されたフーリエ振幅をdB換算して表示している。a~dの4種類の波形のプロットは、判別し易いように、縦軸方向に20dBずつずらして表示してある。aの点線は、従来技術の鋸波状波形のみが含まれる制御電圧で掃引した場合の点像を示している。bの実線は、二乗成分のみを重畳して補正した制御電圧で掃引した場合の点像を示しており、図9のbの波長誤差の場合に対応する。cの実線は、二乗成分および三乗成分を重畳して補正した制御電圧で掃引した場合の点像を示しており、図9のcの波長誤差の場合に対応する。dの破線は、理想的な望ましい波長変化の制御電圧で掃引した場合の点像を示している。
 図10の各点像からわかるように、点像が深さ方向に広がっている従来技術の場合と比べて、実施例2の制御電圧を電気光学偏向器に印加した場合には、点像はシャープとなっている。特に、三乗成分まで含めたcの場合には、理想的な状態にかなり近づいている。
<実施例3>
 図11は、第2の構成の波長掃引光源による実施例3の波長誤差を示す図である。本実施例は、図2に示した第2の構成によるもので、回折格子は600l/mmの線刻密度を持ち、入射角θは52.31°、入射角φは0.04°動作中心波長は1.32μmである。実施例2と比べると、入射角θがより小さく、回折格子の刻線密度は2倍となっている点で相違している。実施例2と同様に各べき乗成分は、二乗成分が式(6)で表される係数を持つように第1の乗算器116のゲインを調整し、三乗成分が式(7)で表される係数を持つように第2の乗算器118のゲインを調整した。
 aの破線は、従来技術による鋸波状波形の制御電圧で掃引した場合の波長変化の、望ましい波長変化からの誤差を示した。bの実線は、二乗成分のみを重畳して補正した場合の波長変化の、望ましい波長変化からの誤差を示した。cの実線は、二乗成分に加えて三乗成分も重畳して補正した場合の波長変化の誤差を示した。実施例2の波長誤差を示した図9の各曲線と対比すれば、実施例3では大幅に波長誤差が低減されていることがわかる。これは、下で述べるように、図2に示した発振器部301において、発振器内で必要なフィルタ効果を得るための入射角θが小さくできるためと考えられる。
 ここで再び図2を参照すると、第2の構成の波長掃引光源において、発振波長λは、次式によって決定される。 
 Λ(sin(θ+δ)+sinφ)=mλ    式(8)
ここで、Λは回折格子のピッチであり、λは発振波長、mは回折次数である。θおよびφは、図2に示したように回折格子への入射角および出射角である。δは、電気光学偏向器によって受ける回折格子への入射角変化量である。式(2)とともに従来技術について説明したように、波長λの変化形状は、式(8)左辺のθを含むsin項の影響を受ける。実施例3では入射角θが小さくできた。上述の実施例3における波長誤差の低減は、sin項に由来する上に凸の望ましくない変化形状(曲率)が、元々、θが小さいほど少ないためと考えられる。
 図12は、実施例3の波長掃引光源を用いたOCTにより得られる点像を示す図である。図10と同様に、縦軸に計算されたフーリエ振幅をdB換算して表示している。a~dの4種類の波形のプロットは、判別し易いように、縦軸に20dBずつずらして表示してある。aの点線は、従来技術の鋸波状波形の制御電圧で掃引した場合の点像を示している。bの実線は、二乗成分のみを重畳して補正した制御電圧で掃引した場合の点像を示しており、図11のbの波長誤差の場合に対応する。cの実線は、二乗成分および三乗成分を重畳して補正した制御電圧で掃引した場合の点像を示しており、図11のcの波長誤差の場合に対応する。dの破線は、理想的な望ましい波長変化の制御電圧で掃引した場合の点像を示している。
 図10に示した実施例2の場合と比較して、二乗成分のみを重畳した波形b、および、三乗成分まで含めて重畳した波形cのいずれの場合も、よりシャープな点像が得られている。特に、三乗成分までを含めた制御電圧を電気光学偏向器に印加した場合は、点像は極めてシャープとなり、理想的なOCTイメージが得られる状態に非常に近づいている。
 上述のように、波長掃引光源の電気光学偏向器への制御電圧に対して、発振波長の時間変化が、波数に対して線形的に変化するように補正を施すことで、OCTで得られる点像をシャープに保つことができる。上記の制御電圧の補正は、主たる鋸波状波形に、鋸波状波形のべき乗成分を重畳することで容易に生成可能である。具体的には、主たる鋸波状波形に鋸波状波形の二乗成分のみを、または、二乗成分および三乗成分を重畳すれば十分である。上記のように補正された制御電圧を利用すると、波長掃引光源では、発振波長が長波長側となるほど、発振波長がより速く変化して、発振波長の時間変化は、下に凸の形状となる。本発明の波長掃引光電では、時間軸上で波数に対して線形的に変化するように、掃引波長の制御が行なわれことになる。
 以上述べた本発明の波長掃引光源の構成では、制御電圧生成部202、302に示したように、鋸波状波形のべき乗成分を生成して制御電圧を補正するために、乗算器および加算器などのアナログ電子回路を用いている。しかし、べき乗成分の生成・加算はこの方法に限定されず、例えば、数値的に計算したデータに基づいて、任意波形発生器によって制御電圧を生成することもできる。
 本発明による電気光学偏向器の制御電圧の補正方法は、重畳されるべき乗成分の係数(比率)が、回折格子周りの配置のみに依存し、鋸波状波形の振幅や周期には依らない。従って、鋸波状波形の振幅を変えて波長掃引範囲を自由に変えられるという特徴がある。
 また、発振器部201、301の構成も様々な変形が可能であって、図1および図2の構成に限定されない。すなわち、制御電圧に対して波長掃引光源100の発振波長λが時間に対して概ね直線的に変化する場合に、波数が時間に対して直線的に変化するような波長変化を与えるように制御電圧を補正している点に本願発明の特徴があることに留意すべきである。
 以上詳細に述べたように、本発明により、SS-OCTに適合した波長変化を実現することができる波長掃引光源を提供することができる。波長変化が、波数について直線的に変化するプロファイルを持つ波長掃引電圧を利用することで、OCTイメージの線形性を大幅に改善し尖鋭なOCTイメージを得ることができる。
<実施例4>
 次に、レーザ発振の波数(К)について、数9の式のように、KTN偏向器からの出射光の偏向角(θ)の関数を用いて表す。
Figure JPOXMLDOC01-appb-M000009
 θはKTN偏向器への印加電圧(V)の関数であり、理想的にはθとVは比例する。しかし、KTN偏向器の不完全性や補償レンズの収差などの影響により、比例関係からのずれが生じるため、θは、数2のように、電圧の高次項を摂動として考慮した方が現実に近い。
Figure JPOXMLDOC01-appb-M000010
 ここで、数10を数9の式に代入すると、Vの二次まででも、数11の式のように、急速に複雑化することに着目しておく。
Figure JPOXMLDOC01-appb-M000011
 ここで、KTN偏向器は、電気的にみると数nFの静電容量を持つコンデンサと等価である。KTN偏向器を数百kHzの周波数で数百ボルトの電圧で駆動させる場合、出力インピーダンスを小さくして任意波形を発生させる電源よりも、コンデンサ、抵抗およびコイルで構成される共振回路によって駆動させるほうが、電源の消費電力やサイズの観点から有利となる。ただし、上述した共振回路だけでKTN偏向器を駆動させると、正弦波しか発生させることできないため、共振周波数を基本波として、その高調波を、振幅および/または位相を調整しながらDC電圧と共に重畳させることが現実的な手法となる。
 波長掃引を角周波数ωで時間的に周期的に行う場合、DCオフセット電圧に、基本波と高調波とを重畳すると、電圧のパターンは、数12の式で表される。
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000014
 ここで、数10および数12を数9の式に代入すると、印加電圧の各周波数成分および位相をパラメータとして、時間の関数として波数が与えられる。しかし、波数を時間の関数として表すと、各周波数成分に{k},{θ}, {V}の成分を含む複雑な関数となってしまう。
 さらに、共振周波数の高調波重畳回路の出力インピーダンスが十分に小さくない場合、各高調波の位相遅れまたは振幅が、負荷や電圧の値に依存してしまう。この場合、別個独立して決められた{k},{θ}, {V}を用いて、波数の時間依存性を決定するよりも、波数の時間依存性の実測値をもとにフィードバック制御を行い、所定の値を有する時間依存性に近づけていく方法が有効である。この方法は、波数(k)を印加電圧の各周波数成分{f}と位相ずれ{Φ}の関数として、数15に示される係数{f},{Φ}を決定することに相当する。
Figure JPOXMLDOC01-appb-M000015
 なお、数15の式中、Mは、高調波をどの程度まで印加するかを表す上限値である。ここでは、M=10とする。
 静電容量が2nFのKTN偏向器を用いて、中心波長が1320nm近辺、波長掃引幅が100nmとして、200kHzで繰り返し波長掃引を行う場合を例にとって説明する。ここでは、図17に示したように、掃引中に、短波長(λ=1270nm, k=4.947×106 m-1)から長波長(λ=1370nm, k=4.586×106 m-1)にかけて、波数が時間的に一定速度で変化するように調整するものとする。5μsの掃引周期(200kHzに相当する)のうち、80%の時間である4μsを短波長から長波長へ掃引するのに用いる。残りの1μsで長波長から短波長に移るが、その時間依存性は問わない。
 図18は、M=10の時、すなわち10次高調波までの重畳において、図17の波形の一周期分のみを再現した図である。図18の波形では、11次以上の高調波がないので、若干の鈍りが生じている。波数を時間的に一定速度で変化させるとしても、M=10の場合には、図18で示した波形程度の変化が限度である。
 次に、グレーティングの刻線数が600本/mm、KTN偏向器への印加電圧が0Vの時のグレーティングの法線への入射角が60°となるよう光学系を調整する場合について説明する。この場合、KTN偏向器への印加電圧±400Vを与えると、波長掃引幅は100nmを超える。この電圧を基準とする。すなわち、1≦m≦10に対して、数16の式の右辺の値から、
Figure JPOXMLDOC01-appb-M000016
 求める波数変化に対して、0.002216を乗じた値を電圧として印加する。
 ここで、目的波形である図18の波形のフーリエ変換を求めると、数17の式のように
表すことができる。
Figure JPOXMLDOC01-appb-M000017
 なお、図18の波形は、数18で表してある。
Figure JPOXMLDOC01-appb-M000018
 数17から、印加電圧の基本波および高調波の各々について、振幅、位相の初期値は数19を用いる。
Figure JPOXMLDOC01-appb-M000019
 上記の電圧パターンにより出力光の波数が変化する。このときの波数変化を次の文献に開示された方法(すなわち、電圧波形を等波数間隔になるようにサンプリングする方法)を用いて測定する(ステップ1)。波数変化は、数20で表してある。
Figure JPOXMLDOC01-appb-M000020
 (文献)Yoshiaki Yasuno, Violeta Dimitrova Madjarova, Shuichi Makita, Masahiro Akiba, Atsushi Morosawa, Changho Chomg, Toru Sakai, Kin-Pui Chan, Masahide Itoh and Toyohiko Yatagai, “Three-dimensionalo and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments,” Optics Express, 10652, Vol.13, No.26, 2003
 次に、数17の式に準拠して、数20で表される波数変化のフーリエ変換(K)を計算する(ステップ2)。
 次に、数21で表したΔを計算する(ステップ3)。
Figure JPOXMLDOC01-appb-M000021
 次に、数22で得られる左辺の値を新たにkとして与えられる印加電圧の基本波および高調波の初期値を得る。
Figure JPOXMLDOC01-appb-M000022
 新たに与えられたkについて、ステップ1~3を繰り返すことにより、波数の時間依存性を求める。そうすると、波数の時間依存性は図18に示された波形に近づく。
<実施例5>
 次に、波長掃引光源の一実施形態(第3実施形態)として、共振器にエタロンフィルタを挿入した波長掃引光源について説明する。
 図19は、本実施形態に係る波長掃引光源1bの構成を示す図である。この波長掃引光源1bは、共振器300と、共振器300から入射される光を平行光にして出射する第1の集光レンズ111と、第1の集光レンズ111から入射する光のみを出力光s1として透過させる光アイソレータ112とを含む。そして、共振器300は、電気光学偏向器301と、この電気光学偏向器301に接続された制御電圧源302とを含む構成となっている。電気光学偏向器301は、前述したように、例えばタンタル酸ニオブ酸カリウム(KTa1-xNb(0<x<1):KTN)結晶や、(K1-yLiTa1-xNb(0<x<1、0<y<1):KLTN)結晶等を用いた偏向器である。KTN結晶やKLTN結晶は、誘電率が大きく、高い電気光学効果をもつため、印加電圧により屈折率を変化させることができる。なお、図19では、一例として、共振器300はリットマン配置によって構成される場合について示してある。
 共振器300の内部には、利得媒質を励起させるためのレーザ媒質を有するLD(Laser Diode)101が設けられている。図19において、共振器100の外部側に位置するLDの第1端面101Aには、部分反射コーティング(HR)が施され、共振器100の内部側に位置するLDの第2端面101Bには、無反射コーティング(AR)が施されている。
 共振器300は、第2の集光レンズ102と、エタロンフィルタ103(第2共振器)と、回折格子104と、ミラー105(反射鏡)とを備えている。
 LDの第2端面101Bを透過する光を入射する第2の集光レンズ102は、光を平行光にして出射するようになっている。
 エタロンフィルタ103は、共振器100内で発振される光から、特定の周波数域(波長域)の光のみを透過するように構成されている。この実施形態では、一例として、エタロンフィルタ103は、直方体のガラスで構成され、光を透過するコーティング両端面には、30%程度の反射膜が施されている。エタロンフィルタ103の光出力特性については、後に説明する。
 回折格子104は、入射される光の波長を選択するようになっている。図19において、例えば鋸歯状溝を有する回折格子104は、所望の波長を有する入射光を回折する。
 制御電圧源302から電圧が電気光学偏向器301に印加されると、電気光学偏向器301の屈折率が変化し、電気光学偏向器301を透過する光の経路も変わる。
 図19は、共振器長およびエタロンフィルタ長を示す図である。図19に示すように、共振器100の共振器長は、第1端面101Aとミラー105との間の距離dである。
 一方、エタロンフィルタ103のエタロンフィルタ長は、コーティング両端面の間の距離d1である。この実施形態の説明では、一例として、距離dを10cmとし、距離d1を5mmとする。つまり、d1<dが成り立つ。
 図20は、エタロンフィルタの共振特性を示す図である。この出力特性は、図20のエタロンフィルタ長d1において、エタロンフィルタ103を透過する光の周波数を横軸、透過する光の強度を縦軸に表した特性を示している。
 図20に示すようにエタロンフィルタを透過する光は、エタロンフィルタ中での光速度をcとすると、c/(2d1)の周波数間隔で透過する。すなわち、エタロンフィルタ103の出力特性は、図20に示すように、特定の周波数のみを透過する、くし型特性となる。例えば、d1=5mmの場合において、c/(2d1)の周波数間隔は、20GHzにな
る。
 図21は、波長掃引光源の出力光を示す図である。図21において、(a)は、共振器の発振モードを示す図、(b)は、エタロンフィルタの発振モードを示す図、(c)は、波長掃引光源1の出力光s1を示す図である。各図では、周波数を横軸、光強度を縦軸にしている。
 図21(a)に示す共振器の発振モード(第1発振モード)では、図19の共振器長dにおいて、共振器中の光速度をcとすると、c/(2d)の周波数間隔で光(図を簡単にするために直線で示す。)が発振されている。
 一方、図21(b)に示すエタロンフィルタの発振モード(第2発振モード)では、c/(2d1)の周波数間隔で光が発振されるため、その周波数間隔は、図21(a)の周波数間隔よりも長くなる。
 このように周波数間隔の異なる光が発振されると、波長掃引光源の出力光s1(図を簡単にするために直線で示す。)は、図21(c)に示すように、共振器の発振モードとエタロンフィルタの発振モードとが一致する周波数(例えば、fa)で発振される。したがって、この波長掃引光源1では、エタロンフィルタの発振モードの周波数間隔で光を断続的に出力させることができる。
 また、本実施形態に係る波長掃引光源では、図21(b)におけるエタロンフィルタ103の発振モードが成長し続けるために、図21(a)における共振器の発振モードの周波数は、エタロンフィルタ103の発振モードの中心周波数のほうへ引き込まれる。これにより、図21(c)における出力光s1のパワーが安定する。
 図22は、波長掃引光源の出力光s1の周波数特性を示す図である。この周波数特性は、図19(エタロンフィルタ103があるときに、エタロンフィルタ長がd1の場合)において、エタロンフィルタ103の発振モードの中心周波数をfa,fb,fc,fd,fe,・・・,fhとした場合に、波長掃引光源1の出力光s1の出力時間tを横軸、各出力光の発振周波数を縦軸にした特性を示している。また、図22に示す周波数特性では、エタロンフィルタ103の出力特性(光強度を横軸、発振周波数を縦軸)501を破線で表している。
 なお、図22では、波長掃引光源の出力光s1の周波数特性の一部を示しているが、この実施形態の説明では、一例として、240THz(波長は1250nm)から222THz(波長は1350nm)までの周波数幅とする。
 このように波長掃引光源1の出力光s1は、c/(2d1)の間隔をもつ周波数で断続的に発振される。そのために、各出力光の周波数帯域幅が狭くなる。
 したがって、波長掃引光源1の出力光s1が所定の時間にわたって測定される場合でも、測定開始時の波長(周波数)と測定終了時の波長(周波数)を変化しにくくすることが可能となり、発振波長の変化に起因する測定誤差が生じにくくなる。また、光強度が最大となる周波数、すなわち所望の周波数(例えば、c/(2d1)の間隔をもつfa,fb等)をもつ出力光を断続的に観測することができるため、観測データが光周波数に対してほぼ線形に得られる。
 一方、共振器300内にエタロンフィルタ103を配置しない場合には、波長掃引光源の出力光の周波数特性は、共振器の発振モードの周波数間隔が変更されないため、図23に示すように、連続的な特性となる。したがって、エタロンフィルタ103を配置しない場合の波長掃引光源の出力光は、図23の出力光s1の場合と比べて周波数帯域幅(周波数スペクトル幅)が広くなるため、発振波長(周波数)の測定開始値および測定終了値の変化に起因する測定誤差が生じやすくなる。また、所望の周波数のみをもつ出力光を断続的に観測しにくくなる。
<実施例6>
 第3実施形態の波長掃引光源では、1つのエタロンフィルタを備える場合について説明したが、共振器の内部または外部に複数のエタロンフィルタを備えるようにしてもよい。
 この場合、各エタロンフィルタの共振周波数が一致する周波数もやはり一定の周波数間隔になるので、発振する周波数は一定の周波数間隔で所望の周波数をもつ光を出力させることができる。
 あるいは、第3実施形態の共振器の内部、および、外部に複数のエタロンフィルタを分散して設けるようにすることもできる。
<実施例7>
 以上では、第3実施形態を参照して、一定の周波数間隔で所望の周波数をもつ光が断続的に出力される場合について説明した。しかしながら、各実施形態の波長掃引光源においては、波長掃引時のコヒーレンス長に関し、波長掃引前のものと比較して劣化しないという側面も備えることを確認することができた。つまり、発振スペクトルの線幅が波長掃引前と波長掃引中で比較して変化しないことを確認できた。
 以下、第3実施形態の波長掃引光源1bを例にとって、かかる側面について、図19、24ないし図26を参照して説明する。
 本実施例の波長掃引光源は、全体の構成は図19に示したものと同様である。すなわち、この実施例の波長掃引光源1bは、共振器300、各集光レンズ102,111、エタロンフィルタ103、回折格子104、ミラー105、光アイソレータ112および電気光学偏向器301を備える。この実施例では、LD101には、例えば半導体光増幅器(SOA:Semiconductor Optical Amplifier)を用いた。
 本実施例のエタロンフィルタ103は、厚みが2.0mmおよび屈折率が1.5となるガラスを有する。ガラスは、光の入射面および出射面の反射率がともに30%となるようにした。
 図24は、エタロンフィルタ103の入力波長と透過率との関係の一例を示す図である。なお、横軸は波長、縦軸は透過率を示している。
 図24に示すように、エタロンフィルタ103では、波長に対して、透過率が周期的に変化するようになっている。この場合、各周期のおける透過スペクトルの半値幅は常に一定になるように構成されている。
 本実施例の回折格子104では、グレーティングピッチを例えば600本/mmとした。
 電気光学偏向器301は、例えば高速偏向動作が可能なKTN光スキャナを用いた。KTN光スキャナは、回折格子104に入射する角度を変化させ、発振波長を可変させる。この実施例では、KTN光スキャナのチップ形状として、例えば、4(l)X3(w)X1(t)mm3の平板構造のものを用いた。そして、このKTN結晶の4(l)X3(w)mm2の面上(表裏2面)にTi/Pt/Au電極を形成し、厚み方向に電界を印加させるようにした。さらに、KTNの晶系が立方晶となる領域は、ペルチェ温度コントローラを用いてKTNの動作温度を制御することで、誘電率が約20000となるようにした。また、本実施例では、このKTNに対して、周波数f=200kHz、電位Vpp=600Vとなる正弦波電圧を印加した。これにより、本実施例の波長掃引光源1bは、200kHzという高周波数で、かつ広帯域で波長掃引を行うことが可能になった。
 次に、本実施例の波長掃引光源1bを動作させ、光スペアナで測定することで、波長掃引特性を観測した。以下、この観測結果について説明する。
 図25Aはエタロンフィルタ103を挿入する前の波長掃引特性を示す図、図25Bはエタロンフィルタ103を挿入したときの波長掃引特性を示す図である。各図では、波長を横軸、光強度を縦軸に示している。なお、図25Aおよび図25Bでは、波長掃引特性が、1320nm~1350nmの波長との関係で示されているが、観測時には、100nm以上の波長幅にわたって波長掃引特性を確認した。
 エタロンフィルタ103を挿入する前の波長掃引特性は、図25Aに示すように、光強度が常に-25dB~-22dB程度となった。これは、波長掃引の際に発振スペクトルの線幅が太く、個々のピークが観測できなかったからである。KTN光スキャナでは、波長が連続的に掃引されるが、光スペアナでは、波長の取り込み時間が掃引時間より非常に長くなる。そのため、図25Aに示した光強度は、KTN光スキャナによって掃引された光スペクトルの重ね合わせ、すなわち積分スペクトルを時間平均したものとなる。
 なお、一般的には、波長掃引時において、KTN光スキャナの個体差や変動、共振器300の変動などが生じた場合、発振時の各線幅がその影響を受けるため、波長掃引前よりも可干渉性が低下するおそれがある。図25Aに示した波長掃引特性では、波長掃引を高速で行ったので、発振時の波形を観測することはできなかった。しかしながら、公知のマッハツェンダ干渉法によって、コヒーレンス長を測定したところ、波長掃引時のコヒーレンス長が、波長掃引前よりも劣化することが確認できた。
 一方、エタロンフィルタ103を挿入したときの波長掃引特性は、図25Bに示すように、発振スペクトルが、一定の波長間隔で、かつ、一定の線幅を有する断続的なものとなった。図25Bの例では、光強度は概ね、-33dB~-20dB強となった。
 図26は、図25Bに示した波長掃引特性の拡大例を示す図である。図26では、図25Bの波長掃引特性に示された1320nm~1323nmの波長の中で光強度が最大の光強度を強度比=100%となるように設定した。
 この場合、強度比が100%となる発振スペクトルでは、図26に示すように、半値幅が0.1nmとなった。また、この図26の例では、発振スペクトルの線幅は、すべて常に0.1nm以下となった。これは、波長掃引前の発振スペクトルの線幅とほぼ同じ結果となった。つまり、エタロンフィルタ103が挿入された場合には、波長掃引時にKTN光スキャナの変動、共振器300の変動などが生じても、エタロンフィルタ103の透過特性によって、それらの影響が小さくなり、波長掃引時も常に良好なコヒーレンス長を保持することが可能となることが確認できた。
 このように波長掃引光源1bにエタロンフィルタ103を挿入することによって、波長掃引時に、その全帯域にわたり良好なコヒーレンス長をもつ発振特性を得ることができることが分かった。したがって、各実施形態における各波長掃引光源も、透過スペクトルの半値幅が常に一定になるように構成されたエタロンフィルタ103を備えるようにすれば、常に良好なコヒーレンス長をもつ発振特性を得ることができると考えられる。つまり、各実施形態の波長掃引光源は、一定の周波数間隔で、かつ一定のスペクトル半値幅で所望の周波数をもつ光を断続的に出力する。
 このことは、波長掃引時に生じる各光学部品(SOA、回折格子、偏向器、集光レンズ等)の環境変化、例えば経時変化や温度変化等によって、波長掃引光源の出力光のコヒーレンス長、すなわち可干渉性が劣化しないことを意味する。つまり波長掃引前と掃引中とで可干渉性が劣化しないことを意味する。このため、例えば各実施形態の波長掃引光源を用いてオプティカル・コヒーレント・トモグラフィ(OCT)法で対象物を測定する場合において、測定可能な深さが制限されるという不都合もない。
 以上をまとめると、第2共振器であるエタロンフィルタ103は、発振周波数間隔のみならず、発振スペクトル半値幅も制御することになる。波長掃引時に光の可干渉性を劣化させるような事象が発生したとしても、第2共振器により規定された一定間隔の発振波長(発振周波数)では光の可干渉性が保障され、掃引全帯域にわたって高い可干渉性を保つことができる。
 以上、本発明の各実施形態および実施例(以下、「各実施形態等」という。)を詳述してきたが、具体的な構成は各実施形態等に限られるものではなく、本発明の要旨を逸脱しない範囲の設計変更なども含まれる。
 各実施形態等の波長掃引光源において、エタロンフィルタを設ける位置は、図19に図示された位置に限られない。例えば、図19に示したものにおいて、エタロンフィルタは、回折格子104とミラー105との間に設けるようにしてもよいし、LD101と集光レンズ111との間に設けるようにしてもよい。あるいは、図19に示したものにおいて、エタロンフィルタは、電気光学偏向器301と回折格子104との間に設けるようにしてもよい。
 また、KTN光スキャナのチップ形状・印加波形、エタロンフィルタの諸特性(厚さ、反射率など)、回折格子104のグレーティングピッチ、動作周波数などのパラメータについても様々な変更が可能である。
 また、図19の共振器は、例えばリットマン配置の構成を例示しているが、回折格子がミラーの機能を兼ね備えるリトロー配置で構成することによっても実施することができる。
 図19に示したものにおいて、電気光学偏向器301は、電気光学効果を有するKTNスキャナを例にとって説明しているが、他の材料を用いた電気光学型偏向器を適用するようにしてもよい。あるいは、図19に示したものにおいて、ガルバノミラー、MESM型ミラーなどの偏向器を用いて実施することもできる。さらに、エタロンフィルタを複数にしても実施することができる。
 上述した波長掃引光源では、エタロンフィルタを用いる場合について説明したが、これに限られない。共振器の発振モードの周波数間隔を変更して断続的な出力光が得られるのであれば、例えばマイケルソン干渉計等を用いてもよい。
 第3実施形態の波長掃引光源1bでは、エタロンフィルタ103を共振器300の内部に設ける場合について説明したが、共振器300の外部(例えば、光アイソレータ112の出力側の位置)に設定する構成にしてもよい。
<実施例8>
 本実施例の波長掃引光源は、全体の構成は図19に示したものと同様である。すなわち、この実施例の波長掃引光源1bは、共振器300、各集光レンズ102,111、エタロンフィルタ103、回折格子104、ミラー105、光アイソレータ112および電気光学偏向器301を備える。この実施例では、LD101には、例えば半導体光増幅器(SOA:Semiconductor Optical Amplifier)を用いた。
 共振器の構成部品の位置ずれなどにより、最適な共振状態からずれた状況を考える。
 最適な状態からずれることにより、回折格子104の波長選択によるフィルタ特性が劣化し、切り出される波長の線幅は広くなる。この状態で発振させると、広い線幅となるため、可干渉性の低い光しか得られない(図27A参照)。
 一方、上記状態でエタロンフィルタ103が挿入されている場合、共振器300全体のフィルタ特性は、回折格子104の波長選択によるフィルタ特性と、エタロンフィルタ103のフィルタ特性との重ね合わせであり、広がっている回折格子104のフィルタ特性の一部をエタロンフィルタが抑制する形状となる。これにより、エタロンフィルタ無しの状態に比べ、狭い線幅の発振となり、可干渉性の高い光を得ることができる(図27B参照)。
 シリコンエタロンフィルタは、ガラスエタロンフィルタに比べ、次の3点について有効である。
 本実施例のエタロンフィルタ103は、材質をシリコン(屈折率3.5)、厚み3mm、両面の反射率を31%としたものを用いた(シリコンエタロンフィルタ)。
 エタロン効果を得るには、多重反射による干渉現象が発現する程度の垂直度で、共振器内にエタロンフィルタが挿入される必要がある。シリコンはガラスに比べて屈折率が高く、ガラスの屈折率が1.5に対して、シリコンの屈折率は3.5である。このため、シリコンの場合、前述の垂直度が悪かったとしても多重反射による干渉現象が生じやすい。言い換えれば、シリコンエタロンフィルタは、光学系に挿入する際の垂直度の変化、及び、ずれに対して頑強性が比較的高いといえる。従って、シリコンエタロンフィルタは、光学アライメントの容易さに関して、ガラスエタロンよりも有効である。
 また、発振モードの周波数間隔を狭くする、すなわち、より密に発振モードを立てるためには、エタロンフィルタ内の光路長を長くする必要がある。シリコンはガラスの屈折率の2.3倍であるため、ガラスと比較して約半分以下の薄さで同様の光路長を実現することができる。このため、共振器内におけるエタロンの占める体積を削減でき、共振器の小型化に有効である。
 さらに、シリコンは屈折率が高いためフレネル損失が高く、反射率が高い。ガラスのように高反射率を実現するためには基板に反射膜を蒸着する必要なく、シリコン基板を切断しただけで必要な反射率をもつエタロンを得ることができ、経済的に有効である。
 図28は、エタロンフィルタ103の入力波長と透過率との関係の一例を示す図である。なお、横軸は波長、縦軸は透過率を示している。
 図28に示すように、エタロンフィルタ103では、波長に対して、透過率が周期的に変化するようになっている。この場合、各周期のおける透過スペクトルの半値幅は常に一定になるように構成されている。
 本実施例の回折格子104では、グレーティングピッチを例えば950本/mmとした。
 電気光学偏向器301は、例えば高速偏向動作が可能なKTN光スキャナを用いた。KTN光スキャナは、回折格子104に入射する角度を変化させ、発振波長を可変させる。この実施例では、KTN光スキャナのチップ形状として、例えば、4(l)X3(w)X1.5(t)mm3の平板構造のものを用いた。そして、このKTN結晶の4(l)X3(w)mm2の面上(表裏2面)にTi/Pt/Au電極を形成し、厚み方向に電界を印加させるようにした。さらに、KTNの晶系が立方晶となる領域は、ペルチェ温度コントローラを用いてKTNの動作温度を制御することで、誘電率が約20000となるようにした。また、本実施例では、このKTNに対して、周波数f=200kHz、電位Vpp=800Vとなる正弦波電圧を印加した。これにより、本実施例の波長掃引光源1bは、200kHzという高周波数で、かつ広帯域で波長掃引を行うことが可能になった。
 次に、本実施例の波長掃引光源1bを動作させ、光スペアナで測定することで、波長掃引特性を観測した。以下、この観測結果について説明する。
 図29Aはエタロンフィルタ103の挿入前の波長掃引光源1bの各波長掃引特性の一例を示す図、図29Bはエタロンフィルタ103を挿入したときの波長掃引特性を示す図である。各図では、波長を横軸、光強度を縦軸に示している。なお、図29Aおよび図29Bでは、波長掃引特性が、1315nm~1320nmの波長との関係で示されている。
 エタロンフィルタ103を挿入する前の波長掃引特性は、図29Aに示すように、光強度が常に-30dB~-25dB程度となった。これは、波長掃引の際に発振スペクトルの線幅が太く、個々のピークが観測できなかったからである。KTN光スキャナでは、波長が連続的に掃引されるが、光スペアナでは、波長の取り込み時間が掃引時間より非常に長くなる。そのため、図29Aに示した光強度は、KTN光スキャナによって掃引された光スペクトルの重ね合わせ、すなわち積分スペクトルを時間平均したものとなる。
 なお、一般的には、波長掃引時において、KTN光スキャナの個体差や変動、共振器300の変動などが生じた場合、発振時の各線幅がその影響を受けるため、波長掃引前よりも可干渉性が低下するおそれがある。図29Aに示した波長掃引特性では、波長掃引を高速で行ったので、発振時の波形を観測することはできなかった。しかしながら、公知のマッハツェンダ干渉法によって、コヒーレンス長を測定したところ、波長掃引時のコヒーレンス長が、波長掃引前よりも劣化することが確認できた。
 一方、エタロンフィルタ103を挿入したときの波長掃引特性は、図29Bに示すように、発振スペクトルが、一定の波長間隔で、かつ、一定の線幅を有する断続的なものとなった。
 図30は、図29Bに示した波長掃引特性のうち1319.9nm~1320.15nmの拡大例を示す図である。図30では、図29Bの波長掃引特性に示された1319.9nm~1320.15nmの波長の中で光強度が最大の光強度を強度比=100%となるように設定した。なお、スペクトルの強度比の揺らぎは、分解能近くでの測定であることに起因している。
 この場合、強度比が100%となる発振スペクトルでは、図28に示すように、半値幅が0.025nm程度となった。また、この図28の例では、発振スペクトルの線幅は、すべて常に0.025nm以下となった。これは、波長掃引前の発振スペクトルの線幅とほぼ同じ結果となった。つまり、エタロンフィルタ103が挿入された場合には、波長掃引時にKTN光スキャナの変動、共振器300の変動などが生じても、エタロンフィルタ103の透過特性によって、それらの影響が小さくなり、波長掃引時も常に良好なコヒーレンス長を保持することが可能となることが確認できた。
 このように波長掃引光源1bにエタロンフィルタ103を挿入することによって、波長掃引時に、その全帯域にわたり良好なコヒーレンス長をもつ発振特性を得ることができることが分かった。したがって、各実施形態における各波長掃引光源も、透過スペクトルの半値幅が常に一定になるように構成されたエタロンフィルタ103を備えるようにすれば、常に良好なコヒーレンス長をもつ発振特性を得ることができると考えられる。つまり、各実施形態の波長掃引光源は、一定の周波数間隔で、かつ一定のスペクトル半値幅で所望の周波数をもつ光を断続的に出力する。
 このことは、波長掃引時に生じる各光学部品(SOA、回折格子、偏向器、集光レンズ等)の環境変化、例えば経時変化や温度変化等によって、波長掃引光源の出力光のコヒーレンス長、すなわち可干渉性が劣化しないことを意味する。このため、例えば各実施形態の波長掃引光源を用いてオプティカル・コヒーレント・トモグラフィ(OCT)法で対象物を測定する場合において、有利である。
なお、エタロンフィルタを挿入した波長掃引光源を利用してOCT測定を実施する場合、測定に利用できるコヒーレンス長は挿入されているエタロンフィルタの光路長に関係した長さで限定される。
 OCT測定で求められるコヒーレント長をlc、エタロンフィルタの厚さをd、屈折率をnとすると、数23の関係が成り立つ。
Figure JPOXMLDOC01-appb-M000023
 本発明は、光信号処理装置に使用できる。特に、光コヒーレントトモグラフィーに利用できる。
 1 光源
 2、22 ビームスプリッタ
 3、23、110 ミラー
 4、24 生体
 5、25 光検出器
 21、100、200、300 波長掃引光源
 31、32、33 反射面
 101  利得媒質
 102、111 集光レンズ
 103 電気光学偏向器
 104 制御電圧
 106、19 回折格子
 112 出力結合鏡
 115 鋸波状波形発生器
 116、118 乗算器
 117、119 加算器
 120 ポリゴンミラー
 201、301 発振器部
 202、302 制御電圧生成器
 300 共振器
 101 LD
 102 第2の集光レンズ
 103 エタロンフィルタ
 104 回折格子
 105 ミラー
 111 第1の集光レンズ
 112 光アイソレータ
 301 電気光学偏向器
 302 制御電圧源
 S1  出力光

Claims (9)

  1.  時間的に出力波長が周期的に変化する波長掃引光源において、
     電気光学偏向器を含む発振器部と、
     主たる鋸歯状波形に加え、該鋸歯状波形のべき乗成分が重畳された、前記電気光学偏向器へ印加する制御電圧を生成する制御電圧生成部と
     を備えたことを特徴とする波長掃引光源。
  2.  前記発振器部は、利得媒質と、前記利得媒質の一端からの光が入射する回折格子とを含み、前記利得媒質と前記回折格子とが光学的に接続された共振器から構成され、
     前記電気光学偏向器は、前記利得媒質と前記回折格子との間であって、前記共振器により形成される光路上に配置され、
     前記回折格子への前記電気光学偏向器側からの光入射角をθ、前記電気光学偏向器の制御電圧対角度感度をγ [rad/V]とするとき、
     前記鋸歯状波形の前記べき乗成分として、式
    Figure JPOXMLDOC01-appb-M000024
    で表される係数を有する二乗成分が重畳されることを特徴とする請求項1に記載の波長掃引光源。
  3.  前記鋸歯状波形の前記べき乗成分として、
     前記二乗成分に加えて、式
    Figure JPOXMLDOC01-appb-M000025
    で表される係数を有する三乗成分がさらに重畳されることを特徴とする請求項2に記載の波長掃引光源。
  4.  前記発振器部は、利得媒質と、前記利得媒質の一端からの光が入射する回折格子と、前記回折格子への前記入射光の回折光が直入射する端面鏡とを含み、前記回折格子を介して、前記利得媒質と前記端面鏡とが光学的に接続された共振器から構成され、
     前記電気光学偏向器は、前記利得媒質と前記回折格子との間であって、前記共振器により形成される光路上に配置され、
     前記回折格子への前記電気光学偏向器側からの光入射角をθ、前記回折格子への前記端面鏡側からの光入射角をφ、前記電気光学偏向器の制御電圧対角度感度をγ[rad/V]とするとき、
    前記鋸歯状波形の前記べき乗成分として、式
    Figure JPOXMLDOC01-appb-M000026
    で表される係数を有する二乗成分が重畳されることを特徴とする請求項1に記載の波長掃引光源。
  5.  前記鋸歯状波形の前記べき乗成分として、
     前記二乗成分に加えて、式
    Figure JPOXMLDOC01-appb-M000027
    で表される係数を有する三乗成分がさらに重畳されることを特徴とする請求項4に記載の波長掃引光源。
  6.  前記共振器は、第1発振モードの周波数間隔で光を発振するように構成されており、
     前記共振器の内部には、当該共振器の第1共振器長より短い第2共振器長に対応した第2発振モードの周波数間隔で光を発振する第2共振器を有し、
     前記共振器は、前記第1発振モードの周波数と前記第2発振モードの周波数とが一致する周波数で発振された光を出力することを特徴とする請求項1ないし5のいずれか1項に記載の波長掃引光源。
  7.  前記共振器は、第1発振モードの周波数で光を発振するように構成されており、
     前記共振器の外部には、当該共振器の第1共振器長より短い第2共振器長に対応した第2発振モードの周波数間隔で光を発振する第2共振器を有し、
     前記第2共振器は、前記第1発振モードの周波数と前記第2発振モードの周波数とが一致する周波数で発振された光を出力することを特徴とする請求項1ないし5のいずれか1項に記載の波長掃引光源。
  8.  前記共振器は、第1発振モードの周波数で光を発振するように構成されており、
     前記共振器の内部または/および外部には、当該共振器の第1共振器長より短い1つもしくは複数の第2共振器長に対応した第2発振モードの周波数間隔でそれぞれ光を発振する複数の第2共振器を有し、
     前記各第2共振器は、前記第1発振モードの周波数と当該各第2発振モードの周波数とが一致する周波数で発振された光を出力することを特徴とする請求項1ないし5のいずれか1項に記載の波長掃引光源。
  9.  前記第2共振器は、透過率が波長に対して周期的に変化し各周期における透過スペクトルの半値幅が一定になるように構成されていることを特徴とする請求項1ないし8のいずれか1項に記載の波長掃引光源。
PCT/JP2012/000017 2011-01-05 2012-01-04 波長掃引光源 WO2012093654A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US13/978,122 US9372339B2 (en) 2011-01-05 2012-01-04 Wavelength swept light source
EP12731920.0A EP2662683B1 (en) 2011-01-05 2012-01-04 Wavelength swept light source
JP2012551855A JP5913135B2 (ja) 2011-01-05 2012-01-04 波長掃引光源

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
JP2011000594 2011-01-05
JP2011-000594 2011-01-05
JP2011011062 2011-01-21
JP2011-011062 2011-01-21
JP2011-132482 2011-06-14
JP2011132482 2011-06-14

Publications (1)

Publication Number Publication Date
WO2012093654A1 true WO2012093654A1 (ja) 2012-07-12

Family

ID=46457506

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/000017 WO2012093654A1 (ja) 2011-01-05 2012-01-04 波長掃引光源

Country Status (4)

Country Link
US (1) US9372339B2 (ja)
EP (1) EP2662683B1 (ja)
JP (1) JP5913135B2 (ja)
WO (1) WO2012093654A1 (ja)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150081A (ja) * 2011-01-21 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> 波長掃引光源
JP2012151419A (ja) * 2011-01-21 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> 波長可変光源
WO2013018634A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
WO2013018632A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
US20140028997A1 (en) * 2012-07-27 2014-01-30 Praevium Research, Inc. Agile imaging system
WO2014036084A1 (en) * 2012-08-31 2014-03-06 Lightlab Imaging, Inc. Optical coherence tomography control systems and methods
JP2014174279A (ja) * 2013-03-07 2014-09-22 Nippon Telegr & Teleph Corp <Ntt> 誘電体デバイスおよび誘電体デバイスの制御方法
JP2014215056A (ja) * 2013-04-22 2014-11-17 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP2014228397A (ja) * 2013-05-22 2014-12-08 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP2014228398A (ja) * 2013-05-22 2014-12-08 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP2015090928A (ja) * 2013-11-06 2015-05-11 日本電信電話株式会社 波長掃引光源
JP2015142111A (ja) * 2014-01-30 2015-08-03 日本電信電話株式会社 波長掃引光源
WO2015129696A1 (ja) * 2014-02-26 2015-09-03 株式会社トプコン 干渉計の較正方法及びこの較正方法を用いた干渉計
JP2016045430A (ja) * 2014-08-25 2016-04-04 日本電信電話株式会社 光偏向装置
JP2017011163A (ja) * 2015-06-24 2017-01-12 国立大学法人埼玉大学 レーザー光源装置及び干渉計
JP2017219732A (ja) * 2016-06-08 2017-12-14 日本電信電話株式会社 波長掃引光源およびその制御方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102008063225A1 (de) 2008-12-23 2010-07-01 Carl Zeiss Meditec Ag Vorrichtung zur Swept Source Optical Coherence Domain Reflectometry
CN104300358A (zh) * 2014-09-22 2015-01-21 江苏骏龙电力科技股份有限公司 宽范围相位连续扫频的窄线宽激光光源
GB201609027D0 (en) * 2016-05-23 2016-07-06 Bae Systems Plc Waveguide manufacturing method
JP6621026B2 (ja) * 2016-09-06 2019-12-18 日本電信電話株式会社 波長掃引光源の評価方法
EP4191808A1 (en) * 2016-12-09 2023-06-07 Nippon Telegraph And Telephone Corporation Swept light source and drive data generation method and optical deflector for swept light source
JP6782470B2 (ja) * 2018-09-05 2020-11-11 パナソニックIpマネジメント株式会社 計測装置及び計測方法
JP7440869B2 (ja) * 2018-11-21 2024-02-29 積水メディカル株式会社 光共振器並びにそれを用いた炭素同位体分析装置及び炭素同位体分析方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205159B1 (en) * 1997-06-23 2001-03-20 Newport Corporation Discrete wavelength liquid crystal tuned external cavity diode laser
JP2004046524A (ja) * 2002-07-11 2004-02-12 Agilent Technol Inc 波形合成方法、波形合成装置及び周波数変換装置
WO2006137408A1 (ja) 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation 電気光学素子
JP2007027306A (ja) * 2005-07-14 2007-02-01 Sun Tec Kk 波長可変レーザ光源
WO2010047936A2 (en) * 2008-10-22 2010-04-29 Massachusetts Institute Of Technology Fourier domain mode locking
JP2010515919A (ja) * 2007-01-10 2010-05-13 ライトラボ・イメージング・インコーポレーテッド 波長可変光源を利用した光干渉断層撮影法の方法及び装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001076026A1 (en) * 2000-03-30 2001-10-11 National Institute Of Standards And Technology ('nist') Mode-locked pulsed laser system and method
US6631146B2 (en) * 2001-07-06 2003-10-07 Intel Corporation Tunable laser control system
KR100450745B1 (ko) * 2001-12-07 2004-10-01 한국전자통신연구원 광변조기 제어장치 및 방법
EP2280260B1 (en) * 2003-06-06 2017-03-08 The General Hospital Corporation Process and apparatus for a wavelength tuned light source
US8018598B2 (en) * 2004-05-29 2011-09-13 The General Hospital Corporation Process, system and software arrangement for a chromatic dispersion compensation using reflective layers in optical coherence tomography (OCT) imaging
WO2006008873A1 (ja) * 2004-07-15 2006-01-26 Nec Corporation 外部共振器型波長可変レーザ
CN101065915B (zh) * 2004-08-05 2012-12-05 Jds尤尼弗思公司 具有电压感应光学吸收的光学马赫-曾德调制器的偏压控制方法和设备
GB2417333B (en) * 2004-08-13 2008-07-16 Bookham Technology Plc Automatic bias controller for an optical modulator
EP2264841B1 (en) 2005-01-20 2016-01-20 Massachusetts Institute of Technology (MIT) Mode locking methods and apparatus
JP5121150B2 (ja) 2006-02-28 2013-01-16 サンテック株式会社 波長可変レーザ光源
US7858923B2 (en) * 2006-12-26 2010-12-28 Canon Kabushiki Kaisha Light beam scanning apparatus and image forming apparatus provided with the same
JP4229192B2 (ja) 2007-02-26 2009-02-25 セイコーエプソン株式会社 電気光学素子及び走査型光学装置
US8115934B2 (en) * 2008-01-18 2012-02-14 The Board Of Trustees Of The University Of Illinois Device and method for imaging the ear using optical coherence tomography
JP5704841B2 (ja) * 2010-06-10 2015-04-22 キヤノン株式会社 光源装置及びこれを用いた撮像装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6205159B1 (en) * 1997-06-23 2001-03-20 Newport Corporation Discrete wavelength liquid crystal tuned external cavity diode laser
JP2004046524A (ja) * 2002-07-11 2004-02-12 Agilent Technol Inc 波形合成方法、波形合成装置及び周波数変換装置
WO2006137408A1 (ja) 2005-06-20 2006-12-28 Nippon Telegraph And Telephone Corporation 電気光学素子
JP2007027306A (ja) * 2005-07-14 2007-02-01 Sun Tec Kk 波長可変レーザ光源
JP2010515919A (ja) * 2007-01-10 2010-05-13 ライトラボ・イメージング・インコーポレーテッド 波長可変光源を利用した光干渉断層撮影法の方法及び装置
WO2010047936A2 (en) * 2008-10-22 2010-04-29 Massachusetts Institute Of Technology Fourier domain mode locking

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MASAMITSU HARUNA: "Progress in Optical Coherence Tomography", APPLIED PHYSICS, vol. 77, no. 9, 2008, pages 1085 - 1092
See also references of EP2662683A4
YOSHIAKI YASUNO; VIOLETA DIMITROVA MADJAROVA; SHUICHI MAKITA; MASAHIRO AKIBA; ATSUSHI MOROSAWA; CHANGHO CHOMG; TORU SAKAI; KIN-PUI: "Three-dimensionalo and high-speed swept-source optical coherence tomography for in vivo investigation of human anterior eye segments", OPTICS EXPRESS, vol. 13, no. 26, 2003, pages 10652

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012150081A (ja) * 2011-01-21 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> 波長掃引光源
JP2012151419A (ja) * 2011-01-21 2012-08-09 Nippon Telegr & Teleph Corp <Ntt> 波長可変光源
JP2013051406A (ja) * 2011-07-29 2013-03-14 Fujifilm Corp レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
WO2013018632A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
WO2013018634A1 (ja) * 2011-07-29 2013-02-07 富士フイルム株式会社 レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
JP2013051403A (ja) * 2011-07-29 2013-03-14 Fujifilm Corp レーザ光源ユニット、その制御方法、光音響画像生成装置及び方法
US20140028997A1 (en) * 2012-07-27 2014-01-30 Praevium Research, Inc. Agile imaging system
US10281256B2 (en) 2012-07-27 2019-05-07 Thorlabs, Inc. Agile imaging system
US10215551B2 (en) * 2012-07-27 2019-02-26 Praevium Research, Inc. Agile imaging system
WO2014036084A1 (en) * 2012-08-31 2014-03-06 Lightlab Imaging, Inc. Optical coherence tomography control systems and methods
US8687201B2 (en) 2012-08-31 2014-04-01 Lightlab Imaging, Inc. Optical coherence tomography control systems and methods
EP4056106A1 (en) * 2012-08-31 2022-09-14 Lightlab Imaging, Inc. Optical coherence tomography control systems and methods
JP2015532717A (ja) * 2012-08-31 2015-11-12 ライトラボ・イメージング・インコーポレーテッド 光干渉断層撮影を制御するシステム及び方法
JP2018105867A (ja) * 2012-08-31 2018-07-05 ライトラボ・イメージング・インコーポレーテッド 光干渉断層撮影を制御するシステム及び方法
US9417052B2 (en) 2012-08-31 2016-08-16 Lightlab Imaging, Inc. Optical coherence tomography control systems and methods
JP2014174279A (ja) * 2013-03-07 2014-09-22 Nippon Telegr & Teleph Corp <Ntt> 誘電体デバイスおよび誘電体デバイスの制御方法
JP2014215056A (ja) * 2013-04-22 2014-11-17 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP2014228398A (ja) * 2013-05-22 2014-12-08 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP2014228397A (ja) * 2013-05-22 2014-12-08 日本電信電話株式会社 データ処理装置およびリサンプリング方法
JP2015090928A (ja) * 2013-11-06 2015-05-11 日本電信電話株式会社 波長掃引光源
JP2015142111A (ja) * 2014-01-30 2015-08-03 日本電信電話株式会社 波長掃引光源
JP2015161505A (ja) * 2014-02-26 2015-09-07 株式会社トプコン 干渉計の較正方法及びこの較正方法を用いた干渉計
WO2015129696A1 (ja) * 2014-02-26 2015-09-03 株式会社トプコン 干渉計の較正方法及びこの較正方法を用いた干渉計
US10295328B2 (en) 2014-02-26 2019-05-21 Kabushiki Kaisha Topcon Method of calibrating interferometer and interferometer using the same
JP2016045430A (ja) * 2014-08-25 2016-04-04 日本電信電話株式会社 光偏向装置
JP2017011163A (ja) * 2015-06-24 2017-01-12 国立大学法人埼玉大学 レーザー光源装置及び干渉計
JP2017219732A (ja) * 2016-06-08 2017-12-14 日本電信電話株式会社 波長掃引光源およびその制御方法

Also Published As

Publication number Publication date
US9372339B2 (en) 2016-06-21
JP5913135B2 (ja) 2016-04-27
EP2662683B1 (en) 2016-05-04
EP2662683A4 (en) 2014-06-04
US20130286454A1 (en) 2013-10-31
JPWO2012093654A1 (ja) 2014-06-09
EP2662683A1 (en) 2013-11-13

Similar Documents

Publication Publication Date Title
JP5913135B2 (ja) 波長掃引光源
JP6774504B2 (ja) 波長掃引光源、波長掃引光源のための駆動データ作成方法および光偏向器
US20180156600A1 (en) Agile imaging system
TWI463177B (zh) 使用頻率域干涉法用以執行光學成像之方法及設備
US5956355A (en) Method and apparatus for performing optical measurements using a rapidly frequency-tuned laser
EP1925253B1 (en) Optical Tomograph
EP2136443A1 (en) Wavelength scanning light source and optical coherence tomography device
JP2007024677A (ja) 光断層画像表示システム
KR101379043B1 (ko) 펄스 레이저 반복률 주사 기반 고속 고정밀 표면형상 측정 간섭계
JP2009031238A (ja) 光コヒーレンストモグラフィー装置
US10161738B2 (en) OCT swept laser with cavity length compensation
CN112839568A (zh) 用于二次采样/圆形测距光学相干断层扫描成像的主动正交解调
JP5296814B2 (ja) 波長掃引光源
Ng Setup of a transfer cavity to stabilize a UV optical lattice
JP6053017B2 (ja) 波長掃引光源
JP2016134437A (ja) ファイバーリングレーザー、光パルス、及び光断層画像化装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12731920

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551855

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 13978122

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012731920

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE