WO2012093590A1 - Curable epoxy resin composition - Google Patents

Curable epoxy resin composition Download PDF

Info

Publication number
WO2012093590A1
WO2012093590A1 PCT/JP2011/079688 JP2011079688W WO2012093590A1 WO 2012093590 A1 WO2012093590 A1 WO 2012093590A1 JP 2011079688 W JP2011079688 W JP 2011079688W WO 2012093590 A1 WO2012093590 A1 WO 2012093590A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
epoxy resin
optical semiconductor
curable epoxy
compound
Prior art date
Application number
PCT/JP2011/079688
Other languages
French (fr)
Japanese (ja)
Inventor
巽淳郎
鈴木弘世
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to KR1020137013077A priority Critical patent/KR20140009201A/en
Priority to JP2012551829A priority patent/JP5919200B2/en
Priority to CN201180048618XA priority patent/CN103168060A/en
Publication of WO2012093590A1 publication Critical patent/WO2012093590A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/226Mixtures of di-epoxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/20Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
    • C08G59/22Di-epoxy compounds
    • C08G59/26Di-epoxy compounds heterocyclic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L63/00Compositions of epoxy resins; Compositions of derivatives of epoxy resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/31Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the arrangement or shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/26Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
    • H01L2224/31Structure, shape, material or disposition of the layer connectors after the connecting process
    • H01L2224/32Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
    • H01L2224/321Disposition
    • H01L2224/32151Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/32221Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/32245Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73265Layer and wire connectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin

Definitions

  • the present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, a resin composition for optical semiconductor encapsulation comprising the curable epoxy resin composition, and the optical semiconductor encapsulation.
  • the present invention relates to an optical semiconductor device in which an optical semiconductor element is sealed using a resin composition for use.
  • a composition containing monoallyl diglycidyl isocyanurate and bisphenol A type epoxy resin is known as a sealing resin having high heat resistance (see Patent Document 1).
  • a sealing resin having high heat resistance see Patent Document 1.
  • coloring proceeds due to light and heat emitted from the optical semiconductor element, and light that should be output is absorbed. As a result, there is a problem that the luminous intensity of the light output from the optical semiconductor device is lowered.
  • a liquid alicyclic epoxy resin having an alicyclic skeleton such as an adduct of cyclohexanecarboxylate and ⁇ -caprolactone and 1,2,8,9-diepoxylimonene is known.
  • the cured products of these alicyclic epoxy resins are vulnerable to various stresses, and when a thermal shock such as a cold cycle (repeating heating and cooling) is applied, cracks (cracks) occur. Had.
  • the optical semiconductor device usually undergoes a reflow process for joining the electrodes of the optical semiconductor device to the wiring board by soldering.
  • lead-free solder having a high melting point has been used as a solder as a bonding material, and the heat treatment in the reflow process has become a higher temperature (for example, the peak temperature is 240 to 260 ° C.).
  • the peak temperature is 240 to 260 ° C.
  • reflow resistance refers to a characteristic that does not cause peeling or cracking of the sealing resin from the lead frame when the optical semiconductor device is heat-treated in the reflow process.
  • an object of the present invention is to provide a curable epoxy resin composition that has a high transparency, heat resistance, light resistance, and crack resistance, and gives a cured product excellent in reflow resistance.
  • Another object of the present invention is a cured product obtained by curing the above curable epoxy resin composition, having high transparency, heat resistance, light resistance, and crack resistance, and having excellent reflow resistance. Is to provide.
  • Another object of the present invention is to provide an optical semiconductor sealing resin composition comprising the above-mentioned curable epoxy resin composition, which provides an optical semiconductor device in which deterioration due to heat treatment in the reflow process and a decrease in light intensity over time are suppressed.
  • Another object of the present invention is to suppress degradation due to heat treatment in the reflow process and decrease in light intensity over time, which are obtained by sealing an optical semiconductor element using the above resin composition for optical semiconductor sealing. Another object is to provide an optical semiconductor device.
  • the inventors of the present invention include an alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a polycarbonate polyol as essential components, and further includes a curing agent or a curing catalyst.
  • An optical semiconductor device in which an epoxy resin composition provides a cured product having high transparency, heat resistance, light resistance, crack resistance, and reflow resistance, and an optical semiconductor element is sealed with the cured product is a reflow process.
  • the present invention relates to an alicyclic epoxy compound (A) and the following formula (1).
  • a curable epoxy resin composition comprising a monoallyl diglycidyl isocyanurate compound (B) represented by the following formula, a polycarbonate polyol (C), and a curing agent (D) or a curing catalyst (E): To do.
  • the curable epoxy resin composition is provided wherein the alicyclic epoxy group of the alicyclic epoxy compound (A) is a cyclohexene oxide group.
  • the alicyclic epoxy compound (A) is represented by the following formula (I-1)
  • the said curable epoxy resin composition which is a compound represented by these is provided.
  • the said curable epoxy resin composition containing a hardening accelerator (F) is provided.
  • the curable epoxy resin composition containing rubber particles is provided.
  • the curable epoxy resin composition containing an acrylic block copolymer is provided.
  • the present invention also provides a cured product obtained by curing the curable epoxy resin composition.
  • the present invention also provides a resin composition for sealing an optical semiconductor comprising the curable epoxy resin composition.
  • the present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with the above-described resin composition for sealing an optical semiconductor.
  • the curable epoxy resin composition of the present invention Since the curable epoxy resin composition of the present invention has the above-described configuration, it has high heat resistance, light resistance, transparency, and crack resistance by curing the resin composition, and also has reflow resistance. An excellent cured product can be obtained.
  • the optical semiconductor device in which the optical semiconductor element is sealed using the curable epoxy resin composition of the present invention is excellent because it is not easily deteriorated by high-temperature treatment in the reflow process and the light intensity is not easily lowered over time. It has quality and durability.
  • FIG. 1 is a schematic view showing an embodiment of an optical semiconductor device in which an element (optical semiconductor element) is sealed with a curable epoxy resin composition of the present invention.
  • the left figure (a) is a perspective view, and the right figure (b) is a sectional view.
  • FIG. 2 is an example of the surface temperature profile of the optical semiconductor device in the solder heat resistance test of the example (temperature profile in one of the two heating operations).
  • the curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) and the following formula (1).
  • R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms
  • the curable epoxy resin composition of the present invention may further contain a curing accelerator (F).
  • the alicyclic epoxy compound (A) used in the present invention includes (i) a compound having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, and (ii) an alicyclic ring. Includes compounds in which an epoxy group is directly bonded by a single bond.
  • a compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting an alicyclic ring is arbitrarily selected from known or commonly used compounds. be able to. Especially, as an alicyclic epoxy group, a cyclohexene oxide group is preferable.
  • X represents a single bond or a linking group (a divalent group having one or more atoms).
  • the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and a group in which a plurality of these are linked.
  • Examples of the alicyclic epoxy resin in which X in the formula (I) is a single bond include compounds represented by the following formula.
  • an alicyclic epoxy resin for example, a commercially available product such as Celoxide 8000 (manufactured by Daicel Corporation) can also be used.
  • Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group.
  • Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups.
  • Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1, And divalent cycloalkylene groups (including cycloalkylidene groups) such as 4-cyclohexylene and cyclohexylidene groups.
  • the linking group X is preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—; A group in which one or two of these groups are linked to one or more of divalent hydrocarbon groups, and the like. Examples of the divalent hydrocarbon group include the aforementioned groups.
  • Typical examples of the alicyclic epoxy compound represented by the formula (I) include compounds represented by the following formulas (I-1) to (I-8).
  • commercially available products such as Celoxide 2021P and Celoxide 2081 (manufactured by Daicel Corporation) can also be used.
  • l and m each represents an integer of 1 to 30.
  • R is an alkylene group having 1 to 8 carbon atoms, and is a linear or branched alkylene group such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, s-butylene, pentylene, hexylene, heptylene, octylene group or the like. Can be mentioned. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms such as methylene, ethylene, propylene, and isopropylene groups are preferable.
  • Examples of the compound in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (II).
  • R ′ is a group obtained by removing p —OH from a p-valent alcohol; p and n represent natural numbers.
  • the p-valent alcohol [R ′-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.).
  • p is preferably 1 to 6
  • n is preferably 1 to 30.
  • n in each () (in parentheses) may be the same or different.
  • the compound examples include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, EHPE 3150 (manufactured by Daicel Corporation). Etc.
  • alicyclic epoxy compounds (A) can be used alone or in combination of two or more.
  • alicyclic epoxy compound (A) 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate represented by the above formula (I-1) and ceroxide 2021P are particularly preferable.
  • the amount of use (content) of the alicyclic epoxy compound (A) is not particularly limited, but the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B). On the other hand, it is preferably 50 to 90% by weight, more preferably 60 to 90% by weight, still more preferably 70 to 90% by weight. When the amount of the alicyclic epoxy compound (A) used is less than 50% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) is not sufficient, and it may be easily precipitated when placed at room temperature.
  • sum of contents of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) in the total amount (100% by weight) of component (A), component (B), and component (C) (total amount) ) Is not particularly limited, but is preferably 50 to 99% by weight.
  • the monoallyl diglycidyl isocyanurate compound (B) used in the present invention can be represented by the following general formula (1).
  • R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
  • alkyl group having 1 to 8 carbon atoms examples include linear or branched alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, pentyl, hexyl, heptyl, and octyl groups. It is done. Among these, linear or branched alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl, propyl and isopropyl groups are preferable.
  • R 1 and R 2 are preferably hydrogen atoms.
  • Typical examples of the monoallyl diglycidyl isocyanurate compound (B) include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl And propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like.
  • monoallyl diglycidyl isocyanurate compound (B) can be used individually by 1 type or in combination of 2 or more types.
  • the monoallyl diglycidyl isocyanurate compound (B) can be arbitrarily mixed as long as it dissolves in the alicyclic epoxy compound (A), and the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B).
  • the ratio of the alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is preferably 50:50 to 90:10 (weight ratio). Outside this range, it becomes difficult to obtain solubility.
  • the monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group, such as alcohol or acid anhydride.
  • the total amount of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is not particularly limited, but is 50 to 50% based on the total amount (100% by weight) of the epoxy resin (compound having an epoxy group). It is preferably 100% by weight.
  • the polycarbonate polyol (C) is a polycarbonate having two or more hydroxyl groups in the molecule.
  • a polycarbonate diol having two terminal hydroxyl groups in the molecule is preferable.
  • the hydroxyl group in the polycarbonate polyol (C) may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
  • Polycarbonate polyol (C) can be prepared by the same phosgene method or carbonate exchange reaction using dialkyl carbonate or diphenyl carbonate such as dimethyl carbonate and diethyl carbonate (for example, JP 62-187725 A). JP-A-2-175721, JP-A-2-49025, JP-A-3-220233, JP-A-3-252420, etc.). Since the carbonate bond of the polycarbonate polyol (C) is hardly subject to thermal decomposition, the cured resin containing the polycarbonate polyol exhibits excellent stability even under high temperature and high humidity.
  • a polycarbonate polyol (C) can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the polyol used in the carbonate exchange reaction together with the dialkyl carbonate or diphenyl carbonate include 1,6-hexanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,8-octanediol, 1,9-nonanediol, 1,12 -Dodecanediol, butadiene diol, neopentyl glycol, tetramethylene glycol, propylene glycol, dipropylene glycol and the like.
  • the number average molecular weight of the polycarbonate polyol (C) is not particularly limited, but is preferably 200 to 10,000, more preferably 300 to 5,000, and still more preferably 400 to 4,000. If the number average molecular weight is less than 200, it may be difficult to obtain the effects of lowering the elastic modulus and improving the bending strength. On the other hand, when the number average molecular weight exceeds 10,000, it may not be liquid at normal temperature (25 ° C.) and may be difficult to handle.
  • the number average molecular weight can be calculated from the following formula using the hydroxyl value of polycarbonate polyol.
  • n the number of hydroxyl groups contained in one molecule of polycarbonate polyol.
  • polycarbonate polyol (C) examples include Plaxel CD205, CD210, CD220, CD205PL, CD205HL, CD210PL, CD210HL, CD220PL, CD220HL, CD220EC, CD221T (manufactured by Daicel Corp.), ETERNACOLL UH-CARB50, UH-CARB100, UH -CARB300, UH-CARB90 (1/3), UH-CARB90 (1/1), UH-CARB100 (above, Ube Industries, Ltd.), Duranol T6002, T5652, T4672, T4692, G3452 (above, Asahi Kasei Chemicals) Commercially available products such as Kuraray Polyol ND, MPD (above, Kuraray Co., Ltd.) can also be used.
  • the use amount (content) of the polycarbonate polyol (C) is not particularly limited, but is preferably 1 to 50 parts by weight with respect to the total amount (100 parts by weight) of the component (A) and the component (B).
  • the amount is preferably 1.5 to 30 parts by weight, more preferably 2 to 20 parts by weight.
  • the blending amount of the polycarbonate polyol (C) is less than 1 part by weight, the reflow resistance is lowered, and the heat treatment in the reflow process causes peeling or cracking of the sealing resin from the lead frame in the optical semiconductor device. There is a case.
  • the curing agent (D) has a function of curing the compound having an epoxy group.
  • curing agent (D) in this invention a well-known thru
  • curing agent can be used as a hardening
  • acid anhydrides that are liquid at 25 ° C. are preferable, and examples thereof include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, and methylendomethylenetetrahydrophthalic anhydride. Can be mentioned.
  • solid acid anhydrides at room temperature such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride are liquid at room temperature (about 25 ° C.).
  • It can be used as the curing agent (D) in the curable epoxy resin composition of the present invention by dissolving in an acid anhydride to form a liquid mixture.
  • curing agent (D) can be used individually by 1 type or in combination of 2 or more types.
  • the curing agent (D) commercially available products such as Jamaicacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd.) and HN-5500 (manufactured by Hitachi Chemical Co., Ltd.) can also be used. .
  • the content of the curing agent (D) is not particularly limited, but is preferably 50 to 200 parts by weight with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 100 to 145 parts by weight. More specifically, it is preferably used in a ratio of 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups in all the compounds having epoxy groups contained in the curable epoxy resin composition.
  • a cationic catalyst that initiates polymerization by generating cationic species by performing ultraviolet irradiation or heat treatment may be used as the curing catalyst (E).
  • a curing catalyst (E) can be used individually by 1 type or in combination of 2 or more types.
  • Examples of the cation catalyst that generates cation species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, hexafluoroarsenate salt, and the like.
  • UVACURE 1590 (Daicel Cytec) (Commercially available), CD-1010, CD-1011, CD-1012 (manufactured by Sartomer, USA), Irgacure 264 (manufactured by Ciba Japan), CIT-1682 (manufactured by Nippon Soda Co., Ltd.) Can be preferably used.
  • Examples of the cation catalyst that generates a cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, and the like.
  • PP-33, CP-66, CP -77 manufactured by ADEKA), FC-509 (manufactured by 3M), UVE1014 (manufactured by GE), Sun-Aid SI-60L, Sun-Aid SI-80L, Sun-Aid SI-100L, Sun-Aid SI-110L (Sanshin Chemical)
  • Commercially available products such as Kogyo Co., Ltd.
  • CG-24-61 (Ciba Japan Co., Ltd.) can be preferably used.
  • a chelate compound of a metal such as aluminum or titanium and a acetoacetate or diketone compound and a silanol such as triphenylsilanol or a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S
  • the compound with phenols, such as these, may be sufficient.
  • the content of the curing catalyst (E) is not particularly limited, but is preferably 0.01 to 15 parts by weight with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. More preferred is 0.01 to 12 parts by weight, still more preferred is 0.05 to 10 parts by weight, and particularly preferred is 0.1 to 10 parts by weight.
  • the curable epoxy resin composition of the present invention may contain a curing accelerator (F).
  • a hardening accelerator (F) is a compound which has a function which accelerates
  • the curing accelerator (F) known or conventional curing accelerators can be used.
  • DBU 1,8-diazabicyclo [5.4.0] undecene-7
  • salts thereof for example, Phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts
  • 1,5-diazabicyclo [4.3.0] nonene-5 (DBN) and salts thereof (eg, phosphonium salts) , Sulfonium salts, quaternary ammonium salts, iodonium salts)
  • tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine
  • 2-ethyl-4- Imidazoles such as methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole
  • phosphate ester triphenyl Phosphines such as phosphin
  • U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 410, U-CAT 18X, 12XD are used as curing accelerators (F).
  • Commercially available products such as San Apro Co., Ltd., TPP-K, TPP-MK (both from Hokuko Chemical Co., Ltd.) and PX-4ET (Nippon Chemical Industry Co., Ltd.) can also be used.
  • the content of the curing accelerator (F) is not particularly limited, but is 0.05 to 5 parts by weight with respect to the total amount (100 parts by weight) of the epoxy group-containing compound contained in the curable epoxy resin composition. More preferred is 0.1 to 3 parts by weight, still more preferred is 0.2 to 3 parts by weight, and particularly preferred is 0.25 to 2.5 parts by weight.
  • the usage-amount of a hardening accelerator (F) is less than 0.05 weight part, the hardening promotion effect may become inadequate.
  • the curable epoxy resin composition of the present invention preferably further contains an acrylic block copolymer from the viewpoint of suppressing a decrease in luminous intensity with time of the optical semiconductor device. More specifically, when the curable epoxy resin composition of the present invention contains an acrylic block copolymer, the optical semiconductor device encapsulated with the curable epoxy resin composition has a particularly high brightness and high output. However, the light intensity tends not to decrease. That is, by using the acrylic block copolymer, a cured product obtained by curing the curable epoxy resin composition of the present invention can exhibit higher levels of heat resistance, light resistance, and crack resistance.
  • the acrylic block copolymer is a block copolymer containing an acrylic monomer as an essential monomer component.
  • acrylic monomer examples include methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methacrylic acid.
  • (Meth) acrylic acid alkyl esters such as t-butyl acid, 2-ethylhexyl methacrylate, lauryl methacrylate and stearyl methacrylate; (meth) acrylic acid esters having an alicyclic structure such as cyclohexyl acrylate and cyclohexyl methacrylate; methacryl (Meth) acrylic acid ester having an aromatic ring such as benzyl acid; (fluoro) alkyl ester of (meth) acrylic acid such as 2-trifluoroethyl methacrylate; acrylic acid, methacrylic acid, maleic acid, maleic anhydride, etc.
  • a monomer other than the acrylic monomer may be used as a monomer component.
  • the monomer other than the acrylic monomer include aromatic vinyl compounds such as styrene and ⁇ -methylstyrene, conjugated dienes such as butadiene and isoprene, and olefins such as ethylene, propylene and isobutene.
  • acrylic block copolymer for example, the diblock copolymer which consists of two polymer blocks, the triblock copolymer which consists of three polymer blocks, four or more polymer blocks And a multi-block copolymer composed of these.
  • the acrylic block copolymer from the viewpoint of improving heat resistance, light resistance, and crack resistance, a polymer block (S) (soft block) having a low glass transition temperature (Tg) and a polymer block ( A block copolymer in which polymer blocks (H) (hard blocks) having a higher Tg than S) are alternately arranged is preferred, more preferably a polymer block (S) in the middle and a polymer at both ends thereof. A triblock copolymer having an HSH structure having a block (H) is preferred.
  • Tg of the polymer which comprises the polymer block (S) of the said acrylic block copolymer is not specifically limited, Less than 30 degreeC is preferable.
  • Tg of the polymer which comprises a polymer block (H) is although it does not specifically limit, 30 degreeC or more is preferable.
  • each polymer block (H) may have the same composition and may differ.
  • each polymer block (S) may have the same composition and may differ.
  • the monomer component constituting the polymer block (H) in the acrylic block copolymer is not particularly limited.
  • the Tg of the homopolymer is examples thereof include monomers having a temperature of 30 ° C. or higher, and more specifically, methyl methacrylate, styrene, acrylamide, acrylonitrile and the like.
  • the monomer component constituting the polymer block (S) in the acrylic block copolymer is not particularly limited, and examples thereof include monomers having a Tg of a homopolymer of less than 30 ° C., and more specifically, Acrylic acid C 2-10 alkyl ester such as butyl acrylate and 2-ethylhexyl acrylate, butadiene (1,4-butadiene) and the like.
  • the polymer block (S) is a polymer composed of butyl acrylate (BA) as a main monomer, Polymethyl methacrylate-block-polybutyl acrylate-block-polymethyl methacrylate terpolymer (PMMA-b-PBA-b-), wherein the polymer block (H) is a polymer composed mainly of methyl methacrylate (MMA). PMMA) and the like.
  • BA butyl acrylate
  • PMMA-b-PBA-b-PMMA Polymethyl methacrylate-block-polybutyl acrylate-block-polymethyl methacrylate terpolymer
  • H polymer composed mainly of methyl methacrylate
  • PMMA methyl methacrylate
  • the PMMA-b-PBA-b-PMMA is a hydrophilic group (eg, hydroxyl group, carboxyl group, amino group) for the purpose of improving compatibility with the component (A) and the component (B), if necessary.
  • Etc. such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid and the like may be copolymerized with PMMA blocks and / or PBA blocks. .
  • the number average molecular weight of the acrylic block copolymer is not particularly limited, but is preferably 3000 to 500,000, more preferably 10,000 to 300,000, and still more preferably 30,000 to 400,000. If the number average molecular weight is less than 3000 (particularly less than 10,000), the toughness of the cured product may not be sufficient, and crack resistance may be reduced. On the other hand, when the number average molecular weight exceeds 500,000, the compatibility with the alicyclic epoxy compound (A) is lowered, and the transparency of the cured product may be lowered.
  • the number average molecular weight can be calculated, for example, from a molecular weight in terms of standard polystyrene measured by a gel permeation chromatography method (GPC method).
  • the acrylic block copolymer can be produced by a known or commonly used block copolymer production method.
  • the method for producing the acrylic block copolymer in particular, living polymerization (living radical polymerization, living anion polymerization, living room polymerization, etc., from the viewpoint of easy control of the molecular weight, molecular weight distribution, terminal structure, etc. of the acrylic block copolymer. Cationic polymerization etc.) are preferred.
  • the living polymerization can be carried out by a known or conventional method.
  • acrylic block copolymer examples include, for example, trade names “Nanostrength M52N”, “Nanostrength M22N”, “Nanostrength M51”, “Nanostrength M52”, “Nanostrength M53” (manufactured by Arkema Co., Ltd.) , PMMA-b-PBA-b-PMMA), commercial names such as “NanoStrength E21”, “NanoStrength E41” (manufactured by Arkema Co., Ltd., PSt (polystyrene) -b-PBA-b-PMMA) It can also be used.
  • the amount of the acrylic block copolymer used (content) is not particularly limited, but is preferably 1 to 30 parts by weight with respect to the total amount (100 parts by weight) of the component (A) and the component (B).
  • the amount is more preferably 3 to 15 parts by weight, still more preferably 5 to 10 parts by weight.
  • the usage-amount of an acrylic block copolymer is less than 1 weight part, the toughness of hardened
  • the usage-amount of an acrylic block copolymer exceeds 30 weight part compatibility with an alicyclic epoxy compound (A) may fall, and transparency of hardened
  • the curable epoxy resin composition of the present invention may further contain rubber particles.
  • the rubber particles include rubber particles such as particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal-free NBR, and particulate SBR (styrene-butadiene rubber).
  • the rubber particles are preferably rubber particles having a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion.
  • the rubber particles are particularly composed of a polymer (polymer) having (meth) acrylic acid ester as an essential monomer component, and react with a compound having an epoxy group such as an alicyclic epoxy resin (A) on the surface.
  • Rubber particles having a hydroxyl group and / or a carboxyl group (either one or both of a hydroxyl group and a carboxyl group) as the functional group to be obtained are preferred.
  • the cured product becomes clouded by a thermal shock such as a cold cycle and the transparency is lowered, which is not preferable.
  • the polymer constituting the core portion having rubber elasticity in the rubber particles is not particularly limited, but (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate are used.
  • the essential monomer component is preferred.
  • the polymer constituting the core portion having rubber elasticity includes, for example, aromatic vinyl such as styrene and ⁇ -methylstyrene; nitrile such as acrylonitrile and methacrylonitrile; conjugated diene such as butadiene and isoprene; ethylene, propylene, Olefin such as isobutene may be included as a monomer component.
  • the polymer which comprises the said core part which has the rubber elasticity contains 1 type, or 2 or more types selected from the group which consists of aromatic vinyl, a nitrile, and a conjugated diene with a (meth) acrylic acid ester as a monomer component. It is preferable to include it in combination. That is, as the polymer constituting the core part, for example, (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene and other binary copolymers; (meth) acrylic acid ester / aromatic And terpolymers such as group vinyl / conjugated dienes.
  • the polymer constituting the core part may contain silicone such as polydimethylsiloxane and polyphenylmethylsiloxane, polyurethane, and the like.
  • the polymer constituting the core part includes, as other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc.
  • One monomer (one molecule) may contain a reactive crosslinking monomer having two or more reactive functional groups.
  • the core part of the rubber particles is a core part composed of a (meth) acrylic ester / aromatic vinyl binary copolymer (particularly butyl acrylate / styrene). It is preferable in that the rate can be easily adjusted.
  • the core portion of the rubber particles can be manufactured by a commonly used method, for example, by a method of polymerizing the monomer by an emulsion polymerization method.
  • the whole amount of the monomer may be charged at once and may be polymerized, or after polymerizing a part of the monomer, the remainder may be added continuously or intermittently to polymerize,
  • a polymerization method using seed particles may be used.
  • the polymer constituting the shell layer of the rubber particles is preferably a polymer different from the polymer constituting the core portion.
  • the shell layer preferably has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as the alicyclic epoxy compound (A).
  • the polymer constituting the shell layer preferably contains a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
  • a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
  • a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component.
  • a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate
  • an essential monomer component for example, when butyl acrylate is used as the (meth) acrylic acid ester in the core
  • Examples of the monomer component that may be contained in addition to the (meth) acrylic acid ester include aromatic vinyl such as styrene and ⁇ -methylstyrene, and nitrile such as acrylonitrile and methacrylonitrile.
  • aromatic vinyl such as styrene and ⁇ -methylstyrene
  • nitrile such as acrylonitrile and methacrylonitrile.
  • the rubber particles as a monomer component constituting the shell layer, it is preferable to contain the monomer alone or in combination of two or more, together with (meth) acrylic acid ester, and particularly at least aromatic vinyl. Is preferable in that the refractive index of the rubber particles can be easily adjusted.
  • the polymer constituting the shell layer forms a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) as a monomer component.
  • a compound having an epoxy group such as an alicyclic epoxy compound (A) as a monomer component.
  • Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, ⁇ , ⁇ -unsaturated acids such as (meth) acrylic acid, ⁇ , ⁇ -unsaturated acid anhydrides such as maleic anhydride, etc. It is preferable to contain the monomer.
  • the polymer constituting the shell layer in the rubber particles preferably contains one or more selected from the above monomers in combination with (meth) acrylic acid ester as a monomer component. That is, the shell layer is composed of, for example, a ternary copolymer such as (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / ⁇ , ⁇ -unsaturated acid.
  • a shell layer composed of a polymer or the like is preferable.
  • the polymer constituting the shell layer includes, as the other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, trimethyl, as well as the above-described monomer.
  • a reactive crosslinking monomer having two or more reactive functional groups may be contained in one monomer (one molecule) such as allyl cyanurate, diallyl phthalate, or butylene glycol diacrylate.
  • the rubber particles can be obtained by covering the core portion with a shell layer.
  • the method of coating the core part with a shell layer include a method of coating the surface of the core part having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, and the above method Examples thereof include a graft polymerization method in which the core portion having rubber elasticity obtained by the above is used as a trunk component, and each component constituting the shell layer is used as a branch component.
  • the average particle diameter of the rubber particles is not particularly limited, but is preferably 10 to 500 nm, more preferably 20 to 400 nm.
  • the maximum particle size of the rubber particles is not particularly limited, but is preferably 50 to 1000 nm, more preferably 100 to 800 nm. If the average particle diameter exceeds 500 nm or the maximum particle diameter exceeds 1000 nm, the dispersibility of the rubber particles in the cured product may be reduced, and crack resistance may be reduced. On the other hand, if the average particle size is less than 10 nm or the maximum particle size is less than 50 nm, the effect of improving the crack resistance of the cured product may be difficult to obtain.
  • the refractive index of the rubber particles is not particularly limited, but is preferably 1.40 to 1.60, more preferably 1.42 to 1.58.
  • the difference between the refractive index of the rubber particles and the refractive index of the cured product obtained by curing the curable epoxy resin composition (the curable epoxy resin composition of the present invention) containing the rubber particles is ⁇ 0.00. It is preferably within 03 ( ⁇ 0.03 to 0.03).
  • the difference in refractive index exceeds ⁇ 0.03 the transparency of the cured product decreases, sometimes it becomes cloudy, and the light intensity of the optical semiconductor device tends to decrease, thereby losing the function of the optical semiconductor device. There is a case.
  • the refractive index of the rubber particles is, for example, by casting 1 g of rubber particles into a mold and compression molding at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece having a length of 20 mm ⁇ width of 6 mm And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
  • DR-M2 multi-wavelength Abbe refractometer
  • the refractive index of the cured product of the curable epoxy resin composition of the present invention is, for example, 20 mm long ⁇ 6 mm wide ⁇ 1 mm thick from a cured product obtained by the heat curing method described in the section of the optical semiconductor device below.
  • a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) with the test piece cut out and the prism and the test piece in close contact using monobromonaphthalene as an intermediate solution And it can obtain
  • the content (blending amount) of the rubber particles in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition.
  • the amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight.
  • the content of the rubber particles is less than 0.5 parts by weight, the crack resistance of the cured product tends to decrease.
  • the content of the rubber particles exceeds 30 parts by weight, the heat resistance of the cured product tends to decrease.
  • additives can be used in the curable epoxy resin composition of the present invention as long as the effects of the present invention are not impaired.
  • a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin
  • the reaction can be allowed to proceed slowly.
  • silicone and fluorine antifoaming agents, leveling agents, silane coupling agents such as ⁇ -glycidoxypropyltrimethoxysilane, surfactants, silica, alumina, as long as viscosity and transparency are not impaired.
  • Conventional additives such as inorganic fillers, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, phosphors, mold release agents and the like can be used.
  • the heating temperature (curing temperature) at the time of curing is not particularly limited, but is preferably 45 to 200 ° C, more preferably 100 to 190 ° C, still more preferably 100 to 180 ° C.
  • the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient.
  • the resin component when the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed.
  • the curing conditions depend on various conditions, but can be appropriately adjusted by shortening the curing time when the curing temperature is high, and increasing the curing time when the curing temperature is low.
  • the resin composition for optical semiconductor encapsulation of the present invention comprises the curable epoxy resin composition of the present invention.
  • it is excellent in various physical properties such as heat resistance, light resistance, transparency, and crack resistance, and further in reflow resistance.
  • an optical semiconductor device in which the optical semiconductor element is sealed with an excellent cured product can be obtained.
  • the optical semiconductor device of the present invention is obtained by sealing an optical semiconductor element with the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention.
  • the optical semiconductor element is sealed by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heating and curing under predetermined conditions. Thereby, an optical semiconductor device in which the optical semiconductor element is sealed with the curable epoxy resin composition is obtained.
  • the curing temperature and the curing time can be the same as described above.
  • the optical semiconductor device of the present invention is less likely to be deteriorated by heat treatment in the reflow process, and the light intensity is less likely to decrease with time.
  • an optical semiconductor element 102 is fixed to a lead frame by a die bond material 105 as shown in FIG.
  • the present inventors have found that the reflow resistance can also be improved by optimizing the die bond material in the optical semiconductor device. More specifically, when the optical semiconductor device is heat-treated in the reflow process, a die bond material (high adhesiveness / durability) that prevents the optical semiconductor element from being peeled off from the lead frame due to stress caused by the volume change of the sealing resin. It is important to select a die bond material. This is because when the optical semiconductor element is peeled from the lead frame, the sealing resin around the semiconductor element is easily peeled or cracked, and the optical semiconductor device is significantly deteriorated due to the heat treatment in the reflow process.
  • the curable epoxy resin composition of the present invention is used as a sealing resin (sealing resin),
  • a sealing resin sealing resin
  • the die bond material include a die bond material in which conductive particles or the like (eg, silver particles) are contained in a base polymer such as a polyimide resin, an epoxy resin, or a silicone resin.
  • Examples of such a die bond material include KER-3000 M2, KER-3100 O2, KER-3100 (manufactured by Shin-Etsu Chemical Co., Ltd.), EH1600-G2 (manufactured by Inabata Sangyo Co., Ltd.), CT200, CT284, CT265. (Made by Kyocera Chemical Co., Ltd.).
  • the curable epoxy resin composition of the present invention is not limited to the above-described optical semiconductor sealing application, and includes, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, and a transparent base. It can also be used as a material, transparent sheet, transparent film, optical element, optical lens, optical member, optical modeling, electronic paper, touch panel, solar cell substrate, optical waveguide, light guide plate, holographic memory, and the like.
  • Production Example 1 Manufacture of rubber particles
  • 500 g of ion-exchanged water and 0.68 g of sodium dioctylsulfosuccinate were charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream.
  • a monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion is added here.
  • 9.5 mg of potassium peroxodisulfate was added and stirred for 1 hour for initial seed polymerization.
  • 0.3 g of sodium dioctylsulfosuccinate was dissolved in 60 g of methyl methacrylate, 1.5 g of acrylic acid and 0.3 g of allyl methacrylate.
  • the monomer mixture was continuously added over 30 minutes to perform seed polymerization. Then, it aged for 1 hour and formed the shell layer which coat
  • the mixture was cooled to room temperature (25 ° C.) and filtered through a plastic mesh having an opening of 120 ⁇ m to obtain a latex containing rubber particles having a core-shell structure.
  • the obtained latex was frozen at ⁇ 30 ° C., dehydrated and washed with a suction filter, and then blown and dried at 60 ° C. overnight to obtain rubber particles.
  • the resulting rubber particles had an average particle size of 254 nm and a maximum particle size of 486 nm.
  • the average particle size and the maximum particle size of the rubber particles are determined based on a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0 The maximum particle size at the time of exceeding 0.000 was defined as the maximum particle size.
  • a nanotrac TM particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0
  • Production Example 2 Manufacture of rubber particle-dispersed epoxy compounds
  • a dissolver 1000 rpm, 60 minutes
  • 10 parts by weight of the rubber particles obtained in Production Example 1 heated to 60 ° C. under a nitrogen stream
  • the product name “Celoxide 2021P” (3,4-epoxy) Disperse in 70 parts by weight of cyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate manufactured by Daicel Corp.
  • vacuum deaerate to obtain a rubber particle-dispersed epoxy compound (viscosity at 25 ° C .: 624 mPa ⁇ s). It was.
  • Production Example 3 (Production of epoxy resin: Examples 1 to 7, Comparative Examples 2 and 3) Monoaridiglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound (trade name “Celoxide 2021P”, manufactured by Daicel Corporation), obtained in Production Example 2 A rubber particle-dispersed epoxy resin and a bisphenol A type epoxy resin (trade name “YD-128”, manufactured by Nippon Steel Chemical Co., Ltd.) are mixed according to the formulation (mixing ratio) (unit: parts by weight) shown in Table 1. Then, monoallyl diglycidyl isocyanurate is dissolved by stirring at 80 ° C.
  • MA-DGIC manufactured by Shikoku Kasei Kogyo Co., Ltd.
  • alicyclic epoxy compound trade name “Celoxide 2021P”, manufactured by Daicel Corporation
  • a rubber particle-dispersed epoxy resin and a bisphenol A type epoxy resin (trade name “Y
  • Production Example 4 (Production of curing agent composition containing at least curing agent: Examples 1 to 7, Comparative Examples 1 to 3)
  • Curing agent (acid anhydride) (trade name “Licacid MH-700”, manufactured by Shin Nippon Rika Co., Ltd.) 100 parts by weight, curing accelerator (trade name “U-CAT 18X”, manufactured by San Apro Co., Ltd.) 5 parts by weight, 1 part by weight of additives (trade name “ethylene glycol”, manufactured by Wako Pure Chemical Industries, Ltd.), self-revolving stirrer (trade name “Awatori Netaro AR-250”, Shinki Co., Ltd.) The mixture was uniformly mixed and defoamed to obtain a curing agent composition.
  • the curable epoxy resin composition obtained above is cast into a lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) of an optical semiconductor shown in FIG. 1, and then 5 in a 120 ° C. oven (resin curing oven).
  • An optical semiconductor device in which the optical semiconductor element was sealed with a cured resin (cured product) heated for a time was obtained.
  • 100 is a reflector (light reflecting resin composition)
  • 101 is a metal wiring
  • 102 is an optical semiconductor element
  • 103 is a bonding wire
  • 104 is a transparent sealing resin (cured product)
  • 105 is a die bond material. Show.
  • Production Example 5 (Production of epoxy resin: Examples 8 to 14, Comparative Examples 5 and 6) Monoaridiglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound (trade name “Celoxide 2021P”, manufactured by Daicel Corporation), obtained in Production Example 2
  • a rubber particle-dispersed epoxy resin and a bisphenol A type epoxy resin (trade name “YD-128”, manufactured by Nippon Steel Chemical Co., Ltd.) are mixed according to the formulation (mixing ratio) (unit: parts by weight) shown in Table 2.
  • the monoallyl diglycidyl isocyanurate is dissolved by stirring at 80 ° C.
  • Examples 8-14, Comparative Examples 4-6 Manufacture of curable epoxy resin composition
  • the epoxy resin obtained in Production Example 5 and the curing catalyst (trade name “Sun-Aid SI-100L”, manufactured by Sanshin Chemical Industry Co., Ltd.) were prepared so that the blending ratio (unit: parts by weight) shown in Table 2 was obtained.
  • a self-revolving stirrer (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.), the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition.
  • the trade name “Celoxide 2021P” (manufactured by Daicel Corporation) was used as the epoxy resin.
  • the curable epoxy resin composition obtained above is cast into a lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) of an optical semiconductor shown in FIG. 1, and then 5 in a 120 ° C. oven (resin curing oven). An optical semiconductor device in which the optical semiconductor element was sealed with a cured resin (cured product) heated for a time was obtained.
  • FIG. 2 shows an example of the surface temperature profile of the optical semiconductor device during heating in the reflow furnace (temperature profile in one of the two heating operations). Then, the optical semiconductor device was observed using a digital microscope (VHX-900, manufactured by Keyence Corporation), and peeling of the resin was observed on the electrode surface in one or both of the two optical semiconductor devices.
  • Thermal shock test The optical semiconductor devices obtained in Examples 1 to 14 and Comparative Examples 1 to 6 (two used for each curable epoxy resin composition) were subjected to 15 minutes at ⁇ 40 ° C., followed by 15 minutes at 120 ° C. The thermal shock made into the cycle was added for 1000 cycles using the thermal shock tester. Thereafter, a current of 20 mA was applied to the optical semiconductor device to confirm lighting, and the number of optical semiconductor devices that did not light (the number of non-lighting occurrences) was measured. The results are shown in Tables 1 and 2.
  • Comparative Examples 7 and 8 Manufacture of curable epoxy resin composition
  • the epoxy resin obtained in Production Example 6, the curing agent composition obtained in Production Example 4, and the curing catalyst (trade name “Sun-Aid SI-100L”) so as to have the blending ratio (unit: parts by weight) shown in Table 3 , Manufactured by Sanshin Chemical Industry Co., Ltd.) using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Co., Ltd.), defoamed and cured.
  • An epoxy resin composition was obtained.
  • Comparative Examples 7 and 8 the trade name “Celoxide 2021P” (manufactured by Daicel Corporation) was used as the epoxy resin.
  • the curable epoxy resin composition obtained above is cast into a lead frame (InGaN element, 3.5 mm ⁇ 2.8 mm) of an optical semiconductor shown in FIG. 1, and then 5 in a 120 ° C. oven (resin curing oven). An optical semiconductor device in which the optical semiconductor element was sealed with a cured resin (cured product) heated for a time was obtained.
  • the curable epoxy resin composition of the present invention can be preferably used for optical semiconductor sealing applications.
  • the curable epoxy resin composition of the present invention includes an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, a transparent substrate, a transparent sheet, a transparent film, an optical element, and an optical element. It can also be used for lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and the like.

Abstract

The purpose of the present invention is to provide a curable epoxy resin composition capable of yielding a cured product which has high transparency, heat resistance, light resistance and crack resistance and which exhibits excellent reflow-resistant properties (excellent heat resistance during reflow operations). This curable resin composition is characterized by comprising (A) an alicyclic epoxy compound, (B) a monoallyl diglycidyl isocyanurate compound represented by formula (1), (C) a polycarbonate polyol, and (D) a curing agent or (E) a curing catalyst. In formula (1), R1 and R2 are each a hydrogen atom or C1-8 alkyl.

Description

硬化性エポキシ樹脂組成物Curable epoxy resin composition
 本発明は、硬化性エポキシ樹脂組成物、該硬化性エポキシ樹脂組成物を硬化してなる硬化物、該硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物、ならびに該光半導体封止用樹脂組成物を使用して光半導体素子を封止した光半導体装置に関する。 The present invention relates to a curable epoxy resin composition, a cured product obtained by curing the curable epoxy resin composition, a resin composition for optical semiconductor encapsulation comprising the curable epoxy resin composition, and the optical semiconductor encapsulation. The present invention relates to an optical semiconductor device in which an optical semiconductor element is sealed using a resin composition for use.
 近年、光半導体装置の高出力化が進んでおり、このような光半導体装置に用いられる樹脂には、高い耐熱性及び耐光性が求められている。例えば、青色・白色光半導体用の封止材(封止樹脂)においては、光半導体素子から発せられる光及び熱による封止樹脂の黄変が問題となっている。黄変した封止樹脂は、光半導体素子から発せられた光を吸収するため、光半導体装置から出力される光の光度が経時で低下してしまう。 In recent years, the output of optical semiconductor devices has been increased, and high heat resistance and light resistance are required for resins used in such optical semiconductor devices. For example, in a sealing material (sealing resin) for a blue / white optical semiconductor, yellowing of the sealing resin due to light and heat emitted from the optical semiconductor element is a problem. Since the yellowing sealing resin absorbs light emitted from the optical semiconductor element, the luminous intensity of the light output from the optical semiconductor device decreases with time.
 これまで、耐熱性が高い封止樹脂として、モノアリルジグリシジルイソシアヌレートとビスフェノールA型エポキシ樹脂を含む組成物が知られている(特許文献1参照)。しかしながら、上記組成物を高出力の青色・白色光半導体用の封止樹脂として用いた場合でも、光半導体素子から発せられる光及び熱によって着色が進行し、本来出力されるべき光が吸収されてしまい、その結果、光半導体装置から出力される光の光度が低下するという問題があった。 So far, a composition containing monoallyl diglycidyl isocyanurate and bisphenol A type epoxy resin is known as a sealing resin having high heat resistance (see Patent Document 1). However, even when the composition is used as a sealing resin for a high-power blue / white light semiconductor, coloring proceeds due to light and heat emitted from the optical semiconductor element, and light that should be output is absorbed. As a result, there is a problem that the luminous intensity of the light output from the optical semiconductor device is lowered.
特開2000-344867号公報JP 2000-344867 A
 高い耐熱性及び耐光性を有し、黄変しにくい封止樹脂として、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレートとε-カプロラクトンの付加物、1,2,8,9-ジエポキシリモネンなどの脂環骨格を有する液状の脂環式エポキシ樹脂が知られている。しかし、これらの脂環式エポキシ樹脂の硬化物は各種応力に弱く、冷熱サイクル(加熱と冷却を繰り返すこと)のような熱衝撃が加えられた場合に、クラック(ひび割れ)が生じる等の問題を有していた。 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate, 3,4-epoxycyclohexylmethyl (3,4-epoxy) as sealing resins that have high heat resistance and light resistance and are resistant to yellowing A liquid alicyclic epoxy resin having an alicyclic skeleton such as an adduct of cyclohexanecarboxylate and ε-caprolactone and 1,2,8,9-diepoxylimonene is known. However, the cured products of these alicyclic epoxy resins are vulnerable to various stresses, and when a thermal shock such as a cold cycle (repeating heating and cooling) is applied, cracks (cracks) occur. Had.
 上記光半導体装置は、通常、はんだ付けにより該光半導体装置の電極を配線基板に接合するためのリフロー工程を経る。近年、接合材としてのはんだとして、融点の高い無鉛はんだが使用されるようになってきており、リフロー工程での加熱処理がより高温(例えば、ピーク温度が240~260℃)になってきている。このような状況下、従来の光半導体装置においては、リフロー工程での加熱処理により封止樹脂が光半導体装置のリードフレームから剥離したり、封止樹脂にクラックが生じたりする等の劣化の問題が発生することが判明した。 The optical semiconductor device usually undergoes a reflow process for joining the electrodes of the optical semiconductor device to the wiring board by soldering. In recent years, lead-free solder having a high melting point has been used as a solder as a bonding material, and the heat treatment in the reflow process has become a higher temperature (for example, the peak temperature is 240 to 260 ° C.). . Under such circumstances, in the conventional optical semiconductor device, there is a problem of deterioration such that the sealing resin is peeled off from the lead frame of the optical semiconductor device due to the heat treatment in the reflow process, or the sealing resin is cracked. Was found to occur.
 このため、光半導体装置における封止樹脂としては、高い耐熱性、耐光性、及び耐クラック性を兼ね備え、さらに耐リフロー性にも優れた透明な封止樹脂が求められているのが現状である。なお、本明細書において「耐リフロー性」とは、光半導体装置をリフロー工程で加熱処理した場合に、リードフレームからの封止樹脂の剥離やクラックなどを生じない特性をいう。 For this reason, as a sealing resin in an optical semiconductor device, a transparent sealing resin that has high heat resistance, light resistance, and crack resistance and also has excellent reflow resistance is currently required. . In this specification, “reflow resistance” refers to a characteristic that does not cause peeling or cracking of the sealing resin from the lead frame when the optical semiconductor device is heat-treated in the reflow process.
 従って、本発明の目的は、高い透明性、耐熱性、耐光性、及び耐クラック性を兼ね備え、さらに耐リフロー性にも優れた硬化物を与える硬化性エポキシ樹脂組成物を提供することにある。
 また、本発明の他の目的は、上記硬化性エポキシ樹脂組成物を硬化してなる、高い透明性、耐熱性、耐光性、及び耐クラック性を兼ね備え、さらに耐リフロー性にも優れた硬化物を提供することにある。
 また、本発明の他の目的は、リフロー工程の加熱処理による劣化や経時での光度低下が抑制された光半導体装置が得られる、上記硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物を提供することにある。
 また、本発明の他の目的は、上記光半導体封止用樹脂組成物を用いて光半導体素子を封止することにより得られる、リフロー工程の加熱処理による劣化や経時での光度低下が抑制された光半導体装置を提供することにある。
Accordingly, an object of the present invention is to provide a curable epoxy resin composition that has a high transparency, heat resistance, light resistance, and crack resistance, and gives a cured product excellent in reflow resistance.
Another object of the present invention is a cured product obtained by curing the above curable epoxy resin composition, having high transparency, heat resistance, light resistance, and crack resistance, and having excellent reflow resistance. Is to provide.
Another object of the present invention is to provide an optical semiconductor sealing resin composition comprising the above-mentioned curable epoxy resin composition, which provides an optical semiconductor device in which deterioration due to heat treatment in the reflow process and a decrease in light intensity over time are suppressed. To provide things.
Another object of the present invention is to suppress degradation due to heat treatment in the reflow process and decrease in light intensity over time, which are obtained by sealing an optical semiconductor element using the above resin composition for optical semiconductor sealing. Another object is to provide an optical semiconductor device.
 本発明者らは、上記課題を解決するため鋭意検討した結果、脂環式エポキシ化合物、モノアリルジグリシジルイソシアヌレート化合物、及びポリカーボネートポリオールを必須成分として含み、さらに硬化剤又は硬化触媒を含む硬化性エポキシ樹脂組成物が、高い透明性、耐熱性、耐光性、耐クラック性、耐リフロー性を兼ね備えた硬化物を与え、該硬化物にて光半導体素子を封止した光半導体装置は、リフロー工程の加熱処理による劣化や経時での光度低下が生じにくいことを見出し、本発明に至った。 As a result of intensive studies to solve the above problems, the inventors of the present invention include an alicyclic epoxy compound, a monoallyl diglycidyl isocyanurate compound, and a polycarbonate polyol as essential components, and further includes a curing agent or a curing catalyst. An optical semiconductor device in which an epoxy resin composition provides a cured product having high transparency, heat resistance, light resistance, crack resistance, and reflow resistance, and an optical semiconductor element is sealed with the cured product is a reflow process. As a result, it was found that deterioration due to heat treatment and a decrease in light intensity over time hardly occur.
 すなわち、本発明は、脂環式エポキシ化合物(A)と、下記式(1)
Figure JPOXMLDOC01-appb-C000003
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、ポリカーボネートポリオール(C)と、硬化剤(D)又は硬化触媒(E)とを含むことを特徴とする硬化性エポキシ樹脂組成物を提供する。
That is, the present invention relates to an alicyclic epoxy compound (A) and the following formula (1).
Figure JPOXMLDOC01-appb-C000003
[Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
A curable epoxy resin composition comprising a monoallyl diglycidyl isocyanurate compound (B) represented by the following formula, a polycarbonate polyol (C), and a curing agent (D) or a curing catalyst (E): To do.
 さらに、前記脂環式エポキシ化合物(A)の脂環エポキシ基がシクロヘキセンオキシド基である前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition is provided wherein the alicyclic epoxy group of the alicyclic epoxy compound (A) is a cyclohexene oxide group.
 さらに、前記脂環式エポキシ化合物(A)が下記式(I-1)
Figure JPOXMLDOC01-appb-C000004
で表される化合物である前記の硬化性エポキシ樹脂組成物を提供する。
Further, the alicyclic epoxy compound (A) is represented by the following formula (I-1)
Figure JPOXMLDOC01-appb-C000004
The said curable epoxy resin composition which is a compound represented by these is provided.
 さらに、硬化促進剤(F)を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the said curable epoxy resin composition containing a hardening accelerator (F) is provided.
 さらに、ゴム粒子を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition containing rubber particles is provided.
 さらに、アクリルブロック共重合体を含む前記の硬化性エポキシ樹脂組成物を提供する。 Furthermore, the curable epoxy resin composition containing an acrylic block copolymer is provided.
 また、本発明は、前記の硬化性エポキシ樹脂組成物を硬化してなる硬化物を提供する。 The present invention also provides a cured product obtained by curing the curable epoxy resin composition.
 また、本発明は、前記の硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物を提供する。 The present invention also provides a resin composition for sealing an optical semiconductor comprising the curable epoxy resin composition.
 また、本発明は、前記の光半導体封止用樹脂組成物で光半導体素子を封止した光半導体装置を提供する。 The present invention also provides an optical semiconductor device in which an optical semiconductor element is sealed with the above-described resin composition for sealing an optical semiconductor.
 本発明の硬化性エポキシ樹脂組成物は上記構成を有するため、該樹脂組成物を硬化させることにより、高い耐熱性、耐光性、透明性、及び耐クラック性を兼ね備え、さらに、耐リフロー性にも優れた硬化物を得ることができる。また、本発明の硬化性エポキシ樹脂組成物を用いて光半導体素子を封止した光半導体装置は、リフロー工程での高温処理によっても劣化しにくく、かつ光度が経時で低下しにくいため、優れた品質及び耐久性を有する。 Since the curable epoxy resin composition of the present invention has the above-described configuration, it has high heat resistance, light resistance, transparency, and crack resistance by curing the resin composition, and also has reflow resistance. An excellent cured product can be obtained. In addition, the optical semiconductor device in which the optical semiconductor element is sealed using the curable epoxy resin composition of the present invention is excellent because it is not easily deteriorated by high-temperature treatment in the reflow process and the light intensity is not easily lowered over time. It has quality and durability.
図1は、本発明の硬化性エポキシ樹脂組成物で素子(光半導体素子)を封止した光半導体装置の一実施形態を示す概略図である。左側の図(a)は斜視図、右側の図(b)は断面図である。FIG. 1 is a schematic view showing an embodiment of an optical semiconductor device in which an element (optical semiconductor element) is sealed with a curable epoxy resin composition of the present invention. The left figure (a) is a perspective view, and the right figure (b) is a sectional view. 図2は、実施例のはんだ耐熱性試験における光半導体装置の表面温度プロファイル(二度の加熱のうち一方の加熱における温度プロファイル)の一例である。FIG. 2 is an example of the surface temperature profile of the optical semiconductor device in the solder heat resistance test of the example (temperature profile in one of the two heating operations).
 <硬化性エポキシ樹脂組成物>
 本発明の硬化性エポキシ樹脂組成物は、脂環式エポキシ化合物(A)と、下記式(1)
[式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、ポリカーボネートポリオール(C)と、硬化剤(D)又は硬化触媒(E)とを含むことを特徴とする。本発明の硬化性エポキシ樹脂組成物は、必要であれば、さらに硬化促進剤(F)を含んでいてもよい。
<Curable epoxy resin composition>
The curable epoxy resin composition of the present invention comprises an alicyclic epoxy compound (A) and the following formula (1).
[Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
It contains the monoallyl diglycidyl isocyanurate compound (B) represented by these, a polycarbonate polyol (C), and a hardening | curing agent (D) or a curing catalyst (E), It is characterized by the above-mentioned. If necessary, the curable epoxy resin composition of the present invention may further contain a curing accelerator (F).
 <脂環式エポキシ化合物(A)>
 本発明で用いられる脂環式エポキシ化合物(A)には、(i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物、及び(ii)脂環にエポキシ基が直接単結合で結合している化合物が含まれる。
<Alicyclic epoxy compound (A)>
The alicyclic epoxy compound (A) used in the present invention includes (i) a compound having an epoxy group composed of two adjacent carbon atoms and oxygen atoms constituting the alicyclic ring, and (ii) an alicyclic ring. Includes compounds in which an epoxy group is directly bonded by a single bond.
 (i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基(脂環エポキシ基)を有する化合物としては、公知乃至慣用のものの中から任意に選択して使用することができる。中でも、脂環エポキシ基としては、シクロヘキセンオキシド基が好ましい。 (I) A compound having an epoxy group (alicyclic epoxy group) composed of two adjacent carbon atoms and oxygen atoms constituting an alicyclic ring is arbitrarily selected from known or commonly used compounds. be able to. Especially, as an alicyclic epoxy group, a cyclohexene oxide group is preferable.
 (i)脂環を構成する隣接する2つの炭素原子と酸素原子とで構成されるエポキシ基を有する化合物としては、特に、透明性、耐熱性の点で下記式(I)で表される脂環式エポキシ樹脂が好ましい。
Figure JPOXMLDOC01-appb-C000006
 式(I)中、Xは単結合又は連結基(1以上の原子を有する2価の基)を示す。上記連結基としては、例えば、2価の炭化水素基、カルボニル基、エーテル結合、エステル結合、カーボネート基、アミド基、及びこれらが複数個連結した基等が挙げられる。
(I) Especially as a compound which has an epoxy group comprised by two adjacent carbon atoms and oxygen atoms which comprise an alicyclic ring, the fat represented by the following formula (I) in terms of transparency and heat resistance Cyclic epoxy resins are preferred.
Figure JPOXMLDOC01-appb-C000006
In formula (I), X represents a single bond or a linking group (a divalent group having one or more atoms). Examples of the linking group include a divalent hydrocarbon group, a carbonyl group, an ether bond, an ester bond, a carbonate group, an amide group, and a group in which a plurality of these are linked.
 式(I)中のXが単結合である脂環式エポキシ樹脂としては、下記式で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000007
 このような脂環式エポキシ樹脂としては、例えば、セロキサイド8000((株)ダイセル製)などの市販品を用いることもできる。
Examples of the alicyclic epoxy resin in which X in the formula (I) is a single bond include compounds represented by the following formula.
Figure JPOXMLDOC01-appb-C000007
As such an alicyclic epoxy resin, for example, a commercially available product such as Celoxide 8000 (manufactured by Daicel Corporation) can also be used.
 2価の炭化水素基としては、炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基、2価の脂環式炭化水素基等が挙げられる。炭素数が1~18の直鎖状又は分岐鎖状のアルキレン基としては、例えば、メチレン、メチルメチレン、ジメチルメチレン、エチレン、プロピレン、トリメチレン基等が挙げられる。2価の脂環式炭化水素基としては、例えば、1,2-シクロペンチレン、1,3-シクロペンチレン、シクロペンチリデン、1,2-シクロヘキシレン、1,3-シクロヘキシレン、1,4-シクロヘキシレン、シクロヘキシリデン基等の2価のシクロアルキレン基(シクロアルキリデン基を含む)などが挙げられる。 Examples of the divalent hydrocarbon group include a linear or branched alkylene group having 1 to 18 carbon atoms and a divalent alicyclic hydrocarbon group. Examples of the linear or branched alkylene group having 1 to 18 carbon atoms include methylene, methylmethylene, dimethylmethylene, ethylene, propylene, and trimethylene groups. Examples of the divalent alicyclic hydrocarbon group include 1,2-cyclopentylene, 1,3-cyclopentylene, cyclopentylidene, 1,2-cyclohexylene, 1,3-cyclohexylene, 1, And divalent cycloalkylene groups (including cycloalkylidene groups) such as 4-cyclohexylene and cyclohexylidene groups.
 連結基Xとしては、酸素原子を含有する連結基が好ましく、具体的には、-CO-,-O-CO-O-,-COO-,-O-,-CONH-;これらの基が複数個連結した基;これらの基の1又は2以上と2価の炭化水素基の1又は2以上とが連結した基などが挙げられる。2価の炭化水素基としては前記の基が挙げられる。 The linking group X is preferably a linking group containing an oxygen atom, specifically, —CO—, —O—CO—O—, —COO—, —O—, —CONH—; A group in which one or two of these groups are linked to one or more of divalent hydrocarbon groups, and the like. Examples of the divalent hydrocarbon group include the aforementioned groups.
 式(I)で表される脂環式エポキシ化合物の代表的な例としては、下記式(I-1)~(I-8)で表される化合物などが挙げられる。例えば、セロキサイド2021P、セロキサイド2081((株)ダイセル製)等の市販品を使用することもできる。なお、下記式(I-1)~(I-8)中、l、mは、1~30の整数を表す。Rは炭素数1~8のアルキレン基であり、メチレン、エチレン、プロピレン、イソプロピレン、ブチレン、イソブチレン、s-ブチレン、ペンチレン、ヘキシレン、ヘプチレン、オクチレン基等の直鎖状又は分岐鎖状アルキレン基が挙げられる。これらの中でも、メチレン、エチレン、プロピレン、イソプロピレン基等の炭素数1~3の直鎖状又は分岐鎖状アルキレン基が好ましい。 Typical examples of the alicyclic epoxy compound represented by the formula (I) include compounds represented by the following formulas (I-1) to (I-8). For example, commercially available products such as Celoxide 2021P and Celoxide 2081 (manufactured by Daicel Corporation) can also be used. In the following formulas (I-1) to (I-8), l and m each represents an integer of 1 to 30. R is an alkylene group having 1 to 8 carbon atoms, and is a linear or branched alkylene group such as methylene, ethylene, propylene, isopropylene, butylene, isobutylene, s-butylene, pentylene, hexylene, heptylene, octylene group or the like. Can be mentioned. Among these, linear or branched alkylene groups having 1 to 3 carbon atoms such as methylene, ethylene, propylene, and isopropylene groups are preferable.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 (ii)脂環にエポキシ基が直接単結合で結合している化合物としては、例えば下記式(II)で表される化合物が挙げられる。 (Ii) Examples of the compound in which the epoxy group is directly bonded to the alicyclic ring with a single bond include compounds represented by the following formula (II).
Figure JPOXMLDOC01-appb-C000009
 式(II)中、R'はp価のアルコールからp個の-OHを除した基;p、nは自然数を表す。p価のアルコール[R'-(OH)p]としては、2,2-ビス(ヒドロキシメチル)-1-ブタノール等の多価アルコールなど(炭素数1~15のアルコール等)が挙げられる。pは1~6が好ましく、nは1~30が好ましい。pが2以上の場合、それぞれの( )内(丸括弧内)の基におけるnは同一であってもよいし、異なっていてもよい。上記化合物としては、具体的には、2,2-ビス(ヒドロキシメチル)-1-ブタノールの1,2-エポキシ-4-(2-オキシラニル)シクロヘキサン付加物、EHPE 3150((株)ダイセル製)などが挙げられる。
Figure JPOXMLDOC01-appb-C000009
In the formula (II), R ′ is a group obtained by removing p —OH from a p-valent alcohol; p and n represent natural numbers. Examples of the p-valent alcohol [R ′-(OH) p ] include polyhydric alcohols such as 2,2-bis (hydroxymethyl) -1-butanol (alcohols having 1 to 15 carbon atoms, etc.). p is preferably 1 to 6, and n is preferably 1 to 30. When p is 2 or more, n in each () (in parentheses) may be the same or different. Specific examples of the compound include 1,2-epoxy-4- (2-oxiranyl) cyclohexane adduct of 2,2-bis (hydroxymethyl) -1-butanol, EHPE 3150 (manufactured by Daicel Corporation). Etc.
 これらの脂環式エポキシ化合物(A)は単独で、又は2種類以上を組み合わせて使用することができる。脂環式エポキシ化合物(A)としては、上記式(I-1)で表される3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、セロキサイド2021Pが特に好ましい。 These alicyclic epoxy compounds (A) can be used alone or in combination of two or more. As the alicyclic epoxy compound (A), 3,4-epoxycyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate represented by the above formula (I-1) and ceroxide 2021P are particularly preferable.
 脂環式エポキシ化合物(A)の使用量(含有量)は、特に限定されないが、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)との総量(100重量%)に対して、50~90重量%が好ましく、より好ましくは60~90重量%、さらに好ましくは70~90重量%である。脂環式エポキシ化合物(A)の使用量が50重量%未満では、モノアリルジグリシジルイソシアヌレート化合物(B)の溶解性が十分でなく、室温に置くと析出しやすくなる場合がある。一方、脂環式エポキシ化合物(A)の使用量が90重量%を超えると、光半導体装置を作成したときにクラックが入りやすくなる場合がある。成分(A)、成分(B)、及び成分(C)の総量(100重量%)における、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)の含有量の総和(総量)は、特に限定されないが、50~99重量%が好ましい。 The amount of use (content) of the alicyclic epoxy compound (A) is not particularly limited, but the total amount (100% by weight) of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B). On the other hand, it is preferably 50 to 90% by weight, more preferably 60 to 90% by weight, still more preferably 70 to 90% by weight. When the amount of the alicyclic epoxy compound (A) used is less than 50% by weight, the solubility of the monoallyl diglycidyl isocyanurate compound (B) is not sufficient, and it may be easily precipitated when placed at room temperature. On the other hand, if the amount of the alicyclic epoxy compound (A) used exceeds 90% by weight, cracks may easily occur when an optical semiconductor device is produced. Sum of contents of alicyclic epoxy compound (A) and monoallyl diglycidyl isocyanurate compound (B) in the total amount (100% by weight) of component (A), component (B), and component (C) (total amount) ) Is not particularly limited, but is preferably 50 to 99% by weight.
 <モノアリルジグリシジルイソシアヌレート化合物(B)>
 本発明で用いられるモノアリルジグリシジルイソシアヌレート化合物(B)は、下記の一般式(1)で表すことができる。
<Monoallyl diglycidyl isocyanurate compound (B)>
The monoallyl diglycidyl isocyanurate compound (B) used in the present invention can be represented by the following general formula (1).
Figure JPOXMLDOC01-appb-C000010
但し式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す。
Figure JPOXMLDOC01-appb-C000010
In the formula, R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms.
 炭素数1~8のアルキル基としては、例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s-ブチル、ペンチル、ヘキシル、ヘプチル、オクチル基等の直鎖状又は分岐鎖状アルキル基が挙げられる。これらの中でも、メチル、エチル、プロピル、イソプロピル基等の炭素数1~3の直鎖状又は分岐鎖状アルキル基が好ましい。特に、R1及びR2が水素原子であることが好ましい。 Examples of the alkyl group having 1 to 8 carbon atoms include linear or branched alkyl groups such as methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, pentyl, hexyl, heptyl, and octyl groups. It is done. Among these, linear or branched alkyl groups having 1 to 3 carbon atoms such as methyl, ethyl, propyl and isopropyl groups are preferable. In particular, R 1 and R 2 are preferably hydrogen atoms.
 モノアリルジグリシジルイソシアヌレート化合物(B)の代表的なものとしては、モノアリルジグリシジルイソシアヌレート、1-アリル-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート、1-(2-メチルプロペニル)-3,5-ジグリシジルイソシアヌレート、1-(2-メチルプロペニル)-3,5-ビス(2-メチルエポキシプロピル)イソシアヌレート等が挙げられる。なお、モノアリルジグリシジルイソシアヌレート化合物(B)は1種を単独で、又は2種以上を組み合わせて使用することができる。 Typical examples of the monoallyl diglycidyl isocyanurate compound (B) include monoallyl diglycidyl isocyanurate, 1-allyl-3,5-bis (2-methylepoxypropyl) isocyanurate, 1- (2-methyl And propenyl) -3,5-diglycidyl isocyanurate, 1- (2-methylpropenyl) -3,5-bis (2-methylepoxypropyl) isocyanurate, and the like. In addition, monoallyl diglycidyl isocyanurate compound (B) can be used individually by 1 type or in combination of 2 or more types.
 モノアリルジグリシジルイソシアヌレート化合物(B)は、上記脂環式エポキシ化合物(A)に溶解する範囲で任意に混合でき、脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)の割合は特に限定されないが、脂環式エポキシ化合物(A):モノアリルジグリシジルイソシアヌレート化合物(B)が50:50~90:10(重量比)であることが好ましい。この範囲外では、溶解性が得られにくくなる。 The monoallyl diglycidyl isocyanurate compound (B) can be arbitrarily mixed as long as it dissolves in the alicyclic epoxy compound (A), and the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B). The ratio of the alicyclic epoxy compound (A): monoallyl diglycidyl isocyanurate compound (B) is preferably 50:50 to 90:10 (weight ratio). Outside this range, it becomes difficult to obtain solubility.
 モノアリルジグリシジルイソシアヌレート化合物(B)は、アルコールや酸無水物など、エポキシ基と反応する化合物を加えて、あらかじめ変性して用いても良い。 The monoallyl diglycidyl isocyanurate compound (B) may be modified in advance by adding a compound that reacts with an epoxy group, such as alcohol or acid anhydride.
 脂環式エポキシ化合物(A)とモノアリルジグリシジルイソシアヌレート化合物(B)との総量は、特に限定されないが、エポキシ樹脂(エポキシ基を有する化合物)の総量(100重量%)に対し、50~100重量%であることが好ましい。 The total amount of the alicyclic epoxy compound (A) and the monoallyl diglycidyl isocyanurate compound (B) is not particularly limited, but is 50 to 50% based on the total amount (100% by weight) of the epoxy resin (compound having an epoxy group). It is preferably 100% by weight.
<ポリカーボネートポリオール(C)>
 ポリカーボネートポリオール(C)は、分子内に2個以上の水酸基を有するポリカーボネートである。中でも、ポリカーボネートポリオール(C)としては、分子内に2個の末端水酸基を有するポリカーボネートジオールが好ましい。なお、ポリカーボネートポリオール(C)における水酸基は、アルコール性水酸基でもあってもよいし、フェノール性水酸基であってもよい。
<Polycarbonate polyol (C)>
The polycarbonate polyol (C) is a polycarbonate having two or more hydroxyl groups in the molecule. Among these, as the polycarbonate polyol (C), a polycarbonate diol having two terminal hydroxyl groups in the molecule is preferable. The hydroxyl group in the polycarbonate polyol (C) may be an alcoholic hydroxyl group or a phenolic hydroxyl group.
 ポリカーボネートポリオール(C)は、通常のポリカーボネートポリオールを製造する方法と同じく、ホスゲン法又は、ジメチルカーボネート、ジエチルカーボネートのようなジアルキルカーボネート又はジフェニルカーボネートを用いるカーボネート交換反応(例えば、特開昭62-187725号公報、特開平2-175721号公報、特開平2-49025号公報、特開平3-220233号公報、特開平3-252420号公報等を参照できる)などで合成される。ポリカーボネートポリオール(C)のカーボネート結合は熱分解を受けにくいため、ポリカーボネートポリオールを含む樹脂硬化物は高温高湿下でも優れた安定性を示す。なお、ポリカーボネートポリオール(C)は1種を単独で、又は2種以上を組み合わせて使用することができる。 Polycarbonate polyol (C) can be prepared by the same phosgene method or carbonate exchange reaction using dialkyl carbonate or diphenyl carbonate such as dimethyl carbonate and diethyl carbonate (for example, JP 62-187725 A). JP-A-2-175721, JP-A-2-49025, JP-A-3-220233, JP-A-3-252420, etc.). Since the carbonate bond of the polycarbonate polyol (C) is hardly subject to thermal decomposition, the cured resin containing the polycarbonate polyol exhibits excellent stability even under high temperature and high humidity. In addition, a polycarbonate polyol (C) can be used individually by 1 type or in combination of 2 or more types.
 上記ジアルキルカーボネート又はジフェニルカーボネートと共にカーボネート交換反応で用いられるポリオールとしては、1,6-ヘキサンジオール、エチレングリコール、ジエチレングリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,3-ブタンジオール、2,3-ブタンジオール、1,5-ペンタンジオール、3-メチル-1,5-ペンタンジオール、1,4-シクロヘキサンジメタノール、1,8-オクタンジオール、1,9-ノナンジオール、1,12-ドデカンジオール、ブタジエンジオール、ネオペンチルグリコール、テトラメチレングリコール、プロピレングリコール、ジプロピレングリコール等が挙げられる。 Examples of the polyol used in the carbonate exchange reaction together with the dialkyl carbonate or diphenyl carbonate include 1,6-hexanediol, ethylene glycol, diethylene glycol, 1,3-propanediol, 1,4-butanediol, 1,3-butanediol, 2,3-butanediol, 1,5-pentanediol, 3-methyl-1,5-pentanediol, 1,4-cyclohexanedimethanol, 1,8-octanediol, 1,9-nonanediol, 1,12 -Dodecanediol, butadiene diol, neopentyl glycol, tetramethylene glycol, propylene glycol, dipropylene glycol and the like.
 ポリカーボネートポリオール(C)の数平均分子量は、特に限定されないが、200~10000が好ましく、より好ましくは300~5000、さらに好ましくは400~4000である。数平均分子量が200未満では、低弾性率化、曲げ強度向上の効果が得られにくい場合がある。一方、数平均分子量が10000を超えると、常温(25℃)で液状ではなくなる場合があり、取り扱いにくくなる場合がある。なお、上記数平均分子量は、ポリカーボネートポリオールの水酸基価を用いて、下式より算出することができる。
 [数平均分子量]= 56.11 × n/[水酸基価] × 1000
 但し、nは1分子のポリカーボネートポリオールに含まれる水酸基の数を表し、例えば、ポリカーボネートジオールの場合には、n=2として数平均分子量を算出する。
The number average molecular weight of the polycarbonate polyol (C) is not particularly limited, but is preferably 200 to 10,000, more preferably 300 to 5,000, and still more preferably 400 to 4,000. If the number average molecular weight is less than 200, it may be difficult to obtain the effects of lowering the elastic modulus and improving the bending strength. On the other hand, when the number average molecular weight exceeds 10,000, it may not be liquid at normal temperature (25 ° C.) and may be difficult to handle. The number average molecular weight can be calculated from the following formula using the hydroxyl value of polycarbonate polyol.
[Number average molecular weight] = 56.11 × n / [hydroxyl value] × 1000
However, n represents the number of hydroxyl groups contained in one molecule of polycarbonate polyol. For example, in the case of polycarbonate diol, the number average molecular weight is calculated with n = 2.
 ポリカーボネートポリオール(C)としては、プラクセルCD205、CD210、CD220、CD205PL、CD205HL、CD210PL、CD210HL、CD220PL、CD220HL、CD220EC、CD221T(以上、(株)ダイセル製)、ETERNACOLL UH-CARB50、UH-CARB100、UH-CARB300、UH-CARB90(1/3)、UH-CARB90(1/1)、UH-CARB100(以上、宇部興産(株)製)、デュラノールT6002、T5652、T4672、T4692、G3452(以上、旭化成ケミカルズ(株)製)、クラレポリオールND、MPD(以上、(株)クラレ)等の市販品を用いることもできる。 Examples of the polycarbonate polyol (C) include Plaxel CD205, CD210, CD220, CD205PL, CD205HL, CD210PL, CD210HL, CD220PL, CD220HL, CD220EC, CD221T (manufactured by Daicel Corp.), ETERNACOLL UH-CARB50, UH-CARB100, UH -CARB300, UH-CARB90 (1/3), UH-CARB90 (1/1), UH-CARB100 (above, Ube Industries, Ltd.), Duranol T6002, T5652, T4672, T4692, G3452 (above, Asahi Kasei Chemicals) Commercially available products such as Kuraray Polyol ND, MPD (above, Kuraray Co., Ltd.) can also be used.
 ポリカーボネートポリオール(C)の使用量(含有量)は、特に限定されないが、上記成分(A)及び成分(B)の合計量(100重量部)に対して、1~50重量部が好ましく、より好ましくは1.5~30重量部、さらに好ましくは2~20重量部である。ポリカーボネートポリオール(C)の配合量が50重量部を超えると、硬化物のTgが低下し過ぎて、加熱による体積変化が大きくなり、光半導体装置の不点灯等の不具合が起こる場合がある。また、曲げ強度は向上するが透明性が低下する場合がある。ポリカーボネートポリオール(C)の配合量が1重量部未満であると、耐リフロー性が低下し、リフロー工程での加熱処理により、光半導体装置においてリードフレームからの封止樹脂の剥離やクラックが発生する場合がある。 The use amount (content) of the polycarbonate polyol (C) is not particularly limited, but is preferably 1 to 50 parts by weight with respect to the total amount (100 parts by weight) of the component (A) and the component (B). The amount is preferably 1.5 to 30 parts by weight, more preferably 2 to 20 parts by weight. When the blending amount of the polycarbonate polyol (C) exceeds 50 parts by weight, the Tg of the cured product is excessively lowered, the volume change due to heating is increased, and problems such as non-lighting of the optical semiconductor device may occur. Moreover, although bending strength improves, transparency may fall. When the blending amount of the polycarbonate polyol (C) is less than 1 part by weight, the reflow resistance is lowered, and the heat treatment in the reflow process causes peeling or cracking of the sealing resin from the lead frame in the optical semiconductor device. There is a case.
 <硬化剤(D)>
 硬化剤(D)は、エポキシ基を有する化合物を硬化させる働きを有する。本発明における硬化剤(D)としては、エポキシ樹脂用硬化剤として公知乃至慣用の硬化剤を使用することができる。硬化剤(D)としては、中でも、25℃で液状の酸無水物が好ましく、例えば、メチルテトラヒドロ無水フタル酸、メチルヘキサヒドロ無水フタル酸、ドデセニル無水コハク酸、メチルエンドメチレンテトラヒドロ無水フタル酸などを挙げることができる。また、例えば、無水フタル酸、テトラヒドロ無水フタル酸、ヘキサヒドロ無水フタル酸、メチルシクロヘキセンジカルボン酸無水物などの常温(約25℃)で固体状の酸無水物は、常温(約25℃)で液状の酸無水物に溶解させて液状の混合物とすることで、本発明の硬化性エポキシ樹脂組成物における硬化剤(D)として使用することができる。なお、硬化剤(D)は1種を単独で、又は2種以上を組み合わせて使用することができる。
<Curing agent (D)>
The curing agent (D) has a function of curing the compound having an epoxy group. As a hardening | curing agent (D) in this invention, a well-known thru | or usual hardening | curing agent can be used as a hardening | curing agent for epoxy resins. As the curing agent (D), acid anhydrides that are liquid at 25 ° C. are preferable, and examples thereof include methyltetrahydrophthalic anhydride, methylhexahydrophthalic anhydride, dodecenyl succinic anhydride, and methylendomethylenetetrahydrophthalic anhydride. Can be mentioned. In addition, solid acid anhydrides at room temperature (about 25 ° C.) such as phthalic anhydride, tetrahydrophthalic anhydride, hexahydrophthalic anhydride, methylcyclohexene dicarboxylic acid anhydride are liquid at room temperature (about 25 ° C.). It can be used as the curing agent (D) in the curable epoxy resin composition of the present invention by dissolving in an acid anhydride to form a liquid mixture. In addition, a hardening | curing agent (D) can be used individually by 1 type or in combination of 2 or more types.
 また、本発明においては、硬化剤(D)として、リカシッド MH-700(新日本理化(株)製)、HN-5500(日立化成工業(株)製)等の市販品を使用することもできる。 In the present invention, as the curing agent (D), commercially available products such as Ricacid MH-700 (manufactured by Shin Nippon Rika Co., Ltd.) and HN-5500 (manufactured by Hitachi Chemical Co., Ltd.) can also be used. .
 硬化剤(D)の含有量は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、50~200重量部が好ましく、より好ましくは100~145重量部である。より具体的には、上記硬化性エポキシ樹脂組成物中に含有する全てのエポキシ基を有する化合物におけるエポキシ基1当量当たり、0.5~1.5当量となる割合で使用することが好ましい。硬化剤(D)の使用量が50重量部を下回ると、硬化が不十分となり、硬化物の強靱性が低下する傾向があり、一方、硬化剤(D)の使用量が200重量部を上回ると、硬化物が着色して色相が悪化する場合がある。 The content of the curing agent (D) is not particularly limited, but is preferably 50 to 200 parts by weight with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. The amount is preferably 100 to 145 parts by weight. More specifically, it is preferably used in a ratio of 0.5 to 1.5 equivalents per 1 equivalent of epoxy groups in all the compounds having epoxy groups contained in the curable epoxy resin composition. When the amount of the curing agent (D) used is less than 50 parts by weight, curing tends to be insufficient, and the toughness of the cured product tends to decrease, while the amount of the curing agent (D) used exceeds 200 parts by weight. When the cured product is colored, the hue may deteriorate.
 <硬化触媒(E)>
 また、本発明においては、硬化触媒(E)として、紫外線照射又は加熱処理を施すことによりカチオン種を発生して、重合を開始させるカチオン触媒を用いることもできる。なお、硬化触媒(E)は1種を単独で、又は2種以上を組み合わせて使用することができる。
<Curing catalyst (E)>
In the present invention, as the curing catalyst (E), a cationic catalyst that initiates polymerization by generating cationic species by performing ultraviolet irradiation or heat treatment may be used. In addition, a curing catalyst (E) can be used individually by 1 type or in combination of 2 or more types.
 紫外線照射によりカチオン種を発生するカチオン触媒としては、例えば、ヘキサフルオロアンチモネート塩、ペンタフルオロヒドロキシアンチモネート塩、ヘキサフルオロホスフェート塩、ヘキサフルオロアルゼネート塩などを挙げることができ、UVACURE1590(ダイセル・サイテック(株)製)、CD-1010、CD-1011、CD-1012(米国サートマー製)、イルガキュア264(チバ・ジャパン(株)製)、CIT-1682(日本曹達(株)製)等の市販品を好ましく使用することができる。 Examples of the cation catalyst that generates cation species by ultraviolet irradiation include hexafluoroantimonate salt, pentafluorohydroxyantimonate salt, hexafluorophosphate salt, hexafluoroarsenate salt, and the like. UVACURE 1590 (Daicel Cytec) (Commercially available), CD-1010, CD-1011, CD-1012 (manufactured by Sartomer, USA), Irgacure 264 (manufactured by Ciba Japan), CIT-1682 (manufactured by Nippon Soda Co., Ltd.) Can be preferably used.
 加熱処理を施すことによりカチオン種を発生するカチオン触媒としては、例えば、アリールジアゾニウム塩、アリールヨードニウム塩、アリールスルホニウム塩、アレン-イオン錯体などを挙げることができ、PP-33、CP-66、CP-77((株)ADEKA製)、FC-509(スリーエム製)、UVE1014(G.E.製)、サンエイド SI-60L、サンエイド SI-80L、サンエイド SI-100L、サンエイド SI-110L(三新化学工業(株)製)、CG-24-61(チバ・ジャパン(株)製)等の市販品を好ましく使用することができる。さらに、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とトリフェニルシラノール等のシラノールとの化合物、又は、アルミニウムやチタンなどの金属とアセト酢酸若しくはジケトン類とのキレート化合物とビスフェノールS等のフェノール類との化合物であってもよい。 Examples of the cation catalyst that generates a cation species by heat treatment include aryldiazonium salts, aryliodonium salts, arylsulfonium salts, allene-ion complexes, and the like. PP-33, CP-66, CP -77 (manufactured by ADEKA), FC-509 (manufactured by 3M), UVE1014 (manufactured by GE), Sun-Aid SI-60L, Sun-Aid SI-80L, Sun-Aid SI-100L, Sun-Aid SI-110L (Sanshin Chemical) Commercially available products such as Kogyo Co., Ltd. and CG-24-61 (Ciba Japan Co., Ltd.) can be preferably used. Furthermore, a chelate compound of a metal such as aluminum or titanium and a acetoacetate or diketone compound and a silanol such as triphenylsilanol, or a chelate compound of a metal such as aluminum or titanium and acetoacetate or diketone and bisphenol S The compound with phenols, such as these, may be sufficient.
 硬化触媒(E)の含有量は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.01~15重量部が好ましく、より好ましくは0.01~12重量部、さらに好ましくは0.05~10重量部、特に好ましくは0.1~10重量部である。硬化触媒(E)をこの範囲内で使用することにより、耐熱性、耐光性、透明性に優れた硬化物を得ることができる。 The content of the curing catalyst (E) is not particularly limited, but is preferably 0.01 to 15 parts by weight with respect to the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. More preferred is 0.01 to 12 parts by weight, still more preferred is 0.05 to 10 parts by weight, and particularly preferred is 0.1 to 10 parts by weight. By using the curing catalyst (E) within this range, a cured product having excellent heat resistance, light resistance and transparency can be obtained.
 <硬化促進剤(F)>
 本発明の硬化性エポキシ樹脂組成物は、硬化促進剤(F)を含んでいてもよい。硬化促進剤(F)は、エポキシ基を有する化合物が硬化剤により硬化する際に、硬化速度を促進する機能を有する化合物である。特に硬化剤(D)と併用することが多い。硬化促進剤(F)としては、公知乃至慣用の硬化促進剤を使用することができ、例えば、1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、及びその塩(例えば、フェノール塩、オクチル酸塩、p-トルエンスルホン酸塩、ギ酸塩、テトラフェニルボレート塩);1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、及びその塩(例えば、ホスホニウム塩、スルホニウム塩、4級アンモニウム塩、ヨードニウム塩);ベンジルジメチルアミン、2,4,6-トリス(ジメチルアミノメチル)フェノール、N,N-ジメチルシクロヘキシルアミンなどの3級アミン;2-エチル-4-メチルイミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾールなどのイミダゾール;リン酸エステル、トリフェニルホスフィンなどのホスフィン類;テトラフェニルホスホニウムテトラ(p-トリル)ボレートなどのホスホニウム化合物;オクチル酸スズ、オクチル酸亜鉛などの有機金属塩;金属キレートなどが挙げられる。上記硬化促進剤(F)は単独で、又は2種以上を混合して使用することができる。
<Curing accelerator (F)>
The curable epoxy resin composition of the present invention may contain a curing accelerator (F). A hardening accelerator (F) is a compound which has a function which accelerates | stimulates a cure rate, when the compound which has an epoxy group hardens | cures with a hardening | curing agent. In particular, it is often used in combination with a curing agent (D). As the curing accelerator (F), known or conventional curing accelerators can be used. For example, 1,8-diazabicyclo [5.4.0] undecene-7 (DBU) and salts thereof (for example, Phenol salts, octylates, p-toluenesulfonates, formates, tetraphenylborate salts); 1,5-diazabicyclo [4.3.0] nonene-5 (DBN), and salts thereof (eg, phosphonium salts) , Sulfonium salts, quaternary ammonium salts, iodonium salts); tertiary amines such as benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, N, N-dimethylcyclohexylamine; 2-ethyl-4- Imidazoles such as methylimidazole and 1-cyanoethyl-2-ethyl-4-methylimidazole; phosphate ester, triphenyl Phosphines such as phosphine; tetraphenylphosphonium tetra (p- tolyl) phosphonium compounds such as borate, tin octylate, organic metal salts such as zinc octylate; metal chelate and the like. The said hardening accelerator (F) can be used individually or in mixture of 2 or more types.
 また、本発明においては、硬化促進剤(F)として、U-CAT SA 506、U-CAT SA 102、U-CAT 5003、U-CAT 410、U-CAT 18X、12XD(開発品)(いずれもサンアプロ(株)製)、TPP-K、TPP-MK(いずれも北興化学工業(株)製)、PX-4ET(日本化学工業(株)製)等の市販品を使用することもできる。 In the present invention, U-CAT SA 506, U-CAT SA 102, U-CAT 5003, U-CAT 410, U-CAT 18X, 12XD (development products) (all developed products) are used as curing accelerators (F). Commercially available products such as San Apro Co., Ltd., TPP-K, TPP-MK (both from Hokuko Chemical Co., Ltd.) and PX-4ET (Nippon Chemical Industry Co., Ltd.) can also be used.
 硬化促進剤(F)の含有量としては、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.05~5重量部が好ましく、より好ましくは0.1~3重量部、さらに好ましくは0.2~3重量部、特に好ましくは0.25~2.5重量部である。硬化促進剤(F)の使用量が0.05重量部を下回ると、硬化促進効果が不十分となる場合がある。一方、硬化促進剤(F)の使用量が5重量部を上回ると、硬化物が着色して色相が悪化する場合がある。 The content of the curing accelerator (F) is not particularly limited, but is 0.05 to 5 parts by weight with respect to the total amount (100 parts by weight) of the epoxy group-containing compound contained in the curable epoxy resin composition. More preferred is 0.1 to 3 parts by weight, still more preferred is 0.2 to 3 parts by weight, and particularly preferred is 0.25 to 2.5 parts by weight. When the usage-amount of a hardening accelerator (F) is less than 0.05 weight part, the hardening promotion effect may become inadequate. On the other hand, when the usage-amount of a hardening accelerator (F) exceeds 5 weight part, hardened | cured material may color and a hue may deteriorate.
<アクリルブロック共重合体>
 本発明の硬化性エポキシ樹脂組成物は、光半導体装置の経時での光度低下を抑制する観点から、さらに、アクリルブロック共重合体を含むことが好ましい。より詳しくは、本発明の硬化性エポキシ樹脂組成物がアクリルブロック共重合体を含む場合、当該硬化性エポキシ樹脂組成物で封止した光半導体装置は、特に高輝度・高出力の場合であっても光度が低下しにくい傾向にある。即ち、アクリルブロック共重合体を用いることにより、本発明の硬化性エポキシ樹脂組成物を硬化して得られる硬化物は、より高いレベルの耐熱性、耐光性、及び耐クラック性を発揮できる。
<Acrylic block copolymer>
The curable epoxy resin composition of the present invention preferably further contains an acrylic block copolymer from the viewpoint of suppressing a decrease in luminous intensity with time of the optical semiconductor device. More specifically, when the curable epoxy resin composition of the present invention contains an acrylic block copolymer, the optical semiconductor device encapsulated with the curable epoxy resin composition has a particularly high brightness and high output. However, the light intensity tends not to decrease. That is, by using the acrylic block copolymer, a cured product obtained by curing the curable epoxy resin composition of the present invention can exhibit higher levels of heat resistance, light resistance, and crack resistance.
 上記アクリルブロック共重合体は、アクリル系モノマーを必須のモノマー成分として含有するブロック共重合体である。上記アクリル系モノマーとしては、例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n-ブチル、アクリル酸t-ブチル、アクリル酸2-エチルヘキシル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n-ブチル、メタクリル酸t-ブチル、メタクリル酸2-エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル等の(メタ)アクリル酸アルキルエステル;アクリル酸シクロヘキシル、メタクリル酸シクロヘキシル等の脂環構造を有する(メタ)アクリル酸エステル;メタクリル酸ベンジル等の芳香環を有する(メタ)アクリル酸エステル;メタクリル酸2-トリフルオロエチル等の(メタ)アクリル酸の(フルオロ)アルキルエステル;アクリル酸、メタクリル酸、マレイン酸、無水マレイン酸等の分子中にカルボキシル基を有するカルボキシル基含有アクリル単量体;アクリル酸2-ヒドロキシエチル、アクリル酸2-ヒドロキシプロピル、アクリル酸4-ヒドロキシブチル、メタクリル酸2-ヒドロキシエチル、メタクリル酸2-ヒドロキシプロピル、メタクリル酸4-ヒドロキシブチル、グリセリンのモノ(メタ)アクリル酸エステル等の分子中に水酸基を有する水酸基含有アクリル単量体;メタクリル酸グリシジル、メタクリル酸メチルグリシジル、3,4-エポキシシクロヘキシルメチルメタクリレート等の分子中にエポキシ基を有するアクリル単量体;アクリル酸アリル、メタクリル酸アリル等の分子中にアリル基を有するアリル基含有アクリル単量体;γ-メタクリロイルオキシプロピルトリメトキシシラン、γ-メタクリロイルオキシプロピルトリエトキシシラン等の分子中に加水分解性シリル基を有するシラン基含有アクリル単量体;2-(2′-ヒドロキシ-5′-メタクリロキシエチルフェニル)-2H-ベンゾトリアゾール等のベンゾトリアゾール系紫外線吸収性基を有する紫外線吸収性アクリル単量体などが挙げられる。 The acrylic block copolymer is a block copolymer containing an acrylic monomer as an essential monomer component. Examples of the acrylic monomer include methyl acrylate, ethyl acrylate, n-butyl acrylate, t-butyl acrylate, 2-ethylhexyl acrylate, methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, methacrylic acid. (Meth) acrylic acid alkyl esters such as t-butyl acid, 2-ethylhexyl methacrylate, lauryl methacrylate and stearyl methacrylate; (meth) acrylic acid esters having an alicyclic structure such as cyclohexyl acrylate and cyclohexyl methacrylate; methacryl (Meth) acrylic acid ester having an aromatic ring such as benzyl acid; (fluoro) alkyl ester of (meth) acrylic acid such as 2-trifluoroethyl methacrylate; acrylic acid, methacrylic acid, maleic acid, maleic anhydride, etc. Min A carboxyl group-containing acrylic monomer having a carboxyl group therein; 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 4-hydroxybutyl acrylate, 2-hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, methacryl Hydroxyl group-containing acrylic monomer having hydroxyl group in molecule such as 4-hydroxybutyl acid, mono (meth) acrylic acid ester of glycerin; molecule such as glycidyl methacrylate, methyl glycidyl methacrylate, 3,4-epoxycyclohexylmethyl methacrylate Acrylic monomer having epoxy group in it; Allyl group-containing acrylic monomer having allyl group in molecule such as allyl acrylate and allyl methacrylate; γ-methacryloyloxypropyltrimethoxysilane, γ-methacryloyl Silane group-containing acrylic monomer having hydrolyzable silyl group in the molecule such as oxypropyltriethoxysilane; benzotriazole such as 2- (2'-hydroxy-5'-methacryloxyethylphenyl) -2H-benzotriazole And UV-absorbing acrylic monomers having a UV-absorbing group.
 なお、上記アクリルブロック共重合体には、上記アクリル系モノマー以外のモノマーがモノマー成分として用いられていてもよい。上記アクリル系モノマー以外のモノマーとしては、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル化合物、ブタジエン、イソプレンなどの共役ジエン、エチレン、プロピレン、イソブテンなどのオレフィンなどが挙げられる。 In the acrylic block copolymer, a monomer other than the acrylic monomer may be used as a monomer component. Examples of the monomer other than the acrylic monomer include aromatic vinyl compounds such as styrene and α-methylstyrene, conjugated dienes such as butadiene and isoprene, and olefins such as ethylene, propylene and isobutene.
 上記アクリルブロック共重合体としては、特に限定されないが、例えば、2つの重合体ブロックからなるジブロック共重合体や、3つの重合体ブロックからなるトリブロック共重合体、4つ以上の重合体ブロックより構成されるマルチブロック共重合体などが挙げられる。 Although it does not specifically limit as said acrylic block copolymer, For example, the diblock copolymer which consists of two polymer blocks, the triblock copolymer which consists of three polymer blocks, four or more polymer blocks And a multi-block copolymer composed of these.
 中でも、上記アクリルブロック共重合体としては、耐熱性、耐光性、及び耐クラック性向上の観点で、ガラス転移温度(Tg)が低い重合体ブロック(S)(ソフトブロック)と、重合体ブロック(S)よりも高いTgを有する重合体ブロック(H)(ハードブロック)が交互に並んだブロック共重合体が好ましく、より好ましくは重合体ブロック(S)を中間に有し、その両端に重合体ブロック(H)を有するH-S-H構造のトリブロック共重合体が好ましい。なお、上記アクリルブロック共重合体の重合体ブロック(S)を構成するポリマーのTgは、特に限定されないが、30℃未満が好ましい。また、重合体ブロック(H)を構成するポリマーのTgは、特に限定されないが、30℃以上が好ましい。上記アクリルブロック共重合体が複数の重合体ブロック(H)を有する場合には、それぞれの重合体ブロック(H)が同じ組成を有していてもよいし、異なっていてもよい。同様に、上記アクリルブロック共重合体が複数の重合体ブロック(S)を有する場合も、それぞれの重合体ブロック(S)が同じ組成を有していてもよいし、異なっていてもよい。 Among these, as the acrylic block copolymer, from the viewpoint of improving heat resistance, light resistance, and crack resistance, a polymer block (S) (soft block) having a low glass transition temperature (Tg) and a polymer block ( A block copolymer in which polymer blocks (H) (hard blocks) having a higher Tg than S) are alternately arranged is preferred, more preferably a polymer block (S) in the middle and a polymer at both ends thereof. A triblock copolymer having an HSH structure having a block (H) is preferred. In addition, although Tg of the polymer which comprises the polymer block (S) of the said acrylic block copolymer is not specifically limited, Less than 30 degreeC is preferable. Moreover, Tg of the polymer which comprises a polymer block (H) is although it does not specifically limit, 30 degreeC or more is preferable. When the said acrylic block copolymer has a some polymer block (H), each polymer block (H) may have the same composition and may differ. Similarly, also when the said acrylic block copolymer has a some polymer block (S), each polymer block (S) may have the same composition and may differ.
 上記アクリルブロック共重合体(上記H-S-H構造のトリブロック共重合体等)における、重合体ブロック(H)を構成するモノマー成分としては、特に限定されないが、例えば、ホモポリマーのTgが30℃以上であるモノマーが挙げられ、より詳しくは、メタクリル酸メチル、スチレン、アクリルアミド、アクリロニトリルなどが挙げられる。一方、上記アクリルブロック共重合体における、重合体ブロック(S)を構成するモノマー成分としては、特に限定されないが、例えば、ホモポリマーのTgが30℃未満であるモノマーが挙げられ、より詳しくは、アクリル酸ブチルやアクリル酸2-エチルヘキシル等のアクリル酸C2-10アルキルエステル、ブタジエン(1,4-ブタジエン)などが挙げられる。 The monomer component constituting the polymer block (H) in the acrylic block copolymer (such as the triblock copolymer having the HSH structure) is not particularly limited. For example, the Tg of the homopolymer is Examples thereof include monomers having a temperature of 30 ° C. or higher, and more specifically, methyl methacrylate, styrene, acrylamide, acrylonitrile and the like. On the other hand, the monomer component constituting the polymer block (S) in the acrylic block copolymer is not particularly limited, and examples thereof include monomers having a Tg of a homopolymer of less than 30 ° C., and more specifically, Acrylic acid C 2-10 alkyl ester such as butyl acrylate and 2-ethylhexyl acrylate, butadiene (1,4-butadiene) and the like.
 本発明の硬化性エポキシ樹脂組成物におけるアクリルブロック共重合体の好ましい具体例としては、例えば、上記重合体ブロック(S)がブチルアクリレート(BA)を主たるモノマーとして構成された重合体であり、上記重合体ブロック(H)がメチルメタクリレート(MMA)を主たるモノマーとして構成された重合体である、ポリメチルメタクリレート-block-ポリブチルアクリレート-block-ポリメチルメタクリレートターポリマー(PMMA-b-PBA-b-PMMA)等が挙げられる。上記PMMA-b-PBA-b-PMMAは、耐熱性、耐光性、及び耐クラック性向上の点で好ましい。なお、上記PMMA-b-PBA-b-PMMAは、必要に応じて、成分(A)及び成分(B)に対する相溶性向上を目的として、親水性基(例えば、ヒドロキシル基、カルボキシル基、アミノ基など)を有するモノマー、例えば、(メタ)アクリル酸ヒドロキシエチル、(メタ)アクリル酸ヒドロキシプロピル、(メタ)アクリル酸等を、PMMAブロック及び/又はPBAブロックに共重合させたものであってもよい。 As a preferable specific example of the acrylic block copolymer in the curable epoxy resin composition of the present invention, for example, the polymer block (S) is a polymer composed of butyl acrylate (BA) as a main monomer, Polymethyl methacrylate-block-polybutyl acrylate-block-polymethyl methacrylate terpolymer (PMMA-b-PBA-b-), wherein the polymer block (H) is a polymer composed mainly of methyl methacrylate (MMA). PMMA) and the like. The PMMA-b-PBA-b-PMMA is preferable from the viewpoint of improving heat resistance, light resistance, and crack resistance. The PMMA-b-PBA-b-PMMA is a hydrophilic group (eg, hydroxyl group, carboxyl group, amino group) for the purpose of improving compatibility with the component (A) and the component (B), if necessary. Etc.) such as hydroxyethyl (meth) acrylate, hydroxypropyl (meth) acrylate, (meth) acrylic acid and the like may be copolymerized with PMMA blocks and / or PBA blocks. .
 上記アクリルブロック共重合体の数平均分子量は、特に限定されないが、3000~500000が好ましく、より好ましくは10000~300000、さらに好ましくは30000~400000である。数平均分子量が3000未満(特に10000未満)であると、硬化物の強靭性が十分でなく、耐クラック性が低下する場合がある。一方、数平均分子量が500000を超えると、脂環式エポキシ化合物(A)との相溶性が低下し、硬化物の透明性が低下する場合がある。上記数平均分子量は、例えば、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定される標準ポリスチレン換算の分子量より算出することができる。 The number average molecular weight of the acrylic block copolymer is not particularly limited, but is preferably 3000 to 500,000, more preferably 10,000 to 300,000, and still more preferably 30,000 to 400,000. If the number average molecular weight is less than 3000 (particularly less than 10,000), the toughness of the cured product may not be sufficient, and crack resistance may be reduced. On the other hand, when the number average molecular weight exceeds 500,000, the compatibility with the alicyclic epoxy compound (A) is lowered, and the transparency of the cured product may be lowered. The number average molecular weight can be calculated, for example, from a molecular weight in terms of standard polystyrene measured by a gel permeation chromatography method (GPC method).
 上記アクリルブロック共重合体は、公知乃至慣用のブロック共重合体の製造方法により製造することができる。上記アクリルブロック共重合体の製造方法としては、中でも、アクリルブロック共重合体の分子量、分子量分布及び末端構造などを制御のしやすさの観点で、リビング重合(リビングラジカル重合、リビングアニオン重合、リビングカチオン重合など)が好ましい。上記リビング重合は公知乃至慣用の方法により実施可能である。 The acrylic block copolymer can be produced by a known or commonly used block copolymer production method. As the method for producing the acrylic block copolymer, in particular, living polymerization (living radical polymerization, living anion polymerization, living room polymerization, etc., from the viewpoint of easy control of the molecular weight, molecular weight distribution, terminal structure, etc. of the acrylic block copolymer. Cationic polymerization etc.) are preferred. The living polymerization can be carried out by a known or conventional method.
 また、上記アクリルブロック共重合体としては、例えば、商品名「ナノストレングス M52N」、「ナノストレングス M22N」、「ナノストレングス M51」、「ナノストレングス M52」、「ナノストレングス M53」(アルケマ(株)製、PMMA-b-PBA-b-PMMA)、商品名「ナノストレングス E21」、「ナノストレングス E41」(アルケマ(株)製、PSt(ポリスチレン)-b-PBA-b-PMMA)などの市販品を使用することもできる。 Examples of the acrylic block copolymer include, for example, trade names “Nanostrength M52N”, “Nanostrength M22N”, “Nanostrength M51”, “Nanostrength M52”, “Nanostrength M53” (manufactured by Arkema Co., Ltd.) , PMMA-b-PBA-b-PMMA), commercial names such as “NanoStrength E21”, “NanoStrength E41” (manufactured by Arkema Co., Ltd., PSt (polystyrene) -b-PBA-b-PMMA) It can also be used.
 上記アクリルブロック共重合体の使用量(含有量)としては、特に限定されないが、成分(A)及び成分(B)の合計量(100重量部)に対して、1~30重量部が好ましく、より好ましくは3~15重量部、さらに好ましくは5~10重量部である。アクリルブロック共重合体の使用量が1重量部未満であると、硬化物の強靭性が十分でない場合があり、耐熱性、耐光性が低下する場合がある。一方、アクリルブロック共重合体の使用量が30重量部を超えると、脂環式エポキシ化合物(A)との相溶性が低下し、硬化物の透明性が低下する場合がある。 The amount of the acrylic block copolymer used (content) is not particularly limited, but is preferably 1 to 30 parts by weight with respect to the total amount (100 parts by weight) of the component (A) and the component (B). The amount is more preferably 3 to 15 parts by weight, still more preferably 5 to 10 parts by weight. When the usage-amount of an acrylic block copolymer is less than 1 weight part, the toughness of hardened | cured material may not be enough, and heat resistance and light resistance may fall. On the other hand, when the usage-amount of an acrylic block copolymer exceeds 30 weight part, compatibility with an alicyclic epoxy compound (A) may fall, and transparency of hardened | cured material may fall.
 <ゴム粒子>
 本発明の硬化性エポキシ樹脂組成物は、さらに、ゴム粒子を含んでいてもよい。上記ゴム粒子としては、例えば、粒子状NBR(アクリロニトリル-ブタジエンゴム)、反応性末端カルボキシル基NBR(CTBN)、メタルフリーNBR、粒子状SBR(スチレン-ブタジエンゴム)などのゴム粒子が挙げられる。上記ゴム粒子としては、ゴム弾性を有するコア部分と、該コア部分を被覆する少なくとも1層のシェル層とからなる多層構造(コアシェル構造)を有するゴム粒子が好ましい。上記ゴム粒子は、特に、(メタ)アクリル酸エステルを必須モノマー成分とするポリマー(重合体)で構成されており、表面に脂環式エポキシ樹脂(A)などのエポキシ基を有する化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基(ヒドロキシル基及びカルボキシル基のいずれか一方又は両方)を有するゴム粒子が好ましい。上記ゴム粒子の表面にヒドロキシル基及び/又はカルボキシル基が存在しない場合、冷熱サイクル等の熱衝撃により硬化物が白濁して透明性が低下するため好ましくない。
<Rubber particles>
The curable epoxy resin composition of the present invention may further contain rubber particles. Examples of the rubber particles include rubber particles such as particulate NBR (acrylonitrile-butadiene rubber), reactive terminal carboxyl group NBR (CTBN), metal-free NBR, and particulate SBR (styrene-butadiene rubber). The rubber particles are preferably rubber particles having a multilayer structure (core-shell structure) composed of a core portion having rubber elasticity and at least one shell layer covering the core portion. The rubber particles are particularly composed of a polymer (polymer) having (meth) acrylic acid ester as an essential monomer component, and react with a compound having an epoxy group such as an alicyclic epoxy resin (A) on the surface. Rubber particles having a hydroxyl group and / or a carboxyl group (either one or both of a hydroxyl group and a carboxyl group) as the functional group to be obtained are preferred. When there is no hydroxyl group and / or carboxyl group on the surface of the rubber particles, the cured product becomes clouded by a thermal shock such as a cold cycle and the transparency is lowered, which is not preferable.
 上記ゴム粒子におけるゴム弾性を有するコア部分を構成するポリマーは、特に限定されないが、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須のモノマー成分とすることが好ましい。上記ゴム弾性を有するコア部分を構成するポリマーは、その他、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル;アクリロニトリル、メタクリロニトリルなどのニトリル;ブタジエン、イソプレンなどの共役ジエン;エチレン、プロピレン、イソブテンなどのオレフィンなどをモノマー成分として含んでいてもよい。 The polymer constituting the core portion having rubber elasticity in the rubber particles is not particularly limited, but (meth) acrylic acid esters such as methyl (meth) acrylate, ethyl (meth) acrylate, and butyl (meth) acrylate are used. The essential monomer component is preferred. The polymer constituting the core portion having rubber elasticity includes, for example, aromatic vinyl such as styrene and α-methylstyrene; nitrile such as acrylonitrile and methacrylonitrile; conjugated diene such as butadiene and isoprene; ethylene, propylene, Olefin such as isobutene may be included as a monomer component.
 中でも、上記ゴム弾性を有するコア部分を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、芳香族ビニル、ニトリル、及び共役ジエンからなる群より選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、上記コア部分を構成するポリマーとしては、例えば、(メタ)アクリル酸エステル/芳香族ビニル、(メタ)アクリル酸エステル/共役ジエン等の二元共重合体;(メタ)アクリル酸エステル/芳香族ビニル/共役ジエン等の三元共重合体などが挙げられる。なお、上記コア部分を構成するポリマーには、ポリジメチルシロキサンやポリフェニルメチルシロキサンなどのシリコーンやポリウレタン等が含まれていてもよい。 Especially, the polymer which comprises the said core part which has the rubber elasticity contains 1 type, or 2 or more types selected from the group which consists of aromatic vinyl, a nitrile, and a conjugated diene with a (meth) acrylic acid ester as a monomer component. It is preferable to include it in combination. That is, as the polymer constituting the core part, for example, (meth) acrylic acid ester / aromatic vinyl, (meth) acrylic acid ester / conjugated diene and other binary copolymers; (meth) acrylic acid ester / aromatic And terpolymers such as group vinyl / conjugated dienes. The polymer constituting the core part may contain silicone such as polydimethylsiloxane and polyphenylmethylsiloxane, polyurethane, and the like.
 上記コア部分を構成するポリマーは、その他のモノマー成分として、ジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどの1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 The polymer constituting the core part includes, as other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, triallyl cyanurate, diallyl phthalate, butylene glycol diacrylate, etc. One monomer (one molecule) may contain a reactive crosslinking monomer having two or more reactive functional groups.
 上記ゴム粒子のコア部分は、中でも、(メタ)アクリル酸エステル/芳香族ビニルの二元共重合体(特に、アクリル酸ブチル/スチレン)より構成されたコア部分であることが、ゴム粒子の屈折率を容易に調整できる点で好ましい。 The core part of the rubber particles is a core part composed of a (meth) acrylic ester / aromatic vinyl binary copolymer (particularly butyl acrylate / styrene). It is preferable in that the rate can be easily adjusted.
 上記ゴム粒子のコア部分は、通常用いられる方法で製造することができ、例えば、上記モノマーを乳化重合法により重合する方法などにより製造することができる。乳化重合法においては、上記モノマーの全量を一括して仕込んで重合してもよく、上記モノマーの一部を重合した後、残りを連続的に又は断続的に添加して重合してもよく、さらに、シード粒子を使用する重合方法を使用してもよい。 The core portion of the rubber particles can be manufactured by a commonly used method, for example, by a method of polymerizing the monomer by an emulsion polymerization method. In the emulsion polymerization method, the whole amount of the monomer may be charged at once and may be polymerized, or after polymerizing a part of the monomer, the remainder may be added continuously or intermittently to polymerize, Furthermore, a polymerization method using seed particles may be used.
 上記ゴム粒子のシェル層を構成するポリマーは、上記コア部分を構成するポリマーとは異種のポリマーであることが好ましい。また、上述のように、上記シェル層は、脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてヒドロキシル基及び/又はカルボキシル基を有することが好ましい。これにより、特に、脂環式エポキシ化合物(A)との界面で接着性を向上させることができ、該シェル層を有するゴム粒子を含む硬化性エポキシ樹脂組成物を硬化させた硬化物に対して、優れた耐クラック性を発揮させることができる。また、硬化物のガラス転移温度の低下を防止することもできる。 The polymer constituting the shell layer of the rubber particles is preferably a polymer different from the polymer constituting the core portion. In addition, as described above, the shell layer preferably has a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as the alicyclic epoxy compound (A). Thereby, especially with respect to the hardened | cured material which can improve adhesiveness in an interface with an alicyclic epoxy compound (A), and hardened | cured the curable epoxy resin composition containing the rubber particle which has this shell layer. , Excellent crack resistance can be exhibited. Moreover, the fall of the glass transition temperature of hardened | cured material can also be prevented.
 上記シェル層を構成するポリマーは、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸ブチルなどの(メタ)アクリル酸エステルを必須のモノマー成分として含むことが好ましい。例えば、上記コア部分における(メタ)アクリル酸エステルとしてアクリル酸ブチルを用いた場合、シェル層を構成するポリマーのモノマー成分として、アクリル酸ブチル以外の(メタ)アクリル酸エステル(例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、メタクリル酸ブチルなど)を使用することが好ましい。(メタ)アクリル酸エステル以外に含んでいてもよいモノマー成分としては、例えば、スチレン、α-メチルスチレンなどの芳香族ビニル、アクリロニトリル、メタクリロニトリルなどのニトリルなどが挙げられる。上記ゴム粒子においては、シェル層を構成するモノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーを単独で、又は2種以上を組み合わせて含むことが好ましく、特に、少なくとも芳香族ビニルを含むことが、上記ゴム粒子の屈折率を容易に調整できる点で好ましい。 The polymer constituting the shell layer preferably contains a (meth) acrylate ester such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate as an essential monomer component. For example, when butyl acrylate is used as the (meth) acrylic acid ester in the core part, (meth) acrylic acid esters other than butyl acrylate (for example, (meth) acrylic) It is preferable to use methyl acid, ethyl (meth) acrylate, butyl methacrylate and the like. Examples of the monomer component that may be contained in addition to the (meth) acrylic acid ester include aromatic vinyl such as styrene and α-methylstyrene, and nitrile such as acrylonitrile and methacrylonitrile. In the rubber particles, as a monomer component constituting the shell layer, it is preferable to contain the monomer alone or in combination of two or more, together with (meth) acrylic acid ester, and particularly at least aromatic vinyl. Is preferable in that the refractive index of the rubber particles can be easily adjusted.
 さらに、上記シェル層を構成するポリマーは、モノマー成分として、脂環式エポキシ化合物(A)などのエポキシ基を有する化合物と反応し得る官能基としてのヒドロキシル基及び/又はカルボキシル基を形成するために、2-ヒドロキシエチル(メタ)アクリレートなどのヒドロキシアルキル(メタ)アクリレートや、(メタ)アクリル酸などのα,β-不飽和酸、マレイン酸無水物などのα,β-不飽和酸無水物などのモノマーを含有することが好ましい。 Further, the polymer constituting the shell layer forms a hydroxyl group and / or a carboxyl group as a functional group capable of reacting with a compound having an epoxy group such as an alicyclic epoxy compound (A) as a monomer component. , Hydroxyalkyl (meth) acrylates such as 2-hydroxyethyl (meth) acrylate, α, β-unsaturated acids such as (meth) acrylic acid, α, β-unsaturated acid anhydrides such as maleic anhydride, etc. It is preferable to contain the monomer.
 上記ゴム粒子におけるシェル層を構成するポリマーは、モノマー成分として、(メタ)アクリル酸エステルと共に、上記モノマーから選択された1種又は2種以上を組み合わせて含むことが好ましい。即ち、上記シェル層は、例えば、(メタ)アクリル酸エステル/芳香族ビニル/ヒドロキシアルキル(メタ)アクリレート、(メタ)アクリル酸エステル/芳香族ビニル/α,β-不飽和酸等の三元共重合体などから構成されたシェル層であることが好ましい。 The polymer constituting the shell layer in the rubber particles preferably contains one or more selected from the above monomers in combination with (meth) acrylic acid ester as a monomer component. That is, the shell layer is composed of, for example, a ternary copolymer such as (meth) acrylic acid ester / aromatic vinyl / hydroxyalkyl (meth) acrylate, (meth) acrylic acid ester / aromatic vinyl / α, β-unsaturated acid. A shell layer composed of a polymer or the like is preferable.
 また、上記シェル層を構成するポリマーは、その他のモノマー成分として、コア部分と同様に、上記モノマーの他にジビニルベンゼン、アリル(メタ)アクリレート、エチレングリコールジ(メタ)アクリレート、ジアリルマレエート、トリアリルシアヌレート、ジアリルフタレート、ブチレングリコールジアクリレートなどの1モノマー(1分子)中に2以上の反応性官能基を有する反応性架橋モノマーを含有していてもよい。 Further, the polymer constituting the shell layer includes, as the other monomer components, divinylbenzene, allyl (meth) acrylate, ethylene glycol di (meth) acrylate, diallyl maleate, trimethyl, as well as the above-described monomer. A reactive crosslinking monomer having two or more reactive functional groups may be contained in one monomer (one molecule) such as allyl cyanurate, diallyl phthalate, or butylene glycol diacrylate.
 上記ゴム粒子(コアシェル構造を有するゴム粒子)は、上記コア部分をシェル層により被覆することで得られる。上記コア部分をシェル層で被覆する方法としては、例えば、上記方法により得られたゴム弾性を有するコア部分の表面に、シェル層を構成する共重合体を塗布することにより被覆する方法、上記方法により得られたゴム弾性を有するコア部分を幹成分とし、シェル層を構成する各成分を枝成分としてグラフト重合する方法などを挙げることができる。 The rubber particles (rubber particles having a core-shell structure) can be obtained by covering the core portion with a shell layer. Examples of the method of coating the core part with a shell layer include a method of coating the surface of the core part having rubber elasticity obtained by the above method by applying a copolymer constituting the shell layer, and the above method Examples thereof include a graft polymerization method in which the core portion having rubber elasticity obtained by the above is used as a trunk component, and each component constituting the shell layer is used as a branch component.
 上記ゴム粒子の平均粒子径は、特に限定されないが、10~500nmが好ましく、より好ましくは20~400nmである。また、上記ゴム粒子の最大粒子径は、特に限定されないが、50~1000nmが好ましく、より好ましくは100~800nmである。平均粒子径が500nmを上回ると、又は、最大粒子径が1000nmを上回ると、硬化物におけるゴム粒子の分散性が低下し、耐クラック性が低下する場合がある。一方、平均粒子径が10nmを下回ると、又は、最大粒子径が50nmを下回ると、硬化物の耐クラック性向上の効果が得られにくくなる場合がある。 The average particle diameter of the rubber particles is not particularly limited, but is preferably 10 to 500 nm, more preferably 20 to 400 nm. The maximum particle size of the rubber particles is not particularly limited, but is preferably 50 to 1000 nm, more preferably 100 to 800 nm. If the average particle diameter exceeds 500 nm or the maximum particle diameter exceeds 1000 nm, the dispersibility of the rubber particles in the cured product may be reduced, and crack resistance may be reduced. On the other hand, if the average particle size is less than 10 nm or the maximum particle size is less than 50 nm, the effect of improving the crack resistance of the cured product may be difficult to obtain.
 上記ゴム粒子の屈折率は、特に限定されないが、1.40~1.60が好ましく、より好ましくは1.42~1.58である。また、ゴム粒子の屈折率と、該ゴム粒子を含む硬化性エポキシ樹脂組成物(本発明の硬化性エポキシ樹脂組成物)を硬化して得られる硬化物の屈折率との差は、±0.03以内(-0.03~0.03)であることが好ましい。上記屈折率の差が±0.03を上回ると、硬化物の透明性が低下し、時には白濁して、光半導体装置の光度が低下する傾向があり、光半導体装置の機能を消失させてしまう場合がある。 The refractive index of the rubber particles is not particularly limited, but is preferably 1.40 to 1.60, more preferably 1.42 to 1.58. The difference between the refractive index of the rubber particles and the refractive index of the cured product obtained by curing the curable epoxy resin composition (the curable epoxy resin composition of the present invention) containing the rubber particles is ± 0.00. It is preferably within 03 (−0.03 to 0.03). When the difference in refractive index exceeds ± 0.03, the transparency of the cured product decreases, sometimes it becomes cloudy, and the light intensity of the optical semiconductor device tends to decrease, thereby losing the function of the optical semiconductor device. There is a case.
 ゴム粒子の屈折率は、例えば、ゴム粒子1gを型に注型して210℃、4MPaで圧縮成形し、厚さ1mmの平板を得、得られた平板から、縦20mm×横6mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。 The refractive index of the rubber particles is, for example, by casting 1 g of rubber particles into a mold and compression molding at 210 ° C. and 4 MPa to obtain a flat plate having a thickness of 1 mm. From the obtained flat plate, a test piece having a length of 20 mm × width of 6 mm And using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) in a state where the prism and the test piece are in close contact using monobromonaphthalene as an intermediate solution, It can be determined by measuring the refractive index at 20 ° C. and sodium D line.
 本発明の硬化性エポキシ樹脂組成物の硬化物の屈折率は、例えば、下記の光半導体装置の項に記載の加熱硬化方法により得られた硬化物から、縦20mm×横6mm×厚さ1mmの試験片を切り出し、中間液としてモノブロモナフタレンを使用してプリズムと該試験片とを密着させた状態で、多波長アッベ屈折計(商品名「DR-M2」、(株)アタゴ製)を使用し、20℃、ナトリウムD線での屈折率を測定することにより求めることができる。 The refractive index of the cured product of the curable epoxy resin composition of the present invention is, for example, 20 mm long × 6 mm wide × 1 mm thick from a cured product obtained by the heat curing method described in the section of the optical semiconductor device below. Using a multi-wavelength Abbe refractometer (trade name “DR-M2”, manufactured by Atago Co., Ltd.) with the test piece cut out and the prism and the test piece in close contact using monobromonaphthalene as an intermediate solution And it can obtain | require by measuring the refractive index in 20 degreeC and a sodium D line | wire.
 本発明の硬化性エポキシ樹脂組成物における上記ゴム粒子の含有量(配合量)は、特に限定されないが、硬化性エポキシ樹脂組成物中に含まれるエポキシ基を有する化合物の全量(100重量部)に対して、0.5~30重量部が好ましく、より好ましくは1~20重量部である。ゴム粒子の含有量が0.5重量部を下回ると、硬化物の耐クラック性が低下する傾向がある。一方、ゴム粒子の含有量が30重量部を上回ると、硬化物の耐熱性が低下する傾向がある。 The content (blending amount) of the rubber particles in the curable epoxy resin composition of the present invention is not particularly limited, but the total amount (100 parts by weight) of the compound having an epoxy group contained in the curable epoxy resin composition. On the other hand, the amount is preferably 0.5 to 30 parts by weight, more preferably 1 to 20 parts by weight. When the content of the rubber particles is less than 0.5 parts by weight, the crack resistance of the cured product tends to decrease. On the other hand, when the content of the rubber particles exceeds 30 parts by weight, the heat resistance of the cured product tends to decrease.
 <添加剤>
 本発明の硬化性エポキシ樹脂組成物には、上記以外にも、本発明の効果を損なわない範囲内で各種添加剤を使用することができる。添加剤として、例えば、エチレングリコール、ジエチレングリコール、プロピレングリコール、グリセリンなどの水酸基を有する化合物を使用すると、反応を緩やかに進行させることができる。その他にも、粘度や透明性を損なわない範囲内で、シリコーン系やフッ素系消泡剤、レベリング剤、γ-グリシドキシプロピルトリメトキシシランなどのシランカップリング剤、界面活性剤、シリカ、アルミナなどの無機充填剤、難燃剤、着色剤、酸化防止剤、紫外線吸収剤、イオン吸着体、顔料、蛍光体、離型剤などの慣用の添加剤を使用することができる。
<Additives>
In addition to the above, various additives can be used in the curable epoxy resin composition of the present invention as long as the effects of the present invention are not impaired. For example, when a compound having a hydroxyl group such as ethylene glycol, diethylene glycol, propylene glycol, or glycerin is used as the additive, the reaction can be allowed to proceed slowly. In addition, silicone and fluorine antifoaming agents, leveling agents, silane coupling agents such as γ-glycidoxypropyltrimethoxysilane, surfactants, silica, alumina, as long as viscosity and transparency are not impaired. Conventional additives such as inorganic fillers, flame retardants, colorants, antioxidants, ultraviolet absorbers, ion adsorbents, pigments, phosphors, mold release agents and the like can be used.
 <硬化物>
 本発明の硬化性エポキシ樹脂組成物を硬化させることにより、耐熱性、耐光性、透明性、及び耐クラック性などの諸物性に優れ、さらに、耐リフロー性にも優れた硬化物を得ることができる。硬化の際の加熱温度(硬化温度)としては、特に限定されないが、45~200℃が好ましく、より好ましくは100~190℃、さらに好ましくは100~180℃である。また、硬化の際に加熱する時間(硬化時間)としては、特に限定されないが、30~600分が好ましく、より好ましくは45~540分、さらに好ましくは60~480分である。硬化温度と硬化時間が上記範囲の下限値より低い場合は、硬化が不十分となり、逆に上記範囲の上限値より高い場合は、樹脂成分の分解が起きる場合があるので、何れも好ましくない。硬化条件は種々の条件に依存するが、硬化温度が高い場合は硬化時間を短くし、硬化温度が低い場合は硬化時間を長くする等により、適宜調整することができる。
<Hardened product>
By curing the curable epoxy resin composition of the present invention, it is possible to obtain a cured product having excellent physical properties such as heat resistance, light resistance, transparency, and crack resistance, and also excellent reflow resistance. it can. The heating temperature (curing temperature) at the time of curing is not particularly limited, but is preferably 45 to 200 ° C, more preferably 100 to 190 ° C, still more preferably 100 to 180 ° C. Further, the heating time (curing time) for curing is not particularly limited, but is preferably 30 to 600 minutes, more preferably 45 to 540 minutes, and further preferably 60 to 480 minutes. When the curing temperature and the curing time are lower than the lower limit value in the above range, curing is insufficient. On the contrary, when the curing temperature and the curing time are higher than the upper limit value in the above range, the resin component may be decomposed. The curing conditions depend on various conditions, but can be appropriately adjusted by shortening the curing time when the curing temperature is high, and increasing the curing time when the curing temperature is low.
 <光半導体封止用樹脂組成物>
 本発明の光半導体封止用樹脂組成物は、本発明の硬化性エポキシ樹脂組成物からなる。本発明の光半導体封止用樹脂組成物を用いて光半導体素子を封止することにより、耐熱性、耐光性、透明性、及び耐クラック性などの諸物性に優れ、さらに、耐リフロー性にも優れた硬化物により光半導体素子が封止された光半導体装置が得られる。
<Resin composition for optical semiconductor encapsulation>
The resin composition for optical semiconductor encapsulation of the present invention comprises the curable epoxy resin composition of the present invention. By sealing an optical semiconductor element using the resin composition for optical semiconductor encapsulation of the present invention, it is excellent in various physical properties such as heat resistance, light resistance, transparency, and crack resistance, and further in reflow resistance. In addition, an optical semiconductor device in which the optical semiconductor element is sealed with an excellent cured product can be obtained.
 <光半導体装置>
 本発明の光半導体装置は、本発明の硬化性エポキシ樹脂組成物(光半導体封止用樹脂組成物)で光半導体素子を封止することにより得られる。光半導体素子の封止は、上述の方法で調製された硬化性エポキシ樹脂組成物を所定の成形型内に注入し、所定の条件で加熱硬化して行う。これにより、硬化性エポキシ樹脂組成物によって光半導体素子が封止されてなる光半導体装置が得られる。硬化温度と硬化時間は、上記と同様にすることができる。本発明の光半導体装置は、リフロー工程での加熱処理により劣化しにくく、光度が経時で低下しにくい。
<Optical semiconductor device>
The optical semiconductor device of the present invention is obtained by sealing an optical semiconductor element with the curable epoxy resin composition (resin composition for optical semiconductor sealing) of the present invention. The optical semiconductor element is sealed by injecting the curable epoxy resin composition prepared by the above-described method into a predetermined mold and heating and curing under predetermined conditions. Thereby, an optical semiconductor device in which the optical semiconductor element is sealed with the curable epoxy resin composition is obtained. The curing temperature and the curing time can be the same as described above. The optical semiconductor device of the present invention is less likely to be deteriorated by heat treatment in the reflow process, and the light intensity is less likely to decrease with time.
 一般的に、光半導体装置においては、図1に示すように、光半導体素子102がダイボンド材105によりリードフレームに固定されている。本発明者らは、光半導体装置におけるダイボンド材を最適化することによっても、耐リフロー性を向上させることができることを見出した。より詳しくは、光半導体装置をリフロー工程にて加熱処理した場合に、封止樹脂の体積変化により生じる応力によって、光半導体素子がリードフレームから剥離しないようなダイボンド材(接着性・耐久性の高いダイボンド材)を選択することが重要である。光半導体素子がリードフレームから剥離した場合には、該半導体素子周辺の封止樹脂の剥離やクラックが発生しやすく、リフロー工程での加熱処理による光半導体装置の劣化が顕著となるためである。従って、耐リフロー性を向上させ、リフロー工程での加熱処理による光半導体装置の劣化を防止するためには、封止樹脂(封止用樹脂)として本発明の硬化性エポキシ樹脂組成物を用い、かつ、ダイボンド材として上述の接着性・耐久性の高いものを用いることが有効である。上記ダイボンド材としては、例えば、ポリイミド樹脂、エポキシ樹脂、シリコーン樹脂等のベースポリマーに、導電性粒子等(例えば、銀粒子など)を含有させたダイボンド材などが挙げられる。このようなダイボンド材としては、例えば、KER-3000 M2、KER-3100 O2、KER-3100(信越化学工業(株)製)、EH1600-G2(稲畑産業(株)製)、CT200、CT284、CT265(京セラケミカル(株)製)などが挙げられる。 Generally, in an optical semiconductor device, an optical semiconductor element 102 is fixed to a lead frame by a die bond material 105 as shown in FIG. The present inventors have found that the reflow resistance can also be improved by optimizing the die bond material in the optical semiconductor device. More specifically, when the optical semiconductor device is heat-treated in the reflow process, a die bond material (high adhesiveness / durability) that prevents the optical semiconductor element from being peeled off from the lead frame due to stress caused by the volume change of the sealing resin. It is important to select a die bond material. This is because when the optical semiconductor element is peeled from the lead frame, the sealing resin around the semiconductor element is easily peeled or cracked, and the optical semiconductor device is significantly deteriorated due to the heat treatment in the reflow process. Therefore, in order to improve the reflow resistance and prevent deterioration of the optical semiconductor device due to the heat treatment in the reflow process, the curable epoxy resin composition of the present invention is used as a sealing resin (sealing resin), In addition, it is effective to use the above-described high adhesiveness / durability as the die bond material. Examples of the die bond material include a die bond material in which conductive particles or the like (eg, silver particles) are contained in a base polymer such as a polyimide resin, an epoxy resin, or a silicone resin. Examples of such a die bond material include KER-3000 M2, KER-3100 O2, KER-3100 (manufactured by Shin-Etsu Chemical Co., Ltd.), EH1600-G2 (manufactured by Inabata Sangyo Co., Ltd.), CT200, CT284, CT265. (Made by Kyocera Chemical Co., Ltd.).
 本発明の硬化性エポキシ樹脂組成物は、上記の光半導体封止用途に限定されず、例えば、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリなどとしても利用することができる。 The curable epoxy resin composition of the present invention is not limited to the above-described optical semiconductor sealing application, and includes, for example, an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, and a transparent base. It can also be used as a material, transparent sheet, transparent film, optical element, optical lens, optical member, optical modeling, electronic paper, touch panel, solar cell substrate, optical waveguide, light guide plate, holographic memory, and the like.
 以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例により限定されるものではない。 Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples.
 製造例1
(ゴム粒子の製造)
 還流冷却器付きの1L重合容器に、イオン交換水500g、及びジオクチルスルホコハク酸ナトリウム0.68gを仕込み、窒素気流下に撹拌しながら、80℃に昇温した。ここに、コア部分を形成するために必要とする量の約5重量%分に該当するアクリル酸ブチル9.5g、スチレン2.57g、及びジビニルベンゼン0.39gからなる単量体混合物を一括添加し、20分間撹拌して乳化させた後、ペルオキソ二硫酸カリウム9.5mgを添加し、1時間撹拌して最初のシード重合を行った。続いて、ペルオキソ二硫酸カリウム180.5mgを添加し、5分間撹拌した。ここに、コア部分を形成するために必要とする量の残り(約95重量%分)のアクリル酸ブチル180.5g、スチレン48.89g、ジビニルベンゼン7.33gにジオクチルスルホコハク酸ナトリウム0.95gを溶解させてなる単量体混合物を2時間かけて連続的に添加し、2度目のシード重合を行い、その後、1時間熟成してコア部分を得た。
 次いで、ペルオキソ二硫酸カリウム60mgを添加して5分間撹拌し、ここに、メタクリル酸メチル60g、アクリル酸1.5g、及びアリルメタクリレート0.3gにジオクチルスルホコハク酸ナトリウム0.3gを溶解させてなる単量体混合物を30分かけて連続的に添加し、シード重合を行った。その後、1時間熟成し、コア部分を被覆するシェル層を形成した。
 次いで、室温(25℃)まで冷却し、目開き120μmのプラスチック製網で濾過することにより、コアシェル構造を有するゴム粒子を含むラテックスを得た。得られたラテックスをマイナス30℃で凍結し、吸引濾過器で脱水洗浄した後、60℃で一昼夜送風乾燥してゴム粒子を得た。得られたゴム粒子の平均粒子径は254nm、最大粒子径は486nmであった。
Production Example 1
(Manufacture of rubber particles)
In a 1 L polymerization vessel equipped with a reflux condenser, 500 g of ion-exchanged water and 0.68 g of sodium dioctylsulfosuccinate were charged, and the temperature was raised to 80 ° C. while stirring under a nitrogen stream. A monomer mixture consisting of 9.5 g of butyl acrylate, 2.57 g of styrene, and 0.39 g of divinylbenzene corresponding to about 5% by weight of the amount required to form the core portion is added here. After stirring for 20 minutes to emulsify, 9.5 mg of potassium peroxodisulfate was added and stirred for 1 hour for initial seed polymerization. Subsequently, 180.5 mg of potassium peroxodisulfate was added and stirred for 5 minutes. Here, the remaining amount (about 95% by weight) of butyl acrylate 180.5 g, styrene 48.89 g, divinylbenzene 7.33 g and 0.95 g of sodium dioctyl sulfosuccinate were added to form the core part. The dissolved monomer mixture was continuously added over 2 hours to perform the second seed polymerization, and then aged for 1 hour to obtain a core part.
Next, 60 mg of potassium peroxodisulfate was added and stirred for 5 minutes. Here, 0.3 g of sodium dioctylsulfosuccinate was dissolved in 60 g of methyl methacrylate, 1.5 g of acrylic acid and 0.3 g of allyl methacrylate. The monomer mixture was continuously added over 30 minutes to perform seed polymerization. Then, it aged for 1 hour and formed the shell layer which coat | covers a core part.
Next, the mixture was cooled to room temperature (25 ° C.) and filtered through a plastic mesh having an opening of 120 μm to obtain a latex containing rubber particles having a core-shell structure. The obtained latex was frozen at −30 ° C., dehydrated and washed with a suction filter, and then blown and dried at 60 ° C. overnight to obtain rubber particles. The resulting rubber particles had an average particle size of 254 nm and a maximum particle size of 486 nm.
 なお、ゴム粒子の平均粒子径、最大粒子径は、動的光散乱法を測定原理とした「NanotracTM」形式のナノトラック粒度分布測定装置(商品名「UPA-EX150」、日機装(株)製)を使用して試料を測定し、得られた粒度分布曲線において、累積カーブが50%となる時点の粒子径である累積平均径を平均粒子径、粒度分布測定結果の頻度(%)が0.00%を超えた時点の最大の粒子径を最大粒子径とした。なお、上記試料としては、下記製造例2で得られたゴム粒子分散エポキシ化合物1重量部をテトラヒドロフラン20重量部に分散させたものを用いた。 The average particle size and the maximum particle size of the rubber particles are determined based on a nanotrac particle size distribution measuring device (trade name “UPA-EX150”, manufactured by Nikkiso Co., Ltd.) using the dynamic light scattering method as a measurement principle. ) Was used to measure the sample, and in the obtained particle size distribution curve, the average particle size, which is the particle size when the cumulative curve becomes 50%, is the average particle size, and the frequency (%) of the particle size distribution measurement result is 0 The maximum particle size at the time of exceeding 0.000 was defined as the maximum particle size. In addition, as said sample, what disperse | distributed 1 weight part of rubber particle dispersion | distribution epoxy compounds obtained by the following manufacture example 2 to 20 weight part of tetrahydrofuran was used.
 製造例2
(ゴム粒子分散エポキシ化合物の製造)
 製造例1で得られたゴム粒子10重量部を、窒素気流下、60℃に加温した状態でディゾルバー(1000rpm、60分間)を使用して、商品名「セロキサイド2021P」(3,4-エポキシシクロヘキシルメチル(3,4-エポキシ)シクロヘキサンカルボキシレート、(株)ダイセル製)70重量部に分散させ、真空脱泡して、ゴム粒子分散エポキシ化合物(25℃での粘度:624mPa・s)を得た。
 なお、製造例2で得られたゴム粒子分散エポキシ化合物(10重量部のゴム粒子を70重量部のセロキサイド2021Pに分散させたもの)の粘度(25℃における粘度)は、デジタル粘度計(商品名「DVU-EII型」、(株)トキメック製)を使用して測定した。
Production Example 2
(Manufacture of rubber particle-dispersed epoxy compounds)
Using a dissolver (1000 rpm, 60 minutes) with 10 parts by weight of the rubber particles obtained in Production Example 1 heated to 60 ° C. under a nitrogen stream, the product name “Celoxide 2021P” (3,4-epoxy) Disperse in 70 parts by weight of cyclohexylmethyl (3,4-epoxy) cyclohexanecarboxylate (manufactured by Daicel Corp.) and vacuum deaerate to obtain a rubber particle-dispersed epoxy compound (viscosity at 25 ° C .: 624 mPa · s). It was.
The viscosity (viscosity at 25 ° C.) of the rubber particle-dispersed epoxy compound obtained in Production Example 2 (10 parts by weight of rubber particles dispersed in 70 parts by weight of celoxide 2021P) is a digital viscometer (trade name) “DVU-EII type” (manufactured by Tokimec Co., Ltd.).
 製造例3
(エポキシ樹脂の製造:実施例1~7、比較例2、3)
 モノアリジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物(商品名「セロキサイド2021P」、(株)ダイセル製)、製造例2で得られたゴム粒子分散エポキシ樹脂、ビスフェノールA型エポキシ樹脂(商品名「YD-128」、新日鐵化学(株)製)を、表1に示す配合処方(配合割合)(単位:重量部)に従って混合し、80℃で1時間攪拌することでモノアリルジグリシジルイソシアヌレートを溶解させ、次にポリカーボネートジオール(商品名「CD220PL」、(株)ダイセル製)を表1に示す配合処方(単位:重量部)に従って混合し、60℃で1時間攪拌することでエポキシ樹脂(混合物)を得た。なお、表1における「-」は、当該成分の配合を行わなかったことを示し、表2、表3においても同様である。
Production Example 3
(Production of epoxy resin: Examples 1 to 7, Comparative Examples 2 and 3)
Monoaridiglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound (trade name “Celoxide 2021P”, manufactured by Daicel Corporation), obtained in Production Example 2 A rubber particle-dispersed epoxy resin and a bisphenol A type epoxy resin (trade name “YD-128”, manufactured by Nippon Steel Chemical Co., Ltd.) are mixed according to the formulation (mixing ratio) (unit: parts by weight) shown in Table 1. Then, monoallyl diglycidyl isocyanurate is dissolved by stirring at 80 ° C. for 1 hour, and then a polycarbonate diol (trade name “CD220PL”, manufactured by Daicel Corporation) is blended as shown in Table 1 (unit: parts by weight) Was mixed at 60 ° C. for 1 hour to obtain an epoxy resin (mixture). “-” In Table 1 indicates that the component was not blended, and the same applies to Tables 2 and 3.
 製造例4
(硬化剤を少なくとも含む硬化剤組成物の製造:実施例1~7、比較例1~3)
 硬化剤(酸無水物)(商品名「リカシッド MH-700」、新日本理化(株)製)100重量部、硬化促進剤(商品名「U-CAT 18X」、サンアプロ(株)製)0.5重量部、添加剤(商品名「エチレングリコール」、和光純薬工業(株)製)1重量部を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して硬化剤組成物を得た。
Production Example 4
(Production of curing agent composition containing at least curing agent: Examples 1 to 7, Comparative Examples 1 to 3)
Curing agent (acid anhydride) (trade name “Licacid MH-700”, manufactured by Shin Nippon Rika Co., Ltd.) 100 parts by weight, curing accelerator (trade name “U-CAT 18X”, manufactured by San Apro Co., Ltd.) 5 parts by weight, 1 part by weight of additives (trade name “ethylene glycol”, manufactured by Wako Pure Chemical Industries, Ltd.), self-revolving stirrer (trade name “Awatori Netaro AR-250”, Shinki Co., Ltd.) The mixture was uniformly mixed and defoamed to obtain a curing agent composition.
 実施例1~7、比較例1~3
(硬化性エポキシ樹脂組成物の製造)
 表1に示す配合割合(単位:重量部)となるように、製造例3で得られたエポキシ樹脂、製造例4で得られた硬化剤組成物を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して硬化性エポキシ樹脂組成物を得た。なお、比較例1の場合には、エポキシ樹脂として、商品名「セロキサイド2021P」((株)ダイセル製)を使用した。
Examples 1 to 7, Comparative Examples 1 to 3
(Manufacture of curable epoxy resin composition)
The epoxy resin obtained in Production Example 3 and the curing agent composition obtained in Production Example 4 were mixed with a self-revolving stirrer (trade name “Awa” so as to have the blending ratio (unit: parts by weight) shown in Table 1. Tori Netaro AR-250 "(manufactured by Shinky Co., Ltd.) was mixed uniformly and defoamed to obtain a curable epoxy resin composition. In the case of Comparative Example 1, the trade name “Celoxide 2021P” (manufactured by Daicel Corporation) was used as the epoxy resin.
(光半導体装置の製造)
 上記で得た硬化性エポキシ樹脂組成物を、図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱し、硬化した樹脂(硬化物)で光半導体素子を封止した光半導体装置を得た。なお、図1において、100はリフレクター(光反射用樹脂組成物)、101は金属配線、102は光半導体素子、103はボンディングワイヤ、104は透明封止樹脂(硬化物)、105はダイボンド材を示す。
(Manufacture of optical semiconductor devices)
The curable epoxy resin composition obtained above is cast into a lead frame (InGaN element, 3.5 mm × 2.8 mm) of an optical semiconductor shown in FIG. 1, and then 5 in a 120 ° C. oven (resin curing oven). An optical semiconductor device in which the optical semiconductor element was sealed with a cured resin (cured product) heated for a time was obtained. In FIG. 1, 100 is a reflector (light reflecting resin composition), 101 is a metal wiring, 102 is an optical semiconductor element, 103 is a bonding wire, 104 is a transparent sealing resin (cured product), and 105 is a die bond material. Show.
 製造例5
(エポキシ樹脂の製造:実施例8~14、比較例5、6)
 モノアリジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物(商品名「セロキサイド2021P」、(株)ダイセル製)、製造例2で得られたゴム粒子分散エポキシ樹脂、ビスフェノールA型エポキシ樹脂(商品名「YD-128」、新日鐵化学(株)製)を、表2に示す配合処方(配合割合)(単位:重量部)に従って混合し、80℃で1時間攪拌することでモノアリルジグリシジルイソシアヌレートを溶解させ、次にポリカーボネートジオール(商品名「CD220PL」、(株)ダイセル製)を表2に示す配合処方(単位:重量部)に従って混合し、60℃で1時間攪拌することでエポキシ樹脂(混合物)を得た。
Production Example 5
(Production of epoxy resin: Examples 8 to 14, Comparative Examples 5 and 6)
Monoaridiglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Kasei Kogyo Co., Ltd.), alicyclic epoxy compound (trade name “Celoxide 2021P”, manufactured by Daicel Corporation), obtained in Production Example 2 A rubber particle-dispersed epoxy resin and a bisphenol A type epoxy resin (trade name “YD-128”, manufactured by Nippon Steel Chemical Co., Ltd.) are mixed according to the formulation (mixing ratio) (unit: parts by weight) shown in Table 2. The monoallyl diglycidyl isocyanurate is dissolved by stirring at 80 ° C. for 1 hour, and then a polycarbonate diol (trade name “CD220PL”, manufactured by Daicel Corporation) is blended as shown in Table 2 (unit: parts by weight) Was mixed at 60 ° C. for 1 hour to obtain an epoxy resin (mixture).
 実施例8~14、比較例4~6
(硬化性エポキシ樹脂組成物の製造)
 表2に示す配合割合(単位:重量部)となるように、製造例5で得られたエポキシ樹脂、硬化触媒(商品名「サンエイド SI-100L」、三新化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して硬化性エポキシ樹脂組成物を得た。なお、比較例4の場合には、エポキシ樹脂として、商品名「セロキサイド2021P」((株)ダイセル製)を使用した。
Examples 8-14, Comparative Examples 4-6
(Manufacture of curable epoxy resin composition)
The epoxy resin obtained in Production Example 5 and the curing catalyst (trade name “Sun-Aid SI-100L”, manufactured by Sanshin Chemical Industry Co., Ltd.) were prepared so that the blending ratio (unit: parts by weight) shown in Table 2 was obtained. Using a self-revolving stirrer (trade name “Awatori Nertaro AR-250”, manufactured by Shinky Co., Ltd.), the mixture was uniformly mixed and defoamed to obtain a curable epoxy resin composition. In the case of Comparative Example 4, the trade name “Celoxide 2021P” (manufactured by Daicel Corporation) was used as the epoxy resin.
(光半導体装置の製造)
 上記で得た硬化性エポキシ樹脂組成物を、図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱し、硬化した樹脂(硬化物)で光半導体素子を封止した光半導体装置を得た。
(Manufacture of optical semiconductor devices)
The curable epoxy resin composition obtained above is cast into a lead frame (InGaN element, 3.5 mm × 2.8 mm) of an optical semiconductor shown in FIG. 1, and then 5 in a 120 ° C. oven (resin curing oven). An optical semiconductor device in which the optical semiconductor element was sealed with a cured resin (cured product) heated for a time was obtained.
<評価>
 実施例1~14及び比較例1~6で得られた光半導体装置について、以下の方法で評価試験を行った。
<Evaluation>
The optical semiconductor devices obtained in Examples 1 to 14 and Comparative Examples 1 to 6 were evaluated by the following method.
[はんだ耐熱性試験]
 実施例1~14及び比較例1~6で得た光半導体装置(各硬化性エポキシ樹脂組成物につき2個用いた)を、30℃、70%RHの条件下で168時間静置して吸湿させた。次いで、上記光半導体装置をリフロー炉(UNI-5016F、日本アントム(株)製)に入れ、下記加熱条件にて加熱した。その後、上記光半導体装置を室温環境下に取り出して放冷した後、再度リフロー炉に入れて同条件で加熱した。即ち、当該はんだ耐熱性試験においては、光半導体装置に対して下記加熱条件による熱履歴を二度与えた。
〔加熱条件(光半導体装置の表面温度基準)〕
(1)予備加熱:150~190℃で60~120秒
(2)予備加熱後の本加熱:217℃以上で60~150秒、最高温度260℃
 但し、予備加熱から本加熱に移行する際の昇温速度は最大で3℃/秒に制御した。
 図2には、リフロー炉による加熱の際の光半導体装置の表面温度プロファイル(二度の加熱のうち一方の加熱における温度プロファイル)の一例を示す。
 その後、デジタルマイクロスコープ(VHX-900、(株)キーエンス製)を使用して光半導体装置を観察し、光半導体装置2個のうち、どちらか一方又は両方において電極表面上に樹脂の剥離が観測された場合を「不良」(耐リフロー性不良)とし、試験に供した2個の光半導体装置のいずれにおいても剥離が認められなかった場合を「良」(耐リフロー性良好)と判定した。結果を表1、表2に示す。
[Solder heat resistance test]
The optical semiconductor devices obtained in Examples 1 to 14 and Comparative Examples 1 to 6 (two used for each curable epoxy resin composition) were allowed to stand for 168 hours at 30 ° C. and 70% RH to absorb moisture. I let you. Next, the optical semiconductor device was placed in a reflow furnace (UNI-5016F, manufactured by Nippon Antom Co., Ltd.) and heated under the following heating conditions. Thereafter, the optical semiconductor device was taken out in a room temperature environment and allowed to cool, and then placed in a reflow furnace again and heated under the same conditions. That is, in the solder heat resistance test, the thermal history under the following heating conditions was given twice to the optical semiconductor device.
[Heating conditions (based on surface temperature of optical semiconductor device)]
(1) Preheating: 150 to 190 ° C. for 60 to 120 seconds (2) Main heating after preheating: 217 ° C. or more for 60 to 150 seconds, maximum temperature 260 ° C.
However, the rate of temperature increase when shifting from preheating to main heating was controlled to 3 ° C./second at the maximum.
FIG. 2 shows an example of the surface temperature profile of the optical semiconductor device during heating in the reflow furnace (temperature profile in one of the two heating operations).
Then, the optical semiconductor device was observed using a digital microscope (VHX-900, manufactured by Keyence Corporation), and peeling of the resin was observed on the electrode surface in one or both of the two optical semiconductor devices. The case where the test was performed was determined to be “defective” (defective reflow resistance), and the case where no peeling was observed in any of the two optical semiconductor devices subjected to the test was determined to be “good” (good reflow resistance). The results are shown in Tables 1 and 2.
[通電試験]
 実施例1~14及び比較例1~6で得た光半導体装置の全光束を、全光束測定機を用いて測定した。
 さらに、60℃、90%RHの恒温槽内で1000時間、光半導体装置に70mAの電流を流した後の全光束を測定した。次式から、光度保持率を算出した。結果を表1、表2に示す。
 {光度保持率(%)}
   ={1000時間後の全光束(lm)}/{0時間の全光束(lm)}×100
[Energization test]
The total luminous flux of the optical semiconductor devices obtained in Examples 1 to 14 and Comparative Examples 1 to 6 was measured using a total luminous flux measuring machine.
Further, the total luminous flux after a current of 70 mA was passed through the optical semiconductor device for 1000 hours in a constant temperature bath of 60 ° C. and 90% RH was measured. The luminous intensity retention was calculated from the following equation. The results are shown in Tables 1 and 2.
{Luminance retention (%)}
= {Total luminous flux after 1000 hours (lm)} / {total luminous flux after 0 hours (lm)} × 100
[熱衝撃試験]
 実施例1~14及び比較例1~6で得た光半導体装置(各硬化性エポキシ樹脂組成物につき2個用いた)に、-40℃で15分、続いて、120℃で15分を1サイクルとした熱衝撃を、熱衝撃試験機を用いて1000サイクル分加えた。その後、光半導体装置に20mAの電流を通電して点灯確認を行い、点灯しなかった光半導体装置の個数(不点灯発生数)を計測した。結果を表1、表2に示す。
[Thermal shock test]
The optical semiconductor devices obtained in Examples 1 to 14 and Comparative Examples 1 to 6 (two used for each curable epoxy resin composition) were subjected to 15 minutes at −40 ° C., followed by 15 minutes at 120 ° C. The thermal shock made into the cycle was added for 1000 cycles using the thermal shock tester. Thereafter, a current of 20 mA was applied to the optical semiconductor device to confirm lighting, and the number of optical semiconductor devices that did not light (the number of non-lighting occurrences) was measured. The results are shown in Tables 1 and 2.
[総合判定]
 はんだ耐熱性試験の判定が不良の場合には、総合判定×(劣っている)とした。はんだ耐熱性試験で良と判定されたもののうち、光度保持率が90%以上かつ熱衝撃試験での不点灯発生数が0個のものを総合判定○(非常に優れている)とし、それ以外を総合判定△(優れている)と判定した。
[Comprehensive judgment]
When the determination of the solder heat resistance test was poor, it was determined to be comprehensive determination x (inferior). Out of those judged as good in the solder heat resistance test, those with a luminous intensity retention rate of 90% or more and zero non-lighting occurrence in the thermal shock test were evaluated as a comprehensive judgment ○ (very good), otherwise Was judged as a comprehensive judgment Δ (excellent).
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
 製造例6
(エポキシ樹脂の製造:実施例15~18)
 モノアリジグリシジルイソシアヌレート(商品名「MA-DGIC」、四国化成工業(株)製)、脂環式エポキシ化合物(商品名「セロキサイド2021P」、(株)ダイセル製)、アクリルブロック共重合体(商品名「ナノストレングスM52N」、アルケマ(株)製)を、表3に示す配合処方(配合割合)(単位:重量部)に従って混合し、80℃で1時間攪拌することでモノアリルジグリシジルイソシアヌレート(及びアクリルブロック共重合体)を溶解させ、次にポリカーボネートジオール(商品名「CD220PL」、(株)ダイセル製)を表3に示す配合処方(単位:重量部)に従って混合し、60℃で1時間攪拌することでエポキシ樹脂(混合物)を得た。
Production Example 6
(Production of epoxy resin: Examples 15 to 18)
Monoalidiglycidyl isocyanurate (trade name “MA-DGIC”, manufactured by Shikoku Chemicals Co., Ltd.), alicyclic epoxy compound (trade name “Celoxide 2021P”, manufactured by Daicel Corporation), acrylic block copolymer (product) The name “Nanostrength M52N” (manufactured by Arkema Co., Ltd.) was mixed according to the formulation (mixing ratio) (unit: parts by weight) shown in Table 3 and stirred at 80 ° C. for 1 hour to monoallyl diglycidyl isocyanurate (And acrylic block copolymer) are dissolved, and then polycarbonate diol (trade name “CD220PL”, manufactured by Daicel Corporation) is mixed according to the formulation (unit: parts by weight) shown in Table 3, and 1 at 60 ° C. An epoxy resin (mixture) was obtained by stirring for a period of time.
 実施例15~18、比較例7、8
(硬化性エポキシ樹脂組成物の製造)
 表3に示す配合割合(単位:重量部)となるように、製造例6で得られたエポキシ樹脂、製造例4で得られた硬化剤組成物、硬化触媒(商品名「サンエイド SI-100L」、三新化学工業(株)製)を、自公転式攪拌装置(商品名「あわとり練太郎AR-250」、(株)シンキー製)を使用して均一に混合し、脱泡して硬化性エポキシ樹脂組成物を得た。なお、比較例7、8の場合には、エポキシ樹脂として、商品名「セロキサイド2021P」((株)ダイセル製)を使用した。
Examples 15 to 18, Comparative Examples 7 and 8
(Manufacture of curable epoxy resin composition)
The epoxy resin obtained in Production Example 6, the curing agent composition obtained in Production Example 4, and the curing catalyst (trade name “Sun-Aid SI-100L”) so as to have the blending ratio (unit: parts by weight) shown in Table 3 , Manufactured by Sanshin Chemical Industry Co., Ltd.) using a self-revolving stirrer (trade name “Awatori Nerita AR-250”, manufactured by Shinky Co., Ltd.), defoamed and cured. An epoxy resin composition was obtained. In Comparative Examples 7 and 8, the trade name “Celoxide 2021P” (manufactured by Daicel Corporation) was used as the epoxy resin.
(光半導体装置の製造)
 上記で得た硬化性エポキシ樹脂組成物を、図1に示す光半導体のリードフレーム(InGaN素子、3.5mm×2.8mm)に注型した後、120℃のオーブン(樹脂硬化オーブン)で5時間加熱し、硬化した樹脂(硬化物)で光半導体素子を封止した光半導体装置を得た。
(Manufacture of optical semiconductor devices)
The curable epoxy resin composition obtained above is cast into a lead frame (InGaN element, 3.5 mm × 2.8 mm) of an optical semiconductor shown in FIG. 1, and then 5 in a 120 ° C. oven (resin curing oven). An optical semiconductor device in which the optical semiconductor element was sealed with a cured resin (cured product) heated for a time was obtained.
<評価>
 実施例15~18及び比較例7、8で得られた光半導体装置について、以下の方法で通電試験を行った。
<Evaluation>
The optical semiconductor devices obtained in Examples 15 to 18 and Comparative Examples 7 and 8 were subjected to an energization test by the following method.
[通電試験]
 実施例15~18及び比較例7、8で得られた光半導体装置の全光束を、全光束測定機を用いて測定した。さらに、温度85℃の恒温槽内で300時間、光半導体装置に60mAの電流を流した後の全光束を測定した。次式から、光度保持率を算出した。結果を表3に示す。
 {光度保持率(%)}
   ={300時間後の全光束(lm)}/{0時間の全光束(lm)}×100
[Energization test]
The total luminous fluxes of the optical semiconductor devices obtained in Examples 15 to 18 and Comparative Examples 7 and 8 were measured using a total luminous flux measuring machine. Further, the total luminous flux after a current of 60 mA was passed through the optical semiconductor device for 300 hours in a thermostatic chamber at a temperature of 85 ° C. was measured. The luminous intensity retention was calculated from the following equation. The results are shown in Table 3.
{Luminance retention (%)}
= {Total luminous flux after 300 hours (lm)} / {total luminous flux after 0 hours (lm)} × 100
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
 試験機器
 ・樹脂硬化オーブン
  エスペック(株)製 GPHH-201
 ・恒温槽
  エスペック(株)製 小型高温チャンバー ST-120B1
 ・全光束測定機
  米国オプトロニックラボラトリーズ社製 マルチ分光放射測定システム OL771
 ・熱衝撃試験機
  エスペック(株)製 小型冷熱衝撃装置 TSE-11-A
Test equipment ・ Resin curing oven Espec Co., Ltd. GPHH-201
-Thermostatic chamber ESPEC Co., Ltd. Small high temperature chamber ST-120B1
・ Total luminous flux measuring machine Multispectral Radiation Measurement System OL771 manufactured by Optronic Laboratories, USA
・ Thermal shock tester Espec Co., Ltd. Small thermal shock device TSE-11-A
 100:リフレクター(光反射用樹脂組成物)
 101:金属配線
 102:LED素子
 103:ボンディングワイヤ
 104:透明封止樹脂
 105:ダイボンド材
100: Reflector (resin composition for light reflection)
DESCRIPTION OF SYMBOLS 101: Metal wiring 102: LED element 103: Bonding wire 104: Transparent sealing resin 105: Die bond material
 本発明の硬化性エポキシ樹脂組成物は、光半導体封止用途に好ましく使用することができる。また、本発明の硬化性エポキシ樹脂組成物は、接着剤、電気絶縁材、積層板、コーティング、インク、塗料、シーラント、レジスト、複合材料、透明基材、透明シート、透明フィルム、光学素子、光学レンズ、光学部材、光造形、電子ペーパー、タッチパネル、太陽電池基板、光導波路、導光板、ホログラフィックメモリなどにも利用することができる。 The curable epoxy resin composition of the present invention can be preferably used for optical semiconductor sealing applications. In addition, the curable epoxy resin composition of the present invention includes an adhesive, an electrical insulating material, a laminate, a coating, an ink, a paint, a sealant, a resist, a composite material, a transparent substrate, a transparent sheet, a transparent film, an optical element, and an optical element. It can also be used for lenses, optical members, stereolithography, electronic paper, touch panels, solar cell substrates, optical waveguides, light guide plates, holographic memories, and the like.

Claims (9)

  1.  脂環式エポキシ化合物(A)と、下記式(1)
    Figure JPOXMLDOC01-appb-C000001
    [式中、R1及びR2は水素原子または炭素数1~8のアルキル基を示す]
    で表されるモノアリルジグリシジルイソシアヌレート化合物(B)と、ポリカーボネートポリオール(C)と、硬化剤(D)又は硬化触媒(E)とを含むことを特徴とする硬化性エポキシ樹脂組成物。
    Alicyclic epoxy compound (A) and the following formula (1)
    Figure JPOXMLDOC01-appb-C000001
    [Wherein R 1 and R 2 represent a hydrogen atom or an alkyl group having 1 to 8 carbon atoms]
    The curable epoxy resin composition characterized by including the monoallyl diglycidyl isocyanurate compound (B) represented by these, a polycarbonate polyol (C), and a hardening | curing agent (D) or a hardening catalyst (E).
  2.  前記脂環式エポキシ化合物(A)の脂環エポキシ基がシクロヘキセンオキシド基である請求項1に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to claim 1, wherein the alicyclic epoxy group of the alicyclic epoxy compound (A) is a cyclohexene oxide group.
  3.  前記脂環式エポキシ化合物(A)が下記式(I-1)
    Figure JPOXMLDOC01-appb-C000002
    で表される化合物である請求項2に記載の硬化性エポキシ樹脂組成物。
    The alicyclic epoxy compound (A) is represented by the following formula (I-1)
    Figure JPOXMLDOC01-appb-C000002
    The curable epoxy resin composition according to claim 2, which is a compound represented by the formula:
  4.  さらに、硬化促進剤(F)を含む請求項1~3のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 3, further comprising a curing accelerator (F).
  5.  さらに、ゴム粒子を含む請求項1~4のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 4, further comprising rubber particles.
  6.  さらに、アクリルブロック共重合体を含む請求項1~5のいずれか1項に記載の硬化性エポキシ樹脂組成物。 The curable epoxy resin composition according to any one of claims 1 to 5, further comprising an acrylic block copolymer.
  7.  請求項1~6のいずれか1項に記載の硬化性エポキシ樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable epoxy resin composition according to any one of claims 1 to 6.
  8.  請求項1~6のいずれか1項に記載の硬化性エポキシ樹脂組成物からなる光半導体封止用樹脂組成物。 A resin composition for encapsulating an optical semiconductor comprising the curable epoxy resin composition according to any one of claims 1 to 6.
  9.  請求項8に記載の光半導体封止用樹脂組成物で光半導体素子を封止した光半導体装置。 An optical semiconductor device in which an optical semiconductor element is sealed with the resin composition for optical semiconductor sealing according to claim 8.
PCT/JP2011/079688 2011-01-07 2011-12-21 Curable epoxy resin composition WO2012093590A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020137013077A KR20140009201A (en) 2011-01-07 2011-12-21 Curable epoxy resin composition
JP2012551829A JP5919200B2 (en) 2011-01-07 2011-12-21 Curable epoxy resin composition
CN201180048618XA CN103168060A (en) 2011-01-07 2011-12-21 Curable epoxy resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-002481 2011-01-07
JP2011002481 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093590A1 true WO2012093590A1 (en) 2012-07-12

Family

ID=46457450

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079688 WO2012093590A1 (en) 2011-01-07 2011-12-21 Curable epoxy resin composition

Country Status (5)

Country Link
JP (1) JP5919200B2 (en)
KR (1) KR20140009201A (en)
CN (1) CN103168060A (en)
TW (1) TW201235375A (en)
WO (1) WO2012093590A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055220A (en) * 2012-09-12 2014-03-27 Daicel Corp Curable epoxy resin composition

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI661037B (en) * 2014-12-03 2019-06-01 日商信越化學工業股份有限公司 Thermosetting epoxy resin composition for optical semiconductor element packaging and optical semiconductor device using the same
CN106151521B (en) * 2016-08-18 2018-08-28 福建东南造船有限公司 A kind of crackle encapsulating method of air flow meter peculiar to vessel

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344867A (en) * 1999-06-01 2000-12-12 Shikoku Chem Corp Thermosetting epoxy resin composition
JP2002003582A (en) * 2000-04-17 2002-01-09 Mitsubishi Electric Corp Liquid thermosetting resin composition and method of fabricating insulating coil using the same
JP2003277591A (en) * 2002-03-26 2003-10-02 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and laminate
JP2007051217A (en) * 2005-08-18 2007-03-01 Daicel Chem Ind Ltd Curable resin composition and optical waveguide
WO2011093219A1 (en) * 2010-02-01 2011-08-04 ダイセル化学工業株式会社 Curable epoxy resin composition

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000344867A (en) * 1999-06-01 2000-12-12 Shikoku Chem Corp Thermosetting epoxy resin composition
JP2002003582A (en) * 2000-04-17 2002-01-09 Mitsubishi Electric Corp Liquid thermosetting resin composition and method of fabricating insulating coil using the same
JP2003277591A (en) * 2002-03-26 2003-10-02 Sumitomo Bakelite Co Ltd Epoxy resin composition, prepreg and laminate
JP2007051217A (en) * 2005-08-18 2007-03-01 Daicel Chem Ind Ltd Curable resin composition and optical waveguide
WO2011093219A1 (en) * 2010-02-01 2011-08-04 ダイセル化学工業株式会社 Curable epoxy resin composition

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014055220A (en) * 2012-09-12 2014-03-27 Daicel Corp Curable epoxy resin composition

Also Published As

Publication number Publication date
CN103168060A (en) 2013-06-19
TW201235375A (en) 2012-09-01
JPWO2012093590A1 (en) 2014-06-09
KR20140009201A (en) 2014-01-22
JP5919200B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5466643B2 (en) Resin composition for optical semiconductor sealing and optical semiconductor device using the same
JP5918699B2 (en) Curable epoxy resin composition and optical semiconductor device using the same
JP5695269B2 (en) Curable epoxy resin composition
JP5764419B2 (en) Curable epoxy resin composition
WO2013011832A1 (en) Curable epoxy resin composition
JP5852014B2 (en) Curable epoxy resin composition
KR20190103432A (en) Curable Epoxy Resin Composition
JP2013213147A (en) Curable epoxy resin composition
JP6014134B2 (en) Curable epoxy resin composition
JP5919200B2 (en) Curable epoxy resin composition
KR101915341B1 (en) Curable epoxy resin composition
JP2015096602A (en) Curable epoxy resin composition
JP6082746B2 (en) Curable epoxy resin composition, cured product thereof, and optical semiconductor device
JP5899025B2 (en) Curable epoxy resin composition
JP2015110772A (en) Curable epoxy resin composition
JP6059538B2 (en) Curable epoxy resin composition
JP6047294B2 (en) Curable epoxy resin composition
JP2015098586A (en) Curable epoxy resin composition
JP6472754B2 (en) Curable epoxy resin composition
JP6118313B2 (en) Curable epoxy resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854955

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551829

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20137013077

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854955

Country of ref document: EP

Kind code of ref document: A1