WO2012093543A1 - Electrostatic atomization device - Google Patents

Electrostatic atomization device Download PDF

Info

Publication number
WO2012093543A1
WO2012093543A1 PCT/JP2011/078271 JP2011078271W WO2012093543A1 WO 2012093543 A1 WO2012093543 A1 WO 2012093543A1 JP 2011078271 W JP2011078271 W JP 2011078271W WO 2012093543 A1 WO2012093543 A1 WO 2012093543A1
Authority
WO
WIPO (PCT)
Prior art keywords
bellows structure
upstream
fine particle
introduction pipe
charged fine
Prior art date
Application number
PCT/JP2011/078271
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 武志
須川 晃秀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012093543A1 publication Critical patent/WO2012093543A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L9/00Disinfection, sterilisation or deodorisation of air
    • A61L9/14Disinfection, sterilisation or deodorisation of air using sprayed or atomised substances including air-liquid contact processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to an electrostatic atomizer capable of discharging charged fine particle water.
  • An electrostatic atomizer capable of generating charged fine particle water by an electrostatic atomization phenomenon and releasing it toward a target location is conventionally known.
  • the charged fine particle water has a minute diameter and contains radicals, and exhibits a deodorizing effect on odors adhering to fabrics, an inhibitory effect on viruses and fungi, an inhibitory effect on allele substances, etc. (Patent Document 1) Etc.).
  • this charged fine particle water is released into the external space, it may adhere to other members and disappear before reaching the target location. In that case, the effect of charged fine particle water cannot be sufficiently obtained at the target location. Therefore, in order to efficiently supply the charged fine particle water to the target location, the introduction pipe is connected from the location where the charged fine particle water is generated to the target location.
  • the present inventors first considered providing a bellows structure in the middle of the flow path of the introduction pipe.
  • the flow of air in the introduction pipe is likely to be disturbed in the portion of the bellows structure, and as a result, the amount of charged fine particle water supplied to the target location through the introduction pipe is reduced.
  • the present invention has been invented in view of the above-mentioned problems, and can easily connect the introduction tube to the target location without displacement, and the charged fine particle water can be efficiently supplied to the target location through the introduction tube. It is an object to provide an electrostatic atomizer that can be supplied with
  • an electrostatic atomizer of the present invention comprises a discharge electrode, water supply means for supplying water to the discharge electrode, and the water supplied to the discharge electrode by applying a voltage.
  • a voltage applying means for electrostatic atomization a discharge port for discharging charged fine particle water generated by electrostatic atomization, and an introduction pipe having an upstream end connected to the discharge port, the introduction pipe having a small diameter Having a bellows structure in which the portion and the large-diameter portion alternately continue in the middle of the flow path, the inner diameter of the small-diameter portion being larger than the inner diameter of the portion upstream of the bellows structure
  • the introduction pipe has a downstream end connected to the air passage of the air conditioner, and discharges the charged fine particle water to the outside space by the air blow of the air conditioner. It is preferable to provide it.
  • the present invention has an effect that the introduction pipe can be easily connected to the target location without displacement, and the charged fine particle water can be supplied to the target location with high efficiency through the introduction tube.
  • FIG. 1 to 3 show an electrostatic atomizer according to an embodiment of the present invention.
  • the basic structure of an electrostatic atomizer is well-known in the above-mentioned patent document etc., only a simple description is given below about a basic structure.
  • the electrostatic atomizer of this embodiment includes a columnar discharge electrode 1 as shown in FIG. 3 in a box-shaped housing 8, water supply means 2 for supplying water to the discharge electrode 1, and the discharge electrode. 1 is provided with voltage applying means 3 for applying a voltage.
  • the water supply means 2 includes a cooling device 4 that generates condensed water on the surface of the discharge electrode 1 by cooling the discharge electrode 1.
  • the cooling device 4 cools the discharge electrode 1 using a plurality of Peltier elements, but may have other configurations as long as the discharge electrode 1 can be cooled. Further, the water supply means 2 may be configured to supply water from other locations such as a water tank to the discharge electrode 1.
  • an annular counter electrode 6 is disposed at a position facing the tip of the discharge electrode 1, and both electrodes 1, 6 are applied so that a predetermined voltage is applied between the counter electrode 6 and the discharge electrode 1.
  • a voltage application unit 7 is connected between them. By applying a predetermined high voltage to the discharge electrode 1 in a state where water is supplied by the voltage application unit 7, negative charges are concentrated on the water held by the discharge electrode 1, and the nanometer is caused by the electrostatic atomization phenomenon. Generate charged fine particle water of a size.
  • the voltage applying unit 3 may be configured so that electrostatic atomization can be caused by voltage application and the counter electrode 6 is not disposed.
  • the charged fine particle water generated at the tip portion of the discharge electrode 1 is discharged through the central hole of the counter electrode 6 (see arrow a in FIG. 3).
  • a discharge cylinder 9 through which the charged fine particle water that has passed through the counter electrode 6 passes is formed on one side surface of the housing 8, and the opening of the discharge cylinder 9 has a discharge port 10 that discharges the charged fine particle water to the outside of the housing 8. (See FIG. 1).
  • the electrostatic atomizer of this embodiment further includes an introduction tube 11.
  • One end of the introduction tube 11 is fitted into the discharge tube 9, and the discharge port 10 at the tip of the discharge tube 9 is connected to one end (upstream end) of the introduction tube 11 by this fitting.
  • the introduction tube 11 has a flow path.
  • the introduction tube 11 has an axial direction and a radial direction.
  • the axial direction of the introduction pipe 11 is defined as a direction along the flow path of the introduction pipe 11.
  • the radial direction of the introduction pipe 11 is defined as a direction orthogonal to the axial direction of the introduction pipe 11.
  • the introduction tube 11 is made of a flexible material such as rubber and is provided so as to be bent as a whole. Further, a bellows structure 14 in which small diameter portions 12 and large diameter portions 13 are alternately formed is provided in the middle of the flow path of the introduction pipe 11.
  • upstream tube portion a portion upstream of the bellows structure 14 in the introduction pipe 11
  • downstream tube portion a portion downstream of the bellows structure 14
  • the introduction pipe 11 has an upstream pipe part 15, a bellows structure 14, and a downstream pipe part 16.
  • the downstream pipe portion 16 is located on the side opposite to the upstream pipe portion 15 when viewed from the bellows structure 14. Therefore, the downstream pipe portion 16 is located on the side opposite to the discharge port 10 when viewed from the bellows structure 14.
  • the upstream pipe portion 15 is located on the same side as the discharge port 10 when viewed from the bellows structure 14. That is, the bellows structure 14 is located between the upstream pipe portion 15 and the downstream pipe portion 16.
  • the introduction pipe 11 has a flow path defined by the upstream pipe part 15, the bellows structure 14, and the downstream pipe part 16. Therefore, the introduction pipe 11 has the bellows structure 14 in the middle of the flow path.
  • the upstream pipe portion 15 is defined as a portion on the upstream side of the bellows structure 14.
  • the upstream pipe 15 has an upstream end, whereby the introduction pipe 11 has an upstream end.
  • the upstream pipe part 15 and the downstream pipe part 16 are both circular and have the same diameter. As shown in FIG. 1, in the bellows structure 14, a large diameter portion 13 is continuously extended from the downstream end of the upstream pipe portion 15, and the small diameter portion 12, the large diameter portion 13, and the small diameter portion 12 are extended from the large diameter portion 13. ,... Are alternately formed, and downstream pipe portions 16 are continuously extended from the large-diameter portion 13 at the most downstream side.
  • the inner diameter r2 of the plurality of small diameter portions 12 and the inner diameter r3 of the plurality of large diameter portions 13 that form the bellows structure 14 are both portions other than the bellows structure 14 (that is, The upstream pipe part 15 and the downstream pipe part 16) are provided larger than the inner diameter r1.
  • the outer shape R1 of the upstream pipe portion 15 and the downstream pipe portion 16 is set to be larger than the inner diameter r2 of the small diameter portion 12 and smaller than the inner diameter r3 of the large diameter portion 13.
  • the dimensional relationship of the introduction pipe 11 is r1 ⁇ r2 ⁇ R1 ⁇ r3.
  • the charged fine particle water transported through the introduction pipe 11 is efficiently transported to the target location while being suppressed as much as possible in the middle of the flow path. This is because the turbulence of the air in the bellows structure 14 is unlikely to occur in the introduction tube 11 of the present embodiment, so that the charged fine particle water does not adhere to the inner wall of the introduction tube 11 in the middle of the flow path and is easily transported. Because.
  • FIG. 4 shows an electrostatic atomizer of a comparative example
  • FIG. 5 shows experimental results of the electrostatic atomizer of this comparative example and the electrostatic atomizer of this embodiment. Show.
  • the inner diameters r2 and r3 of the small-diameter portion 12 and the large-diameter portion 13 constituting the bellows structure 14 are different from the electrostatic atomizer of the present embodiment.
  • the inner diameter r2 of the small diameter portion 12 is set smaller than the inner diameter r1 of the upstream pipe portion 15, and the inner diameter r3 of the large diameter portion 13 is set larger than the inner diameter r1 and the outer shape R1 of the upstream pipe portion 15.
  • the dimensional relationship of the introduction pipe 11 in the comparative example is r2 ⁇ r1 ⁇ R1 ⁇ r3.
  • FIG. 5 shows the number of charged fine particle water particles discharged from the main body of the electrostatic atomizer (that is, the number of charged fine particle water particles discharged from the discharge port 10 of the housing 8).
  • the number of charged fine particle water particles discharged to the target location through the introduction tube 11 and the number of charged fine particle water particles discharged to the target location through the introduction tube 11 of the comparative example are shown.
  • the introduction pipe 11 of this embodiment and the introduction pipe 11 of the comparative example both have a total length of 250 mm.
  • the bellows structure 14 exists in the middle of the flow path, the minimum diameter portion of the small diameter portion 12 is provided so as not to protrude inward from the inner wall of the upstream pipe portion 15. Yes. Therefore, the occurrence of turbulence in the air is minimized.
  • charged fine particle water having a nanometer-sized minute diameter is easily affected by disturbance, but in this embodiment, this disturbance is suppressed as much as possible, and the number of charged fine particle water particles at the time of reaching the target location is reduced. The amount of decrease is minimized.
  • FIG. 6 shows an example in which the air passage 20 of the air conditioner is selected as the target location for transporting the charged fine particle water.
  • the air passage 20 is a conduit for sending air after being air-conditioned by the air conditioner body (not shown) to the external space.
  • the downstream end of the introduction pipe 11 is positioned in the air passage 20, and Charged particulate water is supplied into the air passage 20 through the downstream end opening. Thereby, it becomes possible to discharge the charged fine particle water to the outside space vigorously in the air blow of the air conditioner. Even if the target location for transporting the charged fine particle water is another location, if the flexibility and stretchability of the bellows structure 14 are effectively utilized, the introduction tube 11 can be easily connected without misalignment. .
  • the electrostatic atomizer of this embodiment includes the discharge electrode 1, the water supply means 2 for supplying water to the discharge electrode 1, and the water supplied to the discharge electrode 1 by applying a voltage.
  • Voltage applying means 3 for electrostatic atomization a discharge port 10 for discharging charged fine particle water generated by electrostatic atomization, and an introduction pipe 11 having an upstream end connected to the discharge port 10.
  • the introduction pipe 11 has a bellows structure 14 in which small-diameter portions 12 and large-diameter portions 13 are alternately continuous in the middle of the flow path, and an inner diameter r2 of the small-diameter portion 12 is set to an inner diameter of a portion upstream of the bellows structure 14. It is larger than r1.
  • the electrostatic atomizer of this embodiment includes a discharge electrode 1, a water supply unit 2, a voltage application unit 3, a discharge port 10, and an introduction tube 11.
  • the water supply means 2 is configured to supply water to the discharge electrode 1.
  • the voltage application means 3 is configured to apply a voltage to the discharge electrode 1, thereby electrostatically atomizing water supplied to the discharge electrode 1.
  • the discharge port 10 is configured to discharge charged fine particle water generated by electrostatic atomization.
  • the introduction pipe 11 has an upstream end. The upstream end of the introduction pipe 11 is connected to the discharge port 10.
  • the introduction tube 11 has a flow path.
  • the introduction pipe 11 has a bellows structure 14 in the middle of the flow path.
  • the introduction pipe 11 has an upstream portion located upstream from the bellows structure 14.
  • the inner diameter of the small diameter portion 12 is larger than the inner diameter of the upstream portion located upstream from the bellows structure 14.
  • the introduction tube 11 can be easily connected to the target location without misalignment by effectively utilizing the flexibility and stretchability of the bellows structure 14. Moreover, in spite of having the bellows structure 14, the air flow in the introduction pipe 11 is hardly disturbed. Therefore, the charged fine particle water can be supplied to the target location through the introduction pipe 11 with high efficiency.
  • the introduction pipe 11 has an upstream pipe part 15 and a downstream pipe part 16.
  • the flow path of the introduction pipe 11 is defined by the upstream pipe part 15, the bellows structure 14, and the downstream pipe part 16.
  • the bellows structure 14 is located between the upstream pipe portion 15 and the downstream pipe portion 16. Thereby, the bellows structure 14 is provided in the middle of the flow path.
  • the upstream pipe portion 15 is located on the same side as the discharge port 10 when viewed from the bellows structure 14.
  • an upstream portion located upstream from the bellows structure 14 is defined as an upstream pipe portion 15.
  • the inner diameter r2 of all the small diameter portions 12 is larger than the inner diameter r1 of the upstream portion located on the upstream side of the bellows structure 14.
  • the inner peripheral surface of the bellows structure 14 is located on the outer side in the radial direction of the introduction pipe 11 with respect to the inner peripheral surface of the upstream portion located upstream of the bellows structure 14. More specifically, the entire inner peripheral surface of the bellows structure 14 is positioned on the outer side in the radial direction of the introduction pipe 11 with respect to the inner peripheral surface of the upstream portion positioned upstream of the bellows structure 14.
  • the voltage application means 3 is comprised so that a predetermined voltage may be applied between the discharge electrode 1 and a counter electrode.
  • the voltage application means 3 should just be comprised so that electrostatic atomization may be produced by applying a voltage to the discharge electrode 1.
  • FIG. That is, the voltage applying means 3 may be configured to apply a voltage to the discharge electrode 1. Therefore, the counter electrode can be omitted.
  • the introduction pipe 11 has a downstream end connected to the air passage 20 of the air conditioner, and discharges charged fine particle water to the external space by being put on the air blow of the air conditioner.
  • the electrostatic atomizer main body is provided in a place different from the air conditioner main body, and the charged fine particle water sent from the electrostatic atomizer main body through the introduction pipe 11 with high efficiency is used as the wind of the air conditioner. It can be sent to the outside space vigorously.
  • the electrostatic atomizer of this embodiment is suitable for attachment to an air conditioner.

Abstract

An electrostatic atomization device includes an ejection port that ejects electrically charged water particles generated by discharge electrodes, and an introduction tube having the upstream end thereof connected to the ejection port, wherein: the introduction tube has, in the middle of the flow path thereof, a bellows structure in which small-diameter parts and large-diameter parts are arranged contiguously in an alternating manner; and the inner diameter of each small-diameter part is made larger than the inner diameter of the part upstream of the bellows structure. Thus, the introduction tube can be connected easily to a target section through the effective use of the bellows structure, and also, the flow of air inside the introduction tube is less likely to be disturbed.

Description

静電霧化装置Electrostatic atomizer
 本発明は、帯電微粒子水を放出することのできる静電霧化装置に関する。 The present invention relates to an electrostatic atomizer capable of discharging charged fine particle water.
 静電霧化現象によって帯電微粒子水を生成し、目的箇所にむけて放出することのできる静電霧化装置が、従来から知られている。帯電微粒子水は、微小径で且つラジカルを含んだものであり、布地などに付着した臭いに対する脱臭効果や、ウィルスやカビ菌に対する抑制効果、アレル物質に対する抑制効果、等を発揮する(特許文献1等参照)。 An electrostatic atomizer capable of generating charged fine particle water by an electrostatic atomization phenomenon and releasing it toward a target location is conventionally known. The charged fine particle water has a minute diameter and contains radicals, and exhibits a deodorizing effect on odors adhering to fabrics, an inhibitory effect on viruses and fungi, an inhibitory effect on allele substances, etc. (Patent Document 1) Etc.).
 この帯電微粒子水は、外部空間に一旦放出されると、目的箇所に至るまでの間に他部材に付着し、消滅することがある。その場合、目的箇所では帯電微粒子水による効果が十分に得られなくなる。そのため、帯電微粒子水を目的箇所にまで効率よく供給するために、帯電微粒子水が生成される箇所からその目的箇所にまで、導入管を繋ぐことが行われる。 ¡Once this charged fine particle water is released into the external space, it may adhere to other members and disappear before reaching the target location. In that case, the effect of charged fine particle water cannot be sufficiently obtained at the target location. Therefore, in order to efficiently supply the charged fine particle water to the target location, the introduction pipe is connected from the location where the charged fine particle water is generated to the target location.
特開2010-89088号公報JP 2010-89088 A
 前記導入管の下流端を目的箇所に嵌合等で接続させるとき、その目的箇所の位置や構造によっては接続が容易でなく、位置ずれ等が生じやすくなるといった問題があった。 When the downstream end of the introduction pipe is connected to the target location by fitting or the like, there is a problem that the connection is not easy depending on the position and structure of the target location, and misalignment is likely to occur.
 そこで、本発明者らは、まず導入管の流路途中に蛇腹構造を備えることを考えた。しかし、この場合、導入管内の空気の流れが蛇腹構造の部分において乱れやすくなり、その結果、導入管を通じて目的箇所にまで供給される帯電微粒子水の量が減少するという問題があった。 Therefore, the present inventors first considered providing a bellows structure in the middle of the flow path of the introduction pipe. However, in this case, there is a problem that the flow of air in the introduction pipe is likely to be disturbed in the portion of the bellows structure, and as a result, the amount of charged fine particle water supplied to the target location through the introduction pipe is reduced.
 本発明は前記問題点に鑑みて発明したものであって、目的箇所にまで導入管を位置ずれなく簡単に接続させることができ、且つ、この導入管を通じて帯電微粒子水を目的箇所にまで高効率で供給することのできる静電霧化装置を提供することを、課題とする。 The present invention has been invented in view of the above-mentioned problems, and can easily connect the introduction tube to the target location without displacement, and the charged fine particle water can be efficiently supplied to the target location through the introduction tube. It is an object to provide an electrostatic atomizer that can be supplied with
 前記課題を解決するため、本発明の静電霧化装置は、放電電極と、前記放電電極に水を供給する水供給手段と、電圧を印加することで前記放電電極に供給された前記水を静電霧化する電圧印加手段と、静電霧化により生成された帯電微粒子水を放出する放出口と、前記放出口に上流端が接続された導入管とを備え、前記導入管は、小径部分と大径部分とが交互に連続する蛇腹構造をその流路途中に有し、前記小径部分の内径を、前記蛇腹構造よりも上流側の部分の内径よりも大きく設けたものであることを特徴とする。 In order to solve the above problems, an electrostatic atomizer of the present invention comprises a discharge electrode, water supply means for supplying water to the discharge electrode, and the water supplied to the discharge electrode by applying a voltage. A voltage applying means for electrostatic atomization, a discharge port for discharging charged fine particle water generated by electrostatic atomization, and an introduction pipe having an upstream end connected to the discharge port, the introduction pipe having a small diameter Having a bellows structure in which the portion and the large-diameter portion alternately continue in the middle of the flow path, the inner diameter of the small-diameter portion being larger than the inner diameter of the portion upstream of the bellows structure Features.
 本発明の静電霧化装置において、前記導入管は、その下流端を空調装置の送風路中に接続させたものであり、前記空調装置の送風に乗せて前記帯電微粒子水を外部空間に放出させるように設けることが好ましい。 In the electrostatic atomizer of the present invention, the introduction pipe has a downstream end connected to the air passage of the air conditioner, and discharges the charged fine particle water to the outside space by the air blow of the air conditioner. It is preferable to provide it.
 本発明は、目的箇所にまで導入管を位置ずれなく簡単に接続させることができ、且つ、この導入管を通じて帯電微粒子水を目的箇所にまで高効率で供給することができるという
効果を奏する。
The present invention has an effect that the introduction pipe can be easily connected to the target location without displacement, and the charged fine particle water can be supplied to the target location with high efficiency through the introduction tube.
本発明の一実施形態の静電霧化装置の部分断面図である。It is a fragmentary sectional view of the electrostatic atomizer of one embodiment of the present invention. 一実施形態の静電霧化装置の側面図である。It is a side view of the electrostatic atomizer of one Embodiment. 一実施形態の静電霧化装置の要部断面図である。It is principal part sectional drawing of the electrostatic atomizer of one Embodiment. (a)は比較例の静電霧化装置の部分断面図であり、(b)は(a)の要部拡大図である。(A) is a fragmentary sectional view of the electrostatic atomizer of a comparative example, (b) is the principal part enlarged view of (a). 一実施形態と比較例の実験結果を示すグラフ図である。It is a graph which shows the experimental result of one Embodiment and a comparative example. 一実施形態の静電霧化装置の設置例を示す斜視図である。It is a perspective view which shows the example of installation of the electrostatic atomizer of one Embodiment.
 図1~図3には、本発明の一実施形態の静電霧化装置を示している。なお、静電霧化装置の基本的な構成は前述の特許文献等で公知であるから、以下において、基本的な構成については簡単な説明に留める。 1 to 3 show an electrostatic atomizer according to an embodiment of the present invention. In addition, since the basic structure of an electrostatic atomizer is well-known in the above-mentioned patent document etc., only a simple description is given below about a basic structure.
 本実施形態の静電霧化装置は、箱型のハウジング8内に、図3に示すような柱状の放電電極1と、この放電電極1に水を供給する水供給手段2と、この放電電極1に電圧を印加する電圧印加手段3とを備える。 The electrostatic atomizer of this embodiment includes a columnar discharge electrode 1 as shown in FIG. 3 in a box-shaped housing 8, water supply means 2 for supplying water to the discharge electrode 1, and the discharge electrode. 1 is provided with voltage applying means 3 for applying a voltage.
 水供給手段2としては、放電電極1を冷却することで該放電電極1の表面に結露水を生成する冷却装置4を備えている。この冷却装置4は、複数のペルチェ素子を用いて放電電極1を冷却するものであるが、放電電極1を冷却できるものであれば他の構成であってもよい。また、水供給手段2を、水タンク等の他の箇所から放電電極1にまで水を供給する構成としてもよい。 The water supply means 2 includes a cooling device 4 that generates condensed water on the surface of the discharge electrode 1 by cooling the discharge electrode 1. The cooling device 4 cools the discharge electrode 1 using a plurality of Peltier elements, but may have other configurations as long as the discharge electrode 1 can be cooled. Further, the water supply means 2 may be configured to supply water from other locations such as a water tank to the discharge electrode 1.
 電圧印加手段3としては、放電電極1の先端と対向する箇所に環状の対向電極6を配置し、この対向電極6と放電電極1の間に所定電圧を印加するように、両電極1,6間に電圧印加部7を接続させている。この電圧印加部7により、水が供給された状態の放電電極1に所定の高電圧を印加することによって、放電電極1が保持する水にマイナスの電荷を集中させ、静電霧化現象によってナノメータサイズの帯電微粒子水を生成させる。ここで、電圧印加手段3としては、電圧印加によって静電霧化を生じさせることができればよく、対向電極6を配置しない構成であっても構わない。 As the voltage applying means 3, an annular counter electrode 6 is disposed at a position facing the tip of the discharge electrode 1, and both electrodes 1, 6 are applied so that a predetermined voltage is applied between the counter electrode 6 and the discharge electrode 1. A voltage application unit 7 is connected between them. By applying a predetermined high voltage to the discharge electrode 1 in a state where water is supplied by the voltage application unit 7, negative charges are concentrated on the water held by the discharge electrode 1, and the nanometer is caused by the electrostatic atomization phenomenon. Generate charged fine particle water of a size. Here, the voltage applying unit 3 may be configured so that electrostatic atomization can be caused by voltage application and the counter electrode 6 is not disposed.
 放電電極1の先端部分で生じた帯電微粒子水は、対向電極6の中央孔を通過して放出される(図3中の矢印a参照)。ハウジング8の一側面には、対向電極6を通過した帯電微粒子水が通過する放出筒9が形成され、この放出筒9の先端開口が、帯電微粒子水をハウジング8外に放出する放出口10となっている(図1参照)。 The charged fine particle water generated at the tip portion of the discharge electrode 1 is discharged through the central hole of the counter electrode 6 (see arrow a in FIG. 3). A discharge cylinder 9 through which the charged fine particle water that has passed through the counter electrode 6 passes is formed on one side surface of the housing 8, and the opening of the discharge cylinder 9 has a discharge port 10 that discharges the charged fine particle water to the outside of the housing 8. (See FIG. 1).
 本実施形態の静電霧化装置は、導入管11をさらに備えている。導入管11は、その一端が前記放出筒9に嵌合されるものであり、この嵌合によって、放出筒9先端の放出口10が導入管11の一端(上流端)に連通接続される。 The electrostatic atomizer of this embodiment further includes an introduction tube 11. One end of the introduction tube 11 is fitted into the discharge tube 9, and the discharge port 10 at the tip of the discharge tube 9 is connected to one end (upstream end) of the introduction tube 11 by this fitting.
 なお、導入管11は、流路を有している。また、導入管11は、軸方向と径方向とを有している。導入管11の軸方向は、導入管11の流路に沿った方向として定義される。導入管11の径方向は、導入管11の軸方向に直交する方向として定義される。 Note that the introduction tube 11 has a flow path. In addition, the introduction tube 11 has an axial direction and a radial direction. The axial direction of the introduction pipe 11 is defined as a direction along the flow path of the introduction pipe 11. The radial direction of the introduction pipe 11 is defined as a direction orthogonal to the axial direction of the introduction pipe 11.
 導入管11はゴム等の可撓性材料によって形成し、全体として屈曲自在に設けている。さらに、この導入管11の流路途中には、小径部分12と大径部分13とが交互に形成された蛇腹構造14を設けている。以下において、導入管11のうち蛇腹構造14よりも上流側の部分を「上流管部」として符号15を付し、蛇腹構造14よりも下流側の部分を「下流管部」として符号16を付す。 The introduction tube 11 is made of a flexible material such as rubber and is provided so as to be bent as a whole. Further, a bellows structure 14 in which small diameter portions 12 and large diameter portions 13 are alternately formed is provided in the middle of the flow path of the introduction pipe 11. In the following description, a portion upstream of the bellows structure 14 in the introduction pipe 11 is denoted as “upstream tube portion” 15 and a portion downstream of the bellows structure 14 is denoted as “downstream tube portion” 16. .
 すなわち、導入管11は、上流管部15と、蛇腹構造14と、下流管部16とを有する。下流管部16は、蛇腹構造14から見て、上流管部15とは反対側に位置する。したがって、下流管部16は、蛇腹構造14から見て、放出口10と反対側に位置する。上流管部15は、蛇腹構造14から見て、放出口10と同じ側に位置する。すなわち、蛇腹構造14は、上流管部15と下流管部16との間に位置する。言い換えると、導入管11は、上流管部15と蛇腹構造14と下流管部16とで定義される流路を有している。したがって、導入管11は、その流路の途中に、蛇腹構造14を有している。また、上流管部15は、蛇腹構造14よりも上流側の部分として定義される。上流管15は、上流端を有しており、これにより、導入管11は上流端を有する。 That is, the introduction pipe 11 has an upstream pipe part 15, a bellows structure 14, and a downstream pipe part 16. The downstream pipe portion 16 is located on the side opposite to the upstream pipe portion 15 when viewed from the bellows structure 14. Therefore, the downstream pipe portion 16 is located on the side opposite to the discharge port 10 when viewed from the bellows structure 14. The upstream pipe portion 15 is located on the same side as the discharge port 10 when viewed from the bellows structure 14. That is, the bellows structure 14 is located between the upstream pipe portion 15 and the downstream pipe portion 16. In other words, the introduction pipe 11 has a flow path defined by the upstream pipe part 15, the bellows structure 14, and the downstream pipe part 16. Therefore, the introduction pipe 11 has the bellows structure 14 in the middle of the flow path. The upstream pipe portion 15 is defined as a portion on the upstream side of the bellows structure 14. The upstream pipe 15 has an upstream end, whereby the introduction pipe 11 has an upstream end.
 上流管部15と下流管部16は共に円管状であり、同一径となるように形成されている。図1に示すように、蛇腹構造14においては、上流管部15の下流端から一連に大径部分13が延設され、この大径部分13から小径部分12、大径部分13、小径部分12、…と交互に形成され、最下流にある大径部分13から一連に下流管部16が延設されている。 The upstream pipe part 15 and the downstream pipe part 16 are both circular and have the same diameter. As shown in FIG. 1, in the bellows structure 14, a large diameter portion 13 is continuously extended from the downstream end of the upstream pipe portion 15, and the small diameter portion 12, the large diameter portion 13, and the small diameter portion 12 are extended from the large diameter portion 13. ,... Are alternately formed, and downstream pipe portions 16 are continuously extended from the large-diameter portion 13 at the most downstream side.
 そして、本実施形態の導入管11においては、蛇腹構造14を形成する複数の小径部分12の内径r2と、複数の大径部分13の内径r3を、いずれも蛇腹構造14以外の部分(即ち、上流管部15と下流管部16)の内径r1よりも大きく設けている。なお、上流管部15と下流管部16の外形R1は、小径部分12の内径r2より大きく、且つ、大径部分13の内径r3より小さく設定している。 In the introduction tube 11 of the present embodiment, the inner diameter r2 of the plurality of small diameter portions 12 and the inner diameter r3 of the plurality of large diameter portions 13 that form the bellows structure 14 are both portions other than the bellows structure 14 (that is, The upstream pipe part 15 and the downstream pipe part 16) are provided larger than the inner diameter r1. Note that the outer shape R1 of the upstream pipe portion 15 and the downstream pipe portion 16 is set to be larger than the inner diameter r2 of the small diameter portion 12 and smaller than the inner diameter r3 of the large diameter portion 13.
 つまり、導入管11の寸法関係は、r1<r2<R1<r3となっている。 That is, the dimensional relationship of the introduction pipe 11 is r1 <r2 <R1 <r3.
 この寸法関係にあることで、導入管11を通じて搬送される帯電微粒子水は、その流路途中で消滅することが極力抑制されながら、目的箇所にまで効率的に搬送される。これは、本実施形態の導入管11では蛇腹構造14での空気の乱れが生じにくく、そのため、帯電微粒子水が流路途中で導入管11の内壁に付着することなく、円滑に搬送されやすくなるからである。 Because of this dimensional relationship, the charged fine particle water transported through the introduction pipe 11 is efficiently transported to the target location while being suppressed as much as possible in the middle of the flow path. This is because the turbulence of the air in the bellows structure 14 is unlikely to occur in the introduction tube 11 of the present embodiment, so that the charged fine particle water does not adhere to the inner wall of the introduction tube 11 in the middle of the flow path and is easily transported. Because.
 この点につき、図4には比較例の静電霧化装置を示し、図5には、この比較例の静電霧化装置と本実施形態の静電霧化装置の、それぞれの実験結果を示している。 In this regard, FIG. 4 shows an electrostatic atomizer of a comparative example, and FIG. 5 shows experimental results of the electrostatic atomizer of this comparative example and the electrostatic atomizer of this embodiment. Show.
 図4に示す比較例の静電霧化装置では、蛇腹構造14を構成する小径部分12と大径部分13の内径r2,r3のみを、本実施形態の静電霧化装置と相違するように設けている。具体的には、小径部分12の内径r2が上流管部15の内径r1よりも小さくなり、大径部分13の内径r3が上流管部15の内径r1と外形R1よりも大きくなるように設けている。即ち、比較例での導入管11の寸法関係は、r2<r1<R1<r3である。 In the electrostatic atomizer of the comparative example shown in FIG. 4, only the inner diameters r2 and r3 of the small-diameter portion 12 and the large-diameter portion 13 constituting the bellows structure 14 are different from the electrostatic atomizer of the present embodiment. Provided. Specifically, the inner diameter r2 of the small diameter portion 12 is set smaller than the inner diameter r1 of the upstream pipe portion 15, and the inner diameter r3 of the large diameter portion 13 is set larger than the inner diameter r1 and the outer shape R1 of the upstream pipe portion 15. Yes. That is, the dimensional relationship of the introduction pipe 11 in the comparative example is r2 <r1 <R1 <r3.
 図5には、静電霧化装置本体から放出される帯電微粒子水の粒子数(つまり、ハウジング8の放出口10から放出される段階での帯電微粒子水の粒子数)と、本実施形態の導入管11を通じて目的箇所に放出される帯電微粒子水の粒子数と、比較例の導入管11を通じて目的箇所に放出される帯電微粒子水の粒子数を、それぞれ示している。本実施形態の導入管11と、比較例の導入管11は、いずれも全長を250mmとしている。 FIG. 5 shows the number of charged fine particle water particles discharged from the main body of the electrostatic atomizer (that is, the number of charged fine particle water particles discharged from the discharge port 10 of the housing 8). The number of charged fine particle water particles discharged to the target location through the introduction tube 11 and the number of charged fine particle water particles discharged to the target location through the introduction tube 11 of the comparative example are shown. The introduction pipe 11 of this embodiment and the introduction pipe 11 of the comparative example both have a total length of 250 mm.
 図示の結果から、比較例のように小径部分12の内径r2を、上流管部15の内径r1よりも小さく設けた場合には、放出口10から放出される段階よりも大幅に減少した粒子数でしか、帯電微粒子水を目的箇所にまで搬送できないことが分かる。 From the results shown in the figure, when the inner diameter r2 of the small-diameter portion 12 is set smaller than the inner diameter r1 of the upstream pipe portion 15 as in the comparative example, the number of particles significantly reduced compared to the stage of discharge from the discharge port 10. However, it can be seen that the charged fine particle water cannot be transported to the target location.
 また、同じく図示の結果から、本実施形態のように小径部分12の内径r2を、上流管部15の内径r1よりも大きく設けた場合には、放出口10から放出される段階からの減少幅を極力抑えた粒子数で、帯電微粒子水を目的箇所にまで搬送できることが分かる。 Similarly, from the results shown in the figure, when the inner diameter r2 of the small-diameter portion 12 is larger than the inner diameter r1 of the upstream pipe portion 15 as in the present embodiment, the reduction width from the stage of discharge from the discharge port 10 is reduced. It can be seen that the charged fine particle water can be transported to the target location with the number of particles suppressed as much as possible.
 これは、図4(b)に矢印bで示すように、小径部分12の最小径部分が上流管部15の内壁よりも内側に突出していると、小径部分12の存在によって空気中に乱れが生じやすくなるからである。ナノメータサイズの微小径を有する帯電微粒子水は、乱れの影響を受けやすいため、導入管11内の空気に乱れが生じると、導入管11の内壁に付着して消滅する割合が増加する。加えて、帯電微粒子水が付着した箇所はマイナス帯電し、このマイナス帯電した部分が、同じくマイナス帯電した帯電微粒子水の流れを阻害するように働く。これらが相乗的に作用するため、比較例の導入管11では、目的箇所に到達するまでの間に帯電微粒子水の粒子数が大幅に減少するものと考えられる。 As shown by an arrow b in FIG. 4B, if the minimum diameter portion of the small diameter portion 12 protrudes inward from the inner wall of the upstream pipe portion 15, the presence of the small diameter portion 12 disturbs the air. This is because it tends to occur. The charged fine particle water having a nanometer-sized minute diameter is easily affected by the disturbance. Therefore, when the air in the introduction pipe 11 is disturbed, the rate of adhering to the inner wall of the introduction pipe 11 and disappearing increases. In addition, the portion where the charged fine particle water adheres is negatively charged, and this negatively charged portion works to inhibit the flow of the negatively charged charged fine particle water. Since these act synergistically, in the introduction pipe 11 of the comparative example, it is considered that the number of charged fine particle water particles is greatly reduced before reaching the target location.
 これに対して、本実施形態の導入管11では、流路途中に蛇腹構造14が存在するものの、小径部分12の最小径部分が上流管部15の内壁よりも内側に突出しないように設けている。そのため、空気中に乱れが生じることが最小限に抑えられる。前述したように、ナノメータサイズの微小径を有する帯電微粒子水は乱れの影響を受けやすいが、本実施形態ではこの乱れを極力抑制し、目的箇所に到達した時点での帯電微粒子水の粒子数の減少幅を、最小限に抑えている。 On the other hand, in the introduction pipe 11 of the present embodiment, although the bellows structure 14 exists in the middle of the flow path, the minimum diameter portion of the small diameter portion 12 is provided so as not to protrude inward from the inner wall of the upstream pipe portion 15. Yes. Therefore, the occurrence of turbulence in the air is minimized. As described above, charged fine particle water having a nanometer-sized minute diameter is easily affected by disturbance, but in this embodiment, this disturbance is suppressed as much as possible, and the number of charged fine particle water particles at the time of reaching the target location is reduced. The amount of decrease is minimized.
 図6には、帯電微粒子水を搬送する目的箇所として、空調装置の送風路20を選択した場合の例を示している。送風路20は、空調装置本体(図示略)で空調した後の空気を外部空間に送り出すための管路であり、この送風路20中に導入管11の下流端を位置させ、導入管11の下流端開口を通じて送風路20内に帯電微粒子水を供給する。これにより、空調装置の送風に乗せて、帯電微粒子水を外部空間へと勢いよく放出することが可能となる。なお、帯電微粒子水を搬送する目的箇所が他の箇所であっても、蛇腹構造14の可撓性及び伸縮性を有効に活用すれば、導入管11を位置ずれなく簡単に接続させることができる。 FIG. 6 shows an example in which the air passage 20 of the air conditioner is selected as the target location for transporting the charged fine particle water. The air passage 20 is a conduit for sending air after being air-conditioned by the air conditioner body (not shown) to the external space. The downstream end of the introduction pipe 11 is positioned in the air passage 20, and Charged particulate water is supplied into the air passage 20 through the downstream end opening. Thereby, it becomes possible to discharge the charged fine particle water to the outside space vigorously in the air blow of the air conditioner. Even if the target location for transporting the charged fine particle water is another location, if the flexibility and stretchability of the bellows structure 14 are effectively utilized, the introduction tube 11 can be easily connected without misalignment. .
 以上述べたように、本実施形態の静電霧化装置は、放電電極1と、放電電極1に水を供給する水供給手段2と、電圧を印加することで放電電極1に供給された水を静電霧化する電圧印加手段3と、静電霧化により生成された帯電微粒子水を放出する放出口10と、放出口10に上流端が接続された導入管11とを備える。導入管11は、小径部分12と大径部分13とが交互に連続する蛇腹構造14をその流路途中に有し、小径部分12の内径r2を、蛇腹構造14よりも上流側の部分の内径r1よりも大きく設けたものである。 As described above, the electrostatic atomizer of this embodiment includes the discharge electrode 1, the water supply means 2 for supplying water to the discharge electrode 1, and the water supplied to the discharge electrode 1 by applying a voltage. Voltage applying means 3 for electrostatic atomization, a discharge port 10 for discharging charged fine particle water generated by electrostatic atomization, and an introduction pipe 11 having an upstream end connected to the discharge port 10. The introduction pipe 11 has a bellows structure 14 in which small-diameter portions 12 and large-diameter portions 13 are alternately continuous in the middle of the flow path, and an inner diameter r2 of the small-diameter portion 12 is set to an inner diameter of a portion upstream of the bellows structure 14. It is larger than r1.
 より詳しくは、本実施形態の静電霧化装置は、放電電極1と、水供給手段2と、電圧印加手段3と、放出口10と、導入管11とを備える。水供給手段2は、放電電極1に水を供給するように構成されている。電圧印加手段3は、放電電極1に電圧を印加するように構成されており、これにより、放電電極1に供給された水を静電霧化する。放電電極1に供給された水が静電霧化されたとき、帯電微粒子水が発生する。放出口10は、静電霧化により生成された帯電微粒子水を放出するように構成されている。導入管11は、上流端を有している。導入管11の上流端は、放出口10に接続されている。導入管11は、流路を有する。導入管11は、その流路の途中に、蛇腹構造14を有している。蛇腹構造14は、小径部分12と大径部分13とが交互に連続している。導入管11は、蛇腹構造14よりも上流に位置する上流部分を有する。小径部分12の内径は、蛇腹構造14よりも上流に位置する上流部分の内径よりも大きい。 More specifically, the electrostatic atomizer of this embodiment includes a discharge electrode 1, a water supply unit 2, a voltage application unit 3, a discharge port 10, and an introduction tube 11. The water supply means 2 is configured to supply water to the discharge electrode 1. The voltage application means 3 is configured to apply a voltage to the discharge electrode 1, thereby electrostatically atomizing water supplied to the discharge electrode 1. When water supplied to the discharge electrode 1 is electrostatically atomized, charged fine particle water is generated. The discharge port 10 is configured to discharge charged fine particle water generated by electrostatic atomization. The introduction pipe 11 has an upstream end. The upstream end of the introduction pipe 11 is connected to the discharge port 10. The introduction tube 11 has a flow path. The introduction pipe 11 has a bellows structure 14 in the middle of the flow path. In the bellows structure 14, the small diameter portions 12 and the large diameter portions 13 are alternately continued. The introduction pipe 11 has an upstream portion located upstream from the bellows structure 14. The inner diameter of the small diameter portion 12 is larger than the inner diameter of the upstream portion located upstream from the bellows structure 14.
 これにより、本実施形態の静電霧化装置では、蛇腹構造14での可撓性や伸縮性を有効活用して、導入管11を目的箇所に位置ずれなく簡単に接続させることができる。しかも、蛇腹構造14を有するにも関わらず、この導入管11中の空気の流れには乱れが生じ難くなっている。そのため、導入管11を通じて目的箇所にまで、帯電微粒子水を高効率で供給することができる。 Thereby, in the electrostatic atomizer of the present embodiment, the introduction tube 11 can be easily connected to the target location without misalignment by effectively utilizing the flexibility and stretchability of the bellows structure 14. Moreover, in spite of having the bellows structure 14, the air flow in the introduction pipe 11 is hardly disturbed. Therefore, the charged fine particle water can be supplied to the target location through the introduction pipe 11 with high efficiency.
 また、導入管11は、上流管部15と下流管部16とを有している。導入管11の流路は、上流管部15と蛇腹構造14と下流管部16とにより定義される。蛇腹構造14は、上流管部15と下流管部16との間に位置する。これにより、蛇腹構造14は、流路の途中に設けられている。上流管部15は、蛇腹構造14から見て、放出口10と同じ側に位置している。 The introduction pipe 11 has an upstream pipe part 15 and a downstream pipe part 16. The flow path of the introduction pipe 11 is defined by the upstream pipe part 15, the bellows structure 14, and the downstream pipe part 16. The bellows structure 14 is located between the upstream pipe portion 15 and the downstream pipe portion 16. Thereby, the bellows structure 14 is provided in the middle of the flow path. The upstream pipe portion 15 is located on the same side as the discharge port 10 when viewed from the bellows structure 14.
 なお、蛇腹構造14よりも上流に位置する上流部分は、上流管部15として定義される。 Note that an upstream portion located upstream from the bellows structure 14 is defined as an upstream pipe portion 15.
 また、全ての小径部分12の内径r2は、蛇腹構造14よりも上流側に位置する上流部分の内径r1よりも大きい。 Further, the inner diameter r2 of all the small diameter portions 12 is larger than the inner diameter r1 of the upstream portion located on the upstream side of the bellows structure 14.
 また、蛇腹構造14の内周面は、蛇腹構造14よりも上流に位置する上流部分の内周面よりも、導入管11の径方向の外側に位置する。より詳しくは、蛇腹構造14の全内周面は、蛇腹構造14よりも上流に位置する上流部分の内周面よりも、導入管11の径方向の外側に位置する。 Further, the inner peripheral surface of the bellows structure 14 is located on the outer side in the radial direction of the introduction pipe 11 with respect to the inner peripheral surface of the upstream portion located upstream of the bellows structure 14. More specifically, the entire inner peripheral surface of the bellows structure 14 is positioned on the outer side in the radial direction of the introduction pipe 11 with respect to the inner peripheral surface of the upstream portion positioned upstream of the bellows structure 14.
 なお、本実施形態の静電霧化装置において、電圧印加手段3は、放電電極1と対向電極との間に所定の電圧を印加するように構成されている。しかしながら、電圧印加手段3は、放電電極1に電圧を印加することにより静電霧化を生じさせるように構成されていれば良い。すなわち、電圧印加手段3は、放電電極1に電圧を印加するように構成されていれば良い。よって、対向電極は省略することができる。 In addition, in the electrostatic atomizer of this embodiment, the voltage application means 3 is comprised so that a predetermined voltage may be applied between the discharge electrode 1 and a counter electrode. However, the voltage application means 3 should just be comprised so that electrostatic atomization may be produced by applying a voltage to the discharge electrode 1. FIG. That is, the voltage applying means 3 may be configured to apply a voltage to the discharge electrode 1. Therefore, the counter electrode can be omitted.
 また、図6に示す例において、導入管11は、その下流端を空調装置の送風路20中に接続させたものであり、空調装置の送風に乗せて帯電微粒子水を外部空間に放出させるように設けている。これにより、空調装置本体とは別の箇所に静電霧化装置本体を備えておき、この静電霧化装置本体から導入管11を通じて高効率で送り込んだ帯電微粒子水を、空調装置の風に乗せて外部空間に勢いよく送り出すことができる。 In addition, in the example shown in FIG. 6, the introduction pipe 11 has a downstream end connected to the air passage 20 of the air conditioner, and discharges charged fine particle water to the external space by being put on the air blow of the air conditioner. Provided. Thereby, the electrostatic atomizer main body is provided in a place different from the air conditioner main body, and the charged fine particle water sent from the electrostatic atomizer main body through the introduction pipe 11 with high efficiency is used as the wind of the air conditioner. It can be sent to the outside space vigorously.
 すなわち、本実施形態の静電霧化装置は、空調装置への取り付けに適する。 That is, the electrostatic atomizer of this embodiment is suitable for attachment to an air conditioner.
 以上、本発明を添付図面に示す実施形態に基づいて説明したが、本発明は前記各例の実施形態に限定されるものではなく、本発明の意図する範囲内であれば、各例において適宜の設計変更を行うことや、各例の構成を適宜組み合わせて適用することが可能である。 As mentioned above, although this invention was demonstrated based on embodiment shown to an accompanying drawing, this invention is not limited to embodiment of each said example, If it is in the range which this invention intends, in each example suitably It is possible to change the design of the above and to apply a combination of the configurations of the examples as appropriate.
 1 放電電極
 2 水供給手段
 3 電圧印加手段
 10 放出口
 11 導入管
 12 小径部分
 13 大径部分
 14 蛇腹構造
 20 送風路
 r1 内径
 r2 内径
DESCRIPTION OF SYMBOLS 1 Discharge electrode 2 Water supply means 3 Voltage application means 10 Discharge port 11 Introductory tube 12 Small diameter part 13 Large diameter part 14 Bellows structure 20 Blower path r1 inner diameter r2 inner diameter

Claims (2)

  1.  放電電極と、前記放電電極に水を供給する水供給手段と、電圧を印加することで前記放電電極に供給された前記水を静電霧化する電圧印加手段と、静電霧化により生成された帯電微粒子水を放出する放出口と、前記放出口に上流端が接続された導入管とを備え、前記導入管は、小径部分と大径部分とが交互に連続する蛇腹構造をその流路途中に有し、前記小径部分の内径を、前記蛇腹構造よりも上流側の部分の内径よりも大きく設けたものであることを特徴とする静電霧化装置。 A discharge electrode; water supply means for supplying water to the discharge electrode; voltage application means for electrostatically atomizing the water supplied to the discharge electrode by applying a voltage; A discharge port that discharges the charged fine particle water, and an introduction pipe having an upstream end connected to the discharge port, and the introduction pipe has a bellows structure in which small-diameter portions and large-diameter portions continue alternately. An electrostatic atomizer characterized by having an inner diameter of the small-diameter portion larger than an inner diameter of a portion upstream of the bellows structure.
  2.  前記導入管は、その下流端を空調装置の送風路中に接続させたものであり、前記空調装置の送風に乗せて前記帯電微粒子水を外部空間に放出させるように設けたことを特徴とする請求項1に記載の静電霧化装置。 The introduction pipe has a downstream end connected to an air passage of an air conditioner, and is provided so as to discharge the charged fine particle water to an external space by being put on the air of the air conditioner. The electrostatic atomizer of Claim 1.
PCT/JP2011/078271 2011-01-07 2011-12-07 Electrostatic atomization device WO2012093543A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011002337A JP2012143679A (en) 2011-01-07 2011-01-07 Electrostatic atomization device
JP2011-002337 2011-01-07

Publications (1)

Publication Number Publication Date
WO2012093543A1 true WO2012093543A1 (en) 2012-07-12

Family

ID=46457405

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078271 WO2012093543A1 (en) 2011-01-07 2011-12-07 Electrostatic atomization device

Country Status (2)

Country Link
JP (1) JP2012143679A (en)
WO (1) WO2012093543A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206655A (en) * 1998-01-20 1999-08-03 Mitsubishi Electric Corp Vacuum cleaner
JP2008093532A (en) * 2006-10-10 2008-04-24 Japan Climate Systems Corp Electrostatic atomizer
JP2010167088A (en) * 2009-01-22 2010-08-05 Anthrax Spores Killer Co Ltd Sterilization and virus deactivation apparatus
JP2010220845A (en) * 2009-03-24 2010-10-07 Toshiba Corp Washing and drying machine

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11206655A (en) * 1998-01-20 1999-08-03 Mitsubishi Electric Corp Vacuum cleaner
JP2008093532A (en) * 2006-10-10 2008-04-24 Japan Climate Systems Corp Electrostatic atomizer
JP2010167088A (en) * 2009-01-22 2010-08-05 Anthrax Spores Killer Co Ltd Sterilization and virus deactivation apparatus
JP2010220845A (en) * 2009-03-24 2010-10-07 Toshiba Corp Washing and drying machine

Also Published As

Publication number Publication date
JP2012143679A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
US9759171B2 (en) Intake device for vehicle
US5847917A (en) Air ionizing apparatus and method
EP1980433B1 (en) Air conditioning system with electrostatic atomizing function
JP5568790B2 (en) Fluid ejection device
JP2010049829A (en) Static eliminator and static elimination method
JP2016537196A (en) Electrostatic spray nozzle assembly
JP2006236763A (en) Sheath air type ionizer
WO2012093543A1 (en) Electrostatic atomization device
WO2012093542A1 (en) Electrostatic atomization device
WO2015173977A1 (en) Ion/ozone wind generation device and method
JP2013045531A (en) Ion generator and air cleaner including the same
JP5919456B2 (en) Electrostatic coating equipment
US10427168B2 (en) Precipitator unit
JP5973408B2 (en) Powder material supply system
JP2004009048A (en) Sprayer
JP2008142661A (en) Static spray apparatus
JP5688651B2 (en) Fine particle conveying device and method for purifying fine particles using this device
WO2013046834A1 (en) Ion generator and air purifier
JP6842287B2 (en) Electrostatic precipitator for tunnel construction
KR102087561B1 (en) Air purifier
JP2020006316A (en) Nozzle for powder coating material
JP2001252596A (en) Electrostatic coating device
JP6756591B2 (en) Exhaust pipe structure
TWI593472B (en) A cleaning device with negative charge discharging by tips
JP2015077558A (en) Effective component generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854689

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854689

Country of ref document: EP

Kind code of ref document: A1