WO2012093542A1 - Electrostatic atomization device - Google Patents

Electrostatic atomization device Download PDF

Info

Publication number
WO2012093542A1
WO2012093542A1 PCT/JP2011/078264 JP2011078264W WO2012093542A1 WO 2012093542 A1 WO2012093542 A1 WO 2012093542A1 JP 2011078264 W JP2011078264 W JP 2011078264W WO 2012093542 A1 WO2012093542 A1 WO 2012093542A1
Authority
WO
WIPO (PCT)
Prior art keywords
fine particle
charged fine
discharge electrode
introduction pipe
water
Prior art date
Application number
PCT/JP2011/078264
Other languages
French (fr)
Japanese (ja)
Inventor
矢野 武志
須川 晃秀
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012093542A1 publication Critical patent/WO2012093542A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F6/00Air-humidification, e.g. cooling by humidification
    • F24F6/12Air-humidification, e.g. cooling by humidification by forming water dispersions in the air
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B5/00Electrostatic spraying apparatus; Spraying apparatus with means for charging the spray electrically; Apparatus for spraying liquids or other fluent materials by other electric means
    • B05B5/025Discharge apparatus, e.g. electrostatic spray guns
    • B05B5/0255Discharge apparatus, e.g. electrostatic spray guns spraying and depositing by electrostatic forces only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05BSPRAYING APPARATUS; ATOMISING APPARATUS; NOZZLES
    • B05B7/00Spraying apparatus for discharge of liquids or other fluent materials from two or more sources, e.g. of liquid and air, of powder and gas
    • B05B7/0012Apparatus for achieving spraying before discharge from the apparatus

Definitions

  • the present invention relates to an electrostatic atomizer capable of discharging charged fine particle water.
  • An electrostatic atomizer capable of generating charged fine particle water by an electrostatic atomization phenomenon and releasing it toward a target location is conventionally known.
  • the charged fine particle water has a small diameter and contains radicals, and exhibits a deodorizing effect on odors adhering to fabrics, an inhibitory effect on viruses and fungi, an inhibitory effect on allelic substances, etc.
  • Japanese Patent Application publication number 2010-89088 (hereinafter referred to as “Document 1”).
  • this charged fine particle water is released into the external space, it may adhere to other members and disappear before reaching the target location. In that case, the effect of charged fine particle water cannot be sufficiently obtained at the target location. Therefore, in order to efficiently supply the charged fine particle water to the target location, the introduction pipe is connected from the location where the charged fine particle water is generated to the target location.
  • the present inventors first considered providing a bellows structure in the middle of the flow path of the introduction pipe.
  • the flow of air in the introduction pipe is likely to be disturbed in the portion of the bellows structure, and as a result, the amount of charged fine particle water supplied to the target location through the introduction pipe is reduced.
  • the present invention has been invented in view of the above-mentioned problems, and can easily connect the introduction tube to the target location without displacement, and the charged fine particle water can be efficiently supplied to the target location through the introduction tube. It is an object to provide an electrostatic atomizer that can be supplied with
  • the electrostatic atomization device of the present invention for solving the above-described problems includes a discharge electrode (1), water supply means (2) configured to supply water to the discharge electrode (1), and a voltage.
  • Voltage application means configured to electrostatically atomize the water supplied to the discharge electrode (1) by being applied to the discharge electrode (1), and charged fine particle water generated by electrostatic atomization
  • an introduction pipe (11) having an upstream end connected to the discharge port (10).
  • the introduction pipe (11) has a bellows structure in which a first portion (12) having a peripheral portion recessed in the radial direction and a second portion (13) having a peripheral portion extending in the radial direction are alternately arranged. Have on the way.
  • the bellows structure is such that the inner diameter of each of the plurality of first portions (12) increases in order as each of the plurality of first portions (12) is positioned more downstream of the introduction pipe (11). Is formed.
  • the introduction pipe has a downstream end connected to the air passage of the air conditioner, and is provided so as to discharge the charged fine particle water to the external space by being fed by the air blow of the air conditioner. .
  • the present invention has an effect that the introduction tube can be easily connected to the target location without being displaced, and charged fine particle water can be supplied to the target location with high efficiency through the introduction tube.
  • FIG. 4A is a partial cross-sectional view of an electrostatic atomizer of a comparative example
  • FIG. 4B is an enlarged view of a main part of FIG. 4A.
  • It is a graph which shows the experimental result of one Embodiment and a comparative example.
  • It is a perspective view which shows the example of installation of the electrostatic atomizer of one Embodiment.
  • FIG. 1 to 3 show an electrostatic atomizer according to an embodiment of the present invention.
  • the basic structure of an electrostatic atomizer is well-known by the above-mentioned literature 1, etc., below, only a simple description is only given about a basic structure.
  • the electrostatic atomizer of this embodiment includes a columnar discharge electrode 1 as shown in FIG. 3 in a box-shaped housing 8 and water supply means 2 configured to supply water to the discharge electrode 1. And a voltage applying means 3 configured to electrostatically atomize water supplied to the discharge electrode 1 by applying a voltage to the discharge electrode 1.
  • the water supply means 2 includes a cooling device 4 configured to generate condensed water on the surface of the discharge electrode 1 by cooling the discharge electrode 1.
  • the cooling device 4 cools the discharge electrode 1 using a plurality of Peltier elements, but may have other configurations as long as the discharge electrode 1 can be cooled. Further, the water supply means 2 may be configured to supply water from other locations such as a water tank to the discharge electrode 1.
  • an annular counter electrode 6 is disposed at a position facing the tip of the discharge electrode 1, and both electrodes 1, 6 are applied so that a predetermined voltage is applied between the counter electrode 6 and the discharge electrode 1.
  • a voltage application unit 7 is connected between them. By applying a predetermined high voltage to the discharge electrode 1 in a state where water is supplied by the voltage application unit 7, negative charges are concentrated on the water held by the discharge electrode 1, and the nanometer is caused by the electrostatic atomization phenomenon. Generate charged fine particle water of a size.
  • the voltage applying unit 3 may be configured so that electrostatic atomization can be caused by voltage application and the counter electrode 6 is not disposed.
  • the charged fine particle water generated at the tip portion of the discharge electrode 1 is discharged through the central hole of the counter electrode 6 (see arrow a in FIG. 3).
  • a discharge cylinder 9 through which the charged fine particle water that has passed through the counter electrode 6 passes is formed on one side surface of the housing 8, and the opening of the discharge cylinder 9 discharges the charged fine particle water to the outside of the housing 8. 10 (see FIG. 1).
  • the electrostatic atomizer of this embodiment further includes an introduction tube 11.
  • One end (upstream end) of the introduction tube 11 is fitted into the discharge tube 9, and the discharge port 10 at the tip of the discharge tube 9 communicates with one end (upstream end) of the introduction tube 11 by this fitting. Connected.
  • the introduction tube 11 is made of a flexible material such as rubber and is provided so as to be bent as a whole. Furthermore, a bellows structure 14 is provided in the middle of the flow path of the introduction pipe 11 in which a first portion having a peripheral portion that is recessed in the radial direction and a second portion having a peripheral portion that extends in the radial direction are alternately formed. ing.
  • the peripheral portions of the first and second portions are circular when viewed from the axial direction of the introduction pipe 11. Specifically, each inner peripheral edge of the plurality of first parts is circular, and each outer peripheral edge of the plurality of second parts is circular.
  • the first portion and the second portion are referred to as a small diameter portion 12 and a large diameter portion 13, respectively.
  • a part upstream of the bellows structure 14 is denoted as “upstream pipe part”, and a part downstream of the bellows structure 14 is denoted as “downstream pipe part”.
  • the upstream pipe part 15 and the downstream pipe part 16 are both circular and are provided so that the inner diameter r3 of the downstream pipe part 16 is larger than the inner diameter r1 of the upstream pipe part 15.
  • a large diameter portion 13 is continuously extended from the downstream end of the upstream pipe portion 15, and the small diameter portion 12, the large diameter portion 13, and the small diameter portion 12 are extended from the large diameter portion 13. ,... Are alternately formed, and downstream pipe portions 16 are continuously extended from the large-diameter portion 13 at the most downstream side.
  • the large-diameter portion (first large-diameter portion) 13 extending in series from the downstream end of the upstream pipe portion 15 has a vertical cross section of a V or U-shaped convex portion
  • the large-diameter portion (first The small-diameter portion (first small-diameter portion) 12 formed from the first large-diameter portion) 13 has a vertical cross-section of a V-shaped or U-shaped recess, and the connection between the first large-diameter portion and the first small-diameter portion.
  • the part is a shared part.
  • a large-diameter portion (n-th large-diameter portion) 13 formed in series from the upstream end of the downstream pipe portion 16 has a vertical cross section of a V or U-shaped convex portion, and the large-diameter portion (n-th n-th portion).
  • the inner diameters r2a, r2b, r2c of the plurality of (for example, three) small-diameter portions 12 forming the bellows structure 14 are all larger than the inner diameter r1 of the upstream pipe section 15, and The downstream pipe portion 16 is smaller than the inner diameter r3. Furthermore, among the inner diameters r2a, r2b, r2c of the plurality (three) of the small diameter portions 12, the smaller diameter portion 12 located on the downstream side is set to have a larger inner diameter.
  • the dimensional relationship of the introduction pipe 11 is r1 ⁇ r2a ⁇ r2b ⁇ r2c ⁇ r3. Therefore, as indicated by a one-dot chain line in FIG. 1, the downstream end of the upstream pipe portion 15, the plurality (three) of small diameter portions 12, and the upstream end of the downstream pipe portion 16 are centered on the axis of the bellows structure 14. Is substantially positioned on the outer peripheral surface of the truncated cone shape that is virtually assumed.
  • the large-diameter portion (first large-diameter portion) 13 extends from the downstream end of the upstream pipe portion 15 in the radial direction, and includes a circumferential portion extending in the radial direction.
  • a large-diameter portion (n-th large-diameter portion) 13 is extended in the radial direction from the upstream end of the rim and includes a peripheral portion.
  • the at least one small-diameter portion 12 between the large-diameter portions is a virtual cone between the downstream end of the upstream pipe portion 15 and the upstream end of the downstream pipe portion 16 from the peripheral portions of the large-diameter portions on both sides.
  • a peripheral portion formed so as to be recessed to the peripheral surface of the table and recessed in the radial direction is provided.
  • the charged fine particle water transported through the introduction pipe 11 is efficiently transported to the target location while being suppressed as much as possible in the middle of the flow path. This is because the turbulence of the air in the bellows structure 14 is unlikely to occur in the introduction tube 11 of the present embodiment, so that the charged fine particle water does not adhere to the inner wall of the introduction tube 11 in the middle of the flow path and is easily transported. Because.
  • FIG. 4 shows an electrostatic atomizer of a comparative example
  • FIG. 5 shows experimental results of the electrostatic atomizer of this comparative example and the electrostatic atomizer of this embodiment. Show.
  • the inner diameters r2a, r2b, r2c of a plurality (three in the example of FIG. 4) of the small diameter portions 12 are the same.
  • FIG. 5 shows the number of charged fine particle water particles discharged from the main body of the electrostatic atomizer (that is, the number of charged fine particle water particles discharged from the discharge port 10 of the housing 8).
  • the number of charged fine particle water particles discharged to the target location through the introduction tube 11 and the number of charged fine particle water particles discharged to the target location through the introduction tube 11 of the comparative example are shown.
  • the introduction pipe 11 of this embodiment and the introduction pipe 11 of the comparative example both have a total length of 250 mm.
  • the bellows structure 14 exists in the middle of the flow path, but the bellows structure 14 is provided so that the diameter of the small diameter portion 12 gradually increases as it moves downstream. ing. Therefore, the air flow in and around the bellows structure 14 is smooth, and the occurrence of turbulence in the air in the introduction pipe 11 is minimized.
  • charged fine particle water having a nanometer-sized minute diameter is easily affected by disturbance, but in this embodiment, this disturbance is suppressed as much as possible, and the number of charged fine particle water particles at the time of reaching the target location is reduced. The amount of decrease is minimized.
  • FIG. 6 shows an example in which the air passage 20 of the air conditioner is selected as the target location for transporting the charged fine particle water.
  • the air passage 20 is a conduit for sending air after being air-conditioned by the air conditioner body (not shown) to the external space.
  • the downstream end of the introduction pipe 11 is positioned in the air passage 20, and Charged particulate water is supplied into the air passage 20 through the downstream end opening. Thereby, it becomes possible to discharge the charged fine particle water to the outside space vigorously in the air blow of the air conditioner. Even if the target location for transporting the charged fine particle water is another location, if the flexibility and stretchability of the bellows structure 14 are effectively utilized, the introduction tube 11 can be easily connected without misalignment. .
  • the electrostatic atomizer of the present embodiment applies the discharge electrode 1, the water supply means 2 configured to supply water to the discharge electrode 1, and the voltage to the discharge electrode 1.
  • the voltage applying means 3 configured to electrostatically atomize the water supplied to the discharge electrode 1, the discharge port 10 for discharging charged fine particle water generated by electrostatic atomization, and the discharge port 10 And an introduction pipe 11 having an upstream end connected thereto.
  • the introduction tube 11 has a bellows structure 14 in which small-diameter portions 12 and large-diameter portions 13 are alternately continued in the middle of the flow path.
  • the bellows structure 14 is formed such that the inner diameters (r2a, r2b, r2c) of the plurality of small-diameter portions 12 increase in order as each of the plurality of small-diameter portions 12 is positioned further downstream of the introduction pipe 11. ing.
  • tube 11 can be simply connected to a target location, without misalignment, effectively utilizing the flexibility and stretchability in the bellows structure 14.
  • the air flow in the introduction pipe 11 is hardly disturbed. Therefore, the charged fine particle water can be supplied to the target location through the introduction pipe 11 with high efficiency.
  • the introduction pipe 11 has a downstream end connected to the air passage 20 of the air conditioner, and discharges charged fine particle water to the external space by being put on the air blow of the air conditioner.
  • the electrostatic atomizer main body is provided in a place different from the air conditioner main body, and the charged fine particle water sent from the electrostatic atomizer main body through the introduction pipe 11 with high efficiency is used as the wind of the air conditioner. It can be sent to the outside space vigorously.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrostatic Spraying Apparatus (AREA)
  • Disinfection, Sterilisation Or Deodorisation Of Air (AREA)

Abstract

An electrostatic atomization device includes an ejection port that ejects electrically charged water particles, and an introduction tube having the upstream end thereof connected to the ejection port, wherein the introduction tube has, in the middle of the flow path thereof, a bellows structure in which small-diameter parts and large-diameter parts are arranged contiguously in an alternating manner. The bellows structure is formed in a manner such that the inner diameters of the respective small-diameter parts become sequentially larger the more downstream of the introduction tube the small-diameter parts are located.

Description

静電霧化装置Electrostatic atomizer
 本発明は、帯電微粒子水を放出することのできる静電霧化装置に関する。 The present invention relates to an electrostatic atomizer capable of discharging charged fine particle water.
 静電霧化現象によって帯電微粒子水を生成し、目的箇所にむけて放出することのできる静電霧化装置が、従来から知られている。帯電微粒子水は、微小径で且つラジカルを含んだものであり、布地などに付着した臭いに対する脱臭効果や、ウィルスやカビ菌に対する抑制効果、アレル物質に対する抑制効果、等を発揮する(日本国特許出願公開番号2010-89088(以下「文献1」という)等参照)。 An electrostatic atomizer capable of generating charged fine particle water by an electrostatic atomization phenomenon and releasing it toward a target location is conventionally known. The charged fine particle water has a small diameter and contains radicals, and exhibits a deodorizing effect on odors adhering to fabrics, an inhibitory effect on viruses and fungi, an inhibitory effect on allelic substances, etc. (Japanese Patent) Application publication number 2010-89088 (hereinafter referred to as “Document 1”).
 この帯電微粒子水は、外部空間に一旦放出されると、目的箇所に至るまでの間に他部材に付着し、消滅することがある。その場合、目的箇所では帯電微粒子水による効果が十分に得られなくなる。そのため、帯電微粒子水を目的箇所にまで効率よく供給するために、帯電微粒子水が生成される箇所からその目的箇所にまで、導入管を繋ぐことが行われる。 ¡Once this charged fine particle water is released into the external space, it may adhere to other members and disappear before reaching the target location. In that case, the effect of charged fine particle water cannot be sufficiently obtained at the target location. Therefore, in order to efficiently supply the charged fine particle water to the target location, the introduction pipe is connected from the location where the charged fine particle water is generated to the target location.
 前記導入管の下流端を目的箇所に嵌合等で接続させるとき、その目的箇所の位置や構造によっては接続が容易でなく、位置ずれ等が生じやすくなるといった問題があった。 When the downstream end of the introduction pipe is connected to the target location by fitting or the like, there is a problem that the connection is not easy depending on the position and structure of the target location, and misalignment is likely to occur.
 そこで、本発明者らは、まず導入管の流路途中に蛇腹構造を備えることを考えた。しかし、この場合、導入管内の空気の流れが蛇腹構造の部分において乱れやすくなり、その結果、導入管を通じて目的箇所にまで供給される帯電微粒子水の量が減少するという問題があった。 Therefore, the present inventors first considered providing a bellows structure in the middle of the flow path of the introduction pipe. However, in this case, there is a problem that the flow of air in the introduction pipe is likely to be disturbed in the portion of the bellows structure, and as a result, the amount of charged fine particle water supplied to the target location through the introduction pipe is reduced.
 本発明は前記問題点に鑑みて発明したものであって、目的箇所にまで導入管を位置ずれなく簡単に接続させることができ、且つ、この導入管を通じて帯電微粒子水を目的箇所にまで高効率で供給することのできる静電霧化装置を提供することを、課題とする。 The present invention has been invented in view of the above-mentioned problems, and can easily connect the introduction tube to the target location without displacement, and the charged fine particle water can be efficiently supplied to the target location through the introduction tube. It is an object to provide an electrostatic atomizer that can be supplied with
 前記課題を解決するための本発明の静電霧化装置は、放電電極(1)と、前記放電電極(1)に水を供給するように構成される水供給手段(2)と、電圧を前記放電電極(1)に印加することで前記放電電極(1)に供給された前記水を静電霧化するように構成される電圧印加手段と、静電霧化により生成された帯電微粒子水を放出するための放出口(10)と、前記放出口(10)に上流端が接続された導入管(11)とを備える。前記導入管(11)は、半径方向に凹む周部を備える第1部分(12)と半径方向に延出される周部を備える第2部分(13)とが交互に連続する蛇腹構造をその流路途中に有する。前記蛇腹構造は、複数の第1部分(12)の各々が前記導入管(11)のより下流側に位置するほど、複数の第1部分(12)の各内径が順により大きくなるように、形成されている。 The electrostatic atomization device of the present invention for solving the above-described problems includes a discharge electrode (1), water supply means (2) configured to supply water to the discharge electrode (1), and a voltage. Voltage application means configured to electrostatically atomize the water supplied to the discharge electrode (1) by being applied to the discharge electrode (1), and charged fine particle water generated by electrostatic atomization And an introduction pipe (11) having an upstream end connected to the discharge port (10). The introduction pipe (11) has a bellows structure in which a first portion (12) having a peripheral portion recessed in the radial direction and a second portion (13) having a peripheral portion extending in the radial direction are alternately arranged. Have on the way. The bellows structure is such that the inner diameter of each of the plurality of first portions (12) increases in order as each of the plurality of first portions (12) is positioned more downstream of the introduction pipe (11). Is formed.
 一実施形態において、前記導入管は、その下流端を空調装置の送風路中に接続させたものであり、前記空調装置の送風に乗せて前記帯電微粒子水を外部空間に放出させるように設けられる。 In one embodiment, the introduction pipe has a downstream end connected to the air passage of the air conditioner, and is provided so as to discharge the charged fine particle water to the external space by being fed by the air blow of the air conditioner. .
 本発明は、目的箇所にまで導入管を位置ずれなく簡単に接続させることができ、且つ、この導入管を通じて帯電微粒子水を目的箇所にまで高効率で供給することができるという効果を奏する。 The present invention has an effect that the introduction tube can be easily connected to the target location without being displaced, and charged fine particle water can be supplied to the target location with high efficiency through the introduction tube.
 本発明の好ましい実施形態をさらに詳細に記述する。本発明の他の特徴および利点は、以下の詳細な記述および添付図面に関連して一層良く理解されるものである。
本発明の一実施形態の静電霧化装置の部分断面図である。 一実施形態の静電霧化装置の側面図である。 一実施形態の静電霧化装置の要部断面図である。 図4Aは比較例の静電霧化装置の部分断面図であり、図4Bは図4Aの要部拡大図である。 一実施形態と比較例の実験結果を示すグラフ図である。 一実施形態の静電霧化装置の設置例を示す斜視図である。
Preferred embodiments of the invention are described in further detail. Other features and advantages of the present invention will be better understood with reference to the following detailed description and accompanying drawings.
It is a fragmentary sectional view of the electrostatic atomizer of one embodiment of the present invention. It is a side view of the electrostatic atomizer of one Embodiment. It is principal part sectional drawing of the electrostatic atomizer of one Embodiment. 4A is a partial cross-sectional view of an electrostatic atomizer of a comparative example, and FIG. 4B is an enlarged view of a main part of FIG. 4A. It is a graph which shows the experimental result of one Embodiment and a comparative example. It is a perspective view which shows the example of installation of the electrostatic atomizer of one Embodiment.
 図1~図3には、本発明の一実施形態の静電霧化装置を示している。なお、静電霧化装置の基本的な構成は前述の文献1等で公知であるから、以下において、基本的な構成については簡単な説明に留める。 1 to 3 show an electrostatic atomizer according to an embodiment of the present invention. In addition, since the basic structure of an electrostatic atomizer is well-known by the above-mentioned literature 1, etc., below, only a simple description is only given about a basic structure.
 本実施形態の静電霧化装置は、箱型のハウジング8内に、図3に示すような柱状の放電電極1と、この放電電極1に水を供給するように構成される水供給手段2と、この放電電極1に電圧を印加することで放電電極1に供給された水を静電霧化するように構成される電圧印加手段3とを備える。 The electrostatic atomizer of this embodiment includes a columnar discharge electrode 1 as shown in FIG. 3 in a box-shaped housing 8 and water supply means 2 configured to supply water to the discharge electrode 1. And a voltage applying means 3 configured to electrostatically atomize water supplied to the discharge electrode 1 by applying a voltage to the discharge electrode 1.
 水供給手段2としては、放電電極1を冷却することで該放電電極1の表面に結露水を生成するように構成される冷却装置4を備えている。この冷却装置4は、複数のペルチェ素子を用いて放電電極1を冷却するものであるが、放電電極1を冷却できるものであれば他の構成であってもよい。また、水供給手段2を、水タンク等の他の箇所から放電電極1にまで水を供給する構成としてもよい。 The water supply means 2 includes a cooling device 4 configured to generate condensed water on the surface of the discharge electrode 1 by cooling the discharge electrode 1. The cooling device 4 cools the discharge electrode 1 using a plurality of Peltier elements, but may have other configurations as long as the discharge electrode 1 can be cooled. Further, the water supply means 2 may be configured to supply water from other locations such as a water tank to the discharge electrode 1.
 電圧印加手段3としては、放電電極1の先端と対向する箇所に環状の対向電極6を配置し、この対向電極6と放電電極1の間に所定電圧を印加するように、両電極1,6間に電圧印加部7を接続させている。この電圧印加部7により、水が供給された状態の放電電極1に所定の高電圧を印加することによって、放電電極1が保持する水にマイナスの電荷を集中させ、静電霧化現象によってナノメータサイズの帯電微粒子水を生成させる。ここで、電圧印加手段3としては、電圧印加によって静電霧化を生じさせることができればよく、対向電極6を配置しない構成であっても構わない。 As the voltage applying means 3, an annular counter electrode 6 is disposed at a position facing the tip of the discharge electrode 1, and both electrodes 1, 6 are applied so that a predetermined voltage is applied between the counter electrode 6 and the discharge electrode 1. A voltage application unit 7 is connected between them. By applying a predetermined high voltage to the discharge electrode 1 in a state where water is supplied by the voltage application unit 7, negative charges are concentrated on the water held by the discharge electrode 1, and the nanometer is caused by the electrostatic atomization phenomenon. Generate charged fine particle water of a size. Here, the voltage applying unit 3 may be configured so that electrostatic atomization can be caused by voltage application and the counter electrode 6 is not disposed.
 放電電極1の先端部分で生じた帯電微粒子水は、対向電極6の中央孔を通過して放出される(図3中の矢印a参照)。ハウジング8の一側面には、対向電極6を通過した帯電微粒子水が通過する放出筒9が形成され、この放出筒9の先端開口が、帯電微粒子水をハウジング8外に放出するための放出口10となっている(図1参照)。 The charged fine particle water generated at the tip portion of the discharge electrode 1 is discharged through the central hole of the counter electrode 6 (see arrow a in FIG. 3). A discharge cylinder 9 through which the charged fine particle water that has passed through the counter electrode 6 passes is formed on one side surface of the housing 8, and the opening of the discharge cylinder 9 discharges the charged fine particle water to the outside of the housing 8. 10 (see FIG. 1).
 本実施形態の静電霧化装置は、導入管11をさらに備えている。導入管11は、その一端(上流端)が前記放出筒9に嵌合されるものであり、この嵌合によって、放出筒9先端の放出口10が導入管11の一端(上流端)に連通接続される。 The electrostatic atomizer of this embodiment further includes an introduction tube 11. One end (upstream end) of the introduction tube 11 is fitted into the discharge tube 9, and the discharge port 10 at the tip of the discharge tube 9 communicates with one end (upstream end) of the introduction tube 11 by this fitting. Connected.
 導入管11はゴム等の可撓性材料によって形成し、全体として屈曲自在に設けている。さらに、この導入管11の流路途中には、半径方向に凹む周部を備える第1部分と半径方向に延出される周部を備える第2部分とが交互に形成された蛇腹構造14を設けている。本実施形態では、第1及び第2部分の各周部は、導入管11の軸方向から見て円状になっている。詳しくは、複数の第1部分の各内周縁は、円状になっており、複数の第2部分の各外周縁は、円状になっている。以下、第1部分及び第2部分をそれぞれ小径部分12及び大径部分13という。また、導入管11のうち蛇腹構造14よりも上流側の部分を「上流管部」として符号15を付し、蛇腹構造14よりも下流側の部分を「下流管部」として符号16を付す。 The introduction tube 11 is made of a flexible material such as rubber and is provided so as to be bent as a whole. Furthermore, a bellows structure 14 is provided in the middle of the flow path of the introduction pipe 11 in which a first portion having a peripheral portion that is recessed in the radial direction and a second portion having a peripheral portion that extends in the radial direction are alternately formed. ing. In the present embodiment, the peripheral portions of the first and second portions are circular when viewed from the axial direction of the introduction pipe 11. Specifically, each inner peripheral edge of the plurality of first parts is circular, and each outer peripheral edge of the plurality of second parts is circular. Hereinafter, the first portion and the second portion are referred to as a small diameter portion 12 and a large diameter portion 13, respectively. Further, in the introduction pipe 11, a part upstream of the bellows structure 14 is denoted as “upstream pipe part”, and a part downstream of the bellows structure 14 is denoted as “downstream pipe part”.
 上流管部15と下流管部16は共に円管状であり、上流管部15の内径r1よりも下流管部16の内径r3のほうが大きくなるように設けている。図1に示すように、蛇腹構造14においては、上流管部15の下流端から一連に大径部分13が延設され、この大径部分13から小径部分12、大径部分13、小径部分12、…と交互に形成され、最下流にある大径部分13から一連に下流管部16が延設されている。ここで、上流管部15の下流端から一連に延設される大径部分(第1の大径部分)13は、V又はU状凸部の縦断面を有し、その大径部分(第1の大径部分)13から形成される小径部分(第1の小径部分)12は、V又はU状凹部の縦断面を有し、そして第1の大径部分と第1の小径部分の連結部分が共有部分となっている。同様に、下流管部16の上流端から一連に形成される大径部分(第nの大径部分)13は、V又はU状凸部の縦断面を有し、その大径部分(第nの大径部分)13から形成される小径部分(第nの小径部分)12は、V又はU状凹部の縦断面を有し、そして第nの大径部分と第nの小径部分の連結部分が共有部分となっている。 The upstream pipe part 15 and the downstream pipe part 16 are both circular and are provided so that the inner diameter r3 of the downstream pipe part 16 is larger than the inner diameter r1 of the upstream pipe part 15. As shown in FIG. 1, in the bellows structure 14, a large diameter portion 13 is continuously extended from the downstream end of the upstream pipe portion 15, and the small diameter portion 12, the large diameter portion 13, and the small diameter portion 12 are extended from the large diameter portion 13. ,... Are alternately formed, and downstream pipe portions 16 are continuously extended from the large-diameter portion 13 at the most downstream side. Here, the large-diameter portion (first large-diameter portion) 13 extending in series from the downstream end of the upstream pipe portion 15 has a vertical cross section of a V or U-shaped convex portion, and the large-diameter portion (first The small-diameter portion (first small-diameter portion) 12 formed from the first large-diameter portion) 13 has a vertical cross-section of a V-shaped or U-shaped recess, and the connection between the first large-diameter portion and the first small-diameter portion. The part is a shared part. Similarly, a large-diameter portion (n-th large-diameter portion) 13 formed in series from the upstream end of the downstream pipe portion 16 has a vertical cross section of a V or U-shaped convex portion, and the large-diameter portion (n-th n-th portion). Small-diameter portion (nth small-diameter portion) 12 formed of a vertical section of a V-shaped or U-shaped recess, and a connecting portion between the n-th large-diameter portion and the n-th small-diameter portion Is a shared part.
 そして、本実施形態の導入管11においては、蛇腹構造14を形成する複数(例えば三つ)の小径部分12の内径r2a,r2b,r2cを、いずれも上流管部15の内径r1より大きく、且つ、下流管部16の内径r3よりも小さく設けている。さらに、複数(三つ)の小径部分12の内径r2a,r2b,r2cのうちでは、下流側に位置する小径部分12ほど内径がより大きくなるように設定している。 In the introduction pipe 11 of the present embodiment, the inner diameters r2a, r2b, r2c of the plurality of (for example, three) small-diameter portions 12 forming the bellows structure 14 are all larger than the inner diameter r1 of the upstream pipe section 15, and The downstream pipe portion 16 is smaller than the inner diameter r3. Furthermore, among the inner diameters r2a, r2b, r2c of the plurality (three) of the small diameter portions 12, the smaller diameter portion 12 located on the downstream side is set to have a larger inner diameter.
 つまり、導入管11の寸法関係は、r1<r2a<r2b<r2c<r3となっている。そのため、図1中に一点鎖線で示すように、上流管部15の下流端と、複数(三つ)の小径部分12と、下流管部16の上流端とが、蛇腹構造14の軸を中心として仮想される円錐台形状の外周面上に略位置するものとなっている。要するに、上流管部15の下流端から大径部分(第1の大径部分)13が、半径方向に延出されて、半径方向に延出される周部を備え、同様に、下流管部16の上流端から大径部分(第nの大径部分)13が半径方向に延出されて周部を備える。そして、それらの大径部分の間における少なくとも1つの小径部分12は、その両側の大径部分の周部から、上流管部15の下流端と下流管部16の上流端との間における仮想円錐台の周面にまで凹むように形成されて半径方向に凹む周部を備える。 That is, the dimensional relationship of the introduction pipe 11 is r1 <r2a <r2b <r2c <r3. Therefore, as indicated by a one-dot chain line in FIG. 1, the downstream end of the upstream pipe portion 15, the plurality (three) of small diameter portions 12, and the upstream end of the downstream pipe portion 16 are centered on the axis of the bellows structure 14. Is substantially positioned on the outer peripheral surface of the truncated cone shape that is virtually assumed. In short, the large-diameter portion (first large-diameter portion) 13 extends from the downstream end of the upstream pipe portion 15 in the radial direction, and includes a circumferential portion extending in the radial direction. A large-diameter portion (n-th large-diameter portion) 13 is extended in the radial direction from the upstream end of the rim and includes a peripheral portion. The at least one small-diameter portion 12 between the large-diameter portions is a virtual cone between the downstream end of the upstream pipe portion 15 and the upstream end of the downstream pipe portion 16 from the peripheral portions of the large-diameter portions on both sides. A peripheral portion formed so as to be recessed to the peripheral surface of the table and recessed in the radial direction is provided.
 この寸法関係にあることで、導入管11を通じて搬送される帯電微粒子水は、その流路途中で消滅することが極力抑制されながら、目的箇所にまで効率的に搬送される。これは、本実施形態の導入管11では蛇腹構造14での空気の乱れが生じにくく、そのため、帯電微粒子水が流路途中で導入管11の内壁に付着することなく、円滑に搬送されやすくなるからである。 Because of this dimensional relationship, the charged fine particle water transported through the introduction pipe 11 is efficiently transported to the target location while being suppressed as much as possible in the middle of the flow path. This is because the turbulence of the air in the bellows structure 14 is unlikely to occur in the introduction tube 11 of the present embodiment, so that the charged fine particle water does not adhere to the inner wall of the introduction tube 11 in the middle of the flow path and is easily transported. Because.
 この点につき、図4には比較例の静電霧化装置を示し、図5には、この比較例の静電霧化装置と本実施形態の静電霧化装置の、それぞれの実験結果を示している。 In this regard, FIG. 4 shows an electrostatic atomizer of a comparative example, and FIG. 5 shows experimental results of the electrostatic atomizer of this comparative example and the electrostatic atomizer of this embodiment. Show.
 図4に示す比較例の静電霧化装置では、蛇腹構造14を有する導入管11の寸法関係のみを、本実施形態の静電霧化装置と相違するように設けている。具体的には、複数(図4の例では三つ)の小径部分12の内径r2a,r2b,r2cを同一としている。そして、同一である内径r2a,r2b,r2cを、上流管部15及び下流管部16の内径r1,r3よりも小さく設けている。即ち、比較例での導入管11の寸法関係は、r2a=r2b=r2c<r1=r3である。 In the electrostatic atomizer of the comparative example shown in FIG. 4, only the dimensional relationship of the introduction tube 11 having the bellows structure 14 is provided so as to be different from the electrostatic atomizer of this embodiment. Specifically, the inner diameters r2a, r2b, r2c of a plurality (three in the example of FIG. 4) of the small diameter portions 12 are the same. The same inner diameters r2a, r2b, and r2c are provided smaller than the inner diameters r1 and r3 of the upstream pipe portion 15 and the downstream pipe portion 16. That is, the dimensional relationship of the introduction pipe 11 in the comparative example is r2a = r2b = r2c <r1 = r3.
 図5には、静電霧化装置本体から放出される帯電微粒子水の粒子数(つまり、ハウジング8の放出口10から放出される段階での帯電微粒子水の粒子数)と、本実施形態の導入管11を通じて目的箇所に放出される帯電微粒子水の粒子数と、比較例の導入管11を通じて目的箇所に放出される帯電微粒子水の粒子数を、それぞれ示している。本実施形態の導入管11と、比較例の導入管11は、いずれも全長を250mmとしている。 FIG. 5 shows the number of charged fine particle water particles discharged from the main body of the electrostatic atomizer (that is, the number of charged fine particle water particles discharged from the discharge port 10 of the housing 8). The number of charged fine particle water particles discharged to the target location through the introduction tube 11 and the number of charged fine particle water particles discharged to the target location through the introduction tube 11 of the comparative example are shown. The introduction pipe 11 of this embodiment and the introduction pipe 11 of the comparative example both have a total length of 250 mm.
 図示の結果から、比較例のように複数の小径部分12の内径r2a,r2b,r2cを同一とし、上流管部15の内径r1よりも小さく設けた場合には、放出口10から放出される段階よりも大幅に減少した粒子数でしか、帯電微粒子水を目的箇所にまで搬送できないことが分かる。 From the results shown in the figure, when the inner diameters r2a, r2b, r2c of the plurality of small-diameter portions 12 are made the same and smaller than the inner diameter r1 of the upstream pipe portion 15 as in the comparative example, the stage is discharged from the discharge port 10. It can be seen that the charged fine particle water can be transported to the target location only with a significantly reduced number of particles.
 また、同じく図示の結果から、本実施形態のように複数の小径部分12の内径r2a,r2b,r2cを設定した場合には、放出口10から放出される段階からの減少幅を極力抑えた粒子数で、帯電微粒子水を目的箇所にまで搬送できることが分かる。 Similarly, from the results shown in the figure, when the inner diameters r2a, r2b, r2c of the plurality of small-diameter portions 12 are set as in the present embodiment, particles with a reduced width from the stage of discharge from the discharge port 10 are suppressed as much as possible. From the figure, it can be seen that the charged fine particle water can be conveyed to the target location.
 これは、図4Bに矢印bで示すように、小径部分12の存在によって空気中に乱れが生じやすくなるからである。ナノメータサイズの微小径を有する帯電微粒子水は、乱れの影響を受けやすいため、導入管11内の空気に乱れが生じると、導入管11の内壁に付着して消滅する割合が増加する。加えて、帯電微粒子水が付着した箇所はマイナス帯電し、このマイナス帯電した部分が、同じくマイナス帯電した帯電微粒子水の流れを阻害するように働く。これらが相乗的に作用するため、比較例の導入管11では、目的箇所に到達するまでの間に帯電微粒子水の粒子数が大幅に減少するものと考えられる。 This is because the presence of the small-diameter portion 12 tends to cause turbulence in the air, as indicated by the arrow b in FIG. 4B. The charged fine particle water having a nanometer-sized minute diameter is easily affected by the disturbance. Therefore, when the air in the introduction pipe 11 is disturbed, the rate of adhering to the inner wall of the introduction pipe 11 and disappearing increases. In addition, the portion where the charged fine particle water adheres is negatively charged, and this negatively charged portion works to inhibit the flow of the negatively charged charged fine particle water. Since these act synergistically, in the introduction pipe 11 of the comparative example, it is considered that the number of charged fine particle water particles is greatly reduced before reaching the target location.
 これに対して、本実施形態の導入管11では、流路途中に蛇腹構造14が存在するものの、この蛇腹構造14においては下流側に移動するにつれて小径部分12の径が徐々に広がるように設けている。そのため、蛇腹構造14及びその周辺での空気の流れが円滑となり、導入管11内の空気中に乱れが生じることが最小限に抑えられる。前述したように、ナノメータサイズの微小径を有する帯電微粒子水は乱れの影響を受けやすいが、本実施形態ではこの乱れを極力抑制し、目的箇所に到達した時点での帯電微粒子水の粒子数の減少幅を、最小限に抑えている。 On the other hand, in the introduction pipe 11 of the present embodiment, the bellows structure 14 exists in the middle of the flow path, but the bellows structure 14 is provided so that the diameter of the small diameter portion 12 gradually increases as it moves downstream. ing. Therefore, the air flow in and around the bellows structure 14 is smooth, and the occurrence of turbulence in the air in the introduction pipe 11 is minimized. As described above, charged fine particle water having a nanometer-sized minute diameter is easily affected by disturbance, but in this embodiment, this disturbance is suppressed as much as possible, and the number of charged fine particle water particles at the time of reaching the target location is reduced. The amount of decrease is minimized.
 図6には、帯電微粒子水を搬送する目的箇所として、空調装置の送風路20を選択した場合の例を示している。送風路20は、空調装置本体(図示略)で空調した後の空気を外部空間に送り出すための管路であり、この送風路20中に導入管11の下流端を位置させ、導入管11の下流端開口を通じて送風路20内に帯電微粒子水を供給する。これにより、空調装置の送風に乗せて、帯電微粒子水を外部空間へと勢いよく放出することが可能となる。なお、帯電微粒子水を搬送する目的箇所が他の箇所であっても、蛇腹構造14の可撓性及び伸縮性を有効に活用すれば、導入管11を位置ずれなく簡単に接続させることができる。 FIG. 6 shows an example in which the air passage 20 of the air conditioner is selected as the target location for transporting the charged fine particle water. The air passage 20 is a conduit for sending air after being air-conditioned by the air conditioner body (not shown) to the external space. The downstream end of the introduction pipe 11 is positioned in the air passage 20, and Charged particulate water is supplied into the air passage 20 through the downstream end opening. Thereby, it becomes possible to discharge the charged fine particle water to the outside space vigorously in the air blow of the air conditioner. Even if the target location for transporting the charged fine particle water is another location, if the flexibility and stretchability of the bellows structure 14 are effectively utilized, the introduction tube 11 can be easily connected without misalignment. .
 以上述べたように、本実施形態の静電霧化装置は、放電電極1と、放電電極1に水を供給するように構成される水供給手段2と、電圧を放電電極1に印加することで放電電極1に供給された水を静電霧化するように構成される電圧印加手段3と、静電霧化により生成された帯電微粒子水を放出するための放出口10と、放出口10に上流端が接続された導入管11とを備える。導入管11は、小径部分12と大径部分13とが交互に連続する蛇腹構造14をその流路途中に有する。蛇腹構造14は、複数の小径部分12の各々が導入管11のより下流側に位置するほど、複数の小径部分12の各内径(r2a,r2b,r2c)が順により大きくなるように、形成されている。これにより、本実施形態の静電霧化装置では、蛇腹構造14での可撓性や伸縮性を有効活用して、導入管11を目的箇所に位置ずれなく簡単に接続させることができる。しかも、蛇腹構造14を有するにも関わらず、この導入管11中の空気の流れには乱れが生じ難くなっている。そのため、導入管11を通じて目的箇所にまで、帯電微粒子水を高効率で供給することができる。 As described above, the electrostatic atomizer of the present embodiment applies the discharge electrode 1, the water supply means 2 configured to supply water to the discharge electrode 1, and the voltage to the discharge electrode 1. The voltage applying means 3 configured to electrostatically atomize the water supplied to the discharge electrode 1, the discharge port 10 for discharging charged fine particle water generated by electrostatic atomization, and the discharge port 10 And an introduction pipe 11 having an upstream end connected thereto. The introduction tube 11 has a bellows structure 14 in which small-diameter portions 12 and large-diameter portions 13 are alternately continued in the middle of the flow path. The bellows structure 14 is formed such that the inner diameters (r2a, r2b, r2c) of the plurality of small-diameter portions 12 increase in order as each of the plurality of small-diameter portions 12 is positioned further downstream of the introduction pipe 11. ing. Thereby, in the electrostatic atomizer of this embodiment, the introductory pipe | tube 11 can be simply connected to a target location, without misalignment, effectively utilizing the flexibility and stretchability in the bellows structure 14. Moreover, in spite of having the bellows structure 14, the air flow in the introduction pipe 11 is hardly disturbed. Therefore, the charged fine particle water can be supplied to the target location through the introduction pipe 11 with high efficiency.
 また、図6に示す例において、導入管11は、その下流端を空調装置の送風路20中に接続させたものであり、空調装置の送風に乗せて帯電微粒子水を外部空間に放出させるように設けている。これにより、空調装置本体とは別の箇所に静電霧化装置本体を備えておき、この静電霧化装置本体から導入管11を通じて高効率で送り込んだ帯電微粒子水を、空調装置の風に乗せて外部空間に勢いよく送り出すことができる。 In addition, in the example shown in FIG. 6, the introduction pipe 11 has a downstream end connected to the air passage 20 of the air conditioner, and discharges charged fine particle water to the external space by being put on the air blow of the air conditioner. Provided. Thereby, the electrostatic atomizer main body is provided in a place different from the air conditioner main body, and the charged fine particle water sent from the electrostatic atomizer main body through the introduction pipe 11 with high efficiency is used as the wind of the air conditioner. It can be sent to the outside space vigorously.
 以上、本発明を添付図面に示す実施形態に基づいて説明したが、本発明は前記各例の実施形態に限定されるものではなく、本発明の意図する範囲内であれば、各例において適宜の設計変更を行うことや、各例の構成を適宜組み合わせて適用することが可能である。 As mentioned above, although this invention was demonstrated based on embodiment shown to an accompanying drawing, this invention is not limited to embodiment of each said example, If it is in the range which this invention intends, in each example suitably It is possible to change the design of the above and to apply a combination of the configurations of the examples as appropriate.

Claims (2)

  1.  放電電極と、
     前記放電電極に水を供給するように構成される水供給手段と、
     電圧を前記放電電極に印加することで前記放電電極に供給された前記水を静電霧化するように構成される電圧印加手段と、
     静電霧化により生成された帯電微粒子水を放出するための放出口と、
     前記放出口に上流端が接続された導入管と
     を備え、
     前記導入管は、半径方向に凹む周部を備える第1部分と半径方向に延出される周部を備える第2部分とが交互に連続する蛇腹構造をその流路途中に有し、
     前記蛇腹構造は、複数の第1部分の各々が前記導入管のより下流側に位置するほど、複数の第1部分の各内径が順により大きくなるように、形成されている
     ことを特徴とする静電霧化装置。
    A discharge electrode;
    Water supply means configured to supply water to the discharge electrode;
    Voltage application means configured to electrostatically atomize the water supplied to the discharge electrode by applying a voltage to the discharge electrode;
    A discharge port for discharging charged fine particle water generated by electrostatic atomization;
    An inlet pipe having an upstream end connected to the discharge port,
    The introduction pipe has a bellows structure in the middle of the flow path, in which a first portion having a peripheral portion recessed in the radial direction and a second portion having a peripheral portion extending in the radial direction are alternately continued,
    The bellows structure is formed such that the inner diameters of the plurality of first portions increase in order as each of the plurality of first portions is located downstream of the introduction pipe. Electrostatic atomizer.
  2.  前記導入管は、その下流端を空調装置の送風路中に接続させたものであり、前記空調装置の送風に乗せて前記帯電微粒子水を外部空間に放出させるように設けたことを特徴とする請求項1に記載の静電霧化装置。 The introduction pipe has a downstream end connected to an air passage of an air conditioner, and is provided so as to discharge the charged fine particle water to an external space by being put on the air of the air conditioner. The electrostatic atomizer of Claim 1.
PCT/JP2011/078264 2011-01-07 2011-12-07 Electrostatic atomization device WO2012093542A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011-002338 2011-01-07
JP2011002338A JP2012143680A (en) 2011-01-07 2011-01-07 Electrostatic atomization device

Publications (1)

Publication Number Publication Date
WO2012093542A1 true WO2012093542A1 (en) 2012-07-12

Family

ID=46457404

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078264 WO2012093542A1 (en) 2011-01-07 2011-12-07 Electrostatic atomization device

Country Status (2)

Country Link
JP (1) JP2012143680A (en)
WO (1) WO2012093542A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029884A (en) * 2018-08-21 2020-02-27 トヨタ自動車株式会社 Air hose

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193713U (en) * 1983-06-09 1984-12-22 スズキ株式会社 Connection structure of air conditioner ducts
JPS6372444U (en) * 1986-10-29 1988-05-14
JP2007230176A (en) * 2006-03-03 2007-09-13 Gomuno Inaki Kk Bellows-shaped duct and its molding process
JP2007263153A (en) * 2006-03-27 2007-10-11 Toyoda Gosei Co Ltd Constant velocity joint boot
JP2008093532A (en) * 2006-10-10 2008-04-24 Japan Climate Systems Corp Electrostatic atomizer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59193713U (en) * 1983-06-09 1984-12-22 スズキ株式会社 Connection structure of air conditioner ducts
JPS6372444U (en) * 1986-10-29 1988-05-14
JP2007230176A (en) * 2006-03-03 2007-09-13 Gomuno Inaki Kk Bellows-shaped duct and its molding process
JP2007263153A (en) * 2006-03-27 2007-10-11 Toyoda Gosei Co Ltd Constant velocity joint boot
JP2008093532A (en) * 2006-10-10 2008-04-24 Japan Climate Systems Corp Electrostatic atomizer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020029884A (en) * 2018-08-21 2020-02-27 トヨタ自動車株式会社 Air hose
JP7176887B2 (en) 2018-08-21 2022-11-22 トヨタ自動車株式会社 air hose

Also Published As

Publication number Publication date
JP2012143680A (en) 2012-08-02

Similar Documents

Publication Publication Date Title
US9759171B2 (en) Intake device for vehicle
JP5319203B2 (en) Static eliminator
JP5568790B2 (en) Fluid ejection device
US20210207629A1 (en) Vortex ring generation device
US20180185859A1 (en) Painting method and device for same
US7163572B1 (en) Air purifier
WO2012093542A1 (en) Electrostatic atomization device
JP2004330190A (en) Spray apparatus for coating material, in particular coating powder
WO2012093543A1 (en) Electrostatic atomization device
JP2011129513A5 (en)
JP2019217473A (en) Rotary atomization head and coating application device
US10427168B2 (en) Precipitator unit
WO2017141964A1 (en) Rotary atomizing head-type coater
TW201534014A (en) Linear ionizing bar with configurable nozzles
JP6619181B2 (en) Static eliminator
ES2828068T3 (en) Electrostatic powder projection head
JP5973408B2 (en) Powder material supply system
JP2004009048A (en) Sprayer
WO2020111894A3 (en) Plasma sterilization module and air purifier having same
JP4543436B2 (en) Ion generator and static eliminator
JP6842287B2 (en) Electrostatic precipitator for tunnel construction
JP2020006316A (en) Nozzle for powder coating material
KR20230062000A (en) Swirl flow generator
JP2010114021A (en) Nozzle for static eliminator
JP2013084404A (en) Ionizer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854570

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854570

Country of ref document: EP

Kind code of ref document: A1