WO2012093184A1 - Method and unit for the production of thin glass sheets - Google Patents

Method and unit for the production of thin glass sheets Download PDF

Info

Publication number
WO2012093184A1
WO2012093184A1 PCT/ES2011/070006 ES2011070006W WO2012093184A1 WO 2012093184 A1 WO2012093184 A1 WO 2012093184A1 ES 2011070006 W ES2011070006 W ES 2011070006W WO 2012093184 A1 WO2012093184 A1 WO 2012093184A1
Authority
WO
WIPO (PCT)
Prior art keywords
glass
molten glass
sheet
molten
forming body
Prior art date
Application number
PCT/ES2011/070006
Other languages
Spanish (es)
French (fr)
Inventor
Luis Grijalba Goicoechea
Original Assignee
Luis Grijalba Goicoechea
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luis Grijalba Goicoechea filed Critical Luis Grijalba Goicoechea
Priority to PCT/ES2011/070006 priority Critical patent/WO2012093184A1/en
Priority to TW101100730A priority patent/TW201233644A/en
Publication of WO2012093184A1 publication Critical patent/WO2012093184A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/06Forming glass sheets
    • C03B17/064Forming glass sheets by the overflow downdraw fusion process; Isopipes therefor
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B17/00Forming molten glass by flowing-out, pushing-out, extruding or drawing downwardly or laterally from forming slits or by overflowing over lips
    • C03B17/02Forming molten glass coated with coloured layers; Forming molten glass of different compositions or layers; Forming molten glass comprising reinforcements or inserts
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B7/00Distributors for the molten glass; Means for taking-off charges of molten glass; Producing the gob, e.g. controlling the gob shape, weight or delivery tact
    • C03B7/08Feeder spouts, e.g. gob feeders
    • C03B7/092Stirring devices; Homogenisation

Definitions

  • the present invention fits within the glass industry and has application on the thin flat glass usable in the TFT-LCD screens, and in the field of electronics.
  • the process for manufacturing glass sheets known as the "float method” (US 3266880, US 3771985, EP 1739062, and US 2008/0223079) uses a molten tin bath on which the glass floats at the same time as it is cooled and Stretched to form a solid sheet of glass.
  • each of the two surfaces of the molten glass is in different media: a) the lower one in molten tin; and b) the upper one in the atmosphere of the tin bath.
  • This fact causes different heat exchanges to be generated through each of the two surfaces of the glass during cooling.
  • there is a contamination of the surfaces of the glass sheet due to the diffusion of the chemical components coming from the bath of molten tin.
  • the "overflow downdraw” method (US 3338696; US 3682609; WO 2005/121 182) is based on a main conformation apparatus, called "isopipe", which performs at the same time the functions of: a) static distribution of a flow of glass in two flat streams of molten glass; b) cooling of the glass; and c) joining or melting the two said currents of molten glass to form a single stream of glass capable of being stretched.
  • FIGURE 1 a shaped body or "isopipe” (11) is shown; the molten glass, coming from an oven, enters the area (12) communicating with the throat (13) carved in the upper area of the forming body (11); this forming body has two side walls (14) through whose upper edges (15) the molten glass overflows. The glass advances through the throat (13) and overflows by its edges (15) while decreasing its cross section with a flow rate per unit length that must be constant.
  • the molten glass flows in two streams (16) on the outside of the two side walls of the forming body (11) at the same time it is cooled, until it reaches its lower vertex (17) where the two currents meet to form a single sheet of molten glass (18), which is stretched to a solid state.
  • the two surfaces that form the sheet come from inside the mass of molten glass that has flowed down the throat and overflowed over its side walls without having contacted solid surfaces.
  • the patent (US 3338696) still represents the state of the art practiced today; however, the "overflow downdraw" process has some limitations, as indicated in the patent (US 7155935).
  • a first drawback of the method "overflow downdraw” is the variation of the thickness of the glass sheet because of the complex distribution of the flow of liquid glass that overflows by the two laterals of the throat of the body of formed or "isopipe”; This distribution is sensitive to phenomena inherent to the process, such as: a) the variation of the temperature distribution of the molten glass at the entrance of the "isopipe", since each point of the entrance section follows its own trajectory down the throat and always goes to the same place of the formed sheet; b) the variation of the glass flow rate from the melting furnace, since the glass flow overflowing the two sides of the "isopipe” is not a linear function of the height of the glass over the overflows, and the transient variations of the flow and temperature cause variations in the thickness of the final glass sheet; c) the hot plastic deformation of the "isopipe” itself, since the warpage arrow in the main body modifies the overflow heights of the molten glass during a manufacturing campaign so that the thickness can vary undesirably; d
  • a second disadvantage of the method "overflow downdraw” is the difficulty of extrapolation to greater extractions and dimensions of sheets due to the warping of the "isopipe", of the hot deformation, and of the dimensions of the throat, whose side walls are subjected to stresses caused by the hydraulic pressure of the molten glass.
  • supplementary couplings are used to increase the width of the fabricated glass sheet (WO 2006/1 15792).
  • the method of the present invention and the design of the corresponding manufacturing facility solve the drawbacks of the present methods of manufacturing thin flat glass.
  • the "float” method during the formation of the molten glass sheet, its two surfaces are in two different media, with different heat exchange coefficients, which causes a variation in the thickness of the glass sheet and it makes a subsequent polishing process necessary.
  • the "overflow downdraw” method a single forming body performs a static distribution of the molten glass in its upper part and in its lower part the cooling of the molten glass, hindering the uniformity in the thickness of the final sheet, extrapolation to larger dimensions, and the duration of the manufacturing period due to devitrification of the glass.
  • FIGURE 1 Views and cross section of a forming apparatus
  • FIGURE 2 Perspective view of an installation for the manufacture of thin sheets of glass according to the method of the invention.
  • FIGURE 3 Overall views of a manufacturing system with a dosing group, with the driving modules, and with a forming device provided with a rotating cylinder cleaning element.
  • FIGURE 4 Overall views of a manufacturing system with a dosing group, with the driving modules, and with a forming device provided with a submerged plate cleaning element.
  • FIGURE 5 Section of profile and view in plan of a module of impulsion of glass with two rotating devices.
  • FIGURE 6 Profile section and plan view of a glass impulse module with a single rotating device.
  • FIG. 7. View of a rotating cylinder cleaning element, which floats on the molten glass contained in the upper concave part of a forming body.
  • FIGURE 8 View of a rotating cylinder cleaning element and operating detail on a forming body with a concavity in its upper part and with a great relation between its height and its width.
  • FIGURE 9 View of a rotary cylinder cleaning element held at its ends, and detail of its operation on a forming body whose upper part is smooth.
  • FIGURE 10 View of a submerged plate cleaning element and detail of its operation on the forming body.
  • FIGURE 1 Assembly diagram and partial views of a manufacturing system with two dosage groups for the same glass from a single oven, and with a forming device provided with a forming body.
  • FIGURE 12. Assembly diagram and partial views of a manufacturing system with two dosing groups for two glasses from two different ovens, with a forming device, and view of an enlarged detail of the thickness of the final composite glass sheet of two different glasses.
  • FIGURE 13 View of the cross section of two dosing groups with their drive modules, rotating devices and overflows; and of a body of formed.
  • NUMBERING USED IN THE FIGURES 21 melting vessel, 22 vitrifiable materials, 23 refining vessel, 24 inlet channel, 25 level regulator, 26 dosing group A, 27 glass discharge module, 28 partition walls of the modules of impulsion, 29 rotating devices, 30 blades or blades of the rotating devices, 31 volume of direct glass, 32 volume of reflowed glass, 33 bottom infrastructure of the impulsion module, 34 aspiration zone, 35 impulsion zone, 36 overflow, 37 weir, 38 flat stream of molten glass, 39 irregular inner surface, 40 clean outer surface, 41 rotating cylinder cleaning element, 42 forming body, 43 first edge of the forming body, 44 second edge of the forming body, 45 concavity of the forming body, 46 minimum spacing between the rotating cylinder and the forming body, 47 lower vertex of the forming body, 48 running through the first side of the forming body, forming ear, 49
  • the process of the present invention for the manufacture of thin sheets of glass comprises the following parts: a) a melting furnace to obtain a molten glass; b) a dosing group to produce a flat stream of molten glass with uniform flow per unit width; c) a forming device for forming a continuous sheet of solid glass; and, d) cutting means for obtaining glass articles of certain dimensions.
  • the method of the present invention uses a dynamic distribution in order to control and regulate the flow of glass in each glass drive module belonging to the dosing group ; in this way, the thickness of as many areas of the final glass sheet can be regulated as the number of glass drive modules comprise the dosing group.
  • the regulation of the flow of glass that passes through each impulsion module is done by varying the speed of rotation and / or the position of the axes of rotation of the rotating devices belonging to said module in order to modify the hydraulic height of the glass and the flow of molten glass that passes through the overflow corresponding to the drive module.
  • the main function of the rotating devices is to dose and regulate the mass flow of glass in each impulse module.
  • the rotating devices perform the function of physically and thermally mixing and homogenizing the molten glass, directly influencing the final quality of the manufactured articles.
  • FIGURE 2 shows a perspective view of an installation for the manufacture of thin sheets of glass according to the method of the invention.
  • each embodiment consists of an oven (21) for melting the vitrifiable materials (22) and a refining container (23); then, the molten glass passes through a channel (24) to reach the dosing group (26), whose object is to distribute and regulate the flow of glass to convert it into a flat stream (38) of molten glass whose width is of the final glass sheet and whose glass flow is controlled and regulated by several glass drive modules (27) located in parallel, whose number is five in the representation of both figures; the glass discharge modules are separated from each other by side walls (28) and comprise rotating devices (29) that perform the function of driving the molten glass, see FIGURES 5 and 6; these devices produce the increase of the hydraulic height of molten glass with respect to the inlet channel and at the same time regulating the flow that passes through the overflow (36) belonging to each impulsion module.
  • the separation walls (28) continue to the crest of the overflow (36), and when these walls disappear, the molten glass corresponding to each of the drive modules joins in the form of a single flat stream (38) of molten glass which flows and falls from the landfill (37) to move to the next forming step in the forming device.
  • the cleaning element comprises a rotating cylinder, FIGURES 7, 8, and 9;
  • the cleaning element comprises a flat plate partially submerged in the glass, FIGURE 10.
  • FIGS. 1 and 12 overall views of two embodiments of the method of the invention are shown, in which two different dosing groups (26 and 60) are used with their respective drive modules (27), rotating devices (29), partition walls (28) and overflows to form two flat streams of molten glass (38 and 61).
  • the two dosing groups (26 and 60) are partially supported by a structure (65) that is independent and is separated from the area (64) that integrates and supports the forming body, see FIGURE 13.
  • the glass sheet is stretched by means of the traction rollers (51).
  • FIGURE 12 shows a particular embodiment of the invention using two melting furnaces, furnace A (21) and furnace B (66), for the production of two different glasses in order to obtain a thin sheet of glass formed by two different glasses, glass A and glass B, each occupying half the thickness of said glass sheet from the apex (47) of the forming body (64).
  • the method of the invention allows to have some embodiments, such as:
  • the present invention provides a process for the manufacture of thin flat glass of high quality comprising the following steps: 1) melting and refining vitrifiable materials to obtain a mass of molten and refined glass, using a melting furnace with an outlet channel what it comprises a level regulator to keep the hydraulic height of the molten glass constant; 2) distribution and dosing of the glass in a flat stream of molten glass with uniform flow rate per unit width, using a dosing group comprising several glass drive modules, each of these modules consisting of at least one rotating device and with an overflow, at the end the glass of all the impulse modules is joined to obtain the aforementioned flat stream of molten glass, which passes to the next stage by means of a weir; 3) transforming a flat stream of molten glass into a continuous sheet of solid glass, using a forming device comprising a forming body and a pulling means, and, optionally, a "cleaning" element for modifying the lower face of the flat stream of molten glass; and 4) fractionation of the continuous sheet
  • the method of the invention begins, see overall views in the
  • FIGURES 3, 4, 11, and 12 from the melting of the vitrifiable materials (22) in a melting vessel (21) and the refining of the molten glass in a refining vessel (23); the molten glass is led through a channel (24) to the dosing group (26); in the channel (24) a constant glass level is maintained, Ho, using a level regulator (25), constituted by a lateral channel / weir, FIGURES 5 and 6.
  • the dosing group collects the molten glass from the channel (24) and distributes it between several impulse modules (27), five in the representation of the figures, located in parallel; each of the glass discharge modules (27) is separated from the border modules by means of partition walls (28) constructed of an alloy of platinum and / or rhodium.
  • the glass is driven by means of at least one rotating device (29) which controls and controls the hydraulic height Hi of molten glass before passing through an overflow (36) belonging to the same drive module (27); for each overflow flows only the volume of glass already controlled and regulated by the devices Swivel (29) of the drive module.
  • the walls (28) that separate each of the drive modules from each other continue to the crest of the overflow (36), and, when these walls (28) disappear, all the molten glass corresponding to each of the drive modules it joins in the form of a single flat stream of molten glass (38) that flows and falls from the landfill (37) to move on to the next forming phase.
  • the dosing group (26) and the glass discharge modules (27) may be partially supported on their infrastructure (33) and / or partially suspended from the top of the side walls (28).
  • the dosing of the molten glass flow rate is carried out by the rotating devices (29), which cause the molten glass to move from the inlet channel (24), which performs the function of suction zone with a constant glass height Ho, up to the discharge zone (35), with a glass height Hi, where the overflow (36) is located.
  • the space between the rotating devices and the side walls (28) of each module in the direction (31) of the glass flow is greater than the space for the opposite direction (32); therefore, the flow of glass is pushed and propelled in the direction of manufacture.
  • the rotating devices (29) are not limited to the designs represented in the figures, and a wide variety of models can be used: lobe, gear, fin, or eccentric elements, all within the field or spirit of the present invention.
  • the rotating devices are directed by at least one driving mechanism that controls and regulates its speed of rotation and / or by a position mechanism that controls and regulates the position of the rotating devices with each other and with respect to the drive module to which they belong.
  • each drive module (27) is composed of a bottom infrastructure (33) that continues with an overflow (36) and ends with a landfill (37) that pours the glass in the form of a flat stream of molten glass (38) with a uniform flow per unit of width towards the forming device that is located next to said landfill:
  • Each drive module also it consists of side walls (28) that separate it from the adjacent drive modules and that belong to the same dosing group; these walls laterals (28) conduct the molten glass to the crest of the overflow (36).
  • the molten glass is collected from the suction zone (34) with a hydraulic height Ho, and raised to the drive zone (35) near the overflow (36) at a hydraulic height Hi.
  • the axes of rotation belonging to the two rotating devices (29) are separated from each other by a magnitude DE, and in their part immersed in the molten glass have blades or blades (30) whose shapes, trajectories, speed and direction of rotation determine the movement of the glass in the entire volume of the impulse module, which can be decomposed into two different volumes: a) direct volume, (3 1) VD, in which the glass moves in the direction of manufacture; and b) reflowed volume, (32) VR, in which the glass moves in the opposite direction to that of manufacturing.
  • FIG. 6 shows a diagram comprising a single mobile element in each drive module; the hydraulic lift is achieved by changing the speed of rotation w and / or the eccentric position di and di of the axis of rotation of the rotary device with respect to the side walls (28) of the drive module; with the variation of the position of the axes of rotation, di and ⁇ 2, the two aforementioned volumes, the direct VD and the reflux VR, are simultaneously modified.
  • the rotating devices (29) of FIGURE 5 using the method of the invention for the regulation of the flow rate constitute essentially a rotary pump with two parallel axes that collects the molten glass from an inlet channel (24) with a height of glass Ho, and elevates it to a height of Hi glass near the thick-walled overflow (36).
  • the height Hi of the glass already raised maintains the balance between the net flow of glass driven and the flow of glass that passes through the aforementioned overflow.
  • the glass height Hi in the exit area (35) depends on the height I of the crest of the overflow (36); the flow rate of the molten glass QM produces an increase in the hydraulic height ⁇ of:
  • ⁇ - ⁇ 0 (1)
  • the height increase produced by the rotating devices
  • Hi it is the glass height at the outlet or drive zone
  • Ho it is the glass height at the entrance or aspiration zone.
  • the rotating devices move a volume of direct glass (3 1), VD, through the two sides of the module to the drive zone (35), and move a volume of glass through the central area.
  • fi (w) is a function that depends on the speed of rotation of the rotating devices
  • VD is the volume of direct glass
  • VR is the volume of reflowed glass
  • QM is the net flow rate of glass in the drive module.
  • the length and height Yo of the crest of the overflow (36) constitute an obstacle to the movement of the glass driven by the rotating devices (29), so that the molten glass acquires an increase in hydraulic height ⁇ that can be expressed from the shape:
  • KH is a constant
  • w is the rotation speed of the rotating devices
  • is the dynamic viscosity of the glass.
  • the direct theoretical volume VD of driven glass and the volume of reflowed glass VR depend on the distance DE between the axes of rotation of the rotating devices, according to a relationship that can be expressed as:
  • DE is the distance between the axes of rotation of the rotating devices; It is a constant; and f 2 (DE) 142 , is a function dependent on the geometry of the rotating devices, the dynamic viscosity of the glass, and the glass height in the drive module.
  • KH is a constant.
  • the hydraulic height increase can be controlled and regulated by the variation of the speed of rotation w, and / or of the distance DE between the axes of rotation of the rotating devices.
  • the rotating devices have the fundamental purpose of controlling and regulating the flow rate of glass passing through the overflow, and therefore the thickness of the final sheet.
  • the rotating devices also homogenize the molten glass analogously to the mechanical stirrers, "stirrers", used according to the current state of the art of glassmaking; the demand for high quality glass has allowed mechanical agitation to be used with the aim of reducing heterogeneities and / or to improve the thermal homogeneity of molten glass [Wolfgang Trier, "Glass Furnaces, Design Construction and Operation", Society translation of Glass Technology Sheffield, page 1 75 ⁇ .
  • the molten glass driven by the rotating devices (29) in the drive modules (27) passes over the crest of its corresponding overflow (36) and, when the side walls (28) that separate the modules from each other end up. drive, FIGURES 5 and 6, the glass flows corresponding to all the drive modules (27) belonging to the dosing group come together and flow downstream to fall by gravity from the landfill (37) in the form of a flat stream of glass melted (38), towards the forming stage.
  • QM is the flow of glass that passes through the drive module
  • is the dynamic viscosity of the glass
  • LM is the width of the drive module
  • Hi it is the height of the glass level in the drive zone
  • Me it is the height of the crest of the overflow
  • Ki it's a constant.
  • the glass flow per unit width of the overflow is directly related to the thickness of the final glass sheet, and corresponds to the expression:
  • q is the flow rate of molten glass per unit width in each drive module.
  • the flow rate per unit width q is a function of the geometries of the drive module and of the rotating devices, of the viscosity of the glass, of the speed of rotation w of the rotating devices, and of the distance OF between the axes of rotation of the rotating devices; it is expressed in the following way:
  • the sum of the flow rates of all the driving modules equals the total manufacturing flow rate of the glass sheet;
  • the total flow is:
  • N is the number of drive modules that the dosing group has; and Q, is the total flow of glass manufacture, equal to the sum of the N overflows.
  • the sum of the widths of all the modules corresponds to the total width of the manufactured glass sheet:
  • L ( ⁇ L M ) the N (1 1) where: L, is the total width of the final sheet of glass, which essentially coincides with the sum of the dimensions of the N overflows that make up the dosing group.
  • the drive modules can have the same width LM and dose the same flow rate QM, although the edge modules can dose a different flow per unit area to facilitate the stretching operation.
  • the set of rotating devices and overflow is defined by the values Ho, ⁇ , ⁇ , w, ⁇ , VD, and VR, which generate a flow QM in each impulse module; these values are determined in such a way that the nominal speed of rotation w is sufficient to: a) provide an adequate precision of the dosing of the glass flow rate; and b) generate a sufficient homogenization of the molten glass.
  • the rotating devices act simultaneously as elements for regulating the flow rate of glass and as elements for homogenising the mass of molten glass.
  • the method of the present invention allows a more dynamic flow control and regulation of the glass flow and with greater precision than the traditional "overflow downdraw" method.
  • (C qDE ) i (% Aq /% AD E ) (13)
  • (C Q DE) i is the coefficient of variation of the flow rate when the distance between axes varies at the operating point Fl
  • % ⁇ DE is the percentage of the variation of the wheelbase. Both variations,% Aq, and% DE, have the opposite direction.
  • the modification of the glass flow from an initial operating regime Fl, defined by qi, wi, and DEI up to the final operating regime F2, defined by q2, W, and DE2, is carried out by varying the speed of rotation wy / or the variation of the distance D E between the axes of rotation, so that the relationship is fulfilled
  • the method of the invention makes it possible to carry out various options for modifying the glass flow rate q per unit width in a given drive module of the dosing group, which is equivalent to modifying the thickness of the final glass sheet in the area corresponding to that mentioned.
  • module from the operating point Fl, defined by the flow qi, the speed wi, and the distance between axes DEI, up to the operating point F2, defined by (3 ⁇ 4 W2, and DE2-
  • the operating point F2 defined by (3 ⁇ 4 W2, and DE2-
  • the variation or modification of the flow of glass driven in a drive module depends mainly on: a) the geometry of the module; b) the geometry of the rotating devices; c) the viscosity of the glass; d) the glass height Ho in the inlet channel; e) the height I of the crest of the overflow; Y f) simultaneously, of the rotational speed w and the wheelbase DE.
  • Devitrification depends on the residence time of the molten glass at temperatures lower than the "Liquidus temperature", TL, and therefore, the useful life of some manufacturing equipment could be conditioned by this devitrification process.
  • the method of the invention uses a temperature above the devitrification temperature, so that the useful life of the dosing group it does not depend on the devitrification of glass and is only determined by the mechanical resistance, depending on time, of the materials used such as platinum, rhodium, or some of its alloys.
  • the glass that falls vertically by gravity from the landfill (37), forming a flat stream of molten glass (38) with a uniform flow per unit width, has the following quality: a) the outer surface (40) that has not been in contact with the solid materials of the overflow is "clean" and can be used directly to form one of the two surfaces of the future sheet of glass; and b) the inner surface (39) that has passed in contact with the overflow and with the spillway, is irregular and should not be part of a final surface of the glass sheet.
  • the outer surface of the flat stream of molten glass (38) directly becomes part of the outer surface of the glass sheet, and the inner surface of the flat stream (38) must be modified by a cleaning element, which is part of the forming device and is located above the forming body and separated from it.
  • a cleaning element which is part of the forming device and is located above the forming body and separated from it.
  • two different dosage groups are used, FIGURE 12, there being two flat streams of molten glass (38 and 61) whose two outer surfaces pass directly to form each of the two surfaces of the final glass sheet .
  • the forming device uses as a cleaning element a rotating cylinder (41) to modify or " cleaning "the inner surface (39) of the flat stream (38) that has been in contact with the landfill (37); the cylinder (41) rotates at a speed wc in the direction indicated in the figures and is located below the flat stream of molten glass (38) and above the forming body (42).
  • the effect produced by the rotation of the cylinder on the two surfaces of the flat stream (38) is as follows: a) the outer surface (40), which was already “clean”, passes directly towards a first edge (43) of the body formed (42) which is located at a height Z3; and b) the interior surface (39), which is "irregular", is dragged towards the interior of the glass mass that rotates attached to the cylinder.
  • the flat glass stream of molten glass (38) that falls from the landfill (37), is superimposed on the return current (56) existing on the periphery of the cylinder, forming a current (53) that is conducted by the cylinder towards an area in which the forces of gravity and drag are added, see FIGURE 7.
  • Part of the current (53) is directed towards the first edge (43) of the forming body, which is located at a height Z3, and generates the stream (48) that descends by an outer side wall of the forming body (42), while the rest of the stream (53) ), forms a stream (54) which is conducted between the space between the rotating cylinder (41) and the forming body (42), which space has a certain minimum spacing (46).
  • the current (54) reaches the height of the second edge (44) of the forming body, which is located at a height Z 4 ; part of the stream (54) overflows the edge (44) and generates the stream (49) that descends through the other outer side wall of the forming body (42).
  • the remaining glass of the flow (54) is driven by the rotating cylinder (41), forming a current (66) attached to the rotating cylinder which is directed towards an area in which the driving force of the cylinder goes in the opposite direction to the force of the gravity of the glass; when the molten glass reaches the singular zone (55) in which the force of gravity on the glass is similar to the pulling force exerted by the rotating cylinder (41), a break or take-off occurs on the surface of the molten glass with two different streams: a) a part of the glass stream (56) continues attached to the rotating cylinder (41), and is conducted by it until it joins the irregular part (39) of the flat stream of molten glass ( 38) and again form part of the current (53), closing the cycle; and b) another part of the glass is directed towards the edge (44), forming the outer surface of the stream (49) that descends on the outside of the forming body (42).
  • the upper part of the forming body (42) can have a concavity (45) as in FIGURES 7 and 8, or it can be smooth as in FIGURE 9.
  • the rotating cylinder (41) can be: a) solid with a resistant core formed by molybdenum and / or refractory materials such as ZrÜ2, AI2O3, and S1O2, with or without a metallic outer coating containing platinum, rhodium or some of its alloys; or b) hollow and formed by platinum, by rhodium or by some alloy containing platinum and / or rhodium; or with a core formed by molybdenum and / or tungsten, with an outer coating containing platinum or some of its alloys.
  • the rotating cylinder (41) is in rotation by means of external mechanical means for controlling and adjusting the speed wc of rotation necessary to control the layer of molten glass adhered to the cylinder during its rotation, and to adjust the inertial forces, of viscosity and gravity that are exerted on the particles of the molten glass during the rotation of said rotating cylinder.
  • the rotating cylinder (41) when the rotating cylinder (41) is hollow, FIGURES 7 and 8, and is located on the concavity (45) carved in the forming body (42), the gravitational force FG corresponding to the weight of the cylinder and the weight of the glass located above, is counteracted by the pushing force FE exerted by the glass of the concavity (45) displaced by the cylinder (41); in this way, the cylinder "floats" on the molten glass and is not subject to deformations caused by its own weight.
  • the two streams (48 and 49) are cooled to reach the apex (27) with a viscosity / temperature suitable for shaping downwards.
  • the distribution of the flat stream of molten glass (38), having a uniform flow rate per unit width, between the two substantially similar currents (48 and 49), is carried out, see FIGURE 7: a) through the fixed heights Z3 and Z 4 , heights of the upper edges of the forming body; b) by modifying the vertical separation (58) between the cylinder and the concavity (52) of the forming body (53); c) by modifying the horizontal separation Evc between the axis of fall of the glass and the axis of the rotating cylinder, and of the horizontal separation Ecc between the axis of the rotating cylinder and the axis of the forming body; and d) by varying the rotational speed wc of the rotating cylinder.
  • the forming device uses a plate (52) partially submerged in the glass to clean the uneven surface (39) of the flat stream of molten glass (38) coming from the contact with the base of the landfill (37) belonging to the dosing group; said flat stream passes to a plate (52) partially submerged in a concavity (45) carved in the forming body (42), and is divided into two flows: a) a first direct flow (57) passing through a side of the forming body located at a height Zi and generating a shape the stream (48) traveling down an outer side wall of the forming body (42); and b) a second flow (59) occupying the concavity (45) cut into the forming body (42) and passing underneath the submerged plate (52), located at a distance (46) from the concavity (45).
  • this second flow (59) is directed towards the other edge of the forming body, located at a height Z2, and generates the current (49) that moves downwards through the other outer side wall of the forming body (42).
  • the two glass streams (48 and 49) flow through the walls of the forming body (42) at the same time as they are cooled and reach the lower vertex (47), where both currents join to form a single flow of glass, which is stretched by pulling means (51) to form the glass sheet (50).
  • the distribution of the flat stream of molten glass (38), which has a uniform flow per unit width, in the two streams (48 and 49) is made, see FIGURE 10: a) by the heights Zi and Z of the edges upper parts of the forming body (42); b) by modifying the horizontal distance EPC between the axis of the forming body (42) and the vertical plane of falling of the molten glass on the plate (52); and c) by modifying the vertical distance (46) of separation between the plate (52) and the concavity (45) of the forming body (42).
  • each of the two dosage groups (26 and 60) comprises several drive modules (27); in turn, each drive module comprises separation walls (28), at least one rotating device (29), and an overflow.
  • the two streams (62 and 63) descend each of them for each side wall of the forming body (64), at the same time as they are cooled as they approach the lower and final part of the forming body.
  • the forming body (64) ends at a vertex (47), and when the two lateral currents (62 and 63) reach the aforementioned vertex, they join to form a single glass stream with the proper viscosity to be stretched by means of rollers of pulling (51) and forming the glass sheet (50); this sheet is subsequently fractioned, with means not shown here, in specific articles or products.
  • the two dosage groups (26 and 60) are supported wholly or partially by a structure (65) that is independent of the structure of the forming body (64); both structures (64 and 65) can move relative to each other to adjust the distance of the forming body (64) to the corresponding weir (37), so that the vertical fall of the flat currents (38 and 61) is adequate.
  • a glass sheet formed by two different glasses A and B separated in the middle plane of the thickness of the glass sheet is manufactured.
  • the process begins, FIGURE 12, from the fusion of the vitrifiable raw materials A and B in the fusion vessels (21 and 66), and the refining of the molten glasses in the containers (23 and 67). Then, glasses A and B are led through the channels (24 and 68) to the dosage groups (26 and 60); in the channels (24 and 93) the levels of the glasses are kept constant by means of the level regulators (25 and 69).
  • Each of the dosing groups (26 and 60) comprises several drive modules (27); and, in turn, each drive module comprises separation walls (28), at least one rotating device (29) and its own overflow, so that a flat glass stream is obtained from each dosing group. melt of uniform flow per unit of width, and in this way two flat glass streams (38 and 61) are produced which fall vertically by gravity on each of the two side walls of the forming device (64) and flow downwards according to two streams of molten glass (70 and 71) formed by two different glasses, the stream (70) formed by the glass A, and the stream (71) formed by the glass B.
  • the outer surfaces of the two flat streams of molten glass (38 and 61) come directly from the surface glass that has passed through the overflows, and are "clean" surfaces and continue to be clean in the currents (70 and 71) that will later form the two surfaces of the final glass sheet.
  • each of the two streams (70 and 71) descends through one of the side walls of the forming body (64), at the same time that they are cooled as they approach their final part; this final part has an angle in its vertex (47), and when the two lateral currents (70 and 71) reach the aforementioned vertex, they join to form a single glass stream with the suitable viscosity to be stretched by traction rollers (51) and form the sheet of glass (72); this sheet is subsequently fractioned, with means not shown here, in specific articles or products.
  • the final thin sheet (72) of glass is formed by the two glasses A and B, separated in the middle plane of the thickness of the glass sheet, as shown in FIGURE 12.
  • the two dosage groups (26 and 60) are supported totally or partially by a structure (65) that is independent of the structure of the forming body (64); both structures (64 and 65) can move relative to each other to adjust the distance of the forming body (64) to the corresponding overflow (36), so that the vertical fall of the flat currents (38 and 61) is the adjusted one.
  • the place or stage of the process of the invention in which the glass passes through the devitrification temperature, or "Liquidus temperature", TL, is as follows: a) in embodiments of the invention in which a single group is used of dosing, and therefore in the forming step a rotating cylinder cleaning element is used, FIGURES 7 to 9, or a partially submerged plate, FIGURE 10, the devitrification temperature is reached once the lateral currents have been formed (FIG.
  • FIGURES 1 to 13 the devitrification temperature is reached once the two melted glass streams (38 and 61) corresponding to each of the two dosage groups (26 and 60). Both currents pass to the forming body (64) forming two lateral currents (62 and 63) that descend on the outside of said body (64) at the same time they are being cooled.
  • the decrease of the residence time of the molten glass below the devitrification temperature, together with the fact that the dosage stage of the molten glass is carried out separately and in different apparatuses that the cooling stage, has as a consequence that the useful life of the equipment used with the method of the invention is greater than the useful life of the equipment used with the manufacturing method "overflow downdraw".
  • the angle of the lower zone of the formed body, which ends at the apex (47) influences the stability of the flow [H.-J.Lin, W.-K.
  • Chang "Design of a sheet forming apparatus for overflow fusion process by nume ⁇ cal simulation”; of Non-Crystalline Solids 353 (2007) 2817-2825]; a small angle gives more stability to the flow of the molten glass above the vertex, and the method of the present invention allows a smaller angle to be provided at the apex (47) than the angle used with the "overflow downdraw” method.
  • a higher viscosity at the apex (47) where the stretching begins makes the flow more uniform; however, the viscosity is influenced by the devitrification temperature of the glass and by the residence time of the glass below this temperature.
  • the distribution of the glass in the width of the glass sheet is carried out in the dosing group, and the forming body is used essentially for cooling the glass to the stretching temperature.
  • a forming body without glass flow commitments in its interior needs a smaller width, which leads to a smaller angle at the apex (47); and b) the forming body is not limited in height by its mechanical strength and by the arrow in its lower edge, since these aspects do not affect the distribution of the glass in width, or, what is the same, the uniformity of the thickness of the final glass sheet.
  • the glass is stretched by traction rollers (51) at the same time that it is cooled to become in a solid and continuous sheet of glass of a certain thickness; in this stretching process, the forces caused by the surface tension manifest themselves adversely, tending to produce a transverse contraction of the glass sheet in formation.
  • the process of the invention is used for the manufacture of a glass sheet 2500 millimeters wide and 0.70 millimeters thick.
  • the flow or extraction of manufactured glass is 20 tons per day.
  • is the dynamic viscosity of the glass
  • TV the temperature of the glass.
  • the molten glass passes to a channel, FIGURES 2, 3 and 5, provided with a level regulator that maintains the level of glass at a height Ho, up to the entrance area of a dosage group of glass.
  • This input zone of the dosing group is common for all the drive modules that make up the aforementioned group; the pumping of all the groups is carried out at the same temperature and from the same initial hydraulic height Ho.
  • the glass reaches the zone of the impulsion modules at a temperature of 132 1 ° C, that is, with a viscosity of 8000 poises.
  • the dosing group consists of: a) five delivery modules separated from one another by lateral separators of platinum / rhodium, each module comprising two rotating devices and one overflow; and b) a final spillway, which collects the glass that has passed through each of the overflows of each impulse module and pours it in the form of a single flat stream of molten glass towards the forming stage.
  • each drive module is 500 millimeters;
  • the height of the glass Ho in the suction channel is determined by the level regulator so that the operating conditions of the impulse module produce the passage of the glass flow over the overflow, whose ridge has a height I of 180 millimeters.
  • the five drive modules are separated from one another by intermediate spacers having a thickness of 1.5 millimeters, and are constructed of a platinum / rhodium alloy, and continue to the ridge of the overflow, where the flows of the five modules join to form a flat stream of molten glass of 2500 millimeters in width.
  • each of the drive modules two rotating devices with an external diameter D equal to 220 millimeters are located; the separation between the rotation axes of the two rotating devices is 180 millimeters, and the line joining the axes of rotation is perpendicular to the direction of the glass in the drive module.
  • the width AD of direct flow passage is 230 millimeters and the width of passage AR of the reflowed glass is 90 millimeters.
  • the nominal speed of rotation w of the two rotating devices is 6 revolutions per minute; both rotate in the opposite direction, in favor of the direction of the glass on the sides of the module, see FIGURE 5, and against the direction of the glass at the center.
  • the thrust blades and shafts of the two rotating devices are made of a material with 80% platinum and 20% rhodium; The weight of each rotating device is 2.2 kilograms. Under the operating conditions of temperature, mechanical working voltage, and resistance of the platinum-rhodium alloy, the duration in time of each rotating device is 18 months.
  • the movement of the rotating devices generates in each of the drive modules a refluxed glass flow rate of 0.00046 cubic meters per second, which is 26 times higher than the flow rate of glass manufacture.
  • the glass driven by the rotating devices increases its hydraulic height Hi, which limits the direct flow of impulsion until the difference V D -V R equals the flow rate of glass manufacture.
  • the average dwell time of the glass in each drive module is 37 minutes; during this time, each of the two rotating devices performs 222 complete turns, and each particle of molten glass has made an average path of 63 meters.
  • the flow rate in the drive module passes from 4 to 4, 1 tons per day, and the final thickness of the glass sheet passes from 0.70 to 0.72 millimeters.
  • the control and regulation of the flow passing through a certain drive module has a direct effect on the thickness in its corresponding area of the final sheet, since the final glass from all the drive modules is formed by the same device. formed, and is stretched by the same means of traction.
  • the side separators disappear, and all the glass that has passed through the overflows of the impulse modules joins together to form a flat stream of molten glass that flows until it passes through a landfill, at the same time that it is cooled from the outside by radiation.
  • the flat stream of molten glass falls on a rotating cylinder, which acts as a cleaning element on the surface of the flat stream that has been in contact with the landfill.
  • the glass passes through the area of this rotating cylinder with a viscosity of 16,000 poises, at a temperature of 1279 ° C; that is, the glass has a temperature below 43 ° C at the temperature of the molten glass in the area of the rotating devices belonging to the drive modules.
  • FIGS. 7 and 8 represent the forming device with a cleaning element constituted by a rotating cylinder and a forming body; the shaped body has a width of 20 centimeters and presents in its upper part a concavity with a depth of 14 centimeters;
  • the rotating cylinder is made of a platinum-rhodium alloy and has an outer diameter of 12 centimeters and a thickness of 2 millimeters.
  • the hollow cylinder floats on the molten glass contained in the concavity of the formed body, with a 55 mm immersion.
  • the rotational speed of the rotating cylinder is 0.5 revolutions per minute.
  • the molten glass flows through each of them. the two sides of the mentioned body of formed.
  • the viscosity of the glass in this area is 24000 poises, corresponding to a temperature of 1255 ° C.
  • the two currents that descend on each side of the forming body are cooled to reach the lower vertex with a viscosity of 100000 poises, corresponding to a temperature of 1 182 ° C; in this place the two streams of glass join to form a sheet of molten glass.
  • the vertical height of the forming body is 81 centimeters, and the drop in glass temperature occurs at a rate of 0.9 ° C per centimeter of height of the forming body.
  • the molten glass sheet is stretched by traction rollers to form a solid and continuous thin sheet of glass, which is then fractionated to obtain sheets of thin flat glass of given dimensions.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)

Abstract

The invention relates to a method and the corresponding unit for the production of thin glass sheets. The method comprises the following steps: a) melting (21) and refining (23) of glass obtained from vitrifiable materials; b) distributing and dosing molten glass in a planar stream (38) using a dosing unit comprising glass-driving means (27) with rotary devices (29) and an overflow; c) shaping the molten glass into a solid glass sheet, including modifying one of the surfaces thereof using a cleaning element (41), cooling in a forming body (42) and final drawing (51); and d) dividing into an end product. The end thin glass sheet (50) can be formed by a single piece of glass or by two different pieces of glass, each occupying half of the thickness of the sheet.

Description

PROCEDIMIENTO E INSTALACIÓN PARA LA FABRICACIÓN DE LÁMINAS DELGADAS DE VIDRIO PROCEDURE AND INSTALLATION FOR THE MANUFACTURE OF THIN GLASS SHEETS
SECTOR DE LA TÉCNICA SECTOR OF THE TECHNIQUE
La presente invención se encuadra dentro de la industria del vidrio y tiene aplicación sobre el vidrio plano delgado utilizable en las pantallas TFT - LCD, y en el campo de la electrónica.  The present invention fits within the glass industry and has application on the thin flat glass usable in the TFT-LCD screens, and in the field of electronics.
ESTADO DE LA TECNICA ANTERIOR STATE OF THE PREVIOUS TECHNIQUE
En la actualidad, la fabricación de láminas delgadas de vidrio de bajo espesor utilizadas en las pantallas TFT - LCD y en el campo de la electrónica, se realiza principalmente mediante el procedimiento "float", o mediante el procedimiento de estirado hacia abajo "overflow downdraw".  Currently, the manufacture of thin sheets of thin glass used in TFT-LCD screens and in the field of electronics, is mainly done through the "float" procedure, or through the downward stretching procedure "downdraw overflow" "
El procedimiento de fabricación de láminas de vidrio conocido como "método float" (US 3266880; US 3771985; EP 1739062; y US 2008/0223079), utiliza un baño de estaño fundido sobre el cual flota el vidrio al mismo tiempo que es enfriado y estirado para formar una lámina sólida de vidrio.  The process for manufacturing glass sheets known as the "float method" (US 3266880, US 3771985, EP 1739062, and US 2008/0223079) uses a molten tin bath on which the glass floats at the same time as it is cooled and Stretched to form a solid sheet of glass.
En el método "float", cada una de las dos superficies del vidrio fundido se encuentra en medios diferentes: a) la inferior en estaño fundido; y b) la superior en la atmósfera del baño de estaño. Este hecho hacen que se generen diferentes intercambios de calor a través de cada una de las dos superficies del vidrio durante el enfriamiento. Por otra parte, existe una contaminación de las superficies de la lámina de vidrio a causa de la difusión de los componentes químicos procedentes del baño de estaño fundido. Estos inconvenientes hacen necesario un posterior proceso de pulido que conlleva a una calidad de la superficie de la lámina delgada de vidrio inferior a la calidad de la obtenida mediante el método "overflow downdraw".  In the "float" method, each of the two surfaces of the molten glass is in different media: a) the lower one in molten tin; and b) the upper one in the atmosphere of the tin bath. This fact causes different heat exchanges to be generated through each of the two surfaces of the glass during cooling. On the other hand, there is a contamination of the surfaces of the glass sheet due to the diffusion of the chemical components coming from the bath of molten tin. These drawbacks require a subsequent polishing process that leads to a quality of the surface of the thin sheet of glass inferior to the quality of the one obtained by the "overflow downdraw" method.
El método "overflow downdraw" (US 3338696; US 3682609; WO 2005/ 121 182) está basado en un aparato principal de conformación, denominado "isopipe", que realiza al mismo tiempo las funciones de: a) distribución estática de un flujo de vidrio en dos corrientes planas de vidrio fundido; b) enfriamiento del vidrio; y c) unión o fusión de las dos citadas corrientes de vidrio fundido para formar una única corriente de vidrio apta para ser estirada. En la FIGURA 1 , se muestra un cuerpo de formado o "isopipe" ( 1 1); el vidrio fundido, procedente de un horno, entra por la zona ( 12) que comunica con la garganta ( 13) tallada en la zona alta del cuerpo de formado ( 1 1); este cuerpo de formado posee dos paredes laterales ( 14) por cuyos bordes superiores ( 15) rebosa el vidrio fundido. El vidrio avanza por la garganta ( 13) y rebosa por sus bordes ( 15) al mismo tiempo que va disminuyendo su sección transversal con un caudal por unidad de longitud que debe ser constante. Luego, el vidrio fundido fluye en dos corrientes ( 16) por el exterior de las dos paredes laterales del cuerpo de formado ( 1 1) al mismo tiempo que es enfriado, hasta llegar a su vértice inferior ( 17) donde las dos corrientes se unen para formar una única lámina de vidrio fundido ( 18), que es estirada hasta alcanzar un estado sólido. Las dos superficies que forman la lámina proceden del interior de la masa de vidrio fundido que ha fluido por la garganta y rebosado por encima de sus paredes laterales sin haber contactado con superficies sólidas. La patente (US 3338696) representa todavía el estado de la técnica practicada hoy en día; sin embargo, el proceso "overflow downdraw" tiene algunas limitaciones, como indica la patente (US 7155935). The "overflow downdraw" method (US 3338696; US 3682609; WO 2005/121 182) is based on a main conformation apparatus, called "isopipe", which performs at the same time the functions of: a) static distribution of a flow of glass in two flat streams of molten glass; b) cooling of the glass; and c) joining or melting the two said currents of molten glass to form a single stream of glass capable of being stretched. In FIGURE 1, a shaped body or "isopipe" (11) is shown; the molten glass, coming from an oven, enters the area (12) communicating with the throat (13) carved in the upper area of the forming body (11); this forming body has two side walls (14) through whose upper edges (15) the molten glass overflows. The glass advances through the throat (13) and overflows by its edges (15) while decreasing its cross section with a flow rate per unit length that must be constant. Then, the molten glass flows in two streams (16) on the outside of the two side walls of the forming body (11) at the same time it is cooled, until it reaches its lower vertex (17) where the two currents meet to form a single sheet of molten glass (18), which is stretched to a solid state. The two surfaces that form the sheet come from inside the mass of molten glass that has flowed down the throat and overflowed over its side walls without having contacted solid surfaces. The patent (US 3338696) still represents the state of the art practiced today; however, the "overflow downdraw" process has some limitations, as indicated in the patent (US 7155935).
Un primer inconveniente del método "overflow downdraw" es la variación del espesor de la lámina de vidrio a causa de la compleja distribución del caudal de vidrio líquido que rebosa por los dos laterales de la garganta del cuerpo de formado o "isopipe"; esta distribución es sensible a fenómenos inherentes al proceso, como: a) la variación de la distribución de la temperatura del vidrio fundido en la entrada de la "isopipe", ya que cada punto de la sección de entrada sigue su propia trayectoria por la garganta y se dirige siempre al mismo lugar de la lámina conformada; b) la variación del caudal de vidrio procedente del horno de fusión, ya que el flujo de vidrio que rebosa por los dos laterales de la "isopipe" no es una función lineal de la altura del vidrio sobre los rebosaderos, y las variaciones transitorias del caudal y de la temperatura causan variaciones en el espesor de la lámina final de vidrio; c) la propia deformación plástica en caliente de la "isopipe", ya que la flecha por alabeo en el cuerpo principal modifica las alturas de rebose del vidrio fundido durante una campaña de fabricación de forma que el espesor puede variar de una forma no deseada; d) la temperatura del entorno exterior de la zona superior de la garganta y de los rebosaderos influye sobre el reparto del espesor de vidrio en la lámina final; y e) la zona de la lámina más cercana a la entrada está formada por un vidrio que ha fluido en la proximidad de la periferia de la sección de entrada a la "isopipe" y es propensa a tener una menor calidad. Para solucionar estos citados inconvenientes se han propuesto diversas soluciones (WO 2005/0268657; US 2005/0268659; US 2005/0183455; US 2008/0202165; WO 2007/070825). A first drawback of the method "overflow downdraw" is the variation of the thickness of the glass sheet because of the complex distribution of the flow of liquid glass that overflows by the two laterals of the throat of the body of formed or "isopipe"; This distribution is sensitive to phenomena inherent to the process, such as: a) the variation of the temperature distribution of the molten glass at the entrance of the "isopipe", since each point of the entrance section follows its own trajectory down the throat and always goes to the same place of the formed sheet; b) the variation of the glass flow rate from the melting furnace, since the glass flow overflowing the two sides of the "isopipe" is not a linear function of the height of the glass over the overflows, and the transient variations of the flow and temperature cause variations in the thickness of the final glass sheet; c) the hot plastic deformation of the "isopipe" itself, since the warpage arrow in the main body modifies the overflow heights of the molten glass during a manufacturing campaign so that the thickness can vary undesirably; d) the temperature of the external environment of the upper area of the gorge and of the overflows influences the distribution of the thickness of glass in the final sheet; and e) the zone of the sheet closest to the entrance is formed by a glass that has flowed in the vicinity of the periphery of the entrance section to the "isopipe" and is prone to have a lower quality. For To solve these cited disadvantages, various solutions have been proposed (WO 2005/0268657, US 2005/0268659, US 2005/0183455, US 2008/0202165, WO 2007/070825).
Un segundo inconveniente del método "overflow downdraw" es la dificultad de extrapolación a mayores extracciones y dimensiones de láminas a causa del alabeo de la "isopipe", de la deformación en caliente, y de las dimensiones de la garganta, cuyas paredes laterales están sometidas a esfuerzos causados por la presión hidráulica del vidrio fundido. En algunos casos se utilizan acoplamientos suplementarios para aumentar la anchura de la lámina de vidrio fabricada (WO 2006/ 1 15792).  A second disadvantage of the method "overflow downdraw" is the difficulty of extrapolation to greater extractions and dimensions of sheets due to the warping of the "isopipe", of the hot deformation, and of the dimensions of the throat, whose side walls are subjected to stresses caused by the hydraulic pressure of the molten glass. In some cases, supplementary couplings are used to increase the width of the fabricated glass sheet (WO 2006/1 15792).
Un tercer inconveniente del método "overflow downdraw" procede de la desvitrificación del vidrio, que puede producirse en función del tiempo de estancia del vidrio a temperaturas por debajo de la "Temperatura de liquidus" en las distintas zonas de la "isopipe". Para evitar la desvitrificación del vidrio durante su conformado, se han propuesto soluciones como la de la patente (US 2004/0093900 Al).  A third drawback of the method "overflow downdraw" comes from the devitrification of the glass, which can occur as a function of the time of the glass stay at temperatures below the "Liquidus temperature" in the different areas of the "isopipe". To avoid devitrification of the glass during its shaping, solutions have been proposed such as that of the patent (US 2004/0093900 Al).
Por tanto, en el campo de la fabricación de láminas de vidrio de bajo espesor, existe la necesidad de solucionar los inconvenientes de los métodos actuales de fabricación ya citados.  Therefore, in the field of the manufacture of thin glass sheets, there is a need to solve the drawbacks of the current manufacturing methods already mentioned.
DESCRIPCION DE LA INVENCION DESCRIPTION OF THE INVENTION
Problema técnico planteado  Technical problem raised
El procedimiento de la presente invención y el diseño de la instalación de fabricación correspondiente resuelven los inconvenientes de los actuales procedimientos de fabricación de vidrio plano de bajo espesor. En el método "float", durante la formación de la lámina de vidrio fundido, sus dos superficies se encuentran en dos medios diferentes, con diferentes coeficientes de intercambio de calor, hecho que provoca una variación en el espesor de la lámina de vidrio y que hace necesario un proceso posterior de pulido. En el método "overflow downdraw", un único cuerpo de formado realiza en su parte superior una distribución estática del vidrio fundido y en su parte inferior el enfriamiento del vidrio fundido, dificultando la uniformidad en el espesor de la lámina final, la extrapolación a mayores dimensiones, y la duración del período de fabricación a causa de la desvitrificación del vidrio.  The method of the present invention and the design of the corresponding manufacturing facility solve the drawbacks of the present methods of manufacturing thin flat glass. In the "float" method, during the formation of the molten glass sheet, its two surfaces are in two different media, with different heat exchange coefficients, which causes a variation in the thickness of the glass sheet and it makes a subsequent polishing process necessary. In the "overflow downdraw" method, a single forming body performs a static distribution of the molten glass in its upper part and in its lower part the cooling of the molten glass, hindering the uniformity in the thickness of the final sheet, extrapolation to larger dimensions, and the duration of the manufacturing period due to devitrification of the glass.
Breve descripción de las Figuras Para complementar la descripción de la presente invención y con el objeto de ayudar a una mejor comprensión de sus características, se acompañan una serie de figuras donde, con carácter ilustrativo y no limitativo, se ha representado lo siguiente: Brief description of the Figures To complement the description of the present invention and in order to help a better understanding of its characteristics, a series of figures are attached where, with illustrative and non-limiting character, the following has been represented:
FIGURA 1.- Vistas y sección transversal de un aparato de formado, FIGURE 1.- Views and cross section of a forming apparatus,
"isopipe", según el actual estado de la técnica de rebosadero y estirado hacia abajo, "overflow downdraw", para la fabricación de vidrio plano delgado. "isopipe", according to the state of the art of overflow and stretched down, "overflow downdraw", for the manufacture of thin flat glass.
FIGURA 2.- Vista en perspectiva de una instalación para la fabricación de láminas delgadas de vidrio según el procedimiento de la invención.  FIGURE 2.- Perspective view of an installation for the manufacture of thin sheets of glass according to the method of the invention.
FIGURA 3.- Vistas de conjunto de un sistema de fabricación con un grupo de dosificación, con los módulos de impulsión, y con un dispositivo de formado provisto de un elemento limpiador de cilindro giratorio.  FIGURE 3.- Overall views of a manufacturing system with a dosing group, with the driving modules, and with a forming device provided with a rotating cylinder cleaning element.
FIGURA 4.- Vistas de conjunto de un sistema de fabricación con un grupo de dosificación, con los módulos de impulsión, y con un dispositivo de formado provisto de un elemento limpiador de placa sumergida.  FIGURE 4.- Overall views of a manufacturing system with a dosing group, with the driving modules, and with a forming device provided with a submerged plate cleaning element.
FIGURA 5.- Sección de perfil y vista en planta de un módulo de impulsión de vidrio con dos dispositivos giratorios.  FIGURE 5.- Section of profile and view in plan of a module of impulsion of glass with two rotating devices.
FIGURA 6.- Sección de perfil y vista en planta de un módulo de impulsión de vidrio con un solo dispositivo giratorio.  FIGURE 6.- Profile section and plan view of a glass impulse module with a single rotating device.
FIGURA 7.- Vista de un elemento limpiador de cilindro giratorio, que flota sobre el vidrio fundido contenido en la parte superior cóncava de un cuerpo de formado.  FIG. 7.- View of a rotating cylinder cleaning element, which floats on the molten glass contained in the upper concave part of a forming body.
FIGURA 8.- Vista de un elemento limpiador de cilindro giratorio y detalle de funcionamiento sobre un cuerpo de formado con una concavidad en su parte superior y con una gran relación entre su altura y su anchura.  FIGURE 8.- View of a rotating cylinder cleaning element and operating detail on a forming body with a concavity in its upper part and with a great relation between its height and its width.
FIGURA 9.- Vista de un elemento limpiador de cilindro giratorio sostenido por sus extremos, y detalle de su funcionamiento sobre un cuerpo de formado cuya parte superior es lisa.  FIGURE 9.- View of a rotary cylinder cleaning element held at its ends, and detail of its operation on a forming body whose upper part is smooth.
FIGURA 10.- Vista de un elemento limpiador de placa sumergida y detalle de su funcionamiento sobre el cuerpo de formado.  FIGURE 10.- View of a submerged plate cleaning element and detail of its operation on the forming body.
FIGURA 1 1.- Esquema de conjunto y vistas parciales de un sistema de fabricación con dos grupos de dosificación para un mismo vidrio procedente de un único horno, y con un dispositivo de formado provisto de un cuerpo de formado. FIGURA 12.- Esquema de conjunto y vistas parciales de un sistema de fabricación con dos grupos de dosificación para dos vidrios procedentes de dos hornos diferentes, con un dispositivo de formado, y vista de un detalle ampliado del espesor de la lámina final de vidrio compuesta de dos vidrios diferentes. FIGURE 1 1.- Assembly diagram and partial views of a manufacturing system with two dosage groups for the same glass from a single oven, and with a forming device provided with a forming body. FIGURE 12.- Assembly diagram and partial views of a manufacturing system with two dosing groups for two glasses from two different ovens, with a forming device, and view of an enlarged detail of the thickness of the final composite glass sheet of two different glasses.
FIGURA 13.- Vista de la sección transversal de dos grupos de dosificación con sus módulos de impulsión, dispositivos giratorios y rebosaderos; y de un cuerpo de formado. NUMERACIÓN UTILIZADA EN LAS FIGURAS: 21 recipiente de fusión, 22 materias vitrificables, 23 recipiente de afinado, 24 canal de entrada, 25 regulador de nivel, 26 grupo de dosificación A, 27 módulo de impulsión de vidrio, 28 paredes de separación de los módulos de impulsión, 29 dispositivos giratorios, 30 álabes o palas de los dispositivos giratorios, 31 volumen de vidrio directo, 32 volumen de vidrio refluido, 33 infraestructura de fondo del módulo de impulsión, 34 zona de aspiración, 35 zona de impulsión, 36 rebosadero, 37 vertedero, 38 corriente plana de vidrio fundido, 39 superficie interior irregular, 40 superficie exterior limpia, 41 elemento limpiador de cilindro giratorio, 42 cuerpo de formado, 43 primer borde del cuerpo de formado, 44 segundo borde del cuerpo de formado, 45 concavidad del cuerpo de formado, 46 separación mínima entre el cilindro giratorio y el cuerpo de formado, 47 vértice inferior del cuerpo de formado, 48 corriente por el primer lateral del cuerpo de formado, 49 corriente por el segundo lateral del cuerpo de formado, 50 lámina final de vidrio, 51 rodillos de tracción, 52 elemento limpiador de placa sumergida, 53 corriente directa sobre el cilindro giratorio, 54 corriente entre el cilindro giratorio y el cuerpo de formado, 55 punto singular en el vidrio sobre el cilindro giratorio, 56 corriente de retorno sobre el cilindro giratorio, 57 flujo directo en la placa sumergida. 58 torbellinos detrás de la placa sumergida, 59 segundo flujo en la placa sumergida, 60 grupo de dosificación B, 61 segunda corriente plana de vidrio fundido, 62 y 63 corrientes de vidrio sobre los laterales del cuerpo de formado, 64 cuerpo de formado, 65 estructura de soporte, 66 horno de fusión B, 67 recipiente de afinado B, 68 canal de vidrio B, 69 regulador de nivel B, 70 corriente de vidrio A, 71 corriente de vidrio B, 72 lámina final formada por los dos vidrios A y B. Explicación de la invención FIGURE 13.- View of the cross section of two dosing groups with their drive modules, rotating devices and overflows; and of a body of formed. NUMBERING USED IN THE FIGURES: 21 melting vessel, 22 vitrifiable materials, 23 refining vessel, 24 inlet channel, 25 level regulator, 26 dosing group A, 27 glass discharge module, 28 partition walls of the modules of impulsion, 29 rotating devices, 30 blades or blades of the rotating devices, 31 volume of direct glass, 32 volume of reflowed glass, 33 bottom infrastructure of the impulsion module, 34 aspiration zone, 35 impulsion zone, 36 overflow, 37 weir, 38 flat stream of molten glass, 39 irregular inner surface, 40 clean outer surface, 41 rotating cylinder cleaning element, 42 forming body, 43 first edge of the forming body, 44 second edge of the forming body, 45 concavity of the forming body, 46 minimum spacing between the rotating cylinder and the forming body, 47 lower vertex of the forming body, 48 running through the first side of the forming body, forming ear, 49 running through the second side of the forming body, 50 glass end sheet, 51 pull rolls, 52 submerged plate cleaning element, 53 direct current on the rotating cylinder, 54 current between the rotating cylinder and the body of formed, 55 singular point in the glass on the rotating cylinder, 56 return current on the rotating cylinder, 57 direct flow in the submerged plate. 58 vortices behind the submerged plate, 59 second flow in the submerged plate, 60 dosing group B, 61 second flat stream of molten glass, 62 and 63 glass streams on the sides of the forming body, 64 forming body, 65 support structure, 66 fusion furnace B, 67 refining vessel B, 68 glass channel B, 69 level regulator B, 70 glass stream A, 71 glass stream B, 72 final sheet formed by the two glasses A and B. Explanation of the invention
El procedimiento de la presente invención para la fabricación de láminas delgadas de vidrio comprende las siguientes partes: a) un horno de fusión para obtener un vidrio fundido; b) un grupo de dosificación para producir una corriente plana de vidrio fundido con caudal uniforme por unidad de anchura; c) un dispositivo de formado para conformar una lámina continua de vidrio sólido; y, d) unos medios de corte para obtener unos artículos de vidrio de dimensiones determinadas.  The process of the present invention for the manufacture of thin sheets of glass comprises the following parts: a) a melting furnace to obtain a molten glass; b) a dosing group to produce a flat stream of molten glass with uniform flow per unit width; c) a forming device for forming a continuous sheet of solid glass; and, d) cutting means for obtaining glass articles of certain dimensions.
En lugar de la distribución estática de vidrio que utiliza el método "overflow downdraw", el procedimiento de la presente invención utiliza una distribución dinámica con el objeto de controlar y regular el flujo de vidrio en cada módulo de impulsión de vidrio perteneciente al grupo de dosificación; de esta forma, puede regularse el espesor de tantas zonas de la lámina final de vidrio como número de módulos de impulsión de vidrio comprenden el grupo de dosificación. La regulación del caudal de vidrio que pasa por cada módulo de impulsión se realiza mediante la variación de la velocidad de giro y/ o de la posición de los ejes de rotación de los dispositivos giratorios pertenecientes al citado módulo con el objeto de modificar la altura hidráulica del vidrio y el caudal de vidrio fundido que pasa por el rebosadero correspondiente al módulo de impulsión.  Instead of the static glass distribution using the "overflow downdraw" method, the method of the present invention uses a dynamic distribution in order to control and regulate the flow of glass in each glass drive module belonging to the dosing group ; in this way, the thickness of as many areas of the final glass sheet can be regulated as the number of glass drive modules comprise the dosing group. The regulation of the flow of glass that passes through each impulsion module is done by varying the speed of rotation and / or the position of the axes of rotation of the rotating devices belonging to said module in order to modify the hydraulic height of the glass and the flow of molten glass that passes through the overflow corresponding to the drive module.
La función principal de los dispositivos giratorios es la de dosificar y regular el caudal másico de vidrio en cada módulo de impulsión. Además, los dispositivos giratorios realizan la función de mezclar y homogeneizar física y térmicamente el vidrio fundido, influyendo directamente en la calidad final de los artículos fabricados.  The main function of the rotating devices is to dose and regulate the mass flow of glass in each impulse module. In addition, the rotating devices perform the function of physically and thermally mixing and homogenizing the molten glass, directly influencing the final quality of the manufactured articles.
En la FIGURA 2 se expone una vista en perspectiva de una instalación para la fabricación de láminas delgadas de vidrio según el procedimiento de la invención.  FIGURE 2 shows a perspective view of an installation for the manufacture of thin sheets of glass according to the method of the invention.
En las FIGURAS 3 y 4 se exponen las vistas de conjunto de dos realizaciones particulares del procedimiento de la invención; cada realización consta de un horno (21) para la fusión de las materias vitrificables (22) y de un recipiente de afinado (23); luego, el vidrio fundido pasa por un canal (24) para llegar al grupo de dosificación (26), cuyo objeto es el de distribuir y regular el caudal de vidrio para convertirlo en una corriente plana (38) de vidrio fundido cuya anchura es la de la lámina final de vidrio y cuyo caudal de vidrio es controlado y regulado mediante varios módulos de impulsión de vidrio (27) situados en paralelo, cuyo número es cinco en la representación de ambas figuras; los módulos de impulsión de vidrio están separados entre sí por unas paredes laterales (28) y comprenden unos dispositivos giratorios (29) que realizan la función de impulsión del vidrio fundido, ver FIGURAS 5 y 6; estos dispositivos producen el incremento de la altura hidráulica de vidrio fundido respecto al canal de entrada y regulando al mismo tiempo el caudal que pasa por el rebosadero (36) perteneciente a cada módulo de impulsión. Las paredes de separación (28) continúan hasta la cresta del rebosadero (36), y cuando estas paredes desaparecen, el vidrio fundido correspondiente a cada uno de los módulos de impulsión se une en forma de una única corriente plana (38) de vidrio fundido que fluye y cae desde el vertedero (37) para pasar a la siguiente etapa de conformación en el dispositivo de formado. In FIGURES 3 and 4 the overall views of two particular embodiments of the method of the invention are set forth; each embodiment consists of an oven (21) for melting the vitrifiable materials (22) and a refining container (23); then, the molten glass passes through a channel (24) to reach the dosing group (26), whose object is to distribute and regulate the flow of glass to convert it into a flat stream (38) of molten glass whose width is of the final glass sheet and whose glass flow is controlled and regulated by several glass drive modules (27) located in parallel, whose number is five in the representation of both figures; the glass discharge modules are separated from each other by side walls (28) and comprise rotating devices (29) that perform the function of driving the molten glass, see FIGURES 5 and 6; these devices produce the increase of the hydraulic height of molten glass with respect to the inlet channel and at the same time regulating the flow that passes through the overflow (36) belonging to each impulsion module. The separation walls (28) continue to the crest of the overflow (36), and when these walls disappear, the molten glass corresponding to each of the drive modules joins in the form of a single flat stream (38) of molten glass which flows and falls from the landfill (37) to move to the next forming step in the forming device.
Cuando se utiliza un único grupo de dosificación, una de las dos superficies de la corriente plana de vidrio (38), la superficie interior que ha estado en contacto con el vertedero (37), es modificada mediante un elemento limpiador, perteneciente al dispositivo de formado. Luego, el flujo de la corriente plana (38) se divide en dos corrientes (48 y 49) de vidrio fundido que fluyen hacia abajo, por las dos caras laterales del cuerpo de formado (42), al mismo tiempo que el vidrio es enfriado. Las dos corrientes de vidrio alcanzan el vértice inferior del cuerpo de formado y se unen para formar una lámina (50) continua de vidrio que es estirada hacia abajo mediante unas máquinas de tracción, y posteriormente fraccionada en artículos determinados de vidrio plano de bajo espesor. En una realización del procedimiento de la invención, el elemento limpiador comprende un cilindro giratorio, FIGURAS 7, 8, y 9; en otra realización del procedimiento de la invención el elemento limpiador comprende una placa plana parcialmente sumergida en el vidrio, FIGURA 10.  When a single dosing group is used, one of the two surfaces of the flat glass stream (38), the inner surface that has been in contact with the weir (37), is modified by a cleaning element, belonging to the device of formed. Then, the flow of the flat stream (38) is divided into two streams (48 and 49) of molten glass that flow downwards, on the two lateral faces of the forming body (42), at the same time that the glass is cooled . The two glass currents reach the lower vertex of the forming body and join to form a continuous sheet (50) of glass that is drawn downwards by means of traction machines, and then fractionated into certain articles of flat glass of low thickness. In one embodiment of the method of the invention, the cleaning element comprises a rotating cylinder, FIGURES 7, 8, and 9; In another embodiment of the method of the invention, the cleaning element comprises a flat plate partially submerged in the glass, FIGURE 10.
En las FIGURAS 1 1 y 12, se muestran unas vistas de conjunto de dos realizaciones del procedimiento de la invención, en las cuales se utilizan dos diferentes grupos de dosificación (26 y 60) con sus respectivos módulos de impulsión (27), dispositivos giratorios (29), paredes de separación (28) y rebosaderos para formar dos corrientes planas de vidrio fundido (38 y 61). Los dos grupos de dosificación (26 y 60) están parcialmente soportados por una estructura (65) que es independiente y está separada de la zona (64) que integra y soporta el cuerpo de formado, ver FIGURA 13. La lámina de vidrio es estirada por medio de los rodillos de tracción (51). En la FIGURA 12 se representa una realización particular de la invención que utiliza dos hornos de fusión, horno A (21) y horno B (66), para la elaboración de dos vidrios diferentes con la finalidad de obtener una lámina delgada de vidrio formada por dos vidrios diferentes, vidrio A y vidrio B, ocupando cada uno de ellos la mitad del espesor de la citada lámina de vidrio a partir del vértice (47), del cuerpo de formado (64). In FIGS. 1 and 12, overall views of two embodiments of the method of the invention are shown, in which two different dosing groups (26 and 60) are used with their respective drive modules (27), rotating devices (29), partition walls (28) and overflows to form two flat streams of molten glass (38 and 61). The two dosing groups (26 and 60) are partially supported by a structure (65) that is independent and is separated from the area (64) that integrates and supports the forming body, see FIGURE 13. The glass sheet is stretched by means of the traction rollers (51). FIGURE 12 shows a particular embodiment of the invention using two melting furnaces, furnace A (21) and furnace B (66), for the production of two different glasses in order to obtain a thin sheet of glass formed by two different glasses, glass A and glass B, each occupying half the thickness of said glass sheet from the apex (47) of the forming body (64).
El procedimiento de la invención permite disponer de algunas realizaciones, como:  The method of the invention allows to have some embodiments, such as:
Ia) Un horno de fusión, más un grupo de dosificación, más un cuerpo de formado con un cilindro giratorio como elemento limpiador, más medios de corte para obtener una lámina formada por un único vidrio; I a ) A melting furnace, plus a dosing group, plus a forming body with a rotating cylinder as a cleaning element, plus cutting means to obtain a sheet formed by a single glass;
2a) Un horno de fusión, más un grupo de dosificación, más un cuerpo de formado con una placa sumergida como elemento limpiador, más medios de corte para obtener una lámina formada por un único vidrio; 2 a ) A melting furnace, plus a dosing group, plus a forming body with a submerged plate as a cleaning element, plus cutting means to obtain a sheet formed by a single glass;
3a) Un horno de fusión, más dos grupos de dosificación, más un cuerpo de formado sin elemento limpiador, más medios de corte para obtener una lámina formada por un único vidrio; 3 a ) A melting furnace, plus two dosage groups, plus a forming body without cleaning element, plus cutting means to obtain a sheet formed by a single glass;
4a) Dos hornos de fusión, más dos grupos de dosificación, más un cuerpo de formado sin elemento limpiador, más medios de corte para obtener una lámina compuesta de dos vidrios diferentes. 4 a ) Two melting furnaces, plus two dosing groups, plus a forming body without cleaning element, plus cutting means to obtain a sheet composed of two different glasses.
DESCRIPCIÓN DETALLADA DE LA INVENCIÓN DETAILED DESCRIPTION OF THE INVENTION
La siguiente descripción detallada está realizada a modo de explicación y no de limitación; con ella se proporcionará un conocimiento completo de la invención, y será suficiente para que una persona experta en la técnica de la conformación del vidrio entienda que la presente invención puede ser aplicada en otras realizaciones industriales aunque no contemplen los detalles específicos expuestos aquí. Por otra parte, algunas descripciones de los bien conocidos dispositivos, métodos y materiales utilizados, pueden ser omitidas a fin de no extender la descripción de la presente invención.  The following detailed description is made by way of explanation and not limitation; with it a complete knowledge of the invention will be provided, and it will be sufficient for a person skilled in the art of shaping the glass to understand that the present invention can be applied in other industrial embodiments even though they do not contemplate the specific details set forth herein. On the other hand, some descriptions of the well-known devices, methods and materials used may be omitted so as not to extend the description of the present invention.
La presente invención proporciona un procedimiento para la fabricación de vidrio plano delgado de alta calidad que comprende las siguientes etapas: 1) fusión y afinado de materias vitrificables para obtener una masa de vidrio fundido y afinado, utilizando un horno de fusión con un canal de salida que comprende un regulador de nivel para mantener constante la altura hidráulica del vidrio fundido; 2) distribución y dosificación del vidrio en una corriente plana de vidrio fundido con caudal uniforme por unidad de anchura, utilizando un grupo de dosificación que comprende varios módulos de impulsión de vidrio, constando cada uno de estos módulos con al menos un dispositivo giratorio y con un rebosadero, al final se une el vidrio de todos los módulos de impulsión para obtener la citada corriente plana de vidrio fundido, que pasa a la siguiente etapa mediante un vertedero; 3) transformación de una corriente plana de vidrio fundido en una lámina continua de vidrio sólido, utilizando un dispositivo de formado que comprende un cuerpo de formado y unos medios de tracción, y, opcionalmente, un elemento "limpiador" para modificar la cara inferior de la corriente plana de vidrio fundido; y 4) fraccionamiento de la lámina continua, mediante unos medios de corte, para obtener unos artículos de vidrio de dimensiones determinadas. The present invention provides a process for the manufacture of thin flat glass of high quality comprising the following steps: 1) melting and refining vitrifiable materials to obtain a mass of molten and refined glass, using a melting furnace with an outlet channel what it comprises a level regulator to keep the hydraulic height of the molten glass constant; 2) distribution and dosing of the glass in a flat stream of molten glass with uniform flow rate per unit width, using a dosing group comprising several glass drive modules, each of these modules consisting of at least one rotating device and with an overflow, at the end the glass of all the impulse modules is joined to obtain the aforementioned flat stream of molten glass, which passes to the next stage by means of a weir; 3) transforming a flat stream of molten glass into a continuous sheet of solid glass, using a forming device comprising a forming body and a pulling means, and, optionally, a "cleaning" element for modifying the lower face of the flat stream of molten glass; and 4) fractionation of the continuous sheet, by means of cutting means, to obtain glass articles of certain dimensions.
El procedimiento de la invención comienza, ver vistas de conjunto en las The method of the invention begins, see overall views in the
FIGURAS 3, 4, 1 1 , y 12, a partir de la fusión de las materias vitrificables (22) en un recipiente de fusión (21) y el afinado del vidrio fundido en un recipiente de afinado (23); el vidrio fundido es conducido mediante un canal (24) hacia el grupo de dosificación (26); en el canal (24) se mantiene un nivel constante de vidrio, Ho, utilizando un regulador de nivel (25), constituido por un canal/ vertedero lateral, FIGURAS 5 y 6. FIGURES 3, 4, 11, and 12, from the melting of the vitrifiable materials (22) in a melting vessel (21) and the refining of the molten glass in a refining vessel (23); the molten glass is led through a channel (24) to the dosing group (26); in the channel (24) a constant glass level is maintained, Ho, using a level regulator (25), constituted by a lateral channel / weir, FIGURES 5 and 6.
El vidrio fundido conducido por el canal (24), con un nivel Ho constante de vidrio, alcanza la zona donde actúa el grupo de dosificación (26), cuyo objeto es el de generar una corriente plana (38) de vidrio fundido cuya dimensión en anchura es similar a la anchura de la futura lámina de vidrio fabricada, y cuyo caudal por unidad de anchura es uniforme. El grupo de dosificación recoge el vidrio fundido procedente del canal (24) y lo distribuye entre varios módulos de impulsión (27), cinco en la representación de las figuras, situados en paralelo; cada uno de los módulos de impulsión de vidrio (27) está separado de los módulos limítrofes mediante unas paredes de separación (28) construidas con una aleación de platino y/o rodio. La impulsión del vidrio se realiza por medio de al menos un dispositivo giratorio (29) que regula y controla la altura hidráulica Hi de vidrio fundido antes de pasar por un rebosadero (36) perteneciente al mismo modulo de impulsión (27); por cada rebosadero fluye únicamente el caudal de vidrio ya controlado y regulado por los dispositivos giratorios (29) del módulo de impulsión. Las paredes (28) que separan entre sí a cada uno de los módulos de impulsión continúan hasta la cresta del rebosadero (36), y, cuando estas paredes (28) desaparecen, todo el vidrio fundido correspondiente a cada uno de los módulos de impulsión se junta en forma de una única corriente plana de vidrio fundido (38) que fluye y cae desde el vertedero (37) para pasar a la siguiente fase de formado. El grupo de dosificación (26) y los módulos de impulsión de vidrio (27) pueden estar parcialmente apoyados sobre su infraestructura (33) y/o estar parcialmente suspendidos a desde la parte superior de las paredes laterales (28). The molten glass conveyed by the channel (24), with a constant level Ho of glass, reaches the area where the dosing group (26) acts, whose object is to generate a flat stream (38) of molten glass whose size in width is similar to the width of the future manufactured glass sheet, and whose flow per unit width is uniform. The dosing group collects the molten glass from the channel (24) and distributes it between several impulse modules (27), five in the representation of the figures, located in parallel; each of the glass discharge modules (27) is separated from the border modules by means of partition walls (28) constructed of an alloy of platinum and / or rhodium. The glass is driven by means of at least one rotating device (29) which controls and controls the hydraulic height Hi of molten glass before passing through an overflow (36) belonging to the same drive module (27); for each overflow flows only the volume of glass already controlled and regulated by the devices Swivel (29) of the drive module. The walls (28) that separate each of the drive modules from each other continue to the crest of the overflow (36), and, when these walls (28) disappear, all the molten glass corresponding to each of the drive modules it joins in the form of a single flat stream of molten glass (38) that flows and falls from the landfill (37) to move on to the next forming phase. The dosing group (26) and the glass discharge modules (27) may be partially supported on their infrastructure (33) and / or partially suspended from the top of the side walls (28).
Tal y como se expone en las FIGURAS 5 y 6, la dosificación del caudal de vidrio fundido se realiza mediante los dispositivos giratorios (29), que provocan el desplazamiento del vidrio fundido desde el canal de entrada (24), que realiza la función de zona de aspiración con una altura de vidrio Ho constante, hasta la zona de impulsión (35), con una cota de vidrio Hi, donde se encuentra el rebosadero (36) de salida. El espacio existente entre los dispositivos giratorios y las paredes laterales (28) de cada módulo en la dirección (31) del flujo de vidrio, es superior al espacio existente para la dirección (32) opuesta; por ello, el flujo de vidrio es empujado e impulsado en la dirección de la fabricación. Los dispositivos giratorios (29) no se limitan a los diseños representados en las figuras, y pueden ser utilizados una gran variedad de modelos: lobulares, de engranajes, de aletas, o de elementos excéntricos, todos ellos dentro del campo o espíritu de la presente invención. Los dispositivos giratorios están dirigidos por al menos un mecanismo propulsor que controla y regula su velocidad de rotación y/o por un mecanismo de posición que controla y regula la posición de los dispositivos giratorios entre sí y con relación al módulo de impulsión al cual pertenecen.  As shown in FIGS. 5 and 6, the dosing of the molten glass flow rate is carried out by the rotating devices (29), which cause the molten glass to move from the inlet channel (24), which performs the function of suction zone with a constant glass height Ho, up to the discharge zone (35), with a glass height Hi, where the overflow (36) is located. The space between the rotating devices and the side walls (28) of each module in the direction (31) of the glass flow is greater than the space for the opposite direction (32); therefore, the flow of glass is pushed and propelled in the direction of manufacture. The rotating devices (29) are not limited to the designs represented in the figures, and a wide variety of models can be used: lobe, gear, fin, or eccentric elements, all within the field or spirit of the present invention. The rotating devices are directed by at least one driving mechanism that controls and regulates its speed of rotation and / or by a position mechanism that controls and regulates the position of the rotating devices with each other and with respect to the drive module to which they belong.
En una realización particular de un módulo de impulsión en la que se han utilizado dos dispositivos giratorios, FIGURA 5, puede observarse que cada módulo de impulsión (27) está compuesto por una infraestructura de fondo (33) que continúa con un rebosadero (36) y finaliza con un vertedero (37) que vierte el vidrio en forma de corriente plana de vidrio fundido (38) con un caudal uniforme por unidad de anchura hacia el dispositivo de formado que se sitúa a continuación del citado vertedero: Cada módulo de impulsión también consta de unas paredes laterales (28) que lo separan de los módulos de impulsión adyacentes y que pertenecen al mismo grupo de dosificación; estas paredes laterales (28) conducen el vidrio fundido hasta la cresta del rebosadero (36) . El vidrio fundido es recogido desde la zona de aspiración (34) con una altura hidráulica Ho, y elevado hasta la zona de impulsión (35) próxima al rebosadero (36) a una altura hidráulica Hi. Los ejes de rotación pertenecientes a los dos dispositivos giratorios (29) están distanciados entre sí una magnitud DE, y en su parte sumergida en el vidrio fundido tienen unos álabes o palas (30) cuyas formas, trayectorias, velocidad y sentido de giro determinan el movimiento del vidrio en todo el volumen del módulo de impulsión, el cual puede descomponerse en dos volúmenes distintos: a) volumen directo, (3 1 ) VD, en el que el vidrio se mueve en el sentido de la fabricación; y b) volumen refluido, (32) VR, en el que el vidrio se mueve en el sentido opuesto al de fabricación. El volumen directo (3 1 ) es mayor que el volumen refluido (32) , de forma que el vidrio aumenta su altura hidráulica ΔΗ = Hi - Ho de una forma regulada mediante la modificación de la velocidad de giro w y/o de la posición DE, di, y Ú2 de los ejes de rotación de los dispositivos giratorios (29) respecto al módulo de impulsión (27) al que pertenecen. In a particular embodiment of a drive module in which two rotating devices have been used, FIGURE 5, it can be seen that each drive module (27) is composed of a bottom infrastructure (33) that continues with an overflow (36) and ends with a landfill (37) that pours the glass in the form of a flat stream of molten glass (38) with a uniform flow per unit of width towards the forming device that is located next to said landfill: Each drive module also it consists of side walls (28) that separate it from the adjacent drive modules and that belong to the same dosing group; these walls laterals (28) conduct the molten glass to the crest of the overflow (36). The molten glass is collected from the suction zone (34) with a hydraulic height Ho, and raised to the drive zone (35) near the overflow (36) at a hydraulic height Hi. The axes of rotation belonging to the two rotating devices (29) are separated from each other by a magnitude DE, and in their part immersed in the molten glass have blades or blades (30) whose shapes, trajectories, speed and direction of rotation determine the movement of the glass in the entire volume of the impulse module, which can be decomposed into two different volumes: a) direct volume, (3 1) VD, in which the glass moves in the direction of manufacture; and b) reflowed volume, (32) VR, in which the glass moves in the opposite direction to that of manufacturing. The direct volume (3 1) is greater than the reflux volume (32), so that the glass increases its hydraulic height ΔΗ = Hi-Ho in a regulated manner by changing the rotation speed w and / or the DE position , di, and Ú2 of the axes of rotation of the rotating devices (29) with respect to the drive module (27) to which they belong.
En la FIGURA 6 se representa un esquema que comprende un único elemento móvil en cada módulo de impulsión; la elevación hidráulica es alcanzada mediante la modificación de la velocidad de giro w y/o de la posición excéntrica di y di del eje de rotación del dispositivo giratorio respecto a las paredes laterales (28) del módulo de impulsión; con la variación de la posición de los ejes de rotación, di y Ú2, se modifican simultáneamente los dos volúmenes ya citados, el directo VD y el refluido VR.  FIG. 6 shows a diagram comprising a single mobile element in each drive module; the hydraulic lift is achieved by changing the speed of rotation w and / or the eccentric position di and di of the axis of rotation of the rotary device with respect to the side walls (28) of the drive module; with the variation of the position of the axes of rotation, di and Ú2, the two aforementioned volumes, the direct VD and the reflux VR, are simultaneously modified.
Los dispositivos giratorios (29) de la FIGURA 5 que utiliza el procedimiento de la invención para la regulación del caudal, constituyen esencialmente una bomba rotativa con dos ejes paralelos que recoge el vidrio fundido desde un canal de entrada (24) con una altura de vidrio Ho, y lo eleva hasta una altura de vidrio Hi cerca del rebosadero (36) de pared gruesa. La altura Hi del vidrio ya elevado mantiene el equilibrio entre el caudal neto de vidrio impulsado y el caudal de vidrio que pasa por el citado rebosadero.  The rotating devices (29) of FIGURE 5 using the method of the invention for the regulation of the flow rate, constitute essentially a rotary pump with two parallel axes that collects the molten glass from an inlet channel (24) with a height of glass Ho, and elevates it to a height of Hi glass near the thick-walled overflow (36). The height Hi of the glass already raised maintains the balance between the net flow of glass driven and the flow of glass that passes through the aforementioned overflow.
Como la altura de vidrio Ho en la zona de entrada (34) se mantiene constante, la altura de vidrio Hi en la zona de salida (35) depende de la altura Yo de la cresta del rebosadero (36); la impulsión del caudal QM de vidrio fundido produce un incremento de la altura hidráulica ΔΗ de:  As the glass height Ho in the entrance area (34) remains constant, the glass height Hi in the exit area (35) depends on the height I of the crest of the overflow (36); the flow rate of the molten glass QM produces an increase in the hydraulic height ΔΗ of:
ΔΗ = Ηι - Η0 ( 1 ) donde: ΔΗ es el incremento de altura producido por los dispositivos giratorios; Hi , es la altura de vidrio a la salida o zona de impulsión; y Ho, es la altura de vidrio a la entrada o zona aspiración. ΔΗ = Ηι - Η 0 (1) where: ΔΗ is the height increase produced by the rotating devices; Hi, it is the glass height at the outlet or drive zone; and Ho, it is the glass height at the entrance or aspiration zone.
En cada giro o vuelta, FIGURA 5, los dispositivos giratorios desplazan un volumen de vidrio directo (3 1), VD, por los dos laterales del módulo hacia la zona de impulsión (35), y por la zona central desplazan un volumen de vidrio refluido (32), VR, hacia la zona de aspiración o de entrada (34); a la velocidad de giro w; el desplazamiento de estos volúmenes genera un caudal QM en cada módulo de: At each turn or turn, FIGURE 5, the rotating devices move a volume of direct glass (3 1), VD, through the two sides of the module to the drive zone (35), and move a volume of glass through the central area. reflux (32), VR, towards the suction or inlet zone (34); at the speed of rotation w; the displacement of these volumes generates a flow QM in each module of:
Figure imgf000014_0001
Figure imgf000014_0001
donde: fi (w), es una función que depende de la velocidad de giro de los dispositivos giratorios; VD, es el volumen de vidrio directo; VR, es el volumen de vidrio refluido; y QM, es el caudal neto de vidrio en el módulo de impulsión. where: fi (w), is a function that depends on the speed of rotation of the rotating devices; VD, is the volume of direct glass; VR, is the volume of reflowed glass; and QM, is the net flow rate of glass in the drive module.
La longitud y la altura Yo de la cresta del rebosadero (36) constituyen un obstáculo para el movimiento del vidrio impulsado por los dispositivos giratorios (29), de forma que el vidrio fundido adquiere un incremento de altura hidráulica ΔΗ que puede ser expresado de la forma:  The length and height Yo of the crest of the overflow (36) constitute an obstacle to the movement of the glass driven by the rotating devices (29), so that the molten glass acquires an increase in hydraulic height ΔΗ that can be expressed from the shape:
ΔΗ = KH · w · μ · (VD - VR) (3) ΔΗ = K H · w · μ · (V D - V R ) (3)
donde: KH , es una constante; w, es la velocidad de rotación de los dispositivos giratorios; y μ, es la viscosidad dinámica del vidrio. where: KH, is a constant; w, is the rotation speed of the rotating devices; and μ, is the dynamic viscosity of the glass.
Para una determinada anchura LM del módulo de impulsión, el volumen teórico directo VD de vidrio impulsado y el volumen de vidrio refluido VR dependen de la distancia DE entre los ejes de rotación de los dispositivos giratorios, según una relación que puede expresarse de la forma: For a certain width LM of the drive module, the direct theoretical volume VD of driven glass and the volume of reflowed glass VR depend on the distance DE between the axes of rotation of the rotating devices, according to a relationship that can be expressed as:
Figure imgf000014_0002
Figure imgf000014_0002
donde: DE, es la distancia entre los ejes de rotación de los dispositivos giratorios; k2, es una constante; y f2 (DE)142, es una función dependiente de la geometría de los dispositivos giratorios, de la viscosidad dinámica del vidrio, y de la altura de vidrio en el módulo de impulsión. where: DE, is the distance between the axes of rotation of the rotating devices; It is a constant; and f 2 (DE) 142 , is a function dependent on the geometry of the rotating devices, the dynamic viscosity of the glass, and the glass height in the drive module.
De esta forma el incremento de altura hidráulica ΔΗ puede expresarse de la forma:  In this way the hydraulic height increase ΔΗ can be expressed as:
ΔΗ = KH · w · μ · f2 (DE)k2 (5) ΔΗ = K H · w · μ · f 2 (D E ) k2 (5)
donde: KH, es una constante. Con un funcionamiento a viscosidad constante, el incremento de altura hidráulica puede ser controlado y regulado mediante la variación de la velocidad de giro w, y/ o de la distancia DE entre los ejes de rotación de los dispositivos giratorios. where: KH, is a constant. With constant viscosity operation, the hydraulic height increase can be controlled and regulated by the variation of the speed of rotation w, and / or of the distance DE between the axes of rotation of the rotating devices.
La tensión de cizallamiento producida por el movimiento del vidrio en el módulo de impulsión a causa de los dispositivos giratorios, deforma las heterogeneidades existentes en el vidrio fundido disminuyendo su espesor. La deformación de una heterogeneidad de espesor inicial δι en un período de tiempo t y en un campo de velocidad definido por su gradiente de velocidad grad.v viene dado por la expresión:  The shear stress produced by the movement of the glass in the drive module due to the rotating devices, deforms the heterogeneities existing in the molten glass decreasing its thickness. The deformation of an initial thickness heterogeneity δι in a period of time t and in a velocity field defined by its gradient of velocity grad.v is given by the expression:
5F = δι / ( t · grad. v) (6)  5F = δι / (t · grad v) (6)
donde: 5F, es el espesor final de la deformación; δι, es el espesor inicial de la deformación; t, es el tiempo de estancia de la deformación en el campo de velocidad, y (grad.v = dv/dn) el gradiente de velocidad medio [Jan Hlavác: "The Technology of Glass and Ceramics", Elsevier S. P. C, página 132]. where: 5F, is the final thickness of the deformation; δι, is the initial thickness of the deformation; t, is the dwell time of the deformation in the velocity field, and (grad.v = dv / dn) the average velocity gradient [Jan Hlavác: "The Technology of Glass and Ceramics", Elsevier SP C, page 132 ]
En la presente invención, los dispositivos giratorios tienen la finalidad fundamental de controlar y regular el caudal de vidrio que pasa por el rebosadero, y por tanto el espesor de la lámina final. Por otra parte, los dispositivos giratorios también homogeneizan el vidrio fundido de forma análoga a los agitadores mecánicos, "stirrers", utilizados según el actual estado de la técnica de fabricación de vidrio; la demanda de vidrios de gran calidad ha permitido que la agitación mecánica sea utilizada con el objetivo de reducir las heterogeneidades y/o para mejorar la homogeneidad térmica del vidrio fundido [Wolfgang Trier, "Glass Furnaces, Design Construction and Operation", traducción de Society of Glass Technology Sheffield, página 1 75\ .  In the present invention, the rotating devices have the fundamental purpose of controlling and regulating the flow rate of glass passing through the overflow, and therefore the thickness of the final sheet. On the other hand, the rotating devices also homogenize the molten glass analogously to the mechanical stirrers, "stirrers", used according to the current state of the art of glassmaking; the demand for high quality glass has allowed mechanical agitation to be used with the aim of reducing heterogeneities and / or to improve the thermal homogeneity of molten glass [Wolfgang Trier, "Glass Furnaces, Design Construction and Operation", Society translation of Glass Technology Sheffield, page 1 75 \.
El vidrio fundido impulsado por los dispositivos giratorios (29) en los módulos de impulsión (27) pasa por encima de la cresta de su correspondiente rebosadero (36) y, cuando finalizan las paredes laterales (28) que separan entre sí a los módulos de impulsión, FIGURAS 5 y 6, los flujos de vidrio correspondientes a todos los módulos de impulsión (27) pertenecientes al grupo de dosificación se unen y fluyen aguas abajo para caer por gravedad desde el vertedero (37) en forma de una corriente plana de vidrio fundido (38), hacia la etapa de formado.  The molten glass driven by the rotating devices (29) in the drive modules (27) passes over the crest of its corresponding overflow (36) and, when the side walls (28) that separate the modules from each other end up. drive, FIGURES 5 and 6, the glass flows corresponding to all the drive modules (27) belonging to the dosing group come together and flow downstream to fall by gravity from the landfill (37) in the form of a flat stream of glass melted (38), towards the forming stage.
Las dos superficies de la corriente plana de vidrio fundido (38) de espesor uniforme que cae del vertedero (37), presentan diferentes estados: a) la superficie exterior (40), FIGURAS 7 a 9, es "limpia", ya que el vidrio fundido no ha estado en contacto con materiales sólidos estáticos; y b) la superficie interior (39), procedente del contacto con el vertedero, es "irregular" y debe ser modificada y/o sustituida en la etapa de formado, en una operación que se realiza mediante un elemento "limpiador", que también es objeto de la presente invención. The two surfaces of the flat stream of molten glass (38) of uniform thickness that falls from the weir (37), present different states: a) the outer surface (40), FIGURES 7 to 9, is "clean", since the Molten glass has not been in contact with static solid materials; and b) the surface interior (39), coming from the contact with the landfill, is "irregular" and must be modified and / or replaced in the forming stage, in an operation that is carried out by means of a "cleaning" element, which is also the object of this invention.
El caudal de vidrio fundido que ha sido regulado y dosificado en los módulos de impulsión pasa por un rebosadero, FIGURA 5, el caudal de vidrio fundido que pasa por la cresta del rebosadero de cada módulo de impulsión sigue la expresión:  The flow of molten glass that has been regulated and dosed in the discharge modules passes through an overflow, FIGURE 5, the flow of molten glass that passes through the crest of the overflow of each drive module follows the expression:
QM = Ki · μ-ι · LM · (Hi - Y0)3/2 (7) Q M = Ki · μ-ι · L M · (Hi - Y 0 ) 3/2 (7)
donde: QM, es el caudal de vidrio que pasa por el módulo de impulsión; μ, es la viscosidad dinámica del vidrio; LM, es la anchura del módulo de impulsión; Hi , es la altura del nivel de vidrio en la zona de impulsión; Yo, es la altura de la cresta del rebosadero; y Ki , es una constante. where: QM, is the flow of glass that passes through the drive module; μ, is the dynamic viscosity of the glass; LM, is the width of the drive module; Hi, it is the height of the glass level in the drive zone; Me, it is the height of the crest of the overflow; and Ki, it's a constant.
El caudal de vidrio por unidad de anchura del rebosadero está directamente relacionado con el espesor de la lámina final de vidrio, y se corresponde con la expresión:  The glass flow per unit width of the overflow is directly related to the thickness of the final glass sheet, and corresponds to the expression:
q = QM / LM (8) q = Q M / L M (8)
donde: q, es el caudal de vidrio fundido por unidad de anchura en cada módulo de impulsión. where: q, is the flow rate of molten glass per unit width in each drive module.
De las ecuaciones anteriores se obtiene que el caudal por unidad de anchura q es función de las geometrías del módulo de impulsión y de los dispositivos giratorios, de la viscosidad del vidrio, de la velocidad de giro w de los dispositivos giratorios, y de la distancia DE entre los ejes de rotación de los dispositivos giratorios; se expresa de la forma:  From the above equations it is obtained that the flow rate per unit width q is a function of the geometries of the drive module and of the rotating devices, of the viscosity of the glass, of the speed of rotation w of the rotating devices, and of the distance OF between the axes of rotation of the rotating devices; it is expressed in the following way:
q = [w, μ, DE] (9) q = [w, μ, D E ] (9)
En las realizaciones de la invención en las que se utiliza un único grupo de dosificación, la suma de los caudales de todos los módulos de impulsión equivale al caudal total de fabricación de la lámina de vidrio; para el conjunto de los N módulos de impulsión que constituyen el grupo de dosificación, el caudal total es:  In the embodiments of the invention in which a single dosing group is used, the sum of the flow rates of all the driving modules equals the total manufacturing flow rate of the glass sheet; For the set of N drive modules that make up the dosing group, the total flow is:
Q = (∑QM) l a N ( 10) donde: N, es el número de módulos de impulsión que tiene el grupo de dosificación; y Q, es el caudal total de fabricación de vidrio, igual a la suma de los N rebosaderos. La suma de las anchuras de todos los módulos equivale a la anchura total de la lámina de vidrio fabricada: Q = (ΣQ M ) the N (10) where: N, is the number of drive modules that the dosing group has; and Q, is the total flow of glass manufacture, equal to the sum of the N overflows. The sum of the widths of all the modules corresponds to the total width of the manufactured glass sheet:
L = (∑LM) l a N ( 1 1 ) donde: L, es la anchura total de la lámina final del vidrio, que coincide esencialmente con la suma de las dimensiones de los N rebosaderos que constituyen el grupo de dosificación. L = (ΣL M ) the N (1 1) where: L, is the total width of the final sheet of glass, which essentially coincides with the sum of the dimensions of the N overflows that make up the dosing group.
Los módulos de impulsión pueden tener la misma anchura LM y dosificar el mismo caudal QM, aunque los módulos de los bordes pueden dosificar un diferente caudal por unidad de superficie para facilitar la operación de estirado.  The drive modules can have the same width LM and dose the same flow rate QM, although the edge modules can dose a different flow per unit area to facilitate the stretching operation.
En un régimen de funcionamiento determinado, el conjunto de dispositivos giratorios y rebosadero está definido por los valores Ho, Ηι ,Υο, w, μ, VD, y VR, que generan un caudal QM en cada módulo de impulsión; estos valores están determinados de tal forma que la velocidad nominal de rotación w sea la suficiente para: a) proporcionar una adecuada precisión de la dosificación del caudal de vidrio; y b) generar una suficiente homogeneización del vidrio fundido. De esta forma, los dispositivos giratorios actúan simultáneamente como elementos de regulación del caudal de vidrio y como elementos de homogeneización de la masa de vidrio fundido.  In a certain operating regime, the set of rotating devices and overflow is defined by the values Ho, Ηι, Υο, w, μ, VD, and VR, which generate a flow QM in each impulse module; these values are determined in such a way that the nominal speed of rotation w is sufficient to: a) provide an adequate precision of the dosing of the glass flow rate; and b) generate a sufficient homogenization of the molten glass. In this way, the rotating devices act simultaneously as elements for regulating the flow rate of glass and as elements for homogenising the mass of molten glass.
Con la modificación de la velocidad de rotación w y de la distancia entre ejes DE, el procedimiento de la presente invención permite un control y regulación del caudal de vidrio más dinámico y de mayor precisión que el método tradicional de "overflow downdraw".  With the modification of the rotation speed w and the distance between axes DE, the method of the present invention allows a more dynamic flow control and regulation of the glass flow and with greater precision than the traditional "overflow downdraw" method.
A partir de las ecuaciones 1 , 3 y 7, se desprende que en el procedimiento de la presente invención, la disminución de la temperatura o el aumento de la viscosidad del vidrio, influyen en la variación del caudal de dos formas que se compensan: a) al aumentar ΔΗ aumenta indirectamente QM, ya que ΔΗ aumenta al aumentar la viscosidad μ (ecuación 3); y b) al aumentar μ (ecuación 7) disminuye directamente QM. De esta forma, en el procedimiento de la presente invención, la variación de la temperatura implica una menor variación en el caudal de vidrio que en el método "overflow downdraw", en el cual la variación de la viscosidad influye directamente sobre la variación del caudal.  From the equations 1, 3 and 7, it appears that in the process of the present invention, the decrease in temperature or the increase in the viscosity of the glass, influence the variation of the flow in two ways that are compensated: ) increasing ΔΗ indirectly increases QM, since ΔΗ increases with increasing viscosity μ (equation 3); and b) increasing μ (equation 7) directly decreases QM. In this way, in the process of the present invention, the variation of the temperature implies a smaller variation in the flow of glass than in the "overflow downdraw" method, in which the variation of the viscosity directly influences the variation of the flow .
La variación de la velocidad de rotación w de los dispositivos giratorios influye sobre el caudal de vidrio q en el módulo de impulsión, por medio del coeficiente (Cqw) i, definido por: (Cqw) i = (%Aq / %Aw) ( 12) donde: (Cqw) i , es el coeficiente de variación del caudal al variar la velocidad en el punto de funcionamiento Fl ; %Aq, es el porcentaje de la variación del caudal; y %Aw, es el porcentaje de la variación de la velocidad de giro. Ambas variaciones, %Aq y %Aw, tienen el mismo sentido. The variation of the rotation speed w of the rotating devices influences the glass flow q in the impulse module, by means of the coefficient (C q w) i, defined by: (C q w) i = (% Aq /% Aw) (12) where: (C q w) i, is the coefficient of variation of the flow rate when changing the speed at the operating point Fl; % Aq, is the percentage of the variation of the flow; and% Aw, is the percentage of the variation of the speed of rotation. Both variations,% Aq and% Aw, have the same meaning.
[0046] La variación de la distancia DE entre los ejes de rotación de los dispositivos giratorios influye sobre el caudal de vidrio q en el módulo de impulsión, por medio del coeficiente (CQDE) i , definido por: [0046] The variation of the distance DE between the axes of rotation of the rotating devices influences the glass flow q in the drive module, by means of the coefficient (C Q DE) i, defined by:
(CqDE) i = (%Aq / %ADE) ( 13) donde: (CQDE) i , es el coeficiente de variación del caudal al variar la distancia entre ejes en el punto de funcionamiento Fl ; y %Δ DE, es el porcentaje de la variación de la distancia entre ejes. Ambas variaciones, %Aq, y % DE, tienen el sentido contrario. (C qDE ) i = (% Aq /% AD E ) (13) where: (C Q DE) i, is the coefficient of variation of the flow rate when the distance between axes varies at the operating point Fl; and% Δ DE, is the percentage of the variation of the wheelbase. Both variations,% Aq, and% DE, have the opposite direction.
La modificación del caudal de vidrio desde un régimen de funcionamiento inicial Fl , definido por qi, wi, y DEI hasta el régimen de funcionamiento final F2, definido por q2, W , y DE2, se realiza mediante la variación de la velocidad de giro w y/o la variación de la distancia DE entre los ejes de rotación, de forma que se cumpla la relación The modification of the glass flow from an initial operating regime Fl, defined by qi, wi, and DEI up to the final operating regime F2, defined by q2, W, and DE2, is carried out by varying the speed of rotation wy / or the variation of the distance D E between the axes of rotation, so that the relationship is fulfilled
(qa-q /qi = %Aw · (CqW) i + %ADE · (CqDE) i ( 14) (qa-q / qi =% Aw · (C qW ) i +% AD E · (C qDE ) i (14)
donde: (q2-qi)/qi, es la variación relativa del caudal q a partir del punto de funcionamiento Fl .  where: (q2-qi) / qi, is the relative variation of the flow q from the operating point Fl.
El procedimiento de la invención permite realizar diversas opciones para modificar el caudal q de vidrio por unidad de anchura en un determinado módulo de impulsión del grupo de dosificación, hecho que equivale a modificar el espesor de la lámina final de vidrio en la zona correspondiente al citado módulo, desde el punto de funcionamiento Fl , definido por el caudal qi, la velocidad wi , y la distancia entre ejes DEI, hasta el punto de funcionamiento F2, definido por (¾ W2, y DE2- Para ello es necesario que la variación de la velocidad de de giro, %Aw, y la variación de la distancia entre ejes, %ADE, cumpla la (ecuación 14) citada anteriormente.  The method of the invention makes it possible to carry out various options for modifying the glass flow rate q per unit width in a given drive module of the dosing group, which is equivalent to modifying the thickness of the final glass sheet in the area corresponding to that mentioned. module, from the operating point Fl, defined by the flow qi, the speed wi, and the distance between axes DEI, up to the operating point F2, defined by (¾ W2, and DE2- For this it is necessary that the variation of the speed of rotation,% Aw, and the variation of the wheelbase,% ADE, meets the (equation 14) cited above.
La variación o modificación del caudal de vidrio impulsado en un módulo de impulsión depende principalmente de: a) la geometría del módulo; b) la geometría de los dispositivos giratorios; c) la viscosidad del vidrio; d) la altura de vidrio Ho en el canal de entrada; e) la altura Yo de la cresta del rebosadero; y f) simultáneamente, de la velocidad de giro w y de la distancia entre ejes DE. Una vez fijadas las geometrías del módulo y de los dispositivos de impulsión, así como las alturas de vidrio y de la cresta del rebosadero, el caudal de vidrio por unidad de anchura q sigue la expresión de la ecuación (9) expuesta anteriormente. The variation or modification of the flow of glass driven in a drive module depends mainly on: a) the geometry of the module; b) the geometry of the rotating devices; c) the viscosity of the glass; d) the glass height Ho in the inlet channel; e) the height I of the crest of the overflow; Y f) simultaneously, of the rotational speed w and the wheelbase DE. Once the geometries of the module and of the impulsion devices, as well as the glass heights and the crest of the overflow, are fixed, the glass flow rate per unit width q follows the expression of equation (9) above.
La expresión de la ecuación (9), q = / [w, μ, DE] , se determina: a) mediante cálculo numérico; y b) mediante una modelización física del módulo de impulsión con los dispositivos giratorios y con el rebosadero, en la cual están representadas las fuerzas de viscosidad, inercia, gravedad, y tensión superficial.  The expression of equation (9), q = / [w, μ, DE], is determined: a) by numerical calculation; and b) by physical modeling of the drive module with the rotating devices and with the overflow, in which the viscosity, inertia, gravity, and surface tension forces are represented.
Una vez que el vidrio fundido ha sido distribuido y dosificado en cada uno de los módulos (27) de impulsión pertenecientes al grupo de dosificación (26) y ha pasado por el rebosadero (36) correspondiente a cada módulo, las paredes laterales (28) que separan a cada módulo de los módulos limítrofes a él, desaparecen y todo el vidrio fundido que ha pasado por el grupo de dosificación (26) vuelve a unirse para dar lugar a una corriente plana de vidrio fundido (38) que cae verticalmente por gravedad, desde un vertedero (37) hacia el dispositivo de formado, lugar donde se realiza la siguiente etapa de la fabricación de la lámina de vidrio de acuerdo con la presente invención.  Once the molten glass has been distributed and dosed in each of the drive modules (27) belonging to the dosing group (26) and has passed through the overflow (36) corresponding to each module, the side walls (28) that separate each module from the modules bordering it, disappear and all the molten glass that has passed through the dosing group (26) rejoins to give rise to a flat stream of molten glass (38) that falls vertically by gravity , from a landfill (37) to the forming device, where the next stage of the manufacture of the glass sheet according to the present invention is carried out.
Es un hecho conocido que el vidrio fundido puede evolucionar hacia la formación de especies cristalinas estables en un proceso denominado desvitrificación, que comienza con la formación de núcleos cristalinos y prosigue con el crecimiento de estos cristales; la desvitrificación depende del tiempo de estancia del vidrio fundido a temperaturas inferiores a la "Temperatura de liquidus", TL, y por ello, la vida útil de algunos equipos de fabricación podría estar condicionada por este proceso de desvitrificación. Durante toda la etapa de dosificación del vidrio y hasta después de la formación de la corriente plana de vidrio (38), el procedimiento de la invención utiliza una temperatura por encima de la temperatura de desvitrificación, de forma que la vida útil del grupo de dosificación no depende de la desvitrificación del vidrio y únicamente está determinada por la resistencia mecánica, en función del tiempo, de los materiales utilizados como el platino, el rodio, o alguna de sus aleaciones.  It is a known fact that molten glass can evolve towards the formation of stable crystalline species in a process called devitrification, which begins with the formation of crystalline nuclei and continues with the growth of these crystals; Devitrification depends on the residence time of the molten glass at temperatures lower than the "Liquidus temperature", TL, and therefore, the useful life of some manufacturing equipment could be conditioned by this devitrification process. During the entire dosing stage of the glass and even after the formation of the flat glass stream (38), the method of the invention uses a temperature above the devitrification temperature, so that the useful life of the dosing group it does not depend on the devitrification of glass and is only determined by the mechanical resistance, depending on time, of the materials used such as platinum, rhodium, or some of its alloys.
El vidrio que cae verticalmente por gravedad desde el vertedero (37), formando una corriente plana de vidrio fundido (38) con un caudal uniforme por unidad de anchura, presenta la siguiente calidad: a) la superficie exterior (40) que no ha estado en contacto con los materiales sólidos del rebosadero es "limpia" y puede ser utilizada directamente para formar una de las dos superficies de la futura lámina de vidrio; y b) la superficie interior (39) que ha pasado en contacto con el rebosadero y con el vertedero, es irregular y no debe formar parte de una superficie final de la lámina de vidrio. The glass that falls vertically by gravity from the landfill (37), forming a flat stream of molten glass (38) with a uniform flow per unit width, has the following quality: a) the outer surface (40) that has not been in contact with the solid materials of the overflow is "clean" and can be used directly to form one of the two surfaces of the future sheet of glass; and b) the inner surface (39) that has passed in contact with the overflow and with the spillway, is irregular and should not be part of a final surface of the glass sheet.
En algunas realizaciones particulares del procedimiento de la presente invención, en las cuales se utiliza un único grupo de dosificación, la superficie exterior de la corriente plana de vidrio fundido (38) pasa directamente a formar parte de la superficie exterior de la lámina de vidrio, y la superficie interior de la corriente plana (38) debe ser modificada mediante un elemento limpiador, que forma parte del dispositivo de formado y está situado por encima del cuerpo de formado y separado de él. En otras realizaciones particulares de la invención se utilizan dos grupos distintos de dosificación, FIGURA 12, existiendo dos corrientes planas de vidrio fundido (38 y 61) cuyas dos superficies exteriores pasan directamente a formar cada una de las dos superficies de la lámina de vidrio final.  In some particular embodiments of the process of the present invention, in which a single dosing group is used, the outer surface of the flat stream of molten glass (38) directly becomes part of the outer surface of the glass sheet, and the inner surface of the flat stream (38) must be modified by a cleaning element, which is part of the forming device and is located above the forming body and separated from it. In other particular embodiments of the invention, two different dosage groups are used, FIGURE 12, there being two flat streams of molten glass (38 and 61) whose two outer surfaces pass directly to form each of the two surfaces of the final glass sheet .
En una realización particular del procedimiento de la invención representada en la vista de conjunto de la FIGURA 3 y en las vistas de detalle de las FIGURAS 7 a 9, el dispositivo de formado utiliza como elemento limpiador un cilindro giratorio (41) para modificar o "limpiar" la superficie interior (39) de la corriente plana (38) que ha estado en contacto con el vertedero (37); el cilindro (41) gira a una velocidad wc en el sentido indicado en las figuras y está situado por debajo de la corriente plana de vidrio fundido (38) y por encima del cuerpo de formado (42). El efecto que produce la rotación del cilindro sobre las dos superficies de la corriente plana (38) es el siguiente: a) la superficie exterior (40), que ya era "limpia", pasa directamente hacia un primer borde (43) del cuerpo de formado (42) que está situado a una cota de altura Z3; y b) la superficie interior (39) que es "irregular", es arrastrada hacia el interior de la masa de vidrio que gira adosada al cilindro.  In a particular embodiment of the method of the invention shown in the overview of FIGURE 3 and in the detail views of FIGS. 7 to 9, the forming device uses as a cleaning element a rotating cylinder (41) to modify or " cleaning "the inner surface (39) of the flat stream (38) that has been in contact with the landfill (37); the cylinder (41) rotates at a speed wc in the direction indicated in the figures and is located below the flat stream of molten glass (38) and above the forming body (42). The effect produced by the rotation of the cylinder on the two surfaces of the flat stream (38) is as follows: a) the outer surface (40), which was already "clean", passes directly towards a first edge (43) of the body formed (42) which is located at a height Z3; and b) the interior surface (39), which is "irregular", is dragged towards the interior of the glass mass that rotates attached to the cylinder.
La corriente plana de vidrio de vidrio fundido (38) que cae desde el vertedero (37), se superpone a la corriente (56) de retorno existente sobre la periferia del cilindro, formando una corriente (53) que es conducida por el cilindro hacia una zona en la cual se suman las fuerzas de gravedad y de arrastre, ver FIGURA 7. Parte de la corriente (53) se dirige hacia el primer borde (43) del cuerpo de formado, que está situado a una cota de altura Z3,y genera la corriente (48) que desciende por una pared lateral exterior del cuerpo de formado (42), mientras que el resto de la corriente (53), forma una corriente (54) que es conducida entre el espacio existente entre el cilindro giratorio (41) y el cuerpo de formado (42), espacio que tiene una determinada separación mínima (46). La corriente (54) alcanza la altura del segundo borde (44) del cuerpo de formado, que está situado a una cota Z4; parte de la corriente (54) rebosa por el borde (44) y genera la corriente (49) que desciende por la otra pared lateral exterior del cuerpo de formado (42). El vidrio restante del flujo (54) es arrastrado por el cilindro giratorio (41), formando una corriente (66) adosada al cilindro giratorio que se dirige hacia una zona en la cual la fuerza de arrastre del cilindro va en sentido contrario a la fuerza de la gravedad del vidrio; cuando el vidrio fundido alcanza la zona singular (55) en la cual la fuerza de la gravedad sobre el vidrio es similar a la fuerza de arrastre que ejerce el cilindro giratorio (41), se produce una ruptura o despegue en la superficie del vidrio fundido con dos corrientes diferentes: a) una parte de la corriente de vidrio (56) continúa adosada al cilindro giratorio (41), y es conducida por éste hasta que se une con la parte irregular (39) de la corriente plana de vidrio fundido (38) y forma otra vez parte de la corriente (53), cerrando el ciclo; y b) otra parte del vidrio se dirige hacia el borde (44), formando la superficie exterior de la corriente (49) que desciende por el exterior del cuerpo de formado (42). De esta forma, las dos superficies de las corrientes (48 y 49), que formarán las superficies de la lámina final (50), son limpias, ya que las partículas de vidrio fundido (39) que estuvieron en contacto con el vertedero (37) ya se incorporaron al interior de la masa de vidrio fundido en la corriente (53). The flat glass stream of molten glass (38) that falls from the landfill (37), is superimposed on the return current (56) existing on the periphery of the cylinder, forming a current (53) that is conducted by the cylinder towards an area in which the forces of gravity and drag are added, see FIGURE 7. Part of the current (53) is directed towards the first edge (43) of the forming body, which is located at a height Z3, and generates the stream (48) that descends by an outer side wall of the forming body (42), while the rest of the stream (53) ), forms a stream (54) which is conducted between the space between the rotating cylinder (41) and the forming body (42), which space has a certain minimum spacing (46). The current (54) reaches the height of the second edge (44) of the forming body, which is located at a height Z 4 ; part of the stream (54) overflows the edge (44) and generates the stream (49) that descends through the other outer side wall of the forming body (42). The remaining glass of the flow (54) is driven by the rotating cylinder (41), forming a current (66) attached to the rotating cylinder which is directed towards an area in which the driving force of the cylinder goes in the opposite direction to the force of the gravity of the glass; when the molten glass reaches the singular zone (55) in which the force of gravity on the glass is similar to the pulling force exerted by the rotating cylinder (41), a break or take-off occurs on the surface of the molten glass with two different streams: a) a part of the glass stream (56) continues attached to the rotating cylinder (41), and is conducted by it until it joins the irregular part (39) of the flat stream of molten glass ( 38) and again form part of the current (53), closing the cycle; and b) another part of the glass is directed towards the edge (44), forming the outer surface of the stream (49) that descends on the outside of the forming body (42). In this way, the two surfaces of the currents (48 and 49), which will form the surfaces of the final sheet (50), are clean, since the molten glass particles (39) that were in contact with the landfill (37). ) were already incorporated into the interior of the molten glass mass in the stream (53).
La parte superior del cuerpo de formado (42) puede tener una concavidad (45) como en las FIGURAS 7 y 8, o puede ser lisa como en la FIGURA 9. Al mismo tiempo, el cilindro giratorio (41) puede ser: a) macizo con un núcleo resistente formado por molibdeno y/o materiales refractarios como ZrÜ2, AI2O3, y S1O2, con o sin un revestimiento exterior metálico que contenga platino, rodio o alguna de sus aleaciones; o b) hueco y estar formado por platino, por rodio o por alguna aleación conteniendo platino y/o rodio; o con un núcleo formado por molibdeno y/o wolframio, con un revestimiento exterior que contenga platino o alguna de sus aleaciones. El cilindro giratorio (41) se encuentra en rotación mediante unos medios mecánicos externos para el control y el ajuste de la velocidad wc de rotación necesaria para controlar la capa de vidrio fundido adherida al cilindro durante su rotación, y para ajustar las fuerzas de inercia, de viscosidad y de gravedad que se ejercen sobre las partículas del vidrio fundido durante la rotación del citado cilindro giratorio. The upper part of the forming body (42) can have a concavity (45) as in FIGURES 7 and 8, or it can be smooth as in FIGURE 9. At the same time, the rotating cylinder (41) can be: a) solid with a resistant core formed by molybdenum and / or refractory materials such as ZrÜ2, AI2O3, and S1O2, with or without a metallic outer coating containing platinum, rhodium or some of its alloys; or b) hollow and formed by platinum, by rhodium or by some alloy containing platinum and / or rhodium; or with a core formed by molybdenum and / or tungsten, with an outer coating containing platinum or some of its alloys. The rotating cylinder (41) is in rotation by means of external mechanical means for controlling and adjusting the speed wc of rotation necessary to control the layer of molten glass adhered to the cylinder during its rotation, and to adjust the inertial forces, of viscosity and gravity that are exerted on the particles of the molten glass during the rotation of said rotating cylinder.
En una realización particular de la invención, cuando el cilindro giratorio (41) es hueco, FIGURAS 7 y 8, y está situado sobre la concavidad (45) tallada en el cuerpo de formado (42), la fuerza de gravedad FG correspondiente al peso del cilindro y al peso del vidrio situado encima, es contrarrestada por la fuerza de empuje FE que ejerce el vidrio de la concavidad (45) desplazado por el cilindro (41); de esta forma, el cilindro "flota" sobre el vidrio fundido y no está sujeto a deformaciones causadas por su propio peso.  In a particular embodiment of the invention, when the rotating cylinder (41) is hollow, FIGURES 7 and 8, and is located on the concavity (45) carved in the forming body (42), the gravitational force FG corresponding to the weight of the cylinder and the weight of the glass located above, is counteracted by the pushing force FE exerted by the glass of the concavity (45) displaced by the cylinder (41); in this way, the cylinder "floats" on the molten glass and is not subject to deformations caused by its own weight.
En otra realización de la invención, cuando la parte superior del cuerpo de formado es lisa, FIGURA 9, y el cilindro giratorio (41) está situado por encima de esta superficie, la fuerza de la gravedad FG no es contrarestada por la fuerza de empuje FE, y el cilindro giratorio se comporta como una viga en flexión que está soportada por sus dos extremos. In another embodiment of the invention, when the upper part of the forming body is smooth, FIGURE 9, and the rotating cylinder (41) is located above this surface, the force of gravity F G is not counteracted by the force of FE push, and the rotating cylinder behaves like a beam in flexure that is supported by its two ends.
Las dos corrientes (48 y 49) procedentes de los bordes (43 y 44) del cuerpo de formado (42), fluyen por los dos laterales del citado cuerpo de formado hacia su zona inferior, que tiene forma de cuña, formando un ángulo en su vértice (47); al llegar a éste vértice las dos corrientes (48 y 49) se unen para formar un único flujo de vidrio que es estirado mediante unos medios de tracción (51) para originar la lámina final de vidrio; esta lámina final es fraccionada posteriormente con unos medios no representados aquí para la obtención de láminas delgadas de vidrio de dimensiones determinadas. En su desplazamiento por los dos laterales del cuerpo de formado (42), las dos corrientes (48 y 49) son enfriadas para alcanzar el vértice (27) con una viscosidad/ temperatura adecuada para su conformado por estirado hacia abajo.  The two streams (48 and 49) coming from the edges (43 and 44) of the forming body (42), flow through the two sides of the said forming body towards its lower area, which has the shape of a wedge, forming an angle in its vertex (47); upon reaching this vertex the two streams (48 and 49) join to form a single flow of glass that is stretched by a pulling means (51) to originate the final sheet of glass; this final sheet is subsequently divided with means not shown here for obtaining thin sheets of glass of certain dimensions. In their displacement by the two sides of the forming body (42), the two streams (48 and 49) are cooled to reach the apex (27) with a viscosity / temperature suitable for shaping downwards.
El reparto de la corriente plana de vidrio fundido (38), que tiene un caudal uniforme por unidad de anchura, entre las dos corrientes (48 y 49) sustancialmente similares, se realiza, ver FIGURA 7: a) mediante las cotas fijas Z3 y Z4, alturas de los bordes superiores del cuerpo de formado; b) mediante la modificación de la separación (58) vertical entre el cilindro y la concavidad (52) del cuerpo de formado (53); c) mediante la modificación de la separación horizontal Evc entre el eje de caída del vidrio y el eje del cilindro giratorio, y de la separación horizontal Ecc entre el eje del cilindro giratorio y el eje del cuerpo de formado; y d) mediante la variación de la velocidad wc de rotación del cilindro giratorio. The distribution of the flat stream of molten glass (38), having a uniform flow rate per unit width, between the two substantially similar currents (48 and 49), is carried out, see FIGURE 7: a) through the fixed heights Z3 and Z 4 , heights of the upper edges of the forming body; b) by modifying the vertical separation (58) between the cylinder and the concavity (52) of the forming body (53); c) by modifying the horizontal separation Evc between the axis of fall of the glass and the axis of the rotating cylinder, and of the horizontal separation Ecc between the axis of the rotating cylinder and the axis of the forming body; and d) by varying the rotational speed wc of the rotating cylinder.
En otra realización particular del procedimiento de la invención representada en la vista de conjunto de la FIGURA 4 y en las vistas de detalle de la FIGURA 10, el dispositivo de formado utiliza una placa (52) parcialmente sumergida en el vidrio para limpiar la superficie irregular (39) de la corriente plana de vidrio fundido (38) procedente del contacto con la base del vertedero (37) perteneciente al grupo de dosificación; la citada corriente plana pasa a una placa (52) parcialmente sumergida en una concavidad (45) tallada en el cuerpo de formado (42), y se divide en dos flujos: a) un primer flujo directo (57) que pasa por un lateral del cuerpo de formado situado a una altura Zi y que genera una forma la corriente (48) que se desplaza hacia abajo por una pared lateral exterior del cuerpo de formado (42); y b) un segundo flujo (59) que ocupa la concavidad (45) tallada en el cuerpo de formado (42) y pasa por debajo de la placa sumergida (52), situada a una distancia (46) de separación con la concavidad (45); este segundo flujo (59) se dirige hacia el otro borde del cuerpo de formado, situado a una altura Z2, y genera la corriente (49) que se desplaza hacia abajo por la otra pared lateral exterior del cuerpo de formado (42). La geometría de la concavidad (45) del cuerpo de formado y la posición de la placa sumergida (52), junto con la viscosidad del vidrio fundido, producen en la parte posterior de la placa sumergida (52) unas corrientes de torbellinos (58) que realizan la función de "limpieza" de la superficie que estuvo en contacto con el vertedero; por ello la corriente (49) es, al igual que la corriente (48), una superficie limpia. Las dos corrientes de vidrio (48 y 49) fluyen por las paredes del cuerpo de formado (42) al mismo tiempo que son enfriadas y alcanzan el vértice inferior (47), lugar donde ambas corrientes se unen para formar un único flujo de vidrio, que es estirado mediante unos medios de tracción (51) para conformar la lámina (50) de vidrio.  In another particular embodiment of the method of the invention shown in the overview of FIGURE 4 and in the detail views of FIGURE 10, the forming device uses a plate (52) partially submerged in the glass to clean the uneven surface (39) of the flat stream of molten glass (38) coming from the contact with the base of the landfill (37) belonging to the dosing group; said flat stream passes to a plate (52) partially submerged in a concavity (45) carved in the forming body (42), and is divided into two flows: a) a first direct flow (57) passing through a side of the forming body located at a height Zi and generating a shape the stream (48) traveling down an outer side wall of the forming body (42); and b) a second flow (59) occupying the concavity (45) cut into the forming body (42) and passing underneath the submerged plate (52), located at a distance (46) from the concavity (45). ); this second flow (59) is directed towards the other edge of the forming body, located at a height Z2, and generates the current (49) that moves downwards through the other outer side wall of the forming body (42). The geometry of the concavity (45) of the forming body and the position of the submerged plate (52), together with the viscosity of the molten glass, produce swirl currents (58) at the rear of the submerged plate (52). that perform the function of "cleaning" the surface that was in contact with the landfill; therefore the current (49) is, like the current (48), a clean surface. The two glass streams (48 and 49) flow through the walls of the forming body (42) at the same time as they are cooled and reach the lower vertex (47), where both currents join to form a single flow of glass, which is stretched by pulling means (51) to form the glass sheet (50).
El reparto de la corriente plana de vidrio fundido (38), que tiene un caudal uniforme por unidad de anchura, en las dos corrientes (48 y 49) se realiza, ver FIGURA 10: a) mediante las alturas Zi y Z de los bordes superiores del cuerpo de formado (42); b) mediante la modificación de la distancia horizontal EPC entre el eje del cuerpo de formado (42) y el plano vertical de caída del vidrio fundido sobre la placa (52); y c) mediante la modificación de la distancia (46) vertical de separación entre la placa (52) y la concavidad (45) del cuerpo de formado (42). The distribution of the flat stream of molten glass (38), which has a uniform flow per unit width, in the two streams (48 and 49) is made, see FIGURE 10: a) by the heights Zi and Z of the edges upper parts of the forming body (42); b) by modifying the horizontal distance EPC between the axis of the forming body (42) and the vertical plane of falling of the molten glass on the plate (52); and c) by modifying the vertical distance (46) of separation between the plate (52) and the concavity (45) of the forming body (42).
En otra realización del procedimiento de la presente invención, se utiliza un solo horno para la fusión de un vidrio y después se utilizan dos grupos distintos de dosificación de vidrio, vistas de conjunto en la FIGURA 1 1 y de detalle en la FIGURA 13; cada uno de los dos grupos de dosificación (26 y 60) comprende varios módulos de impulsión (27); a su vez, cada módulo de impulsión consta de unas paredes de separación (28), de al menos un dispositivo giratorio (29), y de un rebosadero.  In another embodiment of the process of the present invention, a single furnace is used for the melting of a glass and then two different glass dosing groups are used, overall views in FIGURE 1 and detail in FIGURE 13; each of the two dosage groups (26 and 60) comprises several drive modules (27); in turn, each drive module comprises separation walls (28), at least one rotating device (29), and an overflow.
De cada grupo de dosificación de vidrio se obtiene una corriente plana de vidrio fundido de caudal uniforme por unidad de anchura, y de esta forma son producidas las dos corriente planas de vidrio (38 y 61) que caen verticalmente por gravedad sobre cada una de las dos paredes laterales del cuerpo de formado (64). Las superficies exteriores de las dos corriente planas de vidrio fundido (38 y 61) proceden directamente del vidrio superficial que ha pasado por los rebosaderos y son unas superficies "limpias" y continuarán siendo limpias en las corrientes (62 y 63) que posteriormente formarán las dos superficies de la lámina de vidrio final (50); las superficies interiores de las corriente planas de vidrio fundido (38 y 61) que proceden del vidrio que ha pasado en contacto con la base de los rebosaderos continúan en contacto con las paredes del cuerpo de formado (64) dentro de las dos corrientes (62 y 63) y posteriormente se integrarán en el interior de la lámina de vidrio final.  From each glass dosing group a flat stream of molten glass of uniform flow per unit width is obtained, and in this way the two flat glass streams (38 and 61) are produced that fall vertically by gravity on each of the two side walls of the forming body (64). The outer surfaces of the two flat streams of molten glass (38 and 61) come directly from the surface glass that has passed through the overflows and are "clean" surfaces and will continue to be clean in the currents (62 and 63) that will later form the two surfaces of the final glass sheet (50); the inner surfaces of the flat streams of molten glass (38 and 61) coming from the glass that has passed in contact with the base of the overflows continue to contact the walls of the forming body (64) within the two streams (62). and 63) and subsequently they will be integrated into the interior of the final glass sheet.
Las dos corrientes (62 y 63) descienden cada una de ellas por cada pared lateral del cuerpo de formado (64), al mismo tiempo que son enfriadas a medida que se aproximan a la parte inferior y final del cuerpo de formado. El cuerpo de formado (64) finaliza en un vértice (47), y cuando las dos corrientes laterales (62 y 63) alcanzan el citado vértice, se unen para formar una única corriente de vidrio con la viscosidad adecuada para ser estirada mediante unos rodillos de tracción (51) y formar la lámina de vidrio (50); esta lámina es posteriormente fraccionada, con unos medios no representados aquí, en artículos o productos determinados.  The two streams (62 and 63) descend each of them for each side wall of the forming body (64), at the same time as they are cooled as they approach the lower and final part of the forming body. The forming body (64) ends at a vertex (47), and when the two lateral currents (62 and 63) reach the aforementioned vertex, they join to form a single glass stream with the proper viscosity to be stretched by means of rollers of pulling (51) and forming the glass sheet (50); this sheet is subsequently fractioned, with means not shown here, in specific articles or products.
Los dos grupos de dosificación (26 y 60) están soportados total o parcialmente por una estructura (65) que es independiente de la estructura del cuerpo de formado (64); ambas estructuras (64 y 65) pueden desplazarse relativamente entre sí para ajustar la distancia del cuerpo de formado (64) al correspondiente vertedero (37), de forma que la caída vertical de las corrientes planas (38 y 61) sea la adecuada. The two dosage groups (26 and 60) are supported wholly or partially by a structure (65) that is independent of the structure of the forming body (64); both structures (64 and 65) can move relative to each other to adjust the distance of the forming body (64) to the corresponding weir (37), so that the vertical fall of the flat currents (38 and 61) is adequate.
En otra realización particular del procedimiento de la presente invención, se fabrica una lámina de vidrio formada por dos vidrios diferentes A y B separados en el plano medio del espesor de la lámina de vidrio. El proceso comienza, FIGURA 12, a partir de la fusión de las materias primas vitrificables A y B en los recipientes de fusión (21 y 66), y el afinado de los vidrios fundidos en los recipientes (23 y 67). Luego, los vidrios A y B son conducidos mediante los canales (24 y 68) hacia los grupos de dosificación (26 y 60); en los canales (24 y 93) se mantienen constantes los niveles de los vidrios mediante los reguladores de nivel (25 y 69). Cada uno de los grupos de dosificación (26 y 60) comprende varios módulos de impulsión (27); y, a su vez, cada módulo de impulsión consta de unas paredes de separación (28), de al menos un dispositivo giratorio (29) y de su propio rebosadero, de forma que de cada grupo de dosificación se obtiene una corriente plana de vidrio fundido de caudal uniforme por unidad de anchura, y de esta forma son producidas dos corriente planas de vidrio (38 y 61) que caen verticalmente por gravedad sobre cada una de las dos paredes laterales del dispositivo de formado (64) y fluyen hacia abajo según dos corrientes de vidrio fundido (70 y 71) formadas por dos vidrios diferentes, la corriente (70) formada por el vidrio A, y la corriente (71) formada por el vidrio B.  In another particular embodiment of the process of the present invention, a glass sheet formed by two different glasses A and B separated in the middle plane of the thickness of the glass sheet is manufactured. The process begins, FIGURE 12, from the fusion of the vitrifiable raw materials A and B in the fusion vessels (21 and 66), and the refining of the molten glasses in the containers (23 and 67). Then, glasses A and B are led through the channels (24 and 68) to the dosage groups (26 and 60); in the channels (24 and 93) the levels of the glasses are kept constant by means of the level regulators (25 and 69). Each of the dosing groups (26 and 60) comprises several drive modules (27); and, in turn, each drive module comprises separation walls (28), at least one rotating device (29) and its own overflow, so that a flat glass stream is obtained from each dosing group. melt of uniform flow per unit of width, and in this way two flat glass streams (38 and 61) are produced which fall vertically by gravity on each of the two side walls of the forming device (64) and flow downwards according to two streams of molten glass (70 and 71) formed by two different glasses, the stream (70) formed by the glass A, and the stream (71) formed by the glass B.
Las superficies exteriores de las dos corriente planas de vidrio fundido (38 y 61) proceden directamente del vidrio superficial que ha pasado por los rebosaderos, y son unas superficies "limpias" y continúan siendo limpias en las corrientes (70 y 71) que posteriormente formarán las dos superficies de la lámina de vidrio final. Las superficies interiores de las corrientes planas de vidrio fundido (38 y 61) que proceden del vidrio que ha pasado en contacto con la base de los rebosaderos, continúan en contacto con las paredes del cuerpo de formado (64) dentro de las dos corrientes (70 y 71) y posteriormente se integrarán en la masa interior de vidrio de la citada lámina de vidrio final.  The outer surfaces of the two flat streams of molten glass (38 and 61) come directly from the surface glass that has passed through the overflows, and are "clean" surfaces and continue to be clean in the currents (70 and 71) that will later form the two surfaces of the final glass sheet. The interior surfaces of the flat streams of molten glass (38 and 61) that come from the glass that has passed in contact with the base of the overflows, continue to contact the walls of the forming body (64) within the two streams ( 70 and 71) and subsequently will be integrated into the interior glass mass of said final glass sheet.
cada una de las dos corrientes (70 y 71) desciende por una de las paredes laterales del cuerpo de formado (64), al mismo tiempo que son enfriadas a medida que se aproximan a su parte final; esta parte final tiene un ángulo en su vértice (47), y cuando las dos corrientes laterales (70 y 71) alcanzan el citado vértice, se unen para formar una única corriente de vidrio con la viscosidad adecuada para ser estirada mediante unos rodillos de tracción (51) y formar la lámina de vidrio (72); esta lámina es posteriormente fraccionada, con unos medios no representados aquí, en artículos o productos determinados. La lámina delgada final (72) de vidrio está formada por los dos vidrios A y B, separados en el plano medio del espesor de la lámina de vidrio, como se muestra en la FIGURA 12. each of the two streams (70 and 71) descends through one of the side walls of the forming body (64), at the same time that they are cooled as they approach their final part; this final part has an angle in its vertex (47), and when the two lateral currents (70 and 71) reach the aforementioned vertex, they join to form a single glass stream with the suitable viscosity to be stretched by traction rollers (51) and form the sheet of glass (72); this sheet is subsequently fractioned, with means not shown here, in specific articles or products. The final thin sheet (72) of glass is formed by the two glasses A and B, separated in the middle plane of the thickness of the glass sheet, as shown in FIGURE 12.
Los dos grupos de dosificación (26 y 60) están soportados total o parcialmente por una estructura (65) que es independiente de la estructura del cuerpo de formado (64); ambas estructuras (64 y 65) pueden desplazarse relativamente entre sí para ajustar la distancia del cuerpo de formado (64) al correspondiente rebosadero (36), de forma que la caída vertical de las corrientes planas (38 y 61) sea la ajustada.  The two dosage groups (26 and 60) are supported totally or partially by a structure (65) that is independent of the structure of the forming body (64); both structures (64 and 65) can move relative to each other to adjust the distance of the forming body (64) to the corresponding overflow (36), so that the vertical fall of the flat currents (38 and 61) is the adjusted one.
El lugar o etapa del procedimiento de la invención en la cual el vidrio pasa por la temperatura de desvitrificación, o "Temperatura de liquidus", TL, es la siguiente: a) en las realizaciones de la invención en las cuales se utilizan un único grupo de dosificación, y por ello en la etapa de formado se utiliza un elemento limpiador de cilindro giratorio, FIGURAS 7 a 9, o una placa parcialmente sumergida, FIGURA 10, la temperatura de desvitrificación se alcanza una vez que se han formado las corrientes laterales (48 y 49) que descienden por los laterales del cuerpo de formado (42) al mismo tiempo que van siendo enfriadas; y b) en las realizaciones de la invención en las cuales se utilizan dos grupos de dosificación, FIGURAS 1 1 a 13, la temperatura de desvitrificación se alcanza una vez que se han formado las dos corrientes planas de vidrio fundido (38 y 61) correspondientes a cada uno de los dos grupos de dosificación (26 y 60). Ambas corrientes pasan al cuerpo de formado (64) formando dos corrientes laterales (62 y 63) que descienden por el exterior del citado cuerpo (64) al mismo tiempo que van siendo enfriadas.  The place or stage of the process of the invention in which the glass passes through the devitrification temperature, or "Liquidus temperature", TL, is as follows: a) in embodiments of the invention in which a single group is used of dosing, and therefore in the forming step a rotating cylinder cleaning element is used, FIGURES 7 to 9, or a partially submerged plate, FIGURE 10, the devitrification temperature is reached once the lateral currents have been formed (FIG. 48 and 49) that descend along the sides of the forming body (42) at the same time they are being cooled; and b) in the embodiments of the invention in which two dosage groups are used, FIGURES 1 to 13, the devitrification temperature is reached once the two melted glass streams (38 and 61) corresponding to each of the two dosage groups (26 and 60). Both currents pass to the forming body (64) forming two lateral currents (62 and 63) that descend on the outside of said body (64) at the same time they are being cooled.
La disminución del tiempo de estancia del vidrio fundido por debajo de la temperatura de desvitrificación, unido al hecho de que la etapa de dosificación del vidrio fundido se realiza separadamente y en diferentes aparatos que la etapa de enfriamiento, tiene como consecuencia que la vida útil de los equipos utilizados con el procedimiento de la invención sea mayor que la vida útil de los equipos utilizados con el método de fabricación "overflow downdraw". El ángulo de la zona inferior del cuerpo de formado, que acaba en el vértice (47) influye sobre la estabilidad del flujo [H.-J.Lin, W.-K. Chang: "Design of a sheet forming apparatus for overflow fusión process by numeñcal simulation"; of Non-Crystalline Solids 353 (2007) 2817-2825]; un ángulo pequeño da más estabilidad al flujo del vidrio fundido por encima del vértice, y el procedimiento de la presente invención permite disponer en el vértice (47) de un ángulo más pequeño que el ángulo utilizado con el método "overflow downdraw". The decrease of the residence time of the molten glass below the devitrification temperature, together with the fact that the dosage stage of the molten glass is carried out separately and in different apparatuses that the cooling stage, has as a consequence that the useful life of the equipment used with the method of the invention is greater than the useful life of the equipment used with the manufacturing method "overflow downdraw". The angle of the lower zone of the formed body, which ends at the apex (47) influences the stability of the flow [H.-J.Lin, W.-K. Chang: "Design of a sheet forming apparatus for overflow fusion process by numeñcal simulation"; of Non-Crystalline Solids 353 (2007) 2817-2825]; a small angle gives more stability to the flow of the molten glass above the vertex, and the method of the present invention allows a smaller angle to be provided at the apex (47) than the angle used with the "overflow downdraw" method.
Una mayor viscosidad en el vértice (47) donde comienza el estirado hace el flujo más uniforme; sin embargo, la viscosidad está influida por la temperatura de desvitrificación del vidrio y por el tiempo de estancia del vidrio por debajo de esta temperatura. En el procedimiento de la invención, la distribución del vidrio en la anchura de la lámina de vidrio se realiza en el grupo de dosificación, y el cuerpo de formado se utiliza esencialmente para el enfriamiento del vidrio hasta la temperatura de estirado. Las ventajas del procedimiento de la invención proceden de los siguientes hechos: a) un cuerpo de formado sin compromisos de flujo de vidrio en su interior necesita una menor anchura, lo que conduce a un menor ángulo en el vértice (47); y b) el cuerpo de formado no está limitado en altura por su resistencia mecánica y por la flecha en su arista inferior, ya que estos aspectos no afectan a la distribución del vidrio en anchura, o, lo que es lo mismo, a la uniformidad del espesor de la lámina final de vidrio.  A higher viscosity at the apex (47) where the stretching begins makes the flow more uniform; however, the viscosity is influenced by the devitrification temperature of the glass and by the residence time of the glass below this temperature. In the process of the invention, the distribution of the glass in the width of the glass sheet is carried out in the dosing group, and the forming body is used essentially for cooling the glass to the stretching temperature. The advantages of the method of the invention come from the following facts: a) a forming body without glass flow commitments in its interior needs a smaller width, which leads to a smaller angle at the apex (47); and b) the forming body is not limited in height by its mechanical strength and by the arrow in its lower edge, since these aspects do not affect the distribution of the glass in width, or, what is the same, the uniformity of the thickness of the final glass sheet.
En el procedimiento de la presente invención, una vez que las dos corrientes laterales de vidrio fundido llegan al vértice (47) inferior del cuerpo de formado, el vidrio es estirado mediante unos rodillos de tracción (51) al mismo tiempo que es enfriado hasta convertirse en una lámina sólida y continua de vidrio de un espesor determinado; en este proceso de estirado, las fuerzas originadas por la tensión superficial se manifiestan de forma adversa, tendiendo a producir una contracción transversal de la lámina de vidrio en formación.  In the process of the present invention, once the two lateral streams of molten glass reach the lower vertex (47) of the forming body, the glass is stretched by traction rollers (51) at the same time that it is cooled to become in a solid and continuous sheet of glass of a certain thickness; in this stretching process, the forces caused by the surface tension manifest themselves adversely, tending to produce a transverse contraction of the glass sheet in formation.
Finalmente, el vidrio es fraccionado mediante unas máquinas de corte para producir las dimensiones deseadas para el artículo o producto final. DESCRIPCIÓN DETALLADA DE UN EJEMPLO DE LA INVENCIÓN. Finally, the glass is fractioned by cutting machines to produce the desired dimensions for the article or final product. DETAILED DESCRIPTION OF AN EXAMPLE OF THE INVENTION.
En el siguiente ejemplo, el procedimiento de la invención se utiliza para la fabricación de una lámina de vidrio de 2500 milímetros de anchura y de 0,70 milímetros de espesor. El caudal o extracción del vidrio fabricado es de 20 toneladas al día.  In the following example, the process of the invention is used for the manufacture of a glass sheet 2500 millimeters wide and 0.70 millimeters thick. The flow or extraction of manufactured glass is 20 tons per day.
La fusión a partir de las materias primas vitrificables y el afinado del vidrio fundido se realizan según métodos convencionales de acuerdo con las técnicas actuales para un vidrio cuya relación viscosidad/ temperatura está determinada por los siguientes valores: (μ = 8000 poises, Tv = 1321 °C); (μ = 16000 poises, Tv = 1279 °C); (μ = 25000 poises, Tv = 1253 °C); y (μ = 100000 poises, Tv = 1 182 °C). Donde: μ, es la viscosidad dinámica del vidrio; y Tv, la temperatura del vidrio.  The fusion from the vitrifiable raw materials and the refining of the molten glass are carried out according to conventional methods according to the current techniques for a glass whose viscosity / temperature ratio is determined by the following values: (μ = 8000 poises, Tv = 1321 ° C); (μ = 16000 poises, Tv = 1279 ° C); (μ = 25000 poises, Tv = 1253 ° C); and (μ = 100000 poises, Tv = 1 182 ° C). Where: μ, is the dynamic viscosity of the glass; and TV, the temperature of the glass.
Después de la fusión y del afinado, el vidrio fundido pasa a un canal, FIGURAS 2, 3 y 5, provisto de un regulador de nivel que mantiene el nivel de vidrio a una altura Ho, hasta la zona de entrada de un grupo de dosificación de vidrio. Esta zona de entrada del grupo de dosificación es común para todos los módulos de impulsión que componen el citado grupo; el bombeo de todos los grupos se realiza a la misma temperatura y desde la misma altura hidráulica inicial Ho. Una vez acondicionado térmicamente, el vidrio alcanza la zona de los módulos de impulsión a una temperatura de 132 1 °C, es decir, con una viscosidad de 8000 poises.  After the melting and refining, the molten glass passes to a channel, FIGURES 2, 3 and 5, provided with a level regulator that maintains the level of glass at a height Ho, up to the entrance area of a dosage group of glass. This input zone of the dosing group is common for all the drive modules that make up the aforementioned group; the pumping of all the groups is carried out at the same temperature and from the same initial hydraulic height Ho. Once thermally conditioned, the glass reaches the zone of the impulsion modules at a temperature of 132 1 ° C, that is, with a viscosity of 8000 poises.
El grupo de dosificación consta de: a) cinco módulos de impulsión separados entre sí por unos separadores laterales de platino/ rodio, comprendiendo cada módulo dos dispositivos giratorios y un rebosadero; y b) un vertedero final, que recoge el vidrio que ha pasado por cada uno de los rebosaderos de cada módulo de impulsión y lo vierte en forma de una sola corriente plana de vidrio fundido hacia la etapa de formado.  The dosing group consists of: a) five delivery modules separated from one another by lateral separators of platinum / rhodium, each module comprising two rotating devices and one overflow; and b) a final spillway, which collects the glass that has passed through each of the overflows of each impulse module and pours it in the form of a single flat stream of molten glass towards the forming stage.
La anchura LM de cada módulo de impulsión es de 500 milímetros; la altura del vidrio Ho en el canal de aspiración está determinada por el regulador de nivel de forma que las condiciones de funcionamiento del módulo de impulsión producen el paso del caudal de vidrio por encima del rebosadero, cuya cresta tiene una altura Yo de 180 milímetros.  The width LM of each drive module is 500 millimeters; The height of the glass Ho in the suction channel is determined by the level regulator so that the operating conditions of the impulse module produce the passage of the glass flow over the overflow, whose ridge has a height I of 180 millimeters.
Los cinco módulos de impulsión están separados entre sí por unos separadores intermedios que tienen un espesor de 1 ,5 milímetros, y están construidos de una aleación de platino /rodio, y que continúan hasta la cresta del rebosadero, lugar donde se unen los flujos de los cinco módulos para formar una corriente plana de vidrio fundido de 2500 milímetros de anchura. The five drive modules are separated from one another by intermediate spacers having a thickness of 1.5 millimeters, and are constructed of a platinum / rhodium alloy, and continue to the ridge of the overflow, where the flows of the five modules join to form a flat stream of molten glass of 2500 millimeters in width.
En la sección transversal de cada uno de los módulos de impulsión, están situados dos dispositivos giratorios con un diámetro exterior D igual a 220 milímetros; la separación DE entre los ejes rotación de los dos dispositivos giratorios es de 180 milímetros, y la línea que une los ejes de rotación es perpendicular a la dirección del vidrio en el módulo de impulsión. Con un diámetro de influencia del eje de cada dispositivo giratorio de 90 milímetros, la anchura AD de paso del flujo directo es de 230 milímetros y la anchura AR de paso del vidrio refluido es de 90 milímetros.  In the cross section of each of the drive modules, two rotating devices with an external diameter D equal to 220 millimeters are located; the separation between the rotation axes of the two rotating devices is 180 millimeters, and the line joining the axes of rotation is perpendicular to the direction of the glass in the drive module. With a diameter of influence of the axis of each rotating device of 90 millimeters, the width AD of direct flow passage is 230 millimeters and the width of passage AR of the reflowed glass is 90 millimeters.
La velocidad nominal de giro w de los dos dispositivos giratorios es de 6 revoluciones por minuto; ambos giran en sentido contrario, a favor del sentido del vidrio por los laterales del módulo, ver FIGURA 5, y en contra del sentido del vidrio por el centro. Las palas de empuje y los ejes de los dos dispositivos giratorios están construidas de un material con el 80% de platino y el 20% rodio; el peso de cada dispositivo giratorio es de 2,2 kilogramos. En las condiciones de funcionamiento de temperatura, tensión mecánica de trabajo, y resistencia de la aleación platino-rodio, la duración en el tiempo de cada dispositivo giratorio es de 18 meses.  The nominal speed of rotation w of the two rotating devices is 6 revolutions per minute; both rotate in the opposite direction, in favor of the direction of the glass on the sides of the module, see FIGURE 5, and against the direction of the glass at the center. The thrust blades and shafts of the two rotating devices are made of a material with 80% platinum and 20% rhodium; The weight of each rotating device is 2.2 kilograms. Under the operating conditions of temperature, mechanical working voltage, and resistance of the platinum-rhodium alloy, the duration in time of each rotating device is 18 months.
El movimiento de los dispositivos giratorios genera en cada uno de los módulos de impulsión un caudal de vidrio refluido de 0,00046 metros cúbicos por segundo, que es 26 veces superior al caudal de fabricación de vidrio. Al encontrar un obstáculo como el rebosadero, el vidrio impulsado por los dispositivos giratorios incrementa su altura hidráulica Hi , que limita el caudal directo de impulsión hasta que la diferencia VD-VR equivale al caudal de fabricación del vidrio. The movement of the rotating devices generates in each of the drive modules a refluxed glass flow rate of 0.00046 cubic meters per second, which is 26 times higher than the flow rate of glass manufacture. When encountering an obstacle like the overflow, the glass driven by the rotating devices increases its hydraulic height Hi, which limits the direct flow of impulsion until the difference V D -V R equals the flow rate of glass manufacture.
El tiempo medio de estancia del vidrio en cada módulo de impulsión es de 37 minutos; durante este tiempo, cada uno de los dos dispositivos giratorios realiza 222 vueltas completas, y cada partícula de vidrio fundido ha realizado un recorrido medio de 63 metros.  The average dwell time of the glass in each drive module is 37 minutes; during this time, each of the two rotating devices performs 222 complete turns, and each particle of molten glass has made an average path of 63 meters.
Con una viscosidad del vidrio μ = 8000 poises, una altura Zo de paso del vidrio al inicio de la cresta del rebosadero de 8 milímetros, una distancia DE entre los ejes de los dispositivos giratorios de 180 milímetros, y una velocidad de giro de los dispositivos giratorios de 6 rpm, los valores que alcanzan CQW y CQW son: CQW = (%Aq / %Aw) = 0,91 ; al aumentar la velocidad de giro desde 6 hasta 7 revoluciones por minuto, el caudal aumenta el 16,7 %. With a viscosity of glass μ = 8000 poises, a height Zo of passage of the glass at the beginning of the ridge of the overflow of 8 millimeters, a distance DE between the axes of the rotating devices of 180 millimeters, and a speed of rotation of the devices revolving of 6 rpm, the values that reach CQW and CQW are: CQW = (% Aq /% Aw) = 0.91; by increasing the speed of rotation from 6 to 7 revolutions per minute, the flow increases by 16.7%.
CQDE = (%Aq / %ADE) = -6,6; al aumentar la distancia DE entre los ejes de rotación desde 180 hasta 181 milímetros, el caudal disminuye el 3,6 %.  CQDE = (% Aq /% ADE) = -6.6; by increasing the distance DE between the axes of rotation from 180 to 181 millimeters, the flow decreases by 3.6%.
Con estos valores, al aumentar la velocidad de giro w desde 6 hasta 6,5 revoluciones por minuto, el caudal en el módulo de impulsión pasa desde 4 hasta 4,3 1 toneladas al día, y el espesor final de la lámina de vidrio pasa desde 0,70 hasta 0,75 milímetros. Este mismo efecto se consigue manteniendo constante la velocidad de giro en 6 revoluciones por minuto y disminuyendo la distancia DE entre ejes, desde 180 hasta 177,8 milímetros.  With these values, by increasing the speed of rotation w from 6 to 6.5 revolutions per minute, the flow rate in the drive module passes from 4 to 4.3 1 tons per day, and the final thickness of the glass sheet passes from 0.70 to 0.75 millimeters. This same effect is achieved by keeping the speed of rotation constant at 6 revolutions per minute and decreasing the distance between axes, from 180 to 177.8 millimeters.
Al aumentar la distancia DE entre los ejes de los dispositivos giratorios desde 180 hasta 183 milímetros, y al mismo aumentar la velocidad desde 6 hasta 7 revoluciones por minuto, el caudal en el módulo de impulsión pasa desde 4 hasta 4, 1 toneladas al día, y el espesor final de la lámina de vidrio pasa desde 0,70 hasta 0,72 milímetros.  By increasing the distance DE between the axes of the rotating devices from 180 to 183 millimeters, and at the same increasing speed from 6 to 7 revolutions per minute, the flow rate in the drive module passes from 4 to 4, 1 tons per day, and the final thickness of the glass sheet passes from 0.70 to 0.72 millimeters.
La disminución de la temperatura del vidrio en 1 °C en el módulo de impulsión, desde 132 1°C hasta 1320°C, produce un aumento de la viscosidad del vidrio fundido desde 7982 poises hasta 81 14 poises. El efecto sobre el caudal de vidrio q es el siguiente: a) en el paso por los dispositivos giratorios aumenta el incremento de altura hidráulica ΔΗ, que repercute en una primera variación del caudal de qA = 1 ,50 %; y b) en el paso por el rebosadero, el aumento de la viscosidad produce una segunda variación del caudal de qB = - 1 ,64%. De esta forma, la disminución de la temperatura en 1 °C supone una disminución del caudal de q = qA+qB = -0, 14 %; los dispositivos giratorios tienen un efecto de amortiguación de la temperatura del vidrio en la zona de los módulos de impulsión.  The reduction of the temperature of the glass at 1 ° C in the impulse module, from 132 1 ° C to 1320 ° C, produces an increase in the viscosity of the molten glass from 7982 poises to 81 14 poises. The effect on the glass flow q is as follows: a) in the passage through the rotating devices increases the hydraulic height increase ΔΗ, which has an effect on a first variation of the flow rate of qA = 1.50%; and b) in the passage through the overflow, the increase in viscosity produces a second variation of the flow rate of qB = - 1, 64%. In this way, the decrease in temperature by 1 ° C supposes a decrease in the flow rate of q = qA + qB = -0, 14%; the rotating devices have a damping effect on the temperature of the glass in the area of the drive modules.
El control y la regulación del caudal que pasa por un determinado módulo de impulsión tiene un efecto directo sobre el espesor en su zona correspondiente de la lámina final, ya que el vidrio final procedente de todos los módulos de impulsión está conformado por el mismo dispositivo de formado, y es estirado por los mismos medios de tracción.  The control and regulation of the flow passing through a certain drive module has a direct effect on the thickness in its corresponding area of the final sheet, since the final glass from all the drive modules is formed by the same device. formed, and is stretched by the same means of traction.
El procedimiento de la invención permite regular con precisión el caudal de vidrio combinando adecuadamente los parámetros de funcionamiento, w y DE; la aplicación de la (ecuación 14) a este ejemplo proporciona la relación: (Aq/q) = 0,9 1 · %Aw - 6,6 · %ADE. The method of the invention makes it possible to precisely regulate the flow rate of glass by suitably combining the operating parameters, w and D E ; the application of (equation 14) to this example gives the relation: (Aq / q) = 0.9 1 · Aw% - 6.6 ·% AD E.
Una vez que el vidrio fundido se acerca a la cresta del rebosadero y está fuera de la influencia de los dos dispositivos giratorios, los separadores laterales desaparecen, y todo el vidrio que ha pasado por los rebosaderos de los módulos de impulsión se une para formar una corriente plana de vidrio fundido que fluye hasta pasar por un vertedero, al mismo tiempo que es enfriada desde el exterior por radiación.  Once the molten glass approaches the crest of the overflow and is out of the influence of the two rotating devices, the side separators disappear, and all the glass that has passed through the overflows of the impulse modules joins together to form a flat stream of molten glass that flows until it passes through a landfill, at the same time that it is cooled from the outside by radiation.
Desde el vertedero, la corriente plana de vidrio fundido cae sobre un cilindro giratorio, que realiza la función de elemento limpiador de la superficie de la corriente plana que ha estado en contacto con el vertedero. El vidrio pasa por la zona de este cilindro giratorio con una viscosidad de 16000 poises, a una temperatura de 1279 °C; es decir, el vidrio tiene una temperatura inferior en 43 °C a la temperatura del vidrio fundido en la zona de los dispositivos giratorios pertenecientes a los módulos de impulsión.  From the landfill, the flat stream of molten glass falls on a rotating cylinder, which acts as a cleaning element on the surface of the flat stream that has been in contact with the landfill. The glass passes through the area of this rotating cylinder with a viscosity of 16,000 poises, at a temperature of 1279 ° C; that is, the glass has a temperature below 43 ° C at the temperature of the molten glass in the area of the rotating devices belonging to the drive modules.
Las vistas de detalle de las FIGURAS 7 y 8 representan el dispositivo de formado con un elemento limpiador constituido por un cilindro giratorio y un cuerpo de formado; el cuerpo de formado tiene una anchura de 20 centímetros y presenta en su parte superior una concavidad con una profundidad de 14 centímetros; el cilindro giratorio está hecho de una aleación platino-rodio y tiene un diámetro exterior de 12 centímetros y un espesor de 2 milímetros. Teniendo en cuenta la densidad que corresponde a una aleación de platino- rodio, una densidad del vidrio fundido de 2 ,60 gramos por centímetro cúbico, y un espesor medio de 15 milímetros de vidrio sobre la zona no sumergida del cilindro giratorio, el cilindro hueco flota sobre el vidrio fundido contenido en la concavidad del cuerpo de formado, con una inmersión de 55 milímetros. La velocidad de giro del cilindro giratorio es de 0,5 revoluciones por minuto.  The detail views of FIGS. 7 and 8 represent the forming device with a cleaning element constituted by a rotating cylinder and a forming body; the shaped body has a width of 20 centimeters and presents in its upper part a concavity with a depth of 14 centimeters; The rotating cylinder is made of a platinum-rhodium alloy and has an outer diameter of 12 centimeters and a thickness of 2 millimeters. Taking into account the density corresponding to an alloy of platinum-rhodium, a density of molten glass of 2.60 grams per cubic centimeter, and an average thickness of 15 millimeters of glass over the non-submerged area of the rotating cylinder, the hollow cylinder floats on the molten glass contained in the concavity of the formed body, with a 55 mm immersion. The rotational speed of the rotating cylinder is 0.5 revolutions per minute.
El cizallamiento del vidrio situado entre la pared estática de la concavidad del cuerpo de formado y la pared dinámica de la parte del cilindro giratorio sumergida en el vidrio, obliga al cilindro giratorio a soportar una fuerza total de torsión de 149 Newton.  The shearing of the glass located between the static wall of the concavity of the forming body and the dynamic wall of the part of the rotating cylinder immersed in the glass, forces the rotating cylinder to withstand a total torsional force of 149 Newtons.
Una vez que el cilindro giratorio ha modificado o "limpiado" la superficie inferior de la corriente plana de vidrio fundido y que se han formado dos corrientes de vidrio que pasan por los bordes superiores del cuerpo de formado, el vidrio fundido fluye por cada uno de los dos laterales del citado cuerpo de formado. La viscosidad del vidrio en esta zona es de 24000 poises, correspondiente a una temperatura de 1255 °C. Luego, las dos corrientes que descienden por cada lateral del cuerpo de formado son enfriadas para llegar al vértice inferior con una viscosidad de 100000 poises, correspondientes a una temperatura de 1 182 °C; en este lugar las dos corrientes de vidrio se unen para formar una lámina de vidrio fundido. La altura vertical del cuerpo de formado es de 81 centímetros, y el descenso de la temperatura del vidrio se produce a una tasa de 0,9 °C por cada centímetro de altura del cuerpo de formado. Once the rotating cylinder has modified or "cleaned" the lower surface of the flat stream of molten glass and two glass streams have formed that pass through the upper edges of the forming body, the molten glass flows through each of them. the two sides of the mentioned body of formed. The viscosity of the glass in this area is 24000 poises, corresponding to a temperature of 1255 ° C. Then, the two currents that descend on each side of the forming body are cooled to reach the lower vertex with a viscosity of 100000 poises, corresponding to a temperature of 1 182 ° C; in this place the two streams of glass join to form a sheet of molten glass. The vertical height of the forming body is 81 centimeters, and the drop in glass temperature occurs at a rate of 0.9 ° C per centimeter of height of the forming body.
En el vértice inferior del cuerpo de formado, la lámina de vidrio fundido es estirada mediante unos rodillos de tracción para formar una lámina delgada sólida y continua de vidrio, la cual es seguidamente fraccionada para obtener hojas de vidrio plano delgado de dimensiones determinadas.  At the lower vertex of the forming body, the molten glass sheet is stretched by traction rollers to form a solid and continuous thin sheet of glass, which is then fractionated to obtain sheets of thin flat glass of given dimensions.

Claims

REIVINDICACIONES
1. - Un procedimiento para la fabricación de una lámina delgada de vidrio, caracterizado porque comprende las siguientes fases:  1. - A process for the manufacture of a thin sheet of glass, characterized in that it comprises the following phases:
(a) fusión y afinado de vidrio fundido a partir de materias primas vitrificables mediante un horno de fusión;  (a) melting and refining of molten glass from vitrifiable raw materials by means of a melting furnace;
(b) transformación de una masa de vidrio fundido procedente de un horno de fusión en una corriente plana de vidrio fundido con un caudal uniforme por unidad de anchura, mediante un grupo de dosificación de vidrio;  (b) transforming a molten glass mass from a melting furnace into a flat stream of molten glass with a uniform flow rate per unit width, by means of a glass dosing group;
(c) formación de una lámina sólida y continua de vidrio a partir de una corriente plana de vidrio fundido procedente de un grupo de dosificación, mediante un dispositivo de formado que comprende un elemento limpiador, un cuerpo de formado, y unos medios de tracción;  (c) forming a solid and continuous glass sheet from a flat stream of molten glass from a dosing group, by a forming device comprising a cleaning element, a forming body, and a pulling means;
(d) fraccionamiento de una lámina sólida y continua de vidrio en unos artículos de dimensiones determinadas;  (d) fractioning a solid and continuous sheet of glass into articles of certain dimensions;
y en el cual, en la formación de una lámina sólida y continua de vidrio a partir de una corriente plana de vidrio fundido mediante un dispositivo de formado, se utiliza un elemento limpiador constituido por un cilindro giratorio.  and in which, in the formation of a solid and continuous sheet of glass from a flat stream of molten glass by a forming device, a cleaning element constituted by a rotating cylinder is used.
2. - Un procedimiento para la fabricación de una lámina delgada de vidrio según la reivindicación 1 , caracterizado porque en la formación de una lámina sólida y continua de vidrio a partir de una corriente plana de vidrio fundido procedente de un grupo de dosificación, mediante un dispositivo de formado, se utiliza un elemento limpiador constituido por una placa parcialmente sumergida en el vidrio. 2. A method for manufacturing a thin sheet of glass according to claim 1, characterized in that in the formation of a solid and continuous sheet of glass from a flat stream of molten glass from a dosage group, by a forming device, a cleaning element consisting of a plate partially submerged in the glass is used.
3. - Un procedimiento para la fabricación de una lámina delgada de vidrio, caracterizado porque comprende las siguientes fases: 3. - A process for the manufacture of a thin sheet of glass, characterized in that it comprises the following phases:
(a) fusión y afinado de un único vidrio fundido a partir de materias primas vitrificables mediante un horno de fusión;  (a) melting and refining of a single molten glass from vitrifiable raw materials by means of a melting furnace;
(b) transformación de una masa de vidrio fundido procedente de un horno de fusión en dos corrientes planas de vidrio fundido con caudal uniforme por unidad de anchura, mediante dos grupos de dosificación de vidrio;  (b) transformation of a molten glass mass from a melting furnace into two flat streams of molten glass with uniform flow per unit width, by means of two glass dosing groups;
(c) formación de una lámina sólida y continua de vidrio a partir de dos corrientes planas de vidrio fundido procedentes de dos grupos de dosificación, mediante un dispositivo de formado que comprende un cuerpo de formado y unos medios de tracción; (c) forming a solid and continuous sheet of glass from two flat streams of molten glass from two dosage groups, by means of a forming device comprising a forming body and pulling means;
(d) fraccionamiento de una lámina sólida y continua de vidrio en unos artículos de dimensiones determinadas;  (d) fractioning a solid and continuous sheet of glass into articles of certain dimensions;
y en el cual la lámina de vidrio esta constituida por un solo vidrio.  and in which the sheet of glass is constituted by a single glass.
4. - Un procedimiento para la fabricación de una lámina delgada de vidrio, caracterizado porque comprende las siguientes fases: 4. - A process for the manufacture of a thin sheet of glass, characterized in that it comprises the following phases:
(a) fusión y afinado de dos vidrios fundidos diferentes a partir de materias primas vitrificables mediante dos hornos de fusión;  (a) melting and refining of two different molten glasses from vitrifiable raw materials by means of two melting furnaces;
(b) transformación de dos masas de vidrio fundido procedentes de dos hornos de fusión en dos corrientes planas de vidrio fundido con caudal uniforme por unidad de anchura, mediante dos grupos de dosificación de vidrio;  (b) transformation of two masses of molten glass from two melting furnaces into two flat streams of molten glass with uniform flow per unit width, by two glass dosing groups;
(c) formación de una lámina sólida y continua de vidrio a partir de dos corrientes planas de vidrio fundido procedentes de dos grupos de dosificación, mediante un dispositivo de formado que comprende un cuerpo de formado y unos medios de tracción;  (c) forming a solid and continuous sheet of glass from two flat streams of molten glass from two dosing groups, by means of a forming device comprising a forming body and a pulling means;
(d) fraccionamiento de una lámina sólida y continua de vidrio en unos artículos de dimensiones determinadas;  (d) fractioning a solid and continuous sheet of glass into articles of certain dimensions;
y en el cual la lámina de vidrio está constituida por dos vidrios diferentes, ocupando cada uno de ellos la mitad del espesor de la lámina de vidrio.  and in which the glass sheet is constituted by two different glasses, each occupying half the thickness of the glass sheet.
5. - Un grupo de dosificación de vidrio para transformar una masa de vidrio fundido en una corriente plana de vidrio fundido con caudal uniforme por unidad de anchura, utilizable en un procedimiento para la fabricación de una lámina delgada de vidrio, según las reivindicaciones 1 a 4, caracterizado porque comprende: 5. - A glass dosing group for transforming a mass of molten glass into a flat stream of molten glass with uniform flow per unit width, usable in a process for the manufacture of a thin sheet of glass, according to claims 1 to 4, characterized in that it comprises:
(a) una zona de entrada del vidrio fundido procedente de un horno de fusión;  (a) an entrance zone of the molten glass from a melting furnace;
(b) un conjunto de varios módulos de impulsión de vidrio fundido independientes entre sí, constando cada uno de los módulos de al menos un dispositivo giratorio de impulsión de vidrio con medios para el control de la velocidad de giro y de la posición de los ejes de rotación de los dispositivos giratorios con respecto a las paredes laterales del módulo de impulsión en el que están instalados; (b) a set of several molten glass drive modules independent of each other, each module comprising at least one rotating glass drive device with means for controlling the speed of rotation and the position of the axes rotation of the devices rotating with respect to the side walls of the drive module in which they are installed;
(c) un rebosadero en cada uno de los módulos de impulsión, independiente del resto de los rebosaderos correspondientes al resto de los módulos de impulsión de vidrio; y  (c) an overflow in each of the drive modules, independent of the rest of the overflows corresponding to the rest of the glass drive modules; Y
(d) un vertedero común por el que fluye el vidrio fundido procedente de cada uno de los rebosaderos de los módulos de impulsión y que vierte en forma de una corriente plana de vidrio fundido con caudal uniforme por unidad de anchura.  (d) a common spillway through which the molten glass flows from each of the overflows of the discharge modules and which is poured in the form of a flat stream of molten glass with uniform flow per unit width.
6.- Un grupo de dosificación de vidrio según la reivindicación 5, caracterizado porque el número de dispositivos giratorios en alguno de los módulos de impulsión de vidrio es dos. 6. A glass dosing group according to claim 5, characterized in that the number of rotating devices in one of the glass delivery modules is two.
7.- Un grupo de dosificación de vidrio según las reivindicaciones 5 y 6, caracterizado porque la variación de la velocidad de giro y/o de la posición de los ejes de rotación de los dispositivos giratorios, produce la variación de la altura hidráulica del vidrio fundido en su correspondiente módulo de impulsión, y modifica el caudal de vidrio fundido que pasa por el rebosadero del citado módulo de impulsión. 7. A glass dosing group according to claims 5 and 6, characterized in that the variation of the speed of rotation and / or the position of the axes of rotation of the rotating devices, produces the variation of the hydraulic height of the glass molten in its corresponding impulsion module, and modifies the flow of molten glass that passes through the overflow of said impulsion module.
8. - Un grupo de dosificación de vidrio según las reivindicaciones 5 a 7, caracterizado porque tanto las paredes de separación entre los módulos de impulsión como los dispositivos giratorios, están hechos total o parcialmente de platino, rodio, o alguna aleación de platino o de rodio. 8. - A glass dosing group according to claims 5 to 7, characterized in that both the separation walls between the drive modules and the rotating devices, are made totally or partially of platinum, rhodium, or some alloy of platinum or of rhodium.
9. - Un dispositivo de formado para convertir una corriente plana de vidrio fundido en una lámina sólida y continua de vidrio, utilizable en un procedimiento para la fabricación de una lámina delgada de vidrio según las reivindicaciones 1 y 2, caracterizado porque comprende: 9. - A forming device for converting a flat stream of molten glass into a solid and continuous sheet of glass, usable in a process for the manufacture of a thin sheet of glass according to claims 1 and 2, characterized in that it comprises:
(a) un elemento limpiador para modificar una de las dos superficies de la corriente plana de vidrio fundido;  (a) a cleaning element for modifying one of the two surfaces of the flat stream of molten glass;
(b) un cuerpo de formado situado por debajo del elemento limpiador y por cuyas dos paredes laterales fluyen dos corrientes de vidrio que van siendo enfriadas a medida que se desplazan hacia su parte inferior, dicho cuerpo de formado finaliza en forma de cuña con el vértice hacia abajo, lugar donde confluyen las dos corrientes laterales para formar una sola lámina de vidrio fundido; (b) a forming body located below the cleaning element and through whose two side walls flow two streams of glass that are being cooled as they move towards its lower part, said body of formed ends in a wedge shape with the vertex downwards, where the two lateral currents converge to form a single sheet of molten glass;
(c) unos medios de tracción para el estirado de una lámina de vidrio fundido a partir del vértice inferior de un cuerpo de formado, hasta convertirse en una lámina sólida y continua de vidrio;  (c) pulling means for drawing a sheet of molten glass from the lower apex of a forming body, to become a solid and continuous sheet of glass;
y en el cual, el elemento limpiador está constituido por un cilindro giratorio situado por encima de la zona superior de un cuerpo de formado, con medios para controlar la velocidad de giro del cilindro y la posición del cilindro con relación al cuerpo de formado.  and in which, the cleaning element is constituted by a rotating cylinder located above the upper area of a forming body, with means for controlling the speed of rotation of the cylinder and the position of the cylinder relative to the forming body.
10. - Un dispositivo de formado para convertir una corriente plana de vidrio fundido en una lámina sólida y continua de vidrio según la reivindicación 9, caracterizado porque el elemento limpiador está constituido por una placa parcialmente sumergida en la parte superior del cuerpo de formado. 10. - A forming device for converting a flat stream of molten glass into a solid and continuous sheet of glass according to claim 9, characterized in that the cleaning element is constituted by a plate partially submerged in the upper part of the forming body.
1 1. - Un dispositivo de formado para convertir dos corrientes planas de vidrio fundido procedentes de dos grupos de dosificación de vidrio en una lámina sólida y continua de vidrio, utilizable en un procedimiento para la fabricación de una lámina delgada de vidrio según las reivindicaciones 3 y 4, caracterizado porque comprende: 1 - A forming device for converting two flat streams of molten glass from two glass dosing groups into a solid and continuous sheet of glass, usable in a process for the manufacture of a thin glass sheet according to claims 3 and 4, characterized in that it comprises:
(a) un cuerpo de formado con dos paredes laterales que reciben cada una de ellas una de las dos corrientes planas de vidrio fundido, las cuales son enfriadas a medida que se desplazan hacia su zona inferior, dicho cuerpo de formado finaliza en forma de cuña con el vértice hacia abajo, lugar donde confluyen las dos corrientes laterales para formar una sola lámina de vidrio fundido; y  (a) a forming body with two side walls each receiving one of the two flat streams of molten glass, which are cooled as they move towards their lower region, said forming body ending in a wedge shape with the vertex downwards, where the two lateral currents converge to form a single sheet of molten glass; Y
(b) unos medios de tracción para el estirado de una lámina de vidrio fundido a partir del vértice inferior de un cuerpo de formado, hasta convertirse en una lámina sólida y continua de vidrio.  (b) pulling means for drawing a sheet of molten glass from the lower apex of a forming body, to become a solid and continuous sheet of glass.
12. - Un dispositivo de formado para convertir dos corrientes planas de vidrio fundido, procedentes de dos grupos de dosificación de vidrio, en una lámina sólida y continua de vidrio según la reivindicación 1 1 , caracterizado porque las dos corrientes planas de vidrio fundido proceden de dos vidrios diferentes que han sido fundidos y/ o afinados en compartimentos diferentes. 12. - A forming device for converting two flat streams of molten glass, coming from two glass dosing groups, into a solid and continuous sheet of glass according to claim 1, characterized because the two flat streams of molten glass come from two different glasses that have been melted and / or refined in different compartments.
13. - Una instalación de fabricación de una lámina delgada de vidrio para la realización de alguno de los procedimientos de las reivindicaciones 1 a 4, caracterizada porque comprende: 13. - A manufacturing facility for a thin sheet of glass for carrying out any of the processes of claims 1 to 4, characterized in that it comprises:
(a) al menos un compartimento para la fusión y el afinado de materias vitrificables;  (a) at least one compartment for the melting and refining of vitrifiable materials;
(b) al menos un grupo de dosificación de vidrio fundido;  (b) at least one molten glass dosing group;
(c) un dispositivo de formado; y  (c) a forming device; Y
(d) unos medios de corte para fraccionar una lámina sólida y continua de vidrio en unos artículos de dimensiones determinadas.  (d) cutting means for fractionating a solid and continuous sheet of glass into articles of certain dimensions.
14. - Una lámina delgada de vidrio caracterizada porque se ha fabricado según un procedimiento descrito en las reivindicaciones 1 a 4 anteriores, y utilizando una instalación según la reivindicación 13. 14. - A thin sheet of glass characterized in that it has been manufactured according to a method described in claims 1 to 4 above, and using an installation according to claim 13.
15. - Una lámina delgada de vidrio según la reivindicación 14, caracterizada porque está formada por dos vidrios diferentes, ocupando cada uno de los vidrios la mitad del espesor de la lámina de vidrio. 15. - A thin sheet of glass according to claim 14, characterized in that it is formed by two different glasses, each of the glasses occupying half the thickness of the glass sheet.
PCT/ES2011/070006 2011-01-07 2011-01-07 Method and unit for the production of thin glass sheets WO2012093184A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/ES2011/070006 WO2012093184A1 (en) 2011-01-07 2011-01-07 Method and unit for the production of thin glass sheets
TW101100730A TW201233644A (en) 2011-01-07 2012-01-06 Method and installation for the manufacture of thin sheets of glass

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/ES2011/070006 WO2012093184A1 (en) 2011-01-07 2011-01-07 Method and unit for the production of thin glass sheets

Publications (1)

Publication Number Publication Date
WO2012093184A1 true WO2012093184A1 (en) 2012-07-12

Family

ID=46457251

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2011/070006 WO2012093184A1 (en) 2011-01-07 2011-01-07 Method and unit for the production of thin glass sheets

Country Status (2)

Country Link
TW (1) TW201233644A (en)
WO (1) WO2012093184A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109641772B (en) 2016-08-24 2022-04-26 康宁股份有限公司 Glass manufacturing apparatus and method

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040093900A1 (en) * 2002-11-15 2004-05-20 Fredholm Allan M. Apparatus and method for producing sheets of glass presenting at least one face of very high surface quality
US20070144210A1 (en) * 2005-12-27 2007-06-28 Bruce Technologies Llc Overflow Downdraw Glass Forming Method and Apparatus
WO2008103250A1 (en) * 2007-02-22 2008-08-28 Corning Incorporated Process to preserve isopipe during coupling
WO2009020655A2 (en) * 2007-08-08 2009-02-12 Bruce Technology Llc Molten glass delivery apparatus for optical quality glass

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040093900A1 (en) * 2002-11-15 2004-05-20 Fredholm Allan M. Apparatus and method for producing sheets of glass presenting at least one face of very high surface quality
US20070144210A1 (en) * 2005-12-27 2007-06-28 Bruce Technologies Llc Overflow Downdraw Glass Forming Method and Apparatus
WO2008103250A1 (en) * 2007-02-22 2008-08-28 Corning Incorporated Process to preserve isopipe during coupling
WO2009020655A2 (en) * 2007-08-08 2009-02-12 Bruce Technology Llc Molten glass delivery apparatus for optical quality glass

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LIN, H. ET AL.: "Design of a sheet forming apparatus for overflow fusion process by numerical simulation", JOURNAL OF NON-CRYSTALLINE SOLIDS, vol. 353, 23 July 2007 (2007-07-23), pages 2817 - 2825, XP022208318, DOI: doi:10.1016/j.jnoncrysol.2007.06.022 *

Also Published As

Publication number Publication date
TW201233644A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
KR101589420B1 (en) Molten glass delivery apparatus for optical quality glass
JP6149299B2 (en) Apparatus and method for forming glass sheet
EP1765737B1 (en) Glass sheet forming apparatus
CN105307988B (en) Method and apparatus for producing glass tape
JPS593408B2 (en) Renzokufu Yuhou Niyoru Glass Noseizou
EP2961701B1 (en) Apparatus and method for forming a glass sheet with core glass and clad glass
US8156766B2 (en) Molten optical glass fining apparatus
WO2016168109A1 (en) Apparatus and methods for cooling molten _glass material
WO2012093184A1 (en) Method and unit for the production of thin glass sheets
EP3896037B1 (en) Method for forming a glass article
CN109694176A (en) The manufacturing method of glass furnace and glass article
TWI757380B (en) Plate glass manufacturing method, clarification container, and plate glass manufacturing apparatus
CN112839801B (en) Method and apparatus for forming laminated glass sheets
KR20180004205A (en) Apparatus and method for processing molten material
CN107683264A (en) Glass manufacturing equipment and method with negotiability
CN103922567B (en) The manufacturing installation of sheet glass
PT86487B (en) GLASS MANUFACTURING PROCESS IN THE FORM OF A FLAT RIBBON
CN105473517B (en) The heterogeneous blank discharge structure of melten glass, the manufacturing device and manufacturing method of glass article
JPWO2008069150A1 (en) Glass melting equipment
EP3134362B1 (en) Apparatus and method of manufacturing composite glass articles
JP2016050148A (en) Method and apparatus for manufacturing glass plate
CN104961327B (en) The manufacture method of glass plate and the manufacture device of glass plate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854685

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854685

Country of ref document: EP

Kind code of ref document: A1