WO2012091489A2 - Apparatus for detecting water leakage - Google Patents

Apparatus for detecting water leakage Download PDF

Info

Publication number
WO2012091489A2
WO2012091489A2 PCT/KR2011/010311 KR2011010311W WO2012091489A2 WO 2012091489 A2 WO2012091489 A2 WO 2012091489A2 KR 2011010311 W KR2011010311 W KR 2011010311W WO 2012091489 A2 WO2012091489 A2 WO 2012091489A2
Authority
WO
WIPO (PCT)
Prior art keywords
housing
leak
sound
data
pipeline
Prior art date
Application number
PCT/KR2011/010311
Other languages
French (fr)
Korean (ko)
Other versions
WO2012091489A3 (en
Inventor
민경수
박상봉
김동현
오경석
이경섭
박혁성
천문숙
주동성
류재연
백종은
Original Assignee
수자원기술 주식회사
주식회사 로보젠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 수자원기술 주식회사, 주식회사 로보젠 filed Critical 수자원기술 주식회사
Publication of WO2012091489A2 publication Critical patent/WO2012091489A2/en
Publication of WO2012091489A3 publication Critical patent/WO2012091489A3/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/14Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object using acoustic emission techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/04Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point
    • G01M3/24Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations
    • G01M3/243Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes
    • G01M3/246Investigating fluid-tightness of structures by using fluid or vacuum by detecting the presence of fluid at the leakage point using infrasonic, sonic, or ultrasonic vibrations for pipes using pigs or probes travelling in the pipe
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside

Definitions

  • the present invention relates to a leak detection device, and relates to a leak detection device for detecting a leak point while moving along an inside of a pipeline buried underground.
  • Leakage is not only structural, but also loss of water due to holes or incorrect connections due to corrosion, and in the event of a leak in the water supply pipe, foreign matter may enter and cause contamination of the tap water. Therefore, it is important to quickly detect leaks occurring in underground pipes (for example, water supply pipes) as well as to accurately identify leak locations.
  • underground pipes for example, water supply pipes
  • a worker moves to an area where a leak is expected in a state in which a worker directly holds a leak detection device on the ground, and then detects the leak in a hearing manner through the leak detection device.
  • the sound generated by the leak is transmitted to the surface, the sound is detected and amplified from the ground, and then the receiver is directly listened to the receiver worn by the operator or analyzed by a meter to identify the leak position.
  • the water supply pipeline was buried at a depth of 1.2M or more from the ground, so when a small amount of leakage is difficult to detect and it is difficult to accurately detect the leak point.
  • the present invention is to solve the above problems, while moving along the pipeline to obtain mapping data and underwater sound data to implement a three-dimensional network diagram and analyze the sound of the water to accurately display the leak point on the three-dimensional network diagram It is an object of the present invention to provide a leak detection device.
  • the present invention includes a housing floating along the inside of the pipeline buried underground; A mapping data collection unit disposed inside the housing to detect 3D mapping data of the conduit; A sound sensing unit installed in the housing to obtain a leak sound generated according to a leak in a pipe; A controller which receives the analog data collected through the data collector and the sound wave detector and converts the analog data into digital data; And a storage unit for receiving and storing digital data from the control unit.
  • At least one sound sensing unit is disposed at the front or the rear of the housing.
  • the sound detector may apply a hydrophone.
  • the mapping data collection unit is preferably a gyro sensor.
  • the present invention may further include an optical odometer installed in the housing, for acquiring the moving distance of the leak detection device to supplement the data obtained by the gyro sensor.
  • the optical odometer may be disposed on an upper side of the housing, and the housing may include at least one pair of spacers on the upper side of the optical odometer so as to maintain a predetermined interval on the inner circumferential surface of the conduit.
  • the pair of spacers each include a wheel; And it may include a supporter for rotatably supporting the wheel.
  • the wheel is made of a lightweight material of low density.
  • the wheel may be made of a sponge having a predetermined rigidity.
  • the present invention may further include a wire odometer connected to the rear of the housing, to obtain the moving distance of the leak detection device to supplement the data obtained by the gyro sensor.
  • the housing may include a pair of wings installed on both sides of the housing to maintain balancing when floating along the pipeline.
  • the housing is preferably made of a low density material having waterproof and high rigidity.
  • the present invention may further include an outer shell surrounding the outside of the housing and absorbing the shock generated in the housing and having a resilience to absorb the shock sound.
  • the present invention may further include at least one lighting and vision camera, each installed at a predetermined position of the housing.
  • FIG. 1 is a perspective view showing a leak detection apparatus according to an embodiment of the present invention
  • FIGS. 2 and 3 are a cross-sectional view and a longitudinal sectional view showing a leak detection apparatus according to an embodiment of the present invention, respectively;
  • FIG. 4 is a schematic diagram showing a state in which a leak detection device detects a leak point while moving along a pipeline according to an embodiment of the present invention
  • FIGS. 5 and 6 are schematic diagrams illustrating a state in which a leak detection device according to an embodiment of the present invention obtains a leak sound through a sound detector in front of and behind a leak point.
  • the leak detector 10 includes a housing 110, a mapping data collector 120, a sound detector 131 and 133, a controller 150, and a data storage 160. It includes.
  • the housing 110 is made of a curved surface as a whole so that the leak detection device 10 can move while minimizing the resistance of water when the leak detection device 10 floats along the pipeline 1.
  • the housing 110 preferably has a shape such as a rugby ball made of an oval cross section.
  • the housing 110 may be formed in various ways according to the characteristics of the pipe to be applied without being limited to such a shape.
  • the housing 110 is provided with a space S therein to mount the mapping data collector 120, the sound detectors 131 and 133, the controller 150, and the data storage 160.
  • the housing 110 is made of a material having a specific gravity smaller than that of the fluid (eg, water) so that the leak detection apparatus 10 can always float.
  • the housing 110 is preferably made of a high rigidity low density material to improve buoyancy and to have a waterproof function.
  • the leak detection device 10 moves in a variety of environments, such as a change in the flow of water in the pipe 1 or a width of the pipe 1 when moving along the pipe 1. It is possible to continuously move along the pipeline 1 without sinking to the bottom of the pipeline 1.
  • the housing 110 is covered with a shell 111 on the surface.
  • the outer shell 111 is the entire housing 110 except for the vision camera 140 exposed to the front of the housing 110 and the sound detectors 131 and 133 which are installed and exposed at the front and rear of the housing 110, respectively.
  • the outer shell 111 is made of a sound absorbing material having a predetermined elasticity to absorb the impact and absorb the impact noise when the housing 110 collides with the inner peripheral surface of the conduit (1). In this case, through the sound absorbing function of the outer shell 111, it is possible to effectively block the noise that interferes with the detection of the leakage site of the pipeline 1, such as the collision noise of the leak detection device (10).
  • a pair of spacers 113 and 114 are installed above the housing 110.
  • the pair of spacers 113 and 114 are disposed symmetrically to the front and rear of the housing 110, respectively.
  • the pair of spacers 113 and 114 respectively include wheels 113a and 114a having a predetermined diameter and supporters 113b and 114b rotatably supporting the wheels 113a and 114a.
  • Such a pair of spacers 113 and 114 serve to smoothly move the leak detector 10 along the pipeline 1, and to reduce the measurement error of the optical odometer 121 described below. It serves as a constant maintaining the distance (L) between the 120 and the inner peripheral surface of the pipe (1).
  • the wheels 113a and 114a are made of a low density lightweight material, for example, a sponge having a predetermined rigidity, so as to increase the buoyancy of the leak detector 10.
  • the housing 110 is provided with a pair of wings 115 and 116 on both sides of the housing 110 along the longitudinal direction of the housing 110, respectively.
  • the pair of wings 115 and 116 are formed symmetrically with respect to the center of the housing 110.
  • the pair of wings 115 and 116 may have a predetermined shape in which the housing 110 is formed in the inner circumferential surface 1a of the conduit 1 or in the conduit 1 when the leak detection device 10 moves along the conduit 1. It is possible to minimize the collision directly with the structure and the like.
  • the pair of wings (115, 116) serves to balance the leakage detection device 10 to move along the conduit (1) while maintaining a stable state to minimize the phenomenon of rolling, pitching and yawing in the fluid.
  • the housing 110 includes a battery 118 and a docking unit 119 therein.
  • the battery 118 supplies power to various devices mounted inside the housing 110 and uses a rechargeable battery to be reusable.
  • the docking unit 119 includes a charging terminal (not shown) and a data transmission / reception terminal (not shown), and these terminals are exposed to the outside of the housing 110. Such a docking unit 119 is detachably connected to a predetermined docking station (not shown).
  • the leak detection device 10 when the leak detection device 10 is connected to the docking station through the docking unit 119, the leak detection device 10 receives the mapping data and the leak sound data obtained while the leak detection device 10 passes through the pipeline 1. (Not shown) For example, it transmits to a portable notebook. At this time, the portable notebook is provided with software for modeling a three-dimensional map of the pipeline network for the underground water pipe using the mapping data and software for analyzing the leak sound of the pipeline and displaying the graph.
  • the mapping data collection unit 120 is disposed inside the housing 110 to detect three-dimensional mapping data for the conduit 1.
  • Data for the three-dimensional mapping of the pipeline network, the leak detection device 10 is the movement distance from the pipeline 1 to the recovery unit 5 in the input section (see Fig. 4) of the pipeline 1, the direction of movement ( And the moving speed in the three-dimensional direction).
  • the mapping data collection unit 120 preferably applies an accelerometer and a gyro sensor.
  • the leak detection apparatus 10 includes an optical odometer 121 that is a non-contact measuring device so as to supplement the moving distance measured by the mapping data collection unit 120.
  • the optical odometer 121 is disposed above the housing 110, and preferably, a pair of optical odometers 121 can maintain the measurement distance L (see FIG. 3) with the inner circumferential surface 1a of the conduit 1 constantly. It is disposed between the spacers 113 and 114. In this case, the optical odometer 121 may maintain the measurement distance L within the error range through the spacers 113 and 114.
  • the leak detection apparatus 10 of the present embodiment may further include a wire odometer (not shown) to compensate for the moving distance of the leak detection apparatus 10, such as the optical odometer 121.
  • the wire odometer includes a wire odor meter main body (not shown) for measuring the unwinding distance of the wire 123 and the wire 123 connected to the fixing ring 110a formed at the rear end of the housing 110.
  • the main body of the wire odometer is installed in the inlet 3 of the conduit 1 of the leak detector 10.
  • mapping data collection unit 120 since the movement distance measured by including the optical odometer 121 and the wire odometer may be fused to the movement distance acquired by the mapping data collection unit 120, the reliability of the mapping information may be improved.
  • the sound detectors 131 and 133 are installed in the housing 110, and the leak detection device 10 moves along the pipe 1 to acquire sound generated in the pipe 1.
  • at least one of the sound detectors 131 and 133 is disposed at the front and the rear of the housing 110, respectively, with a portion of the sound detectors 131 and 133 being exposed to the outside of the housing 110.
  • the sound detectors 131 and 133 acquire the sound in the mono type, the number of the sound detectors 131 and 133 increases more precisely.
  • the sound detection units 131 and 133 employ a hydrophone so as to obtain even a fine sound.
  • the leak detection apparatus 10 of the present embodiment may be equipped with a vision camera 140 in front of the housing 110 to secure the image data inside the pipeline (1).
  • the installation position of the vision camera 140 and the plurality of LED lights 141 need not be limited to the front of the housing 110, and the predetermined position of the housing 110 is considered in consideration of the size of the pipeline and the working environment. Can be installed appropriately, and the number of vision cameras 140 can also be provided with one or more.
  • the image data can visually check the leaking portion (7) can accurately grasp the degree and location of the damage.
  • the vision camera 140 is provided with a plurality of LED lights 141 in the periphery to enable the interior of the dark conduit (1).
  • the controller 150 is electrically connected to the mapping data collector 120, the sound detectors 131 and 133, the optical odometer 121, the vision camera 140, and the temperature sensor 180.
  • the controller 150 converts the analog signals received from the devices into digital signals and transmits them to the data storage unit 160.
  • the controller 150 converts the A / D data as well as the network diagram immediately to the display unit of the analyzer when data is transmitted to a predetermined analyzer (not shown) which is recovered from the pipeline 1 and docked. It is of course also possible to pre-process to indicate the location of leakage sound.
  • the leak detection apparatus 10 of the present embodiment may include a temperature sensor 180.
  • the temperature sensor 180 is installed in a state in which a part of the temperature sensor 180 is exposed to the outside of the housing 110 so as to detect the temperature of the fluid flowing into the conduit 1.
  • the temperature sensor 180 transmits the sensed temperature signal to the controller 150, and the controller 150 may analyze the temperature signal to calculate the density of the fluid, thereby determining the flow velocity of the fluid.
  • the data obtained through the temperature sensor 180 may be used to compensate for the moving distance of the leak detection apparatus 10 obtained through the mapping data collection unit 120 or the like.
  • the input unit 3 and the recovery unit 5 shown in FIG. 4 are schematically illustrated, and a launcher installed in the input unit 3 to inject the leak detection device 10 into the pipeline 1. Is omitted, and a receiver provided for recovering the leak detection apparatus 10 is omitted in the recovery section 5.
  • the leak detection device 10 when the leak detection device 10 is introduced through the injection unit 3, the leak detection device 10 is suspended in the same direction as the flow of the fluid by the fluid flowing along the inside of the pipe (1). In this case, the leak detection apparatus 10 naturally moves along the pipeline 1 while the wheels 113a and 114a of the spacers 113 and 114 provided on the housing 110 contact and rotate the inner peripheral surface 1a of the pipeline 1. .
  • the leak detection device 10 of the present embodiment does not have a separate propellant and moves along the pipeline 1 depending on the flow of the fluid.
  • the leak detection device 10 is a gyro sensor 120, an optical odometer 121, a wire odometer (not shown) and a temperature sensor while moving a straight and curved line from the input unit 3 to the recovery unit 5
  • the mapping data is collected through 180.
  • the leak detection device 10 collects underwater sound data inside the conduit 1 through sound detection units 131 and 133 installed at the front and rear of the housing 110.
  • the sound detectors 131 and 133 detect more sounds with the sound detector 131 in front of the housing 110 in the state where the leaking part 7 is in front, and as shown in FIG. After passing through the area 7, more sound is detected through the sound detector 133 behind the housing 110.
  • the sound detectors 131 and 133 acquire the leaked sound in the state in which the leaked part 7 is in front, and acquire the leaked sound in the state of passing the leaked part 7, respectively, through the sound detectors 131 and 133.
  • the sound detectors 131 and 133 By comparing the data and tracking the highest negative peak corresponding to the moving distance and the moving speed of the leak detection device 10, it is possible to accurately detect the position of the correct leaking part 7 of the pipeline 1. .
  • the leak detection apparatus 10 of the present embodiment is recovered to the recovery unit 5, and then docked to a docking station (not shown) to transmit mapping data and leak sound data to the analyzer.
  • the leak detection device 10 may detect the leak in the entire network by repeating the input and recovery in the pipeline several places.
  • the position (geographic information) of the input unit 3 and the recovery unit 5 formed on the pipeline 1 may be measured using GPS technology, and the position may be referred to as a section reference point of the pipeline network at the time of mapping. Are utilized.
  • the analyzer may establish a three-dimensional network diagram of a pipeline embedded underground through the data received from the leak detection device 10, and also the three-dimensional leak point through the sound obtained through the sound detectors 131 and 133. It can be accurately represented on the network diagram.
  • the leak detection device 10 is equipped with a predetermined wireless transmission and reception module (not shown), it is of course also possible to transmit the mapping data and sound data obtained when moving along the pipeline 1 to the analyzer in real time.
  • the analyzer may express the 3D network diagram in real time through the display unit and may indicate the current position of the leak detection apparatus 10 on the network diagram.
  • the analyzer displays a graph of the underwater sound that increases when the leak detector 10 approaches the leak point through the display, and on the contrary, displays an underwater sound graph that decreases as the water leak point passes through the leak point and moves away from the leak point. can do.
  • the user can accurately grasp the leak point of the complex pipeline network embedded in the basement on the three-dimensional network diagram.
  • This embodiment has been described as an example of the water supply pipe, but is not limited to this, as the liquid detecting unit 10 of the present embodiment floats the wheels 113a and 114a in contact with the inner wall of the pipe as the liquid is transported. If possible, it can be applied regardless of the type of pipeline.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Examining Or Testing Airtightness (AREA)

Abstract

Disclosed is an apparatus for detecting water leakage, which detects the locations of leaks while moving along the interior of an underground pipeline. The apparatus for detecting water leakage according to the present invention comprises: a housing which floats along a pipeline; a mapping-data-collecting unit arranged in the housing so as to collect three-dimensional mapping data of the pipeline; a sound-sensing unit arranged in the housing to acquire leakage sounds generated by water leakage in the pipeline; a control unit which receives analog data collected by the mapping-data-collecting unit and the sound-sensing unit, and which converts the received analog data into digital data; and a storage unit for storing the digital data transferred from the control unit.

Description

누수탐지장치Leakage Detector
본 발명은 누수탐지장치에 관한 것으로, 지하에 매설된 관로 내부를 따라 이동하면서 누수지점을 탐지하기 위한 누수탐지장치에 관한 것이다.The present invention relates to a leak detection device, and relates to a leak detection device for detecting a leak point while moving along an inside of a pipeline buried underground.
누수는 구조적으로뿐만 아니라 부식으로 인한 구멍이나 잘못된 접속으로 인한 물의 손실을 의미하며, 상수도관에 누수가 발생하는 경우 이물질이 침입하여 수돗물이 오염되는 원인을 제공하기도 한다. 따라서, 지하에 매설된 관로(예를 들면, 상수도 관로)에 발생한 누수를 신속하게 탐지하는 것은 물론 누수 위치를 정확하게 파악하는 것이 무엇보다 중요하다.Leakage is not only structural, but also loss of water due to holes or incorrect connections due to corrosion, and in the event of a leak in the water supply pipe, foreign matter may enter and cause contamination of the tap water. Therefore, it is important to quickly detect leaks occurring in underground pipes (for example, water supply pipes) as well as to accurately identify leak locations.
종래의 누수탐지작업은 작업자가 지상에서 직접 누수탐지장치를 소지한 상태로 누수발생이 예상되는 영역으로 이동한 후 누수탐지장치를 통해 청음방식으로 누수를 탐지한다. 이 경우 누수에 의해 발생하는 소리가 지표면에 전달될 때 지표면에서 이 소리를 탐지 및 증폭한 후, 작업자가 착용하고 있는 리시버로 직접 듣거나 미터기로 분석하여 누수위치를 파악하였다.In the conventional leak detection operation, a worker moves to an area where a leak is expected in a state in which a worker directly holds a leak detection device on the ground, and then detects the leak in a hearing manner through the leak detection device. In this case, when the sound generated by the leak is transmitted to the surface, the sound is detected and amplified from the ground, and then the receiver is directly listened to the receiver worn by the operator or analyzed by a meter to identify the leak position.
그런데 상수도 관로는 규정상 지면에서 1.2M 이상의 깊이로 매설하도록 되어 있어 소량씩 누수되는 경우에는 탐지가 극히 곤란하고 누수 지점을 정확히 탐지하기 어려운 문제가 있었다.By the way, the water supply pipeline was buried at a depth of 1.2M or more from the ground, so when a small amount of leakage is difficult to detect and it is difficult to accurately detect the leak point.
더욱이 교통량이 많은 도로 밑에 매설된 상수도 관로의 누수를 탐지하는 경우에는, 차량 통행에 따른 교통 소음이 지하에서 누수에 의해 발생하는 소리와 섞여 누수탐지장치로 전달되기 때문에 탐지가 어려웠다.In addition, in the case of detecting leaks of water supply pipes buried beneath a heavy traffic road, it was difficult to detect traffic noise due to vehicle traffic, which is mixed with the sound generated by leaks underground and transmitted to the leak detector.
아울러, 상기 관로가 입체적으로 매설되어 있거나 주변에 전선이 매설된 배관이 혼재하는 경우에는 누수 위치를 탐지하는 것이 거의 불가능하였다.In addition, it is almost impossible to detect the leak position when the pipe is three-dimensionally embedded or when the pipes are wired around.
본 발명을 상기 문제점을 해결하기 위한 것으로, 관로 내부를 따라 이동하면서 맵핑 데이터 및 수중 음 데이터를 획득하여, 3차원 관망도를 구현하고 수중 음을 분석하여 누수지점을 3차원 관망도 상에 정확하게 표시할 수 있는 누수탐지장치를 제공하는데 그 목적이 있다.The present invention is to solve the above problems, while moving along the pipeline to obtain mapping data and underwater sound data to implement a three-dimensional network diagram and analyze the sound of the water to accurately display the leak point on the three-dimensional network diagram It is an object of the present invention to provide a leak detection device.
상기 목적을 달성하기 위해, 본 발명은 지하에 매설된 관로 내부를 따라 부유하는 하우징; 상기 하우징 내측에 배치되어 상기 관로에 대한 3차원 맵핑 데이터를 검출하는 맵핑 데이터 수집부; 상기 하우징에 설치되어 관로 내의 누수에 따라 발생하는 누수 음을 획득하기 위한 소리 감지부; 상기 데이터수집부 및 음파감지부를 통해 수집된 아날로그 데이터를 수신하여 디지털 데이터로 변환하는 제어부; 및 상기 제어부로부터 디지털 데이터를 전달받아 저장하기 위한 저장부;를 포함하는 것을 특징으로 하는 누수탐지장치를 제공한다.In order to achieve the above object, the present invention includes a housing floating along the inside of the pipeline buried underground; A mapping data collection unit disposed inside the housing to detect 3D mapping data of the conduit; A sound sensing unit installed in the housing to obtain a leak sound generated according to a leak in a pipe; A controller which receives the analog data collected through the data collector and the sound wave detector and converts the analog data into digital data; And a storage unit for receiving and storing digital data from the control unit.
상기 소리 감지부는 상기 하우징의 전방 또는 후방에 적어도 하나가 배치되는 것이 바람직하다. 이 경우, 상기 소리 감지부는 하이드로폰을 적용할 수 있다.Preferably, at least one sound sensing unit is disposed at the front or the rear of the housing. In this case, the sound detector may apply a hydrophone.
상기 맵핑 데이터 수집부는 자이로센서인 것이 바람직하다.The mapping data collection unit is preferably a gyro sensor.
또한, 본 발명은 상기 하우징에 설치되며, 상기 자이로센서에 의해 획득한 데이터를 보완하기 위해 상기 누수탐지장치의 이동거리를 획득하기 위한 옵티컬 오도미터를 더 포함할 수 있다.In addition, the present invention may further include an optical odometer installed in the housing, for acquiring the moving distance of the leak detection device to supplement the data obtained by the gyro sensor.
상기 옵티컬 오도미터는 상기 하우징의 상측에 배치되며, 상기 하우징은 상기 옵티컬 오도미터가 상기 관로 내주면에 소정의 간격을 유지하도록 상측에 적어도 한 쌍의 스페이서를 구비할 수 있다.The optical odometer may be disposed on an upper side of the housing, and the housing may include at least one pair of spacers on the upper side of the optical odometer so as to maintain a predetermined interval on the inner circumferential surface of the conduit.
이 경우, 상기 한 쌍의 스페이서는 각각, 휠; 및 상기 휠을 회전 가능하게 지지하는 서포터를 포함할 수 있다. 이때, 상기 휠은 저밀도의 경량재로 이루어지는 것이 바람직하다. 예를 들면, 상기 휠은 소정의 강성을 가지는 스펀지로 이루어질 수 있다.In this case, the pair of spacers each include a wheel; And it may include a supporter for rotatably supporting the wheel. At this time, it is preferable that the wheel is made of a lightweight material of low density. For example, the wheel may be made of a sponge having a predetermined rigidity.
더욱이 본 발명은 상기 하우징 후방에 연결되어, 상기 자이로센서에 의해 획득한 데이터를 보완하기 위해 상기 누수탐지장치의 이동거리를 획득하기 위한 와이어 오도미터를 더 포함할 수 있다.In addition, the present invention may further include a wire odometer connected to the rear of the housing, to obtain the moving distance of the leak detection device to supplement the data obtained by the gyro sensor.
상기 하우징은 상기 관로를 따라 부유 시 밸런싱을 유지하기 위해, 상기 하우징의 양측에 설치되는 한 쌍의 날개를 포함할 수 있다.The housing may include a pair of wings installed on both sides of the housing to maintain balancing when floating along the pipeline.
상기 하우징은 방수 및 고강성을 갖는 저밀도 재질로 이루어지는 것이 바람직하다.The housing is preferably made of a low density material having waterproof and high rigidity.
또한 본 발명은 상기 하우징 외부를 둘러싸며, 상기 하우징에 발생하는 충격을 흡수하고 충격음을 흡음하는 탄력을 가지는 흡음재인 외피를 더 포함할 수 있다.In another aspect, the present invention may further include an outer shell surrounding the outside of the housing and absorbing the shock generated in the housing and having a resilience to absorb the shock sound.
더욱이 본 발명은 상기 하우징의 소정 위치에 각각, 적어도 1 이상 설치되는 조명 및 비젼카메라를 더 포함할 수 있다.Furthermore, the present invention may further include at least one lighting and vision camera, each installed at a predetermined position of the housing.
상기한 바와 같이 본 발명에 있어서는, 지하에 매설된 상수도관의 관망도를 3차원으로 구축하면서 동시에 관로 내부에서 발생하는 누수 음을 획득하여 이를 토대로, 3차원으로 표시된 관망도 상에 관로의 누수지점을 정확하게 표시함으로써, 사용자가 관로 누수지점을 직관적이고 용이하게 파악할 수 있는 이점이 있다.As described above, in the present invention, while constructing the pipe network diagram of the water supply pipe buried in the basement in three dimensions, at the same time to obtain the leakage sound generated inside the pipeline, based on this, the leak point of the pipeline on the pipe network diagram displayed in three By accurately displaying, there is an advantage that the user can intuitively and easily identify the pipeline leak point.
도 1은 본 발명의 일 실시예에 따른 누수탐지장치를 나타내는 사시도,1 is a perspective view showing a leak detection apparatus according to an embodiment of the present invention,
도 2 및 도 3은 본 발명의 일 실시예에 따른 누수탐지장치를 각각 나타내는 횡단면도 및 종단면도,2 and 3 are a cross-sectional view and a longitudinal sectional view showing a leak detection apparatus according to an embodiment of the present invention, respectively;
도 4는 본 발명의 일 실시예에 따른 누수탐지장치가 관로를 따라 이동하면서 누수 지점을 탐지하는 상태를 나타내는 개략도,4 is a schematic diagram showing a state in which a leak detection device detects a leak point while moving along a pipeline according to an embodiment of the present invention;
도 5 및 도 6은 본 발명의 일 실시예에 따른 누수탐지장치가 누수 지점의 전방 및 후방에서 소리 감지부를 통해 누수 음을 획득하는 상태를 각각 나타내는 개략도이다.5 and 6 are schematic diagrams illustrating a state in which a leak detection device according to an embodiment of the present invention obtains a leak sound through a sound detector in front of and behind a leak point.
이하, 첨부된 도면을 참고하여 본 발명의 일 실시예에 따른 누수탐지장치의 구성을 설명한다.Hereinafter, with reference to the accompanying drawings will be described the configuration of the leak detection apparatus according to an embodiment of the present invention.
도 1 내지 도 3을 참고하면, 본 실시예의 누수탐지장치(10)는 하우징(110), 맵핑 데이터 수집부(120), 소리 감지부(131,133), 제어부(150) 및 데이터 저장부(160)를 포함한다.1 to 3, the leak detector 10 according to the present embodiment includes a housing 110, a mapping data collector 120, a sound detector 131 and 133, a controller 150, and a data storage 160. It includes.
하우징(110)은 누수탐지장치(10)가 관로(1)를 따라 부유(浮游)할 때 물의 저항을 최소화하면서 이동이 가능하도록 전체적으로 곡면으로 이루어진다. 예를 들면 하우징(110)은 단면이 타원형으로 이루어진 럭비공과 같은 형상으로 이루어지는 것이 바람직하다. 하지만 하우징(110)은 이와 같은 형상에 한정되지 않고 적용되는 관로의 특성에 따라 다양하게 형성될 수 있다.The housing 110 is made of a curved surface as a whole so that the leak detection device 10 can move while minimizing the resistance of water when the leak detection device 10 floats along the pipeline 1. For example, the housing 110 preferably has a shape such as a rugby ball made of an oval cross section. However, the housing 110 may be formed in various ways according to the characteristics of the pipe to be applied without being limited to such a shape.
이와 같은 하우징(110)은 내부에 공간부(S)를 마련하여 맵핑 데이터 수집부(120), 소리 감지부(131,133), 제어부(150) 및 데이터 저장부(160)를 탑재한다.The housing 110 is provided with a space S therein to mount the mapping data collector 120, the sound detectors 131 and 133, the controller 150, and the data storage 160.
또한, 하우징(110)은 누수탐지장치(10)가 항상 플로팅 가능하도록 유체(예를 들면, 물)의 비중보다 작은 비중을 가지는 재질로 이루어진다. 이를 위해 하우징(110)은 부력을 향상시키고 방수 기능을 구비하도록 고강성의 저밀도 재질로 이루어지는 것이 바람직하다.In addition, the housing 110 is made of a material having a specific gravity smaller than that of the fluid (eg, water) so that the leak detection apparatus 10 can always float. To this end, the housing 110 is preferably made of a high rigidity low density material to improve buoyancy and to have a waterproof function.
이와 같이 부력에 의해 하우징(110)이 플로팅 됨에 따라, 누수탐지장치(10)는 관로(1)를 따라 이동 시 관로(1) 내 물의 흐름의 변화 또는 관로(1)의 폭의 변화 등 다양한 환경하에서 관로(1) 바닥으로 가라앉지 않고 지속적으로 관로(1)를 따라 이동할 수 있다.As the housing 110 is floated by the buoyancy as described above, the leak detection device 10 moves in a variety of environments, such as a change in the flow of water in the pipe 1 or a width of the pipe 1 when moving along the pipe 1. It is possible to continuously move along the pipeline 1 without sinking to the bottom of the pipeline 1.
더욱이 하우징(110)은 표면에 외피(111)가 덮여 있다. 이 경우 외피(111)는 하우징(110) 전방으로 노출된 비젼카메라(140)와 하우징(110)의 전방 및 후방에 각각 설치되어 노출되는 소리 감지부(131,133)를 제외하고, 하우징(110) 전체를 덮는다. 또한, 외피(111)는 하우징(110)이 관로(1) 내주면에 충돌하는 경우 충격을 흡수하고 충돌 소음을 흡수할 수 있도록 소정의 탄력을 가지는 흡음재로 이루어진다. 이 경우, 외피(111)가 갖는 흡음 기능을 통해, 누수탐지장치(10)의 충돌 소음 등 관로(1)의 누수 부위 감지에 간섭이 되는 노이즈를 효과적으로 차단할 수 있다.In addition, the housing 110 is covered with a shell 111 on the surface. In this case, the outer shell 111 is the entire housing 110 except for the vision camera 140 exposed to the front of the housing 110 and the sound detectors 131 and 133 which are installed and exposed at the front and rear of the housing 110, respectively. To cover. In addition, the outer shell 111 is made of a sound absorbing material having a predetermined elasticity to absorb the impact and absorb the impact noise when the housing 110 collides with the inner peripheral surface of the conduit (1). In this case, through the sound absorbing function of the outer shell 111, it is possible to effectively block the noise that interferes with the detection of the leakage site of the pipeline 1, such as the collision noise of the leak detection device (10).
또한, 하우징(110)은 상측이 관로(1)의 내주면(1a)에 닿을 경우, 하우징(110)과 관로(1)의 내주면(1a) 사이에 발생하는 마찰력에 의해 누수탐지장치(10)의 이동속도가 느려지거나 아예 정지되는 것을 방지하도록, 하우징(110) 상측에 한 쌍의 스페이서(113,114)를 설치한다.In addition, when the upper side of the housing 110 touches the inner circumferential surface 1a of the conduit 1, the housing 110 of the leak detection apparatus 10 is caused by frictional force generated between the housing 110 and the inner circumferential surface 1a of the conduit 1. In order to prevent the moving speed from slowing down or stopping at all, a pair of spacers 113 and 114 are installed above the housing 110.
한 쌍의 스페이서(113,114)는 각각 하우징(110)의 전방 및 후방에 상호 대칭으로 배치된다. 한 쌍의 스페이서(113,114)는 각각, 소정 직경을 가지는 휠(113a,114a)과, 휠(113a,114a)을 회전 가능하게 지지하는 서포터(113b,114b)를 포함한다. The pair of spacers 113 and 114 are disposed symmetrically to the front and rear of the housing 110, respectively. The pair of spacers 113 and 114 respectively include wheels 113a and 114a having a predetermined diameter and supporters 113b and 114b rotatably supporting the wheels 113a and 114a.
이와 같은 한 쌍의 스페이서(113,114)는 누수탐지장치(10)가 관로(1)를 따라 원활하게 이동시키는 역할과 함께, 하기에 설명하는 옵티컬 오도미터(121)의 측정 오류를 줄이기 위해 옵티컬 오도미터(120)와 관로(1) 내주면 간의 간격(L)을 일정하게 유지하는 역할을 겸한다. 상기 휠(113a,114a)은 누수탐지장치(10)의 부력을 증가시킬 수 있도록 저밀도의 경량재 예를 들면, 소정의 강성을 가지는 스펀지로 이루어진다.Such a pair of spacers 113 and 114 serve to smoothly move the leak detector 10 along the pipeline 1, and to reduce the measurement error of the optical odometer 121 described below. It serves as a constant maintaining the distance (L) between the 120 and the inner peripheral surface of the pipe (1). The wheels 113a and 114a are made of a low density lightweight material, for example, a sponge having a predetermined rigidity, so as to increase the buoyancy of the leak detector 10.
또한, 하우징(110)은 각각 하우징(110)의 길이방향을 따라 하우징(110)의 양측에 한 쌍의 날개(115,116)가 설치된다. 이러한 한 쌍의 날개(115,116)는 하우징(110)의 중심을 기준으로 대칭으로 형성된다. 한 쌍의 날개(115,116)는 누수탐지장치(10)가 관로(1)를 따라 이동 시, 하우징(110)이 관로(1)의 내주면(1a) 또는 관로(1) 내부에 형성되어 있는 소정의 구조물 등과 직접적으로 충돌하는 것을 최소화할 수 있다. 또한, 한 쌍의 날개(115,116)는 누수탐지장치(10)가 유체 속에서 롤링, 피칭 및 요잉되는 현상을 최소화하여 안정적인 상태를 유지하면서 관로(1)를 따라 이동할 수 있도록 밸런싱하는 역할을 한다.In addition, the housing 110 is provided with a pair of wings 115 and 116 on both sides of the housing 110 along the longitudinal direction of the housing 110, respectively. The pair of wings 115 and 116 are formed symmetrically with respect to the center of the housing 110. The pair of wings 115 and 116 may have a predetermined shape in which the housing 110 is formed in the inner circumferential surface 1a of the conduit 1 or in the conduit 1 when the leak detection device 10 moves along the conduit 1. It is possible to minimize the collision directly with the structure and the like. In addition, the pair of wings (115, 116) serves to balance the leakage detection device 10 to move along the conduit (1) while maintaining a stable state to minimize the phenomenon of rolling, pitching and yawing in the fluid.
또한, 하우징(110)은 내측에 배터리(118)와 도킹부(119)를 포함한다. 배터리(118)는 하우징(110) 내부에 장착된 각종 장치로 전원을 공급하며, 재사용 가능하도록 충전용 배터리를 사용한다. 도킹부(119)는 충전단자(미도시) 및 데이터 송수신 단자(미도시)를 포함하며 이들 단자들이 하우징(110) 외부로 노출된다. 이와 같은 도킹부(119)는 소정의 도킹스테이션(미도시)에 분리 가능하게 접속된다.In addition, the housing 110 includes a battery 118 and a docking unit 119 therein. The battery 118 supplies power to various devices mounted inside the housing 110 and uses a rechargeable battery to be reusable. The docking unit 119 includes a charging terminal (not shown) and a data transmission / reception terminal (not shown), and these terminals are exposed to the outside of the housing 110. Such a docking unit 119 is detachably connected to a predetermined docking station (not shown).
이에 따라 누수탐지장치(10)는 도킹부(119)를 통해 도킹스테이션에 접속 시, 누수탐지장치(10)가 관로(1)를 통과하면서 획득한 맵핑 데이터 및 누수음 데이터를 소정의 데이터 분석기기(미도시) 예를 들면, 휴대용 노트북 등으로 전송한다. 이때 휴대용 노트북에는 상기 맵핑 데이터를 이용하여 지하에 매설된 상수도관로에 대한 관로망의 3차원 맵을 모델링할 수 있는 소프트웨어와 관로의 누수음을 분석하고 이를 그래프로 디스플레이할 수 있는 소프트웨어가 설치된다.Accordingly, when the leak detection device 10 is connected to the docking station through the docking unit 119, the leak detection device 10 receives the mapping data and the leak sound data obtained while the leak detection device 10 passes through the pipeline 1. (Not shown) For example, it transmits to a portable notebook. At this time, the portable notebook is provided with software for modeling a three-dimensional map of the pipeline network for the underground water pipe using the mapping data and software for analyzing the leak sound of the pipeline and displaying the graph.
맵핑 데이터 수집부(120)는 하우징(110) 내측에 배치되어 관로(1)에 대한 3차원 맵핑 데이터를 검출한다. 관로망의 3차원 맵핑을 위한 데이터는 누수탐지장치(10)가 관로(1)의 투입부(3, 도 4 참조)에서 관로(1)로부터 회수부(5)까지의 이동거리, 이동방향(3차원 방향으로의 이동각도를 포함) 및 이동속도 등이 있다. 맵핑 데이터 수집부(120)는 가속도계와 자이로센서를 적용하는 것이 바람직하다.The mapping data collection unit 120 is disposed inside the housing 110 to detect three-dimensional mapping data for the conduit 1. Data for the three-dimensional mapping of the pipeline network, the leak detection device 10 is the movement distance from the pipeline 1 to the recovery unit 5 in the input section (see Fig. 4) of the pipeline 1, the direction of movement ( And the moving speed in the three-dimensional direction). The mapping data collection unit 120 preferably applies an accelerometer and a gyro sensor.
한편, 맵핑 데이터 수집부(120)에 의해 측정된 이동거리를 보완할 수 있도록 본 실시예의 누수탐지장치(10)는 비접촉식 계측장치인 옵티컬 오도미터(121)를 구비한다. 이 경우, 옵티컬 오도미터(121)는 하우징(110) 상측에 배치되며, 바람직하게는 관로(1) 내주면(1a)과의 측정 거리(L, 도 3 참조)를 일정하게 유지할 수 있도록 한 쌍의 스페이서(113,114) 사이에 배치된다. 이 경우 옵티컬 오도미터(121)는 스페이서(113,114)를 통해 측정 거리(L)를 오차범위 내로 유지할 수 있다.Meanwhile, the leak detection apparatus 10 according to the present embodiment includes an optical odometer 121 that is a non-contact measuring device so as to supplement the moving distance measured by the mapping data collection unit 120. In this case, the optical odometer 121 is disposed above the housing 110, and preferably, a pair of optical odometers 121 can maintain the measurement distance L (see FIG. 3) with the inner circumferential surface 1a of the conduit 1 constantly. It is disposed between the spacers 113 and 114. In this case, the optical odometer 121 may maintain the measurement distance L within the error range through the spacers 113 and 114.
또한, 본 실시예의 누수탐지장치(10)는 상기 옵티컬 오도미터(121)와 같이 누수탐지장치(10)의 이동거리를 보완하기 위해 와이어 오도미터(미도시)를 더 포함할 수 있다. 이 경우 와이어 오도미터는 하우징(110) 후단부에 형성된 고정고리(110a)에 연결되는 와이어(123)와 와이어(123)의 풀린 거리를 측정하는 와이어 오도미터 본체(미도시)를 포함한다. 와이어 오도미터 본체는 누수탐지장치(10)의 관로(1) 투입부(3)에 설치한다.In addition, the leak detection apparatus 10 of the present embodiment may further include a wire odometer (not shown) to compensate for the moving distance of the leak detection apparatus 10, such as the optical odometer 121. In this case, the wire odometer includes a wire odor meter main body (not shown) for measuring the unwinding distance of the wire 123 and the wire 123 connected to the fixing ring 110a formed at the rear end of the housing 110. The main body of the wire odometer is installed in the inlet 3 of the conduit 1 of the leak detector 10.
이처럼, 옵티컬 오도미터(121) 및 와이어 오도미터를 함께 구비하여 측정된 이동거리는 맵핑 데이터 수집부(120)에 의해 획득한 이동거리를 퓨전 할 수 있으므로, 맵핑 정보의 신뢰성을 향상시킬 수 있다.As such, since the movement distance measured by including the optical odometer 121 and the wire odometer may be fused to the movement distance acquired by the mapping data collection unit 120, the reliability of the mapping information may be improved.
소리 감지부(131,133)는 하우징(110)에 설치되며, 누수탐지장치(10)가 관로(1)를 따라 이동하면서 관로(1) 내에서 발생하는 음을 획득한다. 이 경우 소리 감지부(131,133)는 일부분이 하우징(110) 외부로 노출된 상태로 각각 하우징(110)의 전방 및 후방에 적어도 하나씩 배치된다. 이러한 소리 감지부(131,133)는 모노타입으로 음을 획득함에 따라 그 개수를 늘릴수록 더 정밀하게 데이터를 얻을 수 있다. 이 경우, 소리 감지부(131,133)는 미세한 소리까지 획득할 수 있도록 하이드로폰을 채용하는 것이 바람직하다.The sound detectors 131 and 133 are installed in the housing 110, and the leak detection device 10 moves along the pipe 1 to acquire sound generated in the pipe 1. In this case, at least one of the sound detectors 131 and 133 is disposed at the front and the rear of the housing 110, respectively, with a portion of the sound detectors 131 and 133 being exposed to the outside of the housing 110. As the sound detectors 131 and 133 acquire the sound in the mono type, the number of the sound detectors 131 and 133 increases more precisely. In this case, it is preferable that the sound detection units 131 and 133 employ a hydrophone so as to obtain even a fine sound.
또한 본 실시예의 누수탐지장치(10)는 하우징(110) 전방에 비전카메라(140)를 구비하여 관로(1) 내부의 영상데이터를 확보할 수 있다. 이 경우 비전카메라(140)와 다수의 LED조명(141)은 그 설치 위치가 하우징(110)의 전방에 한정될 필요는 없으며, 관로의 크기 및 작업 환경 등을 고려하여 하우징(110)의 소정 위치에 적절히 설치할 수 있고, 비전카메라(140)의 개수도 1이상 구비할 수 있다.In addition, the leak detection apparatus 10 of the present embodiment may be equipped with a vision camera 140 in front of the housing 110 to secure the image data inside the pipeline (1). In this case, the installation position of the vision camera 140 and the plurality of LED lights 141 need not be limited to the front of the housing 110, and the predetermined position of the housing 110 is considered in consideration of the size of the pipeline and the working environment. Can be installed appropriately, and the number of vision cameras 140 can also be provided with one or more.
한편, 상기 영상데이터는 누수 부위(7)를 육안으로 확인할 수 있어 파손 정도 및 위치 등을 정확하게 파악할 수 있다. 상기 비전카메라(140)는 어두운 관로(1) 내부의 촬영이 가능하도록 주변에 다수의 LED조명(141)을 구비한다.On the other hand, the image data can visually check the leaking portion (7) can accurately grasp the degree and location of the damage. The vision camera 140 is provided with a plurality of LED lights 141 in the periphery to enable the interior of the dark conduit (1).
제어부(150)는 맵핑 데이터 수집부(120), 소리 감지부(131,133), 옵티컬 오도미터(121), 비전카메라(140) 및 온도센서(180)와 전기적으로 접속된다. 이와 같은 제어부(150)는 상기 장치들로부터 수신한 아날로그 신호를 디지털 신호로 변환하여 데이터 저장부(160)로 전송한다. 또한, 제어부(150)는 상기 A/D 데이터 변환은 물론, 관로(1)에서 회수된 후 도킹되는 소정의 분석기기(미도시)로 데이터 전송 시, 분석기기의 디스플에이부에 즉시 관망도 및 누수음 발생위치를 나타내도록 선처리하는 것도 물론 가능하다.The controller 150 is electrically connected to the mapping data collector 120, the sound detectors 131 and 133, the optical odometer 121, the vision camera 140, and the temperature sensor 180. The controller 150 converts the analog signals received from the devices into digital signals and transmits them to the data storage unit 160. In addition, the controller 150 converts the A / D data as well as the network diagram immediately to the display unit of the analyzer when data is transmitted to a predetermined analyzer (not shown) which is recovered from the pipeline 1 and docked. It is of course also possible to pre-process to indicate the location of leakage sound.
본 실시예의 누수탐지장치(10)는 온도센서(180)를 구비할 수 있다. 이 경우 온도센서(180)는 관로(1) 내로 흐르는 유체의 온도를 감지할 수 있도록 일부가 하우징(110) 외부로 노출된 상태로 설치된다. 온도센서(180)는 감지한 온도신호를 제어부(150)로 전송하며, 제어부(150)는 이 온도신호를 분석하여 유체의 밀도를 산출하고, 이를 통해 유체의 유속을 파악할 수 있다. 온도센서(180)를 통해 획득 할 수 있는 상기 데이터는 맵핑 데이터 수집부(120) 등을 통해 획득한 누수탐지장치(10)의 이동거리를 보완할 때 사용할 수 있다.The leak detection apparatus 10 of the present embodiment may include a temperature sensor 180. In this case, the temperature sensor 180 is installed in a state in which a part of the temperature sensor 180 is exposed to the outside of the housing 110 so as to detect the temperature of the fluid flowing into the conduit 1. The temperature sensor 180 transmits the sensed temperature signal to the controller 150, and the controller 150 may analyze the temperature signal to calculate the density of the fluid, thereby determining the flow velocity of the fluid. The data obtained through the temperature sensor 180 may be used to compensate for the moving distance of the leak detection apparatus 10 obtained through the mapping data collection unit 120 or the like.
상기와 같이 구성된 본 발명의 일 실시예에 따른 누수탐지장치(10)의 동작을 첨부된 도 4 내지 도 6을 참고하여 설명한다.The operation of the leak detection apparatus 10 according to an embodiment of the present invention configured as described above will be described with reference to FIGS. 4 to 6.
도 4에 도시된 투입부(3) 및 회수부(5)는 개략적으로 도시한 것으로, 투입부(3)에는 누수탐지장치(10)를 관로(1) 내부로 투입시키기 위해 설치된 론처(launcher)가 생략되어 있고, 회수부(5)에는 누수탐지장치(10)를 회수하기 위해 설치된 리시버(receiver)가 생략되어 있다.The input unit 3 and the recovery unit 5 shown in FIG. 4 are schematically illustrated, and a launcher installed in the input unit 3 to inject the leak detection device 10 into the pipeline 1. Is omitted, and a receiver provided for recovering the leak detection apparatus 10 is omitted in the recovery section 5.
먼저, 투입부(3)를 통해 누수탐지장치(10)를 투입하면, 누수탐지장치(10)는 관로(1) 내부를 따라 흐르는 유체에 의해 유체의 흐름과 동일방향으로 부유한다. 이 경우 누수탐지장치(10)는 하우징(110) 상부에 마련된 스페이서(113,114)의 휠(113a,114a)이 관로(1) 내주면(1a)에 접촉 및 회전하면서 자연스럽게 관로(1)를 따라 이동한다.First, when the leak detection device 10 is introduced through the injection unit 3, the leak detection device 10 is suspended in the same direction as the flow of the fluid by the fluid flowing along the inside of the pipe (1). In this case, the leak detection apparatus 10 naturally moves along the pipeline 1 while the wheels 113a and 114a of the spacers 113 and 114 provided on the housing 110 contact and rotate the inner peripheral surface 1a of the pipeline 1. .
이때, 본 실시예의 누수탐지장치(10)는 별도의 추진체를 구비하지 않고 유체의 흐름에 의지하여 관로(1)를 따라 이동한다.At this time, the leak detection device 10 of the present embodiment does not have a separate propellant and moves along the pipeline 1 depending on the flow of the fluid.
상기 누수탐지장치(10)는 투입부(3)에서 회수부(5) 까지 직선 및 곡선 관로를 이동하면서 자이로센서(120), 옵티컬 오도미터(121), 와이어 오도미터(미도시) 및 온도센서(180) 등을 통해 맵핑 데이터를 수집한다.The leak detection device 10 is a gyro sensor 120, an optical odometer 121, a wire odometer (not shown) and a temperature sensor while moving a straight and curved line from the input unit 3 to the recovery unit 5 The mapping data is collected through 180.
또한 누수탐지장치(10)는 하우징(110)의 전방 및 후방에 설치된 소리 감지부(131,133)를 통해 관로(1) 내부의 수중 음향 데이터를 수집한다. 이 경우 소리 감지부(131,133)는, 도 5와 같이, 누수 부위(7)를 앞둔 상태에서는 하우징(110) 전방의 소리 감지부(131)로 더 많은 소리를 감지하고, 도 6과 같이, 누수 부위(7)를 지나간 후부터는 하우징(110) 후방의 소리 감지부(133)를 통해 더 많은 소리를 감지한다.In addition, the leak detection device 10 collects underwater sound data inside the conduit 1 through sound detection units 131 and 133 installed at the front and rear of the housing 110. In this case, as illustrated in FIG. 5, the sound detectors 131 and 133 detect more sounds with the sound detector 131 in front of the housing 110 in the state where the leaking part 7 is in front, and as shown in FIG. After passing through the area 7, more sound is detected through the sound detector 133 behind the housing 110.
이와 같이 소리 감지부(131,133)는 누수 부위(7)를 앞둔 상태에서 누수 음을 획득하고, 누수 부위(7)를 지난 상태에서 누수 음을 획득함에 따라, 소리 감지부(131,133)를 통해 각각 획득한 데이터를 비교하고, 누수탐지장치(10)의 이동거리 및 이동속도에 대응하여 음의 피크가 가장 높은 곳을 추적함으로써 관로(1)의 정확한 누수 부위(7)의 위치를 정확하게 검출할 수 있다.As described above, the sound detectors 131 and 133 acquire the leaked sound in the state in which the leaked part 7 is in front, and acquire the leaked sound in the state of passing the leaked part 7, respectively, through the sound detectors 131 and 133. By comparing the data and tracking the highest negative peak corresponding to the moving distance and the moving speed of the leak detection device 10, it is possible to accurately detect the position of the correct leaking part 7 of the pipeline 1. .
이와 같이 본 실시예의 누수탐지장치(10)는 회수부(5)로 회수된 후,도킹스테이션(미도시)에 도킹시켜 맵핑 데이터 및 누수음 데이터를 분석기기로 전송한다.Thus, the leak detection apparatus 10 of the present embodiment is recovered to the recovery unit 5, and then docked to a docking station (not shown) to transmit mapping data and leak sound data to the analyzer.
상기 누수탐지장치(10)는 여러 군데 관로에 투입 및 회수를 반복하여 전체 관망에서의 누수를 탐지할 수 있다. 이때 관로(1) 상에 형성된 투입부(3) 및 회수부(5)에 대한 위치(지리정보)는 GPS 기술 등을 이용하여 측정할 수 있고, 상기 위치는 맵핑 시 관로망의 구간단위 기준점으로 활용된다.The leak detection device 10 may detect the leak in the entire network by repeating the input and recovery in the pipeline several places. In this case, the position (geographic information) of the input unit 3 and the recovery unit 5 formed on the pipeline 1 may be measured using GPS technology, and the position may be referred to as a section reference point of the pipeline network at the time of mapping. Are utilized.
상기 분석기기는 누수탐지장치(10)로부터 수신된 데이터들을 통해 지하에 매설된 관로의 3차원 관망도를 구축할 수 있고 아울러, 소리 감지부(131,133)를 통해 얻은 음향을 통해 누수 지점을 상기 3차원 관망도 상에 정확하게 나타낼 수 있다.The analyzer may establish a three-dimensional network diagram of a pipeline embedded underground through the data received from the leak detection device 10, and also the three-dimensional leak point through the sound obtained through the sound detectors 131 and 133. It can be accurately represented on the network diagram.
한편, 누수탐지장치(10)는 소정의 무선 송수신모듈(미도시)을 탑재하여, 관로(1)를 따라 이동 시 획득한 맵핑 데이터 및 음향 데이터를 실시간으로 분석기기에 전송하는 것도 물론 가능하다. 이 경우, 분석기기는 디스플레이부를 통해 실시간으로 3차원 관망도를 표현하고 관망도 상에 누수탐지장치(10)의 현재 위치를 나타낼 수 있다.On the other hand, the leak detection device 10 is equipped with a predetermined wireless transmission and reception module (not shown), it is of course also possible to transmit the mapping data and sound data obtained when moving along the pipeline 1 to the analyzer in real time. In this case, the analyzer may express the 3D network diagram in real time through the display unit and may indicate the current position of the leak detection apparatus 10 on the network diagram.
아울러, 분석기기는 디스플레이부를 통해 누수탐지장치(10)가 누수 지점으로 접근할 때 증가하는 수중 음향을 그래프로 표시하고, 반대로 누수 지점을 통과하여 누수 지점으로부터 점점 멀어지면 감소하는 수중 음향 그래프를 표시할 수 있다.In addition, the analyzer displays a graph of the underwater sound that increases when the leak detector 10 approaches the leak point through the display, and on the contrary, displays an underwater sound graph that decreases as the water leak point passes through the leak point and moves away from the leak point. can do.
이에 따라, 본 실시예를 통해서, 사용자는 지하에 매설된 복잡한 관로망의 누수 지점을 3차원 관망도 상에서 정확하게 파악할 수 있다.Accordingly, through this embodiment, the user can accurately grasp the leak point of the complex pipeline network embedded in the basement on the three-dimensional network diagram.
본 실시예는 상수도 관로를 예를 들어 설명하였으나, 이에 제한되지 않고 내부에 액체를 이송함에 따라 본 실시예의 누수탐지장치(10)가 부유상태로 휠(113a,114a)이 관로 내벽에 접촉하여 이동할 수 있다면 관로의 종류에 관계없이 적용이 가능하다.This embodiment has been described as an example of the water supply pipe, but is not limited to this, as the liquid detecting unit 10 of the present embodiment floats the wheels 113a and 114a in contact with the inner wall of the pipe as the liquid is transported. If possible, it can be applied regardless of the type of pipeline.

Claims (14)

  1. 지하에 매설된 관로 내부를 따라 부유하는 하우징;A housing floating along the inside of the pipeline buried underground;
    상기 하우징 내측에 배치되어 상기 관로에 대한 3차원 맵핑 데이터를 검출하는 맵핑 데이터 수집부;A mapping data collection unit disposed inside the housing to detect 3D mapping data of the conduit;
    상기 하우징에 설치되어 관로 내의 누수에 따라 발생하는 누수 음을 획득하기 위한 소리 감지부;A sound sensing unit installed in the housing to obtain a leak sound generated according to a leak in a pipe;
    상기 데이터수집부 및 음파감지부를 통해 수집된 아날로그 데이터를 수신하여 디지털 데이터로 변환하는 제어부; 및A controller which receives the analog data collected through the data collector and the sound wave detector and converts the analog data into digital data; And
    상기 제어부로부터 디지털 데이터를 전달받아 저장하기 위한 저장부;를 포함하는 누수탐지장치.And a storage unit for receiving and storing digital data from the control unit.
  2. 제1항에 있어서, 상기 소리 감지부는 상기 하우징의 전방 또는 후방에 적어도 하나가 배치되는 것을 특징으로 하는 누수탐지장치.The leak detector according to claim 1, wherein at least one of the sound detectors is disposed at the front or the rear of the housing.
  3. 제2항에 있어서, 상기 소리 감지부는 하이드로폰(hydrophone)인 것을 특징으로 하는 누수탐지장치.The leak detector according to claim 2, wherein the sound detector is a hydrophone.
  4. 제1항에 있어서, 상기 맵핑 데이터 수집부는 자이로센서인 것을 특징으로 하는 누수탐지장치.The leak detector according to claim 1, wherein the mapping data collecting unit is a gyro sensor.
  5. 제4항에 있어서, 상기 하우징에 설치되며, 상기 자이로센서에 의해 획득한 데이터를 보완하기 위해 상기 누수탐지장치의 이동거리를 획득하기 위한 옵티컬 오도미터(optical odometer)를 더 포함하는 것을 특징으로 하는 누수탐지장치.The optical odometer of claim 4, further comprising an optical odometer installed in the housing for acquiring a moving distance of the leak detection device to supplement the data obtained by the gyro sensor. Leak Detection Device.
  6. 제5항에 있어서, 상기 옵티컬 오도미터는 상기 하우징의 상측에 배치되며, 상기 하우징은 상기 옵티컬 오도미터가 상기 관로 내주면에 소정의 간격을 유지하도록 상측에 적어도 한 쌍의 스페이서를 구비하는 것을 특징으로 하는 누수탐지장치.The optical odometer of claim 5, wherein the optical odometer is disposed above the housing, and the housing includes at least one pair of spacers on the upper side of the optical odometer so as to maintain a predetermined distance on the inner circumferential surface of the pipe. Leakage detection device.
  7. 제6항에 있어서, 상기 한 쌍의 스페이서는 각각,The method of claim 6, wherein the pair of spacers, respectively
    휠; 및 Wheels; And
    상기 휠을 회전 가능하게 지지하는 서포터를 포함하는 것을 특징으로 하는 누수탐지장치.Leak detection apparatus comprising a supporter for rotatably supporting the wheel.
  8. 제7항에 있어서, 상기 휠은 저밀도의 경량재로 이루어지는 것을 특징으로 하는 누수탐지장치.8. The leak detector according to claim 7, wherein the wheel is made of a low density lightweight material.
  9. 제7항에 있어서, 상기 휠은 소정의 강성을 가지는 스펀지로 이루어지는 것을 특징으로 하는 누수탐지장치.8. The leak detector according to claim 7, wherein the wheel is made of a sponge having a predetermined rigidity.
  10. 제4항 또는 제5항에 있어서, 상기 하우징 후방에 연결되어, 상기 자이로센서에 의해 획득한 데이터를 보완하기 위해 상기 누수탐지장치의 이동거리를 획득하기 위한 와이어 오도미터(wire odometer)를 더 포함하는 것을 특징으로 하는 누수탐지장치.The wire odometer of claim 4 or 5, further comprising a wire odometer connected to the rear of the housing and configured to obtain a moving distance of the leak detector to supplement data obtained by the gyro sensor. Leakage detection device, characterized in that.
  11. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 하우징은 상기 관로를 따라 부유 시 밸런싱을 유지하기 위해, 상기 하우징의 양측에 설치되는 한 쌍의 날개를 포함하는 것을 특징으로 하는 누수탐지장치.The water leak detector according to any one of claims 1 to 3, wherein the housing includes a pair of vanes installed on both sides of the housing to maintain balancing when floating along the pipeline. .
  12. 제1항에 있어서, 상기 하우징은 방수 및 고강성을 갖는 저밀도 재질로 이루어지는 것을 특징으로 하는 누수탐지장치.The leak detector according to claim 1, wherein the housing is made of a low density material having waterproof and high rigidity.
  13. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 하우징 외부를 둘러싸며, 상기 하우징에 발생하는 충격을 흡수하고 충격음을 흡음하는 탄력을 가지는 흡음재인 외피를 더 포함하는 것을 특징으로 하는 누수탐지장치.According to any one of claims 1 to 3, Leak detection characterized in that it further comprises an outer shell surrounding the outer housing, the sound absorbing material having a resilience to absorb the shock generated in the housing and absorb the shock sound Device.
  14. 제1항에 있어서, 상기 하우징에 각각, 적어도 1 이상 설치되는 조명 및 비젼카메라를 더 포함하는 것을 특징으로 하는 누수탐지장치.The leak detector according to claim 1, further comprising at least one illumination and vision camera respectively installed in the housing.
PCT/KR2011/010311 2010-12-30 2011-12-29 Apparatus for detecting water leakage WO2012091489A2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020100138943A KR20120077109A (en) 2010-12-30 2010-12-30 Leakage inspecting apparatus
KR10-2010-0138943 2010-12-30

Publications (2)

Publication Number Publication Date
WO2012091489A2 true WO2012091489A2 (en) 2012-07-05
WO2012091489A3 WO2012091489A3 (en) 2012-10-04

Family

ID=46383750

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/010311 WO2012091489A2 (en) 2010-12-30 2011-12-29 Apparatus for detecting water leakage

Country Status (2)

Country Link
KR (1) KR20120077109A (en)
WO (1) WO2012091489A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956554B1 (en) * 2017-12-15 2019-03-13 대한민국 Floating air condition detection device possible to flying

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2540979A (en) * 2015-08-03 2017-02-08 Pipa Ltd An acoustic leak detection unit
KR101700825B1 (en) 2016-07-28 2017-01-31 주식회사 한화건설 Checking Device and Detecting Method for pipeline breakage
KR102169121B1 (en) * 2020-06-25 2020-10-22 서울특별시 underwater photographing system for waterworks pipe and method for photographing inner surface of waterworks pipe
KR102536981B1 (en) * 2021-01-19 2023-05-26 한국가스공사 System for measuring moving distance
KR102581778B1 (en) * 2021-04-05 2023-09-21 김성국 Semi-automatic Endoscope Device for Inspecting Conduit
KR102581774B1 (en) * 2021-04-05 2023-09-21 김성국 Audible Endoscope Device for Inspecting Conduit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225229A (en) * 1985-07-26 1987-02-03 Nippon Oil Co Ltd Inspection pig for pipeline
KR20090008796A (en) * 2007-07-19 2009-01-22 수자원기술 주식회사 An apparatus for acquiring 3-dimensional geomatical information of underground pipes

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6225229A (en) * 1985-07-26 1987-02-03 Nippon Oil Co Ltd Inspection pig for pipeline
KR20090008796A (en) * 2007-07-19 2009-01-22 수자원기술 주식회사 An apparatus for acquiring 3-dimensional geomatical information of underground pipes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101956554B1 (en) * 2017-12-15 2019-03-13 대한민국 Floating air condition detection device possible to flying
WO2019117458A1 (en) * 2017-12-15 2019-06-20 대한민국(행정안전부 국립재난안전연구원장) Air state detection floating device capable of remaining in air
US11733226B2 (en) 2017-12-15 2023-08-22 National Disaster Management Institute Air state detection floating device capable of remaining in air

Also Published As

Publication number Publication date
WO2012091489A3 (en) 2012-10-04
KR20120077109A (en) 2012-07-10

Similar Documents

Publication Publication Date Title
WO2012091489A2 (en) Apparatus for detecting water leakage
CN105066917B (en) A kind of small pipeline GIS-Geographic Information System measuring device and its measurement method
WO2017043929A1 (en) River surveying system using radio-controlled flight device
CN108955675A (en) A kind of underground piping track detection system and method based on inertia measurement
EP3428603B1 (en) Device for detecting water leaks in pipelines and leak detection method
CN109115168B (en) Device and method for monitoring and analyzing large deformation of stack landslide
JPH11230791A (en) Monitor
CN110953486A (en) System and method for positioning leakage of pressurized pipeline
WO2018097394A1 (en) Pipe mapping probe device, comprising encoder and camera, for identifying pipe path location
WO2018105801A1 (en) System for detecting damage to coating of pipe buried underground
CN105783853A (en) Deformation monitoring system of cable for underwater carrier positioning
CN109898993A (en) The measurement device of groundwater velocity and direction in vertical drilling
CN103345000A (en) Underwater dam slope hidden danger detection vehicle
CN106855410A (en) A kind of underground piping positioning measurement equipment based on inertial technology
CN104251699A (en) Indoor space positioning equipment and positioning method thereof
KR20090008796A (en) An apparatus for acquiring 3-dimensional geomatical information of underground pipes
CN109765596A (en) A kind of underwater navigation detection mobile terminal
WO2012165825A2 (en) Floating-type pipe probe
KR101821652B1 (en) The measurement system and method of underground conduit line
CN209159973U (en) A kind of integrated detection device of portable acoustic electromagnetism
CN111735491A (en) Cable pipeline detection device with accurate measurement
WO2015194912A1 (en) Submarine cable management system using magnetic marker and method therefor
KR101445257B1 (en) Locator Detection Method of Inspection Module of Pipe and Locator System thereof
CN218599480U (en) Snakelike unmanned aerial vehicle and water pipe leakage detection device
CN215335189U (en) Pipeline detection device drifting along with fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854277

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854277

Country of ref document: EP

Kind code of ref document: A2