WO2012091089A1 - Coating solution for forming functional polymer film, and method for forming functional polymer film - Google Patents

Coating solution for forming functional polymer film, and method for forming functional polymer film Download PDF

Info

Publication number
WO2012091089A1
WO2012091089A1 PCT/JP2011/080379 JP2011080379W WO2012091089A1 WO 2012091089 A1 WO2012091089 A1 WO 2012091089A1 JP 2011080379 W JP2011080379 W JP 2011080379W WO 2012091089 A1 WO2012091089 A1 WO 2012091089A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
liquid crystal
acid
added
mmol
Prior art date
Application number
PCT/JP2011/080379
Other languages
French (fr)
Japanese (ja)
Inventor
悟志 南
Original Assignee
日産化学工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学工業株式会社 filed Critical 日産化学工業株式会社
Priority to CN201180068504.1A priority Critical patent/CN103403113B/en
Priority to JP2012551039A priority patent/JP5896164B2/en
Priority to KR1020137019871A priority patent/KR101916976B1/en
Publication of WO2012091089A1 publication Critical patent/WO2012091089A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D201/00Coating compositions based on unspecified macromolecular compounds
    • C09D201/02Coating compositions based on unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/041,3-Dioxanes; Hydrogenated 1,3-dioxanes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers

Definitions

  • the present invention relates to a novel coating solution for forming a functional polymer film and a method for forming a functional polymer film.
  • a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction.
  • the main liquid crystal alignment films that are industrially used are polyimide precursors such as polyamic acid (also called polyamic acid), polyamic acid esters, and polyimide-based liquid crystal aligning agents composed of polyimide solutions. It is manufactured by applying and forming a film.
  • a surface stretching process is further performed by rubbing after film formation.
  • a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays has been proposed, and in recent years, studies for industrialization have been performed.
  • liquid crystal display elements In order to improve the display characteristics of such liquid crystal display elements, methods such as changing the structure of polyamic acid, polyamic acid ester and polyimide, polyamic acid with different characteristics, blend of polyamic acid ester and polyimide, adding additives, etc. As a result, improvements in liquid crystal alignment and electrical characteristics, control of the pretilt angle, and the like are performed.
  • the method using a diamine having a side chain as a part of the polyimide raw material can control the pretilt angle in accordance with the proportion of the diamine used, so that the desired pretilt angle is obtained. This is relatively easy and is useful as a means for increasing the pretilt angle.
  • Examples of the side chain structure of the diamine that increases the pretilt angle of the liquid crystal include a long-chain alkyl group or a fluoroalkyl group (see, for example, Patent Document 1), a cyclic group, or a combination of a cyclic group and an alkyl group (see, for example, Patent Document 2), A steroid skeleton (see, for example, Patent Document 3) is known.
  • the diamine for increasing the pretilt angle of the liquid crystal has been studied for improving the stability and process dependency of the pretilt angle
  • the side chain structure used here includes a phenyl group.
  • those containing a ring structure such as a cyclohexyl group have been proposed (see, for example, Patent Documents 4 and 5).
  • a diamine having such a ring structure in 3 to 4 side chains has also been proposed (see, for example, Patent Document 6).
  • a solution of a polyamic acid or a solvent-soluble polyimide When applying a solution of a polyamic acid or a solvent-soluble polyimide to a substrate in the process of producing a liquid crystal alignment film, it is generally industrially performed by flexographic printing.
  • N-methyl-2-pyrrolidone and ⁇ -butyrolactone which are solvents with excellent resin solubility (hereinafter also referred to as good solvents)
  • the solvent of the coating solution is used to improve the uniformity of the coating film.
  • Butyl cellosolve which is a solvent having low solubility (hereinafter also referred to as a poor solvent), is mixed.
  • liquid crystal display elements have higher performance, larger area, and power saving of display devices.
  • they can be used in various environments, and the characteristics required for liquid crystal alignment films are severe. It has become a thing.
  • problems such as occurrence of printing failure due to deposition and separation due to a long tact time, and burn-in due to accumulated charge (RDC) are problems. It is difficult to solve both of these simultaneously.
  • polyimide In addition to its liquid crystal alignment film, polyimide is widely used as a protective material and insulating material in the electrical and electronic fields because of its high mechanical strength, heat resistance, and solvent resistance.
  • diamine component as a raw material for polyimide is also improved, but the desired diamine component cannot be freely used.
  • the desire to improve such desired characteristics is not limited to the above-mentioned polyimide-based liquid crystal alignment film, but also in a polymer film formed by applying a solution such as another polymer to a substrate to form a film, It exists as well.
  • JP-A-2-282726 Japanese Patent Laid-Open No. 3-179323 JP-A-4-281427 JP-A-9-278724 International Publication No. 2004/52962 Pamphlet JP 2004-67589 A JP-A-2-37324
  • An object of the present invention is to solve the above-mentioned problems of the prior art, and a functional polymer film-forming coating solution capable of obtaining a functional polymer film having various properties improved relatively freely, and an object of the present invention is to provide a functional polymer film forming method using the same.
  • the coating solution for forming a polyimide film of the present invention that solves the above-mentioned problems includes the following formulas [A] to [A] having a functional structure portion that imparts functionality and at least one Meldrum's acid structure portion connected thereto. And at least one modifying compound selected from the group represented by D], and a polymer for modification or a monomer for synthesizing the polymer for modification.
  • W 1 is .V 1 representing the k 1 monovalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -OR, an -SR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 1 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.
  • W 2 is .V 2 representing the k 2 divalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -SR, an -OR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 2 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.
  • W 3 and W 4 represents a k 3 monovalent organic group is a functional structural part that imparts respective functional, W 3 and W 4 are .k 3 may be the same or different are Represents an integer of 1 to 8.
  • W 5 is .k 4 representing the 2k 4-valent organic group that is functional structural moiety which imparts functionality is an integer of 1-8.
  • the functional polymer film-forming coating solution is applied to a substrate, baked, and the functional structure site is bonded to the modified polymer via the Meldrum's acid structure site. A functional polymer film is obtained.
  • the functional polymer film-forming coating solution of the present invention is represented by the following formulas [A] to [D] each having a functional structural portion imparting functionality and at least one meltrum acid structural portion linked thereto. It contains at least one modifying compound selected from the group represented.
  • W 1 is .V 1 representing the k 1 monovalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -SR, an -OR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 1 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.
  • W 2 is .V 2 representing the k 2 divalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -SR, an -OR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 2 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.
  • W 3 and W 4 represents a k 3 monovalent organic group is a functional structural part that imparts respective functional, W 3 and W 4 are .k 3 may be the same or different are Represents an integer of 1 to 8.
  • W 5 is .k 4 representing the 2k 4-valent organic group that is functional structural moiety which imparts functionality is an integer of 1-8.
  • modifying compound represented by the formula [A] include modifying compounds represented by the following formulas [i] to [iii].
  • the modifying compound represented by the above formula [A] is synthesized using an amine compound having a terminal amino group that is primary or secondary, or a hydrazine compound as a raw material, it is represented by the following formula [i].
  • a modifying compound represented by the above formula [A] is synthesized using a thiol compound or carbon disulfide as a raw material, it becomes a modifying compound represented by the following formula [ii].
  • Y 1 is the formula [A] terminal amino group which is a raw material of the modifying compound represented by the amine compound is a primary or secondary, hydrazine compounds, or, from carbodiimide compound k 1 monovalent an organic group, for example, a single bond or, .k 1 and a k 1 monovalent organic group heteroatom or ring structure which may have a linear or branched carbon atoms 1-60
  • V 1 is the same as k 1 and V 1 in the above formula [A]
  • p is 1 when an amine compound or a carbodiimide compound is used as a raw material, and 2 when a hydrazine compound is used as a raw material.
  • R j is, -H represented by R 1 ⁇ R 8 or a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, a good number of carbon atoms an amide bond anywhere 1 to 35 monovalent organic group, R 1 ⁇ R 8 may be the same or different. Also, R j is coupled with a portion of the Y 1 may form a ring.
  • Y 2 is k 1 monovalent organic group of the thiol compound, or carbon disulfide from a raw material of the modifying compound represented by the formula [A], for example, a single bond or a hetero atom and .k 1 and V 1 ring-like straight-chain or may have a or branched carbon atoms are k 1 monovalent organic group of 1 to 60 above formula [a] in the k 1 and V Same as 1. )
  • Y 3 is an aldehyde as a raw material of the modifying compound represented by the formula [A], ketone compound or carboxylic acid derivative or a k 1 monovalent organic group derived from the orthoformate, e.g. a single bond or, .k 1 and V 1 is k 1 monovalent organic group heteroatom or ring structure which may have a linear or branched carbon atoms having 1 to 60 the formula [ The same as k 1 and V 1 in A].
  • Y 1 to Y 4 when k 1 is 2 include the following formulas (Y-1) to (Y-120) And a divalent organic group represented.
  • Y-1 to (Y-120) a divalent organic group represented.
  • the functional polymer film obtained is a liquid crystal alignment film for increasing the pretilt angle of the liquid crystal
  • a long chain alkyl group for example, an alkyl group having 10 or more carbon atoms
  • an aromatic ring for example, an aromatic ring
  • an aliphatic ring A structure using a diamine compound having a group ring, a steroid skeleton, or a combination of these as a raw material is preferable.
  • Examples of such Y include (Y-83), (Y-84), (Y-85 ), (Y-86), (Y-87), (Y-88), (Y-89), (Y-90), (Y-91), (Y-92), (Y-93), (Y-94), (Y-95), (Y-96), (Y-97), (Y-98), (Y-99), (Y-100), (Y-101), (Y -102), (Y-103), (Y-104), (Y-105), (Y-106), (Y-107), or (Y-108). It is not something.
  • Y 1 to Y 3 when k 1 is 1 include monovalent organic groups represented by the following formulas, [ Examples include, but are not limited to, a structure in which one bond of Y-1] to [Y-120] is bonded to a hydrogen atom.
  • Y 1 to Y 4 in the case where k 1 is 3 or more include trivalent or more organic compounds represented by the following formula: And a structure in which a hydrogen atom of [Y-1] to [Y-120] is eliminated, but is not limited thereto.
  • Me is a methyl group.
  • the method for producing the modifying compound represented by the formula [A] is not particularly limited.
  • the modifying compound represented by the formulas [i] and [ii] may be used in trimethyl orthoformate or orthoformate.
  • Organic solvents used in general organic synthesis in triethyl for example, ethyl acetate, hexane, toluene, tetrahydrofuran, acetonitrile, methanol, chloroform, 1,4-dioxane, N, N-dimethylformamide, N-methyl- 2-pyrrolidone
  • trimethyl orthoformate or triethyl orthoformate with an amine compound represented by the following formula [E1] or a thiol compound represented by the following formula [E2] and Meldrum's acid.
  • the reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 60 to 120 ° C. for about 30 minutes to 2 hours.
  • the modifying compound represented by the above formula [iii] is pyridine or other organic base compound (for example, triethylamine, tributylamine, diisopropylethylamine), or these organic base compounds and phosphines such as triphenylphosphine. It can be produced by reacting an aldehyde compound represented by the following formula [E3] with Meldrum's acid in an organic solvent used in the above general organic synthesis in the presence of a system compound.
  • the reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 0 ° C. to 100 ° C. for about 1 to 24 hours.
  • modifying compound represented by the formula [A] include amine compounds such as [E1], thiol compounds such as [E2], and amino groups of aldehyde compounds such as [E3].
  • the thiol group and aldehyde group are chemically modified according to various generally known organic synthesis methods to form a compound having an amino group, a thiol group, or an aldehyde group via a spacer. The method of making it react with an acid is mentioned. Of course, this chemical modification may be performed a plurality of times.
  • the amino group of the amine compound [E1] is chemically modified according to various generally known organic synthesis methods, and is represented by the following formulas [E4] to [E6].
  • the compound can also be produced by reacting it with Meldrum acid by the same synthesis method as the modifying compounds represented by the above formulas [i] to [iii].
  • a compound represented by the following formulas [E4] to [E6] is reacted with Meldrum acid as a raw material, a modifying compound represented by the formula [A] of the following formulas [i ′] to [iii ′] Become.
  • Q 1 is a single bond or have a hetero atom or ring structure
  • R i may be linked to a part of Q 1 to form a ring.
  • modifying compound represented by the formula [B] include the modifying compounds represented by the following formulas [iv] and [v].
  • Y 4 represents an aldehyde, a ketone compound, a halogenated alkyl compound, or a compound having an electron-deficient unsaturated bond (for example, a compound having an acryloyl group) that is a raw material of the modifying compound represented by the formula [B].
  • k 2 divalent organic group derived from, for example, a single bond or a hetero atom and the ring structure or may have a linear or branched carbon atoms of k 2 divalent 1-60 organic (K 2 and V 2 are the same as k 2 and V 2 in the above formula [B].)
  • Y 5 is a k 2 divalent organic group derived from a carboxylic acid derivative as a raw material of the modifying compound represented by the formula [B], for example, a single bond or a hetero atom or ring structure have been or may be linear or branched carbon atoms is k 2 monovalent organic group 1 ⁇ 60 .k 2 and V 2 ⁇ are the same as k 2 and V 2 in the formula [B] .
  • the method for producing the modifying compound represented by the above formula [B] is not particularly limited.
  • the modifying compound represented by the above formula [iv] may be used in an organic solvent used in the general organic synthesis.
  • Pyridine, or other organic base compounds eg, triethylamine, tributylamine, diisopropylethylamine
  • inorganic bases such as potassium carbonate, sodium bicarbonate, sodium hydroxide, aldehydes, ketone compounds, alkyl halide compounds (halogens)
  • reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 0 ° C. to 120 ° C. for about 30 minutes to 2 hours.
  • the modifying compound represented by the above formula [B] is prepared by using an aldehyde, a ketone compound, an alkyl halide compound, or a compound having an electron-deficient unsaturated bond (for example, a compound having an acryloyl group) as a raw material.
  • the modification represented by the above formula [iv] is carried out directly or once through the compound represented by the above formula [iii] and then reducing the carbon-carbon double bond. Compound.
  • the modifying compound represented by the above formula [v] is pyridine, other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine) or the like in the organic solvent used in the general organic synthesis. It can be produced by reacting mellic acid with a carboxylic acid or a carboxylic acid derivative such as carboxylic acid chloride together with an inorganic base such as potassium carbonate, sodium hydrogen carbonate or sodium hydroxide.
  • the reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at ⁇ 20 to 120 ° C. for about 30 minutes to 2 hours.
  • an aldehyde, a ketone compound, a halogenated alkyl compound, an electron deficiency A compound having a saturated bond, a carboxylic acid, and a carboxylic acid derivative are chemically modified according to various generally known organic synthesis methods, and an aldehyde group, a ketone group, a halogenated alkyl group, an electron through a spacer Examples thereof include a method in which a compound having a deficient unsaturated bond (for example, acryloyl group) and a carboxyl group is used, and this is used as a raw material to react with Meldrum's acid.
  • a compound having a deficient unsaturated bond for example, acryloyl group
  • this chemical modification may be performed a plurality of times.
  • Y 4 of the modification compound represented by the above formula [iv] and the Meldrum's acid structure A structure derived from a compound to be chemically modified (for example, a divalent organic group having 1 to 15 carbon atoms having a chain or branched structure which may have a heteroatom or a ring structure) between the moiety A structure derived from the compound to be chemically modified between Y 5 and the carbonyl group of the modifying compound represented by the formula [B] of the inserted structure or the modifying compound represented by the formula [v] (for example, And a structure represented by the formula [B] having a structure in which a divalent organic group having 1 to 15 carbon atoms and having a chain or branched structure which may have a hetero atom or a ring structure is inserted Become a compound.
  • modifying compound represented by the above formula [C] include a modifying compound represented by the following formula [vi].
  • Y 6 and Y 7 are each a halogenated alkyl compound as a raw material for modifying compound represented by the formula [C], or represents a k 3 monovalent organic group derived from an alcohol derivative, e.g., single bond or a hetero atom and the ring structure or may have a linear or branched carbon atoms is k 3 monovalent organic group 1 ⁇ 60 .
  • Y 6 and Y 7 are either the same or different K 3 is the same as k 3 in the above formula [C].
  • the method for producing the modifying compound represented by the formula [C] is not particularly limited.
  • the modifying compound represented by the formula [vi] may be used in an organic solvent used in the general organic synthesis. , Pyridine, or other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine) or an inorganic base such as potassium carbonate, sodium hydrogencarbonate, sodium hydroxide, for the modification represented by the above formula [iv] It can be produced by reacting a compound and a halogenated alkyl compound or a compound having a terminal hydroxyl group in the presence of a palladium catalyst.
  • pyridine in an organic solvent used in the above general organic synthesis, pyridine, other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine), potassium carbonate, sodium bicarbonate, sodium hydroxide, etc. It can be produced by reacting an alkyl halide compound with an inorganic base, or a compound having a hydroxyl group at the terminal in the presence of a palladium catalyst.
  • Y 6 and Y 7 may be the same or different.
  • two or more kinds of halogenated alkyl compounds and a compound having a hydroxyl group at the terminal can be coexisted or added stepwise.
  • the reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 60 to 120 ° C. for about 30 minutes to 2 hours.
  • an alkyl halide compound or an alcohol derivative is generally known.
  • a method of chemically modifying a compound having a halogenated alkyl group, an alkoxy group, or a hydroxy group via a spacer and reacting it with Meldrum's acid as a raw material can be mentioned.
  • this chemical modification may be performed a plurality of times.
  • the modifying compound represented by the above formula [C] is produced by performing chemical modification, for example, Y 6 of the modifying compound represented by the above formula [vi] and the Meldrum's acid structure and between the sites, between the Y 7 and Meldrum's acid structural moiety, compounds derived from the structure of chemically modified (e.g., number of carbon atoms consisting of a good chain or branched structure which may have a hetero atom or ring structure Is a modifying compound represented by the formula [C] having a structure in which 1 to 15 divalent organic groups are inserted.
  • chemically modified e.g., number of carbon atoms consisting of a good chain or branched structure which may have a hetero atom or ring structure
  • modifying compound represented by the above formula [D] include a modifying compound represented by the following formula [vii].
  • Y 8 is a 2k 4 having 1 to 15 carbon atoms derived from a cyclic ketone compound, a cyclic alkoxyimine compound, or a cyclic carbodiimide compound that is a raw material of the modifying compound represented by the above formula [D].
  • .k 4 representing an organic group are the same as k 4 in the formula [D].
  • Y 8 include a cyclic structure derived from a cyclic ketone such as a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and ⁇ -pyrone.
  • the method for producing the modifying compound represented by the above formula [D] is not particularly limited.
  • the modifying compound represented by the above formula [vii] may be used in an organic solvent used in the above general organic synthesis. , Pyridine, or other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine), or an inorganic base such as potassium carbonate, sodium bicarbonate, sodium hydroxide, and cyclic ketone compounds (for example, cyclohexanone derivatives and ⁇ - A pyrone derivative), a cyclic alkoxyimine compound (for example, a 6-position alkoxy-substituted tetrahydropyridine), or a cyclic carbodiimide compound (for example, a 3-diazacyclonona-1,2-diene derivative) and a reaction with Meldrum's acid.
  • the reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at
  • modifying compounds represented by the above formulas [A] to [D] may be used alone or in combination of two or more.
  • the functional polymer film-forming coating solution of the present invention contains a polymer for modification or a monomer for synthesizing these polymers for modification.
  • the polymer to be modified is not particularly limited as long as it has a site that reacts with the Meldrum's acid structure.
  • at least one tetracarboxylic acid component selected from tetracarboxylic acid and its derivatives and a diamine component are polymerized.
  • Polyimide precursor obtained by imidating polyimide obtained by imidizing this polyimide precursor, acrylic polymer, methacrylic polymer, acrylamide polymer, methacrylamide polymer, polystyrene, polyvinyl, polysiloxane and polyamide, polyester, polyurethane, polycarbonate, Examples thereof include polyurea, polyphenol (novolak resin), maleimide polymer, and a polymer in which a compound having an isocyanuric acid skeleton or a triazine skeleton is introduced.
  • the polymer may be in the form of, for example, a branched polymer such as a dendrimer, a hyperbranched polymer or a star-like polymer, or a noncovalent polymer such as polycatenan or polyrotaxane.
  • a branched polymer such as a dendrimer, a hyperbranched polymer or a star-like polymer, or a noncovalent polymer such as polycatenan or polyrotaxane.
  • the polymer to be modified when the polymer to be modified is a polyimide precursor or polyimide, at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component
  • the polymer to be modified is an acrylic polymer, acrylic acid and its derivatives, acrylic esters and derivatives thereof
  • the polymer to be modified when the polymer to be modified is a methacrylic polymer, methacrylic acid and derivatives thereof, methacrylic esters and derivatives thereof
  • the polymer is polyvinyl, a derivative having a vinyl group is selected.
  • the polymer to be modified is polysiloxane
  • a silane compound having a methoxy group or an ethoxy group is selected.
  • the polymer to be modified is polyamide
  • the derivative is selected from dicarboxylic acids and derivatives thereof.
  • At least one dicarboxylic acid component and a diamine component when the polymer to be modified is a polyester, at least one dicarboxylic acid component and a diol component selected from dicarboxylic acids and derivatives thereof, and when the polymer to be modified is a polyurethane, an isocyanate and
  • the polymer to be modified is a polycarbonate, a bisphenol derivative and phosgene, or a phosgene equivalent (for example, trichlorophosgene), diphenyl carbonate, or the polymer to be modified is a polyurea Bisisocyanate derivative and diamine component, if the polymer to be modified is a maleimide polymer, maleimide derivative alone or copolymerized with styrene, if the polymer to be modified is a polymer into which a compound having an isocyanuric acid skeleton or a triazine skeleton is introduced And compounds having an
  • the modified polymer contained in the functional polymer film-forming coating solution of the present invention can be produced by a conventional method.
  • a polyimide precursor or a polyimide is obtained by polymerizing at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component as described above.
  • the diamine component for example, a diamine compound k 1 is represented by the formula [E1] is 2.
  • the diamine component currently used when making a polyimide precursor react by making a diamine component and a tetracarboxylic-acid component react can be used.
  • the diamine component that is the raw material of the polyimide precursor may be partially or entirely the same as the raw material of the modifying compound represented by the above formula [A], or the diamine component and the above formula [A It is good also as a compound different from the raw material of the compound for a modification represented by these.
  • tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof
  • a tetracarboxylic acid component that has been used in the past to obtain a polyimide precursor by reacting a diamine component and a tetracarboxylic acid component is used.
  • the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride represented by the following formula [F], tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester.
  • a polyamic acid can be obtained by reacting tetracarboxylic acid or a derivative thereof such as tetracarboxylic acid dihalide or tetracarboxylic dianhydride with a diamine component. It is also possible to obtain a polyamic acid ester by reacting a tetracarboxylic acid diester dichloride with a diamine component, or reacting a tetracarboxylic acid diester with a diamine component in the presence of a suitable condensing agent or base. it can.
  • X in the above formula [F] include tetravalent organic groups represented by the following formulas (X-1) to (X-46). From the viewpoint of availability of compounds, X represents (X-1), (X-2), (X-3), (X-4), (X-5), (X-6), (X- 8), (X-16), (X-17), (X-19), (X-21), (X-25), (X-26), (X-27), (X-28) , (X-32) and (X-46) are preferable.
  • a tetracarboxylic dianhydride having an aliphatic and aliphatic ring structure is (X-1) , (X-2), and (X-25) are more preferred, and (X-1) is more preferred from the viewpoint of reactivity with the diamine component.
  • tetracarboxylic acid diester examples include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,3- Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4 -Cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1-cyclohexyl Acid dialkyl ester, 3,4-dicarboxy-1,2, , 4-Tetrahydro-1-naphthalene succinic acid dialkyl este
  • each of the diamine component and the tetracarboxylic acid component may be one kind, or two or more kinds may be used in combination.
  • a method for synthesizing a polyimide precursor by polymerizing a tetracarboxylic acid component and a diamine component is not particularly limited, and a known synthesis method can be used.
  • the reaction of the diamine component and tetracarboxylic dianhydride includes a method of reacting the diamine component and tetracarboxylic dianhydride in an organic solvent.
  • the organic solvent used in that case will not be specifically limited if the produced
  • the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C.
  • the reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass.
  • the initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
  • the ratio of the total number of moles of the diamine component to the total number of moles of tetracarboxylic dianhydride is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
  • the polyamic acid ester can be obtained by reacting the tetracarboxylic acid diester dichloride with the diamine component as described above, or reacting the tetracarboxylic acid diester with the diamine component in the presence of an appropriate condensing agent or base. it can. Alternatively, it can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxyl group of the polyamic acid using a polymer reaction.
  • tetracarboxylic acid diester dichloride and a diamine component in the presence of a base and an organic solvent at ⁇ 20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1
  • a polyamic acid ester By reacting for 4 to 4 hours, a polyamic acid ester can be synthesized.
  • pyridine triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently.
  • the addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
  • the reaction proceeds efficiently by adding Lewis acid as an additive.
  • Lewis acid lithium halides such as lithium chloride and lithium bromide are preferable.
  • the addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
  • the solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid shown above.
  • N-methyl-2-pyrrolidone, ⁇ -Butyrolactone is preferred, and these may be used alone or in combination of two or more.
  • the concentration at the time of synthesis is such that in the reaction solution of a tetracarboxylic acid derivative such as tetracarboxylic acid diester dichloride or tetracarboxylic acid diester and a diamine component, from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained.
  • the total concentration is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass.
  • the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
  • the polyimide contained in the functional polymer film-forming coating solution of the present invention can be obtained by dehydrating and ring-closing the polyimide precursor.
  • the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
  • Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
  • the temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
  • the catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C.
  • the amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double.
  • the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction.
  • Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated.
  • the imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
  • the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
  • a polyimide precursor that can be used as a polymer to be modified and polymers other than polyimide include acrylic polymer, methacrylic polymer, acrylamide polymer, methacrylamide polymer, polystyrene, polyvinyl, polysiloxane, polyamide, polyester, polyurethane, polycarbonate , Polyurea, polyphenol (novolak resin), maleimide polymer, polymers incorporating isocyanuric acid skeleton and triazine skeleton, branched polymers such as dendrimer, hyperbranched polymer, star-like polymer, and non-covalent polymers such as polycatenan and polyrotaxane
  • functional groups capable of reacting with ketene intermediates formed by the thermal decomposition of Meldrum's acid compound for example, , Carboxyl group, hydroxy group, thiol, amino group, imino group, unsaturated bond such as carbon-carbon double bond (alkene) and carbon-carbon
  • the polymer to be modified contained in the functional polymer film forming coating liquid of the present invention is in consideration of the strength of the obtained functional polymer film, the workability when forming the functional polymer film, and the uniformity of the functional polymer film.
  • the weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
  • a polymer film for forming a conventional polymer film or the like, for example, by containing at least one modifying compound selected from the above and a polymer to be modified or a monomer for synthesizing the polymer to be modified A functional polymer film in which various properties are relatively freely improved by further containing at least one modifying compound selected from the group represented by the formulas [A] to [D] in the forming coating solution
  • the coating liquid for forming a functional polymer film can be obtained.
  • the modifying compounds represented by the above formulas [A] to [D] have at least one Meldrum's acid structure, that is, Meldrum's-derived structure at the end.
  • Meldrum's acid structure that is, Meldrum's-derived structure at the end.
  • carbon dioxide and acetone are eliminated to form ketene (that is, a carbonyl compound having a divalent group> C ⁇ C ⁇ O).
  • polyimide Precursor, polyimide, acrylic polymer, methacrylic polymer, acrylamide polymer, methacrylamide polymer, polystyrene, polyvinyl, polysiloxane, polyamide, polyester, polyurethane, polycarbonate, polyurea, polyphenol (novolak resin), maleimide polymer, or isocyanuric acid skeleton And triazine skeleton introduced Functional groups present in non-covalent polymers such as polycatenans and polyrotaxanes (eg carboxyl groups, hydroxy groups, thiols, amino groups) Reaction with an imino group, an unsaturated bond such as a carbon-carbon double bond (alkene) or a carbon-carbon triple bond (alkyne), a nitrile group, a ketone group, an aldehyde group, an ester group, an amide group, an imide group), or It reacts by dimerization with ketene itself.
  • non-covalent polymers such
  • the modifying compounds represented by the above formulas [A] to [D] are not heated to a high temperature (for example, 100 ° C. or less), and in the state of the functional polymer film forming coating solution, the modifying polymer or modified compound is used. Although it does not react with the monomer for synthesizing the polymer for use, it is introduced into the polymer for modification via the Meldrum's acid structure by heating.
  • the modifying compound represented by the above formulas [A] to [D] in which k 1 to k 4 are 2 or more it has two or more Meldrum structures. It is presumed that the polymer has a structure crosslinked with the modifying compounds represented by the above formulas [A] to [D].
  • the functional polymer film obtained by applying the functional polymer film-forming coating solution of the present invention to a substrate and baking is used for the W 1 -W possessed by the modifying compounds represented by the above formulas [A]-[D]. structure of W 5 is what is introduced into the modified polymer.
  • a polyimide film which is an example of a functional polymer film
  • various diamine components are used as a part of raw materials.
  • a desired diamine component cannot be used freely.
  • various diamine components are used as a part of raw materials in order to improve desired characteristics such as improvement of liquid crystal orientation and pretilt angle.
  • the polymerization reactivity between the diamine component and the tetracarboxylic acid component is deteriorated, so the type, combination and amount of the diamine component for obtaining desired properties are limited. May end up.
  • a coating solution for forming a polyimide film that can form a uniform polyimide film (a coating solution for forming a functional polymer film)
  • the compound to be modified is represented by [D] and is a compound for obtaining desired characteristics at the stage of heating (baking) the functional polymer film-forming coating solution.
  • a compound for modification represented by the above formulas [A] to [D] is introduced into a polymer for modification. Therefore, the polymer to be modified contained in the coating liquid for forming the functional polymer film does not need to use a monomer as a raw material for obtaining the desired characteristics, and therefore the problem that the polymerization reactivity of the monomers is deteriorated, the desired characteristics.
  • the coating liquid for forming a functional polymer film of the present invention is intended to obtain desired characteristics (functions) without considering the polymerization reactivity of the monomers, the necessity of examining the polymerization reaction conditions, and the solubility of the polymer. Therefore, various properties of the obtained functional polymer film can be improved relatively freely as compared with the conventional coating liquid for forming a polymer film.
  • the coating liquid for forming a functional polymer film of the present invention contains a modifying compound represented by the above formulas [A] to [D] having two or more Meldrum structures, Since the polymer is crosslinked with the modifying compounds represented by the above formulas [A] to [D] by heating, the resulting functional polymer film is resistant to an organic solvent and becomes a hard film.
  • a polyimide precursor obtained by polymerization reaction of at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component, and a polyimide obtained by imidizing this polyimide precursor.
  • a coating solution for forming a functional polymer film containing at least one polymer and a modifying compound represented by the above formula [i] and having two Meldrum's acid structures is used, it is represented by the above formula [i].
  • the modifying compound is obtained by introducing a Meldrum's acid structure into each of the two amino groups of the diamine compound.
  • diamine compound a diamine component for obtaining the desired properties that have been conventionally studied, that is, tetracarboxylic acid is used.
  • Diamine for producing polyimide precursor and polyimide by polymerization reaction with acid component A minute can be applied diamine component for obtaining the desired characteristics. Therefore, various characteristics of the obtained polyimide film can be easily improved.
  • the modifying compound represented by the above formulas [A] to [D] is heated as a side chain on the polymer to be modified.
  • the polymer to be modified is represented by the above formulas [A] to [D].
  • a crosslinked structure is obtained by the modifying compound represented.
  • the Meldrum's acid structure of the modifying compound represented by the above formulas [A] to [D] is the polymerization of the monomer.
  • the monomer for synthesizing the polymer for modification is first polymerized at a low temperature to synthesize the polymer for modification, and then heated to the above formulas [A] to [[ D] is introduced as a side chain of the polymer to be modified, and in particular, the modifying compounds represented by the above formulas [A] to [D] have two or more Meldrum structures.
  • the polymer to be modified has a structure crosslinked with the modifying compounds represented by the above formulas [A] to [D].
  • a functional polymer film-forming coating containing a monomer for synthesizing a polymer to be modified and a modifying compound represented by the above formulas [A] to [D] having two or more Meldrum structures In the case of a liquid, by setting the temperature at which both the polymerization reaction of the monomer and the reaction of the Meldrum acid structure occur, the reaction of the Meldrum acid structure is caused simultaneously with the polymerization of the monomer, and the main chain of the polymer to be modified is represented by the above formula [ A modifying compound represented by A] to [D] can also be introduced.
  • the method for producing the coating liquid for forming a functional polymer film of the present invention is not particularly limited, and the above formula comprising a functional structural portion imparting functionality and at least one Meldrum's acid structural portion connected thereto [ It is sufficient that at least one modifying compound selected from the group represented by A] to [D] and a polymer to be modified or a monomer for synthesizing the polymer to be modified are dissolved in a solvent.
  • the solvent of the coating liquid for forming a functional polymer film of the present invention is a monomer for synthesizing the polymer to be modified or the polymer to be modified, a functional structure site that imparts functionality, and at least one linked thereto.
  • Any compound capable of dissolving the modifying compounds represented by the above formulas [A] to [D] having two Meldrum's acid structural sites for example, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, ⁇ -butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone And organic solvent
  • the coating solution for forming a functional polymer film of the present invention preferably has an organic solvent content of 70 to 97% by mass from the viewpoint of forming a uniform functional polymer film by coating. This content can be appropriately changed depending on the film thickness of the intended functional polymer film.
  • the content of the monomer for synthesizing the polymer to be modified or the polymer to be modified in the coating solution for forming a functional polymer film of the present invention is preferably 3 to 30% by mass. This content can also be appropriately changed depending on the film thickness of the intended functional polymer film.
  • the content of the modifying compound represented by the above formulas [A] to [D] in the functional polymer film-forming coating solution of the present invention is not particularly limited as long as it is dissolved, but the content is not limited. It is preferably 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of monomers for synthesizing the polymer or the polymer to be modified, and more preferably 1 to 100 parts by mass in order not to lower the orientation of the liquid crystal Particularly preferred is 1 to 50 parts by mass.
  • the functional polymer film-forming coating liquid of the present invention has a uniform film thickness and surface of the functional polymer film when the functional polymer film-forming coating liquid of the present invention is applied unless the effects of the present invention are impaired.
  • An organic solvent also referred to as a poor solvent
  • a compound that improves smoothness can be used.
  • a compound that improves the adhesion between the functional polymer film and the substrate can also be used.
  • Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like.
  • fluorine-based surfactants silicone-based surfactants, nonionic surfactants, and the like.
  • EFTOP EF301 , EF303, EF352 manufactured by Tochem Products
  • MegaFuck F171, F173, R-30 manufactured by Dainippon Ink
  • Florard FC430, FC431 (manufactured by Sumitomo 3M)
  • Asahi Guard AG710 Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass) and the like.
  • the ratio of these surfactants to be used is preferably 0.00 with respect to 100 parts by mass of the total amount of monomers for synthesizing the polymer to be modified or the polymer to be modified contained in the functional polymer film-forming coating solution. 01 to 2 parts by mass, more preferably 0.01 to 1 part by mass.
  • Specific examples of the compound that improves the adhesion between the functional polymer film and the substrate include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxy.
  • the polymer for modification contained in the functional polymer film-forming coating liquid of the present invention or the total amount of monomers for synthesizing the polymer for modification is 100 parts by mass.
  • the amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate when the functional polymer film is used as the liquid crystal alignment film.
  • the functional polymer film-forming coating liquid of the present invention has a dielectric material intended to change the electrical properties such as the dielectric constant and conductivity of the functional polymer film as long as the effects of the present invention are not impaired. Or a conductive material may be added.
  • the functional polymer film-forming coating solution of the present invention includes a crosslinkable compound having an epoxy group, an isocyanate group or an oxetane group, and further a group consisting of a hydroxyl group or an alkoxyl group, unless the effects of the present invention are impaired.
  • a crosslinkable compound having at least one substituent selected from the above and a crosslinkable compound having a polymerizable unsaturated bond may be mixed.
  • Such a coating liquid for forming a functional polymer film of the present invention can be used as a liquid crystal aligning agent for forming a liquid crystal aligning film.
  • the liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction.
  • a film can be formed.
  • the functional polymer film-forming coating solution of the present invention is used as a liquid crystal aligning agent, it is applied onto a substrate and baked, and then subjected to an alignment treatment such as rubbing treatment or light irradiation, or for vertical alignment use. Then, a liquid crystal alignment film can be formed without alignment treatment.
  • the substrate is not particularly limited as long as it can apply the functional polymer film-forming coating solution, but when the liquid crystal alignment film is formed, it is preferably highly transparent. Specific examples include a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process.
  • an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light, such as aluminum, can be used.
  • a high-performance element such as a TFT-type element, an element in which an element such as a transistor is formed between an electrode for driving liquid crystal and a substrate is used.
  • the method for applying the functional polymer film-forming coating liquid to the substrate is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
  • the functional polymer film-forming coating solution contains a monomer for synthesizing the polymer to be modified
  • the monomer is polymerized when the functional polymer film-forming coating solution is applied on the substrate or when it is dried. It is preferable to do so.
  • a functional polymer film-forming coating solution is applied onto the substrate, and if necessary, part or all of the solvent is dried and then baked.
  • This calcination is carried out by the carboxyl group, hydroxy group, thiol group, amino group, imino group of the polymer to be modified in which the Meldrum acid structure of the modifying compound represented by the above formulas [A] to [D] is ketene or the like. Reacts with reactive sites such as unsaturated bonds such as carbon-carbon double bond (alkene) and carbon-carbon triple bond (alkyne), nitrile group, ketone group, aldehyde group, ester bond, amide bond, imide bond Heating to such a temperature is possible.
  • a heating means such as a hot plate, a hot air circulating furnace, an infrared furnace, etc.
  • the solvent is evaporated and the Meldrum's acid structure is reacted with the polymer to be modified.
  • the modifying compounds represented by A] to [D] are introduced to form the functional polymer film of the present invention.
  • the thickness of the functional polymer film formed after firing is a liquid crystal alignment film, if it is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be reduced. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 200 nm.
  • the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
  • the liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film by the above-described method and then preparing a liquid crystal cell by a known method. For example, two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a coating solution for forming a functional polymer film of the present invention provided between the substrate and the liquid crystal layer.
  • the liquid crystal display element which comprises the liquid crystal cell which has the said liquid crystal aligning film formed with the liquid crystal aligning agent which consists of these.
  • various devices such as a twisted nematic (TN) method, a vertical alignment (VA) method, a horizontal alignment (IPS) method, and the like are available. Can be mentioned.
  • the substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed.
  • a substrate on which a transparent electrode for driving liquid crystal is formed As a specific example, the thing similar to the board
  • liquid crystal alignment film is formed by applying a liquid crystal aligning agent comprising the functional polymer film forming coating liquid of the present invention on this substrate and baking it, and the details are as described above.
  • the liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and conventional liquid crystal materials such as MLC-2003, MLC-6608, MLC-6609 manufactured by Merck & Co., Inc. can be used.
  • a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside.
  • the other substrate is bonded and sealed by injecting liquid crystal under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is bonded and sealed.
  • Etc. can be exemplified.
  • the thickness of the spacer at this time is preferably 1 to 30 ⁇ m, more preferably 2 to 10 ⁇ m.
  • the liquid crystal display device manufactured as described above is for synthesizing the modifying compound represented by the above formulas [A] to [D] and the polymer to be modified or the polymer to be modified, which can introduce desired characteristics. Since it is produced using the liquid crystal aligning agent containing the monomer, various characteristics can be improved.
  • valeric acid [79] (25.0 g, 245 mmol), dichloromethane 200 g) was added, N, N-dimethylaminopyridine (DMAP: 32.6 g, 267 mmol), dicyclohexylcarbidiimide (DCC: 55).
  • DMAP N, N-dimethylaminopyridine
  • DCC dicyclohexylcarbidiimide
  • Meldrum's acid [1] (35.3 g, 245 mmol) were added, and the mixture was stirred at room temperature overnight. After completion of the reaction, the solid content was filtered using Celite, and the filtrate was concentrated with an evaporator.
  • the molecular weight of the polymer was determined by using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Shodex Co., Ltd., and a column manufactured by Shodex (KD-803, KD-805). ) And was measured as follows.
  • the imidization ratio of polyimide was measured as follows. About 20 mg of polyimide powder was placed in an NMR sample tube, about 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture) was added, and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz by means of NMR measurement.
  • the imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak integrated value derived from the NH group of the amic acid that appears near 10.0 ppm.
  • x is the proton peak integrated value derived from the NH group of the amic acid
  • y is the peak integrated value of the reference proton
  • PAA-2 a 15% by weight solution of this polyamic acid
  • PAA-2 polyamic acid
  • the number average molecular weight of this polyamic acid (PAA-2) was 7,609, and the weight average molecular weight was 15,837.
  • NMP (98 g) and BCS (90 g) are added to the polyimide powder (SPI-1) (12.0 g) obtained above and dissolved by stirring at 80 ° C. for 40 hours to obtain a soluble polyimide (SPI-1) solution. Produced.
  • Example 46 to 57 To the polyamic acid (PAA-2) solution (10.0 g) prepared above, the compounds described in the following Table 3 prepared as the modifying compound in the above synthesis example were respectively added to the solid polyamic acid (PAA-2) solution.
  • the coating solution for forming a polyimide film of Examples 46 to 57 was prepared by adding at 10 mol% with respect to the amount (that is, polyamic acid (PAA-2)) and stirring at room temperature until a uniform solution was obtained.
  • Example 75 to 90 In the soluble polyimide (SPI-1) solution (10.0 g) prepared above, the compounds described in the following Table 6 prepared as the modifying compound in the above synthesis example were respectively solidified in the soluble polyimide (SPI-1) solution.
  • the mixture was added to the minute (ie soluble polyimide (SPI-1)) so as to have the ratio shown in Table 6 below, and stirred at room temperature until a uniform solution was obtained. A coating solution was prepared.
  • Examples 91 to 102 and Comparative Example 1> [Confirmation test of crosslinking effect (stripping test)]
  • the polyimide film forming coating solutions of Examples 75 to 86 were spin coated (2500 rpm / 30 seconds) on a silicon wafer and baked on a hot plate at 230 ° C. for 30 minutes to form a coating film [a1].
  • the film thickness of the obtained coating film [a1] was measured using Surfcorder ET4000M manufactured by Kosaka Laboratory Ltd.
  • the silicon wafer on which the coating film [a1] is formed is set again on the spin coater, NMP is dropped until the entire surface of the silicon wafer is covered, and left for 60 seconds, and then NMP is spin-dried (1500 rpm / 30).
  • the solvent resistance of the coating film can be improved by using the polyimide film forming coating liquid (liquid crystal alignment treatment agent) to which the modifying compound is added. Therefore, it can be said that the modifying compound was introduced into the soluble polyimide.
  • the residual film ratio was particularly high. It is estimated that it was bridge
  • liquid crystal alignment film and liquid crystal cell Using the polyimide film forming coating solution (liquid crystal aligning agent) prepared in each of the above examples, a liquid crystal cell was prepared as follows.
  • a polyimide film-forming coating solution (liquid crystal aligning agent) is spin-coated on a glass substrate or a glass substrate with an ITO transparent electrode, dried on a hot plate at 80 ° C. for 70 seconds, and then subjected to a predetermined baking condition with a film thickness of 100 nm. A coating film was formed.
  • linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm ⁇ 2 ) was changed between 0 mJ and 1000 mJ on the coating surface, and the normal line of the plate was changed. This was performed by irradiating at an angle of 40 °.
  • the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • the substrates are laminated so that the liquid crystal alignment film faces face each other and the rubbing directions are parallel to each other (anti-parallel liquid crystal cells, Examples 103 to 133), or are laminated so as to be perpendicular (twisted nematic liquid crystal cell, implementation) Examples 174 to 206, and Examples 322 to 343 and Examples 344 to 350), or those subjected to UV irradiation were bonded so that the directions of polarized light irradiated were parallel (anti-parallel liquid crystal cell for vertical alignment mode, Examples 207 to 209 and Examples 210 to 321) and the sealing agent were cured to produce empty cells.
  • liquid crystal MLC-2003 (manufactured by Merck) is injected in the anti-parallel liquid crystal cell
  • liquid crystal MLC-2003 manufactured by Merck
  • a chiral agent is injected in the twisted nematic liquid crystal cell
  • liquid crystal MLC-6608 manufactured by Merck & Co., Inc.
  • liquid crystal cell evaluation The method of measuring the physical properties and evaluating the characteristics of each liquid crystal cell produced is as follows. In addition, the liquid crystal aligning film produced in each measurement and evaluation, the board
  • the liquid crystal cell produced using the polyimide film-forming coating solution prepared in each example shown in Table 8 was sandwiched between polarizing plates, and the liquid crystal cell was rotated in a state where the backlight was irradiated from the rear part. It was visually observed whether the liquid crystal was aligned with or without flow alignment. At that time, the following criteria were used for evaluation.
  • the liquid crystal cell produced for liquid crystal orientation evaluation uses a glass substrate as a substrate, and baked for 30 minutes on a hot plate heated to 230 ° C. as a baking condition of a coating liquid for forming a polyimide film.
  • the liquid crystal cell produced for the pretilt angle measurement of the anti-parallel liquid crystal cell uses a glass substrate with an ITO transparent electrode as a substrate, and the hot air circulation type in which the baking condition of the coating film of the polyimide film forming coating liquid is heated to 200 ° C. The above-described liquid crystal cell was produced without firing the alignment treatment in an oven for 30 minutes.
  • a compound with no modifier compound added (Comparative Example 8) was prepared, and the effects were compared. The results are shown in Table 11.
  • the pretilt angle can be remarkably increased when the polyimide film-forming coating solution to which the modifying compound is added is used as compared with Comparative Example 8 in which the modifying compound is not added. It was. Therefore, by adding the modifying compound, the base polymer, that is, the polyimide precursor contained in the coating solution for forming the polyimide film or the side chain component that makes the liquid crystal stand up in the polyimide, can be introduced vertically It was confirmed that it can be oriented.
  • the liquid crystal was orientated by the presence or absence of change in brightness and the presence or absence of fluid orientation, it was observed visually. Thereafter, an AC voltage of 3 V was applied to the liquid crystal cell, and it was visually observed whether the liquid crystal was aligned. At that time, the following criteria were used for evaluation.
  • the liquid crystal cell produced for liquid crystal orientation evaluation was obtained by baking for 30 minutes in a hot-air circulating oven heated to 200 ° C. using a glass substrate as the substrate and the coating condition of the coating liquid for forming the polyimide film was 200 ° C. It produced after performing the above-mentioned photo-alignment process to the obtained glass substrate with a coating film.
  • Evaluation criteria Good The orientation of the liquid crystal can be confirmed and there is no fluid orientation.
  • Poor The liquid crystal is oriented, but many fluid orientations are observed.
  • liquid crystal cell produced using the coating solution for forming a polyimide film prepared in each Example shown in Tables 12-1 to 12-4 was heated at 120 ° C. for 1 hour, and then the pretilt angle was measured.
  • the pretilt angle was measured by “Axo Scan” from Axo Metrix using the Mueller matrix method.
  • a coating liquid for forming a polyimide film liquid crystal alignment treatment agent
  • a modifying compound having a photoreactive side chain a coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) to which a modifying compound having a photoreactive side chain is added
  • a good vertical alignment can be obtained even when a photo-alignment treatment is performed.
  • the polyimide film-forming coating liquid (liquid crystal alignment treatment agent) of the present invention has the ability to align liquid crystals in a slightly tilted state by irradiating polarized ultraviolet rays. It was also confirmed that the pretilt angle can be finely adjusted by controlling the addition amount and the irradiation amount.
  • the coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) of the present invention can be used for a liquid crystal alignment film for a vertical alignment type liquid crystal display element, and also used for a photo alignment method. It can be said that it is also useful.
  • VHR voltage holding ratio
  • the voltage holding ratio was measured by applying a voltage of 4 V for 60 ⁇ s at a temperature of 90 ° C., measuring the voltage after 16.67 ms, and calculating how much the voltage could be held as the voltage holding ratio.
  • a VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica Co., Ltd. was used for measuring the voltage holding ratio.
  • the liquid crystal cell produced for the measurement of voltage holding ratio uses a glass substrate with an ITO transparent electrode as a substrate, and is on a hot plate heated to 230 ° C. under the baking condition of the coating liquid for forming the polyimide film. Baked for 30 minutes, and the rubbing conditions were set at a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm.
  • a compound with no modifier compound added (Comparative Example 9) was prepared, and the effects were compared. The results are shown in Table 13.
  • the liquid crystal cell produced for the estimation measurement of the accumulated charge uses a glass substrate with an ITO transparent electrode as a substrate, and is on a hot plate heated to 230 ° C. for the baking condition of the coating liquid for forming the polyimide film. Baked for 30 minutes, and the rubbing conditions were set at a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm.
  • a compound with no modifier compound added (Comparative Example 10) was prepared, and the effects were compared. The results are shown in Table 14.
  • a liquid crystal cell having a small RDC can be obtained by using a coating solution for forming a polyimide film to which a modifying compound is added.
  • the ion density of an initial state (23 degreeC) is measured, and it hold
  • the ion density measurement was performed.
  • the ion density measurement was measured when a triangular wave having a voltage of ⁇ 10 V and a frequency of 0.01 Hz was applied to the liquid crystal cell.
  • the measurement temperature was 80 ° C.
  • a 6245 type liquid crystal property evaluation apparatus manufactured by Toyo Technica Co., Ltd. was used for all measurements. The results are shown in Table 15.
  • the twisted nematic liquid crystal cell is the same as that of the above twisted nematic liquid crystal cell (Examples 174 to 206) except that the firing condition of the coating film of the polyimide film forming coating solution was fired for 30 minutes on a hot plate heated to 200 ° C. The same operation was performed. In addition, the same operation was performed for those to which no modifier compound was added, and the effects were compared.
  • the ionic impurities in the liquid crystal cell can be significantly reduced by appropriately selecting the type and amount of the modifying compound as compared with the case where it is not added.
  • the number average molecular weight Mn and the weight average molecular weight Mw of the acrylic polymer and polysiloxane obtained according to the following synthesis examples were measured using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF804L) manufactured by JASCO Corporation, and the elution solvent tetrahydrofuran. was flowed through the column at a flow rate of 1 ml / min (column temperature 40 ° C.) for elution. Note that both the number average molecular weight Mn and the weight average molecular weight Mw are expressed in terms of polystyrene.
  • Polymer-1 Poly [(o-cresyl glycidyl ether) -co-formaldehyde]
  • Polymer-2 Poly [N, N'-bis (2,2,6,6-tetramethyl-4-piperidinyl) -1,6-hexanediamine-co-2,4-dichloro-6-morpholino-1,3, 5-triazine]
  • Polymer-3 Poly (Bisphenol A-co-epichlorohydrin)
  • Polymer-4 Poly (melamine-co-formaldehyde) acrylated, 80 wt% MEK Solution.
  • Polymer-5 Novolak resin, PSM-4326, manufactured by Gunei Chemical Industry Co., Ltd.
  • TEOS ⁇ Synthesis of Polymer-7 and preparation of its solution>
  • a solution prepared by mixing oxalic acid as a mixed solvent, water and a catalyst in advance was added dropwise to the solution at room temperature over 30 minutes. The solution was stirred for 30 minutes and then heated to reflux for 1 hour and allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12 wt%.
  • the obtained polysiloxane solution having a SiO 2 equivalent concentration of 12 wt% was further diluted with the above mixed solvent to obtain a 5 wt% polysiloxane (Polymer-7) solution.
  • the anti-parallel liquid crystal cell uses a glass substrate with an ITO transparent electrode as a substrate, and is fired for 30 minutes in a hot-air circulating oven heated to 200 ° C. for the coating conditions of various polymer film forming coating solutions. It was manufactured by performing the same operation as that of the anti-parallel liquid crystal cell for vertical alignment mode (Examples 210 to 321) except that the treatment was not performed. In addition, the same operation was performed for those to which no modifier compound was added, and the effects were compared.
  • a coating solution for forming a polyimide film (liquid crystal aligning agent) is spin-coated on a glass substrate, dried on a hot plate at 80 ° C. for 70 seconds, and then baked for 30 minutes in a hot air circulating oven heated to 200 ° C. A coating film having a thickness of 100 nm was formed.
  • linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm ⁇ 2 ) was changed between the exposure amount of 0 mJ and 1000 mJ on the surface of the coating film, and irradiated at a tilt of 40 ° with respect to the normal line of the plate.
  • the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • the prepared liquid crystal cell is sandwiched between polarizing plates, and the liquid crystal cell is rotated in a state where the backlight is irradiated from the rear, and it is visually observed whether the liquid crystal is aligned with the presence or absence of change in light and darkness or flow alignment. As a result, good orientation was exhibited. Thereafter, an AC voltage of 3 V was applied to the liquid crystal cell, and it was visually observed whether the liquid crystal was aligned. At that time, the following criteria were used for evaluation. The results are shown in Tables 19-1 to 19-5. Evaluation criteria Good: The orientation of the liquid crystal can be confirmed and there is no fluid orientation. Poor: The liquid crystal is oriented, but many fluid orientations are observed.
  • the prepared liquid crystal cell was heated at 120 ° C. for 1 hour, and then the pretilt angle was measured.
  • the pretilt angle was measured by “Axo Scan” from Axo Metrix using the Mueller matrix method. The results are shown in Tables 19-1 to 19-5.
  • the photo-alignment treatment was performed by using a polyimide film-forming coating liquid (liquid crystal alignment treatment agent) to which a modifying compound having a photoreactive side chain was added. It was confirmed that good vertical alignment could be obtained even in the case of carrying out. It was also confirmed that the polyimide film-forming coating liquid (liquid crystal alignment treatment agent) of the present invention has the ability to align liquid crystals in a slightly tilted state by irradiating polarized ultraviolet rays. It was also confirmed that the pretilt angle can be finely adjusted by controlling the addition amount and the irradiation amount.
  • the coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) of the present invention can be used for a liquid crystal alignment film for a vertical alignment type liquid crystal display element, and also used for a photo alignment method. It can be said that it is also useful.
  • Examples 537 to 578 In the polyamic acid (PAA-1) solution (10.0 g) prepared above, the compounds described in the following Tables 20-1 to 20-2 prepared in the above synthesis examples as modifying compounds were respectively added to the polyamic acid (PAA). -1) Add to the solid content of the solution (ie, polyamic acid (PAA-1)) so that the ratio is as described in Tables 20-1 to 20-2 below, and stir at room temperature until a uniform solution is obtained.
  • the coating solutions for forming a polyimide film of Examples 537 to 578 were prepared.
  • a coating solution for forming a polyimide film (liquid crystal aligning agent) is spin-coated on a glass substrate, dried on a hot plate at 80 ° C. for 70 seconds, and then baked for 30 minutes in a hot air circulating oven heated to 200 ° C. A coating film having a thickness of 100 nm was formed.
  • linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm ⁇ 2 ) was changed from 0 mJ to 1000 mJ on the coating surface, and the substrate was irradiated from directly above.
  • the linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
  • the prepared anti-parallel liquid crystal cell for horizontal alignment mode is sandwiched between polarizing plates, and the liquid crystal cell is rotated in a state where a backlight is irradiated from the rear portion, and the liquid crystal is aligned with the presence or absence of light / dark change or fluid alignment. It was observed visually. At that time, the following criteria were used for evaluation. The results are shown in Tables 21-1 to 21-2. Evaluation Criteria A: The orientation of the liquid crystal can be confirmed and there is no fluid orientation. ⁇ : The liquid crystal is oriented, but the fluid orientation is slightly observed. ⁇ : The liquid crystal is oriented, but a lot of fluid orientation is observed. ⁇ : Liquid crystal is not aligned at all
  • the liquid crystal cell that has not been irradiated with light does not exhibit orientation at all, but in the liquid crystal cell that has been irradiated with light, depending on the amount of the modifying compound added and the amount of light irradiated, It was confirmed that the liquid crystal was aligned.
  • the horizontal alignment cell can be easily produced by appropriately selecting the type and amount of the additive.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Liquid Crystal (AREA)
  • Paints Or Removers (AREA)

Abstract

Provided is a coating solution for forming a functional polymer film, said coating solution containing: at least one type of modifying compound selected from the group represented by formula A-D and having at least one Meldrum's acid structural site and a functional structural site which imparts functionality; and a polymer for modification or a monomer for the synthesis of said polymer for modification. Also provided is a functional polymer film obtained by firing a substrate coated using said coating. (In the formulae, the symbols are groups as defined in claim 1.)

Description

機能性ポリマー膜形成用塗布液及び機能性ポリマー膜形成方法Functional polymer film forming coating solution and functional polymer film forming method
 本発明は、新規の機能性ポリマー膜形成用塗布液及び機能性ポリマー膜形成方法に関する。 The present invention relates to a novel coating solution for forming a functional polymer film and a method for forming a functional polymer film.
 液晶表示素子において、液晶配向膜は液晶を一定の方向に配向させるという役割を担っている。現在、工業的に利用されている主な液晶配向膜は、ポリイミド前駆体であるポリアミド酸(ポリアミック酸ともいわれる。)、ポリアミック酸エステルや、ポリイミドの溶液からなるポリイミド系の液晶配向剤を、基板に塗布し成膜することで作製される。また、基板面に対して液晶を平行配向又は傾斜配向させる場合は、成膜した後、更にラビングによる表面延伸処理が行われている。また、ラビング処理に代わるものとして偏光紫外線照射等による異方性光化学反応を利用する方法も提案されており、近年では工業化に向けた検討が行われている。 In a liquid crystal display element, a liquid crystal alignment film plays a role of aligning liquid crystals in a certain direction. At present, the main liquid crystal alignment films that are industrially used are polyimide precursors such as polyamic acid (also called polyamic acid), polyamic acid esters, and polyimide-based liquid crystal aligning agents composed of polyimide solutions. It is manufactured by applying and forming a film. When the liquid crystal is aligned in parallel or inclined with respect to the substrate surface, a surface stretching process is further performed by rubbing after film formation. As an alternative to the rubbing treatment, a method using an anisotropic photochemical reaction by irradiation with polarized ultraviolet rays has been proposed, and in recent years, studies for industrialization have been performed.
 このような液晶表示素子の表示特性の向上のために、ポリアミック酸、ポリアミック酸エステルやポリイミドの構造の変更、特性の異なるポリアミック酸、ポリアミック酸エステルやポリイミドのブレンドや、添加剤を加える等の手法により、液晶配向性や電気特性等の改善や、プレチルト角のコントロール等が行われている。 In order to improve the display characteristics of such liquid crystal display elements, methods such as changing the structure of polyamic acid, polyamic acid ester and polyimide, polyamic acid with different characteristics, blend of polyamic acid ester and polyimide, adding additives, etc. As a result, improvements in liquid crystal alignment and electrical characteristics, control of the pretilt angle, and the like are performed.
 ポリイミドの構造によってプレチルト角を制御する技術の中でも、側鎖を有するジアミンをポリイミド原料の一部として用いる方法は、このジアミンの使用割合に応じてプレチルト角が制御できるので、目的のプレチルト角にせしめることが比較的容易であり、プレチルト角を大きくする手段として有用である。液晶のプレチルト角を大きくするジアミンの側鎖構造としては、長鎖のアルキル基又はフルオロアルキル基(例えば特許文献1参照)、環状基又は環状基とアルキル基の組み合わせ(例えば特許文献2参照)、ステロイド骨格(例えば特許文献3参照)などが知られている。 Among the techniques for controlling the pretilt angle depending on the structure of the polyimide, the method using a diamine having a side chain as a part of the polyimide raw material can control the pretilt angle in accordance with the proportion of the diamine used, so that the desired pretilt angle is obtained. This is relatively easy and is useful as a means for increasing the pretilt angle. Examples of the side chain structure of the diamine that increases the pretilt angle of the liquid crystal include a long-chain alkyl group or a fluoroalkyl group (see, for example, Patent Document 1), a cyclic group, or a combination of a cyclic group and an alkyl group (see, for example, Patent Document 2), A steroid skeleton (see, for example, Patent Document 3) is known.
 また、このように液晶のプレチルト角を大きくする為のジアミンは、プレチルト角の安定性やプロセス依存性を改善するための構造検討もされており、ここで用いられる側鎖構造としては、フェニル基やシクロヘキシル基などの環構造を含むものが提案されている(例えば特許文献4,5参照)。更には、このような環構造を3個から4個側鎖に有するジアミンも提案されている(例えば特許文献6参照)。 In addition, the diamine for increasing the pretilt angle of the liquid crystal has been studied for improving the stability and process dependency of the pretilt angle, and the side chain structure used here includes a phenyl group. And those containing a ring structure such as a cyclohexyl group have been proposed (see, for example, Patent Documents 4 and 5). Furthermore, a diamine having such a ring structure in 3 to 4 side chains has also been proposed (see, for example, Patent Document 6).
 近年、液晶表示素子が、大画面の液晶テレビや高精細なモバイル用途(デジタルカメラや携帯電話の表示部分)に広く実用化されるのに伴い、従来に比べて使用される基板の大型化、基板段差の凹凸が大きくなってきている。そのような状況においても、表示特性の点から大型基板や段差に対して、均一に液晶配向膜が塗布されることが求められてきた。 In recent years, with the widespread use of liquid crystal display elements in large-screen liquid crystal televisions and high-definition mobile applications (display parts of digital cameras and mobile phones), the size of substrates used in comparison with conventional devices has increased. The unevenness of the step of the substrate is getting larger. Even in such a situation, it has been demanded that the liquid crystal alignment film be uniformly applied to a large substrate or a step due to display characteristics.
 液晶配向膜の作製の工程において、ポリアミック酸の溶液や溶媒可溶性ポリイミドの溶液を基板に塗布する場合、工業的にはフレキソ印刷などで行うことが一般的である。塗布液の溶媒は、樹脂の溶解性に優れる溶媒(以下、良溶媒ともいう)であるN-メチル-2-ピロリドンやγ-ブチロラクトンなどに加えて、塗膜均一性を高めるために、樹脂の溶解性が低い溶媒(以下、貧溶媒ともいう)であるブチルセロソルブなどが混合されている。しかしながら、貧溶媒は、ポリアミック酸やポリイミドを溶解させる能力に劣る為、多量に混合すると析出が発生する(例えば特許文献7参照)。特に、溶媒可溶性ポリイミドの溶液では、この問題が顕著に表れる。また、前記したような側鎖を有するジアミンを使用して得られるポリイミドは、溶液の塗布均一性が低下する傾向にあるため、貧溶媒の混合量を多くする必要があり、このような溶媒の混合許容量もポリイミドの重要な特性となる。 When applying a solution of a polyamic acid or a solvent-soluble polyimide to a substrate in the process of producing a liquid crystal alignment film, it is generally industrially performed by flexographic printing. In addition to N-methyl-2-pyrrolidone and γ-butyrolactone, which are solvents with excellent resin solubility (hereinafter also referred to as good solvents), the solvent of the coating solution is used to improve the uniformity of the coating film. Butyl cellosolve, which is a solvent having low solubility (hereinafter also referred to as a poor solvent), is mixed. However, since a poor solvent is inferior in the ability to dissolve a polyamic acid and a polyimide, when it mixes abundantly, precipitation will generate | occur | produce (for example, refer patent document 7). In particular, this problem appears remarkably in a solvent-soluble polyimide solution. Moreover, since the polyimide obtained by using a diamine having a side chain as described above tends to reduce the coating uniformity of the solution, it is necessary to increase the amount of poor solvent mixed. Mixing tolerance is also an important characteristic of polyimide.
 また、液晶表示素子の高性能化、大面積化、表示デバイスの省電力化などが進み、それに加え、様々な環境下での使用がされるようになり、液晶配向膜に求められる特性も厳しいものになってきた。特に、液晶配向剤を基板に塗布した際にタクトタイムが長くなることによる析出や分離による印刷不良の発生や、蓄積電荷(RDC)による焼き付きなどの問題が課題となっており、従来の技術ではこの両者を同時に解決することは難しい。 In addition, liquid crystal display elements have higher performance, larger area, and power saving of display devices. In addition, they can be used in various environments, and the characteristics required for liquid crystal alignment films are severe. It has become a thing. In particular, when a liquid crystal aligning agent is applied to a substrate, problems such as occurrence of printing failure due to deposition and separation due to a long tact time, and burn-in due to accumulated charge (RDC) are problems. It is difficult to solve both of these simultaneously.
 このように、ポリイミド系液晶配向膜においては、所望の特性を改善するために種々のジアミン成分を原料の一部として用いることが行われるが、他の特性との関係においては所望のジアミン成分を自由に用いることができない場合もある。 As described above, in the polyimide-based liquid crystal alignment film, various diamine components are used as a part of raw materials in order to improve desired characteristics. However, in relation to other characteristics, desired diamine components are used. In some cases, it cannot be used freely.
 さらに、ポリイミドはその特徴である高い機械的強度、耐熱性、耐溶剤性のために、液晶配向膜以外に、電気・電子分野における保護材料、絶縁材料として広く用いられており、このような材料として用いられる場合にも、同様にポリイミドの原料となるジアミン成分を改良することが行われるが、所望のジアミン成分を自由に用いることができない点も同様である。 In addition to its liquid crystal alignment film, polyimide is widely used as a protective material and insulating material in the electrical and electronic fields because of its high mechanical strength, heat resistance, and solvent resistance. In the same manner, the diamine component as a raw material for polyimide is also improved, but the desired diamine component cannot be freely used.
 そして、このような所望の特性を改善するという要望は、上記ポリイミド系の液晶配向膜に限定されず、他のポリマー等の溶液を基板に塗布し成膜して形成されるポリマー膜においても、同様に存在する。 And the desire to improve such desired characteristics is not limited to the above-mentioned polyimide-based liquid crystal alignment film, but also in a polymer film formed by applying a solution such as another polymer to a substrate to form a film, It exists as well.
特開平2-282726号公報JP-A-2-282726 特開平3-179323号公報Japanese Patent Laid-Open No. 3-179323 特開平4-281427号公報JP-A-4-281427 特開平9-278724号公報JP-A-9-278724 国際公開第2004/52962号パンフレットInternational Publication No. 2004/52962 Pamphlet 特開2004-67589号公報JP 2004-67589 A 特開平2-37324号公報JP-A-2-37324
 本発明の課題は、上述の従来技術の問題点を解決することにあり、種々の特性を比較的自由に改善した機能性ポリマー膜を得ることができる機能性ポリマー膜形成用塗布液、及び、これを用いた機能性ポリマー膜形成方法を提供することにある。 An object of the present invention is to solve the above-mentioned problems of the prior art, and a functional polymer film-forming coating solution capable of obtaining a functional polymer film having various properties improved relatively freely, and An object of the present invention is to provide a functional polymer film forming method using the same.
 上記課題を解決する本発明のポリイミド膜形成用塗布液は、機能性を付与する機能性構造部位と、これに連結された少なくとも1つのメルドラム酸構造部位とを具備する下記式[A]~[D]で表される群から選択される少なくとも一種の修飾用化合物と、被修飾用ポリマー又は前記被修飾用ポリマーを合成するためのモノマーとを含むことを特徴とする。 The coating solution for forming a polyimide film of the present invention that solves the above-mentioned problems includes the following formulas [A] to [A] having a functional structure portion that imparts functionality and at least one Meldrum's acid structure portion connected thereto. And at least one modifying compound selected from the group represented by D], and a polymer for modification or a monomer for synthesizing the polymer for modification.
Figure JPOXMLDOC01-appb-C000005
(式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表す。Vは、-H、-OH、-OR、-SRまたは-NHRを表し、Rは、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基を表す。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000005
(Wherein, W 1 is .V 1 representing the k 1 monovalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -OR, an -SR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 1 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000006
(式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表す。Vは、-H、-OH、-SR、-ORまたは-NHRを表し、Rは、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基を表す。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000006
(Wherein, W 2 is .V 2 representing the k 2 divalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -SR, an -OR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 2 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000007
(式中、W及びWは、それぞれ機能性を付与する機能性構造部位であるk価の有機基を表し、W及びWは同一でも異なっていてもよい。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000007
(Wherein, W 3 and W 4 represents a k 3 monovalent organic group is a functional structural part that imparts respective functional, W 3 and W 4 are .k 3 may be the same or different are Represents an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000008
(式中、Wは、機能性を付与する機能性構造部位である2k価の有機基を表す。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000008
(Wherein, W 5 is .k 4 representing the 2k 4-valent organic group that is functional structural moiety which imparts functionality is an integer of 1-8.)
 本発明の機能性ポリマー膜形成方法は、上記機能性ポリマー膜形成用塗布液を基板に塗布して、焼成し、前記メルドラム酸構造部位を介して前記機能性構造部位を前記被修飾ポリマーに結合させた機能性ポリマー膜を得ることを特徴とする。 In the method for forming a functional polymer film of the present invention, the functional polymer film-forming coating solution is applied to a substrate, baked, and the functional structure site is bonded to the modified polymer via the Meldrum's acid structure site. A functional polymer film is obtained.
 本発明によれば、機能性を付与する機能性構造部位と、これに連結された少なくとも1つのメルドラム酸構造部位とを具備する上記式[A]~[D]で表される群から選択される少なくとも一種で表される修飾用化合物を含有する機能性ポリマー膜形成用塗布液とすることにより、種々の特性を比較的自由に改善した機能性ポリマー膜を得ることができる。 According to the present invention, selected from the group represented by the above formulas [A] to [D], which includes a functional structural portion imparting functionality and at least one meldrum acid structural portion linked thereto. By using a coating solution for forming a functional polymer film containing the modifying compound represented by at least one kind, it is possible to obtain a functional polymer film having various properties improved relatively freely.
 以下、本発明について詳細に説明する。
 本発明の機能性ポリマー膜形成用塗布液は、機能性を付与する機能性構造部位と、これに連結された少なくとも1つのメルドラム酸構造部位とを具備する下記式[A]~[D]で表される群から選択される少なくとも一種の修飾用化合物を含有するものである。
Hereinafter, the present invention will be described in detail.
The functional polymer film-forming coating solution of the present invention is represented by the following formulas [A] to [D] each having a functional structural portion imparting functionality and at least one meltrum acid structural portion linked thereto. It contains at least one modifying compound selected from the group represented.
Figure JPOXMLDOC01-appb-C000009
(式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表す。Vは、-H、-OH、-SR、-ORまたは-NHRを表し、Rは、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基を表す。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000009
(Wherein, W 1 is .V 1 representing the k 1 monovalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -SR, an -OR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 1 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000010
(式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表す。Vは、-H、-OH、-SR、-ORまたは-NHRを表し、Rは、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基を表す。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000010
(Wherein, W 2 is .V 2 representing the k 2 divalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -SR, an -OR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 2 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000011
(式中、W及びWは、それぞれ機能性を付与する機能性構造部位であるk価の有機基を表し、W及びWは同一でも異なっていてもよい。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000011
(Wherein, W 3 and W 4 represents a k 3 monovalent organic group is a functional structural part that imparts respective functional, W 3 and W 4 are .k 3 may be the same or different are Represents an integer of 1 to 8.)
Figure JPOXMLDOC01-appb-C000012
(式中、Wは、機能性を付与する機能性構造部位である2k価の有機基を表す。kは、1~8の整数を表す。)
Figure JPOXMLDOC01-appb-C000012
(Wherein, W 5 is .k 4 representing the 2k 4-valent organic group that is functional structural moiety which imparts functionality is an integer of 1-8.)
 上記式[A]で表される修飾用化合物の具体例としては、下記式[i]~[iii]で表される修飾用化合物が挙げられる。なお、末端アミノ基が一級もしくは二級であるアミン化合物、あるいは、ヒドラジン化合物を原料として上記式[A]で表される修飾用化合物を合成した場合には、下記式[i]で表される修飾用化合物となり、チオール化合物、もしくは、二硫化炭素を原料として上記式[A]で表される修飾用化合物を合成した場合には、下記式[ii]で表される修飾用化合物となり、アルデヒド、または、ケトン化合物、あるいはカルボン酸誘導体を原料として上記式[A]で表される修飾用化合物を合成した場合には、下記式[iii]で表される修飾用化合物となる。また、カルボジイミド化合物を原料として用いた場合には、下記式[i]で表される化合物となり、この場合、Rは-Hとなる。 Specific examples of the modifying compound represented by the formula [A] include modifying compounds represented by the following formulas [i] to [iii]. In addition, when the modifying compound represented by the above formula [A] is synthesized using an amine compound having a terminal amino group that is primary or secondary, or a hydrazine compound as a raw material, it is represented by the following formula [i]. When a modifying compound represented by the above formula [A] is synthesized using a thiol compound or carbon disulfide as a raw material, it becomes a modifying compound represented by the following formula [ii]. Alternatively, when a modifying compound represented by the above formula [A] is synthesized using a ketone compound or a carboxylic acid derivative as a raw material, the modifying compound represented by the following formula [iii] is obtained. Further, when a carbodiimide compound is used as a raw material, the compound is represented by the following formula [i], and in this case, R j is —H.
Figure JPOXMLDOC01-appb-C000013
(式中、Yは、上記式[A]で表される修飾用化合物の原料である末端アミノ基が一級もしくは二級であるアミン化合物、ヒドラジン化合物、または、カルボジイミド化合物由来のk価の有機基であり、例えば、単結合または、ヘテロ原子や環構造を有していてもよい直鎖状あるいは分岐状の炭素原子数が1~60のk価の有機基である。k及びVは、上記式[A]におけるk及びVと同じである。pは、アミン化合物あるいはカルボジイミド化合物を原料とした場合は1であり、ヒドラジン化合物を原料とした場合は2である。Rは、R~Rで表される-H、または、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基であり、R~Rは同一でも異なっていてもよい。また、Rは、Yの一部と連結し環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000013
(Wherein, Y 1 is the formula [A] terminal amino group which is a raw material of the modifying compound represented by the amine compound is a primary or secondary, hydrazine compounds, or, from carbodiimide compound k 1 monovalent an organic group, for example, a single bond or, .k 1 and a k 1 monovalent organic group heteroatom or ring structure which may have a linear or branched carbon atoms 1-60 V 1 is the same as k 1 and V 1 in the above formula [A], p is 1 when an amine compound or a carbodiimide compound is used as a raw material, and 2 when a hydrazine compound is used as a raw material. R j is, -H represented by R 1 ~ R 8 or a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, a good number of carbon atoms an amide bond anywhere 1 to 35 monovalent organic group, R 1 ~ R 8 may be the same or different. Also, R j is coupled with a portion of the Y 1 may form a ring.)
Figure JPOXMLDOC01-appb-C000014
(式中、Yは、上記式[A]で表される修飾用化合物の原料であるチオール化合物、もしくは二硫化炭素由来のk価の有機基であり、例えば、単結合または、ヘテロ原子や環構造を有していてもよい直鎖状あるいは分岐状の炭素原子数が1~60のk価の有機基である。k及びVは上記式[A]におけるk及びVと同じである。)
Figure JPOXMLDOC01-appb-C000014
(Wherein, Y 2 is k 1 monovalent organic group of the thiol compound, or carbon disulfide from a raw material of the modifying compound represented by the formula [A], for example, a single bond or a hetero atom and .k 1 and V 1 ring-like straight-chain or may have a or branched carbon atoms are k 1 monovalent organic group of 1 to 60 above formula [a] in the k 1 and V Same as 1. )
Figure JPOXMLDOC01-appb-C000015
(式中、Yは、上記式[A]で表される修飾用化合物の原料であるアルデヒド、ケトン化合物またはカルボン酸誘導体、もしくは、オルトギ酸エステル由来のk価の有機基であり、例えば、単結合または、ヘテロ原子や環構造を有していてもよい直鎖状あるいは分岐状の炭素原子数が1~60のk価の有機基である。k及びVは上記式[A]におけるk及びVと同じである。)
Figure JPOXMLDOC01-appb-C000015
(Wherein, Y 3 is an aldehyde as a raw material of the modifying compound represented by the formula [A], ketone compound or carboxylic acid derivative or a k 1 monovalent organic group derived from the orthoformate, e.g. a single bond or, .k 1 and V 1 is k 1 monovalent organic group heteroatom or ring structure which may have a linear or branched carbon atoms having 1 to 60 the formula [ The same as k 1 and V 1 in A].
 上記式[i]~[iii]で表される修飾用化合物において、kが2の場合のY~Yの具体例としては、下記式(Y-1)~(Y-120)で表される2価の有機基などが挙げられる。なかでも、得られる機能性ポリマー膜を液晶配向膜として使用する場合、良好な液晶配向性を得るためには、直線性の高いジアミン化合物を原料とする構造であることが好ましく、このようなYとしては、(Y-7)、(Y-10)、(Y-11)、(Y-12)、(Y-13)、(Y-21)、(Y-22)、(Y-23)、(Y-25)、(Y-26)、(Y-27)、(Y-41)、(Y-42)、(Y-43)、(Y-44)、(Y-45)、(Y-46)、(Y-48)、(Y-61)、(Y-63)、(Y-64)、(Y-65)、(Y-66)、(Y-67)、(Y-68)、(Y-69)、(Y-70)、(Y-71)、(Y-78)、(Y-79)、(Y-80)、(Y-81)、(Y-82)や(Y-109)などが挙げられる。また、得られる機能性ポリマー膜を、液晶のプレチルト角を高くするための液晶配向膜とする場合は、側鎖に長鎖アルキル基(例えば炭素数10以上のアルキル基)、芳香族環、脂肪族環、ステロイド骨格、又はこれらを組み合わせた構造を有するジアミン化合物を原料とする構造であることが好ましく、このようなYとしては、(Y-83)、(Y-84)、(Y-85)、(Y-86)、(Y-87)、(Y-88)、(Y-89)、(Y-90)、(Y-91)、(Y-92)、(Y-93)、(Y-94)、(Y-95)、(Y-96)、(Y-97)、(Y-98)、(Y-99)、(Y-100)、(Y-101)、(Y-102)、(Y-103)、(Y-104)、(Y-105)、(Y-106)、(Y-107)、又は(Y-108)などが挙げられるが、これに限定されるものではない。また、液晶表示素子の電気特性を向上させたい場合は、(Y-31)、(Y-40)、(Y-64)、(Y-65)、(Y-66)、(Y-67)、(Y-109)、(Y-110)などが挙げられる。また、液晶配向膜に光反応性を付与させたい場合は、(Y-17)、(Y-18)、(Y-111)、(Y-112)、(Y-113)、(Y-114) 、(Y-115)、(Y-116)、(Y-117)、(Y-118)、(Y-119)などが挙げられる。 In the modifying compounds represented by the above formulas [i] to [iii], specific examples of Y 1 to Y 4 when k 1 is 2 include the following formulas (Y-1) to (Y-120) And a divalent organic group represented. Especially, when using the obtained functional polymer film as a liquid crystal alignment film, in order to obtain favorable liquid crystal alignment, it is preferable that it is a structure which uses a highly linear diamine compound as a raw material. (Y-7), (Y-10), (Y-11), (Y-12), (Y-13), (Y-21), (Y-22), (Y-23) , (Y-25), (Y-26), (Y-27), (Y-41), (Y-42), (Y-43), (Y-44), (Y-45), ( Y-46), (Y-48), (Y-61), (Y-63), (Y-64), (Y-65), (Y-66), (Y-67), (Y- 68), (Y-69), (Y-70), (Y-71), (Y-78), (Y-79), (Y-80), (Y-81), (Y-82) And (Y-109). When the functional polymer film obtained is a liquid crystal alignment film for increasing the pretilt angle of the liquid crystal, a long chain alkyl group (for example, an alkyl group having 10 or more carbon atoms) in the side chain, an aromatic ring, an aliphatic ring A structure using a diamine compound having a group ring, a steroid skeleton, or a combination of these as a raw material is preferable. Examples of such Y include (Y-83), (Y-84), (Y-85 ), (Y-86), (Y-87), (Y-88), (Y-89), (Y-90), (Y-91), (Y-92), (Y-93), (Y-94), (Y-95), (Y-96), (Y-97), (Y-98), (Y-99), (Y-100), (Y-101), (Y -102), (Y-103), (Y-104), (Y-105), (Y-106), (Y-107), or (Y-108). It is not something. When it is desired to improve the electrical characteristics of the liquid crystal display element, (Y-31), (Y-40), (Y-64), (Y-65), (Y-66), (Y-67) , (Y-109), (Y-110), and the like. When it is desired to impart photoreactivity to the liquid crystal alignment film, (Y-17), (Y-18), (Y-111), (Y-112), (Y-113), (Y-114) ), (Y-115), (Y-116), (Y-117), (Y-118), (Y-119) and the like.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000018
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000019
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000020
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000021
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000022
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000023
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000024
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000025
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000026
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000027
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000028
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000029
Figure JPOXMLDOC01-appb-C000030
Figure JPOXMLDOC01-appb-C000030
 上記式[i]~[iii]で表される修飾用化合物において、kが1の場合のY~Yの具体例としては、下記式で表される1価の有機基や、[Y-1]~[Y-120]の一つの結合手が水素原子と結合した構造などが挙げられるが、これに限定されるものではない。 In the modifying compounds represented by the above formulas [i] to [iii], specific examples of Y 1 to Y 3 when k 1 is 1 include monovalent organic groups represented by the following formulas, [ Examples include, but are not limited to, a structure in which one bond of Y-1] to [Y-120] is bonded to a hydrogen atom.
Figure JPOXMLDOC01-appb-C000031
Figure JPOXMLDOC01-appb-C000031
 また、上記式[i]~[iii]で表される修飾用化合物において、kが3以上の場合のY~Yの具体例としては、下記式で表される3価以上の有機基や、[Y-1]~[Y-120]の水素原子が脱離した構造などが挙げられるが、これに限定されるものではない。なお、本明細書において、Meはメチル基である。 In the modifying compounds represented by the above formulas [i] to [iii], specific examples of Y 1 to Y 4 in the case where k 1 is 3 or more include trivalent or more organic compounds represented by the following formula: And a structure in which a hydrogen atom of [Y-1] to [Y-120] is eliminated, but is not limited thereto. In the present specification, Me is a methyl group.
Figure JPOXMLDOC01-appb-C000032
Figure JPOXMLDOC01-appb-C000032
 上記式[A]で表される修飾用化合物の製造方法は特に限定されないが、例えば、上記式[i]および[ii]で表される修飾用化合物は、オルトギ酸トリメチル中、または、オルトギ酸トリエチル中、あるいは、一般的な有機合成で用いられる有機溶媒(例えば、酢酸エチル、ヘキサン、トルエン、テトラヒドロフラン、アセトニトリル、メタノール、クロロホルム、1,4-ジオキサン、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン)中で、オルトギ酸トリメチルやオルトギ酸トリエチルと共に、下記式[E1]で表されるアミン化合物や下記式[E2]で表されるチオール化合物とメルドラム酸を反応させることにより製造することができる。この反応の反応温度や反応時間に特に制限はないが、例えば60~120℃、30分~2時間程度反応させればよい。 The method for producing the modifying compound represented by the formula [A] is not particularly limited. For example, the modifying compound represented by the formulas [i] and [ii] may be used in trimethyl orthoformate or orthoformate. Organic solvents used in general organic synthesis in triethyl (for example, ethyl acetate, hexane, toluene, tetrahydrofuran, acetonitrile, methanol, chloroform, 1,4-dioxane, N, N-dimethylformamide, N-methyl- 2-pyrrolidone), by reacting trimethyl orthoformate or triethyl orthoformate with an amine compound represented by the following formula [E1] or a thiol compound represented by the following formula [E2] and Meldrum's acid. Can do. The reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 60 to 120 ° C. for about 30 minutes to 2 hours.
Figure JPOXMLDOC01-appb-C000033
(式中、Y、R及びkは上記式[i]におけるY、R及びkと同じである。)
Figure JPOXMLDOC01-appb-C000033
(Wherein, Y 1, R j and k 1 is the same as Y 1, R j and k 1 in the above formula [i].)
Figure JPOXMLDOC01-appb-C000034
(式中、Y及びkは上記式[ii]におけるY及びkと同じである。)
Figure JPOXMLDOC01-appb-C000034
(Wherein, Y 2 and k 1 is the same as Y 2 and k 1 in the formula [ii].)
 また、上記式[iii]で表される修飾用化合物は、ピリジン中またはその他の有機塩基化合物中(例えば、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン)、あるいは、これら有機塩基化合物やトリフェニルホスフィン等のホスフィン系化合物を共存させた上記一般的な有機合成で用いられる有機溶媒中で、下記式[E3]で表されるアルデヒド化合物とメルドラム酸を反応させることにより製造することができる。この反応の反応温度や反応時間に特に制限はないが、例えば0℃~100℃、1~24時間程度反応させればよい。 In addition, the modifying compound represented by the above formula [iii] is pyridine or other organic base compound (for example, triethylamine, tributylamine, diisopropylethylamine), or these organic base compounds and phosphines such as triphenylphosphine. It can be produced by reacting an aldehyde compound represented by the following formula [E3] with Meldrum's acid in an organic solvent used in the above general organic synthesis in the presence of a system compound. The reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 0 ° C. to 100 ° C. for about 1 to 24 hours.
Figure JPOXMLDOC01-appb-C000035
(式中、Y及びkは上記式[iii]におけるY及びkと同じである。)
Figure JPOXMLDOC01-appb-C000035
(Wherein, Y 3 and k 1 are the same as Y 3, and k 1 in the above formula [iii].)
 その他の上記式[A]で表される修飾用化合物の製造方法としては、上記[E1]等のアミン化合物、上記[E2]等のチオール化合物や、上記[E3]等のアルデヒド化合物のアミノ基、チオール基、アルデヒド基を一般的に知られている種々の有機合成法に従い、化学修飾して、スペーサーを介して、アミノ基、チオール基や、アルデヒド基を有する化合物とし、これを原料としてメルドラム酸と反応させる方法が挙げられる。勿論、この化学修飾は、複数回行なってもよい。 Other methods for producing the modifying compound represented by the formula [A] include amine compounds such as [E1], thiol compounds such as [E2], and amino groups of aldehyde compounds such as [E3]. The thiol group and aldehyde group are chemically modified according to various generally known organic synthesis methods to form a compound having an amino group, a thiol group, or an aldehyde group via a spacer. The method of making it react with an acid is mentioned. Of course, this chemical modification may be performed a plurality of times.
 具体的には、例えば、上記[E1]のアミン化合物のアミノ基を一般的に知られている種々の有機合成法に従い、化学修飾して、下記式[E4]~[E6]で表される化合物として、これを上記式[i]~[iii]で表される修飾用化合物と同様の合成法でメルドラム酸と反応させることによっても製造することができる。なお、下記式[E4]~[E6]で表される化合物を原料としてメルドラム酸と反応させると、下記式[i’]~[iii’]の式[A]で表される修飾用化合物となる。 Specifically, for example, the amino group of the amine compound [E1] is chemically modified according to various generally known organic synthesis methods, and is represented by the following formulas [E4] to [E6]. The compound can also be produced by reacting it with Meldrum acid by the same synthesis method as the modifying compounds represented by the above formulas [i] to [iii]. When a compound represented by the following formulas [E4] to [E6] is reacted with Meldrum acid as a raw material, a modifying compound represented by the formula [A] of the following formulas [i ′] to [iii ′] Become.
Figure JPOXMLDOC01-appb-C000036
(式中、Y、R及びkは上記式[i]におけるY、R及びkと同じである。Qは、単結合または、ヘテロ原子や環構造を有していてもよい直鎖状あるいは分岐状の炭素原子数が1~15の二価の有機基を表す。Rは、R~Rで表される-H、または、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基であり、R~Rは同一でも異なっていてもよい。また、Rは、Qの一部と連結し環を形成していてもよい。)
Figure JPOXMLDOC01-appb-C000036
(Wherein, Y 1, R j and k 1 is the same as Y 1, R j and k 1 in the above formula [i] .Q 1 is a single bond or have a hetero atom or ring structure A linear or branched divalent organic group having 1 to 15 carbon atoms, where R i is —H represented by R 1 to R 8 , or a benzene ring, cyclohexane ring, hetero ring; A monovalent organic group having 1 to 35 carbon atoms which may contain a ring, fluorine, ether bond, ester bond or amide bond at any position, and R 1 to R 8 may be the same or different. R i may be linked to a part of Q 1 to form a ring.
Figure JPOXMLDOC01-appb-C000037
(式中、Y、R、R、Q及びkは上記式[E4]~[E6]におけるY、R、R、Q及びkと同じであり、Vは上記式[A]におけるVと同じである。)
Figure JPOXMLDOC01-appb-C000037
(Wherein, Y 1, R j, R i, Q 1 and k 1 are Y 1, R j, R i , the same as Q 1 and k 1 in the above formula [E4] ~ [E6], V 1 Is the same as V 1 in the above formula [A].)
 上記式[B]で表される修飾用化合物の具体例としては、下記式[iv]及び[v]で表される修飾用化合物が挙げられる。 Specific examples of the modifying compound represented by the formula [B] include the modifying compounds represented by the following formulas [iv] and [v].
Figure JPOXMLDOC01-appb-C000038
(式中、Yは、上記式[B]で表される修飾用化合物の原料であるアルデヒド、ケトン化合物、ハロゲン化アルキル化合物あるいは電子不足不飽和結合を有する化合物(例えば、アクリロイル基を有する化合物)由来のk価の有機基であり、例えば、単結合または、ヘテロ原子や環構造を有していてもよい直鎖状あるいは分岐状の炭素原子数が1~60のk価の有機基である。k及びVは上記式[B]におけるk及びVと同じである。)
Figure JPOXMLDOC01-appb-C000038
(In the formula, Y 4 represents an aldehyde, a ketone compound, a halogenated alkyl compound, or a compound having an electron-deficient unsaturated bond (for example, a compound having an acryloyl group) that is a raw material of the modifying compound represented by the formula [B]. ) and k 2 divalent organic group derived from, for example, a single bond or a hetero atom and the ring structure or may have a linear or branched carbon atoms of k 2 divalent 1-60 organic (K 2 and V 2 are the same as k 2 and V 2 in the above formula [B].)
Figure JPOXMLDOC01-appb-C000039
(式中、Yは、上記式[B]で表される修飾用化合物の原料であるカルボン酸誘導体由来のk価の有機基であり、例えば、単結合または、ヘテロ原子や環構造を有していてもよい直鎖状あるいは分岐状の炭素原子数が1~60のk価の有機基である。k及びV及は上記式[B]におけるk及びVと同じである。)
Figure JPOXMLDOC01-appb-C000039
(Wherein, Y 5 is a k 2 divalent organic group derived from a carboxylic acid derivative as a raw material of the modifying compound represented by the formula [B], for example, a single bond or a hetero atom or ring structure have been or may be linear or branched carbon atoms is k 2 monovalent organic group 1 ~ 60 .k 2 and V 2及are the same as k 2 and V 2 in the formula [B] .)
 上記式[iv]及び[v]で表される修飾用化合物において、Y及びYの具体例は、上記Y~Yと同様である。 In the modifying compounds represented by the above formulas [iv] and [v], specific examples of Y 4 and Y 5 are the same as those of Y 1 to Y 3 above.
 上記式[B]で表される修飾用化合物の製造方法も特に限定されないが、例えば、上記式[iv]で表される修飾用化合物は、上記一般的な有機合成で用いられる有機溶媒中で、ピリジン、またはその他の有機塩基化合物(例えば、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン)あるいは、炭酸カリウムや炭酸水素ナトリウム、水酸化ナトリウムのような無機塩基と共に、アルデヒド、ケトン化合物、ハロゲン化アルキル化合物(ハロゲンは、-Cl、-Br、-Iのいずれでもよい。)あるいは電子不足不飽和結合を有する化合物(例えば、アクリロイル基を有する化合物)と、メルドラム酸を反応させることにより製造することができる。この反応の反応温度や反応時間に特に制限はないが、例えば0℃~120℃、30分~2時間程度反応させればよい。なお、このようにアルデヒド、ケトン化合物、ハロゲン化アルキル化合物、あるいは電子不足の不飽和結合を有する化合物(例えば、アクリロイル基を有する化合物)を原料として上記式[B]で表される修飾用化合物を合成した場合には、直接、あるいは、一旦上記式[iii]で表される化合物を経由して、その後、炭素-炭素二重結合を還元することで、上記式[iv]で表される修飾用化合物となる。 The method for producing the modifying compound represented by the above formula [B] is not particularly limited. For example, the modifying compound represented by the above formula [iv] may be used in an organic solvent used in the general organic synthesis. , Pyridine, or other organic base compounds (eg, triethylamine, tributylamine, diisopropylethylamine) or inorganic bases such as potassium carbonate, sodium bicarbonate, sodium hydroxide, aldehydes, ketone compounds, alkyl halide compounds (halogens) Can be any of —Cl, —Br, and —I) or a compound having an electron-deficient unsaturated bond (for example, a compound having an acryloyl group) and Meldrum's acid. The reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 0 ° C. to 120 ° C. for about 30 minutes to 2 hours. In addition, the modifying compound represented by the above formula [B] is prepared by using an aldehyde, a ketone compound, an alkyl halide compound, or a compound having an electron-deficient unsaturated bond (for example, a compound having an acryloyl group) as a raw material. In the case of synthesis, the modification represented by the above formula [iv] is carried out directly or once through the compound represented by the above formula [iii] and then reducing the carbon-carbon double bond. Compound.
 また、上記式[v]で表される修飾用化合物は、上記一般的な有機合成で用いられる有機溶媒中で、ピリジン、またはその他の有機塩基化合物(例えば、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン)あるいは、炭酸カリウムや炭酸水素ナトリウム、水酸化ナトリウムのような無機塩基と共に、カルボン酸や、カルボン酸クロリド等のカルボン酸誘導体と、メルドラム酸を反応させることにより製造することができる。この反応の反応温度や反応時間に特に制限はないが、例えば-20~120℃、30分~2時間程度反応させればよい。 Further, the modifying compound represented by the above formula [v] is pyridine, other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine) or the like in the organic solvent used in the general organic synthesis. It can be produced by reacting mellic acid with a carboxylic acid or a carboxylic acid derivative such as carboxylic acid chloride together with an inorganic base such as potassium carbonate, sodium hydrogen carbonate or sodium hydroxide. The reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at −20 to 120 ° C. for about 30 minutes to 2 hours.
 その他の上記式[B]で表される修飾用化合物の製造方法としては、上記式[A]で表される化合物の製造方法と同様に、アルデヒド、ケトン化合物、ハロゲン化アルキル化合物、電子不足不飽和結合を有する化合物、カルボン酸や、カルボン酸誘導体を一般的に知られている種々の有機合成法に従い、化学修飾して、スペーサーを介して、アルデヒド基、ケトン基、ハロゲン化アルキル基、電子不足不飽和結合を有する基(例えば、アクリロイル基)、カルボキシル基を有する化合物とし、これを原料としてメルドラム酸と反応させる方法が挙げられる。勿論、この化学修飾は、複数回行なってもよい。なお、このように、化学修飾を行なって上記式[B]で表される修飾用化合物を製造した場合は、例えば、上記式[iv]で表される修飾用化合物のYとメルドラム酸構造部位との間に、化学修飾させる化合物由来の構造(例えば、ヘテロ原子や環構造を有していてもよい鎖状あるいは分岐構造からなる炭素原子数が1~15の二価の有機基)が挿入された構造の式[B]で表される修飾用化合物や、上記式[v]で表される修飾用化合物のYとカルボニル基との間に、化学修飾させる化合物由来の構造(例えば、ヘテロ原子や環構造を有していてもよい鎖状あるいは分岐構造からなる炭素原子数が1~15の二価の有機基)が挿入された構造の式[B]で表される修飾用化合物となる。 As other methods for producing the modifying compound represented by the formula [B], as in the method for producing the compound represented by the formula [A], an aldehyde, a ketone compound, a halogenated alkyl compound, an electron deficiency A compound having a saturated bond, a carboxylic acid, and a carboxylic acid derivative are chemically modified according to various generally known organic synthesis methods, and an aldehyde group, a ketone group, a halogenated alkyl group, an electron through a spacer Examples thereof include a method in which a compound having a deficient unsaturated bond (for example, acryloyl group) and a carboxyl group is used, and this is used as a raw material to react with Meldrum's acid. Of course, this chemical modification may be performed a plurality of times. In addition, when the modification compound represented by the above formula [B] is produced by performing chemical modification in this way, for example, Y 4 of the modification compound represented by the above formula [iv] and the Meldrum's acid structure A structure derived from a compound to be chemically modified (for example, a divalent organic group having 1 to 15 carbon atoms having a chain or branched structure which may have a heteroatom or a ring structure) between the moiety A structure derived from the compound to be chemically modified between Y 5 and the carbonyl group of the modifying compound represented by the formula [B] of the inserted structure or the modifying compound represented by the formula [v] (for example, And a structure represented by the formula [B] having a structure in which a divalent organic group having 1 to 15 carbon atoms and having a chain or branched structure which may have a hetero atom or a ring structure is inserted Become a compound.
 上記式[C]で表される修飾用化合物の具体例としては、下記式[vi]で表される修飾用化合物が挙げられる。 Specific examples of the modifying compound represented by the above formula [C] include a modifying compound represented by the following formula [vi].
Figure JPOXMLDOC01-appb-C000040
(式中、Y及びYは、それぞれ上記式[C]で表される修飾用化合物の原料であるハロゲン化アルキル化合物、あるいは、アルコール誘導体由来のk価の有機基を表し、例えば、単結合または、ヘテロ原子や環構造を有していてもよい直鎖状あるいは分岐状の炭素原子数が1~60のk価の有機基である。Y及びYは同一でも異なっていてもよい。kは、上記式[C]におけるkと同じである。)
Figure JPOXMLDOC01-appb-C000040
(Wherein, Y 6 and Y 7 are each a halogenated alkyl compound as a raw material for modifying compound represented by the formula [C], or represents a k 3 monovalent organic group derived from an alcohol derivative, e.g., single bond or a hetero atom and the ring structure or may have a linear or branched carbon atoms is k 3 monovalent organic group 1 ~ 60 .Y 6 and Y 7 are either the same or different K 3 is the same as k 3 in the above formula [C].)
 上記式[vi]で表される修飾用化合物において、Y及びYの具体例は、上記Y~Yと同様である。 In the modifying compound represented by the above formula [vi], specific examples of Y 6 and Y 7 are the same as those of Y 1 to Y 3 .
 上記式[C]で表される修飾用化合物の製造方法も特に限定されないが、例えば、上記式[vi]で表される修飾用化合物は、上記一般的な有機合成で用いられる有機溶媒中で、ピリジン、またはその他の有機塩基化合物(例えば、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン)あるいは、炭酸カリウムや炭酸水素ナトリウム、水酸化ナトリウムのような無機塩基と共に、上記式[iv]で表される修飾用化合物とハロゲン化アルキル化合物とを、あるいは、さらにパラジウム触媒を共存させ、末端水酸基を有する化合物とを反応させることにより製造することができる。あるいは、上記一般的な有機合成で用いられる有機溶媒中で、ピリジン、またはその他の有機塩基化合物(例えば、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン)あるいは、炭酸カリウムや炭酸水素ナトリウム、水酸化ナトリウムのような無機塩基と共に、ハロゲン化アルキル化合物とを、あるいは、さらにパラジウム触媒を共存させ、末端に水酸基を有する化合物とを反応させることにより製造することができる。なお、この場合、Y及びYは、同一であっても異なっていてもよい。Y及びYが、異なる場合は、上記製造方法において、2種類以上のハロゲン化アルキル化合物や末端に水酸基を有する化合物を共存させ、あるいは段階的に加えることで製造することができる。この反応の反応温度や反応時間に特に制限はないが、例えば60~120℃、30分~2時間程度反応させればよい。 The method for producing the modifying compound represented by the formula [C] is not particularly limited. For example, the modifying compound represented by the formula [vi] may be used in an organic solvent used in the general organic synthesis. , Pyridine, or other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine) or an inorganic base such as potassium carbonate, sodium hydrogencarbonate, sodium hydroxide, for the modification represented by the above formula [iv] It can be produced by reacting a compound and a halogenated alkyl compound or a compound having a terminal hydroxyl group in the presence of a palladium catalyst. Alternatively, in an organic solvent used in the above general organic synthesis, pyridine, other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine), potassium carbonate, sodium bicarbonate, sodium hydroxide, etc. It can be produced by reacting an alkyl halide compound with an inorganic base, or a compound having a hydroxyl group at the terminal in the presence of a palladium catalyst. In this case, Y 6 and Y 7 may be the same or different. When Y 6 and Y 7 are different, in the production method described above, two or more kinds of halogenated alkyl compounds and a compound having a hydroxyl group at the terminal can be coexisted or added stepwise. The reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 60 to 120 ° C. for about 30 minutes to 2 hours.
 その他の上記式[C]で表される修飾用化合物の製造方法としては、上記式[A]で表される化合物の製造方法と同様に、ハロゲン化アルキル化合物や、アルコール誘導体を一般的に知られている種々の有機合成法に従い、化学修飾して、スペーサーを介して、ハロゲン化アルキル基、アルコキシ基、ヒドロキシ基を有する化合物とし、これを原料としてメルドラム酸と反応させる方法が挙げられる。勿論、この化学修飾は、複数回行なってもよい。なお、このように、化学修飾を行なって上記式[C]で表される修飾用化合物を製造した場合は、例えば、上記式[vi]で表される修飾用化合物のYとメルドラム酸構造部位との間や、Yとメルドラム酸構造部位との間に、化学修飾させる化合物由来の構造(例えば、ヘテロ原子や環構造を有していてもよい鎖状あるいは分岐構造からなる炭素原子数が1~15の二価の有機基)が挿入された構造の式[C]で表される修飾用化合物となる。 As other methods for producing the modifying compound represented by the formula [C], as in the method for producing the compound represented by the formula [A], an alkyl halide compound or an alcohol derivative is generally known. In accordance with various organic synthesis methods that have been used, a method of chemically modifying a compound having a halogenated alkyl group, an alkoxy group, or a hydroxy group via a spacer and reacting it with Meldrum's acid as a raw material can be mentioned. Of course, this chemical modification may be performed a plurality of times. In this way, when the modifying compound represented by the above formula [C] is produced by performing chemical modification, for example, Y 6 of the modifying compound represented by the above formula [vi] and the Meldrum's acid structure and between the sites, between the Y 7 and Meldrum's acid structural moiety, compounds derived from the structure of chemically modified (e.g., number of carbon atoms consisting of a good chain or branched structure which may have a hetero atom or ring structure Is a modifying compound represented by the formula [C] having a structure in which 1 to 15 divalent organic groups are inserted.
 上記式[D]で表される修飾用化合物の具体例としては、下記式[vii]で表される修飾用化合物が挙げられる。 Specific examples of the modifying compound represented by the above formula [D] include a modifying compound represented by the following formula [vii].
Figure JPOXMLDOC01-appb-C000041
(式中、Yは上記式[D]で表される修飾用化合物の原料である環状ケトン化合物、環状アルコキシイミン化合物、あるいは、環状カルボジイミド化合物に由来する炭素原子数が1~15の2kの有機基を表す。kは、上記式[D]におけるkと同じである。)
Figure JPOXMLDOC01-appb-C000041
(Wherein Y 8 is a 2k 4 having 1 to 15 carbon atoms derived from a cyclic ketone compound, a cyclic alkoxyimine compound, or a cyclic carbodiimide compound that is a raw material of the modifying compound represented by the above formula [D]. .k 4 representing an organic group are the same as k 4 in the formula [D].)
 上記式[vii]で表される修飾用化合物において、Yの具体例としては、シクロペンタン環やシクロヘキサン環やシクロオクタン環、γ-ピロンのような環状ケトン由来の環状構造が挙げられる。 In the modifying compound represented by the above formula [vii], specific examples of Y 8 include a cyclic structure derived from a cyclic ketone such as a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, and γ-pyrone.
 上記式[D]で表される修飾用化合物の製造方法も特に限定されないが、例えば、上記式[vii]で表される修飾用化合物は、上記一般的な有機合成で用いられる有機溶媒中で、ピリジン、またはその他の有機塩基化合物(例えば、トリエチルアミン、トリブチルアミン、ジイソプロピルエチルアミン)あるいは、炭酸カリウムや炭酸水素ナトリウム、水酸化ナトリウムのような無機塩基と共に、環状ケトン化合物(例えば、シクロヘキサノン誘導体やγ-ピロン誘導体)、環状アルコキシイミン化合物(例えば、6-位アルコキシ置換テトラヒドロピリジン)、あるいは、環状カルボジイミド化合物(例えば、3-ジアザシクロノナ-1,2-ジエン誘導体)と、メルドラム酸を反応させることにより製造することができる。この反応の反応温度や反応時間に特に制限はないが、例えば60~120℃、30分~2時間程度反応させればよい。 The method for producing the modifying compound represented by the above formula [D] is not particularly limited. For example, the modifying compound represented by the above formula [vii] may be used in an organic solvent used in the above general organic synthesis. , Pyridine, or other organic base compounds (for example, triethylamine, tributylamine, diisopropylethylamine), or an inorganic base such as potassium carbonate, sodium bicarbonate, sodium hydroxide, and cyclic ketone compounds (for example, cyclohexanone derivatives and γ- A pyrone derivative), a cyclic alkoxyimine compound (for example, a 6-position alkoxy-substituted tetrahydropyridine), or a cyclic carbodiimide compound (for example, a 3-diazacyclonona-1,2-diene derivative) and a reaction with Meldrum's acid. be able to. The reaction temperature and reaction time of this reaction are not particularly limited, but for example, the reaction may be performed at 60 to 120 ° C. for about 30 minutes to 2 hours.
 勿論、上記式[A]~[D]で表される修飾用化合物は、1種類でもよく、また、2種類以上を併用してもよい。 Of course, the modifying compounds represented by the above formulas [A] to [D] may be used alone or in combination of two or more.
 また、本発明の機能性ポリマー膜形成用塗布液は、被修飾用ポリマー又はこれらの被修飾用ポリマーを合成するためのモノマーを含有する。被修飾用ポリマーは、メルドラム酸構造と反応する部位を有していれば特に限定されないが、例えば、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、このポリイミド前駆体をイミド化して得られるポリイミド、アクリルポリマー、メタクリルポリマー、アクリルアミドポリマー、メタクリルアミドポリマー、ポリスチレン、ポリビニル、ポリシロキサンやポリアミド、ポリエステル、ポリウレタン、ポリカーネート、ポリウレア、ポリフェノール(ノボラック樹脂)、マレイミドポリマー、あるいは、イソシアヌル酸骨格やトリアジン骨格を有した化合物を導入したポリマーが挙げられる。また、ポリマーの形態は、例えば、デンドリマーやハイパーブランチポリマー、スターライクポリマーなどの分岐状ポリマー、ポリカテナンやポリロタキサンなどの非共有結合性ポリマーのような形態であっても良い。また、これらの被修飾用ポリマーを合成するためのモノマーとしては、被修飾用ポリマーがポリイミド前駆体やポリイミドの場合はテトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分、被修飾用ポリマーがアクリルポリマーの場合はアクリル酸、及びその誘導体、アクリル酸エステル、及びその誘導体、被修飾用ポリマーがメタクリルポリマーの場合はメタクリル酸、及びその誘導体、メタクリル酸エステル、及びその誘導体、被修飾用ポリマーがアクリルアミドポリマーの場合はアクリルアミド、及びその誘導体、被修飾用ポリマーがメタクリルアミドポリマーの場合はメタクリルアミド、及びその誘導体、被修飾用ポリマーがポリスチレンの場合はスチレン、及びその誘導体、被修飾用ポリマーがポリビニルの場合はビニル基を有した誘導体、被修飾用ポリマーがポリシロキサンの場合はメトキシ基やエトキシ基を有するシラン化合物、被修飾用ポリマーがポリアミドの場合、ジカルボン酸及びその誘導体から選択される少なくとも一種のジカルボン酸成分とジアミン成分、被修飾用ポリマーがポリエステルの場合、ジカルボン酸及びその誘導体から選択される少なくとも一種のジカルボン酸成分とジオール成分、被修飾用ポリマーがポリウレタンの場合、イソシアネートと化合物と水酸基を有する化合物、被修飾用ポリマーがポリカーネートの場合、ビスフェノール誘導体とホスゲン、または、ホスゲン等価体(例えば、トリクロロホスゲン)、もしくは、ジフェニルカーボネート、被修飾用ポリマーがポリウレアの場合、ビスイソシアネート誘導体とジアミン成分、被修飾用ポリマーがマレイミドポリマーの場合、マレイミド誘導体単独、あるいは、スチレンとの共重合、被修飾用ポリマーがイソシアヌル酸骨格やトリアジン骨格を有した化合物を導入したポリマーの場合、イソシアヌル酸骨格やトリアジン骨格を有した化合物が挙げられる。勿論、被修飾用ポリマーまたはこれらの被修飾用ポリマーを合成するためのモノマーは、1種類でもよく、また、2種類以上を併用してもよい。なお、ポリイミド前駆体とは、ポリアミック酸及びポリアミック酸エステルを指す。 The functional polymer film-forming coating solution of the present invention contains a polymer for modification or a monomer for synthesizing these polymers for modification. The polymer to be modified is not particularly limited as long as it has a site that reacts with the Meldrum's acid structure. For example, at least one tetracarboxylic acid component selected from tetracarboxylic acid and its derivatives and a diamine component are polymerized. Polyimide precursor obtained by imidating, polyimide obtained by imidizing this polyimide precursor, acrylic polymer, methacrylic polymer, acrylamide polymer, methacrylamide polymer, polystyrene, polyvinyl, polysiloxane and polyamide, polyester, polyurethane, polycarbonate, Examples thereof include polyurea, polyphenol (novolak resin), maleimide polymer, and a polymer in which a compound having an isocyanuric acid skeleton or a triazine skeleton is introduced. The polymer may be in the form of, for example, a branched polymer such as a dendrimer, a hyperbranched polymer or a star-like polymer, or a noncovalent polymer such as polycatenan or polyrotaxane. Moreover, as a monomer for synthesizing these polymers to be modified, when the polymer to be modified is a polyimide precursor or polyimide, at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component When the polymer to be modified is an acrylic polymer, acrylic acid and its derivatives, acrylic esters and derivatives thereof, and when the polymer to be modified is a methacrylic polymer, methacrylic acid and derivatives thereof, methacrylic esters and derivatives thereof Acrylamide and its derivatives when the polymer to be modified is an acrylamide polymer, methacrylamide and its derivatives when the polymer to be modified is a methacrylamide polymer, styrene and its derivatives when the polymer to be modified is polystyrene, Qualified When the polymer is polyvinyl, a derivative having a vinyl group is selected. When the polymer to be modified is polysiloxane, a silane compound having a methoxy group or an ethoxy group is selected. When the polymer to be modified is polyamide, the derivative is selected from dicarboxylic acids and derivatives thereof. At least one dicarboxylic acid component and a diamine component, when the polymer to be modified is a polyester, at least one dicarboxylic acid component and a diol component selected from dicarboxylic acids and derivatives thereof, and when the polymer to be modified is a polyurethane, an isocyanate and When the compound and the compound having a hydroxyl group, the polymer to be modified is a polycarbonate, a bisphenol derivative and phosgene, or a phosgene equivalent (for example, trichlorophosgene), diphenyl carbonate, or the polymer to be modified is a polyurea Bisisocyanate derivative and diamine component, if the polymer to be modified is a maleimide polymer, maleimide derivative alone or copolymerized with styrene, if the polymer to be modified is a polymer into which a compound having an isocyanuric acid skeleton or a triazine skeleton is introduced And compounds having an isocyanuric acid skeleton or a triazine skeleton. Of course, the polymer for modification or the monomer for synthesizing these polymers for modification may be one kind, and may use two or more kinds together. The polyimide precursor refers to polyamic acid and polyamic acid ester.
 本発明の機能性ポリマー膜形成用塗布液が含有する被修飾用ポリマーは、通常行なわれている方法で製造することができる。例えば、ポリイミド前駆体やポリイミドは、上述したようにテトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるものである。 The modified polymer contained in the functional polymer film-forming coating solution of the present invention can be produced by a conventional method. For example, a polyimide precursor or a polyimide is obtained by polymerizing at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component as described above.
 ジアミン成分としては、例えば、kが2である上記式[E1]で表されるジアミン化合物が挙げられる。また、従来ジアミン成分とテトラカルボン酸成分とを反応させてポリイミド前駆体を得る際に用いられているジアミン成分を用いることができる。なお、このポリイミド前駆体の原料であるジアミン成分を、一部または全部が上記式[A]で表される修飾用化合物の原料と同一の化合物としてもよく、また、ジアミン成分と上記式[A]で表される修飾用化合物の原料とを異なる化合物としてもよい。 The diamine component, for example, a diamine compound k 1 is represented by the formula [E1] is 2. Moreover, the diamine component currently used when making a polyimide precursor react by making a diamine component and a tetracarboxylic-acid component react can be used. The diamine component that is the raw material of the polyimide precursor may be partially or entirely the same as the raw material of the modifying compound represented by the above formula [A], or the diamine component and the above formula [A It is good also as a compound different from the raw material of the compound for a modification represented by these.
 また、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分として、従来ジアミン成分とテトラカルボン酸成分とを反応させてポリイミド前駆体を得る際に用いられているテトラカルボン酸成分を用いることができる。テトラカルボン酸誘導体としては、テトラカルボン酸ジハライド、下記式[F]で表されるテトラカルボン酸二無水物、テトラカルボン酸ジエステルジクロリド、テトラカルボン酸ジエステル等が挙げられる。例えば、テトラカルボン酸ジハライド、テトラカルボン酸二無水物など、テトラカルボン酸又はその誘導体と、ジアミン成分とを反応させることで、ポリアミック酸を得ることができる。また、テトラカルボン酸ジエステルジクロリドと、ジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分とを適当な縮合剤や、塩基の存在下等にて反応させることにより、ポリアミック酸エステルを得ることができる。 In addition, as at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof, a tetracarboxylic acid component that has been used in the past to obtain a polyimide precursor by reacting a diamine component and a tetracarboxylic acid component is used. Can be used. Examples of the tetracarboxylic acid derivative include tetracarboxylic acid dihalide, tetracarboxylic dianhydride represented by the following formula [F], tetracarboxylic acid diester dichloride, and tetracarboxylic acid diester. For example, a polyamic acid can be obtained by reacting tetracarboxylic acid or a derivative thereof such as tetracarboxylic acid dihalide or tetracarboxylic dianhydride with a diamine component. It is also possible to obtain a polyamic acid ester by reacting a tetracarboxylic acid diester dichloride with a diamine component, or reacting a tetracarboxylic acid diester with a diamine component in the presence of a suitable condensing agent or base. it can.
Figure JPOXMLDOC01-appb-C000042
(Xは4価の有機基である。)
Figure JPOXMLDOC01-appb-C000042
(X is a tetravalent organic group.)
 上記式[F]のXの具体例としては、下記式(X-1)~(X-46)で表される4価の有機基が挙げられる。化合物の入手性の観点から、Xは、(X-1)、(X-2)、(X-3)、(X-4)、(X-5)、(X-6)、(X-8)、(X-16)、(X-17)、(X-19)、(X-21)、(X-25)、(X-26)、(X-27)、(X-28)、(X-32)や(X-46)であることが好ましい。得られる機能性ポリマー膜(ポリイミド膜)の透明性を向上させたい場合は、脂肪族及び脂肪族環構造を有するテトラカルボン酸二無水物を用いることが好ましく、Xとしては、(X-1)、(X-2)、及び(X-25)がより好ましく、ジアミン成分との反応性の観点から、(X-1)がさらに好ましい。 Specific examples of X in the above formula [F] include tetravalent organic groups represented by the following formulas (X-1) to (X-46). From the viewpoint of availability of compounds, X represents (X-1), (X-2), (X-3), (X-4), (X-5), (X-6), (X- 8), (X-16), (X-17), (X-19), (X-21), (X-25), (X-26), (X-27), (X-28) , (X-32) and (X-46) are preferable. When it is desired to improve the transparency of the resulting functional polymer film (polyimide film), it is preferable to use a tetracarboxylic dianhydride having an aliphatic and aliphatic ring structure, and X is (X-1) , (X-2), and (X-25) are more preferred, and (X-1) is more preferred from the viewpoint of reactivity with the diamine component.
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000043
Figure JPOXMLDOC01-appb-C000044
Figure JPOXMLDOC01-appb-C000044
 テトラカルボン酸ジエステルの具体例としては、1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,3-ジメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-テトラメチル-1,2,3,4-シクロブタンテトラカルボン酸ジアルキルエステル、1,2,3,4-シクロペンタンテトラカルボン酸ジアルキルエステル、2,3,4,5-テトラヒドロフランテトラカルボン酸ジアルキルエステル、1,2,4,5-シクロヘキサンテトラカルボン酸ジアルキルエステル、3,4-ジカルボキシ-1-シクロヘキシルコハク酸ジアルキルエステル、3,4-ジカルボキシ-1,2,3,4-テトラヒドロ-1-ナフタレンコハク酸ジアルキルエステル、1,2,3,4-ブタンテトラカルボン酸ジアルキルエステル、ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸ジアルキルエステル、3,3’,4,4’-ジシクロヘキシルテトラカルボン酸ジアルキルエステル、2,3,5-トリカルボキシシクロペンチル酢酸ジアルキルエステル、シス-3,7-ジブチルシクロオクタ-1,5-ジエン-1,2,5,6-テトラカルボン酸ジアルキルエステル、トリシクロ[4.2.1.02,5]ノナン-3,4,7,8-テトラカルボン酸-3,4:7,8-ジアルキルエステル、ヘキサシクロ[6.6.0.12,7.03,6.19,14.010,13]ヘキサデカン-4,5,11,12-テトラカルボン酸-4,5:11,12-ジアルキルエステル、4-(2,5-ジオキソテトラヒドロフラン-3-イル)-1,2,3,4-テトラヒドロナフタレン-1,2-ジカルボンジアルキルエステルなどの脂肪族テトラカルボン酸ジエステルや、ピロメリット酸ジアルキルエステル、3,3’,4,4’-ビフェニルテトラカルボン酸ジアルキルエステル、2,2’,3,3’-ビフェニルテトラカルボン酸ジアルキルエステル、2,3,3’,4-ビフェニルテトラカルボン酸ジアルキルエステル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジアルキルエステル、2,3,3’,4-ベンゾフェノンテトラカルボン酸ジアルキルエステル、ビス(3,4-ジカルボキシフェニル)エーテルジアルキルエステル、ビス(3,4-ジカルボキシフェニル)スルホンジアルキルエステル、1,2,5,6-ナフタレンテトラカルボン酸ジアルキルエステル、2,3,6,7-ナフタレンテトラカルボン酸ジアルキルエステルなどの芳香族テトラカルボン酸ジアルキルエステルが挙げられる。 Specific examples of the tetracarboxylic acid diester include 1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2-dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,3- Dimethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4-tetramethyl-1,2,3,4-cyclobutanetetracarboxylic acid dialkyl ester, 1,2,3,4 -Cyclopentanetetracarboxylic acid dialkyl ester, 2,3,4,5-tetrahydrofurantetracarboxylic acid dialkyl ester, 1,2,4,5-cyclohexanetetracarboxylic acid dialkyl ester, 3,4-dicarboxy-1-cyclohexyl Acid dialkyl ester, 3,4-dicarboxy-1,2, , 4-Tetrahydro-1-naphthalene succinic acid dialkyl ester, 1,2,3,4-butanetetracarboxylic acid dialkyl ester, bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic acid dialkyl ester Ester, 3,3 ′, 4,4′-dicyclohexyltetracarboxylic acid dialkyl ester, 2,3,5-tricarboxycyclopentylacetic acid dialkyl ester, cis-3,7-dibutylcycloocta-1,5-diene-1, 2,5,6-tetracarboxylic acid dialkyl ester, tricyclo [4.2.1.0 2,5 ] nonane-3,4,7,8-tetracarboxylic acid-3,4: 7,8-dialkyl ester, Hexacyclo [6.6.0.1 2,7 . 0 3,6 . 1 9,14 . 0 10,13] hexadecane -4,5,11,12- tetracarboxylic acid-4,5: 11,12-dialkyl ester, 4- (2,5-di-oxo-tetrahydrofuran-3-yl) -1,2, Aliphatic tetracarboxylic acid diesters such as 3,4-tetrahydronaphthalene-1,2-dicarboxylic dialkyl ester, pyromellitic acid dialkyl ester, 3,3 ′, 4,4′-biphenyltetracarboxylic acid dialkyl ester, 2,2 ', 3,3'-biphenyltetracarboxylic acid dialkyl ester, 2,3,3', 4-biphenyltetracarboxylic acid dialkyl ester, 3,3 ', 4,4'-benzophenone tetracarboxylic acid dialkyl ester, 2,3 , 3 ′, 4-Benzophenonetetracarboxylic acid dialkyl ester, bis (3,4-dicarboxyphene) Nyl) ether dialkyl ester, bis (3,4-dicarboxyphenyl) sulfone dialkyl ester, 1,2,5,6-naphthalene tetracarboxylic acid dialkyl ester, 2,3,6,7-naphthalene tetracarboxylic acid dialkyl ester, etc. And aromatic tetracarboxylic acid dialkyl esters.
 勿論、ジアミン成分やテトラカルボン酸成分はそれぞれ1種類でもよく、また、2種類以上を併用してもよい。 Of course, each of the diamine component and the tetracarboxylic acid component may be one kind, or two or more kinds may be used in combination.
 テトラカルボン酸成分とジアミン成分とを重合反応させてポリイミド前駆体を合成する方法は特に限定されず、公知の合成手法を用いることができる。 A method for synthesizing a polyimide precursor by polymerizing a tetracarboxylic acid component and a diamine component is not particularly limited, and a known synthesis method can be used.
 例えば、ジアミン成分とテトラカルボン酸二無水物との反応は、ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる方法が挙げられる。その際に用いる有機溶媒は、生成したポリイミド前駆体が溶解するものであれば特に限定されない。その具体例としては、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、イソプロピルアルコール、メトキシメチルペンタノール、ジペンテン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、メチルセルソルブ、エチルセルソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、ジオキサン、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、ジグライムまたは4-ヒドロキシ-4-メチル-2-ペンタノンなどが挙げられる。これらは単独で使用しても、混合して使用してもよい。さらに、ポリイミド前駆体を溶解させない溶媒であっても、生成したポリイミド前駆体が析出しない範囲で、上記溶媒に混合して使用してもよい。また、有機溶媒中の水分は重合反応を阻害し、さらには生成したポリイミド前駆体を加水分解させる原因となるので、有機溶媒は脱水乾燥させたものを用いることが好ましい。 For example, the reaction of the diamine component and tetracarboxylic dianhydride includes a method of reacting the diamine component and tetracarboxylic dianhydride in an organic solvent. The organic solvent used in that case will not be specifically limited if the produced | generated polyimide precursor melt | dissolves. Specific examples thereof include N, N-dimethylformamide, N, N-dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, dimethyl sulfoxide, tetramethyl urea, pyridine, dimethyl sulfone, hexamethyl sulfoxide, γ -Butyrolactone, isopropyl alcohol, methoxymethylpentanol, dipentene, ethyl amyl ketone, methyl nonyl ketone, methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, methyl cellosolve, ethyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol , Ethyl carbitol, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol Monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol monomethyl ether, diethylene glycol, diethylene glycol monoacetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl Ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol Methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclohexene, propyl ether, dihexyl ether, dioxane, n- Hexane, n-pentane, n-octane, diethyl ether, cyclohexanone, ethylene carbonate, propylene carbonate, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, Ethyl pyruvate, methyl 3-methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3- Tokishipuropion acid, 3-methoxy propionic acid propyl, 3-methoxy propionic acid butyl, and the like diglyme or 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination. Furthermore, even if it is a solvent which does not dissolve a polyimide precursor, you may mix and use the said solvent in the range which the produced | generated polyimide precursor does not precipitate. Moreover, since the water | moisture content in an organic solvent inhibits a polymerization reaction, and also causes the produced polyimide precursor to hydrolyze, it is preferable to use what dehydrated and dried the organic solvent.
 ジアミン成分とテトラカルボン酸二無水物とを有機溶媒中で反応させる際には、ジアミン成分を有機溶媒に分散あるいは溶解させた溶液を攪拌させ、テトラカルボン酸二無水物をそのまま、または有機溶媒に分散、あるいは溶解させて添加する方法、逆にテトラカルボン酸二無水物を有機溶媒に分散、あるいは溶解させた溶液にジアミン成分を添加する方法、テトラカルボン酸二無水物とジアミン成分とを交互に添加する方法などが挙げられ、これらのいずれの方法を用いてもよい。また、ジアミン成分またはテトラカルボン酸二無水物を、それぞれ複数種用いて反応させる場合は、あらかじめ混合した状態で反応させてもよく、個別に順次反応させてもよく、さらに個別に反応させた低分子量体を混合反応させ重合体としてもよい。その際の重合温度は-20℃~150℃の任意の温度を選択することができるが、好ましくは-5℃~100℃の範囲である。また、反応は任意の濃度で行うことができるが、濃度が低すぎると高分子量の重合体を得ることが難しくなり、濃度が高すぎると反応液の粘性が高くなり過ぎて均一な攪拌が困難となる。そのため、好ましくは1~50質量%、より好ましくは5~30質量%である。反応初期は高濃度で行い、その後、有機溶媒を追加することができる。 When the diamine component and the tetracarboxylic dianhydride are reacted in an organic solvent, the solution in which the diamine component is dispersed or dissolved in the organic solvent is stirred, and the tetracarboxylic dianhydride is used as it is or in an organic solvent. Dispersed or dissolved and added, reversely tetracarboxylic dianhydride dispersed or dissolved in an organic solvent, diamine component added, tetracarboxylic dianhydride and diamine component alternately The method of adding etc. is mentioned, You may use any of these methods. In addition, when a plurality of types of diamine components or tetracarboxylic dianhydrides are used for reaction, they may be reacted in a premixed state, may be individually reacted sequentially, or may be further reacted individually. A molecular weight body may be mixed and reacted to form a polymer. In this case, the polymerization temperature can be selected from -20 ° C to 150 ° C, but is preferably in the range of -5 ° C to 100 ° C. The reaction can be carried out at any concentration, but if the concentration is too low, it is difficult to obtain a high molecular weight polymer, and if the concentration is too high, the viscosity of the reaction solution becomes too high and uniform stirring is difficult. It becomes. Therefore, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass. The initial stage of the reaction is carried out at a high concentration, and then an organic solvent can be added.
 ポリイミド前駆体の重合反応においては、ジアミン成分の合計モル数とテトラカルボン酸二無水物の合計モル数の比は0.8~1.2であることが好ましい。通常の重縮合反応同様、このモル比が1.0に近いほど生成するポリイミド前駆体の分子量は大きくなる。 In the polymerization reaction of the polyimide precursor, the ratio of the total number of moles of the diamine component to the total number of moles of tetracarboxylic dianhydride is preferably 0.8 to 1.2. Similar to a normal polycondensation reaction, the molecular weight of the polyimide precursor produced increases as the molar ratio approaches 1.0.
 また、ポリアミック酸エステルは、上記のようにテトラカルボン酸ジエステルジクロリドとジアミン成分との反応や、テトラカルボン酸ジエステルとジアミン成分を適当な縮合剤、塩基の存在下にて反応させることにより得ることができる。または、上記の方法で予めポリアミック酸を合成し、高分子反応を利用してポリアミック酸のカルボキシル基をエステル化することでも得ることができる。 The polyamic acid ester can be obtained by reacting the tetracarboxylic acid diester dichloride with the diamine component as described above, or reacting the tetracarboxylic acid diester with the diamine component in the presence of an appropriate condensing agent or base. it can. Alternatively, it can also be obtained by previously synthesizing a polyamic acid by the above method and esterifying the carboxyl group of the polyamic acid using a polymer reaction.
 具体的には、例えば、テトラカルボン酸ジエステルジクロリドとジアミン成分とを塩基と有機溶剤の存在下で-20℃~150℃、好ましくは0℃~50℃において、30分~24時間、好ましくは1時間~4時間反応させることによって、ポリアミック酸エステルを合成することができる。 Specifically, for example, tetracarboxylic acid diester dichloride and a diamine component in the presence of a base and an organic solvent at −20 ° C. to 150 ° C., preferably 0 ° C. to 50 ° C., for 30 minutes to 24 hours, preferably 1 By reacting for 4 to 4 hours, a polyamic acid ester can be synthesized.
 塩基としては、ピリジン、トリエチルアミン、4-ジメチルアミノピリジンなどが使用できるが、反応が穏和に進行するためピリジンが好ましい。塩基の添加量は、除去が容易な量で、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドに対して、2~4倍モルであることが好ましい。 As the base, pyridine, triethylamine, 4-dimethylaminopyridine and the like can be used, but pyridine is preferable because the reaction proceeds gently. The addition amount of the base is preferably 2 to 4 times the molar amount of the tetracarboxylic acid diester dichloride from the viewpoint of easy removal and high molecular weight.
 また、テトラカルボン酸ジエステルとジアミン成分を、縮合剤存在下にて重縮合する場合、塩基として、トリフェニルホスファイト、ジシクロヘキシルカルボジイミド、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド塩酸塩、N,N’-カルボニルジイミダゾール、ジメトキシ-1,3,5-トリアジニルメチルモルホリニウム、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウム テトラフルオロボラート、O-(ベンゾトリアゾール-1-イル)-N,N,N’,N’-テトラメチルウロニウムヘキサフルオロホスファート、(2,3-ジヒドロ-2-チオキソ-3-ベンゾオキサゾリル)ホスホン酸ジフェニル、4-(4,6-ジメトキシ-1,3,5-トリアジンー2-イル)4-メトキシモルホリウムクロリド n-水和物などが使用できる。 Further, when polycondensation of tetracarboxylic acid diester and diamine component in the presence of a condensing agent, triphenyl phosphite, dicyclohexylcarbodiimide, 1-ethyl-3- (3-dimethylaminopropyl) carbodiimide hydrochloride, N, N′-carbonyldiimidazole, dimethoxy-1,3,5-triazinylmethylmorpholinium, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium Tetrafluoroborate, O- (benzotriazol-1-yl) -N, N, N ′, N′-tetramethyluronium hexafluorophosphate, (2,3-dihydro-2-thioxo-3-benzoxa Zolyl) phosphonic acid diphenyl, 4- (4,6-dimethoxy-1,3,5-triazine-2-y ) And 4-methoxy mol ho potassium chloride n- hydrate can be used.
 また、上記縮合剤を用いる方法において、ルイス酸を添加剤として加えることで反応が効率的に進行する。ルイス酸としては、塩化リチウム、臭化リチウムなどのハロゲン化リチウムが好ましい。ルイス酸の添加量は反応させるジアミンまたはテトラカルボン酸ジエステルに対して0.1~1.0倍モル量であることが好ましい。 In the method using the condensing agent, the reaction proceeds efficiently by adding Lewis acid as an additive. As the Lewis acid, lithium halides such as lithium chloride and lithium bromide are preferable. The addition amount of the Lewis acid is preferably 0.1 to 1.0 times the molar amount of the diamine or tetracarboxylic acid diester to be reacted.
 上記の反応に用いる溶媒は、上記にて示したポリアミック酸を合成する際に用いられる溶媒と同様の溶媒で行なうことができるが、モノマーおよびポリマーの溶解性からN-メチル-2-ピロリドン、γ-ブチロラクトンが好ましく、これらは1種又は2種以上を混合して用いてもよい。合成時の濃度は、重合体の析出が起こりにくく、かつ高分子量体が得やすいという観点から、テトラカルボン酸ジエステルジクロリドやテトラカルボン酸ジエステル等のテトラカルボン酸誘導体とジアミン成分の反応溶液中での合計濃度が1~30質量%が好ましく、5~20質量%がより好ましい。また、テトラカルボン酸ジエステルジクロリドの加水分解を防ぐため、ポリアミック酸エステルの合成に用いる溶媒はできるだけ脱水されていることがよく、窒素雰囲気中で、外気の混入を防ぐのが好ましい。 The solvent used in the above reaction can be the same solvent as that used in the synthesis of the polyamic acid shown above. However, N-methyl-2-pyrrolidone, γ -Butyrolactone is preferred, and these may be used alone or in combination of two or more. The concentration at the time of synthesis is such that in the reaction solution of a tetracarboxylic acid derivative such as tetracarboxylic acid diester dichloride or tetracarboxylic acid diester and a diamine component, from the viewpoint that polymer precipitation is difficult to occur and a high molecular weight product is easily obtained. The total concentration is preferably 1 to 30% by mass, and more preferably 5 to 20% by mass. Moreover, in order to prevent hydrolysis of tetracarboxylic acid diester dichloride, the solvent used for the synthesis of the polyamic acid ester is preferably dehydrated as much as possible, and it is preferable to prevent mixing of outside air in a nitrogen atmosphere.
 本発明の機能性ポリマー膜形成用塗布液が含有するポリイミドは、上記ポリイミド前駆体を脱水閉環させることにより得られる。このポリイミドにおいて、アミド酸基の脱水閉環率(イミド化率)は、必ずしも100%である必要はなく、用途や目的に応じて任意に調整することができる。 The polyimide contained in the functional polymer film-forming coating solution of the present invention can be obtained by dehydrating and ring-closing the polyimide precursor. In this polyimide, the dehydration cyclization rate (imidization rate) of the amic acid group is not necessarily 100%, and can be arbitrarily adjusted according to the application and purpose.
 ポリイミド前駆体をイミド化させる方法としては、ポリイミド前駆体の溶液をそのまま加熱する熱イミド化またはポリイミド前駆体の溶液に触媒を添加する触媒イミド化が挙げられる。 Examples of the method for imidizing the polyimide precursor include thermal imidization in which the polyimide precursor solution is heated as it is or catalytic imidization in which a catalyst is added to the polyimide precursor solution.
 ポリイミド前駆体を溶液中で熱イミド化させる場合の温度は、100~400℃、好ましくは120~250℃であり、イミド化反応により生成する水を系外に除きながら行う方が好ましい。 The temperature when the polyimide precursor is thermally imidized in a solution is 100 to 400 ° C., preferably 120 to 250 ° C., and it is preferable to carry out while removing water generated by the imidation reaction from the system.
 ポリイミド前駆体の触媒イミド化は、ポリイミド前駆体の溶液に、塩基性触媒と酸無水物とを添加し、-20~250℃、好ましくは0~180℃で攪拌することにより行うことができる。塩基性触媒の量はアミド酸基の0.5~30モル倍、好ましくは2~20モル倍であり、酸無水物の量はアミド酸基の1~50モル倍、好ましくは3~30モル倍である。塩基性触媒としてはピリジン、トリエチルアミン、トリメチルアミン、トリブチルアミンまたはトリオクチルアミンなどを挙げることができ、中でもピリジンは反応を進行させるのに適度な塩基性を持つので好ましい。酸無水物としては、無水酢酸、無水トリメリット酸または無水ピロメリット酸などを挙げることができ、中でも無水酢酸を用いると反応終了後の精製が容易となるので好ましい。触媒イミド化によるイミド化率は、触媒量と反応温度、反応時間を調節することにより制御することができる。 The catalyst imidation of the polyimide precursor can be performed by adding a basic catalyst and an acid anhydride to the polyimide precursor solution and stirring at -20 to 250 ° C, preferably 0 to 180 ° C. The amount of the basic catalyst is 0.5 to 30 mol times, preferably 2 to 20 mol times of the amic acid group, and the amount of the acid anhydride is 1 to 50 mol times, preferably 3 to 30 mol of the amido acid group. Is double. Examples of the basic catalyst include pyridine, triethylamine, trimethylamine, tributylamine, and trioctylamine. Among them, pyridine is preferable because it has a basicity appropriate for advancing the reaction. Examples of the acid anhydride include acetic anhydride, trimellitic anhydride, pyromellitic anhydride, and the like. Among them, use of acetic anhydride is preferable because purification after completion of the reaction is facilitated. The imidization rate by catalytic imidation can be controlled by adjusting the amount of catalyst, reaction temperature, and reaction time.
 なお、ポリイミド前駆体またはポリイミドの反応溶液から、生成したポリイミド前駆体またはポリイミドを回収する場合には、反応溶液を溶媒に投入して沈殿させればよい。沈殿に用いる溶媒としてはメタノール、アセトン、ヘキサン、ブチルセルソルブ、ヘプタン、メチルエチルケトン、メチルイソブチルケトン、エタノール、トルエン、ベンゼン、水などを挙げることができる。溶媒に投入して沈殿させたポリマーは濾過して回収した後、常圧あるいは減圧下で、常温あるいは加熱して乾燥することができる。また、沈殿回収した重合体を、有機溶媒に再溶解させ、再沈殿回収する操作を2~10回繰り返すと、重合体中の不純物を少なくすることができる。この際の溶媒として、例えば、アルコール類、ケトン類または炭化水素などが挙げられ、これらの内から選ばれる3種類以上の溶媒を用いると、より一層精製の効率が上がるので好ましい。 In addition, what is necessary is just to throw a reaction solution into a solvent and to precipitate, when collect | recovering the produced | generated polyimide precursor or a polyimide from the reaction solution of a polyimide precursor or a polyimide. Examples of the solvent used for precipitation include methanol, acetone, hexane, butyl cellosolve, heptane, methyl ethyl ketone, methyl isobutyl ketone, ethanol, toluene, benzene, and water. The polymer precipitated in the solvent can be collected by filtration, and then dried by normal temperature or reduced pressure at room temperature or by heating. In addition, when the polymer collected by precipitation is redissolved in an organic solvent and reprecipitation and collection is repeated 2 to 10 times, impurities in the polymer can be reduced. Examples of the solvent at this time include alcohols, ketones, and hydrocarbons, and it is preferable to use three or more kinds of solvents selected from these because purification efficiency is further increased.
 また、被修飾用ポリマーとして用いることができるポリイミド前駆体、およびポリイミド以外のポリマーとして、アクリルポリマー、メタクリルポリマー、アクリルアミドポリマー、メタクリルアミドポリマー、ポリスチレン、ポリビニル、ポリシロキサン、ポリアミド、ポリエステル、ポリウレタン、ポリカーネート、ポリウレア、ポリフェノール(ノボラック樹脂)、マレイミドポリマー、あるいは、イソシアヌル酸骨格やトリアジン骨格を導入したポリマー、デンドリマーやハイパーブランチポリマー、スターライクポリマーなどの分岐状ポリマー、ポリカテナンやポリロタキサンなどの非共有結合性ポリマーなどが挙げられ、これらポリマー中に、メルドラム酸化合物が熱分解して形成するケテン中間体と反応可能な官能基(例えば、カルボキシル基、ヒドロキシ基、チオール、アミノ基、イミノ基、炭素-炭素二重結合(アルケン)や炭素-炭素三重結合(アルキン)などの不飽和結合、ニトリル、ケトンやアルデヒド、エステル、アミド、イミド)などが存在していれば、これらポリマーは、市販のものや、公知のものを適用してもかまわない。 In addition, a polyimide precursor that can be used as a polymer to be modified, and polymers other than polyimide include acrylic polymer, methacrylic polymer, acrylamide polymer, methacrylamide polymer, polystyrene, polyvinyl, polysiloxane, polyamide, polyester, polyurethane, polycarbonate , Polyurea, polyphenol (novolak resin), maleimide polymer, polymers incorporating isocyanuric acid skeleton and triazine skeleton, branched polymers such as dendrimer, hyperbranched polymer, star-like polymer, and non-covalent polymers such as polycatenan and polyrotaxane In these polymers, functional groups capable of reacting with ketene intermediates formed by the thermal decomposition of Meldrum's acid compound (for example, , Carboxyl group, hydroxy group, thiol, amino group, imino group, unsaturated bond such as carbon-carbon double bond (alkene) and carbon-carbon triple bond (alkyne), nitrile, ketone, aldehyde, ester, amide, imide ) And the like, these polymers may be commercially available or known.
 本発明の機能性ポリマー膜形成用塗布液が含有する被修飾用ポリマーは、得られる機能性ポリマー膜の強度、機能性ポリマー膜形成時の作業性、機能性ポリマー膜の均一性を考慮した場合、GPC(Gel Permeation Chromatography)法で測定した重量平均分子量で5,000~1,000,000とするのが好ましく、より好ましくは、10,000~150,000である。 The polymer to be modified contained in the functional polymer film forming coating liquid of the present invention is in consideration of the strength of the obtained functional polymer film, the workability when forming the functional polymer film, and the uniformity of the functional polymer film. The weight average molecular weight measured by GPC (Gel Permeation Chromatography) method is preferably 5,000 to 1,000,000, and more preferably 10,000 to 150,000.
 このような、機能性を付与する機能性構造部位W~Wと、これに連結された少なくとも1つのメルドラム酸構造部位とを具備する上記式[A]~[D]で表される群から選択される少なくとも一種の修飾用化合物と、被修飾用ポリマー又はこの被修飾用ポリマーを合成するためのモノマーとを含有することにより、すなわち、例えば従来のポリマー膜等を形成するためのポリマー膜形成用塗布液にさらに上記式[A]~[D]で表される群から選択される少なくとも一種の修飾用化合物を含有させることにより、種々の特性を比較的自由に改善した機能性ポリマー膜を得ることができる機能性ポリマー膜形成用塗布液となる。 The group represented by the above formulas [A] to [D], comprising functional structural portions W 1 to W 5 that impart functionality, and at least one meldrum acid structural portion linked thereto. A polymer film for forming a conventional polymer film or the like, for example, by containing at least one modifying compound selected from the above and a polymer to be modified or a monomer for synthesizing the polymer to be modified A functional polymer film in which various properties are relatively freely improved by further containing at least one modifying compound selected from the group represented by the formulas [A] to [D] in the forming coating solution The coating liquid for forming a functional polymer film can be obtained.
 詳述すると、上記式[A]~[D]で表される修飾用化合物は、メルドラム酸構造、すなわち、メルドラム酸由来の構造を末端に少なくとも1個有しており、このメルドラム酸構造は、加熱される(例えば180~250℃以上)ことにより、二酸化炭素とアセトンの脱離を伴い、ケテン(すなわち、二価の基である>C=C=Oを持つカルボニル化合物)となり、例えば、ポリイミド前駆体、ポリイミド、アクリルポリマー、メタクリルポリマー、アクリルアミドポリマー、メタクリルアミドポリマー、ポリスチレン、ポリビニル、ポリシロキサン、ポリアミド、ポリエステル、ポリウレタン、ポリカーネート、ポリウレア、ポリフェノール(ノボラック樹脂)、マレイミドポリマー、あるいは、イソシアヌル酸骨格やトリアジン骨格を導入したポリマー、デンドリマーやハイパーブランチポリマー、スターライクポリマーなどの分岐状ポリマー、ポリカテナンやポリロタキサンなどの非共有結合性ポリマー中に存在する修飾可能な官能基(例えば、カルボキシル基、ヒドロキシ基、チオール、アミノ基、イミノ基、炭素-炭素二重結合(アルケン)や炭素-炭素三重結合(アルキン)などの不飽和結合、ニトリル基、ケトン基やアルデヒド基、エステル基、アミド基、イミド基)と反応、あるいは、ケテン自身で二量化するなどして反応するものである。したがって、上記式[A]~[D]で表される修飾用化合物は、高温に加熱されていない(たとえば100℃以下)機能性ポリマー膜形成用塗布液の状態では被修飾用ポリマーや被修飾用ポリマーを合成するためのモノマーと反応しないが、加熱されることにより、メルドラム酸構造を介して被修飾用ポリマーに導入される。なお、k~kが2以上である上記式[A]~[D]で表される修飾用化合物の場合、メルドラム構造を2個以上有しているため、加熱後は、被修飾用ポリマーが上記式[A]~[D]で表される修飾用化合物により架橋された構造になると推測される。 More specifically, the modifying compounds represented by the above formulas [A] to [D] have at least one Meldrum's acid structure, that is, Meldrum's-derived structure at the end. When heated (for example, 180 to 250 ° C. or higher), carbon dioxide and acetone are eliminated to form ketene (that is, a carbonyl compound having a divalent group> C═C═O). For example, polyimide Precursor, polyimide, acrylic polymer, methacrylic polymer, acrylamide polymer, methacrylamide polymer, polystyrene, polyvinyl, polysiloxane, polyamide, polyester, polyurethane, polycarbonate, polyurea, polyphenol (novolak resin), maleimide polymer, or isocyanuric acid skeleton And triazine skeleton introduced Functional groups present in non-covalent polymers such as polycatenans and polyrotaxanes (eg carboxyl groups, hydroxy groups, thiols, amino groups) Reaction with an imino group, an unsaturated bond such as a carbon-carbon double bond (alkene) or a carbon-carbon triple bond (alkyne), a nitrile group, a ketone group, an aldehyde group, an ester group, an amide group, an imide group), or It reacts by dimerization with ketene itself. Therefore, the modifying compounds represented by the above formulas [A] to [D] are not heated to a high temperature (for example, 100 ° C. or less), and in the state of the functional polymer film forming coating solution, the modifying polymer or modified compound is used. Although it does not react with the monomer for synthesizing the polymer for use, it is introduced into the polymer for modification via the Meldrum's acid structure by heating. In the case of the modifying compound represented by the above formulas [A] to [D] in which k 1 to k 4 are 2 or more, it has two or more Meldrum structures. It is presumed that the polymer has a structure crosslinked with the modifying compounds represented by the above formulas [A] to [D].
 よって、本発明の機能性ポリマー膜形成用塗布液を基板に塗布し焼成して得られる機能性ポリマー膜は、上記式[A]~[D]で表される修飾用化合物が有するW~Wの構造が被修飾用ポリマーに導入されたものとなる。 Therefore, the functional polymer film obtained by applying the functional polymer film-forming coating solution of the present invention to a substrate and baking is used for the W 1 -W possessed by the modifying compounds represented by the above formulas [A]-[D]. structure of W 5 is what is introduced into the modified polymer.
 ここで、従来、機能性ポリマー膜の一例であるポリイミド膜はその特徴である高い機械的強度、耐熱性、耐溶剤性のために、液晶配向膜や、電気・電子分野における保護材料、絶縁材料として広く用いられており、所望の特性を改善するために種々のジアミン成分を原料の一部として用いることが行われているが、所望のジアミン成分を自由に用いることができない場合もある。例えば、液晶配向膜においては、液晶配向性やプレチルト角の向上等、所望の特性を改善するために種々のジアミン成分を原料の一部として用いることが行われているが、所望の特性を得るために用いるジアミン成分の種類、組み合わせや量によっては、ジアミン成分とテトラカルボン酸成分との重合反応性が悪くなるため、所望の特性を得るためのジアミン成分の種類、組み合わせや量が制限されてしまう場合がある。また、所望の特性を得るために用いるジアミン成分の種類や組み合わせごとに、ジアミン成分とテトラカルボン酸成分との重合反応条件を検討する必要がある。また、均一なポリイミド膜を形成できるポリイミド膜形成用塗布液(機能性ポリマー膜形成用塗布液)とするためには、含有成分が溶媒に溶解した溶液状態とする必要があるが、所望の特性を得るために用いるジアミン成分の種類、組み合わせや量によっては、ポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドの溶解性が悪くなるという問題がある。そして、ポリイミド膜に限らず、種々のポリマー膜において、所望の特性を改善するために種々のモノマーを原料の一部として用いる場合も、同様に、重合反応性が悪くなるという問題、所望の特性を得るために用いるモノマーの種類や組み合わせごとに重合反応条件を検討する必要があるという問題や、機能性ポリマー膜形成用塗布液が含有するポリマーの溶解性が悪くなるという問題がある。 Here, a polyimide film, which is an example of a functional polymer film, is a liquid crystal alignment film, a protective material in the electric / electronic field, and an insulating material because of its high mechanical strength, heat resistance, and solvent resistance. In order to improve desired characteristics, various diamine components are used as a part of raw materials. However, there are cases where a desired diamine component cannot be used freely. For example, in a liquid crystal alignment film, various diamine components are used as a part of raw materials in order to improve desired characteristics such as improvement of liquid crystal orientation and pretilt angle. Depending on the type, combination and amount of the diamine component used, the polymerization reactivity between the diamine component and the tetracarboxylic acid component is deteriorated, so the type, combination and amount of the diamine component for obtaining desired properties are limited. May end up. Moreover, it is necessary to examine the polymerization reaction conditions between the diamine component and the tetracarboxylic acid component for each type and combination of diamine components used for obtaining desired characteristics. Moreover, in order to obtain a coating solution for forming a polyimide film that can form a uniform polyimide film (a coating solution for forming a functional polymer film), it is necessary to use a solution in which the components are dissolved in a solvent. Depending on the type, combination and amount of the diamine component used to obtain the polyimide, there is a problem that the solubility of the polyimide precursor and polyimide contained in the polyimide film-forming coating solution is deteriorated. In addition, not only in polyimide films, but also in various polymer films, when various monomers are used as a part of raw materials in order to improve desired characteristics, the problem that polymerization reactivity deteriorates as well as desired characteristics There is a problem that it is necessary to examine polymerization reaction conditions for each kind and combination of monomers used to obtain a polymer, and there is a problem that the solubility of the polymer contained in the functional polymer film forming coating solution is deteriorated.
 本発明においては、機能性ポリマー膜形成用塗布液の段階では、被修飾用ポリマーまたは被修飾用ポリマーを合成するためのモノマーと、所望の特性を得るための化合物である上記式[A]~[D]で表される被修飾用化合物とを別個の化合物として含有するものであり、機能性ポリマー膜形成用塗布液を加熱(焼成)する段階で、所望の特性を得るための化合物である上記式[A]~[D]で表される被修飾用化合物を被修飾用ポリマーに導入するものである。したがって、機能性ポリマー膜形成用塗布液が含有する被修飾用ポリマーは所望の特性を得るためのモノマーを原料とする必要がないため、モノマーの重合反応性が悪くなるという問題、所望の特性を得るために用いるモノマーの種類や組み合わせごとに重合反応条件を検討する必要があるという問題や、機能性ポリマー膜形成用塗布液が含有するポリマーの溶解性が悪くなるという問題は生じない。よって、本発明の機能性ポリマー膜形成用塗布液は、モノマーの重合反応性、重合反応条件の検討の必要性や、ポリマーの溶解性を考慮することなく、所望の特性(機能)を得るための被修飾用化合物を用いることができるため、従来のポリマー膜形成用の塗布液と比較して、得られる機能性ポリマー膜の種々の特性を比較的自由に改善することができる。 In the present invention, at the stage of the functional polymer film forming coating solution, the polymer to be modified or the monomer for synthesizing the polymer to be modified and the above-mentioned formula [A] to The compound to be modified is represented by [D] and is a compound for obtaining desired characteristics at the stage of heating (baking) the functional polymer film-forming coating solution. A compound for modification represented by the above formulas [A] to [D] is introduced into a polymer for modification. Therefore, the polymer to be modified contained in the coating liquid for forming the functional polymer film does not need to use a monomer as a raw material for obtaining the desired characteristics, and therefore the problem that the polymerization reactivity of the monomers is deteriorated, the desired characteristics. There is no problem that it is necessary to examine the polymerization reaction conditions for each kind and combination of monomers used for obtaining, and the problem that the solubility of the polymer contained in the functional polymer film forming coating solution is deteriorated. Therefore, the coating liquid for forming a functional polymer film of the present invention is intended to obtain desired characteristics (functions) without considering the polymerization reactivity of the monomers, the necessity of examining the polymerization reaction conditions, and the solubility of the polymer. Therefore, various properties of the obtained functional polymer film can be improved relatively freely as compared with the conventional coating liquid for forming a polymer film.
 さらに、本発明の機能性ポリマー膜形成用塗布液が、メルドラム構造を2個以上有している上記式[A]~[D]で表される修飾用化合物を含有する場合は、被修飾用ポリマーが、加熱により上記式[A]~[D]で表される修飾用化合物で架橋されるため、得られる機能性ポリマー膜は、有機溶剤に対する耐性があり、また、硬い膜となる。 Further, when the coating liquid for forming a functional polymer film of the present invention contains a modifying compound represented by the above formulas [A] to [D] having two or more Meldrum structures, Since the polymer is crosslinked with the modifying compounds represented by the above formulas [A] to [D] by heating, the resulting functional polymer film is resistant to an organic solvent and becomes a hard film.
 また、テトラカルボン酸及びその誘導体から選択される少なくとも一種のテトラカルボン酸成分とジアミン成分とを重合反応させることにより得られるポリイミド前駆体、及びこのポリイミド前駆体をイミド化して得られるポリイミドから選択される少なくとも一方のポリマーと、上記式[i]で表されメルドラム酸構造を2個有する修飾用化合物とを含有する機能性ポリマー膜形成用塗布液を用いる場合、この上記式[i]で表される修飾用化合物は、ジアミン化合物の二つのアミノ基のそれぞれにメルドラム酸構造を導入したものであり、このジアミン化合物として、従来検討されていた所望の特性を得るためのジアミン成分、すなわち、テトラカルボン酸成分と重合反応させてポリイミド前駆体やポリイミドを製造するためのジアミン成分であって所望の特性を得るためのジアミン成分を適用することができる。したがって、得られるポリイミド膜の種々の特性を、容易に改善することができる。 Further, it is selected from a polyimide precursor obtained by polymerization reaction of at least one tetracarboxylic acid component selected from tetracarboxylic acid and derivatives thereof and a diamine component, and a polyimide obtained by imidizing this polyimide precursor. When a coating solution for forming a functional polymer film containing at least one polymer and a modifying compound represented by the above formula [i] and having two Meldrum's acid structures is used, it is represented by the above formula [i]. The modifying compound is obtained by introducing a Meldrum's acid structure into each of the two amino groups of the diamine compound. As this diamine compound, a diamine component for obtaining the desired properties that have been conventionally studied, that is, tetracarboxylic acid is used. Diamine for producing polyimide precursor and polyimide by polymerization reaction with acid component A minute can be applied diamine component for obtaining the desired characteristics. Therefore, various characteristics of the obtained polyimide film can be easily improved.
 なお、被修飾用ポリマーを含有する機能性ポリマー膜形成用塗布液の場合、上記式[A]~[D]で表される修飾用化合物は、加熱することにより被修飾用ポリマーに側鎖として導入され、特に、上記式[A]~[D]で表される修飾用化合物がメルドラム構造を2個以上有している場合は、被修飾用ポリマーが上記式[A]~[D]で表される修飾用化合物により架橋された構造になる。また、被修飾用ポリマーを合成するためのモノマーを含有する機能性ポリマー膜形成用塗布液の場合、上記式[A]~[D]で表される修飾用化合物のメルドラム酸構造はモノマーの重合が生じる温度では基本的に反応しないため、まず被修飾用ポリマーを合成するためのモノマーを低温で重合することにより被修飾用ポリマーを合成し、その後、加熱することにより上記式[A]~[D]で表される修飾用化合物が被修飾用ポリマーの側鎖として導入され、特に、上記式[A]~[D]で表される修飾用化合物がメルドラム構造を2個以上有している場合は、被修飾用ポリマーが上記式[A]~[D]で表される修飾用化合物により架橋された構造になる。しかしながら、被修飾用ポリマーを合成するためのモノマーと、メルドラム構造を2個以上有している上記式[A]~[D]で表される修飾用化合物を含有する機能性ポリマー膜形成用塗布液の場合、モノマーの重合反応及びメルドラム酸構造の反応の両方が生じる温度にすることにより、モノマーの重合と同時にメルドラム酸構造の反応を生じさせて、被修飾用ポリマーの主鎖に上記式[A]~[D]で表される修飾用化合物を導入することもできる。 In the case of a functional polymer film-forming coating solution containing a polymer to be modified, the modifying compound represented by the above formulas [A] to [D] is heated as a side chain on the polymer to be modified. In particular, when the modifying compound represented by the above formulas [A] to [D] has two or more Meldrum structures, the polymer to be modified is represented by the above formulas [A] to [D]. A crosslinked structure is obtained by the modifying compound represented. In the case of a functional polymer film-forming coating solution containing a monomer for synthesizing the polymer to be modified, the Meldrum's acid structure of the modifying compound represented by the above formulas [A] to [D] is the polymerization of the monomer. Therefore, the monomer for synthesizing the polymer for modification is first polymerized at a low temperature to synthesize the polymer for modification, and then heated to the above formulas [A] to [[ D] is introduced as a side chain of the polymer to be modified, and in particular, the modifying compounds represented by the above formulas [A] to [D] have two or more Meldrum structures. In this case, the polymer to be modified has a structure crosslinked with the modifying compounds represented by the above formulas [A] to [D]. However, a functional polymer film-forming coating containing a monomer for synthesizing a polymer to be modified and a modifying compound represented by the above formulas [A] to [D] having two or more Meldrum structures In the case of a liquid, by setting the temperature at which both the polymerization reaction of the monomer and the reaction of the Meldrum acid structure occur, the reaction of the Meldrum acid structure is caused simultaneously with the polymerization of the monomer, and the main chain of the polymer to be modified is represented by the above formula [ A modifying compound represented by A] to [D] can also be introduced.
 本発明の機能性ポリマー膜形成用塗布液の製造方法は特に限定されず、機能性を付与する機能性構造部位と、これに連結された少なくとも1つのメルドラム酸構造部位とを具備する上記式[A]~[D]で表される群から選択される少なくとも一種の修飾用化合物と、被修飾用ポリマー又はこの被修飾用ポリマーを合成するためのモノマーとを、溶媒に溶解させればよい。 The method for producing the coating liquid for forming a functional polymer film of the present invention is not particularly limited, and the above formula comprising a functional structural portion imparting functionality and at least one Meldrum's acid structural portion connected thereto [ It is sufficient that at least one modifying compound selected from the group represented by A] to [D] and a polymer to be modified or a monomer for synthesizing the polymer to be modified are dissolved in a solvent.
 本発明の機能性ポリマー膜形成用塗布液の溶媒は、上記被修飾用ポリマー又は被修飾用ポリマーを合成するためのモノマーと、機能性を付与する機能性構造部位とこれに連結された少なくとも1つのメルドラム酸構造部位とを具備する上記式[A]~[D]で表される修飾用化合物とを溶解させることができるものであればよく、例えば、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチル-2-ピロリドン、N-メチルカプロラクタム、2-ピロリドン、N-エチル-2-ピロリドン、N-ビニルピロリドン、ジメチルスルホキシド、テトラメチル尿素、ピリジン、ジメチルスルホン、ヘキサメチルスルホキシド、γ-ブチロラクトン、1,3-ジメチル-イミダゾリジノン、エチルアミルケトン、メチルノニルケトン、メチルエチルケトン、メチルイソアミルケトン、メチルイソプロピルケトン、シクロヘキサノン、エチレンカーボネート、プロピレンカーボネート、ジグライムおよび4-ヒドロキシ-4-メチル-2-ペンタノンなどの有機溶媒が挙げられる。これらは単独で使用しても、混合して使用してもよい。 The solvent of the coating liquid for forming a functional polymer film of the present invention is a monomer for synthesizing the polymer to be modified or the polymer to be modified, a functional structure site that imparts functionality, and at least one linked thereto. Any compound capable of dissolving the modifying compounds represented by the above formulas [A] to [D] having two Meldrum's acid structural sites, for example, N, N-dimethylformamide, N, N -Dimethylacetamide, N-methyl-2-pyrrolidone, N-methylcaprolactam, 2-pyrrolidone, N-ethyl-2-pyrrolidone, N-vinylpyrrolidone, dimethylsulfoxide, tetramethylurea, pyridine, dimethylsulfone, hexamethylsulfoxide, γ-butyrolactone, 1,3-dimethyl-imidazolidinone, ethyl amyl ketone, methyl nonyl ketone And organic solvents such as methyl ethyl ketone, methyl isoamyl ketone, methyl isopropyl ketone, cyclohexanone, ethylene carbonate, propylene carbonate, diglyme and 4-hydroxy-4-methyl-2-pentanone. These may be used alone or in combination.
 本発明の機能性ポリマー膜形成用塗布液は、塗布により均一な機能性ポリマー膜を形成するという観点から、有機溶媒の含有量が70~97質量%であることが好ましい。この含有量は、目的とする機能性ポリマー膜の膜厚によって適宜変更することができる。 The coating solution for forming a functional polymer film of the present invention preferably has an organic solvent content of 70 to 97% by mass from the viewpoint of forming a uniform functional polymer film by coating. This content can be appropriately changed depending on the film thickness of the intended functional polymer film.
 また、本発明の機能性ポリマー膜形成用塗布液における、被修飾用ポリマー又は被修飾用ポリマーを合成するためのモノマーの含有量は、3~30質量%であることが好ましい。この含有量も、目的とする機能性ポリマー膜の膜厚によって適宜変更することができる。 Further, the content of the monomer for synthesizing the polymer to be modified or the polymer to be modified in the coating solution for forming a functional polymer film of the present invention is preferably 3 to 30% by mass. This content can also be appropriately changed depending on the film thickness of the intended functional polymer film.
 本発明の機能性ポリマー膜形成用塗布液における、上記式[A]~[D]で表される修飾用化合物の含有量は、溶解さえすれば特に含有量に制約はないが、被修飾用ポリマー又は被修飾用ポリマーを合成するためのモノマーの総量100質量部に対して、1~200質量部であることが好ましく、液晶の配向性を低下させないために、より好ましくは1~100質量部であり、特に好ましくは、1~50質量部である。 The content of the modifying compound represented by the above formulas [A] to [D] in the functional polymer film-forming coating solution of the present invention is not particularly limited as long as it is dissolved, but the content is not limited. It is preferably 1 to 200 parts by mass with respect to 100 parts by mass of the total amount of monomers for synthesizing the polymer or the polymer to be modified, and more preferably 1 to 100 parts by mass in order not to lower the orientation of the liquid crystal Particularly preferred is 1 to 50 parts by mass.
 本発明の機能性ポリマー膜形成用塗布液は、本発明の効果を損なわない限り、本発明の機能性ポリマー膜形成用塗布液を塗布した際の機能性ポリマー膜の膜厚の均一性や表面平滑性を向上させる有機溶媒(貧溶媒ともいわれる。)または化合物を用いることができる。さらに、機能性ポリマー膜と基板との密着性を向上させる化合物などを用いることもできる。 The functional polymer film-forming coating liquid of the present invention has a uniform film thickness and surface of the functional polymer film when the functional polymer film-forming coating liquid of the present invention is applied unless the effects of the present invention are impaired. An organic solvent (also referred to as a poor solvent) or a compound that improves smoothness can be used. Furthermore, a compound that improves the adhesion between the functional polymer film and the substrate can also be used.
 膜厚の均一性や表面平滑性を向上させる貧溶媒の具体例として、例えば、イソプロピルアルコール、メトキシメチルペンタノール、メチルセロソルブ、エチルセロソルブ、ブチルセロソルブ、メチルセロソルブアセテート、エチルセロソルブアセテート、ブチルカルビトール、エチルカルビトール、エチルカルビトールアセテート、エチレングリコール、エチレングリコールモノアセテート、エチレングリコールモノイソプロピルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコール、プロピレングリコールモノアセテート、プロピレングリコールモノメチルエーテル、プロピレングリコール-tert-ブチルエーテル、ジプロピレングリコールモノメチルエーテル、ジエチレングリコール、ジエチレングリコールモノアセテート、ジエチレングリコールジメチルエーテル、ジプロピレングリコールモノアセテートモノメチルエーテル、ジプロピレングリコールモノメチルエーテル、ジプロピレングリコールモノエチルエーテル、ジプロピレングリコールモノアセテートモノエチルエーテル、ジプロピレングリコールモノプロピルエーテル、ジプロピレングリコールモノアセテートモノプロピルエーテル、3-メチル-3-メトキシブチルアセテート、トリプロピレングリコールメチルエーテル、3-メチル-3-メトキシブタノール、ジイソプロピルエーテル、エチルイソブチルエーテル、ジイソブチレン、アミルアセテート、ブチルブチレート、ブチルエーテル、ジイソブチルケトン、メチルシクロへキセン、プロピルエーテル、ジヘキシルエーテル、n-へキサン、n-ペンタン、n-オクタン、ジエチルエーテル、乳酸メチル、乳酸エチル、酢酸メチル、酢酸エチル、酢酸n-ブチル、酢酸プロピレングリコールモノエチルエーテル、ピルビン酸メチル、ピルビン酸エチル、3-メトキシプロピオン酸メチル、3-エトキシプロピオン酸メチルエチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸、3-メトキシプロピオン酸、3-メトキシプロピオン酸プロピル、3-メトキシプロピオン酸ブチル、1-メトキシ-2-プロパノール、1-エトキシ-2-プロパノール、1-ブトキシ-2-プロパノール、1-フェノキシ-2-プロパノール、プロピレングリコールモノアセテート、プロピレングリコールジアセテート、プロピレングリコール-1-モノメチルエーテル-2-アセテート、プロピレングリコール-1-モノエチルエーテル-2-アセテート、ジプロピレングリコール、2-(2-エトキシプロポキシ)プロパノール、乳酸メチルエステル、乳酸エチルエステル、乳酸n-プロピルエステル、乳酸n-ブチルエステルまたは乳酸イソアミルエステルなどの低表面張力を有する有機溶媒などが挙げられる。これらの貧溶媒は1種類でも複数種類を混合して用いてもよい。上記のような貧溶媒を用いる場合は、機能性ポリマー膜形成用塗布液に含まれる有機溶媒全体の1~50質量%であることが好ましく、より好ましくは5~30質量%である。 Specific examples of poor solvents that improve film thickness uniformity and surface smoothness include, for example, isopropyl alcohol, methoxymethylpentanol, methyl cellosolve, ethyl cellosolve, butyl cellosolve, methyl cellosolve acetate, ethyl cellosolve acetate, butyl carbitol, ethyl Carbitol, ethyl carbitol acetate, ethylene glycol, ethylene glycol monoacetate, ethylene glycol monoisopropyl ether, ethylene glycol monobutyl ether, propylene glycol, propylene glycol monoacetate, propylene glycol monomethyl ether, propylene glycol-tert-butyl ether, dipropylene glycol Monomethyl ether, diethylene glycol, diethylene glycol No acetate, diethylene glycol dimethyl ether, dipropylene glycol monoacetate monomethyl ether, dipropylene glycol monomethyl ether, dipropylene glycol monoethyl ether, dipropylene glycol monoacetate monoethyl ether, dipropylene glycol monopropyl ether, dipropylene glycol monoacetate monopropyl Ether, 3-methyl-3-methoxybutyl acetate, tripropylene glycol methyl ether, 3-methyl-3-methoxybutanol, diisopropyl ether, ethyl isobutyl ether, diisobutylene, amyl acetate, butyl butyrate, butyl ether, diisobutyl ketone, methylcyclo Hexene, propyl ether, dihexyl ether n-hexane, n-pentane, n-octane, diethyl ether, methyl lactate, ethyl lactate, methyl acetate, ethyl acetate, n-butyl acetate, propylene glycol monoethyl ether, methyl pyruvate, ethyl pyruvate, 3- Methyl methoxypropionate, methyl ethyl 3-ethoxypropionate, ethyl 3-methoxypropionate, 3-ethoxypropionic acid, 3-methoxypropionic acid, propyl 3-methoxypropionate, butyl 3-methoxypropionate, 1-methoxy- 2-propanol, 1-ethoxy-2-propanol, 1-butoxy-2-propanol, 1-phenoxy-2-propanol, propylene glycol monoacetate, propylene glycol diacetate, propylene glycol-1-monomethyl ether 2-acetate, propylene glycol-1-monoethyl ether-2-acetate, dipropylene glycol, 2- (2-ethoxypropoxy) propanol, lactate methyl ester, lactate ethyl ester, lactate n-propyl ester, lactate n- And organic solvents having a low surface tension such as butyl ester or isoamyl lactate. These poor solvents may be used alone or in combination. When the poor solvent as described above is used, it is preferably 1 to 50% by mass, more preferably 5 to 30% by mass, based on the entire organic solvent contained in the functional polymer film forming coating solution.
 膜厚の均一性や表面平滑性を向上させる化合物としては、フッ素系界面活性剤、シリコーン系界面活性剤、ノ二オン系界面活性剤などが挙げられ、具体的には、例えば、エフトップEF301、EF303、EF352(トーケムプロダクツ製)、メガファックF171、F173、R-30(大日本インキ製)、フロラードFC430、FC431(住友スリーエム製)、アサヒガードAG710、サーフロンS-382、SC101、SC102、SC103、SC104、SC105、SC106(旭硝子製)などが挙げられる。これらの界面活性剤の使用割合は、機能性ポリマー膜形成用塗布液に含有される被修飾用ポリマー又は被修飾用ポリマーを合成するためのモノマーの総量100質量部に対して、好ましくは0.01~2質量部、より好ましくは0.01~1質量部である。 Examples of compounds that improve film thickness uniformity and surface smoothness include fluorine-based surfactants, silicone-based surfactants, nonionic surfactants, and the like. Specifically, for example, EFTOP EF301 , EF303, EF352 (manufactured by Tochem Products), MegaFuck F171, F173, R-30 (manufactured by Dainippon Ink), Florard FC430, FC431 (manufactured by Sumitomo 3M), Asahi Guard AG710, Surflon S-382, SC101, SC102, SC103, SC104, SC105, SC106 (manufactured by Asahi Glass) and the like. The ratio of these surfactants to be used is preferably 0.00 with respect to 100 parts by mass of the total amount of monomers for synthesizing the polymer to be modified or the polymer to be modified contained in the functional polymer film-forming coating solution. 01 to 2 parts by mass, more preferably 0.01 to 1 part by mass.
 機能性ポリマー膜と基板との密着性を向上させる化合物の具体例としては、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、2-アミノプロピルトリメトキシシラン、2-アミノプロピルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリメトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-ウレイドプロピルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリメトキシシラン、N-エトキシカルボニル-3-アミノプロピルトリエトキシシラン、N-トリエトキシシリルプロピルトリエチレントリアミン、N-トリメトキシシリルプロピルトリエチレントリアミン、10-トリメトキシシリル-1,4,7-トリアザデカン、10-トリエトキシシリル-1,4,7-トリアザデカン、9-トリメトキシシリル-3,6-ジアザノニルアセテート、9-トリエトキシシリル-3,6-ジアザノニルアセテート、N-ベンジル-3-アミノプロピルトリメトキシシラン、N-ベンジル-3-アミノプロピルトリエトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリエトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリメトキシシラン、N-ビス(オキシエチレン)-3-アミノプロピルトリエトキシシラン、エチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、プロピレングリコールジグリシジルエーテル、トリプロピレングリコールジグリシジルエーテル、ポリプロピレングリコールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、グリセリンジグリシジルエーテル、2,2-ジブロモネオペンチルグリコールジグリシジルエーテル、1,3,5,6-テトラグリシジル-2,4-ヘキサンジオール、N,N,N’,N’,-テトラグリシジル-m-キシレンジアミン、1,3-ビス(N,N-ジグリシジルアミノメチル)シクロヘキサンまたはN,N,N’,N’,-テトラグリシジル-4、4’-ジアミノジフェニルメタンなどの官能性シラン含有化合物やエポキシ基含有化合物が挙げられる。 Specific examples of the compound that improves the adhesion between the functional polymer film and the substrate include 3-aminopropyltrimethoxysilane, 3-aminopropyltriethoxysilane, 2-aminopropyltrimethoxysilane, 2-aminopropyltriethoxy. Silane, N- (2-aminoethyl) -3-aminopropyltrimethoxysilane, N- (2-aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-ureidopropyltrimethoxysilane, 3-ureidopropyltriethoxy Silane, N-ethoxycarbonyl-3-aminopropyltrimethoxysilane, N-ethoxycarbonyl-3-aminopropyltriethoxysilane, N-triethoxysilylpropyltriethylenetriamine, N-trimethoxysilylpropyltriethylenetriamine, 0-trimethoxysilyl-1,4,7-triazadecane, 10-triethoxysilyl-1,4,7-triazadecane, 9-trimethoxysilyl-3,6-diazanonyl acetate, 9-triethoxysilyl-3 , 6-diazanonyl acetate, N-benzyl-3-aminopropyltrimethoxysilane, N-benzyl-3-aminopropyltriethoxysilane, N-phenyl-3-aminopropyltrimethoxysilane, N-phenyl-3- Aminopropyltriethoxysilane, N-bis (oxyethylene) -3-aminopropyltrimethoxysilane, N-bis (oxyethylene) -3-aminopropyltriethoxysilane, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, Propylene glycol diglycid Ether, tripropylene glycol diglycidyl ether, polypropylene glycol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, glycerin diglycidyl ether, 2,2-dibromoneopentyl glycol diglycidyl ether, 1 , 3,5,6-tetraglycidyl-2,4-hexanediol, N, N, N ′, N ′,-tetraglycidyl-m-xylenediamine, 1,3-bis (N, N-diglycidylaminomethyl) ) Functional silane-containing compounds such as cyclohexane or N, N, N ′, N ′,-tetraglycidyl-4,4′-diaminodiphenylmethane, and epoxy group-containing compounds.
 これら基板と密着させる化合物を使用する場合は、本発明の機能性ポリマー膜形成用塗布液に含有される被修飾用ポリマー又は被修飾用ポリマーを合成するためのモノマーの総量100質量部に対して0.1~30質量部であることが好ましく、より好ましくは1~20質量部である。0.1質量部未満であると密着性向上の効果は期待できず、30質量部よりも多くなると機能性ポリマー膜を液晶配向膜として使用する場合に液晶の配向性が悪くなる場合がある。 When using these compounds to be in close contact with the substrate, the polymer for modification contained in the functional polymer film-forming coating liquid of the present invention or the total amount of monomers for synthesizing the polymer for modification is 100 parts by mass. The amount is preferably 0.1 to 30 parts by mass, more preferably 1 to 20 parts by mass. If the amount is less than 0.1 part by mass, the effect of improving the adhesion cannot be expected. If the amount exceeds 30 parts by mass, the orientation of the liquid crystal may deteriorate when the functional polymer film is used as the liquid crystal alignment film.
 また、本発明の機能性ポリマー膜形成用塗布液には、本発明の効果が損なわれない範囲であれば、機能性ポリマー膜の誘電率や導電性などの電気特性を変化させる目的の誘電体や導電物質を添加してもよい。 In addition, the functional polymer film-forming coating liquid of the present invention has a dielectric material intended to change the electrical properties such as the dielectric constant and conductivity of the functional polymer film as long as the effects of the present invention are not impaired. Or a conductive material may be added.
 また、本発明の機能性ポリマー膜形成用塗布液には、本発明の効果を損なわない限り、エポキシ基、イソシアネート基またはオキセタン基を有する架橋性化合物、さらには、ヒドロキシル基またはアルコキシル基からなる群より選ばれる少なくとも1種の置換基を有する架橋性化合物や、重合性不飽和結合を有する架橋性化合物を混合してもよい。 Further, the functional polymer film-forming coating solution of the present invention includes a crosslinkable compound having an epoxy group, an isocyanate group or an oxetane group, and further a group consisting of a hydroxyl group or an alkoxyl group, unless the effects of the present invention are impaired. A crosslinkable compound having at least one substituent selected from the above and a crosslinkable compound having a polymerizable unsaturated bond may be mixed.
 このような本発明の機能性ポリマー膜形成用塗布液は、液晶配向膜を形成するための液晶配向剤として使用することができる。なお、液晶配向膜とは液晶を所定の方向に配向させるための膜である。 Such a coating liquid for forming a functional polymer film of the present invention can be used as a liquid crystal aligning agent for forming a liquid crystal aligning film. The liquid crystal alignment film is a film for aligning liquid crystals in a predetermined direction.
 本発明の機能性ポリマー膜形成用塗布液を、基板に塗布し、焼成することにより、上記式[A]~[D]で表される化合物の機能性構造部位由来の機能を有する機能性ポリマー膜を形成することができる。また、本発明の機能性ポリマー膜形成用塗布液を液晶配向剤として用いる場合は、基板上に塗布し、焼成した後、ラビング処理や光照射などで配向処理をして、又は垂直配向用途などでは配向処理無しで液晶配向膜を形成することができる。 The functional polymer having a function derived from the functional structural site of the compound represented by the above formulas [A] to [D] by applying the coating liquid for forming a functional polymer film of the present invention to a substrate and baking it. A film can be formed. When the functional polymer film-forming coating solution of the present invention is used as a liquid crystal aligning agent, it is applied onto a substrate and baked, and then subjected to an alignment treatment such as rubbing treatment or light irradiation, or for vertical alignment use. Then, a liquid crystal alignment film can be formed without alignment treatment.
 基板としては、機能性ポリマー膜形成用塗布液を塗布することができるものであれば特に限定されないが、液晶配向膜を形成する場合は透明性の高いものであることが好ましい。具体例としては、ガラス基板、若しくはアクリル基板やポリカーボネート基板などのプラスチック基板などが挙げられる。また、液晶駆動のためのITO電極などが形成された基板を用いることがプロセスの簡素化の観点から好ましい。そして、反射型の液晶表示素子では片側の基板のみにならばシリコンウエハー等の不透明な物でも使用でき、この場合の電極はアルミ等の光を反射する材料も使用できる。また、TFT型の素子のような高機能素子においては、液晶駆動のための電極と基板の間にトランジスタの如き素子が形成されたものが用いられる。 The substrate is not particularly limited as long as it can apply the functional polymer film-forming coating solution, but when the liquid crystal alignment film is formed, it is preferably highly transparent. Specific examples include a glass substrate or a plastic substrate such as an acrylic substrate or a polycarbonate substrate. In addition, it is preferable to use a substrate on which an ITO electrode or the like for driving liquid crystal is formed from the viewpoint of simplifying the process. In the reflective liquid crystal display element, an opaque material such as a silicon wafer can be used as long as it is only on one side of the substrate. In this case, a material that reflects light, such as aluminum, can be used. As a high-performance element such as a TFT-type element, an element in which an element such as a transistor is formed between an electrode for driving liquid crystal and a substrate is used.
 機能性ポリマー膜形成用塗布液の基板への塗布方法は特に限定されないが、工業的には、スクリーン印刷、オフセット印刷、フレキソ印刷、インクジェットなどで行う方法が一般的である。その他の塗布方法としては、ディップ、ロールコーター、スリットコーター、スピンナーなどがあり、目的に応じてこれらを用いてもよい。 The method for applying the functional polymer film-forming coating liquid to the substrate is not particularly limited, but industrially, methods such as screen printing, offset printing, flexographic printing, and inkjet are generally used. Other coating methods include dip, roll coater, slit coater, spinner and the like, and these may be used depending on the purpose.
 機能性ポリマー膜形成用塗布液を基板上に塗布し、必要に応じて溶媒の一部または全部を乾燥させる。機能性ポリマー膜形成用塗布液が被修飾用ポリマーを合成するためのモノマーを含有する場合、機能性ポリマー膜形成用塗布液を基板上に塗布した段階や、乾燥する際に、モノマーを重合反応させるようにすることが好ましい。 ¡Apply a functional polymer film-forming coating solution on the substrate, and dry part or all of the solvent as necessary. When the functional polymer film-forming coating solution contains a monomer for synthesizing the polymer to be modified, the monomer is polymerized when the functional polymer film-forming coating solution is applied on the substrate or when it is dried. It is preferable to do so.
 そして、機能性ポリマー膜形成用塗布液を基板上に塗布し、必要に応じて溶媒の一部または全部を乾燥させた後、焼成する。この焼成は、上記式[A]~[D]で表される修飾用化合物のメルドラム酸構造がケテン等になり被修飾用ポリマー等が有するカルボキシル基、ヒドロキシ基、チオール基、アミノ基、イミノ基、炭素-炭素二重結合(アルケン)や炭素-炭素三重結合(アルキン)などの不飽和結合、ニトリル基、ケトン基やアルデヒド基、エステル結合、アミド結合、イミド結合などの反応性部位と反応することができる温度に加熱すればよい。例えば、ホットプレート、熱風循環炉、赤外線炉などの加熱手段により180~250℃で行い、溶媒を蒸発させると共にメルドラム酸構造を被修飾用ポリマーと反応させることにより、被修飾用ポリマーに上記式[A]~[D]で表される修飾用化合物が導入され、本発明の機能性ポリマー膜を形成することができる。 Then, a functional polymer film-forming coating solution is applied onto the substrate, and if necessary, part or all of the solvent is dried and then baked. This calcination is carried out by the carboxyl group, hydroxy group, thiol group, amino group, imino group of the polymer to be modified in which the Meldrum acid structure of the modifying compound represented by the above formulas [A] to [D] is ketene or the like. Reacts with reactive sites such as unsaturated bonds such as carbon-carbon double bond (alkene) and carbon-carbon triple bond (alkyne), nitrile group, ketone group, aldehyde group, ester bond, amide bond, imide bond Heating to such a temperature is possible. For example, it is carried out at 180 to 250 ° C. by a heating means such as a hot plate, a hot air circulating furnace, an infrared furnace, etc., and the solvent is evaporated and the Meldrum's acid structure is reacted with the polymer to be modified. The modifying compounds represented by A] to [D] are introduced to form the functional polymer film of the present invention.
 焼成後に形成される機能性ポリマー膜の厚みは、液晶配向膜とする場合、厚すぎると液晶表示素子の消費電力の面で不利となり、薄すぎると液晶表示素子の信頼性が低下する場合があるので、好ましくは5~300nm、より好ましくは10~200nmである。液晶を水平配向や傾斜配向させる場合は、焼成後の塗膜をラビング又は偏光紫外線照射などで処理する。 When the thickness of the functional polymer film formed after firing is a liquid crystal alignment film, if it is too thick, it is disadvantageous in terms of power consumption of the liquid crystal display element, and if it is too thin, the reliability of the liquid crystal display element may be reduced. Therefore, it is preferably 5 to 300 nm, more preferably 10 to 200 nm. When the liquid crystal is horizontally or tilted, the fired coating film is treated by rubbing or irradiation with polarized ultraviolet rays.
 本発明の液晶表示素子は、上記した手法により液晶配向膜付き基板を得た後、公知の方法で液晶セルを作製し、液晶表示素子としたものである。一例を挙げるならば、対向するように配置された2枚の基板と、基板間に設けられた液晶層と、基板と液晶層との間に設けられ本発明の機能性ポリマー膜形成用塗布液からなる液晶配向剤により形成された上記液晶配向膜とを有する液晶セルを具備する液晶表示素子である。このような本発明の液晶表示素子としては、ツイストネマティック(TN:Twisted Nematic)方式、垂直配向(VA:Vertical Alignment)方式や、水平配向(IPS:In-Plane Switching)方式等、種々のものが挙げられる。 The liquid crystal display element of the present invention is a liquid crystal display element obtained by obtaining a substrate with a liquid crystal alignment film by the above-described method and then preparing a liquid crystal cell by a known method. For example, two substrates disposed so as to face each other, a liquid crystal layer provided between the substrates, and a coating solution for forming a functional polymer film of the present invention provided between the substrate and the liquid crystal layer. The liquid crystal display element which comprises the liquid crystal cell which has the said liquid crystal aligning film formed with the liquid crystal aligning agent which consists of these. As such a liquid crystal display element of the present invention, various devices such as a twisted nematic (TN) method, a vertical alignment (VA) method, a horizontal alignment (IPS) method, and the like are available. Can be mentioned.
 本発明の液晶表示素子に用いる基板としては、透明性の高い基板であれば特に限定されないが、通常は、基板上に液晶を駆動するための透明電極が形成された基板である。具体例としては、上記機能性ポリマー膜で記載した基板と同様のものを挙げることができる。 The substrate used in the liquid crystal display element of the present invention is not particularly limited as long as it is a highly transparent substrate, but is usually a substrate on which a transparent electrode for driving liquid crystal is formed. As a specific example, the thing similar to the board | substrate described with the said functional polymer film can be mentioned.
 また、液晶配向膜は、この基板上に本発明の機能性ポリマー膜形成用塗布液からなる液晶配向剤を塗布した後焼成することにより形成されるものであり、詳しくは上述したとおりである。 Further, the liquid crystal alignment film is formed by applying a liquid crystal aligning agent comprising the functional polymer film forming coating liquid of the present invention on this substrate and baking it, and the details are as described above.
 本発明の液晶表示素子の液晶層を構成する液晶材料は特に限定されず、従来の液晶材料、例えばメルク社製のMLC-2003、MLC-6608、MLC-6609などを用いることができる。 The liquid crystal material constituting the liquid crystal layer of the liquid crystal display element of the present invention is not particularly limited, and conventional liquid crystal materials such as MLC-2003, MLC-6608, MLC-6609 manufactured by Merck & Co., Inc. can be used.
 液晶セル作製方法の一例を挙げるならば、液晶配向膜の形成された1対の基板を用意し、一方の基板の液晶配向膜上にビーズ等のスペーサーを散布し、液晶配向膜面が内側になるようにして、もう一方の基板を貼り合わせ、液晶を減圧注入して封止する方法、又は、スペーサーを散布した液晶配向膜面に液晶を滴下した後に基板を貼り合わせて封止を行う方法などが例示できる。このときのスペーサーの厚みは、好ましくは1~30μm、より好ましくは2~10μmである。 To give an example of a liquid crystal cell manufacturing method, a pair of substrates on which a liquid crystal alignment film is formed is prepared, spacers such as beads are dispersed on the liquid crystal alignment film of one substrate, and the liquid crystal alignment film surface is on the inside. In such a manner, the other substrate is bonded and sealed by injecting liquid crystal under reduced pressure, or the liquid crystal is dropped on the liquid crystal alignment film surface on which spacers are dispersed and then the substrate is bonded and sealed. Etc. can be exemplified. The thickness of the spacer at this time is preferably 1 to 30 μm, more preferably 2 to 10 μm.
 以上のようにして作製された液晶表示素子は、所望の特性を導入できる上記式[A]~[D]で表される修飾用化合物と、被修飾用ポリマー又は被修飾用ポリマーを合成するためのモノマーを含有する液晶配向剤を用いて作製されるものであるため、種々の特性が改善されたものとすることができる。 The liquid crystal display device manufactured as described above is for synthesizing the modifying compound represented by the above formulas [A] to [D] and the polymer to be modified or the polymer to be modified, which can introduce desired characteristics. Since it is produced using the liquid crystal aligning agent containing the monomer, various characteristics can be improved.
 以下に実施例及び比較例を挙げ、本発明を更に詳しく説明するが、本発明の解釈はこれらの実施例に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the interpretation of the present invention is not limited to these Examples.
 [上記式[A]~[D]で表される修飾用化合物の合成]
 <合成例1>
下記式[4]で表される化合物5,5'-(1,4-phenylenebis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000045
[Synthesis of Modification Compounds Represented by Formulas [A] to [D] above]
<Synthesis Example 1>
Compound 5,5 ′-(1,4-phenylenebis (azanediyl)) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3-dioxane represented by the following formula [4] -4,6-dione)
Figure JPOXMLDOC01-appb-C000045
 300mL四つ口フラスコに、メルドラム酸[1](14.7g、102mmol)、及びオルトギ酸トリメチル[2](147g)を加え、1時間加熱還流を行った。その後、パラフェニレンジアミン[3](5.0g、46mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[4]を15.8g得た(収率82%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.29(2H, d), 8.56(2H, d), 7.64(4H, s), 1.68(12H, s).
Meldrum acid [1] (14.7 g, 102 mmol) and trimethyl orthoformate [2] (147 g) were added to a 300 mL four-necked flask and heated under reflux for 1 hour. Thereafter, paraphenylenediamine [3] (5.0 g, 46 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 15.8 g of Compound [4] (yield 82%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.29 (2H, d), 8.56 (2H, d), 7.64 (4H, s), 1.68 (12H, s).
 <合成例2>
下記式[6]で表される化合物5,5'-(1,3-phenylenebis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000046
<Synthesis Example 2>
Compound 5,5 ′-(1,3-phenylenebis (azanediyl)) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3-dioxane represented by the following formula [6] -4,6-dione)
Figure JPOXMLDOC01-appb-C000046
 300mL四つ口フラスコに、メルドラム酸[1](14.7g、102mmol)、及びオルトギ酸トリメチル[2](147g)を加え、1時間加熱還流を行った。その後、メタフェニレンジアミン[5](5.0g、46mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[6]を14.1g得た(収率72%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.28(2H, s), 8.74(2H, s), 7.98(1H, s), 7.44(3H, s), 1.68(12H, s).
Meldrum acid [1] (14.7 g, 102 mmol) and trimethyl orthoformate [2] (147 g) were added to a 300 mL four-necked flask and heated under reflux for 1 hour. Thereafter, metaphenylenediamine [5] (5.0 g, 46 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 14.1 g of Compound [6] (yield 72%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.28 (2H, s), 8.74 (2H, s), 7.98 (1H, s), 7.44 (3H, s), 1.68 (12H, s).
 <合成例3>
下記式[8]で表される化合物5,5'-(pyridine-2,6-diylbis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000047
<Synthesis Example 3>
Compound 5,5 ′-(pyridine-2,6-diylbis (azanediyl)) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3 represented by the following formula [8] -dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000047
 300mL四つ口フラスコに、メルドラム酸[1](16.0g、111mmol)、及びオルトギ酸トリメチル[2](160g)を加え、1時間加熱還流を行った。その後、2,6-ジアミノピリジン[7](5.5g、50mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[8]を16.7g得た(収率80%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.42(2H, d), 9.15(2H, d), 7.96(1H, t), 7.52(2H, d), 1.67(12H, s).
Meldrum acid [1] (16.0 g, 111 mmol) and trimethyl orthoformate [2] (160 g) were added to a 300 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 2,6-diaminopyridine [7] (5.5 g, 50 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 16.7 g of Compound [8] (yield 80%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.42 (2H, d), 9.15 (2H, d), 7.96 (1H, t), 7.52 (2H, d), 1.67 (12H, s).
 <合成例4>
下記式[11]で表される化合物5,5',5''-(benzene-1,3,5-triyltris(azanediyl))tris(methan-1-yl-1-ylidene)tris(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000048
<Synthesis Example 4>
Compound 5,5 ′, 5 ″-(benzene-1,3,5-triyltris (azanediyl)) tris (methan-1-yl-1-ylidene) tris (2,2 -dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000048
 1L四つ口フラスコに入れた、3,5-ジニトロアニリン[9](32.6g、178mmol)、5%パラジウムカーボン(3.75g、10wt%)、及び1,4-ジオキサン(375g)の混合物を、水素雰囲気下、室温撹拌した。反応終了後、パラジウムカーボンをセライトでろ過し、ろ液をエバポレーターで濃縮し、化合物[10]を21.7g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):5.11(3H, s), 4.28(6H, s).
A mixture of 3,5-dinitroaniline [9] (32.6 g, 178 mmol), 5% palladium carbon (3.75 g, 10 wt%), and 1,4-dioxane (375 g) in a 1 L four neck flask Was stirred at room temperature under hydrogen atmosphere. After completion of the reaction, palladium carbon was filtered through celite, and the filtrate was concentrated with an evaporator to obtain 21.7 g of Compound [10] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 5.11 (3H, s), 4.28 (6H, s).
 1L四つ口フラスコに、メルドラム酸[1](83.8g、582mmol)、及びオルトギ酸トリメチル[2](660g)を加え、1時間加熱還流を行った。その後、化合物[10](21.7g、176mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[11]を73.0g得た(収率71%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.22(3H, s), 8.26(3H, s), 7.70(3H, s), 1.65(18H, s).
Meldrum acid [1] (83.8 g, 582 mmol) and trimethyl orthoformate [2] (660 g) were added to a 1 L four-necked flask and heated under reflux for 1 hour. Thereafter, compound [10] (21.7 g, 176 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 73.0 g of Compound [11] (yield 71%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.22 (3H, s), 8.26 (3H, s), 7.70 (3H, s), 1.65 (18H, s).
 <合成例5>
下記式[13]で表される化合物5,5'-(4,4'-methylenebis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000049
<Synthesis Example 5>
Compound 5,5 ′-(4,4′-methylenebis (4,1-phenylene) bis (azanediyl)) bis (methan-1-yl-1-ylidene) bis (2, represented by the following formula [13] 2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000049
 300mL四つ口フラスコに、メルドラム酸[1](14.7g、102mmol)、及びオルトギ酸トリメチル[2](147g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルメタン[12](5.0g、46mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[13]を14.1g得た(収率72%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.23(2H, d), 8.54(2H, d), 7.50-7.48(4H, m), 7.31-7.29(4H, m), 3.96(2H, m), 1.66(12H, s).
Meldrum acid [1] (14.7 g, 102 mmol) and trimethyl orthoformate [2] (147 g) were added to a 300 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 4,4′-diaminodiphenylmethane [12] (5.0 g, 46 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 14.1 g of Compound [13] (yield 72%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.23 (2H, d), 8.54 (2H, d), 7.50-7.48 (4H, m), 7.31-7.29 (4H, m), 3.96 (2H, m), 1.66 (12H, s).
 <合成例6> 
下記式[15]で表される化合物5,5'-(4,4'-oxybis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000050
<Synthesis Example 6>
Compound 5,5 ′-(4,4′-oxybis (4,1-phenylene) bis (azanediyl)) bis (methan-1-yl-1-ylidene) bis (2, represented by the following formula [15] 2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000050
 200mL四つ口フラスコに、メルドラム酸[1](7.92g、54.9mmol)、及びオルトギ酸トリメチル[2](78g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルエーテル[14](5.0g、25.0mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[15]を11.7g得た(収率92%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.30(2H, d), 8.51(2H, d), 7.62(4H, d), 7.08(4H, d),  1.67(12H, s).
Meldrum acid [1] (7.92 g, 54.9 mmol) and trimethyl orthoformate [2] (78 g) were added to a 200 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, 4,4′-diaminodiphenyl ether [14] (5.0 g, 25.0 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 11.7 g of Compound [15] (yield 92%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.30 (2H, d), 8.51 (2H, d), 7.62 (4H, d), 7.08 (4H, d), 1.67 (12H, s).
 <合成例7>
下記式[17]で表される化合物5,5'-(4,4'-azanediylbis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000051
<Synthesis Example 7>
Compound 5,5 ′-(4,4′-azanediylbis (4,1-phenylene) bis (azanediyl)) bis (methan-1-yl-1-ylidene) bis (2, represented by the following formula [17] 2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000051
 200mL四つ口フラスコに、メルドラム酸[1](7.96g、55.2mmol)、及びオルトギ酸トリメチル[2](79g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルアミン[16](5.0g、25.1mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[17]を10.1g得た(収率79%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.29(2H, d), 8.51(2H, d), 7.62(4H, d), 7.08(4H, d), 4.97(1H, s), 1.67(12H, s).
Meldrum acid [1] (7.96 g, 55.2 mmol) and trimethyl orthoformate [2] (79 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 4,4′-diaminodiphenylamine [16] (5.0 g, 25.1 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 10.1 g of Compound [17] (yield 79%).
1 H-NMR (400MHz, DMSO-d6, δppm): 11.29 (2H, d), 8.51 (2H, d), 7.62 (4H, d), 7.08 (4H, d), 4.97 (1H, s), 1.67 (12H, s).
 <合成例8>
下記式[19]で表される化合物5,5'-(4,4'-(methylazanediyl)bis(4,1-phenylene)bis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000052
<Synthesis Example 8>
Compound 5,5 ′-(4,4 ′-(methylazanediyl) bis (4,1-phenylene) bis (azanediyl)) bis (methan-1-yl-1-ylidene) bis represented by the following formula [19] Synthesis of (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000052
 500mL四つ口フラスコに、メルドラム酸[1](14.9g、103mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、4,4’-ジアミノジフェニルメチルアミン[18](10.0g、46.9mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[19]を21.7g得た(収率86%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.21(2H, d), 8.44(2H, d), 7.45-7.42(4H, m), 7.03-7.01(4H, m), 3.24(3H, s), 1.62(12H, s).
Meldrum's acid [1] (14.9 g, 103 mmol) and trimethyl orthoformate [2] (100 g) were added to a 500 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 4,4′-diaminodiphenylmethylamine [18] (10.0 g, 46.9 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 21.7 g of Compound [19] (yield 86%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.21 (2H, d), 8.44 (2H, d), 7.45-7.42 (4H, m), 7.03-7.01 (4H, m), 3.24 (3H, s), 1.62 (12H, s).
 <合成例9>
下記式[21]で表される化合物5,5'-(4,4'-(pentane-1,5-diylbis(oxy))bis(4,1-phenylene))bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000053
<Synthesis Example 9>
Compound 5,5 ′-(4,4 ′-(pentane-1,5-diylbis (oxy)) bis (4,1-phenylene)) bis (azanediyl) bis (methan-) represented by the following formula [21] Synthesis of 1-yl-1-ylidene) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000053
 300mL四つ口フラスコに、メルドラム酸[1](16.6g、115mmol)、及びオルトギ酸トリメチル[2](111g)を加え、1時間加熱還流を行った。その後、化合物[20](15.0g、52.4mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[21]を20.8g得た(収率67%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.23(2H, s), 8.45(2H, s), 7.51-7.47(4H, m), 7.00-6.94(4H, m), 4.01(4H, t), 1.82-1.72(4H, m), 1.67(12H, s), 1.62-1.54(2H, m).
Meldrum acid [1] (16.6 g, 115 mmol) and trimethyl orthoformate [2] (111 g) were added to a 300 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [20] (15.0 g, 52.4 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 20.8 g of Compound [21] (yield 67%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.23 (2H, s), 8.45 (2H, s), 7.51-7.47 (4H, m), 7.00-6.94 (4H, m), 4.01 (4H, t), 1.82-1.72 (4H, m), 1.67 (12H, s), 1.62-1.54 (2H, m).
 <合成例10>
下記式[23]で表される化合物1,3-bis(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenethyl)ureaの合成
Figure JPOXMLDOC01-appb-C000054
<Synthesis Example 10>
Synthesis of Compound 1,3-bis (4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) phenethyl) urea represented by the following formula [23]
Figure JPOXMLDOC01-appb-C000054
 200mL四つ口フラスコに、メルドラム酸[1](28.6g、147mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[22](20.0g、67.0mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[23]を40.3g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.17(2H, d), 8.48(2H, d), 7.40(4H, d), 7.21(4H, d), 5.89(2H, t), 3.18-3.14(4H, m), 2.62(4H, t), 1.62(12H, s).
Meldrum acid [1] (28.6 g, 147 mmol) and trimethyl orthoformate [2] (200 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [22] (20.0 g, 67.0 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 40.3 g of Compound [23] (99% yield).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.17 (2H, d), 8.48 (2H, d), 7.40 (4H, d), 7.21 (4H, d), 5.89 (2H, t), 3.18 -3.14 (4H, m), 2.62 (4H, t), 1.62 (12H, s).
 <合成例11>
下記式[25]で表される化合物5,5'-(6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]hexaoxacyclooctadecine-2,13-diyl)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000055
<Synthesis Example 11>
Compound 5,5 ′-(6,7,9,10,17,18,20,21-octahydrodibenzo [b, k] [1,4,7,10,13,16 represented by the following formula [25] ] Synthesis of hexaoxacyclooctadecine-2,13-diyl) bis (azanediyl) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000055
 200mL四つ口フラスコに、メルドラム酸[1](7.38g、51.2mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、化合物[24](10.0g、25.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[25]を17.9g得た(収率96%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.16(2H, d), 8.50(2H, d), 7.19(2H, d), 7.01-6.98(2H, m), 6.93(2H, m), 4.09-4.08(4H, m), 4.04-4.02(4H, m), 3.79(8H, m), 1.61(12H, s).
Meldrum acid [1] (7.38 g, 51.2 mmol) and trimethyl orthoformate [2] (100 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [24] (10.0 g, 25.6 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 17.9 g of Compound [25] (yield 96%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.16 (2H, d), 8.50 (2H, d), 7.19 (2H, d), 7.01-6.98 (2H, m), 6.93 (2H, m) , 4.09-4.08 (4H, m), 4.04-4.02 (4H, m), 3.79 (8H, m), 1.61 (12H, s).
 <合成例12>
下記式[27]で表される化合物5-((3-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dione の合成
Figure JPOXMLDOC01-appb-C000056
<Synthesis Example 12>
Compound 5-((3-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) benzylamino) methylene) -2,2 represented by the following formula [27] Synthesis of -dimethyl-1,3-dioxane-4,6-dione
Figure JPOXMLDOC01-appb-C000056
 300mL四つ口フラスコに、メルドラム酸[1](23.6g、164mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、3-アミノベンジルアミン[26](10.0g、81.9mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥させ化合物[27]を36.2g得た(収率100%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.21(1H, s), 10.04-9.97(1H, m), 8.55(1H, s), 8.30(1H, d), 7.57(1H, s), 7.48-7.38(2H, m), 7.23(1H, d), 4.65(2H, d), 1.63(6H, s), 1.55(6H, s).
Meldrum acid [1] (23.6 g, 164 mmol) and trimethyl orthoformate [2] (100 g) were added to a 300 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 3-aminobenzylamine [26] (10.0 g, 81.9 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed by an evaporator and dried to obtain 36.2 g of Compound [27] (yield 100%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.21 (1H, s), 10.04-9.97 (1H, m), 8.55 (1H, s), 8.30 (1H, d), 7.57 (1H, s) , 7.48-7.38 (2H, m), 7.23 (1H, d), 4.65 (2H, d), 1.63 (6H, s), 1.55 (6H, s).
 <合成例13>
下記式[29]で表される化合物5,5'-(4,4'-(propane-1,3-diyl)bis(piperidine-4,1-diyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000057
<Synthesis Example 13>
Compound 5,5 ′-(4,4 ′-(propane-1,3-diyl) bis (piperidine-4,1-diyl)) bis (methan-1-yl-1 represented by the following formula [29] -ylidene) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000057
 200mL四つ口フラスコに、メルドラム酸[1](11.7g、81.0mmol)、及びオルトギ酸トリメチル[2](128g)を加え、1時間加熱還流を行った。その後、1,3-ジ-4-ピペリジルプロパン [28](8.52g、40.5mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥させ化合物[29]を20.2g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):8.09(2H, s), 4.06-3.97(4H, m), 3.56-3.49(2H, m), 3.28-3.25(2H, m), 1.84-1.81(4H, m), 1.61-1.56(12H, m), 1.32-1.23(12H, m).
Meldrum acid [1] (11.7 g, 81.0 mmol) and trimethyl orthoformate [2] (128 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 1,3-di-4-piperidylpropane [28] (8.52 g, 40.5 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 20.2 g of Compound [29] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.09 (2H, s), 4.06-3.97 (4H, m), 3.56-3.49 (2H, m), 3.28-3.25 (2H, m), 1.84- 1.81 (4H, m), 1.61-1.56 (12H, m), 1.32-1.23 (12H, m).
 <合成例14>
下記式[31]で表される化合物5,5'-(propane-1,3-diylbis(azanediyl))bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000058
<Synthesis Example 14>
Compound 5,5 ′-(propane-1,3-diylbis (azanediyl)) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3 represented by the following formula [31] -dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000058
 500mL四つ口フラスコに、メルドラム酸[1](42.8g、297mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、1,3-ジアミノプロパン[30](10.0g、135mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[31]を24.8g得た(収率48%)。
 1H-NMR(400MHz, CDCl3, δppm):9.57-9.54(2H, m), 8.16(2H, d), 3.59(4H, q), 2.11(2H, quin), 1.71(12H, s).
Meldrum acid [1] (42.8 g, 297 mmol) and trimethyl orthoformate [2] (150 g) were added to a 500 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, 1,3-diaminopropane [30] (10.0 g, 135 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 24.8 g of Compound [31] (yield 48%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 9.57-9.54 (2H, m), 8.16 (2H, d), 3.59 (4H, q), 2.11 (2H, quin), 1.71 (12H, s).
 <合成例15>
下記式[33]で表される化合物5,5'-(cyclohexane-1,3-diylbis(methylene))bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000059
<Synthesis Example 15>
Compound 5,5 ′-(cyclohexane-1,3-diylbis (methylene)) bis (azanediyl) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl) represented by the following formula [33] -1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000059
 500mL四つ口フラスコに、メルドラム酸[1](44.6g、309mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、1,3-ビスアミノメチルシクロヘキサン(cis-/trans-混合物)[32](20.0g、141mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[33](cis-/trans-混合物)を58.3g得た(収率92%)。
 1H-NMR(400MHz, DMSO-d6, δppm):9.63-9.60(2H, m), 8.11-7.97(2H, m), 3.51-3.12(4H, m), 1.87-0.54(22H, m).
Meldrum acid [1] (44.6 g, 309 mmol) and trimethyl orthoformate [2] (200 g) were added to a 500 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 1,3-bisaminomethylcyclohexane (cis- / trans-mixture) [32] (20.0 g, 141 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 58.3 g of compound [33] (cis- / trans-mixture) (yield) 92%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 9.63-9.60 (2H, m), 8.11-7.97 (2H, m), 3.51-3.12 (4H, m), 1.87-0.54 (22H, m).
 <合成例16>
下記式[35]で表される化合物5,5'-(5,8-dioxa-2,11-dithiadodecane-1,12-diylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000060
<Synthesis Example 16>
Compound 5,5 ′-(5,8-dioxa-2,11-dithiadodecane-1,12-diylidene) bis (2,2-dimethyl-1,3-dioxane-4, represented by the following formula [35] 6-dione)
Figure JPOXMLDOC01-appb-C000060
 200mL四つ口フラスコに、メルドラム酸[1](13.6g、94.2mmol)、及びオルトギ酸トリメチル[2](134g)を加え、1時間加熱還流を行った。その後、3,6-ジオキサ-1,8-オクタンジチオール[34](7.8g、42.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して化合物[35]を20.8g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):9.29(2H, s), 3.72(4H, t), 3.57(4H, s), 3.39-3.34(4H, m), 1.66(12H, s).
Meldrum acid [1] (13.6 g, 94.2 mmol) and trimethyl orthoformate [2] (134 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 3,6-dioxa-1,8-octanedithiol [34] (7.8 g, 42.8 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 20.8 g of Compound [35] (99% yield).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 9.29 (2H, s), 3.72 (4H, t), 3.57 (4H, s), 3.39-3.34 (4H, m), 1.66 (12H, s) .
 <合成例17>
下記式[37]で表される化合物3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzoic acidの合成
Figure JPOXMLDOC01-appb-C000061
<Synthesis Example 17>
Synthesis of compound 3,5-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) benzoic acid represented by the following formula [37]
Figure JPOXMLDOC01-appb-C000061
 200mL四つ口フラスコに、メルドラム酸[1](10.4g、72.3mmol)、及びオルトギ酸トリメチル[2](105g)を加え、1時間加熱還流を行った。その後、3,5-ジアミノ安息香酸[36](5.0g、32.9mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[37]を9.0g得た(収率59%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.34(2H, d), 8.74(2H, d), 7.92(2H, d), 1.69(12H, s).
Meldrum acid [1] (10.4 g, 72.3 mmol) and trimethyl orthoformate [2] (105 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, 3,5-diaminobenzoic acid [36] (5.0 g, 32.9 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 9.0 g of Compound [37] (yield 59%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.34 (2H, d), 8.74 (2H, d), 7.92 (2H, d), 1.69 (12H, s).
 <合成例18>
下記式[39]で表される化合物3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)-N-(pyridin-3-ylmethyl)benzamideの合成
Figure JPOXMLDOC01-appb-C000062
<Synthesis Example 18>
Compound 3,5-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) -N- (pyridin-3-ylmethyl) represented by the following formula [39] ) Synthesis of benzamide
Figure JPOXMLDOC01-appb-C000062
 200mL四つ口フラスコに、メルドラム酸[1](6.5g、45.4mmol)、及びオルトギ酸トリメチル[2](66g)を加え、1時間加熱還流を行った。その後、化合物[38](5.0g、20.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して化合物[39]を11.3g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.35(2H, d), 9.27(1H, t), 8.78(2H, d), 8.59(1H, d), 8.49-8.47(1H, m), 8.16-8.15(1H, m), 7.84(2H, d), 7.77-7.74(1H, m), 7.40-7.36(1H, m),  4.55(2H, d), 1.69(12H, s).
Meldrum acid [1] (6.5 g, 45.4 mmol) and trimethyl orthoformate [2] (66 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [38] (5.0 g, 20.6 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 11.3 g of Compound [39] (yield 98%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.35 (2H, d), 9.27 (1H, t), 8.78 (2H, d), 8.59 (1H, d), 8.49-8.47 (1H, m) , 8.16-8.15 (1H, m), 7.84 (2H, d), 7.77-7.74 (1H, m), 7.40-7.36 (1H, m), 4.55 (2H, d), 1.69 (12H, s).
 <合成例19>
下記式[41]で表される化合物N-(3-(1H-imidazol-1-yl)propyl)-3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzamideの合成
Figure JPOXMLDOC01-appb-C000063
<Synthesis Example 19>
A compound represented by the following formula [41] N- (3- (1H-imidazol-1-yl) propyl) -3,5-bis ((2,2-dimethyl-4,6-dioxo-1,3- synthesis of dioxan-5-ylidene) methylamino) benzamide
Figure JPOXMLDOC01-appb-C000063
 200mL四つ口フラスコに、メルドラム酸[1](10.1g、52.1mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[40](5.0g、23.7mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して化合物[41]を13.4g得た(収率100%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.27(2H, s), 8.71-8.65(3H, m), 8.01(1H, t), 7.99(1H, t), 7.75(2H, d), 7.32(1H, t), 7.05(1H, t), 4.07-4.03(2H, m), 3.25-3.18(2H, m), 1.97(2H, t), 1.64(12H, s).
Meldrum acid [1] (10.1 g, 52.1 mmol) and trimethyl orthoformate [2] (50 g) were added to a 200 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [40] (5.0 g, 23.7 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 13.4 g of Compound [41] (yield 100%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.27 (2H, s), 8.71-8.65 (3H, m), 8.01 (1H, t), 7.99 (1H, t), 7.75 (2H, d) , 7.32 (1H, t), 7.05 (1H, t), 4.07-4.03 (2H, m), 3.25-3.18 (2H, m), 1.97 (2H, t), 1.64 (12H, s).
 <合成例20>
下記式[43]で表される化合物3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzyl furan-2-carboxylateの合成
Figure JPOXMLDOC01-appb-C000064
<Synthesis Example 20>
Synthesis of compound 3,5-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) benzyl furan-2-carboxylate represented by the following formula [43]
Figure JPOXMLDOC01-appb-C000064
 200mL四つ口フラスコに、メルドラム酸[1](13.7g、94.7mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、化合物[42](10.0g、43.1mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[43]を21.1g得た(収率90%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.22(2H, d), 8.67(2H, d), 7.94-7.93(1H, m), 7.87-7.86(1H, m), 7.46-7.45(2H, m), 7.38(1H, dd), 6.68-6.66(1H, m), 5.28(2H, s), 1.63(12H, s).
Meldrum acid [1] (13.7 g, 94.7 mmol) and trimethyl orthoformate [2] (100 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, Compound [42] (10.0 g, 43.1 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 21.1 g of Compound [43] (yield 90%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.22 (2H, d), 8.67 (2H, d), 7.94-7.93 (1H, m), 7.87-7.86 (1H, m), 7.46-7.45 ( 2H, m), 7.38 (1H, dd), 6.68-6.66 (1H, m), 5.28 (2H, s), 1.63 (12H, s).
 <合成例21>
下記式[45]で表される化合物5,5'-(4-(dodecyloxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000065
<Synthesis Example 21>
Compound 5,5 ′-(4- (dodecyloxy) -1,3-phenylene) bis (azanediyl) bis (methan-1-yl-1-ylidene) bis (2,2- Synthesis of dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000065
 300mL四つ口フラスコに、メルドラム酸[1](10.8g、75.2mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、化合物[44](10.0g、34.2mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[45]を29.7g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.57(1H, d), 11.20(1H, d), 8.90(1H, d), 8.64(1H, d), 8.09(1H, d), 7.31(1H, dd), 7.13(1H, d), 4.06(2H, t), 1.74-1.68(2H, m), 1.63(12H, s), 1.46-1.40(2H, m), 1.25-1.16(16H, m), 0.79(3H, t).
Meldrum acid [1] (10.8 g, 75.2 mmol) and trimethyl orthoformate [2] (100 g) were added to a 300 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [44] (10.0 g, 34.2 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 29.7 g of Compound [45] (99% yield).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.57 (1H, d), 11.20 (1H, d), 8.90 (1H, d), 8.64 (1H, d), 8.09 (1H, d), 7.31 (1H, dd), 7.13 (1H, d), 4.06 (2H, t), 1.74-1.68 (2H, m), 1.63 (12H, s), 1.46-1.40 (2H, m), 1.25-1.16 (16H , m), 0.79 (3H, t).
 <合成例22>
下記式[47]で表される化合物5,5'-(4-(octadecyloxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000066
<Synthesis Example 22>
Compound 5,5 ′-(4- (octadecyloxy) -1,3-phenylene) bis (azanediyl) bis (methan-1-yl-1-ylidene) bis (2,2- Synthesis of dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000066
 100mL四つ口フラスコに、メルドラム酸[1](4.2g、29.2mmol)、及びオルトギ酸トリメチル[2](42g)を加え、1時間加熱還流を行った。その後、化合物[46](5.0g、13.3mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[47]を6.4g得た(収率71%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.63(1H, d), 11.26(1H, d), 8.99(1H, d), 8.72(1H, d), 8.19(1H, d), 7.40(1H, dd), 7.20(1H, d), 4.13(2H, t), 1.80-1.74(2H, m), 1.68(12H, s), 1.49-1.45(2H, m), 1.25-1.22(28H, m), 0.85(3H, t).
Meldrum acid [1] (4.2 g, 29.2 mmol) and trimethyl orthoformate [2] (42 g) were added to a 100 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [46] (5.0 g, 13.3 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, and the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 6.4 g of Compound [47] (yield 71%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.63 (1H, d), 11.26 (1H, d), 8.99 (1H, d), 8.72 (1H, d), 8.19 (1H, d), 7.40 (1H, dd), 7.20 (1H, d), 4.13 (2H, t), 1.80-1.74 (2H, m), 1.68 (12H, s), 1.49-1.45 (2H, m), 1.25-1.22 (28H , m), 0.85 (3H, t).
 <合成例23>
下記式[49]で表される化合物5,5'-(4-(4-(trans-4-heptylcyclohexyl)phenoxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000067
<Synthesis Example 23>
Compound 5,5 ′-(4- (4- (trans-4-heptylcyclohexyl) phenoxy) -1,3-phenylene) bis (azanediyl) bis (methan-1-yl-1) represented by the following formula [49] -ylidene) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000067
 100mL四つ口フラスコに、メルドラム酸[1](4.2g、28.9mmol)、及びオルトギ酸トリメチル[2](41g)を加え、1時間加熱還流を行った。その後、化合物[48](5.0g、13.1mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[49]を9.0g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.64(1H, d), 11.30(1H, d), 9.03(1H, d), 8.76(1H, d), 8.31(1H, d), 7.40(1H, dd), 7.28(2H, d), 7.03(2H, d), 6.97(1H, d), 1.81(2H, d), 1.69(10H, d), 1.44-1.34(1H, m), 1.26-1.78(10H, m), 1.07-1.01(1H, m), 0.86(3H, t).
Meldrum acid [1] (4.2 g, 28.9 mmol) and trimethyl orthoformate [2] (41 g) were added to a 100 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [48] (5.0 g, 13.1 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed by an evaporator and dried to obtain 9.0 g of Compound [49] (yield 98%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.64 (1H, d), 11.30 (1H, d), 9.03 (1H, d), 8.76 (1H, d), 8.31 (1H, d), 7.40 (1H, dd), 7.28 (2H, d), 7.03 (2H, d), 6.97 (1H, d), 1.81 (2H, d), 1.69 (10H, d), 1.44-1.34 (1H, m), 1.26-1.78 (10H, m), 1.07-1.01 (1H, m), 0.86 (3H, t).
 <合成例24>
下記式[51]で表される化合物5,5'-(4-(trans-4-(trans-4'-pentylbi(cyclohexan)-4-yl)phenoxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000068
<Synthesis Example 24>
Compound 5,5 ′-(4- (trans-4- (trans-4′-pentylbi (cyclohexan) -4-yl) phenoxy) -1,3-phenylene) bis (azanediyl) represented by the following formula [51] ) Synthesis of bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000068
 300mL四つ口フラスコに、メルドラム酸[1](9.0g、62.1mmol)、及びオルトギ酸トリメチル[2](120g)を加え、1時間加熱還流を行った。その後、化合物[50](12.3g、28.2mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[51]を20.68g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.64(1H, d), 11.30(1H, d), 9.03(1H, d), 8.76(1H, d), 8.31(1H, d), 7.39(1H, dd), 7.27(1H, d), 7.02(2H, d), 6.97(2H, d), 1.88-1.03(43H, m), 0.86(3H, t).
Meldrum acid [1] (9.0 g, 62.1 mmol) and trimethyl orthoformate [2] (120 g) were added to a 300 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [50] (12.3 g, 28.2 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 20.68 g of Compound [51] (yield 98%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.64 (1H, d), 11.30 (1H, d), 9.03 (1H, d), 8.76 (1H, d), 8.31 (1H, d), 7.39 (1H, dd), 7.27 (1H, d), 7.02 (2H, d), 6.97 (2H, d), 1.88-1.03 (43H, m), 0.86 (3H, t).
 <合成例25>
下記式[53]で表される化合物5,5'-(5-((trans-4-(trans-4'-pentylbi(cyclohexan)-4-yl)phenoxy)methyl)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000069
<Synthesis Example 25>
Compound 5,5 ′-(5-((trans-4- (trans-4′-pentylbi (cyclohexan) -4-yl) phenoxy) methyl) -1,3-phenylene) represented by the following formula [53] Synthesis of bis (azanediyl) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000069
 500mL四つ口フラスコに、メルドラム酸[1](19.0g、98.6mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[52](20.0g、44.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[53]を33.4g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.29(2H, d), 8.74(2H, d), 7.94(1H, s), 7.53(2H, d), 7.12(2H, d), 6.92(2H, d), 5.09(2H, s), 1.81-1.68(20H, m),  1.36-0.84(23H, m).
Meldrum acid [1] (19.0 g, 98.6 mmol) and trimethyl orthoformate [2] (200 g) were added to a 500 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [52] (20.0 g, 44.6 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 33.4 g of Compound [53] (yield 99%).
1 H-NMR (400MHz, DMSO-d6, δppm): 11.29 (2H, d), 8.74 (2H, d), 7.94 (1H, s), 7.53 (2H, d), 7.12 (2H, d), 6.92 (2H, d), 5.09 (2H, s), 1.81-1.68 (20H, m), 1.36-0.84 (23H, m).
 <合成例26>
下記式[55]で表される化合物4'-pentylbi(trans-cyclohexan)-4-yl 3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzoateの合成
Figure JPOXMLDOC01-appb-C000070
<Synthesis Example 26>
The compound represented by the following formula [55] 4′-pentylbi (trans-cyclohexan) -4-yl 3,5-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5- Synthesis of (ylidene) methylamino) benzoate
Figure JPOXMLDOC01-appb-C000070
 500mL四つ口フラスコに、メルドラム酸[1](13.3g、92.0mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、化合物[54](15.0g、41.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[55]を28.8g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.28(2H, s), 8.67(2H, s), 8.17(1H, t), 7.86(2H, d), 4.79-4.73(1H, m), 2.02(2H, d), 1.74-1.64(18H, m), 1.44-1.32(2H, m), 1.29-0.76(20H, m).
Meldrum acid [1] (13.3 g, 92.0 mmol) and trimethyl orthoformate [2] (150 g) were added to a 500 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [54] (15.0 g, 41.8 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 28.8 g of Compound [55] (99% yield).
1 H-NMR (400MHz, DMSO-d6, δppm): 11.28 (2H, s), 8.67 (2H, s), 8.17 (1H, t), 7.86 (2H, d), 4.79-4.73 (1H, m) , 2.02 (2H, d), 1.74-1.64 (18H, m), 1.44-1.32 (2H, m), 1.29-0.76 (20H, m).
 <合成例27>
下記式[57]で表される化合物N-(2,4-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenyl)-4-(trans-4-pentylcyclohexyl)benzamideの合成
Figure JPOXMLDOC01-appb-C000071
<Synthesis Example 27>
The compound represented by the following formula [57] N- (2,4-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) phenyl) -4- ( synthesis of trans-4-pentylcyclohexyl) benzamide
Figure JPOXMLDOC01-appb-C000071
 300mL四つ口フラスコに、メルドラム酸[1](8.2g、56.7mmol)、及びオルトギ酸トリメチル[2](80g)を加え、1時間加熱還流を行った。その後、化合物[56](10.0g、25.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[57]を16.0g得た(収率92%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.36-11.27(2H, m), 10.38(1H, s), 8.80-8.74(2H, m), 8.09(1H, s), 7.87(2H, d), 7.44(1H, dd), 7.34(2H, d), 2.51-2.46(3H, m), 1.77(2H, d), 1.66(6H, s), 1.59(6H, s), 1.50-1.37(3H, m), 1.29-1.14(8H, m), 0.99(2H, q), 0.82(3H, t).
Meldrum acid [1] (8.2 g, 56.7 mmol) and trimethyl orthoformate [2] (80 g) were added to a 300 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [56] (10.0 g, 25.8 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 16.0 g of Compound [57] (yield 92%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.36-11.27 (2H, m), 10.38 (1H, s), 8.80-8.74 (2H, m), 8.09 (1H, s), 7.87 (2H, d), 7.44 (1H, dd), 7.34 (2H, d), 2.51-2.46 (3H, m), 1.77 (2H, d), 1.66 (6H, s), 1.59 (6H, s), 1.50-1.37 (3H, m), 1.29-1.14 (8H, m), 0.99 (2H, q), 0.82 (3H, t).
 <合成例28>
下記式[59]で表される化合物N-(2,4-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenyl)-4-(trans-4-Heptylcyclohexyl)benzamideの合成
Figure JPOXMLDOC01-appb-C000072
<Synthesis Example 28>
A compound represented by the following formula [59] N- (2,4-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) phenyl) -4- ( synthesis of trans-4-Heptylcyclohexyl) benzamide
Figure JPOXMLDOC01-appb-C000072
 300mL四つ口フラスコに、メルドラム酸[1](11.7g、81.0mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、化合物[58](15.0g、36.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[59]を26.1g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.36-11.27(2H, m), 10.38(1H, s), 8.78(2H, t), 8.10(1H, s), 7.88(2H, d), 7.44(1H, dd), 7.35(3H, d), 2.52(2H, t), 1.78(2H, d), 1.65(6H, s), 1.60(6H, s), 1.50-1.37(2H, m), 1.29-1.12(14H, m), 0.99(2H, q), 0.82(3H, t).
Meldrum's acid [1] (11.7 g, 81.0 mmol) and trimethyl orthoformate [2] (150 g) were added to a 300 mL four-necked flask and heated under reflux for 1 hour. Thereafter, Compound [58] (15.0 g, 36.8 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 26.1 g of Compound [59] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.36-11.27 (2H, m), 10.38 (1H, s), 8.78 (2H, t), 8.10 (1H, s), 7.88 (2H, d) , 7.44 (1H, dd), 7.35 (3H, d), 2.52 (2H, t), 1.78 (2H, d), 1.65 (6H, s), 1.60 (6H, s), 1.50-1.37 (2H, m ), 1.29-1.12 (14H, m), 0.99 (2H, q), 0.82 (3H, t).
 <合成例29>
下記式[61]で表される化合物5,5'-(4-((3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-((R)-5-methylhexan-2-yl)-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yloxy)-1,3-phenylene)bis(azanediyl)bis(methan-1-yl-1-ylidene)bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000073
<Synthesis Example 29>
Compound 5,5 ′-(4-((3S, 8S, 9S, 10R, 13R, 14S, 17R) -10,13-dimethyl-17-((R) -5- methylhexan-2-yl) -2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta [a] phenanthren-3-yloxy)- Synthesis of 1,3-phenylene) bis (azanediyl) bis (methan-1-yl-1-ylidene) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000073
 100mL四つ口フラスコに、メルドラム酸[1](4.1g、29mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[60](10.0g、13mmol)を加え、さらに2時間加熱還流を行った。反応終了後、室温まで反応溶液を冷却し、析出した固体をろ過、ヘキサンで洗浄し、その後固体を乾燥させ、化合物[61]を9.9g得た(収率99%)。 Meldrum acid [1] (4.1 g, 29 mmol) and trimethyl orthoformate [2] (50 g) were added to a 100 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [60] (10.0 g, 13 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the reaction solution was cooled to room temperature, the precipitated solid was filtered and washed with hexane, and then the solid was dried to obtain 9.9 g of Compound [61] (99% yield).
 <合成例30>
下記式[63]で表される(E)-2,4-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)phenethyl 3-(4-(decyloxy)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000074
<Synthesis Example 30>
(E) -2,4-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) phenethyl 3- (4- Synthesis of (decyloxy) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000074
 200mL四つ口フラスコに、メルドラム酸[1](7.3g、37mmol)、及びオルトギ酸トリメチル[2](75g)を加え、1時間加熱還流を行った。その後、化合物[62](7.46g、17mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[63]を12.5g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.57(1H, d), 11.29(1H, s), 8.82(1H, dd), 8.23(1H, dd), 8.04(1H, s), 7.57-7.46(5H, m), 6.92(2H, d), 6.35(1H, d), 4.34(2H, t), 3.99(2H, t), 1.74-1.65(15H, m), 1.43-1.21(15H, m), 0.85(3H, t).
Meldrum acid [1] (7.3 g, 37 mmol) and trimethyl orthoformate [2] (75 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [62] (7.46 g, 17 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 12.5 g of Compound [63] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.57 (1H, d), 11.29 (1H, s), 8.82 (1H, dd), 8.23 (1H, dd), 8.04 (1H, s), 7.57 -7.46 (5H, m), 6.92 (2H, d), 6.35 (1H, d), 4.34 (2H, t), 3.99 (2H, t), 1.74-1.65 (15H, m), 1.43-1.21 (15H , m), 0.85 (3H, t).
 <合成例31>
下記式[65]で表される(E)-3,5-bis((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methylamino)benzyl 3-(4-(decyloxy)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000075
<Synthesis Example 31>
(E) -3,5-bis ((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methylamino) benzyl 3- (4- Synthesis of (decyloxy) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000075
 200mL四つ口フラスコに、メルドラム酸[1](6.3g、33mmol)、及びオルトギ酸トリメチル[2](63g)を加え、1時間加熱還流を行った。その後、化合物[64](6.3g、15mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[65]を10.7g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.25(1H, d), 8.71(1H, d), 7.93(1H, s), 7.67-7.62(3H, m), 7.48(2H, d), 6.91(2H, d), 6.52(1H, d), 5.19(2H, s), 3.96(2H, t), 3.62-3.60(2H, m), 1.68-1.63(15H, m), 1.38-1.20(15H, m), 0.81(3H, t).
Meldrum's acid [1] (6.3 g, 33 mmol) and trimethyl orthoformate [2] (63 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [64] (6.3 g, 15 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 10.7 g of Compound [65] (99% yield).
1 H-NMR (400MHz, DMSO-d6, δppm): 11.25 (1H, d), 8.71 (1H, d), 7.93 (1H, s), 7.67-7.62 (3H, m), 7.48 (2H, d) , 6.91 (2H, d), 6.52 (1H, d), 5.19 (2H, s), 3.96 (2H, t), 3.62-3.60 (2H, m), 1.68-1.63 (15H, m), 1.38-1.20 (15H, m), 0.81 (3H, t).
 <合成例32>
下記式[66]で表される化合物5-(methoxymethylene)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000076
<Synthesis Example 32>
Synthesis of compound 5- (methoxymethylene) -2,2-dimethyl-1,3-dioxane-4,6-dione represented by the following formula [66]
Figure JPOXMLDOC01-appb-C000076
 500mL四つ口フラスコに、メルドラム酸[1](50.0g、347mmol)、及びオルトギ酸トリメチル[2](184g)を加え、1時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去し、粗物をヘキサン/テトラヒドロフラン混合溶媒から再結晶することで、化合物[66]を43.7g得た(収率68%)。
 1H-NMR(400MHz, CDCl3, δppm): 8.16(1H, s), 4.29(3H, s), 1.73(6H, s).
Meldrum acid [1] (50.0 g, 347 mmol) and trimethyl orthoformate [2] (184 g) were added to a 500 mL four-necked flask and heated under reflux for 1 hour. After completion of the reaction, the solvent was removed by an evaporator, and the crude product was recrystallized from a hexane / tetrahydrofuran mixed solvent to obtain 43.7 g of Compound [66] (yield 68%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.16 (1H, s), 4.29 (3H, s), 1.73 (6H, s).
 <合成例33>
下記式[68]で表される化合物5-((dodecylamino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000077
<Synthesis Example 33>
Synthesis of Compound 5-((dodecylamino) methylene) -2,2-dimethyl-1,3-dioxane-4,6-dione represented by Formula [68]
Figure JPOXMLDOC01-appb-C000077
 200mL四つ口フラスコに、メルドラム酸[1](21.4g、148mmol)、及びオルトギ酸トリメチル[2](250g)を加え、1時間加熱還流を行った。その後、ドデシルアミン[67](25.0g、135mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[68]を45.3g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):9.64(1H, s), 8.10(1H, d), 3.35-3.37(2H, m),  1.54-1.48(6H, m), 1.43-1.21(20H, m), 0.85(3H, t).
Meldrum acid [1] (21.4 g, 148 mmol) and trimethyl orthoformate [2] (250 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, dodecylamine [67] (25.0 g, 135 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 45.3 g of Compound [68] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 9.64 (1H, s), 8.10 (1H, d), 3.35-3.37 (2H, m), 1.54-1.48 (6H, m), 1.43-1.21 ( 20H, m), 0.85 (3H, t).
 <合成例34>
下記式[70]で表される化合物2,2-dimethyl-5-((octadecylamino)methylene)-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000078
<Synthesis Example 34>
Synthesis of Compound 2,2-dimethyl-5-((octadecylamino) methylene) -1,3-dioxane-4,6-dione represented by Formula [70]
Figure JPOXMLDOC01-appb-C000078
 200mL四つ口フラスコに、メルドラム酸[1](14.7g、102mmol)、及びオルトギ酸トリメチル[2](250g)を加え、1時間加熱還流を行った。その後、オクタデシルアミン[69](25.0g、93mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[70]を38.9g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):9.67(1H, s), 8.10(1H, d), 2.89-2.47(2H, m),  1.54-0.72(38H, m), 0.85(3H, t).
Meldrum acid [1] (14.7 g, 102 mmol) and trimethyl orthoformate [2] (250 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, octadecylamine [69] (25.0 g, 93 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 38.9 g of Compound [70] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 9.67 (1H, s), 8.10 (1H, d), 2.89-2.47 (2H, m), 1.54-0.72 (38H, m), 0.85 (3H, t).
 <合成例35>
下記式[72]で表される化合物5,5'-(1,4-phenylenebis(methan-1-yl-1-ylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000079
<Synthesis Example 35>
Compound 5,5 ′-(1,4-phenylenebis (methan-1-yl-1-ylidene)) bis (2,2-dimethyl-1,3-dioxane-4,6 represented by the following formula [72] -dione)
Figure JPOXMLDOC01-appb-C000079
 500mL四つ口フラスコに、テレフタルアルデヒド[71](10.0g、75mmol)、メルドラム酸[1](22.6g、157mmol)、及びピリジン(150g)を加え、室温で一晩撹拌を行った。その後、エバポレーターでピリジンを除去した。その後、残渣を1,2-ジクロロエタン/メタノール混合溶媒に溶解させ、再度エバポレーターで溶媒を除去することで結晶化させた。得られた固体を2-プロパノールから再結晶することで、化合物[72]を18.8g得た(収率65%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 8.56(2H, s), 7.96(4H, s), 1.74(12H, s).
To a 500 mL four-necked flask were added terephthalaldehyde [71] (10.0 g, 75 mmol), Meldrum acid [1] (22.6 g, 157 mmol), and pyridine (150 g), and the mixture was stirred overnight at room temperature. Thereafter, pyridine was removed by an evaporator. Thereafter, the residue was dissolved in a 1,2-dichloroethane / methanol mixed solvent and crystallized by removing the solvent again with an evaporator. The obtained solid was recrystallized from 2-propanol to obtain 18.8 g of Compound [72] (yield 65%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 8.56 (2H, s), 7.96 (4H, s), 1.74 (12H, s).
 <合成例36>
下記式[74]で表される化合物5,5'-(1,3-phenylenebis(methan-1-yl-1-ylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000080
<Synthesis Example 36>
Compound 5,5 ′-(1,3-phenylenebis (methan-1-yl-1-ylidene)) bis (2,2-dimethyl-1,3-dioxane-4,6 represented by the following formula [74] -dione)
Figure JPOXMLDOC01-appb-C000080
 500mL四つ口フラスコに、イソフタルアルデヒド[73](10.0g、75mmol)、メルドラム酸[1](22.6g、157mmol)、及びピリジン(150g)を加え、室温で一晩撹拌を行った。その後、エバポレーターでピリジンを除去した。その後、残渣を1,2-ジクロロエタン/メタノール混合溶媒に溶解させ、再度エバポレーターで溶媒を除去することで結晶化させた。得られた固体を2-プロパノールから再結晶することで、化合物[74]を16.2g得た(収率56%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 8.55(2H, s), 7.80-7.76(2H, m), 7.52-7.42(1H, m), 1.74(6H, s), 1.72(6H, s).
Isophthalaldehyde [73] (10.0 g, 75 mmol), Meldrum acid [1] (22.6 g, 157 mmol), and pyridine (150 g) were added to a 500 mL four-necked flask and stirred overnight at room temperature. Thereafter, pyridine was removed by an evaporator. Thereafter, the residue was dissolved in a 1,2-dichloroethane / methanol mixed solvent and crystallized by removing the solvent again with an evaporator. The obtained solid was recrystallized from 2-propanol to obtain 16.2 g of Compound [74] (yield 56%).
1 H-NMR (400MHz, DMSO-d6, δppm): 8.55 (2H, s), 7.80-7.76 (2H, m), 7.52-7.42 (1H, m), 1.74 (6H, s), 1.72 (6H, s).
 <合成例37>
下記式[78]で表される化合物tris(4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)phenyl) benzene-1,3,5-tricarboxylateの合成
Figure JPOXMLDOC01-appb-C000081
<Synthesis Example 37>
Compound represented by the following formula [78] tris (4-((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) phenyl) benzene-1,3,5- Synthesis of tricarboxylate
Figure JPOXMLDOC01-appb-C000081
 1L四つ口フラスコに、4-ヒドロキシベンズアルデヒド[76](35.7g、292mmol)、トリエチルアミン(31.5g、311mmol)、テトラヒドロフラン(150g)を加え、内温が10℃以下になるように冷却した。そこへ、1,3,5-ベンゼントリカルボニルトリクロリド[75](25.0g、94mmol)のテトラヒドロフラン(225g)溶液を発熱に注意しながら滴下した。滴下終了後、室温でさらに2時間反応を行った。反応終了後、反応液を純水(2250g)へ注ぎ、析出した固体をろ過、メタノールで洗浄、固体を乾燥させ、化合物[77]を48.0g得た(収率98%)。 4-Hydroxybenzaldehyde [76] (35.7 g, 292 mmol), triethylamine (31.5 g, 311 mmol), and tetrahydrofuran (150 g) were added to a 1 L four-necked flask, and the internal temperature was cooled to 10 ° C. or lower. . Thereto was added dropwise a solution of 1,3,5-benzenetricarbonyltrichloride [75] (25.0 g, 94 mmol) in tetrahydrofuran (225 g) while paying attention to heat generation. After completion of the dropwise addition, the reaction was further performed at room temperature for 2 hours. After completion of the reaction, the reaction solution was poured into pure water (2250 g), and the precipitated solid was filtered, washed with methanol, and the solid was dried to obtain 48.0 g of Compound [77] (yield 98%).
 2L四つ口フラスコに、化合物[77](48.0g、92mmol)、メルドラム酸[1](56.2g、289mmol)、及びピリジン(720g)を加え、室温で一晩撹拌を行った。その後、エバポレーターでピリジンを除去した。その後、残渣をテトラヒドロフラン/ヘキサン混合溶媒から再結晶することで、化合物[78]を75.6g得た(収率91%)。
 1H-NMR(400MHz, DMSO-d6, δppm): 8.57-8.55(3H, m), 8.38(3H, s), 7.83-7.81(6H, m), 7.42-7.39(6H, m), 1.74(18H, s).
Compound [77] (48.0 g, 92 mmol), Meldrum acid [1] (56.2 g, 289 mmol), and pyridine (720 g) were added to a 2 L four-necked flask, and the mixture was stirred overnight at room temperature. Thereafter, pyridine was removed by an evaporator. Thereafter, the residue was recrystallized from a tetrahydrofuran / hexane mixed solvent to obtain 75.6 g of Compound [78] (yield 91%).
1 H-NMR (400MHz, DMSO-d6, δppm): 8.57-8.55 (3H, m), 8.38 (3H, s), 7.83-7.81 (6H, m), 7.42-7.39 (6H, m), 1.74 ( 18H, s).
 <合成例38>
下記式[80]で表される化合物5-(1-hydroxypentylidene)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000082
<Synthesis Example 38>
Synthesis of compound 5- (1-hydroxypentylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione represented by the following formula [80]
Figure JPOXMLDOC01-appb-C000082
 200L四つ口フラスコに、吉草酸[79] (25.0g、245mmol)、ジクロロメタン200g)を加え、N,N-ジメチルアミノピリジン(DMAP:32.6g、267mmol)、ジシクロヘキシルカルビジイミド(DCC:55.6g、270mmol)、メルドラム酸[1](35.3g、245mmol)を加え、室温で一晩撹拌を行なった。反応終了後、セライトを用いて固形分をろ過し、ろ液をエバポレーターで濃縮した。粗生成物を酢酸エチル(300g)に溶解し、1M塩酸で洗浄した。有機層硫酸マグネシウムで乾燥し、ろ過、溶媒留去することで化合物[80]を53.6g得た(収率96%)。
 1H-NMR(400MHz, CDCl3, δppm): 3.09-3.01(2H, m), 1.70(6H, s), 1.70-1.53(2H, m), 1.41(2H, q), 0.92(3H, t).
To a 200 L four-necked flask, valeric acid [79] (25.0 g, 245 mmol), dichloromethane 200 g) was added, N, N-dimethylaminopyridine (DMAP: 32.6 g, 267 mmol), dicyclohexylcarbidiimide (DCC: 55). 0.6 g, 270 mmol) and Meldrum's acid [1] (35.3 g, 245 mmol) were added, and the mixture was stirred at room temperature overnight. After completion of the reaction, the solid content was filtered using Celite, and the filtrate was concentrated with an evaporator. The crude product was dissolved in ethyl acetate (300 g) and washed with 1M hydrochloric acid. The organic layer was dried over magnesium sulfate, filtered and evaporated to obtain 53.6 g of Compound [80] (yield 96%).
1 H-NMR (400MHz, CDCl3, δppm): 3.09-3.01 (2H, m), 1.70 (6H, s), 1.70-1.53 (2H, m), 1.41 (2H, q), 0.92 (3H, t) .
 <合成例39>
下記式[82]で表される化合物5-(1-hydroxytetradecylidene)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000083
<Synthesis Example 39>
Synthesis of compound 5- (1-hydroxytetradecylidene) -2,2-dimethyl-1,3-dioxane-4,6-dione represented by the following formula [82]
Figure JPOXMLDOC01-appb-C000083
 200L四つ口フラスコに、メルドラム酸[1](25.0g、173mmol)、ピリジン(27.4g、346mmol)、ジクロロメタン(250g)を加え、窒素雰囲気下、溶液を0℃に冷却した。そこへ、発熱に注意しながらミリスチン酸クロリド[81](42.7g、173mmol)を滴下した。滴下終了後、反応液を室温に戻し、さらに1時間撹拌した。反応終了後、1M塩酸、純粋、飽和食塩水の順でそれぞれ有機層を洗浄し、硫酸マグネシウムで乾燥させた。この溶液をろ過、溶媒留去し、カラム精製(ヘキサン/酢酸エチル)することで化合物[82]を29.1g得た(収率66%)。
 1H-NMR(400MHz, CDCl3, δppm): 3.09-3.04(2H, m), 1.72(6H, s), 1.72-1.65(2H, m), 1.46-1.34(2H, m), 1.26(18H, s), 0.88(3H, t).
Meldrum acid [1] (25.0 g, 173 mmol), pyridine (27.4 g, 346 mmol), and dichloromethane (250 g) were added to a 200 L four-necked flask, and the solution was cooled to 0 ° C. under a nitrogen atmosphere. Thereto was added myristic acid chloride [81] (42.7 g, 173 mmol) dropwise while paying attention to heat generation. After completion of the dropping, the reaction solution was returned to room temperature and further stirred for 1 hour. After completion of the reaction, the organic layer was washed with 1M hydrochloric acid, pure, and saturated saline in this order, and dried over magnesium sulfate. This solution was filtered, the solvent was distilled off, and the column was purified (hexane / ethyl acetate) to obtain 29.1 g of Compound [82] (yield 66%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 3.09-3.04 (2H, m), 1.72 (6H, s), 1.72-1.65 (2H, m), 1.46-1.34 (2H, m), 1.26 (18H, s), 0.88 (3H, t).
 <合成例40>
下記式[84]で表される化合物5-(3,5-dimethoxybenzyl)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000084
<Synthesis Example 40>
Synthesis of compound 5- (3,5-dimethoxybenzyl) -2,2-dimethyl-1,3-dioxane-4,6-dione represented by the following formula [84]
Figure JPOXMLDOC01-appb-C000084
 200L四つ口フラスコに、メルドラム酸[1](5g、28.9mmol)、3,5-ジメトキシベンズアルデヒド(4.70g、28.3mmol)、エタノール(50g)を加え、ピリジニウムアセタート(0.42g、2.89mmol)を加え、30分撹拌した。 Meldrum acid [1] (5 g, 28.9 mmol), 3,5-dimethoxybenzaldehyde (4.70 g, 28.3 mmol) and ethanol (50 g) were added to a 200 L four-necked flask, and pyridinium acetate (0.42 g) was added. 2.89 mmol) was added and stirred for 30 minutes.
 その後、反応溶液を0℃に冷却し、シアノ水素化ホウ素ナトリウム(2.7g、43.4mmol)を少しずつ加え、その後反応温度を室温へ戻した。反応終了後、発生するガスをケアしながら、10%塩酸でクエンチし、その後、エタノールを留去した。粗物を10%塩酸に再度懸濁させ、ジクロロメタン(80g)で3回抽出した。有機層を合わせ、硫酸マグネシウムで乾燥させた後、ろ過、溶媒留去し、得られた粗物をメタノールから再結晶することで、化合物[84]を4.7g得た(収率55%)。
 1H-NMR(400MHz, CDCl3, δppm): 6.44(2H, d), 6.29(1H, t), 3.73(1H, t), 3.36(2H, d), 1.69(3H, s), 1.51(3H, s).
Thereafter, the reaction solution was cooled to 0 ° C., sodium cyanoborohydride (2.7 g, 43.4 mmol) was added little by little, and then the reaction temperature was returned to room temperature. After completion of the reaction, while quenching the generated gas, the reaction was quenched with 10% hydrochloric acid, and then ethanol was distilled off. The crude was resuspended in 10% hydrochloric acid and extracted three times with dichloromethane (80 g). The organic layers were combined, dried over magnesium sulfate, filtered, evaporated, and the resulting crude product was recrystallized from methanol to obtain 4.7 g of Compound [84] (yield 55%). .
1 H-NMR (400MHz, CDCl3, δppm): 6.44 (2H, d), 6.29 (1H, t), 3.73 (1H, t), 3.36 (2H, d), 1.69 (3H, s), 1.51 (3H , s).
 <合成例41>
下記式[86]で表される化合物5-(3,5-dimethoxybenzyl)-2,2-dimethyl-5-(pyridin-4-ylmethyl)-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000085
<Synthesis Example 41>
Synthesis of compound 5- (3,5-dimethoxybenzyl) -2,2-dimethyl-5- (pyridin-4-ylmethyl) -1,3-dioxane-4,6-dione represented by the following formula [86]
Figure JPOXMLDOC01-appb-C000085
 200L四つ口フラスコに、化合物[84] (4.70g、16.0mmol)、炭酸カリウム(3.31g、24.0mmol)、ジメチルホルムアミド(DMF)(50g)を加え、4-(ブロモメチル)ピリジン臭化水素酸塩(4.45g、17.6mmol)のDMF(10g)溶液を滴下して加えた。反応終了後、純水(600g)に反応溶液を注ぎ、酢酸エチル(150g)で3回抽出を行なった。次に、有機層を合わせ、飽和炭酸水素ナトリウム、飽和食塩水で洗浄した後、有機層を硫酸マグネシウムで乾燥させた。その後、溶液をろ過、溶媒留去し、粗物をメタノールから再結晶することで、化合物[86]を4.4g得た(収率72%)。
 1H-NMR(400MHz, CDCl3, δppm): 8.51(2H, d), 7.10(2H, d), 6.72-6.66(3H, m), 3.82(3H, s), 3.80(3H, s), 3.39(2H, s), 0.73(3H, s), 0.68(3H, s).
To a 200 L four-necked flask, compound [84] (4.70 g, 16.0 mmol), potassium carbonate (3.31 g, 24.0 mmol), dimethylformamide (DMF) (50 g) was added, and 4- (bromomethyl) pyridine was added. A solution of hydrobromide (4.45 g, 17.6 mmol) in DMF (10 g) was added dropwise. After completion of the reaction, the reaction solution was poured into pure water (600 g) and extracted three times with ethyl acetate (150 g). Next, the organic layers were combined and washed with saturated sodium hydrogen carbonate and saturated brine, and then the organic layer was dried over magnesium sulfate. Thereafter, the solution was filtered, the solvent was distilled off, and the crude product was recrystallized from methanol to obtain 4.4 g of Compound [86] (yield 72%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 8.51 (2H, d), 7.10 (2H, d), 6.72-6.66 (3H, m), 3.82 (3H, s), 3.80 (3H, s), 3.39 (2H, s), 0.73 (3H, s), 0.68 (3H, s).
 <合成例42>
下記式[88]で表される化合物benzyl 3-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)propanoateの合成
Figure JPOXMLDOC01-appb-C000086
<Synthesis Example 42>
Synthesis of the compound benzyl 3- (2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl) propanoate represented by the following formula [88]
Figure JPOXMLDOC01-appb-C000086
 200L四つ口フラスコに、メルドラム酸[1](15.0g、104mmol)、アセトニトリル(150g)を加え、炭酸カリウム(14.3g、104mmol)、ベンジルトリエチルアンモニウムクロリド(23.9g、104mmol)を加え、室温で15分撹拌した。その後、化合物[87](25.3g、156mmol)を加え、60℃で加熱撹拌を行なった。反応終了後、溶媒を留去し、粗物を酢酸エチル(150g)に溶解させ、10%硫酸水素カリウムで3回洗浄した後、有機層を硫酸マグネシウムで乾燥させた。溶液をろ過、溶媒留去した後、得られた粗物をカラム精製(SiO:ヘキサン/酢酸エチル)することで化合物[88]を28.4g得た(収率89%)。
 1H-NMR(400MHz, CDCl3, δppm): 7.38-7.29(5H, m), 5.08(2H, s), 3.89(1H, t), 2.67(2H, t), 2.44-2.34(2H, m), 1.73(3H, s), 1.72(3H, s).
Meldrum acid [1] (15.0 g, 104 mmol) and acetonitrile (150 g) were added to a 200 L four-necked flask, and potassium carbonate (14.3 g, 104 mmol) and benzyltriethylammonium chloride (23.9 g, 104 mmol) were added. And stirred at room temperature for 15 minutes. Thereafter, compound [87] (25.3 g, 156 mmol) was added, and the mixture was heated and stirred at 60 ° C. After completion of the reaction, the solvent was distilled off, the crude product was dissolved in ethyl acetate (150 g), washed 3 times with 10% potassium hydrogen sulfate, and the organic layer was dried over magnesium sulfate. The solution was filtered and the solvent was distilled off, and then the obtained crude product was subjected to column purification (SiO 2 : hexane / ethyl acetate) to obtain 28.4 g of Compound [88] (yield 89%).
1 H-NMR (400MHz, CDCl3, δppm): 7.38-7.29 (5H, m), 5.08 (2H, s), 3.89 (1H, t), 2.67 (2H, t), 2.44-2.34 (2H, m) , 1.73 (3H, s), 1.72 (3H, s).
 <合成例43>
下記式[90]で表される化合物(S)-tert-butyl 2-(tert-butoxycarbonylamino)-5-(2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl)pentanoateの合成
Figure JPOXMLDOC01-appb-C000087
<Synthesis Example 43>
Compound (S) -tert-butyl 2- (tert-butoxycarbonylamino) -5- (2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-yl) represented by the following formula [90] Synthesis of pentanoate
Figure JPOXMLDOC01-appb-C000087
 200L四つ口フラスコに、メルドラム酸[1](15.0g、104mmol)、DMAP(18.4g、151mmol)、化合物[89](28.4g、94mmol)、ジクロロメタン(100g)を加え、反応液を0℃に冷却した後、DCC(22.5g、109mmol)のジクロロメタン(50g)溶液を加え、一晩撹拌した。反応終了後、固体をろ過で除き、ろ液を10%硫酸水素カリウムで3回、飽和食塩水で洗浄し、有機層を硫酸マグネシウムで乾燥させた。次に、酢酸(50mL)を加え、溶液を酸性にし、0℃へ冷却した。水素化ホウ素ナトリウム(9.0g、236mmol)を少しずつ加え、0℃でさらに撹拌した。反応終了後、飽和食塩水、純水で洗浄し、有機層を硫酸マグネシウムで乾燥し、溶液をろ過、溶媒留去し、粗物を得た。この粗物をカラム精製(SiO:ヘキサン/酢酸エチル)することで化合物[90]を34.1g得た(収率79%)。
 1H-NMR(400MHz, CDCl3, δppm): 5.04(1H, d), 4.20-4.08(1H, m), 3.52(1H, t), 2.20-2.00(2H, m), 1.89-1.40(4H, m), 1.77(3H, s), 1.73(3H, s), 1.43(9H, s), 1.41(9H. s).
Meldrum acid [1] (15.0 g, 104 mmol), DMAP (18.4 g, 151 mmol), compound [89] (28.4 g, 94 mmol) and dichloromethane (100 g) were added to a 200 L four-necked flask, and the reaction solution was added. After cooling to 0 ° C., a solution of DCC (22.5 g, 109 mmol) in dichloromethane (50 g) was added and stirred overnight. After completion of the reaction, the solid was removed by filtration, and the filtrate was washed 3 times with 10% potassium hydrogen sulfate and saturated brine, and the organic layer was dried over magnesium sulfate. Then acetic acid (50 mL) was added to acidify the solution and cooled to 0 ° C. Sodium borohydride (9.0 g, 236 mmol) was added in portions and further stirred at 0 ° C. After completion of the reaction, the mixture was washed with saturated brine and pure water, the organic layer was dried over magnesium sulfate, the solution was filtered, and the solvent was distilled off to obtain a crude product. This crude product was subjected to column purification (SiO 2 : hexane / ethyl acetate) to obtain 34.1 g of Compound [90] (yield 79%).
1 H-NMR (400MHz, CDCl3, δppm): 5.04 (1H, d), 4.20-4.08 (1H, m), 3.52 (1H, t), 2.20-2.00 (2H, m), 1.89-1.40 (4H, m), 1.77 (3H, s), 1.73 (3H, s), 1.43 (9H, s), 1.41 (9H.s).
 <合成例44>
下記式[92]で表される化合物5-(bis(methylthio)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000088
<Synthesis Example 44>
Synthesis of Compound 5- (bis (methylthio) methylene) -2,2-dimethyl-1,3-dioxane-4,6-dione represented by Formula [92]
Figure JPOXMLDOC01-appb-C000088
 200mL四つ口フラスコに、メルドラム酸[1](40.9g、284mmol)、トリエチルアミン(57.5g、568mmol)、DMSO(140g)を加えた後、二硫化炭素(21.6g、284mmol)を加え、室温で1時間撹拌した。その後、反応液を氷冷し、ヨウ化メチル(80.6g、568mmol)を徐々に加え、室温でさらに反応を行なった。反応終了後、氷水(250g)に反応液を注ぎ、析出した固体をろ過、ヘキサンで洗浄することで、化合物[92]を36.7g得た(収率52%)。
 1H-NMR(400MHz, CDCl3, δppm): 2.57(6H, s), 1.53(6H, s).
Meldrum acid [1] (40.9 g, 284 mmol), triethylamine (57.5 g, 568 mmol) and DMSO (140 g) were added to a 200 mL four-necked flask, followed by carbon disulfide (21.6 g, 284 mmol). And stirred at room temperature for 1 hour. Thereafter, the reaction solution was ice-cooled, methyl iodide (80.6 g, 568 mmol) was gradually added, and the reaction was further performed at room temperature. After completion of the reaction, the reaction solution was poured into ice water (250 g), and the precipitated solid was filtered and washed with hexane to obtain 36.7 g of Compound [92] (yield 52%).
1 H-NMR (400MHz, CDCl3, δppm): 2.57 (6H, s), 1.53 (6H, s).
 <合成例45>
下記式[94]で表される化合物2,2-dimethyl-5-(methylthio(neopentylamino)-methylene)-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000089
<Synthesis Example 45>
Synthesis of a compound represented by the following formula [94] 2,2-dimethyl-5- (methylthio (neopentylamino) -methylene) -1,3-dioxane-4,6-dione
Figure JPOXMLDOC01-appb-C000089
 200mL四つ口フラスコに、化合物[92](18.6g、75mmol)、2,2-ジメチルプロピルアミン(6.53g、75mmol)、THF(180g)を加え、室温で撹拌を行なった。反応終了後、エバポレーターで溶媒が約半分になるまで濃縮し、ジエチルエーテル(100g)を加え、析出した固体をろ過し、THF/ジエチルエーテル混合溶媒から再結晶することで、化合物[94]を16.9g得た(収率77%)。
 1H-NMR(400MHz, CDCl3, δppm): 3.11(2H, d), 2.58(3H, s), 1.73(6H, s).
Compound [92] (18.6 g, 75 mmol), 2,2-dimethylpropylamine (6.53 g, 75 mmol) and THF (180 g) were added to a 200 mL four-necked flask, and the mixture was stirred at room temperature. After completion of the reaction, the solvent was concentrated to about half by an evaporator, diethyl ether (100 g) was added, the precipitated solid was filtered, and recrystallized from a THF / diethyl ether mixed solvent to obtain Compound [94] 16 0.9 g was obtained (yield 77%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 3.11 (2H, d), 2.58 (3H, s), 1.73 (6H, s).
 <合成例46>
下記式[95]で表される化合物2,2-dimethyl-5-(methylthio(neopentylamino)-methylene)-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000090
<Synthesis Example 46>
Synthesis of Compound 2,2-dimethyl-5- (methylthio (neopentylamino) -methylene) -1,3-dioxane-4,6-dione represented by Formula [95]
Figure JPOXMLDOC01-appb-C000090
 200mL四つ口フラスコに、化合物[92](2.42g、10mmol)、2,2-ジメチルプロピルアミン(2.62g、30mmol)、エタノール(60g)を加え、加熱還流を行なった。反応終了後、エバポレーターで溶媒が約半分になるまで濃縮し、ジエチルエーテル(50g)を加え、0℃に冷却し固体を析出させた。その後、固体をろ過し、THF/ジエチルエーテル混合溶媒から再結晶することで、化合物[95]を1.62g得た(収率50%)。
 1H-NMR(400MHz, CDCl3, δppm): 9.83(2H, s), 3.10(2H, d), 1.61(6H, s), 0.96(18H, s).
To a 200 mL four-necked flask, compound [92] (2.42 g, 10 mmol), 2,2-dimethylpropylamine (2.62 g, 30 mmol), and ethanol (60 g) were added and heated to reflux. After completion of the reaction, the mixture was concentrated with an evaporator until the solvent was reduced to about half, diethyl ether (50 g) was added, and the mixture was cooled to 0 ° C. to precipitate a solid. Thereafter, the solid was filtered and recrystallized from a THF / diethyl ether mixed solvent to obtain 1.62 g of Compound [95] (yield 50%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 9.83 (2H, s), 3.10 (2H, d), 1.61 (6H, s), 0.96 (18H, s).
 <合成例47>
下記式[97]で表される化合物5,5'-(1,8-dihydroxyoctane-1,8-diylidene)‐bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000091
<Synthesis Example 47>
Compound 5,5 ′-(1,8-dihydroxyoctane-1,8-diylidene) -bis (2,2-dimethyl-1,3-dioxane-4,6-dione) represented by the following formula [97] Composition
Figure JPOXMLDOC01-appb-C000091
 200mL四つ口フラスコに、メルドラム酸[1](14.7g、11mmol)、ピリジン(19.87g、0.26mmol)、ジクロロメタン(200g)を加え、反応溶液を0℃へ冷却後、ヘキサンジカルボキシルジクロリド[96](11.98g、51mmol)のジクロロメタン(50g)溶液を発熱に注意しながら徐々に加え、その後23℃でさらに反応を行なった。反応終了後、10%塩酸水溶液で溶液を酸性にし、エバポレーターで溶媒を留去した。その後、固体をろ過、純水で洗浄し、ジクロロメタン/ジエチルエーテルの混合溶媒から再結晶することで、化合物[97]を16.6g得た(収率78%)。
 1H-NMR(400MHz, CDCl3, δppm): 15.30(2H, s), 3.09(4H, t), 1.73(12H, s), 1.66(4H, m), 1.47(4H, m).
Meldrum acid [1] (14.7 g, 11 mmol), pyridine (19.87 g, 0.26 mmol), and dichloromethane (200 g) were added to a 200 mL four-necked flask, and the reaction solution was cooled to 0 ° C. A solution of dichloride [96] (11.98 g, 51 mmol) in dichloromethane (50 g) was gradually added while paying attention to heat generation, and further reaction was carried out at 23 ° C. After completion of the reaction, the solution was acidified with a 10% aqueous hydrochloric acid solution, and the solvent was distilled off with an evaporator. Thereafter, the solid was filtered, washed with pure water, and recrystallized from a mixed solvent of dichloromethane / diethyl ether to obtain 16.6 g of Compound [97] (yield 78%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 15.30 (2H, s), 3.09 (4H, t), 1.73 (12H, s), 1.66 (4H, m), 1.47 (4H, m).
 <合成例48>
下記式[99]で表される5,5'-(((6,7,9,10,17,18,20,21-octahydrodibenzo[b,k][1,4,7,10,13,16]hexaoxacyclooctadecine-2,14-diyl)bis(azanediyl))bis(methanylylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000092
<Synthesis Example 48>
5,5 ′-((((6,7,9,10,17,18,20,21-octahydrodibenzo [b, k] [1,4,7,10,13, Synthesis of 16] hexaoxacyclooctadecine-2,14-diyl) bis (azanediyl)) bis (methanylylidene)) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000092
 200mL四つ口フラスコに、メルドラム酸[1](4.87g、33.8mmol)、及びオルトギ酸トリメチル[2](60g)を加え、1時間加熱還流を行った。その後、化合物[98](6.00g、15.4mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[99]を10.4g得た(収率97%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.21(2H, d), 8.54(2H, d), 7.26(2H, d), 7.05(2H, dd), 6.96(2H, d), 4.15-4.06(8H, m), 3.88-3.80(6H, m), 3.17(2H, d), 1.67(12H, s).
Meldrum acid [1] (4.87 g, 33.8 mmol) and trimethyl orthoformate [2] (60 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, Compound [98] (6.00 g, 15.4 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed by an evaporator and dried to obtain 10.4 g of Compound [99] (yield 97%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.21 (2H, d), 8.54 (2H, d), 7.26 (2H, d), 7.05 (2H, dd), 6.96 (2H, d), 4.15 -4.06 (8H, m), 3.88-3.80 (6H, m), 3.17 (2H, d), 1.67 (12H, s).
 <合成例49>
下記式[101]で表される5,5'-((1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl)bis(methanylylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000093
<Synthesis Example 49>
5,5 ′-((1,4,10,13-tetraoxa-7,16-diazacyclooctadecane-7,16-diyl) bis (methanylylidene)) bis (2,2-dimethyl) represented by the following formula [101] -1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000093
 500mL四つ口フラスコに、メルドラム酸[1](24.17g、167.7mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[100](20.00g、76.2mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[101]を43.2g得た(収率100%)。 Meldrum acid [1] (24.17 g, 167.7 mmol) and trimethyl orthoformate [2] (200 g) were added to a 500 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [100] (20.00 g, 76.2 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 43.2 g of Compound [101] (yield 100%).
 <合成例50>
下記式[103]で表される5,5'-(((((oxybis(ethane-2,1-diyl))bis(oxy))bis(4,1-phenylene))bis(azanediyl))bis(methanylylidene))bis(2,2-dimethyl-1,3-dioxane-4,6-dione)の合成
Figure JPOXMLDOC01-appb-C000094
<Synthesis Example 50>
5,5 ′-((((((oxybis (ethane-2,1-diyl)) bis (oxy)) bis (4,1-phenylene)) bis (azanediyl)) bis represented by the following formula [103] Synthesis of (methanylylidene)) bis (2,2-dimethyl-1,3-dioxane-4,6-dione)
Figure JPOXMLDOC01-appb-C000094
 500mL四つ口フラスコに、メルドラム酸[1](22.00g、153mmol)、及びオルトギ酸トリメチル[2](200g)を加え、1時間加熱還流を行った。その後、化合物[102](20.00g、69.4mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥して、化合物[103]を40.2g得た(収率97%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.23(2H, d), 8.44(2H, d), 7.50-7.48(2H, m), 7.01-6.99(4H, m), 4.42-4.12(4H, m), 3.89-3.78(4H, m), 1.67(12H, s).
Meldrum acid [1] (22.00 g, 153 mmol) and trimethyl orthoformate [2] (200 g) were added to a 500 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [102] (20.00 g, 69.4 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 40.2 g of Compound [103] (yield 97%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.23 (2H, d), 8.44 (2H, d), 7.50-7.48 (2H, m), 7.01-6.99 (4H, m), 4.42-4.12 ( 4H, m), 3.89-3.78 (4H, m), 1.67 (12H, s).
 <合成例51>
下記式[105]で表される2-(methacryloyloxy)ethyl3,5-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)benzoateの合成
Figure JPOXMLDOC01-appb-C000095
<Synthesis Example 51>
2- (methacryloyloxy) ethyl3,5-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) benzoate represented by the following formula [105] Composition
Figure JPOXMLDOC01-appb-C000095
 500mL四つ口フラスコに、メルドラム酸[1](24.18g、168mmol)、及びオルトギ酸トリメチル[2](300g)を加え、1時間加熱還流を行った。その後、化合物[104](20.00g、76.3mmol)を加え、さらに2時間加熱還流を行った。反応終了後、ヘキサンを加えろ過した後、乾燥を行い、化合物[105]を43.7g得た(収率100%)。
 1H-NMR(400MHz, CDCl3, δppm):11.36(2H, d), 8.72(2H, d), 7.80(2H, d), 7.37(1H, t), 6.17(1H, t), 5.64-5.62(1H, m), 4.67-4.65(2H, m), 4.55-4.52(2H, m), 3.79(1H, s), 3.47(1H, s), 3.34(2H, s), 1.97-1.96(3H, m), 1.78-1.76(13H, m).
Meldrum acid [1] (24.18 g, 168 mmol) and trimethyl orthoformate [2] (300 g) were added to a 500 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [104] (20.00 g, 76.3 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, hexane was added and filtered, followed by drying to obtain 43.7 g of Compound [105] (yield 100%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.36 (2H, d), 8.72 (2H, d), 7.80 (2H, d), 7.37 (1H, t), 6.17 (1H, t), 5.64-5.62 (1H, m), 4.67-4.65 (2H, m), 4.55-4.52 (2H, m), 3.79 (1H, s), 3.47 (1H, s), 3.34 (2H, s), 1.97-1.96 (3H , m), 1.78-1.76 (13H, m).
 <合成例52>
下記式[107]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4'-butoxy-[1,1'-biphenyl]-4-yl)acrylateの合成
Figure JPOXMLDOC01-appb-C000096
<Synthesis Example 52>
(E) -2,4-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenethyl 3- represented by the following formula [107] Synthesis of (4'-butoxy- [1,1'-biphenyl] -4-yl) acrylate
Figure JPOXMLDOC01-appb-C000096
 100mL四つ口フラスコに、メルドラム酸[1](4.00g、20.4mmol)、及びオルトギ酸トリメチル[2](40g)を加え、1時間加熱還流を行った。その後、化合物[106](4.00g、9.3mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[107]を6.8g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.59(1H, d), 11.29(1H, d), 8.84(1H, d), 8.78(1H, d), 8.23(1H, s), 8.04(1H, s), 7.70-7.64(7H, m), 7.62(1H, d), 7.48(2H, s), 7.03(2H, d), 6.53(1H, d), 4.41(2H, t), 4.01(2H, t), 3.66-3.63(6H,m), 1.68-1.57(10H, m), 1.56(1H, s), 1.44-1.39(1H, m), 0.94(3H, t). 
Meldrum acid [1] (4.00 g, 20.4 mmol) and trimethyl orthoformate [2] (40 g) were added to a 100 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [106] (4.00 g, 9.3 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 6.8 g of Compound [107] (99% yield).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.59 (1H, d), 11.29 (1H, d), 8.84 (1H, d), 8.78 (1H, d), 8.23 (1H, s), 8.04 (1H , s), 7.70-7.64 (7H, m), 7.62 (1H, d), 7.48 (2H, s), 7.03 (2H, d), 6.53 (1H, d), 4.41 (2H, t), 4.01 ( 2H, t), 3.66-3.63 (6H, m), 1.68-1.57 (10H, m), 1.56 (1H, s), 1.44-1.39 (1H, m), 0.94 (3H, t).
 <合成例53>
下記式[109]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-cyclohexylphenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000097
<Synthesis Example 53>
(E) -2,4-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenethyl 3- represented by the following formula [109] Synthesis of (4-cyclohexylphenyl) acrylate
Figure JPOXMLDOC01-appb-C000097
 200mL四つ口フラスコに、メルドラム酸[1](4.35g、30mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[108](5.00g、14mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[109]を9.63g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.63(1H, d), 11.30(1H, d), 8.64-8.63(2H, m), 7.60(1H, d), 7.42-7.39(3H, m), 7.29-7.27(2H, m), 7.21-7.15(3H, m), 6.37(1H, d), 4.49-4.46(2H, m), 3.33-3.11(2H, m), 2.59-2.42(1H, m), 1.86-1.45(2H, m), 1.76-1.70(14H, m), 1.42-1.20(6H, m). 
Meldrum acid [1] (4.35 g, 30 mmol) and trimethyl orthoformate [2] (50 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [108] (5.00 g, 14 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 9.63 g of Compound [109] (yield 99%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.63 (1H, d), 11.30 (1H, d), 8.64-8.63 (2H, m), 7.60 (1H, d), 7.42-7.39 (3H, m) , 7.29-7.27 (2H, m), 7.21-7.15 (3H, m), 6.37 (1H, d), 4.49-4.46 (2H, m), 3.33-3.11 (2H, m), 2.59-2.42 (1H, m), 1.86-1.45 (2H, m), 1.76-1.70 (14H, m), 1.42-1.20 (6H, m).
 <合成例54>
下記式[111]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-([trans-1,1'-bi(cyclohexan)]-4-yl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000098
<Synthesis Example 54>
(E) -2,4-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenethyl 3- represented by the following formula [111] Synthesis of (4-([trans-1,1'-bi (cyclohexan)]-4-yl) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000098
 200mL四つ口フラスコに、メルドラム酸[1](2.84g、20mmol)、及びオルトギ酸トリメチル[2](40g)を加え、1時間加熱還流を行った。その後、化合物[110](4.00g、9.0mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[111]を6.6g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.63(1H, d), 11.30(1H, d), 8.67-8.60(2H, m), 7.60(1H, d), 7.41-7.39(3H, m), 7.26-7.14(4H, m), 6.36(1H, d), 4.48(2H, t), 3.12(2H, t), 2.52-2.45(1H, m), 1.91-1.70(24H, m), 1.52-1.01(8H, m). 
Meldrum acid [1] (2.84 g, 20 mmol) and trimethyl orthoformate [2] (40 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [110] (4.00 g, 9.0 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 6.6 g of Compound [111] (yield 99%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.63 (1H, d), 11.30 (1H, d), 8.67-8.60 (2H, m), 7.60 (1H, d), 7.41-7.39 (3H, m) , 7.26-7.14 (4H, m), 6.36 (1H, d), 4.48 (2H, t), 3.12 (2H, t), 2.52-2.45 (1H, m), 1.91-1.70 (24H, m), 1.52 -1.01 (8H, m).
 <合成例55>
下記式[113]で表される(E)-4-(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-cyclohexylphenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000099
<Synthesis Example 55>
(E) -4-(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenethyl 3- (4- Synthesis of (cyclohexylphenyl) acrylate
Figure JPOXMLDOC01-appb-C000099
 200mL四つ口フラスコに、メルドラム酸[1](2.7g、19mmol)、及びオルトギ酸トリメチル[2](30g)を加え、1時間加熱還流を行った。その後、化合物[112](3.00g、8.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[113]を4.22g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.25(1H, d), 8.62(1H, d), 7.64(1H, d), 7.44(2H, d), 7.32(2H, d), 7.24-7.19(4H, m), 6.36(1H, d), 4.42(2H, t), 3.03(2H, t), 1.87-1.38(17H, m). 
Meldrum acid [1] (2.7 g, 19 mmol) and trimethyl orthoformate [2] (30 g) were added to a 200 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [112] (3.00 g, 8.6 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed by an evaporator and dried to obtain 4.22 g of Compound [113] (yield 99%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.25 (1H, d), 8.62 (1H, d), 7.64 (1H, d), 7.44 (2H, d), 7.32 (2H, d), 7.24-7.19 (4H, m), 6.36 (1H, d), 4.42 (2H, t), 3.03 (2H, t), 1.87-1.38 (17H, m).
 <合成例56>
下記式[115]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-(trans-4-pentylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000100
<Synthesis Example 56>
(E) -2,4-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenethyl 3- represented by the following formula [115] Synthesis of (4- (trans-4-pentylcyclohexyl) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000100
 300mL四つ口フラスコに、メルドラム酸[1](13.55g、69.8mmol)、及びオルトギ酸トリメチル[2](140g)を加え、1時間加熱還流を行った。その後、化合物[114](13.79g、31.7mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[115]を22.4g得た(収率95%)。
 1H-NMR(400MHz, CDCl3, δppm):11.63(1H, d), 11.27(1H, d), 8.68-8.57(2H, m), 7.41-7.39(3H, m), 7.26-7.14(4H, m), 6.36(1H, d), 4.48(2H, t), 3.80-3.76(3H, m), 3.48(2H, d), 3.34(1H, s), 3.12(2H, d), 2.47(2H, t), 1.86(6H, d), 1.77-1.68(10H, m), 1.47-1.20(10H,m), 1.06-0.90(5H, m). 
Meldrum acid [1] (13.55 g, 69.8 mmol) and trimethyl orthoformate [2] (140 g) were added to a 300 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [114] (13.79 g, 31.7 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed by an evaporator and dried to obtain 22.4 g of Compound [115] (yield 95%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.63 (1H, d), 11.27 (1H, d), 8.68-8.57 (2H, m), 7.41-7.39 (3H, m), 7.26-7.14 (4H, m), 6.36 (1H, d), 4.48 (2H, t), 3.80-3.76 (3H, m), 3.48 (2H, d), 3.34 (1H, s), 3.12 (2H, d), 2.47 (2H , t), 1.86 (6H, d), 1.77-1.68 (10H, m), 1.47-1.20 (10H, m), 1.06-0.90 (5H, m).
 <合成例57>
下記式[117]で表される(E)-2,4-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-(trans-4-heptylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000101
<Synthesis Example 57>
(E) -2,4-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenethyl 3- represented by the following formula [117] Synthesis of (4- (trans-4-heptylcyclohexyl) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000101
 100mL四つ口フラスコに、メルドラム酸[1](3.43g、23.8mmol)、及びオルトギ酸トリメチル[2](50g)を加え、1時間加熱還流を行った。その後、化合物[116](5.00g、10.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[117]を8.3g得た(収率100%)。
 1H-NMR(400MHz, CDCl3, δppm):11.64(1H, d), 11.28(1H, d), 8.70-8.63(2H, m), 7.61(1H, d), 7.45-7.40(3H, m), 7.27-7.15(3H, m), 6.37(1H, d), 4.46(2H, t), 3.60(2H, d), 3.12(2H, t), 2.34(1H, t), 1.87(4H, d), 1.85-1.75(15H, m), 1.42-1.38(2H, m), 1.33-1.26(10H,m), 1.07-1.02(2H, m), 0.89(3H, t). 
Meldrum acid [1] (3.43 g, 23.8 mmol) and trimethyl orthoformate [2] (50 g) were added to a 100 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [116] (5.00 g, 10.8 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 8.3 g of Compound [117] (yield 100%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.64 (1H, d), 11.28 (1H, d), 8.70-8.63 (2H, m), 7.61 (1H, d), 7.45-7.40 (3H, m) , 7.27-7.15 (3H, m), 6.37 (1H, d), 4.46 (2H, t), 3.60 (2H, d), 3.12 (2H, t), 2.34 (1H, t), 1.87 (4H, d ), 1.85-1.75 (15H, m), 1.42-1.38 (2H, m), 1.33-1.26 (10H, m), 1.07-1.02 (2H, m), 0.89 (3H, t).
 <合成例58>
下記式[119]で表される(E)-3,5-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)benzyl 3-(4-(trans-4-pentylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000102
<Synthesis Example 58>
(E) -3,5-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) benzyl 3- represented by the following formula [119] Synthesis of (4- (trans-4-pentylcyclohexyl) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000102
 300mL四つ口フラスコに、メルドラム酸[1](11.31g、78.5mmol)、及びオルトギ酸トリメチル[2](150g)を加え、1時間加熱還流を行った。その後、化合物[118](15.00g、35.7mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[119]を25.3g得た(収率99%)。
 1H-NMR(400MHz, CDCl3, δppm):11.30(2H, d), 8.66(2H, d), 7.74(1H, d), 7.49(2H, d), 7.26-7.19(4H, m), 7.08(1H, d), 6.49(1H, d), 5.27(2H, s), 2.49(1H, t), 1.93-1.77(18H, m), 1.65-0.87(14H, m). 
Meldrum acid [1] (11.31 g, 78.5 mmol) and trimethyl orthoformate [2] (150 g) were added to a 300 mL four-necked flask, and the mixture was heated to reflux for 1 hour. Thereafter, compound [118] (15.00 g, 35.7 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 25.3 g of Compound [119] (yield 99%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.30 (2H, d), 8.66 (2H, d), 7.74 (1H, d), 7.49 (2H, d), 7.26-7.19 (4H, m), 7.08 (1H, d), 6.49 (1H, d), 5.27 (2H, s), 2.49 (1H, t), 1.93-1.77 (18H, m), 1.65-0.87 (14H, m).
 <合成例59>
下記式[121]で表される(E)-3,5-bis(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)benzyl 3-(4-(trans-4'-pentyl-[1,1'-bi(cyclohexan)]-4-yl)phenoxy)acrylateの合成
Figure JPOXMLDOC01-appb-C000103
<Synthesis Example 59>
(E) -3,5-bis (((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) benzyl 3- represented by the following formula [121] Synthesis of (4- (trans-4'-pentyl- [1,1'-bi (cyclohexan)]-4-yl) phenoxy) acrylate
Figure JPOXMLDOC01-appb-C000103
 200mL四つ口フラスコに、メルドラム酸[1](1.83g、12.7mmol)、及びオルトギ酸トリメチル[2](45g)を加え、1時間加熱還流を行った。その後、化合物[120](3.00g、5.8mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[121]を4.8g得た(収率100%)。
 1H-NMR(400MHz, CDCl3, δppm):11.27(2H, d), 8.64(2H, d), 7.85(1H, d), 7.21(2H, d), 7.14(2H, d), 7.10-7.09(1H, m), 7.00-6.98(2H, m), 5.57(1H, d), 5.19(2H, s), 3.81(1H, s), 3.47-3.46(1H, m), 3.33(4H, s), 1.91-1.72(20H, m), 1.41-0.84(13H, m).
Meldrum acid [1] (1.83 g, 12.7 mmol) and trimethyl orthoformate [2] (45 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [120] (3.00 g, 5.8 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 4.8 g of Compound [121] (yield 100%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.27 (2H, d), 8.64 (2H, d), 7.85 (1H, d), 7.21 (2H, d), 7.14 (2H, d), 7.10-7.09 (1H, m), 7.00-6.98 (2H, m), 5.57 (1H, d), 5.19 (2H, s), 3.81 (1H, s), 3.47-3.46 (1H, m), 3.33 (4H, s ), 1.91-1.72 (20H, m), 1.41-0.84 (13H, m).
 <合成例60>
下記式[123]で表される(E)-4-(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenyl 3-(4-(trans-4-pentylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000104
<Synthesis Example 60>
(E) -4-(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenyl 3- (4- Synthesis of (trans-4-pentylcyclohexyl) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000104
 200mL四つ口フラスコに、メルドラム酸[1](3.64g、25mmol)、及びオルトギ酸トリメチル[2](90g)を加え、1時間加熱還流を行った。その後、化合物[122](9.00g、23mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[123]を12.1g得た(収率99%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.28(1H, d), 8.61(1H, d), 7.85(1H, d), 7.52(2H, d), 7.29-7.26(5H, m), 6.54(1H, d), 2.52(1H, t), 1.89(4H, d), 1.57-0.89(22H, t).
Meldrum acid [1] (3.64 g, 25 mmol) and trimethyl orthoformate [2] (90 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [122] (9.00 g, 23 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 12.1 g of Compound [123] (yield 99%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.28 (1H, d), 8.61 (1H, d), 7.85 (1H, d), 7.52 (2H, d), 7.29-7.26 (5H, m) , 6.54 (1H, d), 2.52 (1H, t), 1.89 (4H, d), 1.57-0.89 (22H, t).
 <合成例61>
下記式[125]で表される(E)-4-(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene)methyl)amino)phenethyl 3-(4-(trans-4-pentylcyclohexyl)phenyl)acrylateの合成
Figure JPOXMLDOC01-appb-C000105
<Synthesis Example 61>
(E) -4-(((2,2-dimethyl-4,6-dioxo-1,3-dioxan-5-ylidene) methyl) amino) phenethyl 3- (4- Synthesis of (trans-4-pentylcyclohexyl) phenyl) acrylate
Figure JPOXMLDOC01-appb-C000105
 200mL四つ口フラスコに、メルドラム酸[1](2.00g、14mmol)、及びオルトギ酸トリメチル[2](75g)を加え、1時間加熱還流を行った。その後、化合物[124](4.92g、13mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[125]を7.16g得た(収率100%)。
 1H-NMR(400MHz, CDCl3, δppm):11.24(1H, d), 8.62(1H, d), 7.63(1H, d), 7.44(2H, d), 7.32(2H, d), 7.24-7.19(4H, m), 6.36(1H, d), 4.42(2H, t), 3.03(2H, t), 2.48(1H, t), 1.87(4H, d), 1.76(6H, s), 1.49-1.21(1H, m), 1.07-1.00(2H, m), 0.97(3H, t).
Meldrum acid [1] (2.00 g, 14 mmol) and trimethyl orthoformate [2] (75 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [124] (4.92 g, 13 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 7.16 g of Compound [125] (yield 100%).
1 H-NMR (400 MHz, CDCl3, δ ppm): 11.24 (1H, d), 8.62 (1H, d), 7.63 (1H, d), 7.44 (2H, d), 7.32 (2H, d), 7.24-7.19 (4H, m), 6.36 (1H, d), 4.42 (2H, t), 3.03 (2H, t), 2.48 (1H, t), 1.87 (4H, d), 1.76 (6H, s), 1.49- 1.21 (1H, m), 1.07-1.00 (2H, m), 0.97 (3H, t).
 <合成例62>
下記式[127]で表される5-(((4-dodecylphenyl)amino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000106
<Synthesis Example 62>
Synthesis of 5-(((4-dodecylphenyl) amino) methylene) -2,2-dimethyl-1,3-dioxane-4,6-dione represented by the following formula [127]
Figure JPOXMLDOC01-appb-C000106
 200mL四つ口フラスコに、メルドラム酸[1](12.13g、84.2mmol)、及びオルトギ酸トリメチル[2](100g)を加え、1時間加熱還流を行った。その後、化合物[126](20.00g、76.5mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[127]を31.1g得た(収率98%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.24(1H, d), 8.50(1H, d), 7.41(2H, d), 7.20(2H, d), 2.53(2H, t), 2.27-2.46(1H, m), 1.63(6H, s), 1.52-1.47(2H, m), 1.29-1.86(17H, m),, 0.83(3H, t).
Meldrum acid [1] (12.13 g, 84.2 mmol) and trimethyl orthoformate [2] (100 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, compound [126] (20.00 g, 76.5 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 31.1 g of Compound [127] (yield 98%).
1 H-NMR (400MHz, DMSO-d6, δppm): 11.24 (1H, d), 8.50 (1H, d), 7.41 (2H, d), 7.20 (2H, d), 2.53 (2H, t), 2.27 -2.46 (1H, m), 1.63 (6H, s), 1.52-1.47 (2H, m), 1.29-1.86 (17H, m), 0.83 (3H, t).
 <合成例63>
下記式[129]で表される5-(((4-(1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl))amino)methylene)-2,2-dimethyl-1,3-dioxane-4,6-dioneの合成
Figure JPOXMLDOC01-appb-C000107
<Synthesis Example 63>
5-(((4- (1,1,2,2,3,3,4,4,5,5,6,6,7,7,7-pentadecafluoroheptyl)) represented by the following formula [129] Synthesis of amino) methylene) -2,2-dimethyl-1,3-dioxane-4,6-dione
Figure JPOXMLDOC01-appb-C000107
 200mL四つ口フラスコに、メルドラム酸[1](3.10g、22mmol)、及びオルトギ酸トリメチル[2](20g)を加え、1時間加熱還流を行った。その後、化合物[128](10.00g、19.6mmol)を加え、さらに2時間加熱還流を行った。反応終了後、エバポレーターで溶媒を除去、乾燥し化合物[129]を12.6g得た(収率100%)。
 1H-NMR(400MHz, DMSO-d6, δppm):11.60(1H, d), 8.70(1H, d), 7.68(2H, d), 7.39(2H, d), 1.77(6H, s).
Meldrum acid [1] (3.10 g, 22 mmol) and trimethyl orthoformate [2] (20 g) were added to a 200 mL four-necked flask and heated under reflux for 1 hour. Thereafter, Compound [128] (10.00 g, 19.6 mmol) was added, and the mixture was further heated under reflux for 2 hours. After completion of the reaction, the solvent was removed with an evaporator and dried to obtain 12.6 g of Compound [129] (yield 100%).
1 H-NMR (400 MHz, DMSO-d6, δ ppm): 11.60 (1H, d), 8.70 (1H, d), 7.68 (2H, d), 7.39 (2H, d), 1.77 (6H, s).
 [ポリアミック酸又はポリイミドの合成及びその溶液の作製]
 下記で用いた略号は以下の通りである。
(テトラカルボン酸二無水物)
CBDA:1,2,3,4-シクロブタンテトラカルボン酸二無水物
BODA:ビシクロ[3,3,0]オクタン-2,4,6,8-テトラカルボン酸二無水物
Figure JPOXMLDOC01-appb-C000108
[Synthesis of polyamic acid or polyimide and preparation of the solution]
Abbreviations used below are as follows.
(Tetracarboxylic dianhydride)
CBDA: 1,2,3,4-cyclobutanetetracarboxylic dianhydride BODA: bicyclo [3,3,0] octane-2,4,6,8-tetracarboxylic dianhydride
Figure JPOXMLDOC01-appb-C000108
(ジアミン)
p-PDA:p-フェニレンジアミン
DDM:4,4’-ジアミノジフェニルメタン
PCH7AB:1,3-ジアミノ-4-〔4-(トランス-4-n-ヘプチルシクロヘキシル)フェノキシ〕ベンゼン
Figure JPOXMLDOC01-appb-C000109
(Diamine)
p-PDA: p-phenylenediamine DDM: 4,4′-diaminodiphenylmethane PCH7AB: 1,3-diamino-4- [4- (trans-4-n-heptylcyclohexyl) phenoxy] benzene
Figure JPOXMLDOC01-appb-C000109
(有機溶媒)
NMP:N-メチル-2-ピロリドン
BCS:ブチルセロソルブ
(Organic solvent)
NMP: N-methyl-2-pyrrolidone BCS: Butyl cellosolve
(分子量の測定)
 本実施例において、ポリマー(ポリアミック酸、ポリイミド等)の分子量は、(株)Shodex社製常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD-803、KD-805)を用い以下のようにして測定した。
カラム温度:50℃
溶離液:N,N-ジメチルホルムアミド(添加剤として、臭化リチウム-水和物(LiBr・HO)が30mmol/L、リン酸・無水結晶(o-リン酸)が30mmol/L、テトラヒドロフラン(THF)が10ml/L)
流速:1.0mL/分
検量線作製用標準サンプル:東ソー社製 TSK 標準ポリエチレンオキサイド(分子量 約900,000、150,000、100,000、30,000)、および、ポリマーラボラトリー社製 ポリエチレングリコール(分子量 約12,000、4,000、1,000)。
(Measurement of molecular weight)
In this example, the molecular weight of the polymer (polyamic acid, polyimide, etc.) was determined by using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Shodex Co., Ltd., and a column manufactured by Shodex (KD-803, KD-805). ) And was measured as follows.
Column temperature: 50 ° C
Eluent: N, N-dimethylformamide (as additives, lithium bromide-hydrate (LiBr · H 2 O) 30 mmol / L, phosphoric acid / anhydrous crystals (o-phosphoric acid) 30 mmol / L, tetrahydrofuran) (THF) is 10 ml / L)
Flow rate: 1.0 mL / minute standard sample for preparing a calibration curve: TSK standard polyethylene oxide (molecular weight: about 900,000, 150,000, 100,000, 30,000) manufactured by Tosoh Corporation, and polyethylene glycol manufactured by Polymer Laboratory ( Molecular weight about 12,000, 4,000, 1,000).
(イミド化率の測定)
 本実施例において、ポリイミドのイミド化率は次のようにして測定した。
 ポリイミド粉末約20mgをNMRサンプル管に入れ、重水素化ジメチルスルホキシド(DMSO-d、0.05%TMS混合品)約0.53mlを添加し、超音波をかけて完全に溶解させた。この溶液をNMR測定措置にて500MHzのプロトンNMRを測定した。イミド化率は、イミド化前後で変化しない構造に由来するプロトンを基準プロトンとして決め、このプロトンのピーク積算値と、10.0ppm付近に現れるアミック酸のNH基に由来するプロトンピーク積算値とを用い以下の式によって求めた。なお、下記式において、xはアミック酸のNH基由来のプロトンピーク積算値、yは基準プロトンのピーク積算値、αはポリアミック酸(イミド化率が0%)の場合におけるアミック酸のNH基プロトン一個に対する基準プロトンの個数割合である。
イミド化率(%)=(1-α・x/y)×100
(Measurement of imidization rate)
In this example, the imidization ratio of polyimide was measured as follows.
About 20 mg of polyimide powder was placed in an NMR sample tube, about 0.53 ml of deuterated dimethyl sulfoxide (DMSO-d 6 , 0.05% TMS mixture) was added, and completely dissolved by applying ultrasonic waves. This solution was measured for proton NMR at 500 MHz by means of NMR measurement. The imidation rate is determined by determining a proton derived from a structure that does not change before and after imidation as a reference proton, and a peak integrated value of this proton and a proton peak integrated value derived from the NH group of the amic acid that appears near 10.0 ppm. The following formula was used. In the following formula, x is the proton peak integrated value derived from the NH group of the amic acid, y is the peak integrated value of the reference proton, and α is the NH group proton of the amic acid in the case of polyamic acid (imidation rate is 0%). It is the number ratio of the reference proton to one.
Imidization rate (%) = (1−α · x / y) × 100
 <ポリアミック酸(PAA-1)の合成及びその溶液の作製>
 100mL四口フラスコに、DDM 7.93g(40mmol)、NMP(20g)を加え溶解させた後、約10℃に冷却し、CBDA 7.46g(38mmol)のNMP(67g)スラリー溶液を加え、室温に戻し窒素雰囲気下6時間反応させポリアミック酸(PAA-1)の濃度15質量%の溶液を得た。
<Synthesis of polyamic acid (PAA-1) and preparation of its solution>
In a 100 mL four-necked flask, 7.93 g (40 mmol) of DDM and NMP (20 g) were added and dissolved, and then cooled to about 10 ° C., a slurry solution of 7.46 g (38 mmol) of CBDA in NMP (67 g) was added, and Then, the reaction was performed in a nitrogen atmosphere for 6 hours to obtain a 15% by mass solution of polyamic acid (PAA-1).
 このポリアミック酸(PAA-1)の濃度15質量%の溶液88gを200mL三角フラスコに移し、NMPを87.6g、BCSを43.8g加えて希釈し、ポリアミック酸(PAA-1)が6質量%、NMPが74質量%、BCSが20質量%のポリアミック酸(PAA-1)溶液を作製した。このポリアミック酸(PAA-1)の数平均分子量は12,081、重量平均分子量は30,449であった。 88 g of a 15% by weight solution of this polyamic acid (PAA-1) was transferred to a 200 mL Erlenmeyer flask, diluted by adding 87.6 g of NMP and 43.8 g of BCS, and 6% by weight of polyamic acid (PAA-1). A polyamic acid (PAA-1) solution containing 74% by mass of NMP and 20% by mass of BCS was prepared. The number average molecular weight of this polyamic acid (PAA-1) was 12,081, and the weight average molecular weight was 30,449.
 <ポリアミック酸(PAA-2)の合成及びその溶液の作製>
 200mL四口フラスコに、p-PDA 8.65g(80mmol)、NMP(49g)を加え溶解させた後、約10℃に冷却し、CBDA 14.1g(72mmol)のNMP(80g)スラリー溶液を加え、室温に戻し窒素雰囲気下6時間反応させポリアミック酸(PAA-2)の濃度15質量%の溶液を得た。
<Synthesis of polyamic acid (PAA-2) and preparation of its solution>
In a 200 mL four-necked flask, 8.65 g (80 mmol) of p-PDA and NMP (49 g) were added and dissolved, then cooled to about 10 ° C., and a slurry solution of 14.1 g (72 mmol) of CBDA and NMP (80 g) was added. The solution was returned to room temperature and reacted in a nitrogen atmosphere for 6 hours to obtain a 15% by mass solution of polyamic acid (PAA-2).
 このポリアミック酸(PAA-2)の濃度15質量%の溶液125gを300mL三角フラスコに移し、NMPを118.5g、BCSを60.9g加えて希釈し、ポリアミック酸(PAA-2)が6質量%、NMPが74質量%、BCSが20質量%のポリアミック酸(PAA-2)溶液を作製した。このポリアミック酸(PAA-2)の数平均分子量は7,609、重量平均分子量は15,837であった。 125 g of a 15% by weight solution of this polyamic acid (PAA-2) was transferred to a 300 mL Erlenmeyer flask, diluted by adding 118.5 g of NMP and 60.9 g of BCS, and 6% by weight of polyamic acid (PAA-2) A polyamic acid (PAA-2) solution containing 74% by mass of NMP and 20% by mass of BCS was prepared. The number average molecular weight of this polyamic acid (PAA-2) was 7,609, and the weight average molecular weight was 15,837.
 <ポリアミック酸(PAA-3)の合成及びその溶液の作製>
 200mL四口フラスコに、p-PDA 8.05g(74mmol)、PCH7AB 2.13g(5.6mmol)、NMP(118g)を加え溶解させた後、約10℃に冷却し、CBDA 14.1g(72mmol)のNMP(100g)スラリー溶液を加え、室温に戻し窒素雰囲気下6時間反応させポリアミック酸(PAA-3)の濃度10質量%の溶液を得た。
<Synthesis of polyamic acid (PAA-3) and preparation of its solution>
In a 200 mL four-necked flask, p-PDA 8.05 g (74 mmol), PCH7AB 2.13 g (5.6 mmol) and NMP (118 g) were added and dissolved, and then cooled to about 10 ° C., and CBDA 14.1 g (72 mmol). ) NMP (100 g) slurry solution was added, and the mixture was returned to room temperature and reacted in a nitrogen atmosphere for 6 hours to obtain a polyamic acid (PAA-3) solution having a concentration of 10 mass%.
 このポリアミック酸(PAA-3)の濃度10質量%の溶液234gを300mL三角フラスコに移し、NMPを70.8g、BCSを76.2g加えて希釈し、ポリアミック酸(PAA-3)が6質量%、NMPが74質量%、BCSが20質量%のポリアミック酸(PAA-3)溶液を作製した。このポリアミック酸(PAA-3)の数平均分子量は6,092、重量平均分子量は12,002であった。 234 g of this polyamic acid (PAA-3) solution having a concentration of 10% by mass was transferred to a 300 mL Erlenmeyer flask, diluted by adding 70.8 g of NMP and 76.2 g of BCS, and 6% by mass of polyamic acid (PAA-3). A polyamic acid (PAA-3) solution containing 74% by mass of NMP and 20% by mass of BCS was prepared. The number average molecular weight of this polyamic acid (PAA-3) was 6,092, and the weight average molecular weight was 12,002.
 <可溶性ポリイミド(SPI-1)の合成及びその溶液の作製>
 300mL四口フラスコに、BODA(16.9g,68mmol)、p-PDA(6.8g,63mmol)、PCH7AB(10.3g,27mmol)をNMP(100g)中で混合し、40℃で3時間反応させた後、CBDA(4.1g,21mmol)とNMP(52g)を加え、40℃で3時間反応させポリアミック酸溶液を得た。このポリアミック酸溶液(130g)にNMPを加え6質量%に希釈した後、イミド化触媒として無水酢酸(16g)、ピリジン(12g)を加え、80℃で3時間反応させた。この反応溶液をメタノール(1.6L)中に投入し、得られた沈殿物を濾別した。この沈殿物をメタノールで洗浄し、100℃で減圧乾燥しポリイミド粉末(SPI-1)を得た。このポリイミドのイミド化率は54%であり、数平均分子量は18,300、重量平均分子量は45,300であった。このポリイミドにおけるカルボキシル基の量は、繰り返し単位に対して0.92個である。
<Synthesis of Soluble Polyimide (SPI-1) and Preparation of Solution>
BODA (16.9 g, 68 mmol), p-PDA (6.8 g, 63 mmol) and PCH7AB (10.3 g, 27 mmol) were mixed in NMP (100 g) in a 300 mL four-necked flask and reacted at 40 ° C. for 3 hours. Then, CBDA (4.1 g, 21 mmol) and NMP (52 g) were added and reacted at 40 ° C. for 3 hours to obtain a polyamic acid solution. After adding NMP to this polyamic acid solution (130 g) and diluting to 6% by mass, acetic anhydride (16 g) and pyridine (12 g) were added as an imidization catalyst and reacted at 80 ° C. for 3 hours. This reaction solution was put into methanol (1.6 L), and the resulting precipitate was separated by filtration. This precipitate was washed with methanol and dried under reduced pressure at 100 ° C. to obtain a polyimide powder (SPI-1). The imidation ratio of this polyimide was 54%, the number average molecular weight was 18,300, and the weight average molecular weight was 45,300. The amount of carboxyl groups in this polyimide is 0.92 with respect to the repeating unit.
 上記で得たポリイミド粉末(SPI-1)(12.0g)にNMP(98g)、BCS(90g)を加え、80℃にて40時間攪拌して溶解させ、可溶性ポリイミド(SPI-1)溶液を作製した。 NMP (98 g) and BCS (90 g) are added to the polyimide powder (SPI-1) (12.0 g) obtained above and dissolved by stirring at 80 ° C. for 40 hours to obtain a soluble polyimide (SPI-1) solution. Produced.
 [ポリイミド膜形成用塗布液(液晶配向剤)の調製]
 <実施例1~10>
 上記で作製したポリアミック酸(PAA-1)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表1に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して10mol%となるように加え、均一溶液となるまで、室温(25℃)で撹拌を行い、実施例1~10のポリイミド膜形成用塗布液(機能性ポリマー膜形成用塗布液)を調製した。
[Preparation of polyimide film forming coating liquid (liquid crystal aligning agent)]
<Examples 1 to 10>
To the polyamic acid (PAA-1) solution (10.0 g) prepared above, the compounds described in the following Table 1 prepared as the modifying compound in the above synthesis example were respectively added to the solid polyamic acid (PAA-1) solution. The coating solution for forming a polyimide film of Examples 1 to 10 was added at 10% by mole (ie, polyamic acid (PAA-1)) and stirred at room temperature (25 ° C.) until a uniform solution was obtained. (Functional polymer film-forming coating solution) was prepared.
Figure JPOXMLDOC01-appb-T000110
Figure JPOXMLDOC01-appb-T000110
 <実施例11~45>
 上記で作製したポリアミック酸(PAA-1)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表2に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表2に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例11~45のポリイミド膜形成用塗布液を調製した。
<Examples 11 to 45>
To the polyamic acid (PAA-1) solution (10.0 g) prepared above, the compounds described in the following Table 2 prepared as the modifying compound in the above synthesis example were respectively added to the solid polyamic acid (PAA-1) solution. In order to achieve the ratio shown in Table 2 below with respect to the minute (that is, polyamic acid (PAA-1)), the mixture was stirred at room temperature until a uniform solution was obtained. A liquid was prepared.
 <実施例46~57>
 上記で作製したポリアミック酸(PAA-2)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表3に記載される化合物を、それぞれポリアミック酸(PAA-2)溶液の固形分(すなわちポリアミック酸(PAA-2))に対して10mol%となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例46~57のポリイミド膜形成用塗布液を調製した。
<Examples 46 to 57>
To the polyamic acid (PAA-2) solution (10.0 g) prepared above, the compounds described in the following Table 3 prepared as the modifying compound in the above synthesis example were respectively added to the solid polyamic acid (PAA-2) solution. The coating solution for forming a polyimide film of Examples 46 to 57 was prepared by adding at 10 mol% with respect to the amount (that is, polyamic acid (PAA-2)) and stirring at room temperature until a uniform solution was obtained.
Figure JPOXMLDOC01-appb-T000112
Figure JPOXMLDOC01-appb-T000112
 <実施例58~71>
 上記で作製したポリアミック酸(PAA-3)溶液(40.0g)に、修飾用化合物として上記合成例で作製した下記表4に記載される化合物を、それぞれポリアミック酸(PAA-3)溶液の固形分(すなわちポリアミック酸(PAA-3))に対して表4に記載する質量%となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例58~71のポリイミド膜形成用塗布液を調製した。
<Examples 58 to 71>
In the polyamic acid (PAA-3) solution (40.0 g) prepared above, the compounds described in the following Table 4 prepared as the modifying compound in the above synthesis example were respectively added to the solid polyamic acid (PAA-3) solution. In order to achieve the mass% described in Table 4 with respect to the fraction (that is, polyamic acid (PAA-3)), the mixture was stirred at room temperature until a uniform solution was obtained. A liquid was prepared.
Figure JPOXMLDOC01-appb-T000113
Figure JPOXMLDOC01-appb-T000113
<実施例72~74>
 上記で作製したポリアミック酸(PAA-2)溶液(70.0g)に、修飾用化合物として上記合成例で作製した下記表5に記載される化合物を、それぞれポリアミック酸(PAA-2)溶液の固形分(すなわちポリアミック酸(PAA-2))に対して下記表5に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例72~74のポリイミド膜形成用塗布液を調製した。
<Examples 72 to 74>
In the polyamic acid (PAA-2) solution (70.0 g) prepared above, the compounds described in the following Table 5 prepared as the modifying compound in the above synthesis example were respectively added to the solid polyamic acid (PAA-2) solution. In order to achieve the ratio shown in Table 5 below with respect to the minute (that is, polyamic acid (PAA-2)), the mixture was stirred at room temperature until a uniform solution was obtained. A liquid was prepared.
Figure JPOXMLDOC01-appb-T000114
Figure JPOXMLDOC01-appb-T000114
 <実施例75~90>
 上記で作製した可溶性ポリイミド(SPI-1)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表6に記載される化合物を、それぞれ可溶性ポリイミド(SPI-1)溶液の固形分(すなわち可溶性ポリイミド(SPI-1))に対して、下記表6に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例75~90のポリイミド膜形成用塗布液を調製した。
<Examples 75 to 90>
In the soluble polyimide (SPI-1) solution (10.0 g) prepared above, the compounds described in the following Table 6 prepared as the modifying compound in the above synthesis example were respectively solidified in the soluble polyimide (SPI-1) solution. For the polyimide film formation of Examples 75 to 90, the mixture was added to the minute (ie soluble polyimide (SPI-1)) so as to have the ratio shown in Table 6 below, and stirred at room temperature until a uniform solution was obtained. A coating solution was prepared.
Figure JPOXMLDOC01-appb-T000115
Figure JPOXMLDOC01-appb-T000115
 <実施例91~102及び比較例1>[架橋効果の確認試験(ストリッピングテスト)]
 上記実施例75~86のポリイミド膜形成用塗布液をシリコンウエハにスピンコート(2500rpm/30秒)し、230℃のホットプレート上で30分間焼成を行い、塗膜[a1]を形成させた。得られた塗膜[a1]の膜厚を(株)小坂研究所社製サーフコーダET4000Mを用いて測定した。次に、塗膜[a1]が形成されたシリコンウエハを再度スピンコーターにセットして、NMPをシリコンウエハ全面が覆われるまで滴下し、60秒静置した後、NMPをスピンドライ(1500rpm/30秒)し、100℃のホットプレート上で30秒間焼成を行い、残膜を塗膜[a2]とした。この塗膜[a2]の膜厚を再度測定し、以下の計算式の基づき、残膜率を算出した。なお、比較例1として、上記で作製した可溶性ポリイミド(SPI-1)溶液、すなわち、上記式[A]~[D]で表される修飾用化合物を含有していない可溶性ポリイミド溶液についても同様の操作を行い、残膜率を算出した。結果を表7に示す。
  残膜率(%)=塗膜[a2]の膜厚/塗膜[a1]の膜厚×100
<Examples 91 to 102 and Comparative Example 1> [Confirmation test of crosslinking effect (stripping test)]
The polyimide film forming coating solutions of Examples 75 to 86 were spin coated (2500 rpm / 30 seconds) on a silicon wafer and baked on a hot plate at 230 ° C. for 30 minutes to form a coating film [a1]. The film thickness of the obtained coating film [a1] was measured using Surfcorder ET4000M manufactured by Kosaka Laboratory Ltd. Next, the silicon wafer on which the coating film [a1] is formed is set again on the spin coater, NMP is dropped until the entire surface of the silicon wafer is covered, and left for 60 seconds, and then NMP is spin-dried (1500 rpm / 30). Second) and baked on a hot plate at 100 ° C. for 30 seconds, and the remaining film was used as a coating film [a2]. The film thickness of this coating film [a2] was measured again, and the remaining film ratio was calculated based on the following calculation formula. As Comparative Example 1, the same applies to the soluble polyimide (SPI-1) solution produced above, that is, the soluble polyimide solution not containing the modifying compounds represented by the above formulas [A] to [D]. The operation was performed and the remaining film ratio was calculated. The results are shown in Table 7.
Remaining film ratio (%) = film thickness of coating film [a2] / film thickness of coating film [a1] × 100
 この結果、修飾用化合物を添加したポリイミド膜形成用塗布液(液晶配向処理剤)を用いることで、塗膜(ポリイミド膜)の溶媒耐性を改善するできることが確認された。したがって、可溶性ポリイミドに修飾用化合物が導入されたと言える。また、メルドラム酸を2個以上有する上記式[A]で表される修飾用化合物を用いた実施例75~85では、特に残膜率が高くなっているため、可溶性ポリイミドが上記式[A]で表される修飾用化合物により架橋されたものと推測される。さらには、添加する上記式[A]で表される修飾用化合物を適切に選択することにより、塗膜の溶解性を比較的自由に制御できることが確認された。 As a result, it was confirmed that the solvent resistance of the coating film (polyimide film) can be improved by using the polyimide film forming coating liquid (liquid crystal alignment treatment agent) to which the modifying compound is added. Therefore, it can be said that the modifying compound was introduced into the soluble polyimide. In Examples 75 to 85 using the modifying compound represented by the above formula [A] having two or more Meldrum's acids, the residual film ratio was particularly high. It is estimated that it was bridge | crosslinked by the compound for a modification represented by these. Furthermore, it was confirmed that the solubility of the coating film can be controlled relatively freely by appropriately selecting the modifying compound represented by the formula [A] to be added.
 なお、同様にして実施例1~74及び実施例87~90のポリイミド膜形成用塗布液を用いて塗膜を形成しストリッピングテストを行なったところ、それぞれ修飾用化合物を添加していないものと比較して、残膜率が高くなり、修飾用化合物を添加したポリイミド膜形成用塗布液を用いることで、ポリイミド膜の溶媒耐性を改善するできることが確認された。 In the same manner, when a coating film was formed using the polyimide film-forming coating liquids of Examples 1 to 74 and Examples 87 to 90 and a stripping test was performed, it was found that no modifier compound was added. In comparison, it was confirmed that the solvent resistance of the polyimide film can be improved by using a polyimide film-forming coating solution to which the remaining film ratio is increased and a modifying compound is added.
Figure JPOXMLDOC01-appb-T000116
Figure JPOXMLDOC01-appb-T000116
 [液晶配向膜及び液晶セルの作製]
 上記各実施例で調製したポリイミド膜形成用塗布液(液晶配向剤)を用いて、以下のようにして液晶セルを作製した。
[Production of liquid crystal alignment film and liquid crystal cell]
Using the polyimide film forming coating solution (liquid crystal aligning agent) prepared in each of the above examples, a liquid crystal cell was prepared as follows.
 ポリイミド膜形成用塗布液(液晶配向剤)をガラス基板またはITO透明電極付きガラス基板にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、所定の焼成条件で、膜厚100nmの塗膜を形成させた。 A polyimide film-forming coating solution (liquid crystal aligning agent) is spin-coated on a glass substrate or a glass substrate with an ITO transparent electrode, dried on a hot plate at 80 ° C. for 70 seconds, and then subjected to a predetermined baking condition with a film thickness of 100 nm. A coating film was formed.
 その後、ラビングによる液晶配向処理については、この塗膜面をロール径120mmのラビング装置でレーヨン布を用いて、所定のラビング条件でラビングし、液晶配向膜V付き基板を得た。光による液晶配向処理については、この塗膜面に直線偏光UV光線(UV波長313nm、照射強度8.0mW/cm-2)を露光量0mJ~1000mJの間で変化させ、プレートの法線に対して40°傾け照射することにより行なった。なお、直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。 Then, about the liquid crystal aligning process by rubbing, this coating-film surface was rubbed on the predetermined rubbing conditions using the rayon cloth with the rubbing apparatus with a roll diameter of 120 mm, and the board | substrate with the liquid crystal aligning film V was obtained. For liquid crystal alignment treatment by light, linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm −2 ) was changed between 0 mJ and 1000 mJ on the coating surface, and the normal line of the plate was changed. This was performed by irradiating at an angle of 40 °. The linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
 このように液晶配向処理を行なった液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合いラビング方向が互いに平行になるようにして張り合わせる(アンチパラレル液晶セル、実施例103~133)、または、直行するようにして張り合わせる(ツイストネマティック液晶セル、実施例174~206、および実施例322~343、実施例344~350)、あるいは、UV照射したものに関しては照射した偏光の方向が平行となるようにして張り合わせ(垂直配向モード用アンチパラレル液晶セル、実施例207~209、実施例210~321)、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、アンチパラレル液晶セルにおいては、液晶MLC-2003(メルク社製)を、ツイストネマティック液晶セルにおいてはカイラル剤入りの液晶MLC-2003(メルク社製)を注入し、垂直配向モード用アンチパラレル液晶セルにおいては液晶MLC-6608(メルク社製)を注入し、注入口を封止して、おのおのの液晶セルを得た。 After preparing two substrates with a liquid crystal alignment film subjected to the liquid crystal alignment treatment in this manner, a spacer of 6 μm is sprayed on the surface of the one liquid crystal alignment film, and then a sealant is printed thereon, and another sheet is obtained. The substrates are laminated so that the liquid crystal alignment film faces face each other and the rubbing directions are parallel to each other (anti-parallel liquid crystal cells, Examples 103 to 133), or are laminated so as to be perpendicular (twisted nematic liquid crystal cell, implementation) Examples 174 to 206, and Examples 322 to 343 and Examples 344 to 350), or those subjected to UV irradiation were bonded so that the directions of polarized light irradiated were parallel (anti-parallel liquid crystal cell for vertical alignment mode, Examples 207 to 209 and Examples 210 to 321) and the sealing agent were cured to produce empty cells. In this empty cell, liquid crystal MLC-2003 (manufactured by Merck) is injected in the anti-parallel liquid crystal cell, and liquid crystal MLC-2003 (manufactured by Merck) containing a chiral agent is injected in the twisted nematic liquid crystal cell, In the anti-parallel liquid crystal cell for vertical alignment mode, liquid crystal MLC-6608 (manufactured by Merck & Co., Inc.) was injected, and the injection port was sealed to obtain each liquid crystal cell.
 [液晶セルの評価]
 作製した各液晶セルの物性の測定、および特性の評価の方法は以下の通りである。なお、各測定、評価において作製した液晶配向膜や液晶セルの基板、焼成条件及びラビング条件を、合わせて示す。
[Liquid crystal cell evaluation]
The method of measuring the physical properties and evaluating the characteristics of each liquid crystal cell produced is as follows. In addition, the liquid crystal aligning film produced in each measurement and evaluation, the board | substrate of a liquid crystal cell, baking conditions, and rubbing conditions are shown collectively.
 <実施例103~133及び比較例2~4><液晶配向性評価>
 表8に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。なお、液晶配向性評価用に作製した液晶セルは、基板としてガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数300rpm、ロール進行速度50mm/sec、押し込み量0.15mmとして作製した。また、合わせて、修飾用化合物や架橋剤を未添加のもの(比較例2)、及び一般的な市販の架橋剤として、下記架橋剤を添加した塗布液(比較例3または比較例4)を調製し、効果を比較した。結果を表8に示す。
評価基準
 ◎:液晶の配向が確認でき、且つ流動配向がない
 ○:液晶は配向しているが、流動配向が若干観察される
 ×:液晶は配向しているが、流動配向が多く観察される
<Examples 103 to 133 and Comparative Examples 2 to 4><Liquid crystal orientation evaluation>
The liquid crystal cell produced using the polyimide film-forming coating solution prepared in each example shown in Table 8 was sandwiched between polarizing plates, and the liquid crystal cell was rotated in a state where the backlight was irradiated from the rear part. It was visually observed whether the liquid crystal was aligned with or without flow alignment. At that time, the following criteria were used for evaluation. In addition, the liquid crystal cell produced for liquid crystal orientation evaluation uses a glass substrate as a substrate, and baked for 30 minutes on a hot plate heated to 230 ° C. as a baking condition of a coating liquid for forming a polyimide film. Was prepared with a roll rotation speed of 300 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.15 mm. In addition, a coating liquid (Comparative Example 3 or Comparative Example 4) to which the following crosslinking agent was added as a general commercially available crosslinking agent (Comparative Example 2) without addition of a modifying compound or a crosslinking agent. Prepared and compared effects. The results are shown in Table 8.
Evaluation Criteria A: The alignment of the liquid crystal can be confirmed and there is no fluid alignment. O: The liquid crystal is aligned, but the flow alignment is slightly observed. X: The liquid crystal is aligned, but a lot of fluid alignment is observed.
Figure JPOXMLDOC01-appb-C000117
Figure JPOXMLDOC01-appb-C000117
 この結果、比較例3及び比較例4のように、市販架橋剤を用いた場合、一般に液晶の配向性は阻害されやすい傾向にあるが、本発明の修飾用化合物を添加したポリイミド膜形成用塗布液を用いた場合には、メルドラム構造部位を2個以上有する修飾用化合物を用いても、液晶の配向性を阻害することなく、場合によっては、配向性を向上させることもできることが確認された。 As a result, when a commercially available crosslinking agent is used as in Comparative Example 3 and Comparative Example 4, the orientation of the liquid crystal generally tends to be disturbed, but the polyimide film-forming coating to which the modifying compound of the present invention is added. In the case of using the liquid, it was confirmed that even if a modifying compound having two or more Meldrum structure sites was used, the orientation could be improved in some cases without impairing the orientation of the liquid crystal. .
Figure JPOXMLDOC01-appb-T000118
Figure JPOXMLDOC01-appb-T000118
 <実施例134~173及び比較例5~6><ラビング耐性評価>
 表9-1~表9-2に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶配向膜の表面を、共焦点レーザー顕微鏡にて観察し、下記の基準で評価を行った。なお、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量を0.5mmとして作製した。また、合わせて、修飾用化合物を未添加のもの(比較例5及び比較例6)を調製し、効果を比較した。結果を表9-1~表9-2に示す。
 ○:削れカスやラビング傷が観察されない。
 △:削れカスやラビング傷が観察される。
 ×:膜が剥離する又は目視でラビング傷が観察される。
<Examples 134 to 173 and Comparative Examples 5 to 6><Rubbing resistance evaluation>
The surface of the liquid crystal alignment film prepared using the polyimide film forming coating solution prepared in each example shown in Table 9-1 to Table 9-2 was observed with a confocal laser microscope and evaluated according to the following criteria. went. Note that a glass substrate with an ITO transparent electrode was used as the substrate, and the baking condition of the coating film of the polyimide film forming coating solution was baking for 30 minutes on a hot plate heated to 230 ° C., and the rubbing conditions were a roll rotation speed of 1000 rpm and a roll progression. It was manufactured at a speed of 50 mm / sec and an indentation amount of 0.5 mm. Moreover, the thing which did not add the compound for a modification | combination (Comparative Example 5 and Comparative Example 6) was prepared, and the effect was compared. The results are shown in Tables 9-1 to 9-2.
○: Scraping and rubbing scratches are not observed.
Δ: Scraping and rubbing scratches are observed.
X: A film | membrane peels or a rubbing damage | wound is observed visually.
 この結果、修飾用化合物を添加していない比較例5及び比較例6と比較して、メルドラム酸構造部位を2個以上有する修飾用化合物を添加したポリイミド膜形成用塗布液を用いた場合には、いずれのポリマーを用いても削れ耐性が改善することが確認された。 As a result, in comparison with Comparative Example 5 and Comparative Example 6 in which the modifying compound was not added, when the polyimide film forming coating solution to which the modifying compound having two or more Meldrum's acid structure sites was added was used It was confirmed that the wear resistance improved with any polymer.
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000119
Figure JPOXMLDOC01-appb-T000120
Figure JPOXMLDOC01-appb-T000120
 <実施例174~206及び比較例7><ツイストネマティック液晶セルのプレチルト角測定>
 表10に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルについて、105℃で5分間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。なお、ツイストネマティック液晶セルのプレチルト角測定用に作製した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmとして作製した。また、合わせて、修飾用化合物を未添加のもの(比較例7)を調製し、効果を比較した。結果を表10に示す。
<Examples 174 to 206 and Comparative Example 7><Pretilt angle measurement of twisted nematic liquid crystal cell>
About the liquid crystal cell produced using the coating liquid for polyimide film formation prepared in each Example shown in Table 10, the pretilt angle was measured after heating at 105 degreeC for 5 minute (s). The pretilt angle was measured by “Axo Scan” of AxoMetrix using the Mueller matrix method. In addition, the liquid crystal cell produced for measuring the pretilt angle of the twisted nematic liquid crystal cell uses a glass substrate with an ITO transparent electrode as the substrate, and is on a hot plate heated to 230 ° C. under the baking condition of the coating liquid for forming the polyimide film. Baked for 30 minutes, and the rubbing conditions were set at a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm. In addition, a compound with no modifier compound added (Comparative Example 7) was prepared, and the effects were compared. The results are shown in Table 10.
 この結果、修飾用化合物の種類と添加量を適切に選択することにより、所望のプレチルト角を任意に得ることができることが確認された。 As a result, it was confirmed that a desired pretilt angle can be arbitrarily obtained by appropriately selecting the type and amount of the modifying compound.
Figure JPOXMLDOC01-appb-T000121
Figure JPOXMLDOC01-appb-T000121
 <実施例207~209及び比較例8><アンチパラレル液晶セルのプレチルト角測定>
 表11に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルについて、120℃で1時間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。なお、アンチパラレル液晶セルのプレチルト角測定用に作製した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を200℃に加熱した熱風循環式オーブン内で30分間焼成とし、配向処理を行わず、前述の液晶セル作製を行った。また、合わせて、修飾用化合物を未添加のもの(比較例8)を調製し、効果を比較した。結果を表11に示す。
<Examples 207 to 209 and Comparative Example 8><Pretilt angle measurement of anti-parallel liquid crystal cell>
About the liquid crystal cell produced using the coating liquid for polyimide film formation prepared in each Example shown in Table 11, after heating at 120 degreeC for 1 hour, the pretilt angle was measured. The pretilt angle was measured by “Axo Scan” of AxoMetrix using the Mueller matrix method. In addition, the liquid crystal cell produced for the pretilt angle measurement of the anti-parallel liquid crystal cell uses a glass substrate with an ITO transparent electrode as a substrate, and the hot air circulation type in which the baking condition of the coating film of the polyimide film forming coating liquid is heated to 200 ° C. The above-described liquid crystal cell was produced without firing the alignment treatment in an oven for 30 minutes. In addition, a compound with no modifier compound added (Comparative Example 8) was prepared, and the effects were compared. The results are shown in Table 11.
 この結果、修飾用化合物を添加していない比較例8と比較して、修飾用化合物を添加したポリイミド膜形成用塗布液を用いた場合には、顕著にプレチルト角を大きくすることができることが確認された。したがって、修飾用化合物を添加することで、ベースポリマー、すなわち、ポリイミド膜形成用塗布液が含有するポリイミド前駆体やポリイミドに液晶を立たせる側鎖成分を導入していなくても、液晶を垂直に配向させることができることが確認された。 As a result, it was confirmed that the pretilt angle can be remarkably increased when the polyimide film-forming coating solution to which the modifying compound is added is used as compared with Comparative Example 8 in which the modifying compound is not added. It was. Therefore, by adding the modifying compound, the base polymer, that is, the polyimide precursor contained in the coating solution for forming the polyimide film or the side chain component that makes the liquid crystal stand up in the polyimide, can be introduced vertically It was confirmed that it can be oriented.
Figure JPOXMLDOC01-appb-T000122
Figure JPOXMLDOC01-appb-T000122
 <実施例210~321><液晶配向性評価及びアンチパラレル液晶セルのプレチルト角測定>
 表12-1~12-4に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察したところ、良好な配向性を示した。その後、3Vの交流電圧を液晶セルに印加し、液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。なお、液晶配向性評価用に作製した液晶セルは、基板としてガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を200℃に加熱した熱風循環式オーブンで30分間焼成とし、得られた塗膜付きのガラス基板に前述の光配向処理を行った後に作製した。
評価基準
 良好:液晶の配向が確認でき、且つ流動配向がない
 不良:液晶は配向しているが、流動配向が多く観察される
<Examples 210 to 321><Evaluation of liquid crystal alignment and measurement of pretilt angle of anti-parallel liquid crystal cell>
A liquid crystal cell produced using the coating liquid for forming a polyimide film prepared in each example shown in Tables 12-1 to 12-4 was sandwiched between polarizing plates, and the liquid crystal cell was rotated with the backlight irradiated from the rear part. When the liquid crystal was orientated by the presence or absence of change in brightness and the presence or absence of fluid orientation, it was observed visually. Thereafter, an AC voltage of 3 V was applied to the liquid crystal cell, and it was visually observed whether the liquid crystal was aligned. At that time, the following criteria were used for evaluation. In addition, the liquid crystal cell produced for liquid crystal orientation evaluation was obtained by baking for 30 minutes in a hot-air circulating oven heated to 200 ° C. using a glass substrate as the substrate and the coating condition of the coating liquid for forming the polyimide film was 200 ° C. It produced after performing the above-mentioned photo-alignment process to the obtained glass substrate with a coating film.
Evaluation criteria Good: The orientation of the liquid crystal can be confirmed and there is no fluid orientation. Poor: The liquid crystal is oriented, but many fluid orientations are observed.
 また、表12-1~12-4に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルについて、120℃で1時間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。 In addition, the liquid crystal cell produced using the coating solution for forming a polyimide film prepared in each Example shown in Tables 12-1 to 12-4 was heated at 120 ° C. for 1 hour, and then the pretilt angle was measured. The pretilt angle was measured by “Axo Scan” from Axo Metrix using the Mueller matrix method.
 この結果、光反応性側鎖を有する修飾用化合物を添加したポリイミド膜形成用塗布液(液晶配向処理剤)を用いることで、光配向処理を行った場合においても良好な垂直配向性が得られることが確認された。また、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)に偏光の紫外線を照射することで、垂直から僅かに傾けた状態で液晶を配向させる能力があることが確認された。さらに、添加量と照射量を制御することにより、プレチルト角を微調整できることも確かめられた。これらのことから、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)は、垂直配向方式の液晶表示素子用の液晶配向膜に利用可能であり、また光配向法で使用する液晶配向膜としても有用であると言える。 As a result, by using a coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) to which a modifying compound having a photoreactive side chain is added, a good vertical alignment can be obtained even when a photo-alignment treatment is performed. It was confirmed. It was also confirmed that the polyimide film-forming coating liquid (liquid crystal alignment treatment agent) of the present invention has the ability to align liquid crystals in a slightly tilted state by irradiating polarized ultraviolet rays. It was also confirmed that the pretilt angle can be finely adjusted by controlling the addition amount and the irradiation amount. Therefore, the coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) of the present invention can be used for a liquid crystal alignment film for a vertical alignment type liquid crystal display element, and also used for a photo alignment method. It can be said that it is also useful.
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000123
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000124
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000125
Figure JPOXMLDOC01-appb-T000126
Figure JPOXMLDOC01-appb-T000126
 <実施例322~343及び比較例9><電圧保持率(VHR)の測定>
 表13に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製した液晶セルについて、初期状態の電圧保持率測定を行なった。電圧保持率の測定は、90℃の温度下で4Vの電圧を60μs間印加し、16.67ms後の電圧を測定し、電圧がどのくらい保持できているかを電圧保持率として計算した。電圧保持率の測定には東陽テクニカ社製のVHR-1電圧保持率測定装置を使用した。なお、電圧保持率(VHR)の測定用に作製した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmとして作製した。また、合わせて、修飾用化合物を未添加のもの(比較例9)を調製し、効果を比較した。結果を表13に示す。
<Examples 322 to 343 and Comparative Example 9><Measurement of voltage holding ratio (VHR)>
With respect to the liquid crystal cell produced using the polyimide film-forming coating solution prepared in each Example shown in Table 13, the voltage holding ratio in the initial state was measured. The voltage holding ratio was measured by applying a voltage of 4 V for 60 μs at a temperature of 90 ° C., measuring the voltage after 16.67 ms, and calculating how much the voltage could be held as the voltage holding ratio. For measuring the voltage holding ratio, a VHR-1 voltage holding ratio measuring device manufactured by Toyo Technica Co., Ltd. was used. In addition, the liquid crystal cell produced for the measurement of voltage holding ratio (VHR) uses a glass substrate with an ITO transparent electrode as a substrate, and is on a hot plate heated to 230 ° C. under the baking condition of the coating liquid for forming the polyimide film. Baked for 30 minutes, and the rubbing conditions were set at a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm. In addition, a compound with no modifier compound added (Comparative Example 9) was prepared, and the effects were compared. The results are shown in Table 13.
 この結果、修飾用化合物を添加したポリイミド膜形成用塗布液を用いることで、未添加時よりも良好な電圧保持率特性を得ることができることが確認された。 As a result, it was confirmed that by using the polyimide film-forming coating solution to which the modifying compound was added, better voltage holding ratio characteristics can be obtained than when not added.
Figure JPOXMLDOC01-appb-T000127
Figure JPOXMLDOC01-appb-T000127
 <実施例344~350及び比較例10><蓄積電荷(RDC)の見積もり>
 表14に示す各実施例で調製したポリイミド膜形成用塗布液を用いて作製したツイストネマティック液晶セルに、23℃の温度下で直流電圧を0Vから0.1V間隔で1.0Vまで印加し、各電圧でのフリッカー振幅レベルを測定し、検量線を作製した。5分間アースした後、交流電圧3.0V、直流電圧5.0Vを印加し、1時間後のフリッカー振幅レベルを測定し、予め作製した検量線と照らし合わせる事によりRDCを見積もった(フリッカー参照法)。なお、蓄積電荷(RDC)の見積もり測定用に作製した液晶セルは、基板としてITO透明電極付きガラス基板を用い、ポリイミド膜形成用塗布液の塗膜の焼成条件を230℃に加熱したホットプレート上で30分間焼成とし、ラビング条件をロール回転数1000rpm、ロール進行速度50mm/sec、押し込み量0.3mmとして作製した。また、合わせて、修飾用化合物を未添加のもの(比較例10)を調製し、効果を比較した。結果を表14に示す。
<Examples 344 to 350 and Comparative Example 10><Estimation of Accumulated Charge (RDC)>
A DC voltage was applied from 0 V to 1.0 V at a 0.1 V interval at a temperature of 23 ° C. to a twisted nematic liquid crystal cell prepared using the polyimide film forming coating solution prepared in each example shown in Table 14. A calibration curve was prepared by measuring the flicker amplitude level at each voltage. After grounding for 5 minutes, an AC voltage of 3.0 V and a DC voltage of 5.0 V were applied, the flicker amplitude level after 1 hour was measured, and the RDC was estimated by comparing it with a calibration curve prepared in advance (Flicker reference method) ). In addition, the liquid crystal cell produced for the estimation measurement of the accumulated charge (RDC) uses a glass substrate with an ITO transparent electrode as a substrate, and is on a hot plate heated to 230 ° C. for the baking condition of the coating liquid for forming the polyimide film. Baked for 30 minutes, and the rubbing conditions were set at a roll rotation speed of 1000 rpm, a roll traveling speed of 50 mm / sec, and an indentation amount of 0.3 mm. In addition, a compound with no modifier compound added (Comparative Example 10) was prepared, and the effects were compared. The results are shown in Table 14.
 この結果、修飾用化合物を添加したポリイミド膜形成用塗布液を用いることで、RDCが小さい液晶セルを得ることができることが確認された。 As a result, it was confirmed that a liquid crystal cell having a small RDC can be obtained by using a coating solution for forming a polyimide film to which a modifying compound is added.
Figure JPOXMLDOC01-appb-T000128
Figure JPOXMLDOC01-appb-T000128
 <実施例351~358及び比較例11>エージング試験前後のイオン密度の測定
 上記ポリアミック酸(PAA-1)溶液(10.0g)に修飾用化合物として合成例で作製した表15に示す化合物をそれぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表15に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、ポリイミド膜形成用塗布液を調製した。
<Examples 351 to 358 and Comparative Example 11> Measurement of ion density before and after aging test Each of the compounds shown in Table 15 prepared in Synthesis Example as a modifying compound in the above polyamic acid (PAA-1) solution (10.0 g) was used. Add to the solid content of the polyamic acid (PAA-1) solution (ie, polyamic acid (PAA-1)) so that the ratio is as shown in Table 15 below, and stir at room temperature until a uniform solution is obtained. A coating solution for film formation was prepared.
 そして、これらポリマー膜形成用塗布液(液晶配向剤)をそれぞれ用いて作製したツイストネマティック液晶セルについて、初期状態(23℃)のイオン密度を測定し、また、60℃で30時間保持(エージング)した後のイオン密度測定を行った。イオン密度測定においては、液晶セルに電圧±10V、周波数0.01Hzの三角波を印加した時のイオン密度を測定した。測定温度は80℃で行った。測定装置は、いずれの測定も東陽テクニカ社製6245型液晶物性評価装置を用いた。結果を表15に示す。 And about the twist nematic liquid crystal cell produced using each of these coating liquids (liquid crystal aligning agent) for polymer film formation, the ion density of an initial state (23 degreeC) is measured, and it hold | maintains at 60 degreeC for 30 hours (aging) After the ion density measurement was performed. In the ion density measurement, the ion density was measured when a triangular wave having a voltage of ± 10 V and a frequency of 0.01 Hz was applied to the liquid crystal cell. The measurement temperature was 80 ° C. As the measuring apparatus, a 6245 type liquid crystal property evaluation apparatus manufactured by Toyo Technica Co., Ltd. was used for all measurements. The results are shown in Table 15.
 なお、ツイストネマティック液晶セルは、ポリイミド膜形成用塗布液の塗膜の焼成条件を200℃に加熱したホットプレート上で30分間焼成とした以外は上記ツイストネマティック液晶セル(実施例174~206)と同様の操作を行って作製した。また、合わせて、修飾用化合物を未添加のものについても同様の操作を行って、効果を比較した。 The twisted nematic liquid crystal cell is the same as that of the above twisted nematic liquid crystal cell (Examples 174 to 206) except that the firing condition of the coating film of the polyimide film forming coating solution was fired for 30 minutes on a hot plate heated to 200 ° C. The same operation was performed. In addition, the same operation was performed for those to which no modifier compound was added, and the effects were compared.
 この結果、修飾用化合物の種類と添加量を適切に選択することにより、未添加の場合と比較して、液晶セル中のイオン性不純物を大幅に低減させられることが確認された。 As a result, it was confirmed that the ionic impurities in the liquid crystal cell can be significantly reduced by appropriately selecting the type and amount of the modifying compound as compared with the case where it is not added.
Figure JPOXMLDOC01-appb-T000129
Figure JPOXMLDOC01-appb-T000129
[ポリマーの合成及びその溶液の作製]
下記で用いた略記号は以下のとおりである。
 (モノマー)
HEMA:メタクリル酸 2-ヒドロキシエチル
MAA:メタクリル酸
MMA:メタクリル酸メチル
CHMI:N-シクロヘキシルマレイミド
TEOS:テトラエトキシシラン
[Synthesis of polymer and preparation of its solution]
Abbreviations used below are as follows.
(monomer)
HEMA: Methacrylic acid 2-hydroxyethyl MAA: Methacrylic acid MMA: Methyl methacrylate CHMI: N-cyclohexylmaleimide TEOS: Tetraethoxysilane
 (重合開始剤)
AIBN:α、α'-アゾビスイソブチロニトリル
(Polymerization initiator)
AIBN: α, α'-azobisisobutyronitrile
 (溶媒)
PGMEA:プロピレングリコールモノエチルエーテル
CHN:シクロヘキサン
HG:へキシレングリコール
BCS:ブチルセロソルブ
1,3-BDO:1,3-ブタンジオール
(solvent)
PGMEA: Propylene glycol monoethyl ether CHN: Cyclohexane HG: Hexylene glycol BCS: Butyl cellosolve 1,3-BDO: 1,3-butanediol
 以下の合成例に従い得られたアクリルポリマー及びポリシロキサンの数平均分子量Mn及び重量平均分子量Mwは、日本分光(株)製GPC装置(Shodex(登録商標)カラムKF803L及びKF804L)を用い、溶出溶媒テトラヒドロフランを流量1ml/分でカラム中に(カラム温度40℃)流して溶離させるという条件で測定した。なお、数平均分子量Mn及び重量平均分子量Mwとも、ポリスチレン換算値にて表す。 The number average molecular weight Mn and the weight average molecular weight Mw of the acrylic polymer and polysiloxane obtained according to the following synthesis examples were measured using a GPC apparatus (Shodex (registered trademark) columns KF803L and KF804L) manufactured by JASCO Corporation, and the elution solvent tetrahydrofuran. Was flowed through the column at a flow rate of 1 ml / min (column temperature 40 ° C.) for elution. Note that both the number average molecular weight Mn and the weight average molecular weight Mw are expressed in terms of polystyrene.
 (市販ポリマー)
 下記市販のポリマーに関しては、NMP/BCS(重量比80:20)混合溶液で固形分濃度が6質量%となるように調製したポリマー溶液として用いた。なお、PSM-4326は群栄化学工業社、その他のポリマーについては、アルドリッチ社より購入したものを用いた。また、MEKはメチルエチルケトンを意味する。
Polymer-1:Poly[(o-cresyl glycidyl ether)-co-formaldehyde]
Polymer-2:Poly[N,N'-bis(2,2,6,6-tetramethyl-4-piperidinyl)-1,6-hexanediamine-co-2,4-dichloro-6-morpholino-1,3,5-triazine]
Polymer-3:Poly(Bisphenol A-co-epichlorohydrin)
Polymer-4:Poly(melamine-co-formaldehyde) acrylated, 80 wt% MEK Solution.
Polymer-5:群栄化学工業社製ノボラック樹脂、PSM-4326
(Commercially available polymer)
Regarding the following commercially available polymer, it was used as a polymer solution prepared so as to have a solid content concentration of 6% by mass with a mixed solution of NMP / BCS (weight ratio 80:20). PSM-4326 used was purchased from Gunei Chemical Co., Ltd., and other polymers purchased from Aldrich. MEK means methyl ethyl ketone.
Polymer-1: Poly [(o-cresyl glycidyl ether) -co-formaldehyde]
Polymer-2: Poly [N, N'-bis (2,2,6,6-tetramethyl-4-piperidinyl) -1,6-hexanediamine-co-2,4-dichloro-6-morpholino-1,3, 5-triazine]
Polymer-3: Poly (Bisphenol A-co-epichlorohydrin)
Polymer-4: Poly (melamine-co-formaldehyde) acrylated, 80 wt% MEK Solution.
Polymer-5: Novolak resin, PSM-4326, manufactured by Gunei Chemical Industry Co., Ltd.
 <Polymer-6の合成及びその溶液の作製>
 MMA、MAA、HEMA、CHMIを、モル比でMMA:MAA:HEMA:CHMI=13:26:25:36であり、かつ固形分濃度40wt%となるように含有し、PGMEAを溶媒とする溶液を調製し、この溶液に重合触媒としてAIBNを加え、80℃にて20時間反応させることにより、共重合体(アクリルポリマー)の溶液を得た。得られた共重合体の数平均分子量Mnは4000、重量平均分子量Mwは7500であった。次に、得られた溶液をNMPで固形分濃度が5wt%になるように希釈して、アクリルポリマー(Polymer-6)溶液を得た。
<Synthesis of Polymer-6 and preparation of its solution>
A solution containing MMA, MAA, HEMA, and CHMI at a molar ratio of MMA: MAA: HEMA: CHMI = 13: 26: 25: 36 and a solid content concentration of 40 wt%, and using PGMEA as a solvent. Then, AIBN was added as a polymerization catalyst to this solution and reacted at 80 ° C. for 20 hours to obtain a copolymer (acrylic polymer) solution. The number average molecular weight Mn of the obtained copolymer was 4000, and the weight average molecular weight Mw was 7500. Next, the obtained solution was diluted with NMP so that the solid content concentration became 5 wt% to obtain an acrylic polymer (Polymer-6) solution.
 <Polymer-7の合成及びその溶液の作製>
 温度計、還流管を備え付けた100mL四つ口フラスコに、混合溶媒(重量比でHG:BCS:1,3-BDO=65:30:5)と共にTEOSを加え、アルコキシシランモノマーの溶液を調製した。この溶液に、予め、上記混合溶媒、水および触媒としてシュウ酸を混合した溶液を室温下で30分かけて滴下した。この溶液を30分撹拌してから1時間加熱還流し、放冷して、SiO換算濃度が12wt%のポリシロキサンの溶液を得た。次に、得られたSiO換算濃度が12wt%のポリシロキサン溶液を、さらに上記混合溶媒で希釈して、5wt%のポリシロキサン(Polymer-7)溶液を得た。
<Synthesis of Polymer-7 and preparation of its solution>
TEOS was added to a 100 mL four-necked flask equipped with a thermometer and a reflux tube together with a mixed solvent (HG: BCS: 1,3-BDO = 65: 30: 5 by weight) to prepare an alkoxysilane monomer solution. . A solution prepared by mixing oxalic acid as a mixed solvent, water and a catalyst in advance was added dropwise to the solution at room temperature over 30 minutes. The solution was stirred for 30 minutes and then heated to reflux for 1 hour and allowed to cool to obtain a polysiloxane solution having a SiO 2 equivalent concentration of 12 wt%. Next, the obtained polysiloxane solution having a SiO 2 equivalent concentration of 12 wt% was further diluted with the above mixed solvent to obtain a 5 wt% polysiloxane (Polymer-7) solution.
[液晶配向膜及び液晶セルの作製]
 上記各ポリマー(Polymer-1~Polymer-5)溶液、アクリルポリマー(Polymer-6)溶液またはポリシロキサン(Polymer-7)溶液に、修飾用化合物として合成例で作製した表16に示す化合物を、それぞれポリマー溶液の固形分(すなわちPolymer-1~Polymer-7)に対して下記表16に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、ポリマー膜形成用塗布液を調製した。
[Production of liquid crystal alignment film and liquid crystal cell]
The compounds shown in Table 16 prepared in the synthesis examples as modifier compounds in the respective polymer (Polymer-1 to Polymer-5) solutions, acrylic polymer (Polymer-6) solutions, or polysiloxane (Polymer-7) solutions, respectively, Add to the solid content of the polymer solution (that is, Polymer-1 to Polymer-7) so as to have the ratio described in Table 16 below, and stir at room temperature until a uniform solution is obtained. Prepared.
 そして、これらポリマー膜形成用塗布液(液晶配向剤)をそれぞれ用いて作製したアンチパラレル液晶セルについて、120℃で1時間加熱した後、バックライト上に液晶セルを載せ、偏光板を通して垂直配向性を示しているか目視で観察した。垂直に配向していた場合を「垂直」、垂直に配向していなかった場合を「非垂直」として、結果を表16に示す。 And about the anti-parallel liquid crystal cell produced using each of these coating liquids (liquid crystal aligning agent) for polymer film formation, after heating at 120 degreeC for 1 hour, a liquid crystal cell is mounted on a backlight, and vertical alignment property is passed through a polarizing plate. Was visually observed. The results are shown in Table 16, assuming that the vertical alignment was “vertical” and the non-vertical alignment was “non-vertical”.
 なお、アンチパラレル液晶セルは、基板としてITO透明電極付きガラス基板を用い、各種ポリマー膜形成用塗布液の塗膜の焼成条件を200℃に加熱した熱風循環式オーブン内で30分間焼成とし、配向処理を行わずに行った以外は、垂直配向モード用アンチパラレル液晶セル(実施例210~321)と同様の操作を行って作製した。また、合わせて、修飾用化合物を未添加のものについても同様の操作を行って、効果を比較した。 The anti-parallel liquid crystal cell uses a glass substrate with an ITO transparent electrode as a substrate, and is fired for 30 minutes in a hot-air circulating oven heated to 200 ° C. for the coating conditions of various polymer film forming coating solutions. It was manufactured by performing the same operation as that of the anti-parallel liquid crystal cell for vertical alignment mode (Examples 210 to 321) except that the treatment was not performed. In addition, the same operation was performed for those to which no modifier compound was added, and the effects were compared.
Figure JPOXMLDOC01-appb-T000130
Figure JPOXMLDOC01-appb-T000130
 この結果、Polymer-1~Polymer-6のいずれのポリマーにおいても修飾用化合物を添加していない比較例12~18ではまったく垂直配向性を示さないが、修飾用化合物を添加したポリマー膜形成用塗布液の場合には、それぞれのポリマーに応じて、適切な量を添加することにより、垂直配向性を示すようになることが確認された。すなわち、添加剤の種類と添加量を適切に選択することで、ベースポリマーの種類によらず、容易に垂直配向性セルの作製が可能であることが確認された。 As a result, in Comparative Examples 12 to 18 in which no modifier compound was added to any polymer of Polymer-1 to Polymer-6, no vertical alignment was shown, but a polymer film-forming coating to which a modifier compound was added. In the case of the liquid, it was confirmed that the vertical orientation was exhibited by adding an appropriate amount depending on each polymer. That is, it was confirmed that by appropriately selecting the type and amount of the additive, a vertically aligned cell can be easily produced regardless of the type of the base polymer.
 また、Polymer-7に関しては、添加剤未添加でも垂直配向性を示すため、垂直配セルを作製するためには添加剤は必須ではないが、添加剤を加えた方がより、垂直配向性が向上することが確認された。 Regarding Polymer-7, since the vertical alignment is exhibited even when no additive is added, the additive is not essential for producing a vertical cell, but the addition of the additive has a higher vertical alignment. It was confirmed to improve.
 <実施例383~401>
 上記で作製したポリアミック酸(PAA-1)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表17に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表17に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例383~401のポリイミド膜形成用塗布液を調製した。
<Examples 383 to 401>
In the polyamic acid (PAA-1) solution (10.0 g) prepared above, the compounds described in the following Table 17 prepared in the above synthesis example as the modifying compound were respectively added to the solid polyamic acid (PAA-1) solution. In order to achieve the ratio described in Table 17 below with respect to the fraction (that is, polyamic acid (PAA-1)), the mixture was stirred at room temperature until a uniform solution was obtained. A liquid was prepared.
Figure JPOXMLDOC01-appb-T000131
Figure JPOXMLDOC01-appb-T000131
 <実施例402~403>
 上記で作製したポリアミック酸(PAA-3)溶液(40.0g)に、修飾用化合物として上記合成例で作製した下記表18に記載される化合物を、それぞれポリアミック酸(PAA-3)溶液の固形分(すなわちポリアミック酸(PAA-3))に対して表18に記載する質量%となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例402~403のポリイミド膜形成用塗布液を調製した。
Figure JPOXMLDOC01-appb-T000132
<Examples 402 to 403>
In the polyamic acid (PAA-3) solution (40.0 g) prepared above, the compounds described in the following Table 18 prepared as the modifying compound in the above Synthesis Example were respectively added to the solid polyamic acid (PAA-3) solution. Added to the mass (that is, polyamic acid (PAA-3)) so as to be the mass% described in Table 18, and stirred at room temperature until a uniform solution is obtained. A liquid was prepared.
Figure JPOXMLDOC01-appb-T000132
 <実施例404~536><液晶配向性評価及び垂直配向モード用アンチパラレル液晶セルのプレチルト角測定>
 [液晶配向膜及び液晶セルの作製]
 上記各実施例383~403で調製したポリイミド膜形成用塗布液(液晶配向剤)を用いて、以下のようにして液晶セルを作製した。
Examples 404 to 536 <Evaluation of liquid crystal alignment and measurement of pretilt angle of antiparallel liquid crystal cell for vertical alignment mode>
[Production of liquid crystal alignment film and liquid crystal cell]
Using the polyimide film-forming coating solution (liquid crystal aligning agent) prepared in each of Examples 383 to 403, a liquid crystal cell was produced as follows.
 ポリイミド膜形成用塗布液(液晶配向剤)をガラス基板にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、200℃に加熱した熱風循環式オーブンで30分間焼成して、膜厚100nmの塗膜を形成させた。 A coating solution for forming a polyimide film (liquid crystal aligning agent) is spin-coated on a glass substrate, dried on a hot plate at 80 ° C. for 70 seconds, and then baked for 30 minutes in a hot air circulating oven heated to 200 ° C. A coating film having a thickness of 100 nm was formed.
 その後、この塗膜面に直線偏光UV光線(UV波長313nm、照射強度8.0mW/cm-2)を露光量0mJ~1000mJの間で変化させ、プレートの法線に対して40°傾け照射した。なお、直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。 After that, linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm −2 ) was changed between the exposure amount of 0 mJ and 1000 mJ on the surface of the coating film, and irradiated at a tilt of 40 ° with respect to the normal line of the plate. . The linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
 このように液晶配向処理を行なった液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い照射した偏光の方向が平行となるようにして張り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-6608(メルク社製)を注入し、注入口を封止して、各垂直配向モード用アンチパラレル液晶セルを得た。 After preparing two substrates with a liquid crystal alignment film subjected to the liquid crystal alignment treatment in this manner, a spacer of 6 μm is sprayed on the surface of the one liquid crystal alignment film, and then a sealant is printed thereon, and another sheet is obtained. The substrates were laminated so that the surfaces of the liquid crystal alignment film faced each other and irradiated, and the directions of polarized light were parallel to each other, and the sealing agent was cured to produce an empty cell. Liquid crystal MLC-6608 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain each antiparallel liquid crystal cell for vertical alignment mode.
 そして、作製した上記液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察したところ、良好な配向性を示した。その後、3Vの交流電圧を液晶セルに印加し、液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。結果を表19-1~19-5に示す。
評価基準
 良好:液晶の配向が確認でき、且つ流動配向がない
 不良:液晶は配向しているが、流動配向が多く観察される
Then, the prepared liquid crystal cell is sandwiched between polarizing plates, and the liquid crystal cell is rotated in a state where the backlight is irradiated from the rear, and it is visually observed whether the liquid crystal is aligned with the presence or absence of change in light and darkness or flow alignment. As a result, good orientation was exhibited. Thereafter, an AC voltage of 3 V was applied to the liquid crystal cell, and it was visually observed whether the liquid crystal was aligned. At that time, the following criteria were used for evaluation. The results are shown in Tables 19-1 to 19-5.
Evaluation criteria Good: The orientation of the liquid crystal can be confirmed and there is no fluid orientation. Poor: The liquid crystal is oriented, but many fluid orientations are observed.
 また、作製した上記液晶セルについて、120℃で1時間加熱した後、プレチルト角の測定を行った。プレチルト角はAxo Metrix社の「Axo Scan」にて、ミュラーマトリクス法を用いて測定した。結果を表19-1~19-5に示す。 The prepared liquid crystal cell was heated at 120 ° C. for 1 hour, and then the pretilt angle was measured. The pretilt angle was measured by “Axo Scan” from Axo Metrix using the Mueller matrix method. The results are shown in Tables 19-1 to 19-5.
 この結果、表19-1~19-5に示すように、光反応性側鎖を有する修飾用化合物を添加したポリイミド膜形成用塗布液(液晶配向処理剤)を用いることで、光配向処理を行った場合においても良好な垂直配向性が得られることが確認された。また、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)に偏光の紫外線を照射することで、垂直から僅かに傾けた状態で液晶を配向させる能力があることが確認された。さらに、添加量と照射量を制御することにより、プレチルト角を微調整できることも確かめられた。これらのことから、本発明のポリイミド膜形成用塗布液(液晶配向処理剤)は、垂直配向方式の液晶表示素子用の液晶配向膜に利用可能であり、また光配向法で使用する液晶配向膜としても有用であると言える。 As a result, as shown in Tables 19-1 to 19-5, the photo-alignment treatment was performed by using a polyimide film-forming coating liquid (liquid crystal alignment treatment agent) to which a modifying compound having a photoreactive side chain was added. It was confirmed that good vertical alignment could be obtained even in the case of carrying out. It was also confirmed that the polyimide film-forming coating liquid (liquid crystal alignment treatment agent) of the present invention has the ability to align liquid crystals in a slightly tilted state by irradiating polarized ultraviolet rays. It was also confirmed that the pretilt angle can be finely adjusted by controlling the addition amount and the irradiation amount. Therefore, the coating liquid for forming a polyimide film (liquid crystal alignment treatment agent) of the present invention can be used for a liquid crystal alignment film for a vertical alignment type liquid crystal display element, and also used for a photo alignment method. It can be said that it is also useful.
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000133
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000134
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000135
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000136
Figure JPOXMLDOC01-appb-T000137
Figure JPOXMLDOC01-appb-T000137
 <実施例537~578>
 上記で作製したポリアミック酸(PAA-1)溶液(10.0g)に、修飾用化合物として上記合成例で作製した下記表20-1~20-2に記載される化合物を、それぞれポリアミック酸(PAA-1)溶液の固形分(すなわちポリアミック酸(PAA-1))に対して下記表20-1~20-2に記載する割合となるように加え、均一溶液となるまで、室温で撹拌を行い、実施例537~578のポリイミド膜形成用塗布液を調製した。
<Examples 537 to 578>
In the polyamic acid (PAA-1) solution (10.0 g) prepared above, the compounds described in the following Tables 20-1 to 20-2 prepared in the above synthesis examples as modifying compounds were respectively added to the polyamic acid (PAA). -1) Add to the solid content of the solution (ie, polyamic acid (PAA-1)) so that the ratio is as described in Tables 20-1 to 20-2 below, and stir at room temperature until a uniform solution is obtained. The coating solutions for forming a polyimide film of Examples 537 to 578 were prepared.
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000138
Figure JPOXMLDOC01-appb-T000139
Figure JPOXMLDOC01-appb-T000139
 <実施例579~620><水平配向モード用アンチパラレルセルの液晶配向性評価>
 [液晶配向膜及び液晶セルの作製]
 上記各実施例537~578で調製したポリイミド膜形成用塗布液(液晶配向剤)を用いて、以下のようにして液晶セルを作製した。
<Examples 579 to 620><Evaluation of liquid crystal alignment of antiparallel cell for horizontal alignment mode>
[Production of liquid crystal alignment film and liquid crystal cell]
Using the polyimide film forming coating solution (liquid crystal aligning agent) prepared in each of Examples 537 to 578, a liquid crystal cell was produced as follows.
 ポリイミド膜形成用塗布液(液晶配向剤)をガラス基板にスピンコートし、80℃のホットプレート上で70秒間乾燥させた後、200℃に加熱した熱風循環式オーブンで30分間焼成して、膜厚100nmの塗膜を形成させた。 A coating solution for forming a polyimide film (liquid crystal aligning agent) is spin-coated on a glass substrate, dried on a hot plate at 80 ° C. for 70 seconds, and then baked for 30 minutes in a hot air circulating oven heated to 200 ° C. A coating film having a thickness of 100 nm was formed.
 その後、この塗膜面に直線偏光UV光線(UV波長313nm、照射強度8.0mW/cm-2)を露光量0mJ~1000mJの間で変化させ、基板に対して真上から照射した。なお、直線偏光UVは高圧水銀ランプの紫外光に313nmのバンドパスフィルターを通した後、313nmの偏光板を通すことで調製した。 Thereafter, linearly polarized UV light (UV wavelength: 313 nm, irradiation intensity: 8.0 mW / cm −2 ) was changed from 0 mJ to 1000 mJ on the coating surface, and the substrate was irradiated from directly above. The linearly polarized light UV was prepared by passing a 313 nm band pass filter through the ultraviolet light of a high pressure mercury lamp and then passing it through a 313 nm polarizing plate.
 このように液晶配向処理を行なった液晶配向膜付き基板を2枚用意し、その1枚の液晶配向膜面上に6μmのスペーサーを散布した後、その上からシール剤を印刷し、もう1枚の基板を液晶配向膜面が向き合い照射した偏光の方向が平行となるようにして張り合わせ、シール剤を硬化させて空セルを作製した。この空セルに減圧注入法によって、液晶MLC-2041(メルク社製)を注入し、注入口を封止して、水平配向モード用アンチパラレル液晶セルを得た。 After preparing two substrates with a liquid crystal alignment film subjected to the liquid crystal alignment treatment in this manner, a spacer of 6 μm is sprayed on the surface of the one liquid crystal alignment film, and then a sealant is printed thereon, and another sheet is obtained. The substrates were laminated so that the surfaces of the liquid crystal alignment film faced each other and irradiated, and the directions of polarized light were parallel to each other, and the sealing agent was cured to produce an empty cell. Liquid crystal MLC-2041 (manufactured by Merck & Co., Inc.) was injected into this empty cell by a reduced pressure injection method, and the injection port was sealed to obtain an antiparallel liquid crystal cell for horizontal alignment mode.
 そして、作製した上記水平配向モード用アンチパラレル液晶セルを偏光板で挟み、後部からバックライトを照射した状態で、液晶セルを回転させて、明暗の変化や流動配向の有無で液晶が配向しているかを目視にて観察した。その際、下記の基準で評価した。結果を表21-1~21-2に示す。
評価基準
◎:液晶の配向が確認でき、且つ流動配向がない
○:液晶は配向しているが、流動配向が若干観察される
△:液晶は配向しているが、流動配向が多く観察される
×:液晶がまったく配向していない
Then, the prepared anti-parallel liquid crystal cell for horizontal alignment mode is sandwiched between polarizing plates, and the liquid crystal cell is rotated in a state where a backlight is irradiated from the rear portion, and the liquid crystal is aligned with the presence or absence of light / dark change or fluid alignment. It was observed visually. At that time, the following criteria were used for evaluation. The results are shown in Tables 21-1 to 21-2.
Evaluation Criteria A: The orientation of the liquid crystal can be confirmed and there is no fluid orientation. ○: The liquid crystal is oriented, but the fluid orientation is slightly observed. Δ: The liquid crystal is oriented, but a lot of fluid orientation is observed. ×: Liquid crystal is not aligned at all
 この結果、いずれの液晶セルにおいても光照射を行なっていない液晶セルではまったく配向性を示さないが、光照射を行なった液晶セルにおいては、修飾用化合物の添加量および光照射量に応じて、液晶が配向することが確認された。なお、配向が認められた各液晶セルを130℃で30分アイソトロピック処理した場合においても配向性に顕著な変化は認められなかった。すなわち、添加剤の種類と添加量を適切に選択することで、容易に水平配向性セルの作製が可能であることが確認された。 As a result, in any liquid crystal cell, the liquid crystal cell that has not been irradiated with light does not exhibit orientation at all, but in the liquid crystal cell that has been irradiated with light, depending on the amount of the modifying compound added and the amount of light irradiated, It was confirmed that the liquid crystal was aligned. In addition, even when each liquid crystal cell in which alignment was recognized was subjected to an isotropic treatment at 130 ° C. for 30 minutes, no significant change was observed in the alignment. That is, it was confirmed that the horizontal alignment cell can be easily produced by appropriately selecting the type and amount of the additive.
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000140
Figure JPOXMLDOC01-appb-T000141
Figure JPOXMLDOC01-appb-T000141

Claims (2)

  1.  機能性を付与する機能性構造部位と、これに連結された少なくとも1つのメルドラム酸構造部位とを具備する下記式[A]~[D]で表される群から選択される少なくとも一種の修飾用化合物と、被修飾用ポリマー又は前記被修飾用ポリマーを合成するためのモノマーとを含むことを特徴とする機能性ポリマー膜形成用塗布液。
    Figure JPOXMLDOC01-appb-C000001
    (式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表す。Vは、-H、-OH、-OR、-SRまたは-NHRを表し、Rは、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基を表す。kは、1~8の整数を表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式中、Wは、機能性を付与する機能性構造部位であるk価の有機基を表す。Vは、-H、-OH、-SR、-ORまたは-NHRを表し、Rは、ベンゼン環、シクロヘキサン環、ヘテロ環、フッ素、エーテル結合、エステル結合、アミド結合を任意の場所に含んでいてもよい炭素原子数が1~35の一価の有機基を表す。kは、1~8の整数を表す。)
    Figure JPOXMLDOC01-appb-C000003
    (式中、W及びWは、それぞれ機能性を付与する機能性構造部位であるk価の有機基を表し、W及びWは同一でも異なっていてもよい。kは、1~8の整数を表す。)
    Figure JPOXMLDOC01-appb-C000004
    (式中、Wは、機能性を付与する機能性構造部位である2k価の有機基を表す。kは、1~8の整数を表す。)
    For at least one modification selected from the group represented by the following formulas [A] to [D], which comprises a functional structural portion imparting functionality and at least one meldrum acid structural portion linked thereto A functional polymer film-forming coating solution comprising a compound and a polymer for modification or a monomer for synthesizing the polymer for modification.
    Figure JPOXMLDOC01-appb-C000001
    (Wherein, W 1 is .V 1 representing the k 1 monovalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -OR, an -SR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 1 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.)
    Figure JPOXMLDOC01-appb-C000002
    (Wherein, W 2 is .V 2 representing the k 2 divalent organic group which is a functional structural part that imparts functionality represents -H, -OH, -SR, an -OR or -NHR, R a benzene ring, a cyclohexane ring, a hetero ring, fluorine, an ether bond, an ester bond, .k 2 a good number of carbon atoms an amide bond anywhere represents a monovalent organic group having 1 to 35 1 represents an integer of 1 to 8.)
    Figure JPOXMLDOC01-appb-C000003
    (Wherein, W 3 and W 4 represents a k 3 monovalent organic group is a functional structural part that imparts respective functional, W 3 and W 4 are .k 3 may be the same or different are Represents an integer of 1 to 8.)
    Figure JPOXMLDOC01-appb-C000004
    (Wherein, W 5 is .k 4 representing the 2k 4-valent organic group that is functional structural moiety which imparts functionality is an integer of 1-8.)
  2.  請求項1に記載する機能性ポリマー膜形成用塗布液を基板に塗布して、焼成し、前記メルドラム酸構造部位を介して前記機能性構造部位を前記被修飾ポリマーに結合させた機能性ポリマー膜を得ることを特徴とする機能性ポリマー膜形成方法。 A functional polymer film, wherein the functional polymer film-forming coating solution according to claim 1 is applied to a substrate, baked, and the functional structure portion is bonded to the modified polymer via the Meldrum's acid structure portion. A method for forming a functional polymer film.
PCT/JP2011/080379 2010-12-28 2011-12-28 Coating solution for forming functional polymer film, and method for forming functional polymer film WO2012091089A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201180068504.1A CN103403113B (en) 2010-12-28 2011-12-28 Functional polymer film formation coating fluid and functional polymer film forming method
JP2012551039A JP5896164B2 (en) 2010-12-28 2011-12-28 Functional polymer film forming coating solution and functional polymer film forming method
KR1020137019871A KR101916976B1 (en) 2010-12-28 2011-12-28 Coating solution for forming functional polymer film, and method for forming functional polymer film

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-294291 2010-12-28
JP2010294291 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012091089A1 true WO2012091089A1 (en) 2012-07-05

Family

ID=46383177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/080379 WO2012091089A1 (en) 2010-12-28 2011-12-28 Coating solution for forming functional polymer film, and method for forming functional polymer film

Country Status (5)

Country Link
JP (1) JP5896164B2 (en)
KR (1) KR101916976B1 (en)
CN (1) CN103403113B (en)
TW (1) TWI588139B (en)
WO (1) WO2012091089A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157450A1 (en) * 2012-04-17 2013-10-24 日産化学工業株式会社 Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
JP2014085642A (en) * 2012-10-26 2014-05-12 Tokyo Ohka Kogyo Co Ltd Resist composition, resist pattern formation method, polymeric compound, compound
US9758607B2 (en) 2013-10-10 2017-09-12 Research Foundation Of The City University Of New York Polymer with antibacterial activity
CN113410480A (en) * 2021-06-18 2021-09-17 福州大学 Nickel polyphenol network modified composite triazine-based copolymer carbon nano electro-catalyst material and preparation method and application thereof

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6349726B2 (en) * 2013-04-26 2018-07-04 Jsr株式会社 Liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, retardation film, method for producing retardation film, polymer and compound
CN107329330B (en) * 2017-07-28 2020-05-19 武汉华星光电技术有限公司 Liquid crystal display panel, manufacturing method thereof and columnar spacer
CN110141982B (en) * 2019-04-26 2021-08-24 浙江工业大学 High-flux high-desalination-rate mixed matrix reverse osmosis membrane and preparation method and application thereof
CN110484282A (en) * 2019-07-26 2019-11-22 深圳市华星光电技术有限公司 LCD alignment material and display panel

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561933A (en) * 1979-06-18 1981-01-10 Ibm Resist composition
JPS5680041A (en) * 1979-12-03 1981-07-01 Ibm Resist composition
JPS60222477A (en) * 1984-03-09 1985-11-07 イ−ストマン コダツク カンパニ− 4h-thiopyrane-1,1-dioxide and electonic photograph element
JPS6239585A (en) * 1985-08-12 1987-02-20 イ−ストマン コダック カンパニ− Tellurane type sensitizer for photoconductive composition
JPS6433543A (en) * 1986-06-06 1989-02-03 Matsushita Electric Ind Co Ltd Pattern forming method
JPH08310123A (en) * 1995-05-17 1996-11-26 Fuji Photo Film Co Ltd Recording material
JP2003191646A (en) * 2001-12-25 2003-07-09 Mitsubishi Paper Mills Ltd Fixing type heat sensitive recording material and recording method therefor
JP2004292502A (en) * 2003-03-25 2004-10-21 Asahi Kasei Chemicals Corp Water-based coating composition
JP2006335954A (en) * 2005-06-03 2006-12-14 Sumika Bayer Urethane Kk Blocked polyisocyanate composition and one-component coating composition
JP2009067973A (en) * 2006-09-29 2009-04-02 Fujifilm Corp Polymer material containing ultraviolet absorber

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69821379T2 (en) * 1997-09-29 2004-11-11 The Procter & Gamble Co., Cincinnati METHOD FOR THE PRODUCTION OF BETA-KETOESTER FRAGRANT PREPARATORS FROM 1,3-DIOXANE-4,6-DIONES
IE980775A1 (en) * 1998-09-17 2000-03-22 Loctite R & D Ltd Auto-oxidation systems for air-activatable polymerisable compositions
JP4378948B2 (en) 2002-02-21 2009-12-09 チッソ株式会社 Acid anhydride, liquid crystal alignment film, and liquid crystal display element
CN1318479C (en) * 2002-12-11 2007-05-30 日产化学工业株式会社 Novel diaminobenzene derivative, polyimide precursor and polyimide obtained therefrom, and aligning agent for liquid crystal
CN101235028A (en) * 2008-02-29 2008-08-06 上海大学 Trans-cyclopropane derivative and its synthesizing method
JP2010032590A (en) 2008-07-25 2010-02-12 Dainippon Printing Co Ltd Method for manufacturing optical element, optical element and liquid crystal display device including the optical element
CN101921258B (en) * 2010-04-20 2012-11-07 上海大学 Preparation method of 5-( arylmethylene) meldrum's acid

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS561933A (en) * 1979-06-18 1981-01-10 Ibm Resist composition
JPS5680041A (en) * 1979-12-03 1981-07-01 Ibm Resist composition
JPS60222477A (en) * 1984-03-09 1985-11-07 イ−ストマン コダツク カンパニ− 4h-thiopyrane-1,1-dioxide and electonic photograph element
JPS6239585A (en) * 1985-08-12 1987-02-20 イ−ストマン コダック カンパニ− Tellurane type sensitizer for photoconductive composition
JPS6433543A (en) * 1986-06-06 1989-02-03 Matsushita Electric Ind Co Ltd Pattern forming method
JPH08310123A (en) * 1995-05-17 1996-11-26 Fuji Photo Film Co Ltd Recording material
JP2003191646A (en) * 2001-12-25 2003-07-09 Mitsubishi Paper Mills Ltd Fixing type heat sensitive recording material and recording method therefor
JP2004292502A (en) * 2003-03-25 2004-10-21 Asahi Kasei Chemicals Corp Water-based coating composition
JP2006335954A (en) * 2005-06-03 2006-12-14 Sumika Bayer Urethane Kk Blocked polyisocyanate composition and one-component coating composition
JP2009067973A (en) * 2006-09-29 2009-04-02 Fujifilm Corp Polymer material containing ultraviolet absorber

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
GONZALEZ L. ET AL.: "Characterization of new reworkable thermosetting coatings obtained by cationic and anionic curing of DGEBA and some Meldrum acid derivatives.", PROGRESS IN ORGANIC COATINGS, vol. 65, no. 2, pages 175 - 181 *
MIRCEVA A. ET AL.: "Characterization and Application of Crosslinkers for Polyurethane Aqueous Systems:Isopropylidene Malonate-Blocked Isocyanurate.", JOURNAL OF APPLIED POLYMER SCIENCE, vol. 54, no. 13, pages 2075 - 2081 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013157450A1 (en) * 2012-04-17 2013-10-24 日産化学工業株式会社 Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
KR20150001820A (en) * 2012-04-17 2015-01-06 닛산 가가쿠 고교 가부시키 가이샤 Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
JPWO2013157450A1 (en) * 2012-04-17 2015-12-21 日産化学工業株式会社 Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
KR102073437B1 (en) 2012-04-17 2020-02-04 닛산 가가쿠 가부시키가이샤 Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
JP2014085642A (en) * 2012-10-26 2014-05-12 Tokyo Ohka Kogyo Co Ltd Resist composition, resist pattern formation method, polymeric compound, compound
US9758607B2 (en) 2013-10-10 2017-09-12 Research Foundation Of The City University Of New York Polymer with antibacterial activity
CN113410480A (en) * 2021-06-18 2021-09-17 福州大学 Nickel polyphenol network modified composite triazine-based copolymer carbon nano electro-catalyst material and preparation method and application thereof

Also Published As

Publication number Publication date
TW201240981A (en) 2012-10-16
CN103403113B (en) 2016-08-10
JP5896164B2 (en) 2016-03-30
TWI588139B (en) 2017-06-21
KR20130143633A (en) 2013-12-31
KR101916976B1 (en) 2018-11-08
JPWO2012091089A1 (en) 2014-06-05
CN103403113A (en) 2013-11-20

Similar Documents

Publication Publication Date Title
JP5831712B2 (en) Coating liquid for forming polyimide film, liquid crystal aligning agent, polyimide film, liquid crystal aligning film and liquid crystal display element
JP5896164B2 (en) Functional polymer film forming coating solution and functional polymer film forming method
JP5975227B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, liquid crystal display element, and method for manufacturing liquid crystal display element
JP6387957B2 (en) Liquid crystal aligning agent containing crosslinkable compound having photoreactive group
JP6460341B2 (en) Liquid crystal display element and method for manufacturing liquid crystal display element
JP6083382B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6368955B2 (en) Liquid crystal aligning agent, liquid crystal alignment film, and liquid crystal display element
JP6418401B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
WO2015152174A1 (en) Liquid crystal alignment agent containing polyamic acid ester-polyamic acid compolymer, and liquid crystal alignment film using same
WO2015141598A1 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
TWI596201B (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
JP6319581B2 (en) Liquid crystal alignment agent, liquid crystal alignment film, and liquid crystal display element
KR20150046157A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
JP6143014B2 (en) Polymer, liquid crystal aligning agent, liquid crystal aligning film, liquid crystal display element, and diamine
JP7193782B2 (en) Liquid crystal alignment agent, liquid crystal alignment film and liquid crystal display element
TW202104435A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element
TW201823303A (en) Liquid crystal aligning agent, liquid crystal alignment film and liquid crystal display element having good afterimage characteristics without producing bright dots even if used for negative liquid crystals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854450

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012551039

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20137019871

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11854450

Country of ref document: EP

Kind code of ref document: A1