WO2012090827A1 - Polyimide complex, polyamic acid solution, method for manufacturing polyimide complex, and film produced from polyimide complex - Google Patents

Polyimide complex, polyamic acid solution, method for manufacturing polyimide complex, and film produced from polyimide complex Download PDF

Info

Publication number
WO2012090827A1
WO2012090827A1 PCT/JP2011/079682 JP2011079682W WO2012090827A1 WO 2012090827 A1 WO2012090827 A1 WO 2012090827A1 JP 2011079682 W JP2011079682 W JP 2011079682W WO 2012090827 A1 WO2012090827 A1 WO 2012090827A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamic acid
polyimide
polyimide composite
europium
compound
Prior art date
Application number
PCT/JP2011/079682
Other languages
French (fr)
Japanese (ja)
Inventor
健一 福川
真喜 岡崎
佳広 坂田
浦上 達宣
山下 渉
美貴 長谷川
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to JP2012550888A priority Critical patent/JP5748774B2/en
Publication of WO2012090827A1 publication Critical patent/WO2012090827A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/10Metal compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • C08K5/098Metal salts of carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to a polyimide composite and a method for producing a polyimide composite. Specifically, the present invention relates to a polyimide composite containing a europium (Eu) compound, which is colorless and transparent, emits fluorescence of a specific wavelength instantaneously by irradiation with ultraviolet rays, and has high fluorescence intensity, and a method for producing the same.
  • Eu europium
  • Polyimides have been widely used in various fields as molding materials, composite materials, electrical and electronic materials because of their excellent heat resistance, mechanical properties, and electrical properties.
  • a polyimide is generally obtained by a method in which a diamine and tetracarboxylic dianhydride are reacted in a solvent to form a polyamic acid, which is dehydrated and cyclized.
  • many of the polyimides obtained from aromatic tetracarboxylic dianhydride and aromatic diamine are excellent in heat resistance and mechanical properties.
  • these polyimides have a reddish brown to yellow resin and have a problem in optical properties.
  • both diamine and tetracarboxylic dianhydride, or one of them has an alicyclic structure, or introduces a relatively bulky and low polarizability fluorine group or trifluoromethyl group.
  • a polyimide having colorless transparency can be obtained, but there are examples in which the heat resistance and mechanical properties of the polyimide cannot be imparted.
  • fluorescent materials can generally be classified into three categories: quantum dots, organic dyes, and rare earth complexes.
  • Quantum dots have a wide absorption band, excellent light emission characteristics, and long-term stability, but have the drawback of a small Stokes shift.
  • the fluorescent material generally has a difference between the excitation wavelength and the fluorescence wavelength, and the wavelength difference is called a Stokes shift.
  • organic dyes have characteristics such as a high extinction coefficient, quantum yield, and good processability, but they have difficulty in photostability.
  • rare earth complexes have a high quantum yield but a low extinction coefficient.
  • fluorescent materials are low molecular weight compounds
  • problems such as aggregation of the low molecular fluorescent material and quenching, and bleeding out from the resin remain when mixed with the resin as the base material.
  • Some rare earth cations emit fluorescence in a wide wavelength range from ultraviolet to infrared. Since these are based on f-orbital electron transitions (ff transitions) that are not easily affected by external fields such as ligand fields, the wavelength band of the emission band is very narrow compared to organic phosphors, etc., and in principle the color purity is high. It is a useful fluorescent species. Further, since it is excellent in stability against heat and light, it has been applied to a display of a television receiver.
  • Patent Document 1 discloses a fluorescent material made of a transparent polyimide using tetracarboxylic dianhydride containing diphenyl ether and the like, and diamine containing an alicyclic structure in the main chain as raw materials.
  • the polyimide emits fluorescence in the blue to violet region by shortening the emission wavelength, and the polyimide itself emits light when irradiated with ultraviolet rays.
  • Patent Document 2 discloses an optical memory material in which a rare earth element ion is contained in a polymer having a carbonyl group in the main chain or side chain of the polymer. Since the invention focuses on the optical memory effect, a large amount of rare earth element ions are added to provide optical memory properties. Therefore, it is not possible to obtain excellent mechanical properties and electrical properties possessed by polyimide. Moreover, in order to improve the light emission luminance, it is necessary to irradiate with ultraviolet rays for a long time, and high-speed response cannot be obtained.
  • the present invention is a polyimide composite that emits fluorescence of a specific wavelength by irradiation with ultraviolet rays and has high fluorescence intensity without impairing the colorless transparency, mechanical properties and heat resistance of the polyimide having a specific structure. And providing a manufacturing method thereof.
  • the polyimide composite of the present invention is obtained by dissolving the polyamic acid represented by the general formula (1) obtained from the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B) and the polyamic acid.
  • 0.001 to 4 parts by weight of a europium (Eu) compound is added to 100 parts by weight of the polyamic acid solution (S1) obtained from the solvent (C) to obtain a polyamic acid solution (S2). It is obtained by imidation of polyamic acid contained in the acid solution (S2) and removal of the solvent (C).
  • the polyimide contained in the said polyimide composite contains the structural unit represented by following General formula (2).
  • At least one alicyclic group selected from the group consisting of: Y is
  • At least one aromatic group selected from the group consisting of:
  • polyimide contained in the polyimide composite contains a structural unit represented by the following general formula (3).
  • the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (4).
  • the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (5).
  • the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (6).
  • the europium (Eu) compound is preferably at least one selected from europium chloride, europium nitrate and europium acetate.
  • the polyimide composite of the present invention usually emits fluorescence having a wavelength of 500 to 800 nm by irradiating with an ultraviolet ray having a wavelength of 250 to 400 nm.
  • the polyimide composite preferably has a total light transmittance of 80% or more.
  • the film of the present invention comprises the polyimide composite of the present invention.
  • the method for producing a polyimide composite according to the present invention includes the following steps 1 to 3.
  • Step 1 The polyamic acid represented by the general formula (1) obtained from the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B), and the solvent (C A step of obtaining a polyamic acid solution (S1) obtained from
  • X represents a divalent alicyclic group having 4 to 15 carbon atoms
  • Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.
  • Step 2 A step of adding 0.001 to 4 parts by weight of a europium (Eu) compound to 100 parts by weight of the polyamic acid to obtain a polyamic acid solution (S2), and (Step 3) the polyamic acid solution (S2 The process of obtaining a polyimide composite by imidation of the polyamic acid contained in), and solvent (C) removal.
  • the polyamic acid solution (S2) of the present invention includes a polyamic acid represented by the following general formula (1),
  • X represents a divalent alicyclic group having 4 to 15 carbon atoms
  • Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.
  • the solvent (C) is an aprotic amide solvent.
  • the polyimide composite obtained by the present invention instantaneously emits fluorescence of a specific wavelength by irradiating with ultraviolet rays without impairing the optical properties (colorless transparency), mechanical properties and heat resistance inherent to the polyimide alone. To emit. Moreover, since the fluorescence intensity is very high, fluorescence can be emitted efficiently. Therefore, this polyimide composite is used for wavelength conversion materials, display materials such as displays, fluorescent materials such as fluorescent paints, security printing materials such as security inks, lighting materials, photovoltaic power generation materials, and radiation sensors. It is suitable for materials for agricultural use, agricultural films and the like.
  • FIG. 1 shows fluorescence emission spectra when the films obtained in Synthesis Example 2, Examples 2, 3 and Reference Example 1 were irradiated with ultraviolet rays.
  • polyimide composite of this invention and its manufacturing method are demonstrated.
  • the polyamic acid is obtained from the reaction of the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B) in the presence of a solvent in which the polyamic acid is dissolved, and is represented by the following general formula (1). It has a semi-alicyclic repeating structure.
  • the concentration of the polyamic acid in the polyamic acid solution (S1) is not particularly limited as long as a polyimide composite can be produced, but preferably 100 to 10,000 parts by weight of solvent, more preferably 200 to 5000 parts per 100 parts by weight of polyamic acid. Parts by weight.
  • the polyimide according to the present invention is composed of the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B), it depends on the carboxyl group that is present in the state of the precursor polyamic acid.
  • a carbochelate anion and a metal cation can form an ionic bond.
  • a europium (Eu) compound can be suitably combined, and it is colorless and transparent without impairing mechanical properties and heat resistance.
  • irradiation with 200 to 400 nm ultraviolet light usually gives fluorescence of 500 to 800 nm. It can be emitted instantly.
  • the polyimide composite of the present invention can emit fluorescence efficiently.
  • X in the repeating structure of the formula (1) is derived from the divalent alicyclic diamine compound (A).
  • the diamine compound (A) is not particularly limited as long as a polyamic acid and a polyimide can be produced.
  • Cyclobutanediamines cyclohexanediamines (including trans-1,4-cyclohexylamine), di (aminomethyl) cyclohexanes (bis (aminomethyl) cyclohexanes such as 1,4-bis (aminomethyl) cyclohexane), diamino Bicycloheptanes, diaminomethylbicycloheptanes (including norbornanediamines such as norbornanediamine), diaminooxybicycloheptanes, diaminomethyloxybicycloheptanes (including oxanorbornanediamines such as oxanorbornanediamine), isophoronediamine, etc.
  • Isophoronediamines, diaminotricyclodecanes, diaminomethyltricyclodecanes, bis (aminocyclohexyl) mess such as bis (4-aminocyclohexyl) methane Emissions include (4,4'-methylenebis (methylenebis cyclohexyl amine) (cyclohexylamine) compound), bis (aminocyclohexyl) isopropylidene and the like can be mentioned.
  • Preferred alicyclic diamine compounds (A) include cyclohexanediamines containing trans-1,4-cyclohexylamine, 1, for reasons of availability, good optical properties, and thermal and mechanical stability.
  • Di (aminomethyl) cyclohexanes including 4-bis (aminomethyl) cyclohexane, diaminomethylbicycloheptanes (including norbornanediamines such as norbornanediamine), oxanorbornanediamine, isophoronediamine, 4,4'-methylenebis (cyclohexyl) Amine).
  • diaminomethylbicycloheptanes including norbornanediamines
  • Tetravalent aromatic tetracarboxylic dianhydride (B)) Y in the repeating structure of the formula (1) is derived from the tetravalent aromatic tetracarboxylic dianhydride (B).
  • the acid dianhydride (B) is not particularly limited as long as a polyamic acid and a polyimide can be produced.
  • Pyromellitic dianhydrides such as pyromellitic dianhydride, biphenyltetracarboxylic dianhydrides such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride
  • Bis (dicarboxyphenyl) ether dianhydrides such as bis (3,4-dicarboxyphenyl) ether dianhydride, bis (carboxyphenyl) ester dianhydrides, 2,2-bis (3 And bis (dicarboxyphenyl) hexafluoropropane dianhydride such as 4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride.
  • a preferable acid dianhydride (B) is a donor having a ⁇ electron system with a high extinction coefficient that can efficiently transfer the photoexcitation energy of an organic molecule through the optical antenna effect.
  • Pyromellitic dianhydrides biphenyltetracarboxylic dianhydrides, bis (dicarboxyphenyl) ether dianhydrides, and the like. More specifically, 1,2,4,5-pyrrole Mellitic acid dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride.
  • the solvent used in the preparation of the polyamic acid solution (S1) according to the present invention is not particularly limited as long as the formed polyamic acid can be dissolved.
  • solvents may be used alone or in combination of two or more.
  • aprotic or equivalent amide solvents are preferred, and N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methylacetamide, N-methyl-2-pyrrolidone 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, and hexamethylphosphorotriamide are more preferable.
  • the polyamic acid solution (S1) containing the polyamic acid and the solvent (also referred to as polyamic acid varnish) is not particularly limited as long as the polyamic acid can be produced. Examples thereof include the following production methods.
  • the method for adding each raw material to the polymerization reaction system is not particularly limited, (A) a method of simultaneously adding the diamine compound (A), the acid dianhydride (B) and the solvent, (B) A method of adding the acid dianhydride (B) after mixing the diamine compound (A) and the solvent, (C) A method of adding the diamine compound (A) after mixing the acid dianhydride (B) and the solvent, (D) The method of mixing and adding each after mixing an acid dianhydride (B), a solvent, a diamine compound (A), and a solvent, respectively. Further, in performing the temperature control during the polymerization reaction, a cooling or heating operation may be performed.
  • the molar ratio of the total diamine compound (A) to the total acid dianhydride (B) (total diamine compound (A) / total acid dianhydride (B )) Is usually in the range of 0.9 to 1.1.
  • the molar ratio of the diamine compound (A) to the acid dianhydride (B) is arbitrary and may or may not be in the range of 0.9 to 1.1.
  • a concentration of 0.5 g / dl in N, N-dimethylacetamide (DMAc) A polyamic acid having a logarithmic viscosity measured at 35 ° C. in the range of usually 0.1 to 3.0 dL / g can be produced.
  • the molecular terminal of the polyimide contained in the polyimide composite obtained by the present invention and its polyamic acid may be sealed.
  • the molecular terminal is sealed, as is conventionally known, it is desirable to seal with a group that is not reactive with amines and dicarboxylic anhydrides.
  • molecular ends of polyimide and polyamic acid are sealed with a dicarboxylic acid anhydride or a monoamine compound.
  • the molecular ends of polyamic acid or polyimide are sealed, the following two methods are used. That is, when the diamine compound is excessive and the terminal is sealed with a dicarboxylic anhydride, the tetracarboxylic dianhydride (B) is 0.9 mol or more and less than 1.0 mol per mol of the diamine compound.
  • An acid anhydride is 0.001 mol or more and less than 0.3 mol.
  • the diamine compound (A) is 0.9 mole or more per mole of the tetracarboxylic dianhydride (B). Less than 0.0 mol, and the monoamine compound is 0.001 mol or more and less than 0.3 mol.
  • the ordering property and regularity of two or more kinds of repeating units constituting the copolymer may or may not be limited.
  • the type of copolymer may be random, alternating, or block. Therefore, when the diamine compound (A) and the acid dianhydride (B) are composed of three or more kinds, the order of addition is arbitrary, and the addition method of these raw materials may be either batch or divided.
  • the polyamic acid solution (S2) of the present invention can be obtained by adding a europium (Eu) compound to the polyamic acid solution (S1).
  • the europium (Eu) compound is not limited as long as the effects of the present invention are exhibited, and examples thereof include europium oxide, europium hydroxide, europium inorganic acid salt, europium organic acid salt, and europium organic complex. Among these, europium chloride, europium nitrate, and europium acetate are preferable. These europium compounds can be used alone or as a mixture of other metal compounds containing two or more europium compounds.
  • the resulting polyimide composite can be obtained without impairing optical properties (colorless and transparent), mechanical properties, and heat resistance.
  • irradiation with ultraviolet rays for example, a wavelength of 250 to 400 nm
  • the fluorescence intensity is very high.
  • the excitation energy for promoting light emission by the ff transition of europium (Eu) can be obtained through the optical antenna effect by forming a complex with the organic molecule. Therefore, by using a donor having a ⁇ electron system with a high extinction coefficient, for example, an aromatic compound, the efficiency of energy transfer becomes very high. Therefore, it is desirable that the closest ligand capable of imparting excitation energy is an aromatic system, and the europium compound having some strong interaction with the aromatic tetracarboxylic dianhydride (B) is efficient. It is estimated that fluorescence can be emitted. That is, even if a europium compound is simply added to polyimide, the effect of the present invention cannot be expected for polyimide. And it originates from the interaction based on such a specific structure, and it is estimated that the polyimide composite obtained will have the physical property of this invention.
  • a polyimide complex obtained from a europium compound, an aromatic tetracarboxylic dianhydride, and an aromatic diamine has a complex called a charge transfer complex (CT complex) in the polyimide molecule. Since it forms, it can also be estimated from the non-radiative transition, and the fluorescence emission becomes extremely low.
  • CT complex charge transfer complex
  • the polyamic acid solution (S2) (also referred to as a composite varnish) is prepared by adding a europium (Eu) compound to a polyamic acid solution (S1) containing a polyamic acid and a solvent and mixing them.
  • the amount of the europium compound added is not limited as long as the effects of the present invention can be achieved, but preferably 0.001 to 4 parts by weight, more preferably 0.01 to 3.5 parts by weight with respect to 100 parts by weight of the polyamic acid. Parts, more preferably 0.1 to 3 parts by weight.
  • the addition amount of the europium compound is 0.001 part by weight or more, sufficient fluorescence is obtained even when diluted, and when it is 4 parts by weight or less, the mechanical strength of the finally obtained polyimide composite is sufficient, There is no practical problem.
  • it is the said range since it becomes possible to satisfy
  • the means for adding the europium (Eu) compound is not particularly limited.
  • the europium (Eu) compound may be added directly, but preferably, the europium (Eu) compound is finely pulverized and the pulverized product is added.
  • the europium (Eu) compound may be previously dissolved or dispersed in a solvent that does not react with the polyamic acid solution (S1) and then added to the polyamic acid solution (S1).
  • the mixing method of the europium (Eu) compound is not particularly limited, and can be mixed by a known apparatus such as a general mixer or blender under an inert atmosphere such as air or nitrogen.
  • the above mixing is preferably performed at around 0 to 50 ° C. from the viewpoint of suppressing imidization of the polyamic acid, more preferably at about 10 to 40 ° C., and it may be performed at room temperature because of operational advantages. Most preferred.
  • the mixing time is not particularly limited, but is preferably in the range of 30 minutes to 24 hours, and more preferably in the range of 1 hour to 20 hours.
  • filtration may be performed as necessary.
  • the filtration can be performed, for example, by pressure filtration provided with PTFE (tetrafluoroethylene resin) filter paper.
  • additives and fillers may be further added to the polyamic acid solution (S2) thus obtained within a range not impairing the effects of the present invention.
  • additives include wear resistance improvers such as graphite, carborundum, molybdenum disulfide, and fluorine-based resins, flame retardant improvers such as antimony trioxide, phosphazene compounds, and phosphate esters, clay, mica, Electrical property improvers such as kaolin, tracking resistance improvers such as asbestos, silica and graphite, acid resistance improvers such as silica and calcium metasilicate, heat conductivity improvers such as iron powder, zinc powder and aluminum powder, etc.
  • wear resistance improvers such as graphite, carborundum, molybdenum disulfide, and fluorine-based resins
  • flame retardant improvers such as antimony trioxide, phosphazene compounds, and phosphate esters
  • clay mica
  • Electrical property improvers such as ka
  • Examples of the method for removing the solvent include a reprecipitation method in which a poor solvent that does not dissolve the polyamic acid complex (PAAC) is added to the polyamic acid solution (S2) to precipitate the polyamic acid complex (PAAC), And a vacuum drying method in which the solvent is volatilized and distilled off under reduced pressure.
  • a reprecipitation method in which a poor solvent that does not dissolve the polyamic acid complex (PAAC) is added to the polyamic acid solution (S2) to precipitate the polyamic acid complex (PAAC)
  • S2 polyamic acid solution
  • PAAC polyamic acid solution
  • a vacuum drying method in which the solvent is volatilized and distilled off under reduced pressure.
  • the polyimide contained in the colorless and transparent polyimide composite of the present invention has a semi-alicyclic repeating structure represented by the following general formula (2).
  • X represents a divalent alicyclic group having 4 to 15 carbon atoms
  • Y represents a tetravalent aromatic group having 6 to 27 carbon atoms
  • the polyimide having the repeating structure represented by the above formula (2) is obtained by reacting the divalent alicyclic diamine compound (A) with the tetravalent aromatic tetracarboxylic dianhydride (B). It is formed.
  • the ordering and regularity of two or more kinds of repeating units constituting the copolymer may or may not be limited.
  • the type can be random, alternating, or block. Therefore, when the diamine compound (A) and the tetracarboxylic dianhydride (B) are composed of 3 or more types, the order of addition is arbitrary, and the method for adding these raw materials can be either batch or divided. It is.
  • X and Y in the above formula (2) preferably have the following structural units because they are excellent in colorless transparency, high heat resistance and mechanical strength of the polyimide composite of the present invention. .
  • At least one alicyclic group selected from the group consisting of: Y in the above formula (2) is
  • At least one aromatic group selected from the group consisting of:
  • a polyimide containing any one of the following general formulas (3) to (11) is more preferable because the fluorescence intensity is high even if the fluorescence wavelength derived from europium is the same.
  • diamine compound [1] is norbornanediamine
  • compound [2] is obtained from 1,2,4,5-pyromellitic dianhydride.
  • the diamine compound [1] is trans-1,4-cyclohexyldiamine, and the compound [2] is obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
  • diamine compound [1] is 1,4-bis (aminomethyl) cyclohexane
  • compound [2] is obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. It is done.
  • the diamine compound [1] is trans-1,4-cyclohexyldiamine and norbornanediamine, and the compound [2] is from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. can get.
  • the diamine compound [1] is 4,4′-methylenebis (cyclohexylamine), and the compound [2] is obtained from 1,2,4,5-pyromellitic dianhydride.
  • the diamine compound [1] is norbornanediamine
  • the compound [2] is obtained from bis (3,4-dicarboxyphenyl) ether dianhydride.
  • the diamine compound [1] is norbornanediamine
  • the compound [2] is 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3- Obtained from hexafluoropropane dianhydride.
  • the diamine compound [1] is norbornanediamine and oxanorbornanediamine
  • the compound [2] is 2,2-bis (3,4-dicarboxyphenyl) -1,1,1, Obtained from 3,3,3-hexafluoropropane dianhydride.
  • the diamine compound [1] is norbornane diamine and isophorone diamine
  • the compound [2] is 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3. , 3,3-hexafluoropropane dianhydride.
  • m and n represent the number of repeating structural units represented in brackets: [] and brackets: (), and the ratio of m: n is 5: 5 to 9: 1. is there.)
  • polyimide represented by the general formulas (3) to (6) from the viewpoint of balance between fluorescence intensity and mechanical intensity.
  • the polyimide composite of the present invention usually contains 0.001 to 10 equivalents of europium (Eu) with respect to 100 equivalents of the repeating unit of the polyimide represented by the above formula (2).
  • the polyimide composite is colorless and transparent.
  • colorless and transparent means that when a film having a thickness of 30 ⁇ m is produced, the light transmittance is usually 80% to 100% at a wavelength of 400 nm or more, preferably 400 to 800 nm in the visible light region. Preferably, it means 85 to 100%.
  • the light transmittance is less than the above range, basically, a polyimide composite cannot be used as a material for a member requiring “colorless and transparent”.
  • the polyimide composite of the present invention usually emits fluorescence having a wavelength of 500 to 800 nm, preferably 550 to 700 nm instantaneously, for example, by irradiating with an ultraviolet ray having a wavelength of 250 to 400 nm.
  • This fluorescence can usually be identified as red.
  • “instantaneous” means that fluorescence is emitted immediately upon irradiation with ultraviolet rays, and that the response to ultraviolet rays is fast.
  • the polyimide composite has a very high fluorescence intensity.
  • the excitation energy for promoting the light emission by the ff transition of europium (Eu) is obtained through the optical antenna effect from the photoexcitation energy from the aromatic organic compound having the carboxyl group.
  • the polyimide composite is colorless and transparent, for example, when irradiated with ultraviolet rays having a wavelength of 250 to 400 nm, it is possible to instantaneously emit fluorescence usually having a wavelength of 500 to 800 nm.
  • the polyimide composite of the present invention is excellent in heat resistance and preferably has a Tg of 200 ° C. or higher, more preferably 250 ° C. or higher.
  • the polyimide composite obtained by the present invention can maintain excellent mechanical properties and dimensional stability by compounding a europium compound with an addition amount within a suitable range.
  • the increase or decrease in the coefficient of thermal expansion (CTE) is suppressed in the range of ⁇ 5 to +5 ppm, more preferably in the range of ⁇ 3 to +3 ppm, and the tensile test, compared to the polyimide alone with no europium compound added.
  • the increase / decrease in the tensile elongation at is in the range of ⁇ 10 to + 10%, more preferably in the range of ⁇ 5 to + 5%, and the above colorless transparency and high fluorescence can be efficiently imparted.
  • the polyimide composite of the present invention can be produced by imidizing the polyamic acid contained in the polyamic acid solution (S2) and removing the solvent simultaneously with or after the imidization. In addition, if the solvent cannot be sufficiently removed even if the solvent is removed simultaneously with imidization, the solvent may be further removed following imidization. In addition, it can replace with the said polyamic-acid solution (S2), and can also produce a polyimide composite body by the same operation using the varnish containing the said polyamic acid.
  • the imidization a known method can be employed, and examples thereof include thermal imidization and chemical imidization. A plurality of these imidization means may be combined to imidize.
  • the thermal imidization is usually carried out by heating at a temperature of 150 to 300 ° C., preferably 200 to 300 ° C., for 30 minutes to 4 hours. If it is the said range, the imide ring formation by a dehydration condensation reaction can be completed more and it is preferable from the point which can suppress the coloring of a polyimide composite_body
  • Chemical imidization is performed with an imidizing agent such as acetic anhydride.
  • the atmosphere at the time of imidation is not particularly limited, and for example, imidization can be performed under an inert atmosphere such as air or nitrogen.
  • the solvent can be removed by, for example, heating and further reducing the pressure as necessary.
  • the conditions for solvent removal vary depending on the solvent species and are not particularly limited, but are usually performed by heating at a temperature of 150 to 300 ° C. for 30 minutes to 4 hours.
  • the heating atmosphere at this time is not particularly limited, and for example, the solvent can be removed under an inert atmosphere such as reduced pressure, air, or nitrogen.
  • the solvent may be removed simultaneously with the heating. If the solvent cannot be removed sufficiently during the imidation reaction, the solvent can be removed usually by reheating at a temperature of 150 to 300 ° C.
  • the solvent can be removed by heating at a temperature of usually 150 to 300 ° C. for 30 minutes to 4 hours.
  • the polyimide composite of this invention is obtained by such imidation,
  • the polyimide contained in the polyimide composite contains the repeating unit shown by the said Formula (2).
  • the polyimide composite of the present invention can be used for members and materials that require colorless transparency, high heat resistance, high mechanical strength, high fluorescence, wavelength conversion, excellent electrical properties, etc. Widely used in optical communication, photonics, electronics, flat panel displays including liquid crystal displays and organic EL displays, flexible displays and light emitting displays, fluorescent paints, security inks, lighting fixtures, solar power generation, radiation sensors, and agricultural films Can be applied.
  • the solar cell panel by coating the solar cell panel with the polyimide composite of the present invention as a wavelength conversion material, energy in the ultraviolet region can also be converted, and an efficient battery can be obtained.
  • a color excellent in color purity can be directly emitted from the polyimide composite of the present invention.
  • the polyimide composite of the present invention can be used for, for example, a molded body such as a film, a rigid including a metal laminated plate, a flexible circuit substrate, a reflector, and the like.
  • a molded body such as a film, a rigid including a metal laminated plate, a flexible circuit substrate, a reflector, and the like.
  • the conditions for manufacturing these molded bodies can be appropriately set according to the thickness of the film, the shape of the molded body, and the like.
  • the polyimide composite of the present invention can be used as, for example, a film, a metal laminate having at least one layer composed of the polyimide composite, and the like.
  • the film is colorless and transparent.
  • the film of the present invention is not particularly limited, but usually has a thickness of several ⁇ m to several hundred ⁇ m.
  • a film having such a thickness is obtained by, for example, applying a coating material containing a polyamic acid solution (S2) or a polyamic acid composite (PAAC) at a thickness of 10 to 1000 ⁇ m, imidizing, and removing the solvent. Can be made.
  • concentration of the coating material, the content of other components, and the like can be set as appropriate depending on the application.
  • Tg Glass transition temperature
  • CTE coefficient of thermal expansion
  • Tensile elongation test A dumbbell punched specimen with a marked line width of 5 mm was prepared and used to break until it reached a tensile speed of 30 mm / min using an EZ-S tensile tester manufactured by Shimadzu Corporation. The stress-strain curve was obtained by measuring the stress and elongation. The measurement was obtained as an average value of 10 times.
  • the obtained polyamic acid solution was cast on a glass substrate using a doctor blade. This was transferred to an inert oven, heated from 50 ° C. to 270 ° C. in a nitrogen stream over 2 hours, and then kept at 270 ° C. for 2 hours to have a self-supporting colorless transparent polyimide with a film thickness of 26 ⁇ m. A film was obtained.
  • Table 2 shows the measurement results of various physical properties (total light transmittance, maximum excitation wavelength, maximum fluorescence wavelength and intensity, glass transition temperature, thermal linear expansion coefficient, and tensile elongation) of this polyimide film.
  • PMDA was 155 g of bis (3,4-dicarboxyphenyl) ether dianhydride (ODPA), 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-
  • ODPA bis (3,4-dicarboxyphenyl) ether dianhydride
  • 6FDA hexafluoropropane dianhydride
  • Synthesis Examples 7 and 8 A polyamic acid solution was prepared in the same manner as in Synthesis Example 1 except that the diamine component was NBDA alone, but was changed to a copolymer of 50 mol% oxanorbornane diamine (ONDA), 30 mol% isophorone diamine (IPDA) and NBDA, respectively. A colorless transparent polyimide film was prepared, and the measurement results of various physical properties are shown in Tables 1 and 2.
  • the oligoamido acid varnish and oligoimide varnish obtained above were mixed and stirred while diluting to 15 wt% by adding NMP to synthesize a multi-block polyamic acid imide varnish.
  • the inherent logarithmic viscosity of the obtained varnish was 1.31 dL / g (35 ° C., 0.5 g / dL).
  • the results are shown in Table 1.
  • a colorless transparent polyimide film was produced in the same manner as in Synthesis Example 1, and the measurement results of various physical properties of the obtained film are shown in Table 2.
  • the diamine component NBDA is 146 g (0.500 mol) of 1,3-bis (3-aminophenoxy) benzene (APB), solvent DMI 602 g, 4,4′-diaminodiphenyl ether [4,4′-oxydianiline] (ODA) 100 g (0.500 mol) of the solvent NMP 494 g, 4,4′-bis (3-aminophenoxy) biphenyl (mBP) 184 g (0.500 mol) was changed to the solvent DMI 690 g, Except for changing the PMDA of the acid anhydride component to 112 g (0.500 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), A polyamic acid solution and a colorless transparent polyimide film were prepared, and the measurement results of various physical properties are shown in Tables 1 and 2.
  • a polyamic acid solution and a polyimide film were prepared in the same manner as in Synthesis Example 2 except that the pyromellitic dianhydride (PMDA) was changed to 109 g (0.500 mol).
  • PMDA pyromellitic dianhydride
  • Examples 1, 3, 6 to 11 and 13 The polymer solution (polyamic acid varnish or polyamic acid imide varnish) obtained in Synthesis Examples 1 to 9 is 1.0 part by weight with respect to 100 parts by weight of the solid content of the corresponding polyamic acid or polyamic acid imide.
  • Europium chloride hexahydrate was added as described above, and the mixture was stirred for 5 minutes using a rotation / revolution mixer (or kneading / mixing foam removing device) (manufactured by Keyence Corporation, product name: Hybrid Mixer-500), and the corresponding composite A varnish was obtained.
  • the varnish is cast on a glass substrate using a doctor blade, transferred to an inert oven, heated from 50 ° C.
  • Table 3 shows the measurement results of various physical properties (total light transmittance, maximum excitation wavelength, maximum fluorescence wavelength and intensity, glass transition temperature, thermal expansion coefficient, and tensile elongation) of the polyimide composite film.
  • Example 2 and 12 The europium chloride hexahydrate was added to the polymer solution (polyamic acid varnish) obtained in Synthesis Examples 2 and 9 so that the corresponding solid content of the polyamic acid was 100 parts by weight to 0.20 part by weight.
  • a corresponding composite varnish and a polyimide composite film having self-supporting property and colorless transparency were produced in the same manner as in Example 1 except that the addition amount was changed.
  • Table 3 shows the measurement results of various physical properties.
  • Example 4 The amount of europium nitrate hexahydrate added to the polymer solution (polyamic acid varnish) obtained in Synthesis Example 2 was changed to 1.0 part by weight with respect to 100 parts by weight of the solid content of the polyamic acid. Except that, a composite varnish and a polyimide composite film having self-supporting property and colorless transparency were produced in the same manner as in Example 3. Table 3 shows the measurement results of various physical properties.
  • Example 5 The amount of europium acetate hydrate added to the polymer solution (polyamic acid varnish) obtained in Synthesis Example 2 was changed to 1.0 part by weight with respect to 100 parts by weight of the solid content of the polyamic acid. Except for the above, a composite varnish and a polyimide composite film having self-supporting property and colorless transparency were produced in the same manner as in Example 3. Table 3 shows the measurement results of various physical properties.
  • the addition amount of the europium compound was prepared from varnish with 5 parts by weight added to 100 parts by weight of the polymer.
  • the fluorescence intensity and film properties are slightly lower than those of a composite film prepared from a varnish to which 1 part by weight of the europium compound is added, it still has colorless transparency and fast response fluorescence. I found out.
  • the colorless transparent polyimide film obtained in Synthesis Example 2 was spin-coated with a 3% acetonitrile solution of europium nitrate hydrate, or the film immersed in the solution for 6 hours was dried at room temperature. In the thing, even if it irradiates excitation light, the fluorescence intensity (wavelength 615nm vicinity) derived from a europium compound was not confirmed. Thereby, in order to give interaction between a colorless and transparent polyimide and a europium compound, it turned out that the composite in the state of the polyamic-acid varnish of a polyimide precursor is required.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The objective of the present invention is to provide a polyimide complex that emits fluorescence having a specific wavelength and achieves high fluorescence intensity as a result of being irradiated with ultraviolet rays without compromising the colorless transparency, mechanical properties, and heat resistance of a polyimide having a specific structure, and to provide a method for manufacturing the complex. This polyimide complex is obtained by adding 0.001-4 parts by weight of a europium (Eu) compound per 100 parts by weight of a polyamic acid solution (S1) obtained from a specific polyamic acid obtained from an alicyclic diamine compound (A) and an aromatic tetracarboxylic dianhydride (B) as well as a solvent (C) in which the polyamic acid dissolves, obtaining a polyamic acid solution (S2), and imidating the polyamic acid contained in the polyamic acid solution (S2) and removing the solvent (C).

Description

ポリイミド複合体、ポリアミド酸溶液、ポリイミド複合体の製造方法およびポリイミド複合体からなるフィルムPolyimide composite, polyamic acid solution, method for producing polyimide composite, and film comprising polyimide composite
 本発明は、ポリイミド複合体およびポリイミド複合体の製造方法に関する。
 詳しくは、無色透明であって、紫外線を照射することにより瞬時に特定波長の蛍光を発し、かつ、蛍光強度が高い、ユウロピウム(Eu)化合物を含むポリイミド複合体、およびその製造方法に関する。
The present invention relates to a polyimide composite and a method for producing a polyimide composite.
Specifically, the present invention relates to a polyimide composite containing a europium (Eu) compound, which is colorless and transparent, emits fluorescence of a specific wavelength instantaneously by irradiation with ultraviolet rays, and has high fluorescence intensity, and a method for producing the same.
 ポリイミドはその優れた耐熱性に加え、機械特性、電気特性等の点において優れているため、成形材料、複合材料、電気、電子材料としてさまざまな分野で、従来から広く用いられている。 Polyimides have been widely used in various fields as molding materials, composite materials, electrical and electronic materials because of their excellent heat resistance, mechanical properties, and electrical properties.
 従来、ポリイミドは一般にジアミンとテトラカルボン酸二無水物を溶媒中で反応させてポリアミド酸を生成し、これを脱水閉環する等の方法で得られる。
 これらの中でも、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られるポリイミドの多くは、耐熱性及び機械特性に優れる。しかしながら、これらのポリイミドは、赤褐色から黄色を呈した樹脂となり、光学特性に問題がある。また、ジアミンとテトラカルボン酸二無水物の両方を、あるいは、いずれかを脂環式構造としたり、比較的嵩高く、かつ、分極率が低いフッ素基やトリフルオロメチル基などを導入したりすることで、無色透明性を有するポリイミドが得られるが、ポリイミドが有する耐熱性や機械特性を付与できない例もある。
Conventionally, a polyimide is generally obtained by a method in which a diamine and tetracarboxylic dianhydride are reacted in a solvent to form a polyamic acid, which is dehydrated and cyclized.
Among these, many of the polyimides obtained from aromatic tetracarboxylic dianhydride and aromatic diamine are excellent in heat resistance and mechanical properties. However, these polyimides have a reddish brown to yellow resin and have a problem in optical properties. In addition, both diamine and tetracarboxylic dianhydride, or one of them, has an alicyclic structure, or introduces a relatively bulky and low polarizability fluorine group or trifluoromethyl group. As a result, a polyimide having colorless transparency can be obtained, but there are examples in which the heat resistance and mechanical properties of the polyimide cannot be imparted.
 一方、蛍光材料は、一般に、量子ドット、有機系色素および希土類錯体と、大きく3つに分類できる。量子ドットは、広い吸収バンド、優れた発光特性、長期安定性を有するが、ストークスシフトが小さいという欠点がある。ここで、蛍光材料には、一般に、励起波長と蛍光波長に差があり、その波長差をストークスシフトという。また、有機系色素は、高い吸光係数と量子収率、良好な加工性といった特徴があるが、光安定性に難がある。一方、希土類錯体は、量子収率が高いが、吸光係数が低いという特徴がある。
 また、これら蛍光材料が低分子量化合物である場合、母材となる樹脂と混合させる際には、低分子蛍光材が凝集して消光する問題や、樹脂からのブリードアウトなどの問題が残される。
 希土類陽イオンには、紫外から赤外まで幅広い波長領域の蛍光を発するものがある。これらは配位子場等の外界の影響を受けにくいf軌道電子の遷移(ff遷移)に基づくため、発光帯の波長幅が有機蛍光体等に比べ非常に狭く、原理的に色純度が高い有用な蛍光種である。また、熱や光に対する安定性においても優れているため、テレビ受像機のディスプレイ等に応用されてきている。
On the other hand, fluorescent materials can generally be classified into three categories: quantum dots, organic dyes, and rare earth complexes. Quantum dots have a wide absorption band, excellent light emission characteristics, and long-term stability, but have the drawback of a small Stokes shift. Here, the fluorescent material generally has a difference between the excitation wavelength and the fluorescence wavelength, and the wavelength difference is called a Stokes shift. In addition, organic dyes have characteristics such as a high extinction coefficient, quantum yield, and good processability, but they have difficulty in photostability. On the other hand, rare earth complexes have a high quantum yield but a low extinction coefficient.
Further, when these fluorescent materials are low molecular weight compounds, problems such as aggregation of the low molecular fluorescent material and quenching, and bleeding out from the resin remain when mixed with the resin as the base material.
Some rare earth cations emit fluorescence in a wide wavelength range from ultraviolet to infrared. Since these are based on f-orbital electron transitions (ff transitions) that are not easily affected by external fields such as ligand fields, the wavelength band of the emission band is very narrow compared to organic phosphors, etc., and in principle the color purity is high. It is a useful fluorescent species. Further, since it is excellent in stability against heat and light, it has been applied to a display of a television receiver.
 例えばユウロピウム(Eu)を含む金属錯体などの複合体は、紫外光励起により赤色の蛍光を発生する。
 特許文献1には、ジフェニルエーテル等を含むテトラカルボン酸二無水物と、主鎖に脂環式構造を含むジアミン等を原料とする透明ポリイミドからなる蛍光材料が開示されている。該ポリイミドは、発光波長を短波長化して青色~紫色領域の蛍光を発光するものであり、ポリイミド自体が、紫外線の照射により発光するものである。
For example, a complex such as a metal complex containing europium (Eu) generates red fluorescence by excitation with ultraviolet light.
Patent Document 1 discloses a fluorescent material made of a transparent polyimide using tetracarboxylic dianhydride containing diphenyl ether and the like, and diamine containing an alicyclic structure in the main chain as raw materials. The polyimide emits fluorescence in the blue to violet region by shortening the emission wavelength, and the polyimide itself emits light when irradiated with ultraviolet rays.
 特許文献2には、ポリマーの主鎖または側鎖にカルボニル基をもつポリマー中に希土類元素イオンを含有させてなる光メモリー材料が開示されている。光メモリー効果に着目した発明であるため、光メモリー性をもたせるため、希土類元素イオンを多く添加している。そのため、ポリイミドが有する優れた機械特性や電気特性を得ることができない。また、発光輝度の向上のためには、長時間の紫外線の照射が必要となり、高速応答性は得られない。 Patent Document 2 discloses an optical memory material in which a rare earth element ion is contained in a polymer having a carbonyl group in the main chain or side chain of the polymer. Since the invention focuses on the optical memory effect, a large amount of rare earth element ions are added to provide optical memory properties. Therefore, it is not possible to obtain excellent mechanical properties and electrical properties possessed by polyimide. Moreover, in order to improve the light emission luminance, it is necessary to irradiate with ultraviolet rays for a long time, and high-speed response cannot be obtained.
特開2005-320393号公報JP 2005-320393 A 特開2005-70579号公報JP 2005-70579 A
 本発明は、特定構造のポリイミドが有する無色透明性、機械物性および耐熱性を損なうことなく、一方で、紫外線を照射することにより特定波長の蛍光を発し、かつ、蛍光強度が高い、ポリイミド複合体およびその製造方法を提供することにある。 The present invention is a polyimide composite that emits fluorescence of a specific wavelength by irradiation with ultraviolet rays and has high fluorescence intensity without impairing the colorless transparency, mechanical properties and heat resistance of the polyimide having a specific structure. And providing a manufacturing method thereof.
 本発明者らは、上記の課題を解決するために鋭意検討した結果、特定構造のポリイミドと、ユウロピウム(Eu)化合物とを複合化することにより、上記課題を解決できることを見出し、本発明を完成するに到った。すなわち、
 本発明のポリイミド複合体は、脂環式ジアミン化合物(A)と芳香族テトラカルボン酸二無水物(B)とから得られる、一般式(1)で示されるポリアミド酸と、該ポリアミド酸が溶解する溶媒(C)とから得られるポリアミド酸溶液(S1)100重量部に対して、ユウロピウム(Eu)化合物0.001~4重量部を加えて、ポリアミド酸溶液(S2)を得て、該ポリアミド酸溶液(S2)に含まれるポリアミド酸のイミド化および溶媒(C)除去により得られることを特徴とする。
As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by combining a polyimide having a specific structure and a europium (Eu) compound, thereby completing the present invention. I arrived. That is,
The polyimide composite of the present invention is obtained by dissolving the polyamic acid represented by the general formula (1) obtained from the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B) and the polyamic acid. 0.001 to 4 parts by weight of a europium (Eu) compound is added to 100 parts by weight of the polyamic acid solution (S1) obtained from the solvent (C) to obtain a polyamic acid solution (S2). It is obtained by imidation of polyamic acid contained in the acid solution (S2) and removal of the solvent (C).
Figure JPOXMLDOC01-appb-C000011
 (式(1)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す。)
 また、前記ポリイミド複合体に含まれるポリイミドは、下記一般式(2)で表わされる構成単位を含むことが好ましい。
Figure JPOXMLDOC01-appb-C000011
(In formula (1), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.)
Moreover, it is preferable that the polyimide contained in the said polyimide composite contains the structural unit represented by following General formula (2).
Figure JPOXMLDOC01-appb-C000012
 式(2)中、Xは、
Figure JPOXMLDOC01-appb-C000012
In the formula (2), X is
Figure JPOXMLDOC01-appb-C000013
からなる群から選択される少なくとも1種の脂環族基であり、
 Yは、
Figure JPOXMLDOC01-appb-C000013
At least one alicyclic group selected from the group consisting of:
Y is
Figure JPOXMLDOC01-appb-C000014
からなる群から選択される少なくとも1種の芳香族基である。
Figure JPOXMLDOC01-appb-C000014
At least one aromatic group selected from the group consisting of:
 前記ポリイミド複合体に含まれるポリイミドは、下記一般式(3)で表わされる構成単位を含むことも好ましい。 It is also preferred that the polyimide contained in the polyimide composite contains a structural unit represented by the following general formula (3).
Figure JPOXMLDOC01-appb-C000015
 前記ポリイミド複合体に含まれるポリイミドは、下記一般式(4)で表わされる構成単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000015
It is also preferable that the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (4).
Figure JPOXMLDOC01-appb-C000016
 前記ポリイミド複合体に含まれるポリイミドは、下記一般式(5)で表わされる構成単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000016
It is also preferable that the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000017
 前記ポリイミド複合体に含まれるポリイミドは、下記一般式(6)で表わされる構成単位を含むことも好ましい。
Figure JPOXMLDOC01-appb-C000017
It is also preferable that the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (6).
Figure JPOXMLDOC01-appb-C000018
 (式中、mとnは、各括弧内で表される繰返し構造単位の繰返し数を示し、mの平均値とnの平均値との比(m:n)が、1:9~9:1である。)
 前記ユウロピウム(Eu)化合物は、塩化ユウロピウム、硝酸ユウロピウムおよび酢酸ユウロピウムから選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000018
(In the formula, m and n represent the number of repeating structural units represented in parentheses, and the ratio of the average value of m to the average value of n (m: n) is 1: 9 to 9: 1)
The europium (Eu) compound is preferably at least one selected from europium chloride, europium nitrate and europium acetate.
 本発明のポリイミド複合体は、通常、波長250~400nmの紫外線を照射することにより、好ましくは、波長500~800nmの蛍光を発する。
 該ポリイミド複合体は、全光線透過率が80%以上であることが好ましい。
The polyimide composite of the present invention usually emits fluorescence having a wavelength of 500 to 800 nm by irradiating with an ultraviolet ray having a wavelength of 250 to 400 nm.
The polyimide composite preferably has a total light transmittance of 80% or more.
 本発明のフィルムは、本発明のポリイミド複合体からなることを特徴とする。
 本発明のポリイミド複合体の製造方法は、以下の工程1から工程3を含むことを特徴とする。
The film of the present invention comprises the polyimide composite of the present invention.
The method for producing a polyimide composite according to the present invention includes the following steps 1 to 3.
 (工程1)脂環式ジアミン化合物(A)と芳香族テトラカルボン酸二無水物(B)とから得られる、一般式(1)で示されるポリアミド酸と、該ポリアミド酸が溶解する溶媒(C)とから得られるポリアミド酸溶液(S1)を得る工程、 (Step 1) The polyamic acid represented by the general formula (1) obtained from the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B), and the solvent (C A step of obtaining a polyamic acid solution (S1) obtained from
Figure JPOXMLDOC01-appb-C000019
 (式(1)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す。)
Figure JPOXMLDOC01-appb-C000019
(In formula (1), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.)
 (工程2)該ポリアミド酸100重量部に対して、ユウロピウム(Eu)化合物0.001~4重量部を加えて、ポリアミド酸溶液(S2)得る工程、および
 (工程3)該ポリアミド酸溶液(S2)に含まれるポリアミド酸のイミド化および溶媒(C)除去によりポリイミド複合体を得る工程。
(Step 2) A step of adding 0.001 to 4 parts by weight of a europium (Eu) compound to 100 parts by weight of the polyamic acid to obtain a polyamic acid solution (S2), and (Step 3) the polyamic acid solution (S2 The process of obtaining a polyimide composite by imidation of the polyamic acid contained in), and solvent (C) removal.
 本発明のポリアミド酸溶液(S2)は、下記一般式(1)で示されるポリアミド酸と、 The polyamic acid solution (S2) of the present invention includes a polyamic acid represented by the following general formula (1),
Figure JPOXMLDOC01-appb-C000020
 (式(1)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す。)
 該ポリアミド酸が溶解する溶媒(C)に、該ポリアミド酸100重量部に対して、ユウロピウム(Eu)化合物0.001~4重量部を加えて得られることを特徴とする。
Figure JPOXMLDOC01-appb-C000020
(In formula (1), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.)
It is characterized by being obtained by adding 0.001 to 4 parts by weight of a europium (Eu) compound to 100 parts by weight of the polyamic acid in the solvent (C) in which the polyamic acid is dissolved.
 前記溶媒(C)が、非プロトン性のアミド系溶媒であることが好ましい。 It is preferable that the solvent (C) is an aprotic amide solvent.
 本発明によって得られるポリイミド複合体は、ポリイミドが単独で本来有する光学特性(無色透明性)、機械物性および耐熱性を損なうことなく、一方で、紫外線を照射することにより特定波長の蛍光を瞬時に発する。また、蛍光強度が非常に高いため、効率よく、蛍光を発することができる。そのため、このポリイミド複合体は、波長変換用材料、ディスプレイ等の表示用材料、蛍光塗料用などの蛍光材料、セキュリティインク用などのセキュリティ印刷用材料、照明用材料、太陽光発電用材料、放射線センサー用の材料、農業用フィルム等に好適である。 The polyimide composite obtained by the present invention instantaneously emits fluorescence of a specific wavelength by irradiating with ultraviolet rays without impairing the optical properties (colorless transparency), mechanical properties and heat resistance inherent to the polyimide alone. To emit. Moreover, since the fluorescence intensity is very high, fluorescence can be emitted efficiently. Therefore, this polyimide composite is used for wavelength conversion materials, display materials such as displays, fluorescent materials such as fluorescent paints, security printing materials such as security inks, lighting materials, photovoltaic power generation materials, and radiation sensors. It is suitable for materials for agricultural use, agricultural films and the like.
図1は、合成例2、実施例2、3および参考例1で得られたフィルムに紫外線を照射させたときの蛍光発光スペクトルを示す。FIG. 1 shows fluorescence emission spectra when the films obtained in Synthesis Example 2, Examples 2, 3 and Reference Example 1 were irradiated with ultraviolet rays.
 本発明のポリイミド複合体およびその製造方法について説明する。
 <ポリアミド酸溶液(S1)>
 (ポリアミド酸)
 本発明において、ポリイミド複合体を作成する際には、ポリイミドの前駆体であるポリアミド酸を含む溶液(S1)、即ちポリアミド酸ワニス(ポリイミド前駆体ワニスとも称す)を利用することが可能である。ポリアミド酸は、ポリアミド酸が溶解する溶媒の存在下で、脂環式ジアミン化合物(A)と芳香族テトラカルボン酸二無水物(B)との反応から得られ、下記一般式(1)で示される半脂環式の繰り返し構造を有する。
The polyimide composite of this invention and its manufacturing method are demonstrated.
<Polyamic acid solution (S1)>
(Polyamide acid)
In the present invention, when preparing a polyimide composite, it is possible to use a solution (S1) containing a polyamic acid which is a polyimide precursor, that is, a polyamic acid varnish (also referred to as a polyimide precursor varnish). The polyamic acid is obtained from the reaction of the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B) in the presence of a solvent in which the polyamic acid is dissolved, and is represented by the following general formula (1). It has a semi-alicyclic repeating structure.
Figure JPOXMLDOC01-appb-C000021
 (式(1)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す。)
 ポリアミド酸溶液(S1)中のポリアミド酸の濃度は、ポリイミド複合体を作成できれば特に制限されないが、好ましくは、ポリアミド酸100重量部に対して、溶媒100~10000重量部、さらに好ましくは200~5000重量部である。
Figure JPOXMLDOC01-appb-C000021
(In formula (1), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.)
The concentration of the polyamic acid in the polyamic acid solution (S1) is not particularly limited as long as a polyimide composite can be produced, but preferably 100 to 10,000 parts by weight of solvent, more preferably 200 to 5000 parts per 100 parts by weight of polyamic acid. Parts by weight.
 本発明にかかるポリイミドは、脂環式ジアミン化合物(A)と芳香族テトラカルボン酸二無水物(B)で構成されているため、前駆体であるポリアミド酸の状態で有しているカルボキシル基によるカルボキレート陰イオンと金属陽イオンが、イオン的結合を形成しうる。そのため、ユウロピウム(Eu)化合物を好適に複合でき、機械物性および耐熱性を損なうことなく、無色透明でありながら、たとえば、200~400nmの紫外線を照射することにより、通常、500~800nmの蛍光を瞬時に発することができる。また、ユウロピウム(Eu)のff遷移による蛍光発光を促すためには、π電子系のドナーが光アンテナ効果を介して効率よくエネルギー移動ができるよう、ユウロピウムと近接で配位できる有機分子部位として、芳香族性を有する場合の方が、非常に高い蛍光強度を有することができると考えられる。そのため、本発明のポリイミド複合体は、効率よく、蛍光を発することができる。 Since the polyimide according to the present invention is composed of the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B), it depends on the carboxyl group that is present in the state of the precursor polyamic acid. A carbochelate anion and a metal cation can form an ionic bond. For this reason, a europium (Eu) compound can be suitably combined, and it is colorless and transparent without impairing mechanical properties and heat resistance. For example, irradiation with 200 to 400 nm ultraviolet light usually gives fluorescence of 500 to 800 nm. It can be emitted instantly. In order to promote fluorescence emission due to the ff transition of europium (Eu), as an organic molecular site capable of coordinating with europium in close proximity so that a π-electron donor can efficiently transfer energy via the optical antenna effect, It is considered that the case of having aromaticity can have very high fluorescence intensity. Therefore, the polyimide composite of the present invention can emit fluorescence efficiently.
 (二価の脂環式ジアミン化合物(A))
 式(1)の繰り返し構造中のXは、二価の脂環式ジアミン化合物(A)に由来する。ジアミン化合物(A)は、ポリアミド酸、ポリイミドを製造できる限り特に限定されないが、たとえば、
 シクロブタンジアミン類、シクロヘキサンジアミン類(トランス-1,4-シクロヘキシルアミンを含む)、ジ(アミノメチル)シクロヘキサン類(1,4-ビス(アミノメチル)シクロヘキサンなどのビス(アミノメチル)シクロヘキサン類)、ジアミノビシクロヘプタン類、ジアミノメチルビシクロヘプタン類(ノルボルナンジアミンなどのノルボルナンジアミン類を含む)、ジアミノオキシビシクロヘプタン類、ジアミノメチルオキシビシクロヘプタン類(オキサノルボルナンジアミンなどのオキサノルボルナンジアミン類を含む)、イソホロンジアミンなどのイソホロンジアミン類、ジアミノトリシクロデカン類、ジアミノメチルトリシクロデカン類、ビス(4-アミノシクロヘキシル)メタンなどのビス(アミノシクロへキシル)メタン類、(4,4'-メチレンビス(シクロヘキシルアミン)などのメチレンビス(シクロヘキシルアミン)類)、ビス(アミノシクロヘキシル)イソプロピリデン類等が挙げられる。
(Divalent alicyclic diamine compound (A))
X in the repeating structure of the formula (1) is derived from the divalent alicyclic diamine compound (A). The diamine compound (A) is not particularly limited as long as a polyamic acid and a polyimide can be produced.
Cyclobutanediamines, cyclohexanediamines (including trans-1,4-cyclohexylamine), di (aminomethyl) cyclohexanes (bis (aminomethyl) cyclohexanes such as 1,4-bis (aminomethyl) cyclohexane), diamino Bicycloheptanes, diaminomethylbicycloheptanes (including norbornanediamines such as norbornanediamine), diaminooxybicycloheptanes, diaminomethyloxybicycloheptanes (including oxanorbornanediamines such as oxanorbornanediamine), isophoronediamine, etc. Isophoronediamines, diaminotricyclodecanes, diaminomethyltricyclodecanes, bis (aminocyclohexyl) mess such as bis (4-aminocyclohexyl) methane Emissions include (4,4'-methylenebis (methylenebis cyclohexyl amine) (cyclohexylamine) compound), bis (aminocyclohexyl) isopropylidene and the like can be mentioned.
 好ましい脂環式ジアミン化合物(A)としては、入手可能性、光学物性良好性、および、熱的かつ力学的安定性の理由から、トランス-1,4-シクロヘキシルアミンを含むシクロヘキサンジアミン類、1,4-ビス(アミノメチル)シクロヘキサンを含むジ(アミノメチル)シクロヘキサン類、ジアミノメチルビシクロヘプタン類(ノルボルナンジアミンなどのノルボルナンジアミン類を含む)、オキサノルボルナンジアミン、イソホロンジアミン、4,4'-メチレンビス(シクロヘキシルアミン)などが挙げられる。このジアミノメチルビシクロヘプタン類(ノルボルナンジアミン類を含む)についてより詳細に説明をするならば、(2S,5S)-ジアミノメチル-ビシクロ[2.2.1]ヘプタン、(2S,5R)-ジアミノメチル-ビシクロ[2.2.1]ヘプタン、(2S,6R)-ジアミノメチル-ビシクロ[2.2.1]ヘプタン、および(2S,6S)-ジアミノメチル-ビシクロ[2.2.1]ヘプタンが挙げられる。尚、このジアミノメチルビシクロヘプタンは異性体を有するが、異性体1種単独でも、あるいは異性体の混合物でも使用できる。
 また、これらのジアミン化合物(A)は、単独で、または2種以上を混合して使用してもよい。
Preferred alicyclic diamine compounds (A) include cyclohexanediamines containing trans-1,4-cyclohexylamine, 1, for reasons of availability, good optical properties, and thermal and mechanical stability. Di (aminomethyl) cyclohexanes including 4-bis (aminomethyl) cyclohexane, diaminomethylbicycloheptanes (including norbornanediamines such as norbornanediamine), oxanorbornanediamine, isophoronediamine, 4,4'-methylenebis (cyclohexyl) Amine). If the diaminomethylbicycloheptanes (including norbornanediamines) are described in more detail, (2S, 5S) -diaminomethyl-bicyclo [2.2.1] heptane, (2S, 5R) -diaminomethyl -Bicyclo [2.2.1] heptane, (2S, 6R) -diaminomethyl-bicyclo [2.2.1] heptane, and (2S, 6S) -diaminomethyl-bicyclo [2.2.1] heptane Can be mentioned. Although this diaminomethylbicycloheptane has an isomer, it can be used alone or as a mixture of isomers.
Moreover, you may use these diamine compounds (A) individually or in mixture of 2 or more types.
 (四価の芳香族テトラカルボン酸二無水物(B))
 式(1)の繰り返し構造中のYは、四価の芳香族テトラカルボン酸二無水物(B)に由来する。酸二無水物(B)は、ポリアミド酸、ポリイミドを製造できる限り特に限定されないが、たとえば、
 ピロメリット酸二無水物などのピロメリット酸二無水物類、3,3',4,4'-ビフェニルテトラカルボン酸二無水物などのビフェニルテトラカルボン酸二無水物類、ベンゾフェノンテトラカルボン酸二無水物類、ビス(3,4-ジカルボキシフェニル)エーテル二無水物などのビス(ジカルボキシフェニル)エーテル二無水物類、ビス(カルボキシフェニル)エステル二無水物類、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物などのビス(ジカルボキシフェニル)ヘキサフルオロプロパン二無水物類等が挙げられる。
(Tetravalent aromatic tetracarboxylic dianhydride (B))
Y in the repeating structure of the formula (1) is derived from the tetravalent aromatic tetracarboxylic dianhydride (B). The acid dianhydride (B) is not particularly limited as long as a polyamic acid and a polyimide can be produced.
Pyromellitic dianhydrides such as pyromellitic dianhydride, biphenyltetracarboxylic dianhydrides such as 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, benzophenonetetracarboxylic dianhydride Bis (dicarboxyphenyl) ether dianhydrides such as bis (3,4-dicarboxyphenyl) ether dianhydride, bis (carboxyphenyl) ester dianhydrides, 2,2-bis (3 And bis (dicarboxyphenyl) hexafluoropropane dianhydride such as 4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride.
 この中で、好ましい酸二無水物(B)としては、有機分子の光励起エネルギーを、光アンテナ効果を介して効率よく移動することができ、吸光係数の高いπ電子系を備えたドナーであることから、ピロメリット酸二無水物類、ビフェニルテトラカルボン酸二無水物類、ビス(ジカルボキシフェニル)エーテル二無水物類などが挙げられ、より具体的には、1,2,4,5-ピロメリット酸二無水物、3,3',4,4'-ビフェニルテトラカルボン酸二無水物、ビス(3,4-ジカルボキシフェニル)エーテル二無水物である。
 また、これらの酸二無水物(B)は、単独で、または2種以上を混合して使用してもよい。
Among them, a preferable acid dianhydride (B) is a donor having a π electron system with a high extinction coefficient that can efficiently transfer the photoexcitation energy of an organic molecule through the optical antenna effect. Pyromellitic dianhydrides, biphenyltetracarboxylic dianhydrides, bis (dicarboxyphenyl) ether dianhydrides, and the like. More specifically, 1,2,4,5-pyrrole Mellitic acid dianhydride, 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride, bis (3,4-dicarboxyphenyl) ether dianhydride.
Moreover, you may use these acid dianhydrides (B) individually or in mixture of 2 or more types.
 (溶媒)
 本発明にかかるポリアミド酸溶液(S1)の作製で使用される溶媒は、形成されるポリアミド酸が溶解できる限り特に限定されないが、たとえば、
 フェノール、o-クロロフェノール、m-クロロフェノール、p-クロロフェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノールなどのフェノール系溶媒;
 N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、ヘキサメチルホスホロトリアミドなどの非プロトン性またはそれに準ずるアミド系溶媒;
 1,2-ジメトキシエタン、ビス(2-メトキシエチル)エーテル、1,2-ビス(2-メトキシエトキシ)エタン、テトラヒドロフラン、ビス[2-(2-メトキシエトキシ)エチル]エーテル、1,4-ジオキサンなどのエーテル系溶媒;
 ピリジン、キノリン、イソキノリン、α-ピコリン、β-ピコリン、γ-ピコリン、イソホロン、ピペリジン、2,4-ルチジン、2,6-ルチジン、トリメチルアミン、トリエチルアミン、トリプロピルアミン、トリブチルアミン系溶媒;および
 ジメチルスルホキシド、ジメチルスルホン、ジフェニルエーテル、スルホラン、ジフェニルスルホン、テトラメチル尿素、アニソール、水、ベンゼン、トルエン、o-キシレン、m-キシレン、p-キシレン、クロルベンゼン、o-ジクロルベンゼン、m-ジクロルベンゼン、p-ジクロルベンゼン、ブロムベンゼン、o-ジブロモベンゼン、m-ジブロモベンゼン、p-ジブロモベンゼン、o-クロルトルエン、m-クロルトルエン、p-クロルトルエン、o-ブロモトルエン、m-ブロモトルエン、p-ブロモトルエン、アセトン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、γ-ブチロラクトン、メタノール、エタノール、プロパノール、イソプロパノール、ブタノール、イソブタノール、ペンタン、ヘキサン、ヘプタン、シクロヘキサン、ジクロロメタン、クロロホルム、四塩化炭素、フルオロベンゼン、酢酸メチル、酢酸エチル、酢酸ブチル、ギ酸メチル、ギ酸エチルなどのその他の溶媒が挙げられる。
(solvent)
The solvent used in the preparation of the polyamic acid solution (S1) according to the present invention is not particularly limited as long as the formed polyamic acid can be dissolved.
Phenol, o-chlorophenol, m-chlorophenol, p-chlorophenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2,6 Phenolic solvents such as xylenol, 3,4-xylenol, 3,5-xylenol;
N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methylacetamide, N-methyl-2-pyrrolidone, 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam Aprotic or similar amide solvents such as hexamethylphosphorotriamide;
1,2-dimethoxyethane, bis (2-methoxyethyl) ether, 1,2-bis (2-methoxyethoxy) ethane, tetrahydrofuran, bis [2- (2-methoxyethoxy) ethyl] ether, 1,4-dioxane Ether solvents such as;
Pyridine, quinoline, isoquinoline, α-picoline, β-picoline, γ-picoline, isophorone, piperidine, 2,4-lutidine, 2,6-lutidine, trimethylamine, triethylamine, tripropylamine, tributylamine solvents; and dimethyl sulfoxide Dimethylsulfone, diphenyl ether, sulfolane, diphenylsulfone, tetramethylurea, anisole, water, benzene, toluene, o-xylene, m-xylene, p-xylene, chlorobenzene, o-dichlorobenzene, m-dichlorobenzene, p-dichlorobenzene, bromobenzene, o-dibromobenzene, m-dibromobenzene, p-dibromobenzene, o-chlorotoluene, m-chlorotoluene, p-chlorotoluene, o-bromotoluene, m-bromotolu Ene, p-bromotoluene, acetone, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, γ-butyrolactone, methanol, ethanol, propanol, isopropanol, butanol, isobutanol, pentane, hexane, heptane, cyclohexane, dichloromethane, chloroform, Other solvents such as carbon tetrachloride, fluorobenzene, methyl acetate, ethyl acetate, butyl acetate, methyl formate, and ethyl formate are listed.
 これら溶媒は、単独であるいは2種以上混合して使用してもよい。
 上記溶媒の中でも、非プロトン性またはそれに準ずるアミド系溶媒が好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N,N-ジエチルアセトアミド、N-メチルアセトアミド、N-メチル-2-ピロリドン、1,3-ジメチル-2-イミダゾリジノン、N-メチルカプロラクタム、ヘキサメチルホスホロトリアミドがより好ましい。
These solvents may be used alone or in combination of two or more.
Among the above-mentioned solvents, aprotic or equivalent amide solvents are preferred, and N, N-dimethylformamide, N, N-dimethylacetamide, N, N-diethylacetamide, N-methylacetamide, N-methyl-2-pyrrolidone 1,3-dimethyl-2-imidazolidinone, N-methylcaprolactam, and hexamethylphosphorotriamide are more preferable.
 (ポリアミド酸溶液(S1)の作製)
 ポリアミド酸と溶媒を含むポリアミド酸溶液(S1)(ポリアミド酸ワニスとも称す)は、ポリアミド酸が製造できる限り特に制限されないが、たとえば、以下の製法が挙げられる。
(Preparation of polyamic acid solution (S1))
The polyamic acid solution (S1) containing the polyamic acid and the solvent (also referred to as polyamic acid varnish) is not particularly limited as long as the polyamic acid can be produced. Examples thereof include the following production methods.
 一般的には、上記ジアミン化合物(A)と、上記酸二無水物(B)とを、前記溶媒、典型的には非プロトン性のアミド系溶媒中で重合することにより得られる。
 重合反応を行なうに当たり、各原料を重合反応系内に添加する方法については特に制限されないが、
 (a)ジアミン化合物(A)と酸二無水物(B)及び溶媒とを同時に添加する方法、
 (b)ジアミン化合物(A)と溶媒とを混合した後に酸二無水物(B)を添加する方法、
 (c)酸二無水物(B)と溶媒とを混合した後にジアミン化合物(A)を添加する方法、
 (d)酸二無水物(B)と溶媒、ジアミン化合物(A)と溶媒をそれぞれ混合した後、それぞれを混合し添加する方法、等が挙げられる。また、該重合反応中の温度制御を行うに当たり、冷却あるいは加熱操作を行ってもよい。
Generally, it is obtained by polymerizing the diamine compound (A) and the acid dianhydride (B) in the solvent, typically an aprotic amide solvent.
In carrying out the polymerization reaction, the method for adding each raw material to the polymerization reaction system is not particularly limited,
(A) a method of simultaneously adding the diamine compound (A), the acid dianhydride (B) and the solvent,
(B) A method of adding the acid dianhydride (B) after mixing the diamine compound (A) and the solvent,
(C) A method of adding the diamine compound (A) after mixing the acid dianhydride (B) and the solvent,
(D) The method of mixing and adding each after mixing an acid dianhydride (B), a solvent, a diamine compound (A), and a solvent, respectively. Further, in performing the temperature control during the polymerization reaction, a cooling or heating operation may be performed.
 ポリアミド酸あるいはポリイミドの製造にあたって、生成するポリアミド酸あるいはポリイミドの分子量を調節するために、ジアミン化合物(A)と酸二無水物(B)との量比を調節することは通常行われている。 In the production of polyamic acid or polyimide, it is usual to adjust the quantitative ratio between the diamine compound (A) and the acid dianhydride (B) in order to adjust the molecular weight of the produced polyamic acid or polyimide.
 本発明の製造方法においては、ポリアミド酸を製造する際に、全ジアミン化合物(A)と全酸二無水物(B)とのモル比(全ジアミン化合物(A)/全酸二無水物(B))は、通常0.9~1.1の範囲である。なお、オリゴマー成分を重合する場合、ジアミン化合物(A)と酸二無水物(B)とのモル比は任意であり、0.9~1.1の範囲であってもなくてもよい。 In the production method of the present invention, when the polyamic acid is produced, the molar ratio of the total diamine compound (A) to the total acid dianhydride (B) (total diamine compound (A) / total acid dianhydride (B )) Is usually in the range of 0.9 to 1.1. When the oligomer component is polymerized, the molar ratio of the diamine compound (A) to the acid dianhydride (B) is arbitrary and may or may not be in the range of 0.9 to 1.1.
 例えば、全ジアミン化合物(A)と全酸二無水物(B)とのモル比を0.9~1.1とすると、N,N-ジメチルアセトアミド(DMAc)中、濃度0.5g/dl、35℃で測定した対数粘度が、通常0.1~3.0dL/gの範囲となるポリアミド酸が作製できる。 For example, when the molar ratio of the total diamine compound (A) to the total acid dianhydride (B) is 0.9 to 1.1, a concentration of 0.5 g / dl in N, N-dimethylacetamide (DMAc) A polyamic acid having a logarithmic viscosity measured at 35 ° C. in the range of usually 0.1 to 3.0 dL / g can be produced.
 本発明により得られるポリイミド複合体に含まれるポリイミド、およびそのポリアミド酸は、その分子末端が封止されていてもよい。分子末端が封止されている場合には、従来から知られているように、アミンおよびジカルボン酸無水物と反応性を有しない基で封止されることが望ましい。 The molecular terminal of the polyimide contained in the polyimide composite obtained by the present invention and its polyamic acid may be sealed. When the molecular terminal is sealed, as is conventionally known, it is desirable to seal with a group that is not reactive with amines and dicarboxylic anhydrides.
 具体的には、ポリイミドおよびポリアミド酸の分子末端が、ジカルボン酸無水物、またはモノアミン化合物で封止されることが望ましい。
 ポリアミド酸あるいはポリイミドの分子末端を封止する場合には、以下の2通りに分けられる。すなわち、ジアミン化合物が過剰で、末端をジカルボン酸無水物で封止する場合には、ジアミン化合物1モル当たり、テトラカルボン酸二無水物(B)は0.9モル以上1.0モル未満、ジカルボン酸無水物は0.001モル以上0.3モル未満である。テトラカルボン酸二無水物(B)が過剰で、末端をモノアミン化合物で封止する場合には、テトラカルボン酸二無水物(B)1モル当たり、ジアミン化合物(A)は0.9モル以上1.0モル未満、モノアミン化合物は0.001モル以上0.3モル未満である。
Specifically, it is desirable that molecular ends of polyimide and polyamic acid are sealed with a dicarboxylic acid anhydride or a monoamine compound.
When the molecular ends of polyamic acid or polyimide are sealed, the following two methods are used. That is, when the diamine compound is excessive and the terminal is sealed with a dicarboxylic anhydride, the tetracarboxylic dianhydride (B) is 0.9 mol or more and less than 1.0 mol per mol of the diamine compound. An acid anhydride is 0.001 mol or more and less than 0.3 mol. When the tetracarboxylic dianhydride (B) is excessive and the end is sealed with a monoamine compound, the diamine compound (A) is 0.9 mole or more per mole of the tetracarboxylic dianhydride (B). Less than 0.0 mol, and the monoamine compound is 0.001 mol or more and less than 0.3 mol.
 なお、ポリアミド酸あるいはポリイミドが共重合体である場合には、その共重合体を構成する2種以上の繰り返し単位の定序性や規則性には、制限があってもなくてもよい。また、共重合体の種類はランダム、交互およびブロックのいずれでも差し支えない。したがって、ジアミン化合物(A)および酸二無水物(B)が併せて3種以上からなる場合、それぞれの添加順序は任意であり、それら原料の添加方法も一括または分割いずれであってもよい。 In addition, when polyamic acid or polyimide is a copolymer, the ordering property and regularity of two or more kinds of repeating units constituting the copolymer may or may not be limited. Further, the type of copolymer may be random, alternating, or block. Therefore, when the diamine compound (A) and the acid dianhydride (B) are composed of three or more kinds, the order of addition is arbitrary, and the addition method of these raw materials may be either batch or divided.
 <ポリアミド酸溶液(S2)>
 本発明のポリアミド酸溶液(S2)は、前記ポリアミド酸溶液(S1)にユウロピウム(Eu)化合物を添加することによって得られる。
<Polyamic acid solution (S2)>
The polyamic acid solution (S2) of the present invention can be obtained by adding a europium (Eu) compound to the polyamic acid solution (S1).
 ユウロピウム(Eu)化合物としては、本発明の効果を奏する限り限定されないが、たとえば、ユウロピウム酸化物、ユウロピウム水酸化物、ユウロピウム無機酸塩、ユウロピウム有機酸塩、ユウロピウム有機錯体などが挙げられる。これらの中でも、塩化ユウロピウム、硝酸ユウロピウム、酢酸ユウロピウムが好ましい。これらのユウロピウム化合物は、単独で、または2種以上のユウロピウム化合物を含むその他の金属化合物を混合して用いることができる。 The europium (Eu) compound is not limited as long as the effects of the present invention are exhibited, and examples thereof include europium oxide, europium hydroxide, europium inorganic acid salt, europium organic acid salt, and europium organic complex. Among these, europium chloride, europium nitrate, and europium acetate are preferable. These europium compounds can be used alone or as a mixture of other metal compounds containing two or more europium compounds.
 本発明において、ユウロピウム(Eu)化合物を、本発明にかかるポリアミド酸溶液(S1)に加えることで、得られるポリイミド複合体は、光学特性(無色透明)、機械物性および耐熱性を損なうことなく、一方で、紫外線(たとえば、波長250~400nm)を照射することにより、通常、波長500~800nmの蛍光を瞬時に発するという効果を奏する。また、蛍光強度が非常に高い。 In the present invention, by adding a europium (Eu) compound to the polyamic acid solution (S1) according to the present invention, the resulting polyimide composite can be obtained without impairing optical properties (colorless and transparent), mechanical properties, and heat resistance. On the other hand, irradiation with ultraviolet rays (for example, a wavelength of 250 to 400 nm) usually produces an effect of instantaneously emitting fluorescence having a wavelength of 500 to 800 nm. Moreover, the fluorescence intensity is very high.
 ユウロピウム(Eu)のff遷移による発光を促すための励起エネルギーは、有機分子と錯形成することにより、有機分子の光励起エネルギーを、光アンテナ効果を介して得ることができると考えられる。そのため、吸光係数の高いπ電子系を備えたドナー、例えば芳香族化合物を用いることで、エネルギー移動の効率が非常に高くなる。したがって、励起エネルギーを授与できる最近接の配位子は芳香族系であることが望ましく、芳香族テトラカルボン酸二無水物(B)となんらかの強い相互作用を持った該ユウロピウム化合物からは、効率よい蛍光を発することができると推定される。すなわち、ポリイミドに、単にユウロピウム化合物を添加しても、ポリイミドは、本発明の効果を期待することはできない。そして、このような特定の構造に基づく相互作用に由来して、得られるポリイミド複合体が、本発明の物性を有するに到ると推定される。 It is considered that the excitation energy for promoting light emission by the ff transition of europium (Eu) can be obtained through the optical antenna effect by forming a complex with the organic molecule. Therefore, by using a donor having a π electron system with a high extinction coefficient, for example, an aromatic compound, the efficiency of energy transfer becomes very high. Therefore, it is desirable that the closest ligand capable of imparting excitation energy is an aromatic system, and the europium compound having some strong interaction with the aromatic tetracarboxylic dianhydride (B) is efficient. It is estimated that fluorescence can be emitted. That is, even if a europium compound is simply added to polyimide, the effect of the present invention cannot be expected for polyimide. And it originates from the interaction based on such a specific structure, and it is estimated that the polyimide composite obtained will have the physical property of this invention.
 このことは、たとえば、ユウロピウム化合物と、芳香族テトラカルボン酸二無水物と芳香族ジアミンから得られるポリイミド複合体は、電荷移動錯体(CT錯体)といわれる錯体が、ポリイミドの分子内、分子間で形成するため、無輻射遷移となり、蛍光発光性が著しく低くなることからも推定できる。 This is because, for example, a polyimide complex obtained from a europium compound, an aromatic tetracarboxylic dianhydride, and an aromatic diamine has a complex called a charge transfer complex (CT complex) in the polyimide molecule. Since it forms, it can also be estimated from the non-radiative transition, and the fluorescence emission becomes extremely low.
 (ポリアミド酸溶液(S2)の作製)
 ポリアミド酸溶液(S2)(複合ワニスとも称す)は、ポリアミド酸および溶媒を含むポリアミド酸溶液(S1)に、ユウロピウム(Eu)化合物を加え、これらを混合して作製する。
(Preparation of polyamic acid solution (S2))
The polyamic acid solution (S2) (also referred to as a composite varnish) is prepared by adding a europium (Eu) compound to a polyamic acid solution (S1) containing a polyamic acid and a solvent and mixing them.
 ユウロピウム化合物の添加量は、本発明の効果を奏する限り限定されないが、好ましくは、前記ポリアミド酸100重量部に対して、0.001~4重量部、より好ましくは0.01~3.5重量部、さらに好ましくは0.1~3重量部である。ユウロピウム化合物の添加量が0.001重量部以上であると、希薄でも十分な蛍光発光が得られ、4重量部以下であると最終的に得られるポリイミド複合体の力学的強度が十分であり、実用上問題とならない。また、上記範囲であれば、最終的に得られるポリイミド複合体の無色透明性、高耐熱性、力学的強度いずれも実用的な範囲で満たすことが可能となるため好ましい。 The amount of the europium compound added is not limited as long as the effects of the present invention can be achieved, but preferably 0.001 to 4 parts by weight, more preferably 0.01 to 3.5 parts by weight with respect to 100 parts by weight of the polyamic acid. Parts, more preferably 0.1 to 3 parts by weight. When the addition amount of the europium compound is 0.001 part by weight or more, sufficient fluorescence is obtained even when diluted, and when it is 4 parts by weight or less, the mechanical strength of the finally obtained polyimide composite is sufficient, There is no practical problem. Moreover, if it is the said range, since it becomes possible to satisfy | fill all the colorless transparency of the polyimide composite finally obtained, high heat resistance, and mechanical strength in a practical range, it is preferable.
 なお、ユウロピウム(Eu)化合物の添加手段は特に制限されず、例えば、直接添加してもよいが、好ましくは、ユウロピウム(Eu)化合物を細かく粉砕して、その粉砕物を添加することである。また、ユウロピウム(Eu)化合物を予めポリアミド酸溶液(S1)とは反応しない溶媒に溶解あるいは分散させた後、ポリアミド酸溶液(S1)に添加してもよい。 The means for adding the europium (Eu) compound is not particularly limited. For example, the europium (Eu) compound may be added directly, but preferably, the europium (Eu) compound is finely pulverized and the pulverized product is added. Further, the europium (Eu) compound may be previously dissolved or dispersed in a solvent that does not react with the polyamic acid solution (S1) and then added to the polyamic acid solution (S1).
 また、ユウロピウム(Eu)化合物の混合方法は、特に制限はされないが、例えば、空気下、窒素等の不活性雰囲気下の基で、一般的なミキサー、ブレンダー等、公知の機器により混合できる。 The mixing method of the europium (Eu) compound is not particularly limited, and can be mixed by a known apparatus such as a general mixer or blender under an inert atmosphere such as air or nitrogen.
 上記混合は、ポリアミド酸のイミド化を抑制する観点からは、0~50℃付近で行うことが望ましく、10~40℃付近で行うことがより好ましく、作業上の利点から、室温で行うことが最も好ましい。また、混合時間も特に限定されないが、30分~24時間の範囲が好ましく、1時間~20時間の範囲で攪拌することがより好ましい。 The above mixing is preferably performed at around 0 to 50 ° C. from the viewpoint of suppressing imidization of the polyamic acid, more preferably at about 10 to 40 ° C., and it may be performed at room temperature because of operational advantages. Most preferred. The mixing time is not particularly limited, but is preferably in the range of 30 minutes to 24 hours, and more preferably in the range of 1 hour to 20 hours.
 また、得られたポリアミド酸溶液(S2)から不純物や不溶成分の除去などを目的に、必要に応じてろ過を行ってもよい。ろ過は、例えば、PTFE(四フッ化エチレン樹脂)製濾紙を備えた加圧ろ過によって行うことができる。 Further, for the purpose of removing impurities and insoluble components from the obtained polyamic acid solution (S2), filtration may be performed as necessary. The filtration can be performed, for example, by pressure filtration provided with PTFE (tetrafluoroethylene resin) filter paper.
 このようにして得られたポリアミド酸溶液(S2)に、本発明の効果を損なわない範囲で、例えば、添加剤、充填剤などをさらに加えてもよい。
 添加剤としては、例えば、グラファイト、カーボランダム、二硫化モリブデン、フッ素系樹脂などの耐磨耗性向上剤、三酸化アンチモン、ホスファゼン化合物、リン酸エステル等の難燃性向上剤、クレー、マイカ、カオリン等の電気的特性向上剤、アスベスト、シリカ、グラファイト等の耐トラッキング向上剤、シリカ、メタ珪酸カルシウム等の耐酸性向上剤、鉄粉、亜鉛粉、アルミニウム粉等の熱伝導度向上剤、その他ガラスビーズ、ガラス球、ガラス繊維、タルク、珪藻土、アルミナ、水和アルミナ、チタニア、シラスバルーン、着色料、および顔料などが挙げられる。
For example, additives and fillers may be further added to the polyamic acid solution (S2) thus obtained within a range not impairing the effects of the present invention.
Examples of additives include wear resistance improvers such as graphite, carborundum, molybdenum disulfide, and fluorine-based resins, flame retardant improvers such as antimony trioxide, phosphazene compounds, and phosphate esters, clay, mica, Electrical property improvers such as kaolin, tracking resistance improvers such as asbestos, silica and graphite, acid resistance improvers such as silica and calcium metasilicate, heat conductivity improvers such as iron powder, zinc powder and aluminum powder, etc. Examples thereof include glass beads, glass spheres, glass fibers, talc, diatomaceous earth, alumina, hydrated alumina, titania, shirasu balloons, colorants, and pigments.
 (ポリアミド酸複合体)
 ポリアミド酸溶液(S2)に含まれるポリアミド酸がイミド化しない条件で、溶媒を除去すると、ポリアミド酸複合体(PAAC)が作製できる。
(Polyamide acid composite)
When the solvent is removed under the condition that the polyamic acid contained in the polyamic acid solution (S2) is not imidized, a polyamic acid composite (PAAC) can be produced.
 このような溶媒除去の方法としては、例えば、ポリアミド酸複合体(PAAC)が溶解しない貧溶媒を、ポリアミド酸溶液(S2)に加えて、ポリアミド酸複合体(PAAC)を析出させる再沈法、および、減圧下で溶媒を揮発させて留去する減圧乾燥法などが挙げられる。 Examples of the method for removing the solvent include a reprecipitation method in which a poor solvent that does not dissolve the polyamic acid complex (PAAC) is added to the polyamic acid solution (S2) to precipitate the polyamic acid complex (PAAC), And a vacuum drying method in which the solvent is volatilized and distilled off under reduced pressure.
 <ポリイミド複合体>
 (ポリイミド)
 本発明の無色透明なポリイミド複合体に含まれるポリイミドは、下記一般式(2)で示される半脂環式の繰り返し構造を有する。
<Polyimide composite>
(Polyimide)
The polyimide contained in the colorless and transparent polyimide composite of the present invention has a semi-alicyclic repeating structure represented by the following general formula (2).
Figure JPOXMLDOC01-appb-C000022
 (式(2)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す)。
Figure JPOXMLDOC01-appb-C000022
(In formula (2), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms).
 上記式(2)で示される繰り返し構造を有するポリイミドは、前記のとおり、二価の脂環式ジアミン化合物(A)と、四価の芳香族テトラカルボン酸二無水物(B)との反応により形成される。 As described above, the polyimide having the repeating structure represented by the above formula (2) is obtained by reacting the divalent alicyclic diamine compound (A) with the tetravalent aromatic tetracarboxylic dianhydride (B). It is formed.
 また、本発明のポリイミドが共重合体である場合、その共重合体を構成する2種以上の繰り返し単位の定序性や規則性に、制限があってもなくてもよく、共重合体の種類はランダム、交互およびブロックのいずれでも差し支えない。よってジアミン化合物(A)およびテトラカルボン酸二無水物(B)が併せて3種以上からなる場合、それぞれの添加順序は任意であり、それら原料の添加方法も一括または分割いずれにすることも任意である。 In addition, when the polyimide of the present invention is a copolymer, the ordering and regularity of two or more kinds of repeating units constituting the copolymer may or may not be limited. The type can be random, alternating, or block. Therefore, when the diamine compound (A) and the tetracarboxylic dianhydride (B) are composed of 3 or more types, the order of addition is arbitrary, and the method for adding these raw materials can be either batch or divided. It is.
 本発明において、上記式(2)中のXおよびYは、本発明のポリイミド複合体の無色透明性、高耐熱性、力学的強度に優れるとの理由から、以下の構成単位を有することが好ましい。 In the present invention, X and Y in the above formula (2) preferably have the following structural units because they are excellent in colorless transparency, high heat resistance and mechanical strength of the polyimide composite of the present invention. .
 上記式(2)中のXは、 X in the above formula (2) is
Figure JPOXMLDOC01-appb-C000023
からなる群から選択される少なくとも1種の脂環族基であり、
 上記式(2)中のYは、
Figure JPOXMLDOC01-appb-C000023
At least one alicyclic group selected from the group consisting of:
Y in the above formula (2) is
Figure JPOXMLDOC01-appb-C000024
からなる群から選択される少なくとも1種の芳香族基である。
Figure JPOXMLDOC01-appb-C000024
At least one aromatic group selected from the group consisting of:
 また、本発明において、ユウロピウム由来の蛍光波長は同程度でも、蛍光強度が高くなるとの理由から、特に以下の一般式(3)~(11)のいずれかを含むポリイミドがより好ましい。 In the present invention, a polyimide containing any one of the following general formulas (3) to (11) is more preferable because the fluorescence intensity is high even if the fluorescence wavelength derived from europium is the same.
 一般式(3)は、ジアミン化合物[1]がノルボルナンジアミンであり、化合物[2]が1,2,4,5-ピロメリット酸二無水物から得られる。 In general formula (3), diamine compound [1] is norbornanediamine, and compound [2] is obtained from 1,2,4,5-pyromellitic dianhydride.
Figure JPOXMLDOC01-appb-C000025
 一般式(4)は、ジアミン化合物[1]がトランス-1,4-シクロヘキシルジアミンであり、化合物[2]が3,3',4,4'-ビフェニルテトラカルボン酸二無水物から得られる。
Figure JPOXMLDOC01-appb-C000025
In the general formula (4), the diamine compound [1] is trans-1,4-cyclohexyldiamine, and the compound [2] is obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride.
Figure JPOXMLDOC01-appb-C000026
 一般式(5)は、ジアミン化合物[1]が1,4-ビス(アミノメチル)シクロヘキサンであり、化合物[2]が3,3',4,4'-ビフェニルテトラカルボン酸二無水物から得られる。
Figure JPOXMLDOC01-appb-C000026
In general formula (5), diamine compound [1] is 1,4-bis (aminomethyl) cyclohexane, and compound [2] is obtained from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. It is done.
Figure JPOXMLDOC01-appb-C000027
 一般式(6)は、ジアミン化合物[1]がトランス-1,4-シクロヘキシルジアミンおよびノルボルナンジアミンであり、化合物[2]が3,3',4,4'-ビフェニルテトラカルボン酸二無水物から得られる。
Figure JPOXMLDOC01-appb-C000027
In the general formula (6), the diamine compound [1] is trans-1,4-cyclohexyldiamine and norbornanediamine, and the compound [2] is from 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride. can get.
Figure JPOXMLDOC01-appb-C000028
 (式中、mとnは、各括弧内で表される繰返し構造単位の繰返し数を示し、mの平均値とnの平均値との比(m:n)が、1:9~9:1である。)
 一般式(7)は、ジアミン化合物[1]が4,4'-メチレンビス(シクロヘキシルアミン)であり、化合物[2]が1,2,4,5-ピロメリット酸二無水物から得られる。
Figure JPOXMLDOC01-appb-C000028
(In the formula, m and n represent the number of repeating structural units represented in parentheses, and the ratio of the average value of m to the average value of n (m: n) is 1: 9 to 9: 1)
In the general formula (7), the diamine compound [1] is 4,4′-methylenebis (cyclohexylamine), and the compound [2] is obtained from 1,2,4,5-pyromellitic dianhydride.
Figure JPOXMLDOC01-appb-C000029
 一般式(8)は、ジアミン化合物[1]がノルボルナンジアミンであり、化合物[2]がビス(3,4-ジカルボキシフェニル)エーテル二無水物から得られる。
Figure JPOXMLDOC01-appb-C000029
In the general formula (8), the diamine compound [1] is norbornanediamine, and the compound [2] is obtained from bis (3,4-dicarboxyphenyl) ether dianhydride.
Figure JPOXMLDOC01-appb-C000030
 一般式(9)は、ジアミン化合物[1]がノルボルナンジアミンであり、化合物[2]が2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から得られる。
Figure JPOXMLDOC01-appb-C000030
In the general formula (9), the diamine compound [1] is norbornanediamine, and the compound [2] is 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3- Obtained from hexafluoropropane dianhydride.
Figure JPOXMLDOC01-appb-C000031
 一般式(10)は、ジアミン化合物[1]がノルボルナンジアミン、および、オキサノルボルナンジアミンであり、化合物[2]が2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から得られる。
Figure JPOXMLDOC01-appb-C000031
In the general formula (10), the diamine compound [1] is norbornanediamine and oxanorbornanediamine, and the compound [2] is 2,2-bis (3,4-dicarboxyphenyl) -1,1,1, Obtained from 3,3,3-hexafluoropropane dianhydride.
Figure JPOXMLDOC01-appb-C000032
 (式中、mとnは、大括弧:[ ]内と小括弧:( )内で表される繰返し構造単位の繰返し数を示し、m:nの比は、4:6~9:1である。)
 一般式(11)は、ジアミン化合物[1]がノルボルナンジアミン、および、イソホロンジアミンであり、化合物[2]が2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物から得られる。
Figure JPOXMLDOC01-appb-C000032
(In the formula, m and n represent the number of repeating structural units represented in brackets: [] and brackets: (), and the ratio of m: n is 4: 6 to 9: 1. is there.)
In the general formula (11), the diamine compound [1] is norbornane diamine and isophorone diamine, and the compound [2] is 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3. , 3,3-hexafluoropropane dianhydride.
Figure JPOXMLDOC01-appb-C000033
 (式中、mとnは、大括弧:[ ]内と小括弧:( )内で表される繰返し構造単位の繰返し数を示し、m:nの比は、5:5~9:1である。)
 また、これらの中でも、蛍光強度と、力学的強度などとのバランスの点から、一般式(3)~(6)で表わされるポリイミドを含むことが、特に好ましい。
Figure JPOXMLDOC01-appb-C000033
(In the formula, m and n represent the number of repeating structural units represented in brackets: [] and brackets: (), and the ratio of m: n is 5: 5 to 9: 1. is there.)
Among these, it is particularly preferable to include polyimide represented by the general formulas (3) to (6) from the viewpoint of balance between fluorescence intensity and mechanical intensity.
 (ポリイミド複合体)
 本発明のポリイミド複合体には、上記式(2)で示されるポリイミドの繰返し単位100当量に対して、ユウロピウム(Eu)が、通常0.001~10当量含まれている。
(Polyimide composite)
The polyimide composite of the present invention usually contains 0.001 to 10 equivalents of europium (Eu) with respect to 100 equivalents of the repeating unit of the polyimide represented by the above formula (2).
 また、ポリイミド複合体は、無色透明である。ここで、本発明において、無色透明とは、30μm厚のフィルムを作製した際の、波長400nm以上、好ましくは400~800nmの可視光線領域の波長における、光線透過率が通常80%~100%、好ましくは85~100%であることを意味する。光線透過率が上記範囲未満である場合、基本的に、「無色透明」を必要とする部材にポリイミド複合体を材料として使用することはできない。 Also, the polyimide composite is colorless and transparent. Here, in the present invention, colorless and transparent means that when a film having a thickness of 30 μm is produced, the light transmittance is usually 80% to 100% at a wavelength of 400 nm or more, preferably 400 to 800 nm in the visible light region. Preferably, it means 85 to 100%. When the light transmittance is less than the above range, basically, a polyimide composite cannot be used as a material for a member requiring “colorless and transparent”.
 本発明のポリイミド複合体は、たとえば、波長250~400nmの紫外線を照射することにより、通常、波長500~800nm、好ましくは550~700nmの蛍光を瞬時に発する。この蛍光は、通常、赤色として識別できる。なお、瞬時とは、紫外線を照射したら即座に蛍光を発することを意味し、紫外線に対する応答が速いことを意味する。さらに、ポリイミド複合体は、蛍光強度が非常に高い。 The polyimide composite of the present invention usually emits fluorescence having a wavelength of 500 to 800 nm, preferably 550 to 700 nm instantaneously, for example, by irradiating with an ultraviolet ray having a wavelength of 250 to 400 nm. This fluorescence can usually be identified as red. Note that “instantaneous” means that fluorescence is emitted immediately upon irradiation with ultraviolet rays, and that the response to ultraviolet rays is fast. Furthermore, the polyimide composite has a very high fluorescence intensity.
 このような効果は、イミド化および溶媒除去により、ポリアミド酸溶液(S2)中で形成された、該ポリアミド酸側鎖である、芳香環に置換したカルボキシル基とユウロピウム(Eu)に基づく構造が、より強固な形でポリイミド複合体中に形成されることに起因すると推定される。その構造が形成する詳細な機構は必ずしも明確ではないが、イミド化のために採用する反応条件が、熱的あるいは化学的な脱水を伴う縮合反応であるため、芳香環に置換した該カルボキシル基とユウロピウム(Eu)に基づく構造が、ポリイミド複合体中により強固に形成されたと推定される。それゆえ、ユウロピウム(Eu)のff遷移による発光を促すための励起エネルギーは、該カルボキシル基を有した芳香族有機化合物からの光励起エネルギーを、光アンテナ効果を介して得ることになり、本発明のポリイミド複合体は、無色透明でありながら、たとえば、250~400nmの紫外線を照射することにより、通常500~800nmの蛍光を瞬時に発することができるという効果を奏する。 Such an effect is obtained by the structure based on the carboxyl group substituted on the aromatic ring and europium (Eu), which is the polyamic acid side chain, formed in the polyamic acid solution (S2) by imidization and solvent removal. It is presumed to be caused by the fact that it is formed in the polyimide composite in a stronger form. Although the detailed mechanism formed by the structure is not necessarily clear, the reaction condition employed for imidization is a condensation reaction involving thermal or chemical dehydration, so the carboxyl group substituted on the aromatic ring and It is presumed that a structure based on europium (Eu) was formed more firmly in the polyimide composite. Therefore, the excitation energy for promoting the light emission by the ff transition of europium (Eu) is obtained through the optical antenna effect from the photoexcitation energy from the aromatic organic compound having the carboxyl group. Although the polyimide composite is colorless and transparent, for example, when irradiated with ultraviolet rays having a wavelength of 250 to 400 nm, it is possible to instantaneously emit fluorescence usually having a wavelength of 500 to 800 nm.
 また、本発明のポリイミド複合体は、耐熱性に優れ、好ましくは200℃以上、より好ましくは250℃以上のTgを有する。
 本発明で得られるポリイミド複合体は、ユウロピウム化合物を、好適な範囲の添加量で複合化することで優れた機械物性および寸法安定性を保持できる。好ましくは、ユウロピウム化合物が未添加のポリイミド単体に比べ、熱線膨張率(CTE)の増減が-5~+5ppmの範囲で抑えられ、より好ましくは-3~+3ppmの範囲で抑えられ、かつ、引張試験における引張伸度の増減が-10~+10%の範囲で抑えられ、より好ましくは-5~+5%の範囲にあり、上記の無色透明性、高蛍光性を効率的に付与することができる。
The polyimide composite of the present invention is excellent in heat resistance and preferably has a Tg of 200 ° C. or higher, more preferably 250 ° C. or higher.
The polyimide composite obtained by the present invention can maintain excellent mechanical properties and dimensional stability by compounding a europium compound with an addition amount within a suitable range. Preferably, the increase or decrease in the coefficient of thermal expansion (CTE) is suppressed in the range of −5 to +5 ppm, more preferably in the range of −3 to +3 ppm, and the tensile test, compared to the polyimide alone with no europium compound added. The increase / decrease in the tensile elongation at is in the range of −10 to + 10%, more preferably in the range of −5 to + 5%, and the above colorless transparency and high fluorescence can be efficiently imparted.
 (ポリイミド複合体の作製)
 本発明のポリイミド複合体は、上記ポリアミド酸溶液(S2)に含まれるポリアミド酸をイミド化し、そのイミド化と同時あるいはイミド化後に、溶媒を除去することにより製造できる。また、イミド化と同時に溶媒の除去を行っても十分に溶媒の除去が行えない場合には、イミド化に続いてさらに溶媒の除去を行ってもよい。なお、上記ポリアミド酸溶液(S2)に替えて、上記ポリアミド酸を含むワニスを用いて、同様の操作により、ポリイミド複合体を作製することもできる。
(Preparation of polyimide composite)
The polyimide composite of the present invention can be produced by imidizing the polyamic acid contained in the polyamic acid solution (S2) and removing the solvent simultaneously with or after the imidization. In addition, if the solvent cannot be sufficiently removed even if the solvent is removed simultaneously with imidization, the solvent may be further removed following imidization. In addition, it can replace with the said polyamic-acid solution (S2), and can also produce a polyimide composite body by the same operation using the varnish containing the said polyamic acid.
 イミド化としては、公知の手法を採用でき、例えば、熱イミド化、化学イミド化などが挙げられる。なお、これらイミド化手段を複数組み合わせて、イミド化してもよい。また、熱イミド化は、通常、150~300℃の温度で、好ましくは200~300℃で、30分~4時間加熱することにより行う。上記範囲であれば、脱水縮合反応によるイミド環形成をより完了させることができ、また、ポリイミド複合体の着色をより抑制できる点から好ましい。化学イミド化は、無水酢酸などのイミド化剤により行う。イミド化の際の雰囲気は、特に制限されなく、例えば、空気下、窒素等の不活性雰囲気下でイミド化を行うことができる。 As the imidization, a known method can be employed, and examples thereof include thermal imidization and chemical imidization. A plurality of these imidization means may be combined to imidize. The thermal imidization is usually carried out by heating at a temperature of 150 to 300 ° C., preferably 200 to 300 ° C., for 30 minutes to 4 hours. If it is the said range, the imide ring formation by a dehydration condensation reaction can be completed more and it is preferable from the point which can suppress the coloring of a polyimide composite_body | complex more. Chemical imidization is performed with an imidizing agent such as acetic anhydride. The atmosphere at the time of imidation is not particularly limited, and for example, imidization can be performed under an inert atmosphere such as air or nitrogen.
 溶媒除去は、例えば、加熱、さらに必要に応じて減圧することにより行うことができる。
 溶媒除去の条件は、溶媒種により異なり特に限定されないが、通常、150~300℃の温度で、30分~4時間加熱することにより行う。この時の加熱雰囲気は、特に制限されなく、例えば、減圧下、空気下、窒素等の不活性雰囲気下で溶媒除去を行うことができる。
The solvent can be removed by, for example, heating and further reducing the pressure as necessary.
The conditions for solvent removal vary depending on the solvent species and are not particularly limited, but are usually performed by heating at a temperature of 150 to 300 ° C. for 30 minutes to 4 hours. The heating atmosphere at this time is not particularly limited, and for example, the solvent can be removed under an inert atmosphere such as reduced pressure, air, or nitrogen.
 熱イミド化によりイミド化を行う場合には、例えば、その加熱と同時に溶媒を除去してもよい。また、イミド化反応の間に十分に溶媒が除去できなかった場合には、通常、150~300℃の温度で再加熱をし、溶媒を除去することができる。 When imidation is performed by thermal imidization, for example, the solvent may be removed simultaneously with the heating. If the solvent cannot be removed sufficiently during the imidation reaction, the solvent can be removed usually by reheating at a temperature of 150 to 300 ° C.
 化学イミド化によりイミド化を行う場合には、例えば、化学イミド化後に、通常150~300℃の温度で、30分~4時間加熱することにより、溶媒を除去できる。
 このようなイミド化により本発明のポリイミド複合体が得られ、そのポリイミド複合体に含まれるポリイミドは、上記式(2)で示される繰り返し単位を含む。
In the case of imidization by chemical imidization, for example, after chemical imidation, the solvent can be removed by heating at a temperature of usually 150 to 300 ° C. for 30 minutes to 4 hours.
The polyimide composite of this invention is obtained by such imidation, The polyimide contained in the polyimide composite contains the repeating unit shown by the said Formula (2).
 <用途>
 本発明のポリイミド複合体は、無色透明性、高耐熱性、高力学的強度、高蛍光性、波長変換性、優れた電気特性などが必要とされる部材や材料に、たとえば、高感度センサー、光通信、フォトニクス、エレクトロニクス、液晶ディスプレイや有機ELディスプレイを含むフラットパネルディスプレイ、フレキシブルディスプレイおよび発光ディスプレイ、蛍光塗料、セキュリティ用インク、照明器具、太陽光発電、放射線センサー、および農業用フィルムなどに、広く適用することができる。
<Application>
The polyimide composite of the present invention can be used for members and materials that require colorless transparency, high heat resistance, high mechanical strength, high fluorescence, wavelength conversion, excellent electrical properties, etc. Widely used in optical communication, photonics, electronics, flat panel displays including liquid crystal displays and organic EL displays, flexible displays and light emitting displays, fluorescent paints, security inks, lighting fixtures, solar power generation, radiation sensors, and agricultural films Can be applied.
 たとえば、本発明のポリイミド複合体を波長変換材料として太陽電池パネルに被膜することで、紫外領域のエネルギーも変換でき、効率のよい電池を得ることできる。また、LEDの分野では、色純度に優れた色を本発明のポリイミド複合体から直接発することができる。 For example, by coating the solar cell panel with the polyimide composite of the present invention as a wavelength conversion material, energy in the ultraviolet region can also be converted, and an efficient battery can be obtained. In the field of LEDs, a color excellent in color purity can be directly emitted from the polyimide composite of the present invention.
 また、本発明のポリイミド複合体は、例えば、フィルム、金属積層板を含むリジットおよびフレキシブルな回路基材、反射材などの成形体、積層体などに用いることができる。なお、これら成形体を製造する条件は、フィルムの厚み、成形体の形状等に応じて適宜設定することができる。 Also, the polyimide composite of the present invention can be used for, for example, a molded body such as a film, a rigid including a metal laminated plate, a flexible circuit substrate, a reflector, and the like. In addition, the conditions for manufacturing these molded bodies can be appropriately set according to the thickness of the film, the shape of the molded body, and the like.
 (フィルム)
 本発明のポリイミド複合体は、例えば、フィルム、そのポリイミド複合体からなる層を少なくとも1層有する金属積層体などとして使用できる。フィルムは、無色透明であり、例えば、波長変換用フィルム、光学用材、感光性樹脂用カバー材、ディスプレイおよびフレキシブルディスプレイ等の表示材料部材、透明を求められるリジットおよびフレキシブルな回路基板、太陽電池等の保護フィルム、光合成促進や作物育成促進などの農業用フィルムなどに用いることができる。
(the film)
The polyimide composite of the present invention can be used as, for example, a film, a metal laminate having at least one layer composed of the polyimide composite, and the like. The film is colorless and transparent. For example, wavelength conversion films, optical materials, photosensitive resin cover materials, display material members such as displays and flexible displays, rigid and flexible circuit boards that require transparency, solar cells, etc. It can be used for protective films, agricultural films for promoting photosynthesis and crop growth.
 本発明のフィルムは、特に限定されないが、通常、数μm~数百μmの厚さを有する。このような厚さを有するフィルムは、たとえば、ポリアミド酸溶液(S2)、あるいはポリアミド酸複合体(PAAC)を含むコーティング材を、厚み10~1000μmで塗工し、イミド化、脱溶媒することにより作製できる。なお、上記コーティング材の濃度、その他成分の含有量などは、用途等に応じ適宜設定できる。 The film of the present invention is not particularly limited, but usually has a thickness of several μm to several hundred μm. A film having such a thickness is obtained by, for example, applying a coating material containing a polyamic acid solution (S2) or a polyamic acid composite (PAAC) at a thickness of 10 to 1000 μm, imidizing, and removing the solvent. Can be made. The concentration of the coating material, the content of other components, and the like can be set as appropriate depending on the application.
 以下、本発明を実施例および比較例により更に詳細に説明するが、本発明はこれらによって何ら制限を受けるものではない。
 <試験方法>
 実施例中に共通する各種試験の試験方法は次に示すとおりである。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further in detail, this invention is not restrict | limited at all by these.
<Test method>
Test methods for various tests common to the examples are as follows.
 (1)ポリマー溶液の固有対数粘度
 ポリマーを、N,N-ジメチルアセトアミド(DMAc)、1-メチル-2-ピロリドン(NMP)、1,3-ジメチル-2-イミダゾリジノン(DMI)のうち、合成時と同じ溶媒を用いて溶解させ、ポリマー溶液を固形分濃度が0.5dL/gとなるように調製し、ウベローデ粘度計を用いて35℃で測定を行った。
(1) Intrinsic logarithmic viscosity of polymer solution Among polymers, N, N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidone (NMP), 1,3-dimethyl-2-imidazolidinone (DMI) The same solvent as that used in the synthesis was used for dissolution, and a polymer solution was prepared so as to have a solid concentration of 0.5 dL / g, and measurement was performed at 35 ° C. using an Ubbelohde viscometer.
 (2)全光線透過率
 積分球を備えたスガ試験機(株)社製HZ-2(TMダブルビーム方式)を用いて、開口径:Φ20mm、光源:D65で測定した。
(2) Total light transmittance Using a HZ-2 (TM double beam system) manufactured by Suga Test Instruments Co., Ltd. equipped with an integrating sphere, measurement was performed with an aperture diameter of 20 mm and a light source of D65.
 (3)蛍光スペクトル測定
 日本分光(株)社製FP-6600を用いて、励起光:220~600nmの範囲をスキャンスピード:5000nm/minでスキャンしながら、最大励起波長における蛍光スペクトルを250~800nmの範囲で得た。この時のPMT電圧:550V、スペクトル補正をローダミンBで行い、得られた極大蛍光波長における蛍光強度を計測した。
(3) Measurement of fluorescence spectrum Using FP-6600 manufactured by JASCO Corporation, the fluorescence spectrum at the maximum excitation wavelength is 250 to 800 nm while scanning the range of excitation light: 220 to 600 nm at a scan speed of 5000 nm / min. Obtained in the range. The PMT voltage at this time: 550 V, spectrum correction was performed with rhodamine B, and the fluorescence intensity at the obtained maximum fluorescence wavelength was measured.
 (4)ガラス転移温度(Tg)および熱線膨張率(CTE)
 (株)島津製作所社製TMA-50型を用い、空気気流下、昇温速度10℃/分、荷重14g/mm2で測定した。なお、熱線膨張率は100~200℃の範囲で計測した。
(4) Glass transition temperature (Tg) and coefficient of thermal expansion (CTE)
Using a TMA-50 type manufactured by Shimadzu Corporation, measurement was performed under an air stream at a temperature rising rate of 10 ° C./min and a load of 14 g / mm 2 . The coefficient of thermal expansion was measured in the range of 100 to 200 ° C.
 (5)引張伸度試験
 標線幅5mmのダンベル型打ち抜き試験片を作製し、(株)島津製作所社製EZ-S引張試験機を用いて、引張速度30mm/分の条件で破断に至るまでの応力とその伸度を計測し応力―歪曲線を得た。測定は10回の平均値として求めた。
(5) Tensile elongation test A dumbbell punched specimen with a marked line width of 5 mm was prepared and used to break until it reached a tensile speed of 30 mm / min using an EZ-S tensile tester manufactured by Shimadzu Corporation. The stress-strain curve was obtained by measuring the stress and elongation. The measurement was obtained as an average value of 10 times.
 <原料および溶媒>
 以下の合成例、実施例、参考例、および比較例で使用した試薬は次に示すとおりである。
 (A)ユウロピウム化合物
 ・塩化ユウロピウム六水和物(EuCl3、東京化成工業製)
 ・硝酸ユウロピウム六水和物(Eu(NO3)3、STREM CHEMICAL製)
 ・酢酸ユウロピウム水和物(Eu(OOCCH3)3、Alfa Aesar製)
 (B)ポリイミド原料
 (イ)ジアミン化合物
 NBDA:ノルボルナンジアミン(化合物1)
 H-XDA:1,4-ビス(アミノメチル)シクロヘキサン(化合物2)
 tCHDA:トランス-1,4-シクロヘキシルジアミン(化合物3)
 ONDA:オキサノルボルナンジアミン(化合物4)
 IPDA:イソホロンジアミン(化合物5)
 H-MDA:4,4'-メチレンビス(シクロヘキシルアミン)(化合物6)
 ODA:4,4'-ジアミノジフェニルエーテル〔4,4'-オキシジアニリン〕(化合物7)
 APB:1,3-ビス(3-アミノフェノキシ)ベンゼン(化合物8)
 mBP:4、4'-ビス(3-アミノフェノキシ)ビフェニル(化合物9)
 (ロ)テトラカルボン酸二無水物
 PMDA:ピロメリット酸二無水物(化合物10)
 BPDA:3,3',4,4'-ビフェニルテトラカルボン酸二無水物(化合物11)
 ODPA:ビス(3,4-ジカルボキシフェニル)エーテル二無水物(化合物12)
 6FDA:2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(化合物13)
 H-PMDA:1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(化合物14)
<Raw materials and solvents>
The reagents used in the following synthesis examples, examples, reference examples, and comparative examples are as follows.
(A) Europium compound Europium chloride hexahydrate (EuCl 3 , manufactured by Tokyo Chemical Industry Co., Ltd.)
Europium nitrate hexahydrate (Eu (NO 3 ) 3 , manufactured by STREM CHEMICAL)
Europium acetate hydrate (Eu (OOCCH 3 ) 3 , manufactured by Alfa Aesar)
(B) Polyimide raw material (a) Diamine compound NBDA: Norbornanediamine (Compound 1)
H-XDA: 1,4-bis (aminomethyl) cyclohexane (compound 2)
tCHDA: trans-1,4-cyclohexyldiamine (compound 3)
ONDA: oxanorbornanediamine (compound 4)
IPDA: Isophoronediamine (Compound 5)
H-MDA: 4,4′-methylenebis (cyclohexylamine) (Compound 6)
ODA: 4,4′-diaminodiphenyl ether [4,4′-oxydianiline] (Compound 7)
APB: 1,3-bis (3-aminophenoxy) benzene (Compound 8)
mBP: 4,4′-bis (3-aminophenoxy) biphenyl (Compound 9)
(B) Tetracarboxylic dianhydride PMDA: pyromellitic dianhydride (Compound 10)
BPDA: 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (Compound 11)
ODPA: Bis (3,4-dicarboxyphenyl) ether dianhydride (Compound 12)
6FDA: 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride (Compound 13)
H-PMDA: 1,2,4,5-cyclohexanetetracarboxylic dianhydride (Compound 14)
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000034
Figure JPOXMLDOC01-appb-C000035
 (C)溶媒
 ・N,N-ジメチルアセトアミド(DMAc、和光純薬工業製)
 ・1-メチル-2-ピロリドン(NMP、和光純薬工業製)
 ・1,3-ジメチル-2-イミダゾリジノン(DMI、和光純薬工業製)
Figure JPOXMLDOC01-appb-C000035
(C) Solvent • N, N-dimethylacetamide (DMAc, manufactured by Wako Pure Chemical Industries)
・ 1-Methyl-2-pyrrolidone (NMP, manufactured by Wako Pure Chemical Industries)
・ 1,3-Dimethyl-2-imidazolidinone (DMI, manufactured by Wako Pure Chemical Industries)
 <ポリアミド酸の重合及びポリイミドフィルムの作成>
 (合成例1)
 温度計、攪拌機、窒素導入管、滴下ロートを備えた1Lの5つ口セパラブルフラスコに、ピロメリット酸二無水物(PMDA)153g(0.700モル)と有機溶媒としてN,N―ジメチルアセトアミド(DMAc)420gとを加え、0℃の氷水浴中で攪拌してスラリー状液体とした。滴下ロート内に装入したノルボルナンジアミン(NBDA)108g(0.700モル)とN,N―ジメチルアセトアミド(DMAc)188gとを2時間かけてゆっくり滴下した。滴下終了後、更に16時間室温で攪拌し、ポリアミド酸ワニスを得た。このポリアミド酸の固有対数粘度は0.69dL/gであった。結果を表1に示す。
<Polyamide acid polymerization and creation of polyimide film>
(Synthesis Example 1)
In a 1 L 5-neck separable flask equipped with a thermometer, stirrer, nitrogen inlet tube and dropping funnel, 153 g (0.700 mol) of pyromellitic dianhydride (PMDA) and N, N-dimethylacetamide as an organic solvent (DMAc) 420 g was added and stirred in an ice water bath at 0 ° C. to obtain a slurry liquid. 108 g (0.700 mol) of norbornanediamine (NBDA) charged in the dropping funnel and 188 g of N, N-dimethylacetamide (DMAc) were slowly added dropwise over 2 hours. After completion of the dropwise addition, the mixture was further stirred at room temperature for 16 hours to obtain a polyamic acid varnish. The intrinsic log viscosity of this polyamic acid was 0.69 dL / g. The results are shown in Table 1.
 得られたポリアミド酸溶液を、ガラス基板上にドクターブレードを用いて流延した。これをイナートオーブンに移して、窒素気流中、2時間かけて50℃から270℃まで昇温し、続いて更に270℃で2時間保持して自己支持性を有する膜厚26μmの無色透明のポリイミドフィルムを得た。このポリイミドフィルムの諸物性(全光線透過率、最大励起波長、最大蛍光波長とその強度、ガラス転移温度、熱線膨張率、および引張伸度)の測定結果を表2に示す。 The obtained polyamic acid solution was cast on a glass substrate using a doctor blade. This was transferred to an inert oven, heated from 50 ° C. to 270 ° C. in a nitrogen stream over 2 hours, and then kept at 270 ° C. for 2 hours to have a self-supporting colorless transparent polyimide with a film thickness of 26 μm. A film was obtained. Table 2 shows the measurement results of various physical properties (total light transmittance, maximum excitation wavelength, maximum fluorescence wavelength and intensity, glass transition temperature, thermal linear expansion coefficient, and tensile elongation) of this polyimide film.
 (合成例2)
 温度計、攪拌機、窒素導入管を備えた1Lの5つ口セパラブルフラスコに、1,4-ビス(アミノメチル)シクロヘキサン(H-XDA)35.6g(0.250モル)、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)73.5g(0.250モル)、および溶媒N,N―ジメチルアセトアミド(DMAc)620gを室温で加え、反応容器を100℃に保持したオイルバス中に10分間浴した。約5分で塩の析出が生じ、速やかに再溶解し、増粘していく様子を確認した。オイルバスを外してから、さらに18時間室温で攪拌し、ポリアミド酸ワニスを得た。得られたポリアミド酸の固有対数粘度は、1.22dL/g(35℃、0.5g/dL)であった。結果を表1に示す。
 無色透明ポリイミドフィルムの作製は合成例1と同様にして行い、得られたフィルムの諸物性の測定結果を表2に示す。
(Synthesis Example 2)
In a 1 L five-necked separable flask equipped with a thermometer, a stirrer, and a nitrogen introduction tube, 35.6 g (0.250 mol) of 1,4-bis (aminomethyl) cyclohexane (H-XDA), 3,3 ′ , 4,4′-biphenyltetracarboxylic dianhydride (BPDA) 73.5 g (0.250 mol) and solvent N, N-dimethylacetamide (DMAc) 620 g were added at room temperature, and the reaction vessel was kept at 100 ° C. Bathed in an oil bath for 10 minutes. It was confirmed that salt precipitation occurred in about 5 minutes, and it was quickly redissolved and thickened. After removing the oil bath, the mixture was further stirred at room temperature for 18 hours to obtain a polyamic acid varnish. The intrinsic logarithmic viscosity of the obtained polyamic acid was 1.22 dL / g (35 ° C., 0.5 g / dL). The results are shown in Table 1.
A colorless transparent polyimide film was produced in the same manner as in Synthesis Example 1, and the measurement results of various physical properties of the obtained film are shown in Table 2.
 (合成例3)
 H-XDAを、トランス-1,4-シクロヘキシルジアミン(tCHDA)57.1g(0.500モル)に変更した以外は合成例2と同様にして、ポリアミド酸溶液および無色透明ポリイミドフィルムを作製し、諸物性の測定結果を表1および2に示す。
(Synthesis Example 3)
A polyamic acid solution and a colorless transparent polyimide film were prepared in the same manner as in Synthesis Example 2 except that H-XDA was changed to 57.1 g (0.500 mol) of trans-1,4-cyclohexyldiamine (tCHDA). The measurement results of various physical properties are shown in Tables 1 and 2.
 (合成例4)
 NBDAを、4,4'-メチレンビス(シクロヘキシルアミン)(H-MDA)105gに変更した以外は合成例1と同様にして、ポリアミド酸溶液および無色透明ポリイミドフィルムを作製し、諸物性の測定結果を表1および2に示す。
(Synthesis Example 4)
A polyamic acid solution and a colorless transparent polyimide film were prepared in the same manner as in Synthesis Example 1 except that NBDA was changed to 105 g of 4,4′-methylenebis (cyclohexylamine) (H-MDA). Tables 1 and 2 show.
 (合成例5および6)
 PMDAを、それぞれビス(3,4-ジカルボキシフェニル)エーテル二無水物(ODPA)155g、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(6FDA)222gに変更した以外は合成例1と同様にして、ポリアミド酸溶液および無色透明ポリイミドフィルムを作製し、諸物性の結果を表1および2に示す。
(Synthesis Examples 5 and 6)
PMDA was 155 g of bis (3,4-dicarboxyphenyl) ether dianhydride (ODPA), 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3- A polyamic acid solution and a colorless transparent polyimide film were prepared in the same manner as in Synthesis Example 1 except that the amount was changed to 222 g of hexafluoropropane dianhydride (6FDA), and the results of various physical properties are shown in Tables 1 and 2.
 (合成例7および8)
 ジアミン成分がNBDA単独であったところを、それぞれオキサノルボルナンジアミン(ONDA)50mol%、イソホロンジアミン(IPDA)30mol%とNBDAの共重合体に変更した以外は合成例1と同様にして、ポリアミド酸溶液および無色透明ポリイミドフィルムを作製し、諸物性の測定結果を表1および2に示す。
(Synthesis Examples 7 and 8)
A polyamic acid solution was prepared in the same manner as in Synthesis Example 1 except that the diamine component was NBDA alone, but was changed to a copolymer of 50 mol% oxanorbornane diamine (ONDA), 30 mol% isophorone diamine (IPDA) and NBDA, respectively. A colorless transparent polyimide film was prepared, and the measurement results of various physical properties are shown in Tables 1 and 2.
 (合成例9)
 温度計、攪拌機、窒素導入管を備えた300mLの5つ口セパラブルフラスコに、トランス-1,4-シクロヘキシルジアミン(tCHDA)11.4g(0.100モル)と、溶媒としてN-メチルピロリドン(NMP)149gとを加え攪拌した。透明溶液としたところへ、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)25.9g(0.0880モル)を粉状のまま装入し、反応容器を120℃に保持したオイルバス中に5分間浴した。BPDA装入後しばらくして塩が析出し、その後速やかに再溶解し増粘していく様子を確認した。オイルバスを外してから、更に18時間室温で攪拌し、末端にtCHDA由来のアミノ基を有するオリゴアミド酸ワニスを得た。
(Synthesis Example 9)
In a 300 mL five-necked separable flask equipped with a thermometer, a stirrer and a nitrogen inlet tube, 11.4 g (0.100 mol) of trans-1,4-cyclohexyldiamine (tCHDA) and N-methylpyrrolidone (0.100 mol) as a solvent NMP) (149 g) was added and stirred. To the transparent solution, 2,5.9 g (0.0880 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) was charged in powder form, and the reaction vessel was placed at 120 ° C. And bathed in an oil bath maintained for 5 minutes. It was confirmed that the salt precipitated after a while after the BPDA was charged, and then rapidly redissolved and thickened. After removing the oil bath, the mixture was further stirred at room temperature for 18 hours to obtain an oligoamidic acid varnish having an amino group derived from tCHDA at the terminal.
 続いて、温度計、攪拌機、窒素導入管を備えた200mLの5つ口セパラブルフラスコに、ノルボルナンジアミン(NBDA)6.19g(0.0402モル)と1,3-ジメチル-2-イミダゾリジノン(DMI)64.5gとを加えて攪拌した。透明溶液としたところへ、3,3',4,4'-ビフェニルテトラカルボン酸二無水物(BPDA)15.3g(0.0522モル)を粉状のまま装入し、反応容器を120℃に保持したオイルバス中に5分間浴した。BPDA装入後、一時的に塩が析出したが、すぐに再溶解し均一透明溶液となることを確認した。該セパラブルフラスコに冷却管とディーンスターク型濃縮器を取付けて、キシレン15gを反応溶液に追加して、脱水熱イミド化反応を180℃で4時間攪拌しながら行った。キシレン留去後、末端にBPDA由来の酸無水物構造を有するオリゴイミドワニスを得た。 Subsequently, 6.19 g (0.0402 mol) of norbornanediamine (NBDA) and 1,3-dimethyl-2-imidazolidinone were added to a 200 mL 5-neck separable flask equipped with a thermometer, a stirrer, and a nitrogen introduction tube. (DMI) 64.5 g was added and stirred. To the transparent solution, 15.3 g (0.0522 mol) of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride (BPDA) was charged in powder form, and the reaction vessel was placed at 120 ° C. And bathed in an oil bath maintained for 5 minutes. After the BPDA was charged, the salt temporarily precipitated, but it was confirmed that it immediately re-dissolved and became a homogeneous transparent solution. A cooling tube and a Dean-Stark type concentrator were attached to the separable flask, 15 g of xylene was added to the reaction solution, and dehydration thermal imidization reaction was carried out at 180 ° C. with stirring for 4 hours. After distilling off xylene, an oligoimide varnish having a terminal BPDA-derived acid anhydride structure was obtained.
 上記で得られたオリゴアミド酸ワニスおよびオリゴイミドワニスを混合し、NMPを加えて15wt%まで希釈しながら攪拌しマルチブロック状ポリアミド酸イミドワニスを合成した。得られたこのワニスの固有対数粘度は、1.31dL/g(35℃、0.5g/dL)であった。結果を表1に示す。
 無色透明ポリイミドフィルムの作製は合成例1と同様にして行い、得られたフィルムの諸物性の測定結果を表2に示す。
The oligoamido acid varnish and oligoimide varnish obtained above were mixed and stirred while diluting to 15 wt% by adding NMP to synthesize a multi-block polyamic acid imide varnish. The inherent logarithmic viscosity of the obtained varnish was 1.31 dL / g (35 ° C., 0.5 g / dL). The results are shown in Table 1.
A colorless transparent polyimide film was produced in the same manner as in Synthesis Example 1, and the measurement results of various physical properties of the obtained film are shown in Table 2.
 (合成例10、12および14)
 ジアミン成分のNBDAを、それぞれ1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)146g(0.500モル)で溶媒DMI602g、4,4'-ジアミノジフェニルエーテル〔4,4'-オキシジアニリン〕(ODA)100g(0.500モル)で溶媒NMP494g、4、4'-ビス(3-アミノフェノキシ)ビフェニル(mBP)184g(0.500モル)で溶媒DMI690gに変更し、かつ、テトラカルボン酸二酸無水物成分のPMDAを、いずれとも1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)112g(0.500モル)に変更した以外は合成例1と同様にして、ポリアミド酸溶液および無色透明ポリイミドフィルムを作製し、諸物性の測定結果を表1および2に示す。
(Synthesis Examples 10, 12, and 14)
The diamine component NBDA is 146 g (0.500 mol) of 1,3-bis (3-aminophenoxy) benzene (APB), solvent DMI 602 g, 4,4′-diaminodiphenyl ether [4,4′-oxydianiline] (ODA) 100 g (0.500 mol) of the solvent NMP 494 g, 4,4′-bis (3-aminophenoxy) biphenyl (mBP) 184 g (0.500 mol) was changed to the solvent DMI 690 g, Except for changing the PMDA of the acid anhydride component to 112 g (0.500 mol) of 1,2,4,5-cyclohexanetetracarboxylic dianhydride (H-PMDA), A polyamic acid solution and a colorless transparent polyimide film were prepared, and the measurement results of various physical properties are shown in Tables 1 and 2.
 (合成例11、13および15)
 合成例10、12および14で得られた各ポリアミド酸ワニスを冷却管とディーンスターク型濃縮器を備え付けたフラスコに注ぎ、共沸剤として20wt%見合いのキシレンを加え、オイルバス180℃中で6時間の共沸脱水反応を実施し、最後にキシレンを留去してポリイミドワニスを得た。得られたポリイミドの固有対数粘度の結果を表1に示す。
 また、無色透明ポリイミドフィルムの作製は合成例1と同様にして行い、得られたフィルムの諸物性の測定結果を表2に示す。
(Synthesis Examples 11, 13, and 15)
Each of the polyamic acid varnishes obtained in Synthesis Examples 10, 12, and 14 was poured into a flask equipped with a condenser and a Dean-Stark type concentrator, and 20 wt% of xylene was added as an azeotropic agent. A time azeotropic dehydration reaction was carried out, and finally xylene was distilled off to obtain a polyimide varnish. Table 1 shows the intrinsic logarithmic viscosity results of the obtained polyimide.
A colorless transparent polyimide film was produced in the same manner as in Synthesis Example 1, and the measurement results of various physical properties of the obtained film are shown in Table 2.
 (合成例16および17)
 ジアミン成分のH-XDAを、それぞれ1,3-ビス(3-アミノフェノキシ)ベンゼン(APB)146g(0.500モル)、4、4'-ビス(3-アミノフェノキシ)ビフェニル(mBP)166g(0.450モル)かつ4,4'-ジアミノジフェニルエーテル〔4,4'-オキシジアニリン〕(ODA)10.0g(0.0500モル)に、テトラカルボン酸二酸無水物成分のBPDAを、いずれもピロメリット酸二無水物(PMDA)109g(0.500モル)に変更した以外は合成例2と同様にして、ポリアミド酸溶液およびポリイミドフィルムを作製し、諸物性の測定結果を表1および2に示す。
(Synthesis Examples 16 and 17)
The diamine component H-XDA was converted into 146 g (0.500 mol) of 1,3-bis (3-aminophenoxy) benzene (APB) and 166 g of 4,4′-bis (3-aminophenoxy) biphenyl (mBP), respectively. 0.450 mol) and 4,4′-diaminodiphenyl ether [4,4′-oxydianiline] (ODA) (10.0 g, 0.0500 mol) are added with tetracarboxylic dianhydride component BPDA. A polyamic acid solution and a polyimide film were prepared in the same manner as in Synthesis Example 2 except that the pyromellitic dianhydride (PMDA) was changed to 109 g (0.500 mol). Tables 1 and 2 show the measurement results of various physical properties. Shown in
 (合成例18)
 ジアミン成分のH-XDAを、トランス-1,4-シクロヘキシルジアミン(tCHDA)57.1g(0.500モル)に、テトラカルボン酸二酸無水物成分のBPDAを、1,2,4,5-シクロヘキサンテトラカルボン酸二無水物(H-PMDA)112g(0.500モル)変更した以外は合成例2と同様にして、ポリアミド酸溶液および無色透明ポリイミドフィルムを作製し、諸物性の測定結果を表1および2に示す。
 (合成例19)
 温度計、攪拌機、窒素導入管を備えた500mLの5つ口セパラブルフラスコに、4,4'-ジアミノジフェニルエーテル〔4,4'-オキシジアニリン〕(ODA)35.6g(0.178モル)と有機溶媒としてN,N―ジメチルアセトアミド(DMAc)267gを加え、0℃の氷水浴中で攪拌して均一溶液とした。そこに、2,2-ビス(3,4-ジカルボキシフェニル)-1,1,1,3,3,3-ヘキサフルオロプロパン二無水物(6FDA)78.9g(0.178モル)を粉状のまま装入し、16時間室温で攪拌し、ポリアミド酸ワニスを得た。このポリアミド酸の固有対数粘度は0.98dL/gであった。結果を表1に示す。ポリイミドフィルムは、合成例1と同様にして作製し、諸物性の測定結果を表2に示す。
(Synthesis Example 18)
The diamine component H-XDA was added to 57.1 g (0.500 mol) of trans-1,4-cyclohexyldiamine (tCHDA), and the tetracarboxylic dianhydride component BPDA was added to 1,2,4,5- A polyamic acid solution and a colorless transparent polyimide film were prepared in the same manner as in Synthesis Example 2 except that 112 g (0.500 mol) of cyclohexanetetracarboxylic dianhydride (H-PMDA) was changed. Shown in 1 and 2.
(Synthesis Example 19)
In a 500 mL 5-neck separable flask equipped with a thermometer, a stirrer, and a nitrogen inlet tube, 35.6 g (0.178 mol) of 4,4′-diaminodiphenyl ether [4,4′-oxydianiline] (ODA) And 267 g of N, N-dimethylacetamide (DMAc) as an organic solvent was added and stirred in an ice water bath at 0 ° C. to obtain a uniform solution. Thereto was powdered 78.9 g (0.178 mol) of 2,2-bis (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride (6FDA). The mixture was charged in the form of a solid and stirred at room temperature for 16 hours to obtain a polyamic acid varnish. The intrinsic log viscosity of this polyamic acid was 0.98 dL / g. The results are shown in Table 1. The polyimide film was prepared in the same manner as in Synthesis Example 1, and the measurement results of various physical properties are shown in Table 2.
 (実施例1、3、6~11および13)
 上記合成例1~9で得られたポリマー溶液(ポリアミド酸ワニスまたはポリアミド酸イミドワニス)に、対応する該ポリアミド酸または該ポリアミド酸イミドの固形分量100重量部に対して、1.0重量部となるように塩化ユウロピウム六水和物を添加し、自転・公転ミキサ(または混練・混和泡取り装置)(株式会社キーエンス製,製品名:Hybrid Mixer―500)を用いて5分間攪拌し、対応する複合ワニスを得た。該ワニスを、ガラス基板上にドクターブレードを用いて流延し、これをイナートオーブンに移して、窒素気流中、2時間かけて50℃から270℃まで昇温し、続いて更に270℃で2時間保持して自己支持性および無色透明性を有するポリイミド複合フィルムを得た。
 該ポリイミド複合フィルムの諸物性(全光線透過率、最大励起波長、最大蛍光波長とその強度、ガラス転移温度、熱線膨張率、および引張伸度)の測定結果を表3に示す。
(Examples 1, 3, 6 to 11 and 13)
The polymer solution (polyamic acid varnish or polyamic acid imide varnish) obtained in Synthesis Examples 1 to 9 is 1.0 part by weight with respect to 100 parts by weight of the solid content of the corresponding polyamic acid or polyamic acid imide. Europium chloride hexahydrate was added as described above, and the mixture was stirred for 5 minutes using a rotation / revolution mixer (or kneading / mixing foam removing device) (manufactured by Keyence Corporation, product name: Hybrid Mixer-500), and the corresponding composite A varnish was obtained. The varnish is cast on a glass substrate using a doctor blade, transferred to an inert oven, heated from 50 ° C. to 270 ° C. over 2 hours in a nitrogen stream, and then further heated at 270 ° C. at 2 A polyimide composite film having self-supporting property and colorless transparency was obtained by maintaining for a while.
Table 3 shows the measurement results of various physical properties (total light transmittance, maximum excitation wavelength, maximum fluorescence wavelength and intensity, glass transition temperature, thermal expansion coefficient, and tensile elongation) of the polyimide composite film.
 (実施例2および12)
 上記合成例2および9で得られたポリマー溶液(ポリアミド酸ワニス)に、対応する該ポリアミド酸の固形分量100重量部に対して、0.20重量部となるように塩化ユウロピウム六水和物の添加量を変更した以外は実施例1と同様にして、対応する複合ワニスおよび自己支持性および無色透明性を有するポリイミド複合フィルムを作製した。諸物性の測定結果を表3に示す。
(Examples 2 and 12)
The europium chloride hexahydrate was added to the polymer solution (polyamic acid varnish) obtained in Synthesis Examples 2 and 9 so that the corresponding solid content of the polyamic acid was 100 parts by weight to 0.20 part by weight. A corresponding composite varnish and a polyimide composite film having self-supporting property and colorless transparency were produced in the same manner as in Example 1 except that the addition amount was changed. Table 3 shows the measurement results of various physical properties.
 (実施例4)
 上記合成例2で得られたポリマー溶液(ポリアミド酸ワニス)に、該ポリアミド酸の固形分量100重量部に対して、1.0重量部となるように硝酸ユウロピウム六水和物の添加量を変更した以外は実施例3と同様にして、複合ワニスおよび自己支持性および無色透明性を有するポリイミド複合フィルムを作製した。諸物性の測定結果を表3に示す。
Example 4
The amount of europium nitrate hexahydrate added to the polymer solution (polyamic acid varnish) obtained in Synthesis Example 2 was changed to 1.0 part by weight with respect to 100 parts by weight of the solid content of the polyamic acid. Except that, a composite varnish and a polyimide composite film having self-supporting property and colorless transparency were produced in the same manner as in Example 3. Table 3 shows the measurement results of various physical properties.
 (実施例5)
 上記合成例2で得られたポリマー溶液(ポリアミド酸ワニス)に、該ポリアミド酸の固形分量100重量部に対して、1.0重量部となるように酢酸ユウロピウム水和物の添加量を変更した以外は実施例3と同様にして、複合ワニスおよび自己支持性および無色透明性を有するポリイミド複合フィルムを作製した。諸物性の測定結果を表3に示す。
(Example 5)
The amount of europium acetate hydrate added to the polymer solution (polyamic acid varnish) obtained in Synthesis Example 2 was changed to 1.0 part by weight with respect to 100 parts by weight of the solid content of the polyamic acid. Except for the above, a composite varnish and a polyimide composite film having self-supporting property and colorless transparency were produced in the same manner as in Example 3. Table 3 shows the measurement results of various physical properties.
 (参考例1および2)
 上記合成例2および9で得られたポリマー溶液(ポリアミド酸ワニスまたはポリアミド酸イミドワニス)に、対応する該ポリアミド酸または該ポリアミド酸イミドの固形分量100重量部に対して、5.0重量部となるように塩化ユウロピウム六水和物の添加量を変更した以外は実施例1と同様にして、対応する複合ワニスおよび自己支持性および無色透明性を有するポリイミド複合フィルムを作製した。諸物性の測定結果を表4に示す。
(Reference Examples 1 and 2)
The polymer solution (polyamic acid varnish or polyamic acid imide varnish) obtained in Synthesis Examples 2 and 9 is 5.0 parts by weight with respect to 100 parts by weight of the solid content of the corresponding polyamic acid or polyamic acid imide. A corresponding composite varnish and a polyimide composite film having self-supporting property and colorless transparency were prepared in the same manner as in Example 1 except that the addition amount of europium chloride hexahydrate was changed. Table 4 shows the measurement results of various physical properties.
 (比較例1~9)
 上記合成例10~18で得られたポリマー溶液(ポリアミド酸ワニスまたはポリイミドワニス)に、対応する該ポリアミド酸または該ポリイミドの固形分量100重量部に対して、1.0重量部となるように塩化ユウロピウム六水和物の添加量を変更した以外は実施例1と同様にして、対応する複合ワニスおよびポリイミド複合フィルムを作製した。諸物性の測定結果を表5に示す。
(Comparative Examples 1 to 9)
The polymer solutions (polyamic acid varnish or polyimide varnish) obtained in Synthesis Examples 10 to 18 were chlorinated so as to be 1.0 part by weight with respect to 100 parts by weight of the solid content of the corresponding polyamic acid or polyimide. Corresponding composite varnish and polyimide composite film were prepared in the same manner as in Example 1 except that the amount of europium hexahydrate added was changed. Table 5 shows the measurement results of various physical properties.
 (比較例10)
 上記合成例2で得られた無色透明ポリイミドフィルムの上に、硝酸ユウロピウム水和物の3%アセトニトリル溶液をスピンコートし、室温乾燥させたものを作製し、実施例1と同様にして該フィルムの諸物性を測定した。その結果を表5に示す。
(Comparative Example 10)
A colorless transparent polyimide film obtained in Synthesis Example 2 above was spin-coated with a 3% acetonitrile solution of europium nitrate hydrate and dried at room temperature. Various physical properties were measured. The results are shown in Table 5.
 (比較例11)
 上記合成例2で得られた無色透明ポリイミドフィルムを、硝酸ユウロピウム水和物の3%アセトニトリル溶液中に6時間浸漬し室温乾燥後させたものを作製し、実施例1と同様にして該フィルムの諸物性を測定した。その結果を表5に示す。
 (比較例12)
 上記合成例19で得られたポリマー溶液(ポリアミド酸ワニス)に、該ポリアミド酸の固形分量100重量部に対して、1.0重量部となるように硝酸ユウロピウム六水和物の添加量を変更した以外は実施例1と同様にして、対応する複合ワニスおよび自己支持性を有するポリイミド複合フィルムを作製した。諸物性の測定結果を表5に示す。
(Comparative Example 11)
A colorless transparent polyimide film obtained in Synthesis Example 2 above was immersed in a 3% acetonitrile solution of europium nitrate hydrate for 6 hours and dried at room temperature, and the film was dried in the same manner as in Example 1. Various physical properties were measured. The results are shown in Table 5.
(Comparative Example 12)
The amount of europium nitrate hexahydrate added to the polymer solution (polyamic acid varnish) obtained in Synthesis Example 19 was changed to 1.0 part by weight with respect to 100 parts by weight of the solid content of the polyamic acid. A polyimide composite film having a corresponding composite varnish and self-supporting property was produced in the same manner as in Example 1 except that. Table 5 shows the measurement results of various physical properties.
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000036
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000037
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000038
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000039
Figure JPOXMLDOC01-appb-T000040
 表3の実施例に示すように、ポリイミドのジアミン化合物/テトラカルボン酸二無水物の成分がそれぞれ脂環族/芳香族である場合、作製した複合フィルムは無色透明性を有しつつも、励起光の照射で波長615nmに極大発光値を示すユウロピウム化合物由来の蛍光を観測した。この時のスキャンスピード5000nm/minであったことより、該蛍光発光は、高速応答性を有していることが分かった。
Figure JPOXMLDOC01-appb-T000040
As shown in the examples of Table 3, when the components of polyimide diamine compound / tetracarboxylic dianhydride are alicyclic / aromatic, the produced composite film is colorless and transparent, but excited. Fluorescence derived from a europium compound showing a maximum light emission value at a wavelength of 615 nm by light irradiation was observed. Since the scanning speed at this time was 5000 nm / min, it was found that the fluorescence emission had high-speed response.
 また、表4の参考例に示されるように、表3と同様の構造であるポリイミドであっても、ユウロピウム化合物の添加量が、ポリマー100重量部に対して5重量部加えたワニスから作製した複合フィルムである場合、該ユウロピウム化合物を1重量部加えたワニスから作製した複合フィルムに比べて、蛍光強度およびフィルム物性がやや低下するものの、依然として無色透明性、高速応答性蛍光発光を有していることがわかった。 Further, as shown in the reference example of Table 4, even when the polyimide has the same structure as Table 3, the addition amount of the europium compound was prepared from varnish with 5 parts by weight added to 100 parts by weight of the polymer. In the case of a composite film, although the fluorescence intensity and film properties are slightly lower than those of a composite film prepared from a varnish to which 1 part by weight of the europium compound is added, it still has colorless transparency and fast response fluorescence. I found out.
 一方、表5の比較例に示すように、ポリイミドのジアミン化合物/テトラカルボン酸二無水物の成分が、芳香族/脂環族、または脂環族/脂環族である場合、複合フィルムは無色透明性を有しているものの、励起光を照射してもユウロピウム化合物由来の蛍光(波長615nm付近)は観測されなかった。また、ポリイミドのジアミン化合物/テトラカルボン酸二無水物の成分が、芳香族/芳香族である場合、複合フィルムは黄色または茶色の有色性であり、励起光を照射しても添加剤由来の蛍光強度(波長615nm付近)は極めて小さく、複合フィルム自身の有色性のため目視で蛍光発光性は確認されなかった。特に、比較例12に示すように、特許文献2と同じ組成のものであっても、本測定のようにスキャンスピードが速い(5000nm/min)場合には、蛍光を示さないことが明らかとなった。 On the other hand, as shown in Comparative Example in Table 5, when the polyimide diamine compound / tetracarboxylic dianhydride component is aromatic / alicyclic or alicyclic / alicyclic, the composite film is colorless. Although it has transparency, no fluorescence (wavelength around 615 nm) derived from a europium compound was observed even when irradiated with excitation light. When the polyimide diamine compound / tetracarboxylic dianhydride component is aromatic / aromatic, the composite film is colored yellow or brown, and the fluorescence derived from the additive even when irradiated with excitation light. The intensity (wavelength near 615 nm) was extremely small, and the fluorescence was not confirmed visually due to the color of the composite film itself. In particular, as shown in Comparative Example 12, even when the composition is the same as that of Patent Document 2, it is clear that no fluorescence is exhibited when the scan speed is high (5000 nm / min) as in this measurement. It was.
 また、合成例2で得られた無色透明ポリイミドフィルムの上に、硝酸ユウロピウム水和物の3%アセトニトリル溶液をスピンコートしたもの、あるいは、該溶液中に6時間浸漬したものを室温で乾燥させたものでは、励起光を照射してもユウロピウム化合物由来の蛍光強度(波長615nm付近)は確認されなかった。これにより、無色透明ポリイミドとユウロピウム化合物の間で相互作用を持たせるためには、ポリイミド前駆体のポリアミド酸ワニスの状態での複合化が必要であることがわかった。 In addition, the colorless transparent polyimide film obtained in Synthesis Example 2 was spin-coated with a 3% acetonitrile solution of europium nitrate hydrate, or the film immersed in the solution for 6 hours was dried at room temperature. In the thing, even if it irradiates excitation light, the fluorescence intensity (wavelength 615nm vicinity) derived from a europium compound was not confirmed. Thereby, in order to give interaction between a colorless and transparent polyimide and a europium compound, it turned out that the composite in the state of the polyamic-acid varnish of a polyimide precursor is required.
 1 実施例3
 2 実施例2
 3 参考例1
 4 合成例2
1 Example 3
2 Example 2
3 Reference Example 1
4 Synthesis Example 2

Claims (13)

  1.  脂環式ジアミン化合物(A)と芳香族テトラカルボン酸二無水物(B)とから得られる、一般式(1)で示されるポリアミド酸と、該ポリアミド酸が溶解する溶媒(C)とから得られるポリアミド酸溶液(S1)100重量部に対して、
     ユウロピウム(Eu)化合物0.001~4重量部を加えて、ポリアミド酸溶液(S2)を得て、
     該ポリアミド酸溶液(S2)に含まれるポリアミド酸のイミド化および溶媒(C)除去により得られるポリイミド複合体。
    Figure JPOXMLDOC01-appb-C000001
     (式(1)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す。)
    Obtained from the polyamic acid represented by the general formula (1) obtained from the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B), and the solvent (C) in which the polyamic acid is dissolved. To 100 parts by weight of the polyamic acid solution (S1)
    By adding 0.001 to 4 parts by weight of a europium (Eu) compound, a polyamic acid solution (S2) is obtained,
    A polyimide composite obtained by imidization of the polyamic acid contained in the polyamic acid solution (S2) and removal of the solvent (C).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.)
  2.  前記ポリイミド複合体に含まれるポリイミドが、下記一般式(2)で表わされる構成単位を含むことを特徴とする請求項1に記載のポリイミド複合体。
    Figure JPOXMLDOC01-appb-C000002
     式(2)中、Xは、
    Figure JPOXMLDOC01-appb-C000003
    からなる群から選択される少なくとも1種の脂環族基であり、
     Yは、
    Figure JPOXMLDOC01-appb-C000004
    からなる群から選択される少なくとも1種の芳香族基である。
    2. The polyimide composite according to claim 1, wherein the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (2).
    Figure JPOXMLDOC01-appb-C000002
    In the formula (2), X is
    Figure JPOXMLDOC01-appb-C000003
    At least one alicyclic group selected from the group consisting of:
    Y is
    Figure JPOXMLDOC01-appb-C000004
    At least one aromatic group selected from the group consisting of:
  3.  前記ポリイミド複合体に含まれるポリイミドが、下記一般式(3)で表わされる構成単位を含むことを特徴とする請求項1に記載のポリイミド複合体。
    Figure JPOXMLDOC01-appb-C000005
    2. The polyimide composite according to claim 1, wherein the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (3).
    Figure JPOXMLDOC01-appb-C000005
  4.  前記ポリイミド複合体に含まれるポリイミドが、下記一般式(4)で表わされる構成単位を含むことを特徴とする請求項1に記載のポリイミド複合体。
    Figure JPOXMLDOC01-appb-C000006
    2. The polyimide composite according to claim 1, wherein the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (4).
    Figure JPOXMLDOC01-appb-C000006
  5.  前記ポリイミド複合体に含まれるポリイミドが、下記一般式(5)で表わされる構成単位を含むことを特徴とする請求項1に記載のポリイミド複合体。
    Figure JPOXMLDOC01-appb-C000007
    The polyimide composite according to claim 1, wherein the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (5).
    Figure JPOXMLDOC01-appb-C000007
  6.  前記ポリイミド複合体に含まれるポリイミドが、下記一般式(6)で表わされる構成単位を含むことを特徴とする請求項1に記載のポリイミド複合体。
    Figure JPOXMLDOC01-appb-C000008
     (式中、mとnは、各括弧内で表される繰返し構造単位の繰返し数を示し、mの平均値とnの平均値との比(m:n)が、1:9~9:1である。)
    2. The polyimide composite according to claim 1, wherein the polyimide contained in the polyimide composite includes a structural unit represented by the following general formula (6).
    Figure JPOXMLDOC01-appb-C000008
    (In the formula, m and n represent the number of repeating structural units represented in parentheses, and the ratio of the average value of m to the average value of n (m: n) is 1: 9 to 9: 1)
  7.  前記ユウロピウム(Eu)化合物が、塩化ユウロピウム、硝酸ユウロピウムおよび酢酸ユウロピウムから選ばれる少なくとも1種であることを特徴とする請求項1~6のいずれか一項に記載のポリイミド複合体。 The polyimide composite according to any one of claims 1 to 6, wherein the europium (Eu) compound is at least one selected from europium chloride, europium nitrate, and europium acetate.
  8.  波長250~400nmの紫外線を照射することにより、波長500~800nmの蛍光を発することを特徴とする請求項1~7のいずれか一項に記載のポリイミド複合体。 The polyimide composite according to any one of claims 1 to 7, wherein the polyimide composite emits fluorescence having a wavelength of 500 to 800 nm when irradiated with an ultraviolet ray having a wavelength of 250 to 400 nm.
  9.  全光線透過率が80%以上であることを特徴とする請求項8に記載のポリイミド複合体。 The polyimide composite according to claim 8, wherein the total light transmittance is 80% or more.
  10.  請求項1~9のいずれか一項に記載のポリイミド複合体からなるフィルム。 A film comprising the polyimide composite according to any one of claims 1 to 9.
  11.  以下の工程1から工程3を含むことを特徴とするポリイミド複合体の製造方法。
     (工程1)脂環式ジアミン化合物(A)と芳香族テトラカルボン酸二無水物(B)とから得られる、一般式(1)で示されるポリアミド酸と、該ポリアミド酸が溶解する溶媒(C)とから得られるポリアミド酸溶液(S1)を得る工程、
    Figure JPOXMLDOC01-appb-C000009
     (式(1)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す。)
     (工程2)該ポリアミド酸100重量部に対して、ユウロピウム(Eu)化合物0.001~4重量部を加えて、ポリアミド酸溶液(S2)得る工程、および
     (工程3)該ポリアミド酸溶液(S2)に含まれるポリアミド酸のイミド化および溶媒(C)除去によりポリイミド複合体を得る工程。
    The manufacturing method of the polyimide composite characterized by including the following processes 1 to 3.
    (Step 1) The polyamic acid represented by the general formula (1) obtained from the alicyclic diamine compound (A) and the aromatic tetracarboxylic dianhydride (B), and the solvent (C A step of obtaining a polyamic acid solution (S1) obtained from
    Figure JPOXMLDOC01-appb-C000009
    (In formula (1), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.)
    (Step 2) A step of adding 0.001 to 4 parts by weight of a europium (Eu) compound to 100 parts by weight of the polyamic acid to obtain a polyamic acid solution (S2), and (Step 3) the polyamic acid solution (S2 The process of obtaining a polyimide composite by imidation of the polyamic acid contained in), and solvent (C) removal.
  12.  下記一般式(1)で示されるポリアミド酸と、
    Figure JPOXMLDOC01-appb-C000010
     (式(1)中、Xは炭素数4~15の二価の脂環族基を示し、Yは炭素数6~27の四価の芳香族基を示す。)
     該ポリアミド酸が溶解する溶媒(C)に、
     該ポリアミド酸100重量部に対して、ユウロピウム(Eu)化合物0.001~4重量部を加えて得られたポリアミド酸溶液(S2)。
    A polyamic acid represented by the following general formula (1);
    Figure JPOXMLDOC01-appb-C000010
    (In formula (1), X represents a divalent alicyclic group having 4 to 15 carbon atoms, and Y represents a tetravalent aromatic group having 6 to 27 carbon atoms.)
    In the solvent (C) in which the polyamic acid is dissolved,
    A polyamic acid solution (S2) obtained by adding 0.001 to 4 parts by weight of a europium (Eu) compound to 100 parts by weight of the polyamic acid.
  13.  前記溶媒(C)が、非プロトン性のアミド系溶媒であることを特徴とする請求項12に記載のポリアミド酸溶液(S2)。 The polyamic acid solution (S2) according to claim 12, wherein the solvent (C) is an aprotic amide solvent.
PCT/JP2011/079682 2010-12-27 2011-12-21 Polyimide complex, polyamic acid solution, method for manufacturing polyimide complex, and film produced from polyimide complex WO2012090827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012550888A JP5748774B2 (en) 2010-12-27 2011-12-21 Polyimide composite, polyamic acid solution, method for producing polyimide composite, and film comprising polyimide composite

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010290312 2010-12-27
JP2010-290312 2010-12-27

Publications (1)

Publication Number Publication Date
WO2012090827A1 true WO2012090827A1 (en) 2012-07-05

Family

ID=46382935

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079682 WO2012090827A1 (en) 2010-12-27 2011-12-21 Polyimide complex, polyamic acid solution, method for manufacturing polyimide complex, and film produced from polyimide complex

Country Status (3)

Country Link
JP (1) JP5748774B2 (en)
TW (1) TW201231504A (en)
WO (1) WO2012090827A1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041816A1 (en) * 2012-09-14 2014-03-20 三井化学株式会社 Transparent polyimide laminate and manufacturing method therefor
JP2014141597A (en) * 2013-01-24 2014-08-07 Nissan Chem Ind Ltd Triazine ring containing polymer and composition for film formation containing the same
WO2016167038A1 (en) * 2015-04-15 2016-10-20 東レ株式会社 Heat-resistant resin composition, method for manufacturing heat-resistant resin film, method for manufacturing interlayer insulation film or surface protective film, and method for manufacturing electronic component or semiconductor component
JP2017510828A (en) * 2013-12-20 2017-04-13 スリーエム イノベイティブ プロパティズ カンパニー Quantum dot articles with improved edge penetration
CN110591359A (en) * 2019-10-23 2019-12-20 合肥中汇睿能能源科技有限公司 Colorless transparent polyimide film
US10707491B2 (en) 2016-02-10 2020-07-07 Nec Corporation Binder for secondary battery
WO2021120368A1 (en) * 2019-12-20 2021-06-24 武汉华星光电半导体显示技术有限公司 Polyimide luminescent material, preparation method and device thereof
CN114015045A (en) * 2021-12-16 2022-02-08 常州大学 Fluorescent polymer and Fe3+Detection test paper and preparation method and application thereof
CN115477755A (en) * 2022-09-29 2022-12-16 常州大学 Fluorescent polymer, fluorescent detection test paper, and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020083497A1 (en) * 2018-10-25 2020-04-30 Osram Opto Semiconductors Gmbh Conversion element, radiation-emitting semiconductor device and method for producing a conversion element
CN112480404B (en) * 2020-11-27 2022-12-13 株洲时代新材料科技股份有限公司 Magnetic heat-conducting polyimide composite material and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204364A (en) * 1999-01-14 2000-07-25 Oki Electric Ind Co Ltd Luminescent material and organic el element by using the same
JP2005068329A (en) * 2003-08-26 2005-03-17 Japan Science & Technology Agency Method for manufacturing polyimide particulate having functional property
JP2005070579A (en) * 2003-08-27 2005-03-17 Japan Science & Technology Agency Rewritable optical memory material using change in fluorescence by photoirradiation or heat treatment
WO2008146637A1 (en) * 2007-05-24 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for production of colorless transparent resin film
JP2009200350A (en) * 2008-02-22 2009-09-03 Hitachi Chem Co Ltd Varnish containing material for optical doping, and optical waveguide amplifier using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000204364A (en) * 1999-01-14 2000-07-25 Oki Electric Ind Co Ltd Luminescent material and organic el element by using the same
JP2005068329A (en) * 2003-08-26 2005-03-17 Japan Science & Technology Agency Method for manufacturing polyimide particulate having functional property
JP2005070579A (en) * 2003-08-27 2005-03-17 Japan Science & Technology Agency Rewritable optical memory material using change in fluorescence by photoirradiation or heat treatment
WO2008146637A1 (en) * 2007-05-24 2008-12-04 Mitsubishi Gas Chemical Company, Inc. Process and apparatus for production of colorless transparent resin film
JP2009200350A (en) * 2008-02-22 2009-09-03 Hitachi Chem Co Ltd Varnish containing material for optical doping, and optical waveguide amplifier using the same

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104582960A (en) * 2012-09-14 2015-04-29 三井化学株式会社 Transparent polyimide laminate and manufacturing method therefor
WO2014041816A1 (en) * 2012-09-14 2014-03-20 三井化学株式会社 Transparent polyimide laminate and manufacturing method therefor
JP2014141597A (en) * 2013-01-24 2014-08-07 Nissan Chem Ind Ltd Triazine ring containing polymer and composition for film formation containing the same
JP2017510828A (en) * 2013-12-20 2017-04-13 スリーエム イノベイティブ プロパティズ カンパニー Quantum dot articles with improved edge penetration
KR102489060B1 (en) * 2015-04-15 2023-01-17 도레이 카부시키가이샤 Heat-resistant resin composition, method for producing a heat-resistant resin film, method for producing an interlayer insulating film or surface protective film, and method for producing electronic components or semiconductor components
WO2016167038A1 (en) * 2015-04-15 2016-10-20 東レ株式会社 Heat-resistant resin composition, method for manufacturing heat-resistant resin film, method for manufacturing interlayer insulation film or surface protective film, and method for manufacturing electronic component or semiconductor component
KR20170137779A (en) * 2015-04-15 2017-12-13 도레이 카부시키가이샤 Heat-resistant resin composition, production method of heat-resistant resin film, production method of interlayer insulation film or surface protection film, and manufacturing method of electronic part or semiconductor part
US10707491B2 (en) 2016-02-10 2020-07-07 Nec Corporation Binder for secondary battery
CN110591359A (en) * 2019-10-23 2019-12-20 合肥中汇睿能能源科技有限公司 Colorless transparent polyimide film
US11552249B2 (en) 2019-12-20 2023-01-10 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Polyimide luminescent material, preparation method thereof, and device thereof
WO2021120368A1 (en) * 2019-12-20 2021-06-24 武汉华星光电半导体显示技术有限公司 Polyimide luminescent material, preparation method and device thereof
CN114015045A (en) * 2021-12-16 2022-02-08 常州大学 Fluorescent polymer and Fe3+Detection test paper and preparation method and application thereof
CN114015045B (en) * 2021-12-16 2023-11-21 常州大学 Fluorescent polymer and Fe 3+ Test paper and preparation method and application thereof
CN115477755A (en) * 2022-09-29 2022-12-16 常州大学 Fluorescent polymer, fluorescent detection test paper, and preparation method and application thereof
CN115477755B (en) * 2022-09-29 2023-11-21 常州大学 Fluorescent polymer, fluorescent detection test paper, and preparation methods and applications thereof

Also Published As

Publication number Publication date
JP5748774B2 (en) 2015-07-15
TW201231504A (en) 2012-08-01
JPWO2012090827A1 (en) 2014-06-05

Similar Documents

Publication Publication Date Title
JP5748774B2 (en) Polyimide composite, polyamic acid solution, method for producing polyimide composite, and film comprising polyimide composite
KR101181192B1 (en) Polyimide composite material and film of the same
KR101961512B1 (en) Polyimide precursor solution composition and method for producing polyimide precursor solution composition
US9850346B2 (en) Transparent polyimide and precursor thereof
JP7047852B2 (en) Polyimide precursors, polyimides, polyimide films, varnishes, and substrates
WO2016199926A1 (en) Polyimide precursor composition and polyimide composition
JPWO2017195574A1 (en) Polyimide resin and polyimide resin composition
KR101898689B1 (en) Flameproofed alicyclic polyimide resin composition and thin-walled molded body of same
US10968316B2 (en) Polyimide resin and polyimide film
JP7069478B2 (en) Polyimide, polyimide solution composition, polyimide film, and substrate
US11242443B2 (en) Dark-color polymer composite films
JP2008297354A (en) Blue light-emitting polyimide
JP5028626B2 (en) Fluorescent material
US11767412B2 (en) Manufacturing process for dark-color polymer composite films
WO2022054765A1 (en) Polymer composition, varnish, and polyimide film
TW202005961A (en) Tetracarboxylic dianhydride, carbonyl compound, polyimide precursor resin, and polyimide
JP7077939B2 (en) Method for controlling polyimide skeleton structure and method for manufacturing polyimide
TW201619241A (en) Substrate for organic electroluminescence, and organic electroluminescent display using same
JP2015134843A (en) highly transparent polyimide resin
TWI795142B (en) Optical film with improved optical properties, display apparatus comprising the same and manufacturing method thereof
JP2002216542A (en) Transparent conductive film
JP2013227499A (en) Highly transparent polyimide resin
JP2008274165A (en) Fluorescent material
JP2014031393A (en) Polyimide and polyamic acid, and method of producing them

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853312

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012550888

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853312

Country of ref document: EP

Kind code of ref document: A1