JP2005070579A - Rewritable optical memory material using change in fluorescence by photoirradiation or heat treatment - Google Patents

Rewritable optical memory material using change in fluorescence by photoirradiation or heat treatment Download PDF

Info

Publication number
JP2005070579A
JP2005070579A JP2003302322A JP2003302322A JP2005070579A JP 2005070579 A JP2005070579 A JP 2005070579A JP 2003302322 A JP2003302322 A JP 2003302322A JP 2003302322 A JP2003302322 A JP 2003302322A JP 2005070579 A JP2005070579 A JP 2005070579A
Authority
JP
Japan
Prior art keywords
polymer
rare earth
optical memory
memory material
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003302322A
Other languages
Japanese (ja)
Other versions
JP4058397B2 (en
Inventor
Hachiro Nakanishi
八郎 中西
Hitoshi Kasai
均 笠井
Takayuki Ishizaka
孝之 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2003302322A priority Critical patent/JP4058397B2/en
Priority to US10/569,105 priority patent/US20060293425A1/en
Priority to CA002536326A priority patent/CA2536326A1/en
Priority to PCT/JP2004/002273 priority patent/WO2005019933A1/en
Publication of JP2005070579A publication Critical patent/JP2005070579A/en
Application granted granted Critical
Publication of JP4058397B2 publication Critical patent/JP4058397B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Non-Silver Salt Photosensitive Materials And Non-Silver Salt Photography (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a material capable of realizing recording of high density information by multiple recording. <P>SOLUTION: The optical memory material is obtained by incorporating rare earth ions into a polymer having a carbonyl group in a backbone or a side chain of the polymer, increases a degree of fluorescence in accordance with a quantity of applied light, and is restored to the initial state by heat treatment. The optical memory material is particularly a polymer film obtained by dissolving a polymer having a carbonyl group in a backbone or a side chain of the polymer and a compound of a rare earth element forming an ion of the rare earth element in a solvent which dissolves at least the two components and by incorporating the above rare earth ions into the above polymer formed from the resulting solution; is fine polymer particles containing the above rare earth ions formed in a particle diameter of 5-10,000 nm by injecting the solution into a bad solvent for at least the above two components; and is a fine particle film formed from the above fine particles; or is a bulk molded article from the above fine particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、希土類元素、特にランタノイドに属する元素のイオンをカルボニル基を有するポリマー中に含有させた光メモリー材料、及び前記希土類元素のイオンおよび前記ポリマーの溶液を用いて製造した光メモリー特性を有する希土類イオン含有ポリマー膜、あるいは前記溶液を貧溶媒に注入して、再沈澱により製造した粒径が5nm〜10000nmの光メモリー特性を有する希土類イオン含有ポリマー微粒子又は前記ポリマー微粒子を含有する溶液から形成した前記希土類イオン含有ポリマー微粒子膜に関する。該ポリマー膜、微粒子または微粒子膜は、光照射エネルギー、換言すれば照射強度×照射時間の積の増加に伴い蛍光強度が増強し、熱処理温度の上昇に伴い蛍光強度が初期状態まで減少することから、前記蛍光の変化を利用した書き換え可能な光メモリー材料として利用できる。   The present invention has an optical memory material in which ions of an element belonging to a rare earth element, particularly an element belonging to a lanthanoid, are contained in a polymer having a carbonyl group, and an optical memory characteristic produced using a solution of the rare earth element ion and the polymer. Rare earth ion-containing polymer film, or formed from a solution containing the rare earth ion-containing polymer fine particles having optical memory characteristics with a particle size of 5 nm to 10000 nm manufactured by reprecipitation by injecting the solution into a poor solvent. The present invention relates to the rare earth ion-containing polymer fine particle film. The polymer film, fine particle, or fine particle film has an increased fluorescence intensity as the product of light irradiation energy, in other words, irradiation intensity × irradiation time increases, and the fluorescence intensity decreases to the initial state as the heat treatment temperature increases. It can be used as a rewritable optical memory material utilizing the change in fluorescence.

近年の情報化社会の発達に伴い、情報の高密度・高速処理が可能な記録材料が求められており、記録に用いる光波長の短波長化が可能な記録媒体を開発することにより、前記短波長化によりピット幅を狭くして記録密度の向上を計ってきたが、さらなる高密度化の達成に際して、従来の1ピットにつき1ビットの記録ではなく、1ピットにつき数ビットの記録可能な多重記録材料が望まれている。また、環境に優しい技術の要求の観点から、前記記録特性に加えて書き換え可能な特性を持つ材料が望まれている。   With the development of the information society in recent years, a recording material capable of high-density and high-speed processing of information has been demanded. By developing a recording medium capable of shortening the light wavelength used for recording, the above-mentioned short Although the recording density has been improved by narrowing the pit width due to the wavelength, multiple recording that can record several bits per pit instead of the conventional one-bit recording when achieving higher density has been achieved. Material is desired. Further, from the viewpoint of environmentally friendly technology requirements, a material having rewritable characteristics in addition to the recording characteristics is desired.

Shinya MAENOSONO, Ceco Danov DUSHKIN, Soichiro SAITA and Yukio YAMAGUCHI, 「Optical Memory Media Based on Excitation-Time Dependent Luminescence from a Thin Film of Semiconductor Nanocrystals」Japanese Journal of Applied Physics 39, 4006-4012 (2000).Shinya MAENOSONO, Ceco Danov DUSHKIN, Soichiro SAITA and Yukio YAMAGUCHI, `` Optical Memory Media Based on Excitation-Time Dependent Luminescence from a Thin Film of Semiconductor Nanocrystals '' Japanese Journal of Applied Physics 39, 4006-4012 (2000). Masayuki Nogami, 「Room temperature persistent spectral hole burning of Eu3+ ions doped in sol-gel derived glasses」Journal of Luminescence 98, 289-294 (2002).Masayuki Nogami, `` Room temperature persistent spectral hole burning of Eu3 + ions doped in sol-gel derived glasses '' Journal of Luminescence 98, 289-294 (2002). Nobuhiko Umezu, Tsunenori Asatsuma, Yoshihiro Takemoto, Masahiko kaneko 「Multi-wavelength recording at room temperature by gated persistent spectral hole burning in SrFCl0.5Br0.5:Sm2+」Journal of Luminescence 64, 195-199 (1995).Nobuhiko Umezu, Tsunenori Asatsuma, Yoshihiro Takemoto, Masahiko kaneko `` Multi-wavelength recording at room temperature by gated persistent spectral hole burning in SrFCl0.5Br0.5: Sm2 + '' Journal of Luminescence 64, 195-199 (1995).

前記非特許文献1にはtri-octylphosphine oxideにdimethylcadmiumu, seleniumu-tri-butylphosphine溶液を添加し、得られた溶液を300℃に維持し、アルゴン雰囲気下で撹拌下に作製したtri-octylphosphine oxideで表面をキャッピングされたCdSe微粒子が波長430nm、15mWのレーザー光の照射時間の増加に伴い蛍光強度が増強して約500分で飽和して初期蛍光強度の7倍の強度を示すこと、増強した発光の強度は500時間以上ほぼ安定であることなどが記載されている。しかしながら蛍光の消去に関しては記載されていない。
前記非特許文献2はゾルゲル法で作製したEu3+イオンを含有したアルミノシリケイトガラスに−196℃(77K)で30分間300W、スポットサイズ1mmのローダミン6Gレーザーを幅照射することによりEu3+の励起スペクトルにホールが生成すること、また室温でX線を照射することで同様にホールが生成して温度を上昇させることでホールの深さが減少することが記載されており、ホールの深さを変化させることで数ビットの記録をすることを提案している。前記非特許文献3はSm2+イオンを含有したSrFCl0.5Br0.5の粉体に688nmから693nmの範囲の多波長の色素レーザーを照射してSm2+の励起スペクトルに多数のホールを生成させて波長多重記録することが記載されており、高密度記録を可能としている。しかしながら、いずれもホール深さは浅くブロードであり閾値があいまいとなる。
このことは、前記情報化社会において記録材料に要求される室温記録特性および高分解能特性において満足すべき記録材料とは言えない。また、記録材料の製造の容易性の観点からも充分とは言えない。
In Non-Patent Document 1, dimethylcadmiumu, seleniumu-tri-butylphosphine solution was added to tri-octylphosphine oxide, and the resulting solution was maintained at 300 ° C. CdSe fine particles capped with 430 nm and 15 mW of laser light increase in fluorescence intensity and saturate in about 500 minutes to show 7 times the initial fluorescence intensity. It is described that the strength is almost stable for 500 hours or more. However, there is no description regarding the extinction of fluorescence.
Non-Patent Document 2 describes the excitation spectrum of Eu 3+ by irradiating an aluminosilicate glass containing Eu 3+ ions produced by the sol-gel method with 300 W at −196 ° C. (77 K) for 30 minutes and a rhodamine 6G laser having a spot size of 1 mm. In addition, it is described that holes are generated in the same manner, and that X-ray irradiation at room temperature generates holes in the same way and raises the temperature, thereby reducing the depth of the holes. It is proposed to record several bits. In Non-Patent Document 3, SrFCl 0.5 Br 0.5 powder containing Sm 2+ ions is irradiated with a multi-wavelength dye laser ranging from 688 nm to 693 nm to generate a large number of holes in the excitation spectrum of Sm 2+. It is described that wavelength multiplex recording is performed, and high-density recording is possible. However, in both cases, the hole depth is shallow and broad, and the threshold value is ambiguous.
This cannot be said to be a satisfactory recording material in room temperature recording characteristics and high resolution characteristics required for recording materials in the information society. Moreover, it cannot be said that it is sufficient from the viewpoint of ease of production of the recording material.

本発明は、記録が室温で安定で、1ピットに対して多ビットの多重記録が可能であり、かつ、記録の書き換え可能な、光照射による蛍光特性の変化を利用した光記録材料を提供することである。
本発明者らはカルボニル基、例えば、イミド基、カルボキシル基あるいはそのエステル基を持つポリマーに含有させた希土類、特にランタノイドに属する元素のイオンが光照射量、すなわち照射光強度×照射時間に依存して希土類イオンの蛍光強度が増強し、特にポリイミド系では最大400倍にも増強すること、また、光照射停止後の発光強度特性が室温で数ヶ月間安定であることを見いだし、多数照射量の閾値を設けることで高密度記録が可能である。また、ポリマーのフレキシブルな構造を利用して、熱処理により初期状態に戻すことで蛍光の強度の消去を実現した。更に、蛍光の消去後、光の再照射により再び蛍光強度の増強が光照射量に依存して増強することを見いだした。前記光記録は膜においてのみではなく5nmサイズの微粒子の形態でも可能であるため、高分解能の記録が可能であることを見出し前記課題を解決することが出来た。
The present invention provides an optical recording material that is stable at room temperature, can perform multi-bit multiplex recording for one pit, and is rewritable, and utilizes a change in fluorescence characteristics due to light irradiation. That is.
The present inventors determined that ions of elements belonging to rare earths, particularly elements belonging to lanthanoids, contained in a polymer having a carbonyl group, for example, an imide group, a carboxyl group or an ester group thereof, depend on the amount of light irradiation, that is, irradiation light intensity × irradiation time. As a result, it was found that the fluorescence intensity of rare earth ions was enhanced, and in particular, it was enhanced up to 400 times in the polyimide system, and the emission intensity characteristics after light irradiation was stopped were stable for several months at room temperature. By providing a threshold value, high density recording is possible. In addition, the fluorescence intensity was erased by returning to the initial state by heat treatment using the flexible structure of the polymer. Furthermore, after the fluorescence was erased, it was found that the fluorescence intensity was increased again by light re-irradiation depending on the amount of light irradiation. Since the optical recording is possible not only in the film but also in the form of fine particles having a size of 5 nm, it has been found that high-resolution recording is possible and has solved the above-mentioned problems.

本発明の第1は、(1)ポリマーの主鎖または側鎖にカルボニル基をもつポリマー中に希土類イオンを含有させた照射光量に対応して蛍光強度が増強し、熱処理により初期状態まで回復可能な光メモリー材料である。好ましくは、(2)前記カルボニル基をもつポリマーがテトラカルボン酸またはその二無水物とジアミンとの反応で得られたポリイミドである前記(1)に記載の光メモリー材料または(3)前記カルボニル基をもつポリマーが側鎖にカルボキシル基またはそのエステル基を有するポリマーである前記(2)に記載の光メモリー材料であり、更に好ましくは、(4)側鎖にカルボキシル基またはそのエステル基を有するポリマーがエチレン系不飽和基の付加重合により得られたものである前記(3)に記載の光メモリー材料である。
より好ましくは、(5)希土類が元素番号58〜70までの元素から選択されるものである前記(1)、(2)、(3)または(4)に記載の光メモリー材料である。
According to the first aspect of the present invention, (1) the fluorescence intensity increases corresponding to the amount of irradiation light in which a rare earth ion is contained in a polymer having a carbonyl group in the main chain or side chain of the polymer, and the initial state can be recovered by heat treatment. Optical memory material. Preferably, (2) the optical memory material according to (1) or (3) the carbonyl group, wherein the polymer having the carbonyl group is a polyimide obtained by a reaction of a tetracarboxylic acid or a dianhydride thereof and a diamine. The optical memory material according to (2) above, wherein the polymer having a carboxyl group or ester group thereof in the side chain is more preferred, (4) a polymer having a carboxyl group or ester group in the side chain Is an optical memory material as described in (3) above, which is obtained by addition polymerization of an ethylenically unsaturated group.
More preferably, (5) the optical memory material according to (1), (2), (3) or (4), wherein the rare earth is selected from elements having an element number of 58 to 70.

本発明の第2は、光メモリー材料がポリマーの主鎖または側鎖にカルボニル基をもつポリマーと希土類元素のイオンを生成する前記希土類元素の化合物を、少なくとも前記2成分を溶解する溶媒に溶解させ、該溶液から形成した前記ポリマー中に前記希土類イオンを含有させたポリマー膜、ポリマーの主鎖または側鎖にカルボニル基をもつポリマーと希土類元素のイオンを生成する前記希土類元素の化合物を、少なくとも前記2成分を溶解する溶媒に溶解させ、該溶液を少なくとも前記2成分の貧溶媒に注入することにより形成した粒径が5nm〜10000nmの前記希土類イオン含有ポリマー微粒子または、ポリマーの主鎖または側鎖にカルボニル基をもつポリマーと希土類元素のイオンを生成する前記希土類元素の化合物を、少なくとも前記2成分を溶解する溶媒に溶解させ、該溶液を少なくとも前記2成分の貧溶媒に注入することにより前記ポリマー中に前記希土類イオンを含有させた光メモリー特性を有する粒径が5nm〜10000nmであるポリマー微粒子を生成させ、前記ポリマー微粒子を含有する溶液から形成した前記希土類イオン含有ポリマーの微粒子膜又はバルク成形体である。   In the second aspect of the present invention, the optical memory material is prepared by dissolving a polymer having a carbonyl group in the main chain or side chain of the polymer and the rare earth element compound that generates rare earth ions in a solvent that dissolves at least the two components. A polymer film in which the rare earth ions are contained in the polymer formed from the solution, a polymer having a carbonyl group in the main chain or side chain of the polymer, and a rare earth element compound that generates rare earth ions, Dissolve two components in a solvent that dissolves, and inject the solution into at least the two component poor solvents, and form the rare earth ion-containing polymer fine particles having a particle diameter of 5 nm to 10,000 nm, or the main chain or side chain of the polymer. The polymer having a carbonyl group and the rare earth element compound that generates rare earth ions are at least The particle size having optical memory characteristics in which the rare earth ions are contained in the polymer by dissolving the two components in a solvent that dissolves the two components and injecting the solution into at least the two component poor solvents is 5 nm to 10,000 nm. It is a fine particle film or a bulk molded body of the rare earth ion-containing polymer formed from a solution containing polymer fine particles by producing polymer fine particles.

発明の効果として、発光強度を複数の閾値域に分割して、それぞれの強度域で独立の情報記録が可能な、高密度記録(記憶)材料を、希土類イオンを利用した高密度記録材料としては、前記公知の希土類イオンをガラス材料に含有させたもと類似するが、加工性の容易なポリマーを用いて実現した点、及び記録などの特性が前記公知のものと異なる現象によるものと推測される点で全く新しい光メモリー材料を提供したものであることを挙げることができる。   As an effect of the invention, as a high-density recording material using rare earth ions, a high-density recording (memory) material in which the emission intensity is divided into a plurality of threshold regions and independent information recording is possible in each of the intensity regions. Similar to the case where the known rare earth ion is contained in the glass material, but is realized by using a polymer that is easy to process, and that the characteristics such as recording are presumed to be caused by a phenomenon different from the known one. It can be mentioned that the company has provided a completely new optical memory material.

A.希土類イオンを構成する材料は、カルボニル基を持ったポリマー材料中に存在して、光照射により異なった配位状態を形成し、室温において安定にその状態を維持していることが大切である。前記配位状態を生成する希土類元素としては、ランタノイドに属する元素、好ましくは、原子番号58〜70までの元素、より好ましくは、Eu、Tb、GdおよびCeから選択される。特定の蛍光ピーク波長を持ち、蛍光強度の増強が異なる多重遷移に対応する記録が可能である。
B.ポリマー材料は、前記配位状態の希土類イオンを室温において安定に保持することが重要であり、希土類元素イオンと酸素との配位結合状態、希土類元素イオン−Oが前記多重配位結合状態を維持するのに好ましいものと推測されるので、本発明において前記ポリマーの主鎖または側鎖にカルボニル基をもつポリマーを好ましいものとして用いた。
これを、配位結合状態と関連する電子論的な推測をすれば、ポリマーと希土類元素イオンとのエネルギー移動の実現のために、ポリマーのHOMO、LUMOのエネルギーギャップと希土類イオンの基底状態と励起状態のエネルギーギャップが前記条件に対応していることが重要である。
B−1.好ましいポリマーとしては、先ず、ポリイミドを挙げることができる。
テトラカルボン酸またはその二無水物としては、3,3’−4,4’−ベンゾフェノンテトラカルボン酸(BTDA)、3,3’−4,4’− テトラカルボキシビフェニル、2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、およびこれらの二無水物を例示できる。
B−2.前記テトラカルボン酸またはその二無水物と反応してポリイミド前駆体のポリアミド酸を形成し、その後のイミド化などでポリイミドを形成するジアミンとしては、4,4’−ジアミノジフェニルエーテル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ジアミノベンゼン、4,4’−メチレンビス(メチルシクロヘキシルアミン)、4,4’−メチレンビス(エチルシクロヘキシルアミン)などを挙げることができる。
B−3.他のポリマーとしては、ポリアクリル酸、ポリメタクリル酸メチル(PMMA)の様な、側鎖にカルボキシル基またはエステル基をもつ、エチレン系不飽和結合を有するモノマーの付加重合体を挙げることができる。
A. It is important that the material constituting the rare earth ions exists in a polymer material having a carbonyl group, forms different coordination states by light irradiation, and stably maintains the state at room temperature. The rare earth element that generates the coordination state is selected from elements belonging to lanthanoids, preferably elements having an atomic number of 58 to 70, and more preferably Eu, Tb, Gd, and Ce. Recording corresponding to multiple transitions having specific fluorescence peak wavelengths and different fluorescence intensity enhancements is possible.
B. It is important for the polymer material to stably hold the rare earth ions in the coordination state at room temperature. The coordination bond state between the rare earth element ions and oxygen and the rare earth element ion-O maintain the multiple coordination bond state. Therefore, in the present invention, a polymer having a carbonyl group in the main chain or side chain of the polymer is used as a preferable one.
If we make an electronic theory related to the coordination bond state, the HOMO and LUMO energy gaps of the polymer and the ground state of the rare earth ion and the excitation are realized in order to realize the energy transfer between the polymer and the rare earth element ion. It is important that the energy gap of the state corresponds to the above conditions.
B-1. As a preferred polymer, first, polyimide can be mentioned.
Examples of tetracarboxylic acid or dianhydride thereof include 3,3′-4,4′-benzophenonetetracarboxylic acid (BTDA), 3,3′-4,4′-tetracarboxybiphenyl, 2,2- (3, 4-Dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane and dianhydrides thereof can be exemplified.
B-2. The diamine that reacts with the tetracarboxylic acid or its dianhydride to form a polyimide precursor polyamic acid and then forms a polyimide by subsequent imidization or the like includes 4,4'-diaminodiphenyl ether, 4,4'- Bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-diaminobenzene, 4,4′-methylenebis (methyl) Cyclohexylamine), 4,4′-methylenebis (ethylcyclohexylamine), and the like.
B-3. Examples of the other polymer include addition polymers of monomers having an ethylenically unsaturated bond having a carboxyl group or an ester group in the side chain, such as polyacrylic acid and polymethyl methacrylate (PMMA).

C.粒径は記録光の有効利用の観点から重要である。前記ポリマーおよび希土類元素化合物を溶解して前記希土類元素がイオンとして存在する溶液を調製し、該溶液を前記2成分の貧溶媒中に注入して微粒子を製造する再沈法を利用することにより粒径5nmの前記希土類元素のイオンが均一に分散した粒子を得ることができる。
D.記録材料の製造法
前記光メモリー材料の製造には、ポリマーの主鎖または側鎖にカルボニル基をもつポリマーに対して1〜10重量%の希土類塩を配合し、前記ポリマーを0.1〜15重量%の濃度で溶媒、好ましくは、前記希土類塩を溶液中でイオンとして存在させるために極性溶媒、に溶解したポリマー溶液を、ポリマー膜の形成手段としては公知の、スピンコーティング、ディップコーティング、キャスティングなどを適用して、希土類塩含有ポリマー膜とするか、或いは、前記ポリマー溶液を、脂肪族系溶剤(デカリン、ヘキサン)脂環式系溶剤(シクロヘキサン)、芳香族系溶剤(ベンゼン、トルエン)、CS及びこれらの2種以上の混合物から選択され、温度を−20℃〜60℃に制御した貧溶媒に注入することにより粒径が5nm〜10000nmであるポリマー微粒子を生成させ、
得られたポリマー微粒子分散用液を、前記ポリマー膜の形成手段と同様の手段を適用して、あるいは電着により希土類塩含有ポリマー微粒子膜を作製する。
C. The particle size is important from the viewpoint of effective use of recording light. The polymer and the rare earth element compound are dissolved to prepare a solution in which the rare earth element is present as ions, and the solution is injected into the two-component poor solvent to produce fine particles. Particles in which ions of the rare earth element having a diameter of 5 nm are uniformly dispersed can be obtained.
D. Method for Producing Recording Material In the production of the optical memory material, 1 to 10% by weight of a rare earth salt is blended with respect to a polymer having a carbonyl group in the main chain or side chain of the polymer, and the polymer is 0.1 to 15%. A polymer solution in which the polymer is dissolved in a solvent at a concentration of% by weight, preferably a polar solvent in order to allow the rare earth salt to exist as ions in the solution, is known as means for forming a polymer film, such as spin coating, dip coating, and casting. Or a rare earth salt-containing polymer film, or the polymer solution is made of an aliphatic solvent (decalin, hexane) alicyclic solvent (cyclohexane), an aromatic solvent (benzene, toluene), CS 2 and is selected from a mixture of two or more of these, the particle size by injecting into a poor solvent having a controlled temperature of -20 ° C. to 60 ° C. To produce a polymer particle is Nm~10000nm,
By applying the same means as the polymer film forming means to the obtained polymer fine particle dispersion liquid, or by electrodeposition, a rare earth salt-containing polymer fine particle film is prepared.

前記極性溶媒としては、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、アセトニトリル、アルコール系(メタノール、エタノール、イソプロパノールなど)、N,N−ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン(NMP)などを挙げることができる。
ポリイミドをポリマー材料とする光メモリー材料の製造には、ポリイミドの前駆体であるポリアミド酸(アミック酸ともいう。)を用いて、膜または微粒子を製造後物理的または化学的イミド化するのが好ましい。
Examples of the polar solvent include acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, acetonitrile, alcohols (methanol, ethanol, isopropanol, etc.), N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone (NMP), and the like. .
For the production of optical memory materials using polyimide as a polymer material, it is preferable to use a polyamic acid (also referred to as an amic acid), which is a precursor of polyimide, and then physically or chemically imidize the film or fine particles after production. .

E.前記製造方法により作成された希土類塩含有ポリマー膜あるいは希土類塩含有ポリマー微粒子膜には、前記B.に記載のカルボニル基を有するポリマーと希土類元素イオンと酸素との配位結合状態に対応する波長の光、例えば波長254nmまたは304nmの光を照射すことにより前記照射光量に依存した希土類イオンの蛍光強度が増強された室温で安定な光記録をすることができる。また、前記希土類塩含有ポリマーのガラス転移点以下で熱処理を施すことによる、前記処理温度に対応する状態に蛍光強度を減少乃至消去することができる。
F.好ましくは、前記光メモリー材料の製造に用いる希土類塩としては、Eu3+もしくはTb3+の塩化物塩、硝酸塩、シアン化合物などが好ましい。ポリマーがポリイミド、ポリアクリル酸、ポリメタクリル酸メチル(PMMA)であることを特徴とする前記膜に前記蛍光特性の増強を利用した多ビット記録可能な材料を製造する方法である。
E. The rare earth salt-containing polymer film or the rare earth salt-containing polymer fine particle film prepared by the production method includes the B. Fluorescence intensity of rare earth ions depending on the irradiation light amount by irradiating light having a wavelength corresponding to the coordinated bonding state of the polymer having a carbonyl group, a rare earth element ion and oxygen, for example, light having a wavelength of 254 nm or 304 nm Can be recorded stably at room temperature. In addition, the fluorescence intensity can be reduced or eliminated in a state corresponding to the treatment temperature by performing a heat treatment below the glass transition point of the rare earth salt-containing polymer.
F. Preferably, the rare earth salt used in the production of the optical memory material is Eu 3+ or Tb 3+ chloride salt, nitrate salt, cyanide compound or the like. A method for producing a multi-bit recordable material using the enhancement of the fluorescence property in the film, wherein the polymer is polyimide, polyacrylic acid, or polymethyl methacrylate (PMMA).

実施例1を説明する。
2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物と4,4−ジアミノジフェニルエーテルの重合により得られたポリアミド酸(平均分子量:122955)を、濃度0.7重量%になるようにアセトンに溶解させた。これに前記溶解させたポリアミド酸に対してEu3+の配合量が1重量%、5重量%、10重量%/ポリアミド酸となるようにEu(NOを添加して、ポリアミド酸−Eu(NOのアセトン溶液を調製した。次いで前記溶液0.01mlを20×10mmの石英板上にキャスティング、3000rpmでスピンコーティングまたはディップコーティングの後、乾燥することによりEu3+含有ポリアミド膜を作製した。これを350℃で2時間保持して熱イミド化を完了させEu3+含有ポリイミド膜を得た。前記作製したEu3+含有ポリイミド膜の光記録特性を調べるために、UVランプを用いて6Wの波長254nm光を照射すると、その照射時間の増加に伴いEu3+に帰属される蛍光強度が増強した。結果を図1に示す。飽和強度は5重量%のEu3+含有ポリイミド微粒子が最も大きく、UVランプ照射前と比べて約400倍となった。蛍光強度が飽和したEu3+含有ポリイミド微粒子膜に5分間の熱処理を施すと、熱処理温度の上昇に伴い蛍光強度は減少して、200℃で完全に消滅した。結果を図2に示す。蛍光の消去後さらにUV光を照射すると蛍光強度は増強した。結果を図3に示す。
このことから、前記Eu3+含有ポリイミド微粒子膜が、書き込み−再生可能な光メモリー材料として有用であることが分かった。
Example 1 will be described.
Polyamic acid (average molecular weight) obtained by polymerization of 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride and 4,4-diaminodiphenyl ether : 122955) was dissolved in acetone to a concentration of 0.7% by weight. Eu (NO 3 ) 3 was added thereto so that the blending amount of Eu 3+ was 1% by weight, 5% by weight, 10% by weight / polyamic acid with respect to the dissolved polyamic acid. An acetone solution of (NO 3 ) 3 was prepared. Next, 0.01 ml of the solution was cast on a 20 × 10 mm quartz plate, spin-coated or dip-coated at 3000 rpm, and dried to prepare a Eu 3 + -containing polyamide film. This was held at 350 ° C. for 2 hours to complete the thermal imidization to obtain an Eu 3+ containing polyimide film. In order to investigate the optical recording characteristics of the prepared Eu 3+ containing polyimide film, when UV light was used to irradiate light with a wavelength of 254 nm of 6 W, the fluorescence intensity attributed to Eu 3+ increased with the increase of the irradiation time. The results are shown in FIG. The saturation strength was the largest for 5% by weight of Eu 3 + -containing polyimide fine particles, which was about 400 times that before UV irradiation. When the Eu 3 + -containing polyimide fine particle film with saturated fluorescence intensity was subjected to a heat treatment for 5 minutes, the fluorescence intensity decreased as the heat treatment temperature increased and disappeared completely at 200 ° C. The results are shown in FIG. When UV light was further irradiated after the fluorescence was erased, the fluorescence intensity was enhanced. The results are shown in FIG.
From this, it was found that the Eu 3 + -containing polyimide fine particle film is useful as a writable and reproducible optical memory material.

2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物と4,4−ジアミノジフェニルエーテルの重合により得られたポリアミド酸(平均分子量:122955)を、濃度0.7重量%になるようにNMPに溶解させた。これに前記溶解させたポリアミド酸に対するTb3+の配合量が5質量%/ポリアミド酸となるようにTb(NOを添加して、ポリアミド酸−Tb(NOのNMP溶液を調製した。次いで前記溶液0.01mlを20×10mmの石英板上にキャスティング、3000rpmでスピンコーティングまたはディップコーティングの後、乾燥することによりTb3+含有ポリアミド膜を作製した。これを350℃で2時間保持する熱イミド化を行った後、UVランプを用いて6Wの波長254nm光を照射すると、その照射時間の増加に伴いTb3+に帰属される蛍光強度が増強し、約15時間で飽和した。結果を図4に示す。蛍光強度が飽和したTb3+含有ポリイミド微粒子膜に5分間の熱処理を施すと、熱処理温度の上昇に伴い蛍光強度は減少して、200℃で完全に消滅した。蛍光の消去後さらにUV光を照射すると蛍光強度は増強した。
このことから、前記Tb3+含有ポリイミド微粒子膜が、書き込み−再生可能な光メモリー材料として有用であることが分かった。
Polyamic acid (average molecular weight) obtained by polymerization of 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride and 4,4-diaminodiphenyl ether : 122955) was dissolved in NMP to a concentration of 0.7% by weight. To this, Tb (NO 3 ) 3 was added so that the blending amount of Tb 3+ with respect to the dissolved polyamic acid was 5% by mass / polyamic acid to prepare an NMP solution of polyamic acid-Tb (NO 3 ) 3. did. Next, 0.01 ml of the solution was cast on a 20 × 10 mm quartz plate, spin-coated or dip-coated at 3000 rpm, and dried to prepare a Tb 3 + -containing polyamide film. After performing thermal imidization by holding this at 350 ° C. for 2 hours and irradiating with 6 W wavelength 254 nm light using a UV lamp, the fluorescence intensity attributed to Tb 3+ increases with an increase in the irradiation time, Saturated in about 15 hours. The results are shown in FIG. When the Tb 3 + -containing polyimide fine particle film with saturated fluorescence intensity was subjected to a heat treatment for 5 minutes, the fluorescence intensity decreased as the heat treatment temperature increased and disappeared completely at 200 ° C. When UV light was further irradiated after the fluorescence was erased, the fluorescence intensity was enhanced.
From this, it was found that the Tb 3+ containing polyimide fine particle film is useful as an optical memory material capable of writing and reproducing.

2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物と4,4−ジアミノジフェニルエーテルの重合により得られたポリアミド酸(平均分子量:122955)を、濃度0.7重量%になるようにアセトンに溶解させた。これに前記溶解させたポリアミド酸に対するEu3+の配合量が5質量%/ポリアミド酸となるようにEu(NOを添加して、ポリアミド酸−Eu(NOのアセトン溶液を調製した。次いで前記溶液0.01mlを20×10mmの石英板上にキャスティング、3000rpmでスピンコーティングまたはディップコーティングの後、乾燥することによりEu3+含有ポリアミド膜を作製した。これを350℃で2時間保持して熱イミド化を完了させEu3+含有ポリイミド膜を得た。前記作製したEu3+含有ポリイミド膜の光記録特性を調べるために、UVランプを用いて6Wの波長304nm光を照射すると、その照射時間の増加に伴いEu3+に帰属される蛍光強度が増強し、約24時間で蛍光強度が飽和したEu3+含有ポリイミド膜に5分間の熱処理を施すと、熱処理温度の上昇に伴い蛍光強度は減少して、200℃で完全に消滅した。蛍光の消去後さらにUV光を照射すると蛍光強度は増強した。
このことから、前記Eu3+含有ポリイミド膜が、書き込み−再生可能な光メモリー材料として有用であることが分かった。
Polyamic acid (average molecular weight) obtained by polymerization of 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride and 4,4-diaminodiphenyl ether : 122955) was dissolved in acetone to a concentration of 0.7% by weight. Eu (NO 3 ) 3 was added thereto so that the blending amount of Eu 3+ with respect to the dissolved polyamic acid was 5% by mass / polyamic acid to prepare an acetone solution of polyamic acid-Eu (NO 3 ) 3. did. Next, 0.01 ml of the solution was cast on a 20 × 10 mm quartz plate, spin-coated or dip-coated at 3000 rpm, and dried to prepare a Eu 3 + -containing polyamide film. This was held at 350 ° C. for 2 hours to complete the thermal imidization to obtain an Eu 3+ containing polyimide film. In order to investigate the optical recording characteristics of the prepared Eu 3+ containing polyimide film, when UV light was used to irradiate light with a wavelength of 6 W of 304 nm, the fluorescence intensity attributed to Eu 3+ increased with an increase in the irradiation time, When a heat treatment for 5 minutes was performed on the Eu 3+ containing polyimide film in which the fluorescence intensity was saturated in about 24 hours, the fluorescence intensity decreased with the increase of the heat treatment temperature and disappeared completely at 200 ° C. When UV light was further irradiated after the fluorescence was erased, the fluorescence intensity was enhanced.
From this, it was found that the Eu 3+ containing polyimide film is useful as an optical memory material capable of writing and reproducing.

3,3’,4,4’−テトラカルボキシビフェニル二無水物と1,4−ジアミノベンゼンの重合により得られたポリアミド酸を、濃度1重量%になるようにNMPに溶解させた。これに前記溶解させたポリアミド酸に対するEu3+又はTb3+又はSm3+又はEr3+の配合量が5質量%/ポリアミド酸となるようにEu(NO又はTb(NO又はSm(NO又はEr(NOを添加して、ポリアミド酸−Eu(NO、ポリアミド酸−Tb(NO、ポリアミド酸−Sm(NO、及びポリアミド酸−Er(NOの溶液を調製した。前記溶液0.01mlを20×10mmの石英板上にキャスティング、3000rpmでスピンコーティングまたはディップコーティングの後、乾燥することによりEu3+含有ポリアミド酸膜を得た。前記作製したEu3+含有ポリアミド膜の光記録特性を調べるためにUVランプを用いて6Wの波長254nm光を照射すると、その照射時間の増加に伴いEu3+に帰属される蛍光強度が増強し、約3時間で蛍光強度が飽和した。Eu3+含有ポリアミド膜の結果を図5に示す。蛍光強度が飽和したEu3+含有ポリアミド酸膜に200℃で5分間の熱処理を施すと、完全に消滅した。蛍光の消去後さらにUV光を照射すると蛍光強度は増強した。Tb3+又はSm3+又はEr3+を含有ポリアミド膜においてもEu3+の場合と同様の特性が発現した。 Polyamic acid obtained by polymerization of 3,3 ′, 4,4′-tetracarboxybiphenyl dianhydride and 1,4-diaminobenzene was dissolved in NMP to a concentration of 1% by weight. Eu (NO 3 ) 3 or Tb (NO 3 ) 3 or Sm (so that the blending amount of Eu 3+ or Tb 3+ or Sm 3+ or Er 3+ with respect to the dissolved polyamic acid is 5% by mass / polyamic acid. NO 3 ) 3 or Er (NO 3 ) 3 is added to form polyamic acid-Eu (NO 3 ) 3 , polyamic acid-Tb (NO 3 ) 3 , polyamic acid-Sm (NO 3 ) 3 , and polyamic acid- A solution of Er (NO 3 ) 3 was prepared. 0.01 ml of the solution was cast on a 20 × 10 mm quartz plate, spin-coated or dip-coated at 3000 rpm, and then dried to obtain a Eu 3 + -containing polyamic acid film. In order to investigate the optical recording characteristics of the produced Eu 3 + -containing polyamide film, when irradiating light with a wavelength of 254 nm of 6 W using a UV lamp, the fluorescence intensity attributed to Eu 3+ increases with an increase in the irradiation time, and about The fluorescence intensity was saturated in 3 hours. The result of the Eu 3+ containing polyamide film is shown in FIG. When the Eu 3+ containing polyamic acid film with saturated fluorescence intensity was subjected to a heat treatment at 200 ° C. for 5 minutes, it completely disappeared. When UV light was further irradiated after the fluorescence was erased, the fluorescence intensity was enhanced. In the polyamide film containing Tb 3+ or Sm 3+ or Er 3+ , the same characteristics as in the case of Eu 3+ were developed.

ポリアクリル酸(分子量:450000)を、濃度1重量%になるようにNMPに溶解させた。これに前記溶解させたポリアクリル酸に対するEu3+の配合量が5重量%/ポリアクリル酸となるようにEu(NOを加えポリアクリル酸−Eu(NO溶液を調製した。前記溶液0.01mlを20×10mmの石英板上にキャスティング、3000rpmでスピンコーティングまたはディップコーティングの後、乾燥することによりEu3+含有ポリアクリル酸膜を作製した。前記作製したEu3+含有ポリアクリル酸膜の光記録特性を調べるためにUVランプを用いて6Wの波長254nm光を照射すると、その照射時間の増加に伴いEu3+に帰属される蛍光強度が増強し、約24時間で蛍光強度が飽和した。結果を図6に示す。蛍光強度が飽和したEu3+含有ポリイミド膜に5分間の熱処理を施すと、熱処理温度の上昇に伴い蛍光強度は減少して、140℃で完全に消滅した。蛍光の消去後さらにUV光を照射すると蛍光強度は増強した。 Polyacrylic acid (molecular weight: 450,000) was dissolved in NMP to a concentration of 1% by weight. Eu (NO 3 ) 3 was added thereto so that the blending amount of Eu 3+ with respect to the dissolved polyacrylic acid was 5% by weight / polyacrylic acid to prepare a polyacrylic acid-Eu (NO 3 ) 3 solution. An Eu 3 + -containing polyacrylic acid film was prepared by casting 0.01 ml of the solution on a 20 × 10 mm quartz plate, spin coating or dip coating at 3000 rpm, and drying. In order to investigate the optical recording characteristics of the prepared Eu 3 + -containing polyacrylic acid film, when a 6 W wavelength 254 nm light was irradiated using a UV lamp, the fluorescence intensity attributed to Eu 3+ increased as the irradiation time increased. In about 24 hours, the fluorescence intensity was saturated. The results are shown in FIG. When the Eu 3+ containing polyimide film with saturated fluorescence intensity was subjected to a heat treatment for 5 minutes, the fluorescence intensity decreased as the heat treatment temperature increased and disappeared completely at 140 ° C. When UV light was further irradiated after the fluorescence was erased, the fluorescence intensity was enhanced.

ポリメタクリル酸メチル(PMMA)(分子量:350000)を、濃度1重量%になるようにNMPに溶解させた。これに前記溶解させたポリメタクリル酸メチルに対してEu3+の配合量が5重量%/PMMAとなるように溶液を調製した。次いで前記溶液0.01mlを20×10mmの石英板上にキャスティング、3000rpmでスピンコーティングまたはディップコーティングの後、乾燥することによりEu3+含有PMMA膜を作製した。前記作製したEu3+含有PMMA膜の光記録特性を調べるためにUVランプを用いて6Wの波長254nm光を照射すると、その照射時間の増加に伴いEu3+に帰属される蛍光強度が増強し、約24時間で蛍光強度が飽和した。蛍光強度が飽和したEu3+含有PMMA膜に5分間の熱処理を施すと、熱処理温度の上昇に伴い蛍光強度は減少して、160℃で完全に消滅した。蛍光の消去後さらにUV光を照射すると蛍光強度は増強した。 Polymethyl methacrylate (PMMA) (molecular weight: 350,000) was dissolved in NMP to a concentration of 1% by weight. A solution was prepared so that the blending amount of Eu 3+ was 5 wt% / PMMA with respect to the polymethyl methacrylate dissolved therein. Next, 0.01 ml of the solution was cast on a 20 × 10 mm quartz plate, spin-coated or dip-coated at 3000 rpm, and dried to prepare a Eu 3 + -containing PMMA film. In order to investigate the optical recording characteristics of the produced Eu 3 + -containing PMMA film, irradiation with 6 W wavelength 254 nm light using a UV lamp increases the fluorescence intensity attributed to Eu 3+ as the irradiation time increases, The fluorescence intensity was saturated in 24 hours. When the Eu 3+ containing PMMA film with saturated fluorescence intensity was subjected to a heat treatment for 5 minutes, the fluorescence intensity decreased as the heat treatment temperature increased, and disappeared completely at 160 ° C. When UV light was further irradiated after the fluorescence was erased, the fluorescence intensity was enhanced.

ポリアクリル酸(平均分子量:450000)を、濃度1重量%になるようにNMPに溶解させた。これに前記溶解させたポリアクリル酸に対するEu3+の配合量が5重量%/ポリアクリル酸となるようにEu(NOを加えポリアクリル酸−Eu(NO溶液を調製した。前記溶液0.1mlを室温下、1500rpmの撹拌条件下で、マイクロシリンジを用いて、10mlのシクロヘキサン(アクリディック:0.1重量%含有)に注入することでEu3+含有ポリアクリル酸微粒子を得た。走査電子顕微鏡(SEM)で観察した結果を図7に示す。前記Eu3+含有ポリアクリル酸微粒子をキャスト法によりまたは電着(分散液の微粒子濃度:0.1〜1重量%、印加電圧:10〜1000V/cm―1)により膜をまた、乾燥した微粒子0.2gを直径3mmの成形器に入れプレスすることによりバルク成形体を作製した。次いで前記作製した膜の光記録特性を調べるために、前記Eu3+含有ポリアクリル酸膜にUVランプを用いて6Wの波長254nm光を照射すると、その照射時間の増加に伴いEu3+に帰属される蛍光強度が増強し、約24時間で蛍光強度が飽和した。蛍光強度が飽和したEu3+含有ポリイミド膜に5分間の熱処理を施すと、熱処理温度の上昇に伴い蛍光強度は減少して、140℃で完全に消滅した。蛍光の消去後さらにUV光を照射すると蛍光強度は増強した。 Polyacrylic acid (average molecular weight: 450,000) was dissolved in NMP to a concentration of 1% by weight. Eu (NO 3 ) 3 was added thereto so that the blending amount of Eu 3+ with respect to the dissolved polyacrylic acid was 5% by weight / polyacrylic acid to prepare a polyacrylic acid-Eu (NO 3 ) 3 solution. Eu 3 + -containing polyacrylic acid fine particles are obtained by injecting 0.1 ml of the above solution into 10 ml of cyclohexane (acridic: containing 0.1% by weight) using a microsyringe under stirring conditions of 1500 rpm at room temperature. It was. The results observed with a scanning electron microscope (SEM) are shown in FIG. The Eu 3 + -containing polyacrylic acid fine particles were dried by the casting method or electrodeposition (fine particle concentration of dispersion: 0.1 to 1 wt%, applied voltage: 10 to 1000 V / cm −1 ). .2 g was put into a molding machine having a diameter of 3 mm and pressed to prepare a bulk molded body. Next, in order to investigate the optical recording characteristics of the produced film, when the Eu 3 + -containing polyacrylic acid film is irradiated with light having a wavelength of 254 nm of 6 W using a UV lamp, it is attributed to Eu 3+ as the irradiation time increases. The fluorescence intensity increased, and the fluorescence intensity was saturated in about 24 hours. When the Eu 3+ containing polyimide film with saturated fluorescence intensity was subjected to a heat treatment for 5 minutes, the fluorescence intensity decreased as the heat treatment temperature increased and disappeared completely at 140 ° C. When UV light was further irradiated after the fluorescence was erased, the fluorescence intensity was enhanced.

前記のように前記希土類元素イオン含有ポリマー材料は照射光量に対応して蛍光強度が増強し、その特性が室温条件において安定に保たれることから、光記録材料として利用できること、かつ、照射光量の閾値を区切って多重に記録できること、更に、前記光記録は、加熱などの手段により初期状態に回復可能であることから、書き換え可能な記録材料として利用可能である。   As described above, the rare earth element ion-containing polymer material has enhanced fluorescence intensity corresponding to the amount of irradiation light, and its characteristics are stably maintained at room temperature conditions, so that it can be used as an optical recording material, and The optical recording can be used as a rewritable recording material because multiple recording can be performed by dividing the threshold value, and the optical recording can be restored to the initial state by means such as heating.

実施例1で得られたEu3+含有ポリイミド膜の種々の時間UVランプを照射した時の蛍光スペクトルFluorescence spectrum of the Eu 3+ containing polyimide film obtained in Example 1 when irradiated with a UV lamp for various times 実施例1で得られたEu3+含有ポリイミド膜の種々の温度で熱処理を施した時の蛍光スペクトルFluorescence spectra when heat-treated at various temperatures for the Eu 3+ containing polyimide film obtained in Example 1 実施例1で得られたEu3+含有ポリイミド膜の200℃で熱処理後、種々の時間UVランプを照射した時の蛍光スペクトルFluorescence spectrum of the Eu 3 + -containing polyimide film obtained in Example 1 after heat treatment at 200 ° C. and irradiation with a UV lamp for various times. 実施例2で得られたTb3+含有ポリイミド膜の種々の時間UVランプを照射した時の蛍光スペクトルFluorescence spectrum of the Tb 3 + -containing polyimide film obtained in Example 2 when irradiated with a UV lamp for various times 実施例5で得られたEu3+含有ポリアミド酸膜の種々の時間UVランプを照射した時の蛍光スペクトルFluorescence spectrum of the Eu 3 + -containing polyamic acid film obtained in Example 5 when irradiated with a UV lamp for various times 実施例6で得られたEu3+含有ポリアクリル酸膜の種々の時間UVランプを照射した時の蛍光スペクトルFluorescence spectrum of the Eu 3 + -containing polyacrylic acid film obtained in Example 6 when irradiated with a UV lamp for various times 実施例8で得られたEu3+含有ポリアクリル酸微粒子のSEM写真SEM photograph of Eu 3 + -containing polyacrylic acid fine particles obtained in Example 8

Claims (6)

ポリマーの主鎖または側鎖にカルボニル基をもつポリマー中に希土類イオンを含有させた照射光量に対応して蛍光強度が増強し、熱処理により前記処理温度に対応する状態に回復する光メモリー材料。 An optical memory material whose fluorescence intensity is enhanced in response to the amount of irradiation light in which a rare earth ion is contained in a polymer having a carbonyl group in the main chain or side chain of the polymer, and which is restored to a state corresponding to the processing temperature by heat treatment. 前記カルボニル基をもつポリマーがテトラカルボン酸またはその二無水物とジアミンとの反応で得られたポリイミドである請求項1に記載の光メモリー材料。 2. The optical memory material according to claim 1, wherein the polymer having a carbonyl group is a polyimide obtained by a reaction of tetracarboxylic acid or a dianhydride thereof and a diamine. 前記カルボニル基をもつポリマーが側鎖にカルボキシル基またはそのエステル基を有するポリマーである請求項1に記載の光メモリー材料。 The optical memory material according to claim 1, wherein the polymer having a carbonyl group is a polymer having a carboxyl group or an ester group thereof in a side chain. 側鎖にカルボキシル基またはそのエステル基を有するポリマーがエチレン系不飽和基の付加重合により得られたものである請求項3に記載の光メモリー材料。 The optical memory material according to claim 3, wherein the polymer having a carboxyl group or an ester group thereof in the side chain is obtained by addition polymerization of an ethylenically unsaturated group. 希土類が原子番号58〜70までの元素から選択されるものである請求項1、2、3または4に記載の光メモリー材料。 The optical memory material according to claim 1, 2, 3, or 4, wherein the rare earth is selected from elements having an atomic number of 58 to 70. 光メモリー材料がポリマーの主鎖または側鎖にカルボニル基をもつポリマーと希土類元素のイオンを生成する前記希土類元素の化合物を、少なくとも前記2成分を溶解する溶媒に溶解させ、該溶液から形成した前記ポリマー中に前記希土類イオンを含有させたポリマー膜、該溶液を少なくとも前記2成分の貧溶媒に注入することにより形成した粒径が5nm〜10000nmの前記希土類イオン含有ポリマー微粒子、前記微粒子から形成した微粒子膜又は前記微粒子からのバルク成形体である光メモリー材料。
The optical memory material is formed from the solution by dissolving a polymer having a carbonyl group in the main chain or side chain of the polymer and the rare earth element compound that generates rare earth ions in a solvent that dissolves at least the two components. A polymer film containing the rare earth ions in a polymer, the rare earth ion-containing polymer fine particles having a particle diameter of 5 nm to 10,000 nm formed by injecting the solution into at least the two poor solvents, and fine particles formed from the fine particles An optical memory material which is a film or a bulk molded body from the fine particles.
JP2003302322A 2003-08-26 2003-08-27 Rewritable optical memory material that utilizes changes in fluorescence characteristics by light irradiation or heat treatment Expired - Fee Related JP4058397B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2003302322A JP4058397B2 (en) 2003-08-27 2003-08-27 Rewritable optical memory material that utilizes changes in fluorescence characteristics by light irradiation or heat treatment
US10/569,105 US20060293425A1 (en) 2003-08-26 2004-02-26 Method for producing functional polyimide fine particle and rewritable memory material utilizing change in fluorescence characteristics caused in fluorescence characteristics caused by light irradiation or heat treatment
CA002536326A CA2536326A1 (en) 2003-08-26 2004-02-26 Method for producing functional polyimide fine particle, and rewritable memory material utilizing change in fluorescence characteristics caused by light irradiation or heat treatment
PCT/JP2004/002273 WO2005019933A1 (en) 2003-08-26 2004-02-26 Method for producing functional polyimide fine particle, and rewritable memory material utilizing change in fluorescence characteristics caused by light irradiation or heat treatment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003302322A JP4058397B2 (en) 2003-08-27 2003-08-27 Rewritable optical memory material that utilizes changes in fluorescence characteristics by light irradiation or heat treatment

Publications (2)

Publication Number Publication Date
JP2005070579A true JP2005070579A (en) 2005-03-17
JP4058397B2 JP4058397B2 (en) 2008-03-05

Family

ID=34406619

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003302322A Expired - Fee Related JP4058397B2 (en) 2003-08-26 2003-08-27 Rewritable optical memory material that utilizes changes in fluorescence characteristics by light irradiation or heat treatment

Country Status (1)

Country Link
JP (1) JP4058397B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090827A1 (en) * 2010-12-27 2012-07-05 三井化学株式会社 Polyimide complex, polyamic acid solution, method for manufacturing polyimide complex, and film produced from polyimide complex
WO2012141210A1 (en) * 2011-04-12 2012-10-18 日産化学工業株式会社 Photosensitive organic particle

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012090827A1 (en) * 2010-12-27 2012-07-05 三井化学株式会社 Polyimide complex, polyamic acid solution, method for manufacturing polyimide complex, and film produced from polyimide complex
JPWO2012090827A1 (en) * 2010-12-27 2014-06-05 三井化学株式会社 Polyimide composite, polyamic acid solution, method for producing polyimide composite, and film comprising polyimide composite
JP5748774B2 (en) * 2010-12-27 2015-07-15 三井化学株式会社 Polyimide composite, polyamic acid solution, method for producing polyimide composite, and film comprising polyimide composite
WO2012141210A1 (en) * 2011-04-12 2012-10-18 日産化学工業株式会社 Photosensitive organic particle
US9140989B2 (en) 2011-04-12 2015-09-22 Nissan Chemical Industries, Ltd. Photosensitive organic particles
JP5943210B2 (en) * 2011-04-12 2016-06-29 日産化学工業株式会社 Photosensitive organic particles
KR101920651B1 (en) * 2011-04-12 2018-11-21 닛산 가가쿠 가부시키가이샤 Photosensitive organic particle

Also Published As

Publication number Publication date
JP4058397B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
Schwartz Conjugated polymers as molecular materials: How chain conformation and film morphology influence energy transfer and interchain interactions
Li et al. The ultrafast dynamics and nonlinear optical properties of tribranched styryl derivatives based on 1, 3, 5-triazine
Grey et al. Size-dependent spectroscopic properties of conjugated polymer nanoparticles
Nguyen et al. Near-field scanning optical microscopy (NSOM) studies of the relationship between interchain interactions, morphology, photodamage, and energy transport in conjugated polymer films
Miyasaka et al. Picosecond laser photolysis studies on photochromic reactions of 1, 2-bis (2, 4, 5-trimethyl-3-thienyl) maleic anhydride in solutions
CN101568965B (en) Methods for storing holographic data and articles having enhanced data storage lifetime derived therefrom
Frankevich et al. Formation of polaron pairs and time-resolved photogeneration of free charge carriers in π-conjugated polymers
Habuchi et al. Localized electronic states related to O2 intercalation and photoirradiation on C60 films and C70 films
Basché et al. Energy and charge transfer in nanoscale hybrid materials
Shkunov et al. Laser action in polydialkylfluorene films: Influence of low-temperature thermal treatment
JP4058397B2 (en) Rewritable optical memory material that utilizes changes in fluorescence characteristics by light irradiation or heat treatment
Zhang et al. Crystallization‐Enhanced Stability by Effectively Suppressing Photooxidation Defect for Optoelectronic Devices
Su et al. Radical Afterglow Emission Harnessed by Doping N, N’‐Diaryl‐5, 10‐Dihydrophenazines to Epoxy Resins
Righetto et al. Engineering interactions in QDs–PCBM blends: a surface chemistry approach
Chikalova-Luzina et al. Energy transfer in hybrid optoelectronic structures between perovskite nanocrystals and an organic matrix
Ma et al. Nylons with Highly-Bright and Ultralong Organic Room-Temperature Phosphorescence
Kumar et al. Synthesis, structural, optical and electrical properties of metal nanoparticle–rare earth ion dispersed in polymer film
Lanzani et al. Photoinduced generation of radical ions in α-sexithyenil
WO2005019933A1 (en) Method for producing functional polyimide fine particle, and rewritable memory material utilizing change in fluorescence characteristics caused by light irradiation or heat treatment
Lane et al. Photoluminescence-detected magnetic-resonance study of fullerene-doped π-conjugated polymers
Liu et al. Ladder-type Materials with DAD Architectures as Robust Gain Media for Organic Lasers
JP4098688B2 (en) Method for producing functional fine polyimide particles
JPH11302393A (en) Laser-driven molecular injection into polymeric solid through polymeric pellet containing organic molecule in dispersed state
Xie et al. Study on the photoinduced electron‐transfer activity of poly (p‐phenylene benzobisoxazole)/carboxylic multiwalled carbon nanotubes composites prepared by in situ polymerization
Kwon et al. Narrowing the photoluminescence bandwidth of InP‐based colloidal quantum dots through photon‐triggered isolation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050106

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070814

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071003

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071217

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees