WO2012090478A1 - Moving image coding method and moving image decoding method - Google Patents

Moving image coding method and moving image decoding method Download PDF

Info

Publication number
WO2012090478A1
WO2012090478A1 PCT/JP2011/007281 JP2011007281W WO2012090478A1 WO 2012090478 A1 WO2012090478 A1 WO 2012090478A1 JP 2011007281 W JP2011007281 W JP 2011007281W WO 2012090478 A1 WO2012090478 A1 WO 2012090478A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoding
decoding
prediction
prediction direction
reference picture
Prior art date
Application number
PCT/JP2011/007281
Other languages
French (fr)
Japanese (ja)
Inventor
敏康 杉尾
西 孝啓
陽司 柴原
寿郎 笹井
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012090478A1 publication Critical patent/WO2012090478A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/573Motion compensation with multiple frame prediction using two or more reference frames in a given prediction direction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/146Data rate or code amount at the encoder output
    • H04N19/147Data rate or code amount at the encoder output according to rate distortion criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/46Embedding additional information in the video signal during the compression process
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards

Definitions

  • the present invention relates to a moving image encoding method and a moving image decoding method.
  • the amount of information is compressed using redundancy in the spatial direction and temporal direction of a moving image.
  • redundancy in the spatial direction conversion to the frequency domain is used, and as a method of using redundancy in the temporal direction, inter-picture prediction (hereinafter referred to as inter prediction) encoding processing is used.
  • inter prediction inter-picture prediction
  • the inter prediction encoding process when a certain picture is encoded, an encoded picture that is ahead or behind in the display time order with respect to the encoding target picture is used as a reference picture. Then, by detecting the motion vector of the encoding target picture with respect to the reference picture and taking the difference between the predicted image data obtained by performing motion compensation based on the motion vector and the image data of the encoding target picture, time Remove direction redundancy.
  • I picture is a picture that does not perform inter prediction coding processing, that is, performs intra-picture prediction (hereinafter referred to as intra prediction) coding processing.
  • the P picture is a picture that performs inter prediction encoding with reference to one already encoded picture that is in front of or behind the current picture in display time order.
  • the B picture is a picture that performs inter prediction encoding with reference to two already encoded pictures that are in front of or behind the current picture in display time order.
  • the inter prediction encoding mode of each encoding target block in a B picture was used for generating a difference value between predicted image data and the encoding target block, and predicted image data.
  • the motion vector detection mode that encodes the motion vector, and only the difference value of the image data are encoded, the direct mode that predicts the motion vector from the peripheral blocks, and the difference value and motion vector of the image data are not encoded.
  • There is a skip mode in which a predicted image at a position indicated by a motion vector predicted from a peripheral block or the like is a decoded image as it is.
  • the motion vector detection mode for B pictures includes two-way prediction in which a prediction image is generated with reference to two already-encoded pictures ahead or behind the current picture as a prediction direction, and forward or backward.
  • Unidirectional prediction for generating a prediction image with reference to one already-encoded picture can be selected.
  • the prediction direction of the block to be encoded is determined according to the prediction mode of the neighboring blocks and the like.
  • the left adjacent encoded block of the encoding target block is adjacent block A
  • the upper adjacent encoded block of the encoding target block is adjacent block B
  • the upper right adjacent encoded block of the encoding target block is shown. Is an adjacent block C.
  • the adjacent block A is bidirectional prediction
  • the adjacent block B is unidirectional prediction
  • the adjacent block C is unidirectional prediction.
  • the prediction direction in the skip mode of the encoding target block is bidirectional prediction if there is bidirectional prediction even in one of the adjacent blocks.
  • bidirectional prediction is used as the prediction direction of the encoding target block. Selected.
  • An object of the present invention is to solve the above-described problem.
  • a skip mode most suitable for an encoding target picture and It aims at deriving the prediction direction of the direct mode and improving the coding efficiency.
  • At least two or more reference pictures different from the encoding target picture including the encoding target block are included.
  • a prediction direction switching step of switching a prediction direction when encoding in the encoding mode is included.
  • At least two or more reference picture indexes are assigned to at least one or more reference pictures different from the decoding target picture including the decoding target block.
  • An image decoding method for decoding the decoding target block wherein the two or more reference picture indexes are used when the two or more reference picture indexes are used when decoding the decoding target block.
  • decoding the block to be decoded in a predetermined decoding mode based on the same reference picture determining step for determining whether or not the reference picture indicated by is the same picture and the determination result in the same reference picture determining step
  • a prediction direction switching step for switching the prediction direction.
  • the present invention it is possible to derive the prediction direction of the skip mode most suitable for the encoding target picture by using a new criterion for selecting the prediction direction of the skip mode and the direct mode, Encoding efficiency can be improved.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using a moving picture coding method according to the present invention.
  • FIG. 2 is a diagram illustrating an example of a reference list in a B picture.
  • FIG. 3 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present invention.
  • FIG. 4 is a diagram illustrating a determination flow of the skip mode prediction direction in the skip mode prediction direction determination unit.
  • FIG. 5 is a diagram illustrating an inter prediction mode determination flow in the inter prediction control unit.
  • FIG. 6 is a diagram showing a processing flow for the CostInter calculation method.
  • FIG. 7 is a diagram illustrating a processing flow for the CostDirect calculation method.
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using a moving picture coding method according to the present invention.
  • FIG. 2 is a diagram illustrating an example of a reference list in a B picture.
  • FIG. 8 is a diagram illustrating a method of calculating the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2.
  • FIG. 9 is a diagram illustrating a processing flow for the CostSkip calculation method.
  • FIG. 10A is a diagram illustrating an example of a predicted image generation process.
  • FIG. 10B is a diagram illustrating another example of the predicted image generation process.
  • FIG. 11 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the second embodiment.
  • FIG. 12 is a diagram showing an outline of the processing flow of the moving picture coding method according to the second embodiment.
  • FIG. 13 is a diagram illustrating a determination flow of the skip mode prediction direction addition flag.
  • FIG. 10A is a diagram illustrating an example of a predicted image generation process.
  • FIG. 10B is a diagram illustrating another example of the predicted image generation process.
  • FIG. 11 is a block diagram showing a configuration of an embodiment of
  • FIG. 14 is a diagram illustrating a processing flow of the CostSkip calculation method in the skip mode according to the second embodiment.
  • FIG. 15 is a block diagram illustrating a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the third embodiment.
  • FIG. 16 is a process flow diagram of the video encoding method according to Embodiment 3.
  • FIG. 17 is a block diagram illustrating a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the fourth embodiment.
  • FIG. 18 is a diagram illustrating an outline of a processing flow of the moving picture coding method according to the fourth embodiment.
  • FIG. 19 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the fifth embodiment.
  • FIG. 20 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the fifth embodiment.
  • FIG. 21 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the fifth embodiment.
  • FIG. 22 is a block diagram illustrating a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the sixth embodiment.
  • FIG. 23 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the sixth embodiment.
  • FIG. 24 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the sixth embodiment.
  • FIG. 25 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the seventh embodiment.
  • FIG. 26 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the seventh embodiment.
  • FIG. 27 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the seventh embodiment.
  • FIG. 28 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the eighth embodiment.
  • FIG. 29 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the eighth embodiment.
  • FIG. 30 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the eighth embodiment.
  • FIG. 31 is a diagram illustrating a method of determining the prediction direction of the encoding target block.
  • FIG. 32 is a block diagram illustrating a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the ninth embodiment.
  • FIG. 33 is a diagram illustrating an example of a reference list in a B picture.
  • FIG. 34 is a diagram showing an outline of the processing flow of the moving picture coding method according to the ninth embodiment.
  • FIG. 35 is a diagram showing a flow for determining the direct mode prediction direction.
  • FIG. 36 is a diagram illustrating a determination flow of the inter prediction mode.
  • FIG. 37 is a diagram showing a processing flow for the CostInter calculation method.
  • FIG. 38 is a diagram showing a processing flow for the CostDirect calculation method.
  • FIG. 39 is a diagram illustrating a method of calculating the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2.
  • FIG. 40 is a diagram illustrating a processing flow for the CostSkip calculation method.
  • FIG. 41 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the tenth embodiment.
  • FIG. 42 is a diagram showing an outline of the processing flow of the moving picture coding method according to the tenth embodiment.
  • FIG. 43 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the eleventh embodiment.
  • FIG. 44 is a diagram showing an outline of the processing flow of the video encoding method according to Embodiment 11.
  • FIG. 11 is a diagram illustrating a method of calculating the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2.
  • FIG. 40 is a diagram illustrating a processing flow for the CostSki
  • FIG. 45 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the twelfth embodiment.
  • FIG. 46 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the twelfth embodiment.
  • FIG. 47 is a diagram illustrating an example of bitstream syntax in the video decoding method according to Embodiment 12.
  • FIG. 48 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the thirteenth embodiment.
  • FIG. 49 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the thirteenth embodiment.
  • FIG. 50 is a diagram illustrating an example of bitstream syntax in the video decoding method according to Embodiment 13.
  • FIG. 51 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the fourteenth embodiment.
  • FIG. 52 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the fourteenth embodiment.
  • FIG. 53 is a diagram illustrating an example of the bitstream syntax in the video decoding method according to the fourteenth embodiment.
  • FIG. 54 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 55 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 56 is a block diagram illustrating a configuration example of a television.
  • FIG. 57 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 58 shows an example of the structure of a recording medium that is an optical disk.
  • 59A is a diagram illustrating an example of a mobile phone
  • FIG. 59B is a block diagram illustrating a configuration example of the mobile phone.
  • FIG. 60 shows a structure of multiplexed data.
  • FIG. 61 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 62 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 63 is a diagram showing the structure of TS packets and source packets in multiplexed data.
  • FIG. 64 shows the data structure of the PMT.
  • FIG. 65 shows the internal structure of the multiplexed data information.
  • FIG. 66 shows the internal structure of stream attribute information.
  • FIG. 67 is a diagram showing steps for identifying video data.
  • FIG. 68 is a block diagram illustrating a configuration example of an integrated circuit that implements the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 69 is a diagram showing a configuration for switching drive frequencies.
  • FIG. 70 is a diagram illustrating steps for identifying video data and switching between driving frequencies.
  • FIG. 71 is a diagram showing an example of a lookup table in which video data standards are associated with drive frequencies.
  • 72A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit
  • FIG. 72B is a diagram illustrating another example of a configuration of sharing
  • FIG. 1 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using a moving picture coding method according to the present invention.
  • the moving image encoding apparatus includes an orthogonal transform unit 101, a quantization unit 102, an inverse quantization unit 103, an inverse orthogonal transform unit 104, a block memory 105, a frame memory 106, an intra prediction unit 107, an inter prediction unit 107, and an inter prediction unit 107.
  • a prediction unit 108, an inter prediction control unit 109, a picture type determination unit 110, a reference picture list management unit 111, a skip mode prediction direction determination unit 112, and a variable length coding unit 113 are provided.
  • the orthogonal transform unit 101 performs transformation from the image domain to the frequency domain on the prediction error data between the predicted image data generated by the means described later and the input image sequence.
  • the quantization unit 102 performs a quantization process on the prediction error data converted into the frequency domain.
  • the inverse quantization unit 103 performs inverse quantization processing on the prediction error data quantized by the quantization unit 102.
  • the inverse orthogonal transform unit 104 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process.
  • the block memory 105 stores the decoded image obtained from the predicted image data and the prediction error data subjected to the inverse quantization process in units of blocks.
  • the frame memory 106 stores the decoded image in units of frames.
  • the picture type determination unit 110 determines which of the I picture, B picture, and P picture is to be used to encode the input image sequence, and generates picture type information.
  • the intra prediction unit 107 uses the decoded image in units of blocks stored in the block memory 105 to generate predicted image data based on intra prediction of the encoding target block.
  • the inter prediction unit 108 generates predicted image data by inter prediction of the encoding target block, using the decoded image in units of frames stored in the frame memory 106.
  • the reference picture list management unit 111 assigns a reference picture index to an encoded reference picture to be referred to in inter prediction, and creates a reference list together with a display order and the like. Since B pictures can be encoded with reference to two pictures, two reference lists are held.
  • FIG. 2 shows an example of a reference list in a B picture.
  • a reference picture list 1 in FIG. 2 is an example of a reference picture list in the prediction direction 1 in bi-directional prediction, and is displayed as a reference picture 1 in the display order 2 in the value 0 of the reference picture index 1 and a value 1 in the reference picture index 1.
  • a reference picture 2 in display order 0 is assigned to a reference picture 2 in order 1 and a value 2 of reference picture index 1.
  • the reference picture index is assigned to the encoding target picture in the order of time in display order.
  • the reference picture list 2 is an example of the reference picture list in the prediction direction 2 in the bi-directional prediction.
  • the reference picture index 2 has a value 0 of the reference picture index 2 and the reference picture index 2 has the value 1 of the reference picture index 2.
  • Reference picture 3 in display order 0 is assigned to value 2 of reference picture 1 and reference picture index 2 of 2. In this way, it is possible to assign different reference picture indexes for each reference picture for each prediction direction (reference pictures 1 and 2 in FIG. 2), or to assign the same reference picture index (see FIG. 2). Picture 3).
  • the reference pictures are managed in the reference picture index and the display order.
  • the reference pictures may be managed in the reference picture index and the encoding order.
  • the skip mode prediction direction determination unit 112 uses the reference picture lists 1 and 2 created by the reference picture list management unit 111 to determine the prediction direction of the skip mode of the encoding target block by a method to be described later.
  • variable length encoding unit 113 generates a bitstream by performing variable length encoding processing on the quantized prediction error data, inter prediction mode, inter prediction direction, skip flag, and picture type information.
  • FIG. 3 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present invention.
  • the prediction direction when the encoding target block is encoded in the skip mode is determined.
  • the cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode. The cost calculation method will be described later.
  • a predicted image in skip mode is generated in S304, and the skip flag is set to 1 and attached to the bit stream of the encoding target block. If the determination result in S303 is false, inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bitstream of the block to be encoded is attached. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode and an inter prediction direction are attached to the bit stream of the encoding target block.
  • FIG. 4 is a diagram illustrating a flow of determining the skip mode prediction direction in the skip mode prediction direction determination unit 112.
  • motion vectors in the prediction direction 1 and the prediction direction 2 are used in bidirectional prediction. Although selected, only the motion vector in the prediction direction 1 may be used in the unidirectional prediction, and the motion vector in the prediction direction 2 may decrease as a whole. In this case, if bi-directional prediction is selected as the prediction direction of the skip mode, there is a tendency that there are few motion vectors in the prediction direction 2 of the adjacent blocks that can be used for generation of the prediction motion vector in the prediction direction 2.
  • the prediction direction in the skip mode is fixed in one direction.
  • the prediction direction in the skip mode may be fixed to unidirectional prediction.
  • the motion vector of the prediction direction 1 and the prediction direction 2 is selected in the bidirectional prediction, but only the motion vector of the prediction direction 1 may be used in the unidirectional prediction. Since the motion vector of 2 is reduced, encoding efficiency can be improved by fixing the prediction direction of the skip mode to unidirectional prediction.
  • the value of the reference picture index 1 in the prediction direction 1 in the skip mode is determined. For example, the reference picture index 1 with a value of 0 may always be used in the skip mode.
  • the value of the reference picture index 2 in the prediction direction 2 in the skip mode is determined. For example, a reference picture index 2 of 0 may always be used in the skip mode.
  • the display order of the reference picture indicated by the reference picture index 1 is obtained from the reference picture list 1 and is compared with the display order of the reference picture indicated by the reference picture index 2 from the reference picture list 2. Can be determined. If it is determined in S403 that the pictures to be referred to in the prediction direction 1 and the prediction direction 2 are the same picture, the prediction direction flag in the skip mode is set to unidirectional prediction in S404, and the prediction direction 1 and the prediction direction are determined in S403. If it is determined that the two reference pictures are not the same picture, the prediction mode flag in the skip mode is set to bidirectional prediction in S405.
  • the value 0 is always used as the value of the reference picture index in the skip mode, but the minimum value of the reference picture index value of an adjacent block or the like may be used.
  • whether or not the pictures are the same is determined using the display order in S403, but may be determined using the encoding order or the like.
  • the reference picture index is assigned to the reference pictures in the reference picture list 1 and the reference picture list 2 in the same way, they may be determined as the same picture.
  • Such a configuration is effective, for example, when a picture corresponding to a predetermined index value is used as a reference picture.
  • the reference picture list 1 and the reference picture list 2 when the index allocation method for the reference pictures in the reference picture list 1 and the reference picture list 2 is the same, the reference picture list 1 and the reference picture list The pictures corresponding to the index of 0 of 2 are the same.
  • FIG. 5 is a diagram showing an inter prediction mode determination flow in the inter prediction control unit 109.
  • a cost CostInter of a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result is calculated by a method described later.
  • a prediction vector is generated using a motion vector such as an adjacent block, and a cost CostDirect in a direct mode for generating a prediction image using the prediction vector is calculated by a method described later.
  • the cost CostSkip of the skip mode for generating the predicted image is calculated by the method described later.
  • CostInter, CostDirect, and CostSkip are compared to determine whether CostInter is the minimum.
  • the inter prediction mode is determined as the motion vector detection mode, and the inter prediction mode is set in the motion vector detection mode. If the determination result in S504 is false, CostDirect and CostSkip are compared in S506 to determine whether CostDirect is small. If the determination result in S506 is true, the inter prediction mode is determined to be the direct mode in S507, and the inter prediction mode information is set to the direct mode. If the determination result in S506 is false, the inter prediction mode is set to the skip mode in S508, and the skip mode is set to the inter prediction mode information.
  • S601 motion detection is performed on reference picture 1 indicated by reference picture index 1 in prediction direction 1 and reference picture 2 indicated by reference picture index 2 in prediction direction 2, and motion vector 1 and motion vector for each reference picture are detected. 2 is generated.
  • motion detection a difference value between a coding target block in a coded picture and a block in a reference picture is calculated, and a block in the reference picture having the smallest difference value is set as a reference block.
  • a motion vector is obtained from the encoding target block position and the reference block position.
  • a prediction image in the prediction direction 1 is generated using the motion vector 1 obtained in S601, and the cost CostInterUni1 is calculated by, for example, the following equation of the RD optimization model.
  • Equation 1 D represents encoding distortion, and a pixel value obtained by encoding and decoding a block to be encoded using a prediction image generated with a certain motion vector, and an original pixel value of the block to be encoded The sum of absolute differences is used.
  • R represents the generated code amount, and the code amount necessary for encoding the motion vector used for predictive image generation is used.
  • is Lagrange's undetermined multiplier.
  • step S603 a predicted image in the prediction direction 2 is generated using the motion vector 2 obtained in step S601, and CostInterUni2 is calculated from Equation 1.
  • a bidirectional prediction image is generated using the motion vector 1 and the motion vector 2 obtained in S601, and CostInterBi is calculated from Equation 1.
  • the bidirectional prediction image is, for example, a prediction image obtained from the motion vector 1 and a prediction image obtained from the motion vector 2 obtained by performing an arithmetic average for each pixel as the bidirectional prediction image.
  • the values of CostInterUni1, CostInterUni2, and CostInterBi are compared to determine whether CostInterBi is the minimum. If the determination result in S605 is true, in S606, the prediction direction of the motion vector detection mode is determined to be bidirectional prediction, and CostInterBi is set to CostInter. If the determination result in S605 is false, CostInterUni1 and CostInterUni2 are compared in S607 to determine whether the value of CostInterUni1 is small.
  • the motion vector detection mode is determined as one-way prediction 1 in the prediction direction 1, and CostInterUni1 is set to CostInter. If the determination result in S607 is false, in S609, the motion vector detection mode is determined as unidirectional prediction 2 in the prediction direction 2, and CostInterUni2 is set to CostInter.
  • the addition average for each pixel is performed at the time of bidirectional prediction image generation, but a weighted addition average or the like may be performed.
  • the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated.
  • the direct vector is calculated using, for example, a motion vector of an adjacent block.
  • a motion vector MV_A is a motion vector of an adjacent block A located on the left side of the encoding target block
  • a motion vector MV_B is a motion vector and a motion vector of an adjacent block B located on the upper side of the encoding target block
  • MV_C is a motion vector of the adjacent block C located on the upper right side of the encoding target block.
  • the direct vector is calculated from, for example, an intermediate value Median (MV_A, MV_B, MV_C) of MV_A, MV_B, and MV_C that are motion vectors of adjacent blocks.
  • the intermediate value is derived as follows.
  • the direct vector 1 in the prediction direction 1 is calculated from Equation 2 using the motion vector in the prediction direction 1 of the adjacent block. Further, the direct vector 2 in the prediction direction 2 is calculated from Equation 2 using the motion vector in the prediction direction 2 of the adjacent block. If there is no adjacent block having the same prediction direction as the encoding target block, a motion vector having a value of 0 may be used as the direct vector.
  • a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2 obtained in S701, and CostDirectBi is calculated from Equation 1.
  • the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image.
  • a predicted image in the prediction direction 1 is generated using the direct vector 1, and its cost CostDirectUni1 is calculated from Equation 1.
  • a predicted image in the prediction direction 2 is generated using the direct vector 2 obtained in S701, and CostDirectUni2 is calculated from Equation 1.
  • the values of CostDirectUni1, CostDirectUni2, and CostDirectBi are compared to determine whether CostDirectBi is minimum. If the determination result in S705 is true, in S706, the direct mode prediction direction is determined to be bidirectional prediction, and CostDirctBi is set to CostDirect. If the determination result in S705 is false, CostDirectUni1 and CostDirectUni2 are compared in S707 to determine whether the value of CostDirectUni1 is small. If the determination result in S707 is true, in S708, the direct mode is determined as one-way prediction 1 in the prediction direction 1, and CostDirectUni1 is set to CostDirect. If the determination result in S707 is false, in S709, the direct mode is determined as one-way prediction 2 in the prediction direction 2, and CostDirectUni2 is set to CostDirect.
  • the CostSkip calculation method of S503 in FIG. 5 will be described in detail using the processing flow of FIG.
  • S901 it is determined whether or not the skip mode prediction direction flag determined by the skip mode prediction direction determination unit 112 is unidirectional prediction. If the determination result in S901 is true, a predicted image in the prediction direction 1 is generated using the direct vector 1 in S902, and its cost CostSkip is calculated from Equation 1. If the determination result in S901 is false, a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2 in S903, and CostSkip is calculated from Equation 1.
  • the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image.
  • FIG. 10A and FIG. 10B are diagrams showing specific examples when the predicted image is generated.
  • FIG. 10A is an example when the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture.
  • the skip mode prediction direction flag is unidirectional prediction, and the prediction image generated by the direct vector 1 in the prediction direction 1 is used for encoding.
  • the skip mode prediction direction flag becomes bidirectional prediction, and a bidirectional prediction image generated using the direct vector 1 and the direct vector 2 is used for encoding.
  • the prediction image is generated using the direct vector 1, but it may be generated using the direct vector 2.
  • the present invention when determining the prediction direction of the skip mode, it is possible to select the optimal prediction direction for the block to be encoded, so that the encoding efficiency can be improved.
  • the reference picture indicated by reference picture index 1 in prediction direction 1 and the reference picture indicated by reference picture index 2 in prediction direction 2 are the same picture, unidirectional prediction is selected regardless of the prediction direction of adjacent blocks. By doing so, the quality of a prediction image can be improved and encoding efficiency can be improved.
  • FIG. 11 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present invention.
  • a skip mode prediction direction addition determination unit 112a is newly provided, and when the skip mode prediction direction addition flag is on, the skip mode Even in this case, the configuration differs from the other embodiments in that the inter prediction direction is attached to each encoding target block.
  • FIG. 12 is an outline of the processing flow of the moving picture coding method according to the present embodiment.
  • step S1201 it is determined whether or not to add a prediction direction when the encoding target block is encoded in the skip mode, and when it is added, the skip mode addition flag is turned on.
  • step S1202 a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction direction added in S1201.
  • the cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the above is performed to determine a more efficient inter prediction mode.
  • Formula 1 etc. are utilized for the cost calculation method.
  • S1203 it is determined whether or not the inter prediction mode determined in S1202 is the skip mode. If the determination result in S1203 is true, it is determined in S1204 whether the skip mode addition flag is on. If the determination result in S1204 is true, a predicted image in skip mode is generated in S1205, and the skip flag is set to 1. Is attached to the bit stream of the encoding target block. Also, the inter prediction direction in the skip mode is attached to the bitstream. If the determination result in S1204 is false, skip mode prediction image generation is performed, and the skip flag is set to 1 to accompany the bit stream of the encoding target block.
  • inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bitstream of the encoding target block is attached.
  • an inter prediction mode indicating the motion vector detection mode or the direct mode and an inter prediction direction are attached to the bit stream of the encoding target block.
  • FIG. 13 is a diagram illustrating a determination flow of the skip mode prediction direction addition flag in the skip mode prediction direction addition determination unit 112a.
  • the value of the reference picture index 1 in the prediction direction 1 in the skip mode is determined. For example, the reference picture index 1 with a value of 0 may always be used in the skip mode.
  • the value of the reference picture index 2 in the prediction direction 2 in the skip mode is determined. For example, a reference picture index 2 of 0 may always be used in the skip mode.
  • the prediction direction addition flag in the skip mode is set to ON in S1304. If it is determined in S1303 that the reference pictures in prediction directions 1 and 2 are not the same picture, the prediction direction addition flag in the skip mode is set to OFF in S1305.
  • the value 0 is always used as the value of the reference picture index in the skip mode, but the minimum value of the reference picture index value of an adjacent block or the like may be used.
  • it is determined whether or not the pictures are the same using the display order in S1303, but may be determined using the encoding order or the like.
  • the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated by the method described in the first embodiment. Then, a bidirectional prediction image is generated using the obtained direct vector 1 and direct vector 2, and CostSkipBi is calculated from Equation 1.
  • the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image.
  • a predicted image in the prediction direction 2 is generated using the direct vector 2 obtained in S1401, and CostSkipUni2 is calculated from Equation 1.
  • the values of CostSkipUni1, CostSkipUni2, and CostSkipBi are compared to determine whether CostSkipUni1 is minimum. If the determination result in S1405 is true, in S1406, the skip mode is determined as one-way prediction 1 in the prediction direction 1, and CostSkipUni1 is set to CostSkip. If the determination result in S1405 is false, CostSkipUni2 and CostSkipBi are compared in S1407 to determine whether the value of CostSkipUni2 is small.
  • the skip mode is determined as one-way prediction 2 in the prediction direction 2, and CostSkipUni2 is set to CostSkip. If both the determination result in S1402 and the determination result in S1407 are false, in S1409, the skip mode is determined to be bidirectional prediction, and CostSkipBi is set to CostSkip.
  • the prediction direction of the skip mode when determining the prediction direction of the skip mode, it is possible to select the optimal prediction direction for the block to be encoded, so that the encoding efficiency can be improved.
  • the prediction direction is set even in the skip mode regardless of the prediction direction of the adjacent block.
  • FIG. 15 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment.
  • header information for example, an H.264 picture parameter set or slice
  • the configuration differs from the other embodiments in that it is attached to a header or the like.
  • FIG. 16 is an outline of a processing flow of the moving picture coding method according to the present embodiment.
  • the prediction direction when the encoding target block is encoded in the skip mode is determined, and the determined skip mode prediction direction flag is attached to the picture header or the like.
  • the flow of FIG. 4 of Embodiment 1 etc. can be utilized for the determination method of the prediction direction of skip mode.
  • a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result
  • a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S1601.
  • the cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode.
  • Formula 1 etc. are utilized for the cost calculation method.
  • S1603 it is determined whether the inter prediction mode determined in S1602 is a skip mode. If the determination result in S1603 is true, in S1604, a predicted image in the skip mode is generated, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S1603 is false, inter prediction is performed according to the determined inter prediction mode, prediction image data is generated, the skip flag is set to 0, and the bit stream of the block to be encoded is attached.
  • an inter prediction mode indicating the motion vector detection mode or the direct mode and an inter prediction direction are attached to the bit stream of the encoding target block.
  • the inter prediction mode determination method etc. are the same as that of Embodiment 1, description is abbreviate
  • the prediction mode of the skip mode can be flexibly switched for each picture, and the coding efficiency It becomes possible to improve.
  • FIG. 17 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment.
  • header information for example, a picture parameter set of H.264
  • the configuration differs from the other embodiments.
  • FIG. 18 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment.
  • step S1801 it is determined whether or not to add a prediction direction when the encoding target block is encoded in the skip mode, and when it is added, the skip mode addition flag is turned on. Then, the determined skip mode prediction direction addition flag is attached to the picture header or the like.
  • FIG. 13 of the second embodiment can be used as a method of determining the prediction direction addition.
  • a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result
  • a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction direction added in S1801.
  • the cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the above is performed to determine a more efficient inter prediction mode.
  • Formula 1 etc. are utilized for the cost calculation method.
  • S1803 it is determined whether or not the inter prediction mode determined in S1802 is the skip mode. If the determination result in S1803 is true, it is determined in S1804 whether the skip mode addition flag is on. If the determination result in S1804 is true, a predicted image in the skip mode is generated in S1805, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. Also, the inter prediction direction in the skip mode is attached to the bitstream.
  • the skip mode prediction direction addition flag is explicitly added to the picture header or the like, whether to add the prediction mode of the skip mode can be flexibly switched for each picture.
  • the encoding efficiency can be improved.
  • FIG. 19 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
  • the moving picture decoding apparatus includes a variable length decoding unit 1901, an inverse quantization unit 1902, an inverse orthogonal transform unit 1903, a block memory 1904, a frame memory 1905, an intra prediction unit 1906, and an inter prediction unit 1907.
  • the variable length decoding unit 1901 performs variable length decoding processing on the input bitstream, and performs the picture type information, the inter prediction mode, the inter prediction direction, the skip flag, and the quantized coefficient that has been subjected to the variable length decoding processing. Is generated.
  • the inverse quantization unit 1902 performs an inverse quantization process on the quantized coefficient that has been subjected to the variable length decoding process.
  • the inverse orthogonal transform unit 1903 transforms the orthogonal transform coefficient that has been subjected to the inverse quantization process from the frequency domain to the image domain to obtain prediction error image data.
  • the block memory 1904 stores prediction error image data and an image sequence generated by adding the prediction image data in units of blocks.
  • the frame memory 1905 stores the image sequence in units of frames.
  • the intra prediction unit 1906 generates predicted image data of the decoding target block by performing intra prediction using the block-by-block image sequence stored in the block memory 1904.
  • the inter prediction unit 1907 generates predicted image data of the decoding target block by performing inter prediction using the frame-by-frame image sequence stored in the frame memory 1905.
  • the inter prediction control unit 1908 controls the motion vector and the prediction image data generation method in the inter prediction according to the inter prediction mode, the inter prediction direction, and the skip flag.
  • the reference picture list management unit 1909 assigns a reference picture index to an encoded reference picture to be referred to in inter prediction, and creates a reference list along with the display order (similar to FIG. 2 in the first embodiment). Since B pictures can be encoded with reference to two pictures, two reference lists are held.
  • the reference picture is managed in the reference picture index and the display order.
  • the reference picture may be managed in the reference picture index and the encoding order.
  • the skip mode prediction direction determination unit 1910 uses the reference picture lists 1 and 2 created by the reference picture list management unit 1909 to determine the prediction mode of the skip mode of the encoding target block. Note that the flow for determining the skip mode prediction direction flag is the same as that in FIG.
  • a decoded image sequence is generated by adding the decoded prediction error image data and the prediction image data.
  • FIG. 20 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment.
  • S2001 it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S2001 is true, it is determined in S2002 whether the skip mode prediction direction flag is unidirectional prediction. If the determination result in S2002 is true, direct vector 1 is calculated in S2003, and a one-way predicted image is generated. If the determination result in S2002 is false, in S2004, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S2001 is false, that is, if it is not the skip mode, it is determined in S2005 whether the decoded inter prediction mode is the motion vector detection mode.
  • the one-way predicted image in the skip mode is generated using the direct vector 1 in S2003 of FIG. 20, but the one-way prediction is performed using the direct vector 2 together with the moving picture coding method.
  • a predicted image may be generated.
  • FIG. 21 is a diagram illustrating an example of a bitstream syntax in the video decoding method according to the present embodiment.
  • skip_flag represents a skip flag
  • pred_mode represents an inter prediction mode
  • inter_pred_idc represents an inter prediction direction.
  • the prediction direction of the adjacent block is affected. Instead, it is possible to appropriately decode a bitstream with improved encoding efficiency by selecting unidirectional prediction.
  • FIG. 22 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
  • a skip mode prediction direction addition determination unit 1910a is newly provided, and when the skip mode prediction direction addition flag is on, the skip mode Even in this case, the configuration is different from the other embodiments in that a bitstream in which the inter prediction direction is associated with each encoding target block can be decoded. Note that the skip mode prediction direction addition determination flow is the same as that of FIG.
  • FIG. 23 is a diagram showing an outline of the processing flow of the video decoding method according to the present embodiment.
  • S2301 it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S2301 is true, it is determined in S2302 whether the skip mode prediction direction addition flag is on. If the determination result in S2302 is true, in S2303, the inter prediction direction is decoded, and at least one of the direct vector 1 and the direct vector 2 is calculated according to the decoded inter prediction direction, and one-way or bidirectional prediction is performed. Generate an image. If the determination result in S2302 is false, the direct vector 1 and the direct vector 2 are calculated to generate a bidirectional prediction image.
  • the determination result in S2301 is false, that is, if it is not the skip mode, it is determined in S2305 whether the decoded inter prediction mode is the motion vector detection mode. If the determination result in S2305 is true, a predicted image is generated in S2306 using the decoded inter prediction direction and motion vector. If the determination result in S2305 is false, that is, if it is the direct mode, in S2307, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a predicted image is generated.
  • FIG. 24 is a diagram showing an example of the bitstream syntax in the video decoding method according to the present embodiment.
  • skip_flag represents a skip flag
  • pred_mode represents an inter prediction mode
  • inter_pred_idc represents an inter prediction direction.
  • the prediction direction of the adjacent block is affected.
  • the prediction direction by attaching the prediction direction to the bitstream even in the skip mode, it is possible to appropriately decode the bitstream with improved encoding efficiency.
  • FIG. 25 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
  • header information for example, H.264 picture parameter set or slice
  • the configuration differs from the other embodiments in that the bit stream attached to the header or the like can be decoded.
  • FIG. 26 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment.
  • S2601 it is determined whether or not the skip flag decoded from the bit stream is 1. If the determination result in S2601 is true, it is determined in S2602 whether or not the skip mode prediction direction flag decoded from the bitstream is unidirectional prediction. If S2602 is true, in S2603, the direct vector 1 is calculated and a one-way predicted image is generated. If the determination result in S2602 is false, in S2604, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated.
  • the determination result in S2601 is false, that is, if it is not the skip mode, it is determined in S2605 whether the decoded inter prediction mode is the motion vector detection mode. If the determination result in S2605 is true, a predicted image is generated in S2606 using the decoded inter prediction direction and motion vector. If the determination result in S2605 is false, that is, if it is the direct mode, in S2607, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a predicted image is generated.
  • the one-way predicted image in the skip mode is generated using the direct vector 1 in S2603 of FIG. 26.
  • the one-way image using the direct vector 2 is combined with the moving image coding method.
  • a predicted image may be generated.
  • FIG. 27 is a diagram illustrating an example of a bitstream syntax in the video decoding method according to the present embodiment.
  • skip_flag represents a skip flag
  • pred_mode represents an inter prediction mode
  • inter_pred_idc represents an inter prediction direction.
  • skip_pred_idc added to the picture header or the like represents the skip flag prediction direction.
  • coding efficiency is improved by flexibly switching the prediction direction of the skip mode for each picture by explicitly assigning the skip mode prediction direction flag to the picture header or the like. It becomes possible to properly decode the bitstream.
  • FIG. 28 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
  • header information for example, a picture parameter set of H.264
  • the skip mode prediction direction addition determination unit 1910a adds a skip mode prediction direction addition flag generated by the skip mode prediction direction addition determination unit 1910a to a bit stream for each processing unit such as a picture.
  • the configuration differs from the other embodiments in that the bit stream can be decoded by being attached to the header.
  • FIG. 29 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment.
  • S2901 it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S2901 is true, it is determined in S2902 whether or not the skip mode prediction direction addition flag decoded from the bitstream is on. If the determination result in S2902 is true, in S2903, the inter prediction direction is decoded, and at least one of the direct vector 1 and the direct vector 2 is calculated according to the decoded inter prediction direction, and one-way or bidirectional prediction is performed. Generate an image. If the determination result in S2902 is false, a direct vector 1 and a direct vector 2 are calculated to generate a bidirectional prediction image.
  • the determination result in S2901 is false, that is, if it is not the skip mode, it is determined in S2905 whether the decoded inter prediction mode is the motion vector detection mode. If the determination result in S2905 is true, a predicted image is generated in S2906 using the decoded inter prediction direction and motion vector. If the determination result in S2905 is false, that is, if it is the direct mode, in S2907, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a prediction image is generated.
  • FIG. 30 is a diagram illustrating an example of a bitstream syntax in the video decoding method according to the present embodiment.
  • skip_flag represents a skip flag
  • pred_mode represents an inter prediction mode
  • inter_pred_idc represents an inter prediction direction.
  • skip_add_dir added to the picture header or the like represents a skip flag prediction direction addition flag.
  • the present invention by explicitly assigning the skip mode prediction direction addition flag to the picture header or the like, it is possible to flexibly switch whether to add the prediction mode of the skip mode for each picture. It is possible to appropriately decode a bit stream with improved efficiency.
  • FIG. 32 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment.
  • the moving image encoding apparatus includes an orthogonal transform unit 3201, a quantization unit 3202, an inverse quantization unit 3203, an inverse orthogonal transform unit 3204, a block memory 3205, a frame memory 3206, an intra prediction unit 3207, an inter prediction unit A prediction unit 3208, an inter prediction control unit 3209, a picture type determination unit 3210, a reference picture list management unit 3211, a direct mode prediction direction determination unit 3212, and a variable length encoding unit 3213 are provided.
  • the orthogonal transform unit 3201 performs transformation from the image domain to the frequency domain on the prediction error data between the predicted image data generated by the means described later and the input image sequence.
  • the quantization unit 3202 performs a quantization process on the prediction error data converted into the frequency domain.
  • the inverse quantization unit 3203 performs inverse quantization processing on the prediction error data quantized by the quantization unit 3202.
  • the inverse orthogonal transform unit 3204 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process.
  • the block memory 3205 stores the decoded image obtained from the prediction image data and the prediction error data subjected to the inverse quantization process in units of blocks.
  • the frame memory 3206 stores the decoded image in units of frames.
  • the picture type determination unit 3210 determines which of the I picture, B picture, or P picture is used to encode the input image sequence, and generates picture type information.
  • the intra prediction unit 3207 uses the decoded image in units of blocks stored in the block memory 3205 to generate predicted image data based on intra prediction of the encoding target block.
  • the inter prediction unit 3208 uses the decoded image in units of frames stored in the frame memory 3206 to generate predicted image data based on inter prediction of the current block.
  • the reference picture list management unit 3211 assigns a reference picture index to an encoded reference picture that is referred to in inter prediction, and creates a reference list together with a display order and the like. Since B pictures can be encoded with reference to two pictures, two reference lists are held.
  • FIG. 33 shows an example of a reference list in a B picture.
  • a reference picture list 1 in FIG. 33 is an example of a reference picture list in the prediction direction 1 in bi-directional prediction, and is displayed as a reference picture 1 with a reference picture index 1 value 0 and a reference picture index 1 with a reference picture index 1 value 1.
  • a reference picture 2 in display order 0 is assigned to a reference picture 2 in order 1 and a value 2 of reference picture index 1.
  • the reference picture index is assigned to the encoding target picture in the order of time in display order.
  • the reference picture list 2 is an example of the reference picture list in the prediction direction 2 in the bi-directional prediction.
  • the reference picture index 2 has a value 0 of the reference picture index 2 and the reference picture index 2 has the value 1 of the reference picture index 2.
  • Reference picture 3 in display order 0 is assigned to value 2 of reference picture 1 and reference picture index 2 of 2. In this way, it is possible to assign different reference picture indexes for each reference picture for each prediction direction (reference pictures 1 and 2 in FIG. 33), or to assign the same reference picture index (see FIG. 33). Picture 3).
  • the reference picture is managed in the reference picture index and the display order.
  • the reference picture may be managed in the reference picture index and the encoding order.
  • the direct mode prediction direction determination unit 3212 uses the reference picture list 1 and the reference picture list 2 created by the reference picture list management unit 3211 to determine the direct mode prediction direction of the block to be encoded by a method described later. .
  • variable length coding unit 3213 generates a bitstream by performing variable length coding processing on the quantized prediction error data, inter prediction mode, inter prediction direction flag, skip flag, and picture type information. .
  • FIG. 34 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment.
  • the prediction direction when the encoding target block is encoded in the direct mode is determined.
  • the cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed, and a more efficient inter prediction mode is determined. The cost calculation method will be described later.
  • a predicted image in the skip mode is generated, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S3403 is false, it is determined in S3405 whether or not the determined inter prediction mode is the direct mode and the direct prediction direction fixed flag determined by the method described later is on. If the determination result in S3405 is true, in S3406, a bi-directional prediction image in the direct mode is generated, the skip flag is set to 0, and it is attached to the bit stream of the encoding target block. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode is attached to the bit stream of the encoding target block.
  • inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bitstream of the encoding target block is attached.
  • the inter prediction mode indicating the motion vector detection mode or the direct mode, and the unidirectional prediction in which the inter prediction direction is the prediction direction 1, the unidirectional prediction in the prediction direction 2, or the prediction direction 1 and the prediction direction 2 are set.
  • An inter prediction direction flag indicating whether or not the bidirectional prediction is used is attached to the bit stream of the block to be encoded.
  • FIG. 35 is a diagram showing a direct mode prediction direction determination flow in the direct mode prediction direction determination unit 3212.
  • the prediction is fixed to bidirectional prediction that can generate a prediction image with relatively little noise due to the influence of addition averaging or the like.
  • it may be fixed to unidirectional prediction from the viewpoint of processing amount.
  • the value of the reference picture index 1 in the prediction direction 1 in the direct mode is determined. For example, in the direct mode, the reference picture index 1 having a value of 0 may always be used.
  • the value of the reference picture index 2 in the prediction direction 2 in the direct mode is determined. For example, the reference picture index 2 having a value of 0 may always be used in the direct mode.
  • the display order of the reference picture indicated by the reference picture index 1 is obtained from the reference picture list 1 and is compared with the display order of the reference picture indicated by the reference picture index 2 from the reference picture list 2. it can. If it is determined in S3503 that the pictures to be referenced in the prediction direction 1 and the prediction direction 2 are the same picture, in S3504, the direct mode prediction direction is determined to be bidirectional prediction, and the direct mode prediction direction fixed flag is turned on. Set to. If it is determined in S3503 that the reference pictures in the prediction direction 1 and the prediction direction 2 are not the same picture, the direct mode prediction direction fixed flag is set to OFF in S3505.
  • the value 0 is always used as the value of the reference picture index in the direct mode, but the minimum value of the reference picture index value of an adjacent block or the like may be used.
  • whether or not the pictures are the same is determined using the display order in S3503, but may be determined using the encoding order or the like.
  • the reference picture index is assigned to the reference pictures in the reference picture list 1 and the reference picture list 2 in the same way, they may be determined as the same picture.
  • Such a configuration is effective, for example, when a picture corresponding to a predetermined index value is used as a reference picture.
  • the reference picture list 1 and the reference picture list 2 when the index allocation method for the reference pictures in the reference picture list 1 and the reference picture list 2 is the same, the reference picture list 1 and the reference picture list The pictures corresponding to the index of 0 of 2 are the same.
  • FIG. 36 is a diagram showing an inter prediction mode determination flow in the inter prediction control unit 3209.
  • a cost CostInter of a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result is calculated by a method described later.
  • a cost CostDirect in a direct mode for generating a prediction vector using a motion vector such as an adjacent block and generating a prediction image using the prediction vector is calculated by a method described later.
  • the cost CostSkip of the skip mode for generating the predicted image is calculated by the method described later.
  • CostInter, CostDirect, and CostSkip are compared to determine whether CostInter is the minimum.
  • the inter prediction mode is determined to be the motion vector detection mode in S3605, and the inter prediction mode is set to the motion vector detection mode. If the determination result in S3604 is false, a comparison between CostDirect and CostSkip is performed in S3606 to determine whether CostDirect is small. If the determination result in S3606 is true, the inter prediction mode is determined to be the direct mode in S3607, and the inter prediction mode is set to the direct mode. If the determination in S3606 is false, the inter prediction mode is set to the skip mode in S3608, and the skip mode is set to the inter prediction mode.
  • S3701 performs motion detection on reference picture 1 indicated by reference picture index 1 in prediction direction 1 and reference picture 2 indicated by reference picture index 2 in prediction direction 2, and motion vector 1 and motion vector for each reference picture are detected. 2 is generated.
  • motion detection a difference value between a coding target block in a coded picture and a block in a reference picture is calculated, and a block in the reference picture having the smallest difference value is set as a reference block.
  • a motion vector is obtained from the encoding target block position and the reference block position.
  • a prediction image in the prediction direction 1 is generated using the motion vector 1 obtained in S3701, and the cost CostInterUni1 is calculated by, for example, the following equation of the RD optimization model.
  • D represents encoding distortion, and a pixel value obtained by encoding and decoding a block to be encoded using a prediction image generated with a certain motion vector, and an original pixel value of the block to be encoded The sum of absolute differences is used.
  • R represents the generated code amount, and the code amount necessary for encoding the motion vector used for predictive image generation is used.
  • is Lagrange's undetermined multiplier.
  • a prediction image in the prediction direction 2 is generated using the motion vector 2 obtained in S3701, and CostInterUni2 is calculated from Equation 5.
  • a bidirectional prediction image is generated using the motion vector 1 and the motion vector 2 obtained in S3701, and CostInterBi is calculated from Equation 5.
  • the bidirectional prediction image is, for example, a prediction image obtained from the motion vector 1 and a prediction image obtained from the motion vector 2 obtained by performing an arithmetic average for each pixel as the bidirectional prediction image.
  • the values of CostInterUni1, CostInterUni2, and CostInterBi are compared to determine whether CostInterBi is minimum. If the determination result in S3705 is true, in S3706, the prediction direction of the motion vector detection mode is determined to be bidirectional prediction, and CostInterBi is set to CostInter. If the determination result in S3705 is false, CostInterUni1 and CostInterUni2 are compared in S3707 to determine whether the value of CostInterUni1 is small.
  • the motion vector detection mode is determined to be one-way prediction 1 in the prediction direction 1, and CostInterUni1 is set to CostInter. If the determination result in S3707 is false, in S3709, the motion vector detection mode is determined as unidirectional prediction 2 in the prediction direction 2, and CostInterUni2 is set to CostInter.
  • the addition average for each pixel is performed at the time of bidirectional prediction image generation, but a weighted addition average or the like may be performed.
  • the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated.
  • the direct vector is calculated using, for example, a motion vector of an adjacent block.
  • a motion vector MV_A is a motion vector of an adjacent block A located on the left side of the encoding target block
  • a motion vector MV_B is a motion vector and a motion vector of an adjacent block B located above the encoding target block
  • MV_C is a motion vector of the adjacent block C located on the upper right side of the encoding target block.
  • the direct vector is calculated from, for example, an intermediate value Median (MV_A, MV_B, MV_C) of MV_A, MV_B, and MV_C that are motion vectors of adjacent blocks.
  • the intermediate value is derived as follows.
  • the direct vector 1 in the prediction direction 1 is calculated from Equation 6 using the motion vector in the prediction direction 1 of the adjacent block. Further, the direct vector 2 in the prediction direction 2 is calculated from Equation 2 using the motion vector in the prediction direction 2 of the adjacent block. If there is no adjacent block having the same prediction direction as the encoding target block, a motion vector having a value of 0 may be used as the direct vector.
  • a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2 obtained in S3801, and CostDirectBi is calculated from Equation 5.
  • the bidirectional prediction image is, for example, a bidirectional prediction image obtained by averaging the prediction image obtained from the direct vector 1 and the prediction image obtained from the direct vector 2 for each pixel.
  • a predicted image in the prediction direction 2 is generated using the direct vector 2 obtained in S3801, and CostDirectUni2 is calculated from Equation 5.
  • the values of CostDirectUni1, CostDirectUni2, and CostDirectBi are compared to determine whether CostDirectBi is minimum. If the determination result in S3806 is true, in S3807, the direct mode prediction direction is determined to be bidirectional prediction, and CostDirctBi is set to CostDirect. If S3806 is false, CostDirectUni1 and CostDirectUni2 are compared in S3808 to determine whether the value of CostDirectUni1 is small. If the determination result in S3808 is true, in S3809, the direct mode is determined as one-way prediction 1 in the prediction direction 1, and CostDirectUni1 is set to CostDirect.
  • the direct mode is determined as one-way prediction 2 in the prediction direction 2, and CostDirectUni2 is set to CostDirect. If the direct prediction direction fixed flag is ON in S3803, in S3807, the direct mode prediction direction is determined to be bidirectional prediction, and CostDirctBi is set to CostDirect.
  • the CostSkip calculation method in S3603 in FIG. 36 will be described in detail using the processing flow in FIG.
  • the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated.
  • a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2, and CostSkip is calculated from Equation 5.
  • the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image.
  • the optimal prediction direction for the encoding target block is selected and attached to the bitstream regardless of the prediction direction of the neighboring blocks. Therefore, the quality of the prediction image in the direct mode can be improved, and the encoding efficiency can be improved.
  • the direct mode prediction direction is fixed to bidirectional prediction that can generate a prediction image with relatively little noise.
  • FIG. 41 is a block diagram showing a configuration of an embodiment of a video encoding apparatus using the video encoding method according to the present embodiment.
  • the header information for example, the H.264 picture parameter set or the header parameter that gives the direct mode prediction direction fixed flag generated by the direct mode prediction direction determination unit 3212 to the bit stream for each processing unit such as a picture
  • the configuration differs from the other embodiments in that it is attached to a slice header or the like.
  • FIG. 42 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment.
  • the prediction direction when the encoding target block is encoded in the direct mode is determined, and the determined direct prediction direction fixed flag is attached to the picture header or the like.
  • the flow of FIG. 35 of the ninth embodiment can be used as a method for determining the prediction direction in the direct mode.
  • a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S4201.
  • the cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode.
  • Formula 5 etc. are utilized for the cost calculation method.
  • S4203 it is determined whether the inter prediction mode determined in S4202 is the skip mode. If the determination result in S4203 is true, in S4204, a predicted image in the skip mode is generated, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S4203 is false, it is determined in S4205 whether the determined inter prediction mode is the direct mode and the direct prediction direction fixed flag is on.
  • inter prediction mode indicating the motion vector detection mode or the direct mode
  • unidirectional prediction in which the inter prediction direction is the prediction direction 1
  • unidirectional prediction in the prediction direction 2 is set.
  • An inter prediction direction flag indicating whether or not the bidirectional prediction is used is attached to the bit stream of the block to be encoded. Note that the inter prediction mode determination method and the like are the same as those in Embodiment 9, and thus the description thereof is omitted.
  • the direct mode prediction direction fixed flag is explicitly added to the picture header or the like, whether or not the direct mode prediction direction is fixed to bidirectional prediction can be flexibly determined for each picture. It becomes possible to switch, and it becomes possible to improve encoding efficiency.
  • FIG. 43 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment.
  • header information for example, header information
  • header information that gives the direct mode prediction direction flag generated by the direct mode prediction direction determination unit 3212 and the direct mode prediction direction fixed flag to the bitstream for each processing unit such as a picture. H.264 picture parameter set, slice header, etc.
  • H.264 picture parameter set, slice header, etc. is different from the other embodiments.
  • FIG. 44 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment.
  • the prediction direction when the encoding target block is encoded in the direct mode is determined, and the determined direct mode prediction direction fixed flag and the direct prediction direction flag are attached to the picture header or the like.
  • the flow of FIG. 35 of the ninth embodiment can be used as a method for determining the prediction direction in the direct mode.
  • a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S4401.
  • the cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode.
  • Formula 5 etc. are utilized for the cost calculation method.
  • S4403 it is determined whether the inter prediction mode determined in S4402 is a skip mode. If the determination result in S4403 is true, a predicted image in skip mode is generated in S4404, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S4403 is false, it is determined in S4405 whether the determined inter prediction mode is the direct mode and the direct prediction direction fixed flag is on.
  • a prediction image is generated according to the prediction direction of the direct mode determined in S4401, and the skip flag is set to 0 and is attached to the bit stream of the encoding target block.
  • an inter prediction mode indicating the motion vector detection mode or the direct mode is attached to the bit stream of the encoding target block. If the determination result in S4405 is false, inter prediction is performed according to the determined inter prediction mode, predicted image data is generated, the skip flag is set to 0, and the bit stream of the block to be encoded is attached.
  • an inter prediction mode and an inter prediction direction flag indicating the motion vector detection mode or the direct mode are attached to the bit stream of the encoding target block. Note that the inter prediction mode determination method and the like are the same as those in Embodiment 9, and thus the description thereof is omitted.
  • whether the direct mode prediction direction is fixed to a certain prediction direction in order to explicitly give the direct mode prediction direction fixed flag and the direct prediction direction flag to the picture header or the like. Can be flexibly switched for each picture, and the encoding efficiency can be improved.
  • FIG. 45 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
  • the moving picture decoding apparatus includes a variable length decoding unit 4501, an inverse quantization unit 4502, an inverse orthogonal transform unit 4503, a block memory 4504, a frame memory 4505, an intra prediction unit 4506, and an inter prediction unit 4507. , An inter prediction control unit 4508, a reference picture list management unit 4509, and a direct mode prediction direction determination unit 4510.
  • the variable length decoding unit 4501 performs variable length decoding processing on the input bitstream, and performs quantization on which picture type information, inter prediction mode, inter prediction direction flag, skip flag, and variable length decoding processing are performed. Generate coefficients.
  • the inverse quantization unit 4502 performs an inverse quantization process on the quantization coefficient that has been subjected to the variable length decoding process.
  • the inverse orthogonal transform unit 4503 transforms the orthogonal transform coefficient that has been subjected to the inverse quantization process from the frequency domain to the image domain to obtain prediction error image data.
  • the block memory 4504 stores prediction error image data and an image sequence generated by adding the prediction image data in units of blocks.
  • the frame memory 4505 stores the image sequence in units of frames.
  • the intra prediction unit 4506 generates predicted image data of the decoding target block by performing intra prediction using the block-by-block image sequence stored in the block memory 4504.
  • the inter prediction unit 4507 generates predicted image data of the decoding target block by performing inter prediction using the frame-by-frame image sequence stored in the frame memory 4505.
  • the inter prediction control unit 4508 controls the motion vector and the prediction image data generation method in the inter prediction according to the inter prediction mode, the inter prediction direction, and the skip flag.
  • the reference picture list management unit 4509 assigns a reference picture index to an encoded reference picture to be referred to in inter prediction, and creates a reference list along with the display order (similar to FIG. 33 in the ninth embodiment). Since B pictures can be encoded with reference to two pictures, two reference lists are held.
  • the reference picture is managed in the reference picture index and the display order.
  • the reference picture may be managed in the reference picture index and the encoding order.
  • the direct mode prediction direction determination unit 4510 uses the reference picture list 1 and the reference picture list 2 created by the reference picture list management unit 4509 to determine the direct mode prediction direction of the block to be encoded, and the direct mode prediction direction Set a fixed flag. Note that the determination flow of the direct mode prediction direction fixed flag is the same as that in FIG.
  • a decoded image sequence is generated by adding the decoded prediction error image data and the prediction image data.
  • FIG. 46 is a diagram showing an outline of the processing flow of the video decoding method according to the present embodiment.
  • S4601 it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S4601 is true, direct vector 1 and direct vector 2 are calculated in S4602, and a bidirectional prediction image is generated. If the determination result in S4601 is false, that is, if it is not the skip mode, it is determined in S4603 whether the decoded prediction mode is the direct mode. If the determination result in S4603 is true, it is determined in S4604 whether the direct mode prediction direction fixed flag is on. If the determination result in S4604 is true, in S4605, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated.
  • the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a predicted image is generated. If the determination result in S4603 is false, that is, the motion vector detection mode, a predicted image is generated using the decoded inter prediction direction and motion vector. In this embodiment, if the direct mode prediction direction fixed flag is on in S4605, a bidirectional prediction image is generated. However, for example, a unidirectional prediction image is generated in accordance with the encoding method. It doesn't matter if you do.
  • FIG. 47 is a diagram showing an example of bitstream syntax in the video decoding method according to the present embodiment.
  • skip_flag represents a skip flag
  • pred_mode represents an inter prediction mode
  • inter_pred_idc represents an inter prediction direction flag.
  • the present invention when determining the prediction direction of the direct mode, by selecting the optimal prediction direction for the encoding target block and attaching it to the bitstream regardless of the prediction direction of the neighboring blocks. It becomes possible to appropriately decode a bit stream with improved encoding efficiency.
  • the prediction direction in the direct mode is fixed to bidirectional prediction, and the direct mode By not attaching the prediction direction flag to the bitstream, it is possible to appropriately decode a bitstream that has improved the encoding efficiency by suppressing the amount of extra information.
  • FIG. 48 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
  • header information for example, H.264 picture parameter set or slice
  • the configuration differs from the other embodiments in that the bit stream attached to the header or the like can be decoded.
  • FIG. 49 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment.
  • S4901 it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S4901 is true, in S4902, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S4901 is false, that is, if it is not the skip mode, it is determined in S4903 whether the decoded prediction mode is the direct mode. If the determination result in S4903 is true, it is determined whether the direct mode prediction direction fixed flag decoded from the bitstream in S4904 is on.
  • skip_flag represents a skip flag
  • pred_mode represents an inter prediction mode
  • inter_pred_idc represents an inter prediction direction flag
  • fixed_direct_pred added to the picture header or the like represents a direct mode prediction direction fixed flag.
  • whether or not to fix the direct mode prediction direction to bidirectional prediction can be flexibly set for each picture by explicitly assigning the direct mode prediction direction fixed flag to the picture header or the like. By switching to, it becomes possible to appropriately decode a bit stream with improved encoding efficiency.
  • FIG. 51 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
  • header information for example, H.264
  • H.264 picture parameter set, slice header, etc. can be decoded, and the configuration is different from the other embodiments.
  • FIG. 52 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment.
  • S5201 it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S5201 is true, in S5202, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S5201 is false, that is, if it is not the skip mode, it is determined in S5203 whether the decoded prediction mode is the direct mode. If the determination result in S5203 is true, it is determined in S5204 whether the direct mode prediction direction fixed flag decoded from the bit stream is on.
  • the direct vector 1 and the direct vector 2 are calculated according to the direct mode prediction flag decoded from the bit stream, and a predicted image is generated. If the determination result in S5204 is false, in S5206, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction flag, and a predicted image is generated. If the determination result in S5203 is false, that is, the motion vector detection mode, a predicted image is generated using the decoded inter prediction direction flag and motion vector.
  • FIG. 53 is a diagram showing an example of the bitstream syntax in the video decoding method according to the present embodiment.
  • skip_flag represents a skip flag
  • pred_mode represents an inter prediction mode
  • inter_pred_idc represents an inter prediction direction flag.
  • fixed_direct_pred added to a picture header or the like represents a direct mode prediction direction fixed flag
  • direct_pred_idc represents a direct prediction direction flag.
  • the direct mode prediction direction fixed flag and the direct prediction direction flag are explicitly added to the picture header or the like, thereby fixing the direct mode prediction direction to a certain prediction direction. It is possible to appropriately decode a bit stream with improved coding efficiency by switching whether or not for each picture.
  • Embodiment 15 In this embodiment, a case where Embodiment 1 and Embodiment 9 are combined will be described.
  • the prediction direction in the skip mode is fixed to unidirectional prediction. This shows an example of improving the coding efficiency.
  • the prediction direction flag of direct mode is encoded by fixing the prediction direction of direct mode to either bidirectional prediction or unidirectional prediction.
  • An example has been shown in which it is not necessary to always accompany each block, and the encoding efficiency is improved by suppressing the amount of extra information.
  • the prediction direction in the skip mode is fixed to unidirectional prediction
  • the direct mode The prediction direction is fixed to bidirectional prediction.
  • the prediction direction of the skip mode By fixing the prediction direction of the skip mode to one direction, the prediction accuracy can be improved.
  • the bidirectional prediction has a higher prediction accuracy. Accordingly, by fixing the prediction direction of the direct mode in both directions, it becomes possible to improve the prediction accuracy of some coding target blocks whose prediction accuracy is reduced by fixing the skip mode to unidirectional prediction. .
  • the direct mode prediction direction flag becomes unnecessary, and thus the encoding efficiency can be further improved.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • FIG. 54 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments, and transmitted to the streaming server ex103.
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it.
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • At least one of the video encoding device and the video decoding device of each of the above embodiments is incorporated in the digital broadcasting system ex200. be able to.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in the above embodiments.
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by a device such as the television (receiver) ex300 or the set top box (STB) ex217.
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 56 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 decodes the audio data and the video data, or encodes each information, the audio signal processing unit ex304, the signal processing unit ex306 including the video signal processing unit ex305, and the decoded audio signal.
  • the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation.
  • the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 57 shows the configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 58 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, the configuration shown in FIG. 56 with the addition of a GPS receiver, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
  • FIG. 59 (a) is a diagram showing a mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex356.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments.
  • the encoded video data is sent to the multiplexing / separating unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio signal input unit ex356 while the camera unit ex365 images a video, a still image, and the like, and the encoded audio data is sent to the multiplexing / separating unit ex353. Send it out.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation circuit unit ex352, subjected to digital analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments, and the display unit ex358 via the LCD control unit ex359. From, for example, video and still images included in a moving image file linked to a home page are displayed.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data is multiplexed with video data is received and transmitted.
  • character data related to video is multiplexed. It may be converted data, or may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 60 shows a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 61 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 62 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 62 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in a video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 63 shows the format of TS packets that are finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 63, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 64 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 67 shows the steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 68 shows a configuration of the LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex510 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex510 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • FIG. 69 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification information described in Embodiment B may be used.
  • the identification information is not limited to that described in Embodiment B, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 70 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used.
  • Configuration is conceivable.
  • a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 72 (b) shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention
  • a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards
  • a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
  • the present invention relates to a moving image encoding method, a moving image encoding device, a moving image decoding method, and a moving image decoding device. Improve efficiency.

Abstract

An image coding method for assigning at least two or more reference picture indexes to at least one or more reference pictures different from a picture to be coded including a block to be coded, and coding the block to be coded, said image coding method comprising: a same reference picture determination step for, when the two or more reference picture indexes are used when the block to be coded is coded, determining whether or not the reference pictures indicated by the two or more reference picture indexes are the same pictures (S403); and a prediction direction switching step for, on the basis of the result of the determination in the same reference picture determination step, switching the prediction direction when the block to be coded is coded in a predetermined coding mode (S404, S405).

Description

動画像符号化方法、および、動画像復号化方法Moving picture encoding method and moving picture decoding method
 本発明は、動画像符号化方法、および、動画像復号化方法に関する。 The present invention relates to a moving image encoding method and a moving image decoding method.
 動画像符号化処理では、一般に、動画像が有する空間方向および時間方向の冗長性を利用して情報量の圧縮が行われる。空間方向の冗長性を利用する方法としては、周波数領域への変換が用いられ、時間方向の冗長性を利用する方法としては、ピクチャ間予測(以降、インター予測と呼ぶ)符号化処理が用いられる。インター予測符号化処理では、あるピクチャを符号化する際に、符号化対象ピクチャに対して表示時間順で前方または後方にある符号化済みのピクチャを、参照ピクチャとして用いる。そして、その参照ピクチャに対する符号化対象ピクチャの動きベクトルを検出し、動きベクトルに基づいて動き補償を行って得られた予測画像データと符号化対象ピクチャの画像データとの差分を取ることにより、時間方向の冗長性を取り除く。 In the moving image encoding process, in general, the amount of information is compressed using redundancy in the spatial direction and temporal direction of a moving image. As a method of using redundancy in the spatial direction, conversion to the frequency domain is used, and as a method of using redundancy in the temporal direction, inter-picture prediction (hereinafter referred to as inter prediction) encoding processing is used. . In the inter prediction encoding process, when a certain picture is encoded, an encoded picture that is ahead or behind in the display time order with respect to the encoding target picture is used as a reference picture. Then, by detecting the motion vector of the encoding target picture with respect to the reference picture and taking the difference between the predicted image data obtained by performing motion compensation based on the motion vector and the image data of the encoding target picture, time Remove direction redundancy.
 既に標準化されている、H.264と呼ばれる動画像符号化方式では、情報量の圧縮のために、Iピクチャ、Pピクチャ、および、Bピクチャという3種類のピクチャタイプを用いている。Iピクチャは、インター予測符号化処理を行わない、すなわち、ピクチャ内予測(以降、イントラ予測と呼ぶ)符号化処理を行うピクチャである。Pピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの1つのピクチャを参照してインター予測符号化を行うピクチャである。Bピクチャは、表示時間順で、符号化対象ピクチャの前方または後方にある既に符号化済みの2つのピクチャを参照してインター予測符号化を行うピクチャである。 , H. already standardized. In the moving picture encoding method called H.264, three types of picture types, i.e., I picture, P picture, and B picture, are used for compressing the amount of information. An I picture is a picture that does not perform inter prediction coding processing, that is, performs intra-picture prediction (hereinafter referred to as intra prediction) coding processing. The P picture is a picture that performs inter prediction encoding with reference to one already encoded picture that is in front of or behind the current picture in display time order. The B picture is a picture that performs inter prediction encoding with reference to two already encoded pictures that are in front of or behind the current picture in display time order.
 また、H.264と呼ばれる動画像符号化方式では、Bピクチャにおける各符号化対象ブロックのインター予測の符号化モードとして、予測画像データと符号化対象ブロックとの画像データの差分値および予測画像データ生成に用いた動きベクトルを符号化する動きベクトル検出モードと、画像データの差分値のみ符号化を行い、動きベクトルは周辺ブロック等から予測するダイレクトモードと、画像データの差分値も動きベクトルも符号化せず、周辺ブロック等から予測した動きベクトルの示す位置の予測画像をそのまま復号化画像とするスキップモードが存在する。 H. In the moving picture encoding method called H.264, the inter prediction encoding mode of each encoding target block in a B picture was used for generating a difference value between predicted image data and the encoding target block, and predicted image data. The motion vector detection mode that encodes the motion vector, and only the difference value of the image data are encoded, the direct mode that predicts the motion vector from the peripheral blocks, and the difference value and motion vector of the image data are not encoded. There is a skip mode in which a predicted image at a position indicated by a motion vector predicted from a peripheral block or the like is a decoded image as it is.
 また、Bピクチャの動きベクトル検出モードは、予測方向として、符号化対象ピクチャの前方または後方にある既に符号化済みの2つのピクチャを参照して予測画像を生成する双方向予測と、前方または後方にある既に符号化済みの1つのピクチャを参照して予測画像を生成する片方向予測を選択することができる。 Also, the motion vector detection mode for B pictures includes two-way prediction in which a prediction image is generated with reference to two already-encoded pictures ahead or behind the current picture as a prediction direction, and forward or backward. Unidirectional prediction for generating a prediction image with reference to one already-encoded picture can be selected.
 一方、Bピクチャのスキップモード、ダイレクトモードは、周辺ブロック等の予測モードに従って、符号化対象ブロックの予測方向を決定する。具体的な例として図31を参照して説明する。図31において、符号化対象ブロックの左隣接の符号化済みブロックを隣接ブロックA、符号化対象ブロックの上隣接の符号化済みブロックを隣接ブロックB、符号化対象ブロックの右上隣接の符号化済みブロックを隣接ブロックCとする。また、隣接ブロックAは双方向予測、隣接ブロックBは片方向予測、隣接ブロックCは片方向予測とする。符号化対象ブロックのスキップモード時の予測方向は、隣接ブロックのうち一つでも双方向予測が存在すれば双方向予測となり、図31の場合は、符号化対象ブロックの予測方向として双方向予測が選択される。 On the other hand, in the B picture skip mode and direct mode, the prediction direction of the block to be encoded is determined according to the prediction mode of the neighboring blocks and the like. A specific example will be described with reference to FIG. In FIG. 31, the left adjacent encoded block of the encoding target block is adjacent block A, the upper adjacent encoded block of the encoding target block is adjacent block B, and the upper right adjacent encoded block of the encoding target block is shown. Is an adjacent block C. Further, the adjacent block A is bidirectional prediction, the adjacent block B is unidirectional prediction, and the adjacent block C is unidirectional prediction. The prediction direction in the skip mode of the encoding target block is bidirectional prediction if there is bidirectional prediction even in one of the adjacent blocks. In the case of FIG. 31, bidirectional prediction is used as the prediction direction of the encoding target block. Selected.
 しかしながら、従来のスキップモードおよびダイレクトモードの予測方向の決定方法では、例えば図31の隣接ブロックAにおける双方向予測ベクトル2の検出精度が悪いにもかかわらず、常に双方向予測が選択されるため、スキップモードおよびダイレクトモードの予測画像が劣化し、符号化効率の劣化を招くという課題が生じている。 However, in the conventional method for determining the prediction direction of the skip mode and the direct mode, for example, bi-directional prediction is always selected even though the detection accuracy of the bi-directional prediction vector 2 in the adjacent block A in FIG. There is a problem that predicted images in the skip mode and the direct mode are deteriorated, leading to deterioration of encoding efficiency.
 本発明は、上記課題を解決することを目的とするものであり、スキップモードおよびダイレクトモードの予測方向を選択する、新たな判断基準を用いることにより、符号化対象ピクチャに最も適したスキップモードおよびダイレクトモードの予測方向を導出するとともに、符号化効率を向上させることを目的とする。 An object of the present invention is to solve the above-described problem. By using a new criterion for selecting a prediction direction of a skip mode and a direct mode, a skip mode most suitable for an encoding target picture and It aims at deriving the prediction direction of the direct mode and improving the coding efficiency.
 上記目的を達成するために、本発明の一様態に係る動画像符号化方法では、符号化対象ブロックを含む符号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記符号化対象ブロックを符号化する画像符号化方法であって、前記符号化対象ブロックを符号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、前記2つ以上の参照ピクチャインデックスが示す参照ピクチャが同一ピクチャであるか否かを判定する同一参照ピクチャ判定ステップと、前記同一参照ピクチャ判定ステップにおける判定結果に基づいて、前記符号化対象ブロックを所定の符号化モードで符号化する際の予測方向を切り替える予測方向切替ステップとを含む。 In order to achieve the above object, in the video encoding method according to an aspect of the present invention, at least two or more reference pictures different from the encoding target picture including the encoding target block are included. An image encoding method for encoding the encoding target block by allocating a reference picture index, and when the two or more reference picture indexes are used when encoding the encoding target block, the 2 Based on the same reference picture determination step for determining whether or not the reference pictures indicated by the two or more reference picture indexes are the same picture, and the determination result in the same reference picture determination step, the coding target block is set to a predetermined code. A prediction direction switching step of switching a prediction direction when encoding in the encoding mode.
 また、本発明の一様態に係る動画像復号化方法では、復号化対象ブロックを含む復号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記復号化対象ブロックを復号化する画像復号化方法であって、前記復号化対象ブロックを復号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、前記2つ以上の参照ピクチャインデックスが示す参照ピクチャが同一ピクチャであるか否かを判定する同一参照ピクチャ判定ステップと、前記同一参照ピクチャ判定ステップにおける判定結果に基づいて、前記復号化対象ブロックを所定の復号化モードで復号化する際の予測方向を切り替える予測方向切替ステップとを含む。 In the moving picture decoding method according to an aspect of the present invention, at least two or more reference picture indexes are assigned to at least one or more reference pictures different from the decoding target picture including the decoding target block. An image decoding method for decoding the decoding target block, wherein the two or more reference picture indexes are used when the two or more reference picture indexes are used when decoding the decoding target block. And decoding the block to be decoded in a predetermined decoding mode based on the same reference picture determining step for determining whether or not the reference picture indicated by is the same picture and the determination result in the same reference picture determining step A prediction direction switching step for switching the prediction direction.
 これらにより、スキップモードの予測方向を決定する際に、符号化対象ブロックに最適な予測方向を選択することができるため、符号化効率を向上させることが可能になる。特に、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャとが同一ピクチャの場合に、隣接ブロックの予測方向に関わらず、片方向予測を選択することにより予測画像の質を向上し、符号化効率を向上させることができる。 Thus, when determining the prediction direction of the skip mode, it is possible to select the optimal prediction direction for the block to be encoded, so that the encoding efficiency can be improved. In particular, when the reference picture indicated by reference picture index 1 in prediction direction 1 and the reference picture indicated by reference picture index 2 in prediction direction 2 are the same picture, unidirectional prediction is selected regardless of the prediction direction of adjacent blocks. By doing so, the quality of a prediction image can be improved and encoding efficiency can be improved.
 本発明によれば、スキップモード、ダイレクトモードの予測方向を選択する、新たな判断基準を用いることにより、符号化対象ピクチャに最も適したスキップモードの予測方向を導出することが可能になるとともに、符号化効率を向上せることが可能になる。 According to the present invention, it is possible to derive the prediction direction of the skip mode most suitable for the encoding target picture by using a new criterion for selecting the prediction direction of the skip mode and the direct mode, Encoding efficiency can be improved.
図1は、本発明に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。FIG. 1 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using a moving picture coding method according to the present invention. 図2は、Bピクチャにおける参照リストの例を示す図である。FIG. 2 is a diagram illustrating an example of a reference list in a B picture. 図3は、本発明に係る動画像符号化方法の処理フローの概要を示す図である。FIG. 3 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present invention. 図4は、スキップモード予測方向決定部における、スキップモード予測方向の決定フローを示す図である。FIG. 4 is a diagram illustrating a determination flow of the skip mode prediction direction in the skip mode prediction direction determination unit. 図5は、インター予測制御部における、インター予測モードの決定フローを示す図である。FIG. 5 is a diagram illustrating an inter prediction mode determination flow in the inter prediction control unit. 図6は、CostInter算出の方法についての処理フローを示す図である。FIG. 6 is a diagram showing a processing flow for the CostInter calculation method. 図7は、CostDirect算出の方法についての処理フローを示す図である。FIG. 7 is a diagram illustrating a processing flow for the CostDirect calculation method. 図8は、予測方向1のダイレクトベクトル1および予測方向2のダイレクトベクトル2の算出方法を示す図である。FIG. 8 is a diagram illustrating a method of calculating the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2. 図9は、CostSkip算出方法についての処理フローを示す図である。FIG. 9 is a diagram illustrating a processing flow for the CostSkip calculation method. 図10Aは、予測画像生成処理の一例を示す図である。FIG. 10A is a diagram illustrating an example of a predicted image generation process. 図10Bは、予測画像生成処理の他の一例を示す図である。FIG. 10B is a diagram illustrating another example of the predicted image generation process. 図11は、実施の形態2に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。FIG. 11 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the second embodiment. 図12は、実施の形態2に係る動画像符号化方法の処理フローの概要を示す図である。FIG. 12 is a diagram showing an outline of the processing flow of the moving picture coding method according to the second embodiment. 図13は、スキップモード予測方向追加フラグの決定フローを示す図である。FIG. 13 is a diagram illustrating a determination flow of the skip mode prediction direction addition flag. 図14は、実施の形態2におけるスキップモードのCostSkip算出の方法の処理フローを示す図である。FIG. 14 is a diagram illustrating a processing flow of the CostSkip calculation method in the skip mode according to the second embodiment. 図15は、実施の形態3に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。FIG. 15 is a block diagram illustrating a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the third embodiment. 図16は、実施の形態3に係る動画像符号化方法の処理フロー図である。FIG. 16 is a process flow diagram of the video encoding method according to Embodiment 3. 図17は、実施の形態4に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。FIG. 17 is a block diagram illustrating a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the fourth embodiment. 図18は、実施の形態4に係る動画像符号化方法の処理フローの概要を示す図である。FIG. 18 is a diagram illustrating an outline of a processing flow of the moving picture coding method according to the fourth embodiment. 図19は、実施の形態5に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。FIG. 19 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the fifth embodiment. 図20は、実施の形態5に係る動画像復号化方法の処理フローの概要を示す図である。FIG. 20 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the fifth embodiment. 図21は、実施の形態5に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。FIG. 21 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the fifth embodiment. 図22は、実施の形態6に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。FIG. 22 is a block diagram illustrating a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the sixth embodiment. 図23は、実施の形態6に係る動画像復号化方法の処理フローの概要を示す図である。FIG. 23 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the sixth embodiment. 図24は、実施の形態6に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。FIG. 24 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the sixth embodiment. 図25は、実施の形態7に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。FIG. 25 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the seventh embodiment. 図26は、実施の形態7に係る動画像復号化方法の処理フローの概要を示す図である。FIG. 26 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the seventh embodiment. 図27は、実施の形態7に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。FIG. 27 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the seventh embodiment. 図28は、実施の形態8に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。FIG. 28 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the eighth embodiment. 図29は、実施の形態8に係る動画像復号化方法の処理フローの概要を示す図である。FIG. 29 is a diagram showing an outline of a processing flow of the moving picture decoding method according to the eighth embodiment. 図30は、実施の形態8に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。FIG. 30 is a diagram illustrating an example of a bitstream syntax in the moving picture decoding method according to the eighth embodiment. 図31は、符号化対象ブロックの予測方向の決定方法を示す図である。FIG. 31 is a diagram illustrating a method of determining the prediction direction of the encoding target block. 図32は、実施の形態9に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。FIG. 32 is a block diagram illustrating a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the ninth embodiment. 図33は、Bピクチャにおける参照リストの一例を示す図である。FIG. 33 is a diagram illustrating an example of a reference list in a B picture. 図34は、実施の形態9に係る動画像符号化方法の処理フローの概要を示す図である。FIG. 34 is a diagram showing an outline of the processing flow of the moving picture coding method according to the ninth embodiment. 図35は、ダイレクトモード予測方向の決定フローを示す図である。FIG. 35 is a diagram showing a flow for determining the direct mode prediction direction. 図36は、インター予測モードの決定フローを示す図である。FIG. 36 is a diagram illustrating a determination flow of the inter prediction mode. 図37は、CostInter算出の方法についての処理フローを示す図である。FIG. 37 is a diagram showing a processing flow for the CostInter calculation method. 図38は、CostDirect算出の方法についての処理フローを示す図である。FIG. 38 is a diagram showing a processing flow for the CostDirect calculation method. 図39は、予測方向1のダイレクトベクトル1および予測方向2のダイレクトベクトル2の算出方法を示す図である。FIG. 39 is a diagram illustrating a method of calculating the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2. 図40は、CostSkip算出の方法についての処理フローを示す図である。FIG. 40 is a diagram illustrating a processing flow for the CostSkip calculation method. 図41は、実施の形態10に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。FIG. 41 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the tenth embodiment. 図42は、実施の形態10に係る動画像符号化方法の処理フローの概要を示す図である。FIG. 42 is a diagram showing an outline of the processing flow of the moving picture coding method according to the tenth embodiment. 図43は、実施の形態11に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。FIG. 43 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the eleventh embodiment. 図44は、実施の形態11に係る動画像符号化方法の処理フローの概要を示す図である。FIG. 44 is a diagram showing an outline of the processing flow of the video encoding method according to Embodiment 11. 図45は、実施の形態12に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。FIG. 45 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the twelfth embodiment. 図46は、実施の形態12に係る動画像復号化方法の処理フローの概要を示す図である。FIG. 46 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the twelfth embodiment. 図47は、実施の形態12に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。FIG. 47 is a diagram illustrating an example of bitstream syntax in the video decoding method according to Embodiment 12. 図48は、実施の形態13に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。FIG. 48 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the thirteenth embodiment. 図49は、実施の形態13に係る動画像復号化方法の処理フローの概要を示す図である。FIG. 49 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the thirteenth embodiment. 図50は、実施の形態13に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。FIG. 50 is a diagram illustrating an example of bitstream syntax in the video decoding method according to Embodiment 13. 図51は、実施の形態14に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。FIG. 51 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the fourteenth embodiment. 図52は、実施の形態14に係る動画像復号化方法の処理フローの概要を示す図である。FIG. 52 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the fourteenth embodiment. 図53は、実施の形態14に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。FIG. 53 is a diagram illustrating an example of the bitstream syntax in the video decoding method according to the fourteenth embodiment. 図54は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 54 is an overall configuration diagram of a content supply system that implements a content distribution service. 図55は、デジタル放送用システムの全体構成図である。FIG. 55 is an overall configuration diagram of a digital broadcasting system. 図56は、テレビの構成例を示すブロック図である。FIG. 56 is a block diagram illustrating a configuration example of a television. 図57は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 57 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図58は、光ディスクである記録メディアの構造例を示す図である。FIG. 58 shows an example of the structure of a recording medium that is an optical disk. 図59は、(a)携帯電話の一例を示す図、および、(b)携帯電話の構成例を示すブロック図である。59A is a diagram illustrating an example of a mobile phone, and FIG. 59B is a block diagram illustrating a configuration example of the mobile phone. 図60は、多重化データの構成を示す図である。FIG. 60 shows a structure of multiplexed data. 図61は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 61 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図62は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 62 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図63は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 63 is a diagram showing the structure of TS packets and source packets in multiplexed data. 図64は、PMTのデータ構成を示す図である。FIG. 64 shows the data structure of the PMT. 図65は、多重化データ情報の内部構成を示す図である。FIG. 65 shows the internal structure of the multiplexed data information. 図66は、ストリーム属性情報の内部構成を示す図である。FIG. 66 shows the internal structure of stream attribute information. 図67は、映像データを識別するステップを示す図である。FIG. 67 is a diagram showing steps for identifying video data. 図68は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 68 is a block diagram illustrating a configuration example of an integrated circuit that implements the moving picture coding method and the moving picture decoding method according to each embodiment. 図69は、駆動周波数を切り替える構成を示す図である。FIG. 69 is a diagram showing a configuration for switching drive frequencies. 図70は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 70 is a diagram illustrating steps for identifying video data and switching between driving frequencies. 図71は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 71 is a diagram showing an example of a lookup table in which video data standards are associated with drive frequencies. 図72は、(a)信号処理部のモジュールを共有化する構成の一例を示す図、および、(b)信号処理部のモジュールを共有化する構成の他の一例を示す図である。72A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit, and FIG. 72B is a diagram illustrating another example of a configuration of sharing a module of a signal processing unit.
 以下、発明の実施の形態について、図面を用いて説明する。なお、以下で説明する実施の形態は、いずれも本発明の好ましい一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置および接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。本発明は、請求の範囲だけによって限定される。よって、以下の実施の形態における構成要素のうち、本発明の最上位概念を示す独立請求項に記載されていない構成要素については、本発明の課題を達成するのに必ずしも必要ではないが、より好ましい形態を構成するものとして説明される。 Hereinafter, embodiments of the invention will be described with reference to the drawings. Each of the embodiments described below shows a preferred specific example of the present invention. The numerical values, shapes, materials, constituent elements, arrangement positions and connection forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. The present invention is limited only by the claims. Therefore, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept of the present invention are not necessarily required to achieve the object of the present invention. It will be described as constituting a preferred form.
 なお、同一の構成要素には同一の符号を付し、説明を省略する場合がある。 In addition, the same code | symbol is attached | subjected to the same component and description may be abbreviate | omitted.
 (実施の形態1)
 図1は、本発明に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。
(Embodiment 1)
FIG. 1 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using a moving picture coding method according to the present invention.
 動画像符号化装置は、図1に示すように、直交変換部101、量子化部102、逆量子化部103、逆直交変換部104、ブロックメモリ105、フレームメモリ106、イントラ予測部107、インター予測部108、インター予測制御部109、ピクチャタイプ決定部110、参照ピクチャリスト管理部111、スキップモード予測方向決定部112、および、可変長符号化部113を備える。 As illustrated in FIG. 1, the moving image encoding apparatus includes an orthogonal transform unit 101, a quantization unit 102, an inverse quantization unit 103, an inverse orthogonal transform unit 104, a block memory 105, a frame memory 106, an intra prediction unit 107, an inter prediction unit 107, and an inter prediction unit 107. A prediction unit 108, an inter prediction control unit 109, a picture type determination unit 110, a reference picture list management unit 111, a skip mode prediction direction determination unit 112, and a variable length coding unit 113 are provided.
 直交変換部101は、後述する手段で生成された予測画像データと、入力画像列との予測誤差データに対し、画像領域から、周波数領域への変換を行う。量子化部102は、周波数領域に変換された予測誤差データに対し、量子化処理を行う。逆量子化部103は、量子化部102により、量子化処理された予測誤差データに対し、逆量子化処理を行う。逆直交変換部104は、逆量子化処理された予測誤差データに対し、周波数領域から画像領域への変換を行う。ブロックメモリ105は、予測画像データと逆量子化処理された予測誤差データから求めた復号画像をブロック単位で保存する。フレームメモリ106は、復号画像をフレーム単位で保存する。ピクチャタイプ決定部110は、Iピクチャ、Bピクチャ、および、Pピクチャのいずれのピクチャタイプで入力画像列を符号化するかを決定し、ピクチャタイプ情報を生成する。イントラ予測部107は、ブロックメモリ105に保存されているブロック単位の復号画像を用いて、符号化対象ブロックのイントラ予測による予測画像データを生成する。インター予測部108は、フレームメモリ106に保存されているフレーム単位の復号画像を用いて、符号化対象ブロックのインター予測による予測画像データを生成する。 The orthogonal transform unit 101 performs transformation from the image domain to the frequency domain on the prediction error data between the predicted image data generated by the means described later and the input image sequence. The quantization unit 102 performs a quantization process on the prediction error data converted into the frequency domain. The inverse quantization unit 103 performs inverse quantization processing on the prediction error data quantized by the quantization unit 102. The inverse orthogonal transform unit 104 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process. The block memory 105 stores the decoded image obtained from the predicted image data and the prediction error data subjected to the inverse quantization process in units of blocks. The frame memory 106 stores the decoded image in units of frames. The picture type determination unit 110 determines which of the I picture, B picture, and P picture is to be used to encode the input image sequence, and generates picture type information. The intra prediction unit 107 uses the decoded image in units of blocks stored in the block memory 105 to generate predicted image data based on intra prediction of the encoding target block. The inter prediction unit 108 generates predicted image data by inter prediction of the encoding target block, using the decoded image in units of frames stored in the frame memory 106.
 参照ピクチャリスト管理部111は、インター予測で参照する符号化済みの参照ピクチャに参照ピクチャインデックスを割り当て、表示順等とともに参照リストを作成する。Bピクチャでは、2つのピクチャを参照して符号化を行えるため、2つの参照リストを保持する。図2に、Bピクチャにおける参照リストの例を示す。図2における参照ピクチャリスト1は、双方向予測における予測方向1の参照ピクチャリストの例であり、参照ピクチャインデックス1の値0に表示順2の参照ピクチャ1、参照ピクチャインデックス1の値1に表示順1の参照ピクチャ2、参照ピクチャインデックス1の値2に表示順0の参照ピクチャ3を割り当てている。つまり、符号化対象ピクチャに対して、表示順で時間的に近い順に参照ピクチャインデックスを割り当てている。一方、参照ピクチャリスト2は、双方向予測における予測方向2の参照ピクチャリストの例であり、参照ピクチャインデックス2の値0に表示順1の参照ピクチャ2、参照ピクチャインデックス2の値1に表示順2の参照ピクチャ1、参照ピクチャインデックス2の値2に表示順0の参照ピクチャ3を割り当てている。このように、各参照ピクチャに対して、予測方向毎に異なる参照ピクチャインデックスを割り当てることや(図2の参照ピクチャ1、2)、同じ参照ピクチャインデックスを割り当てることが可能である(図2の参照ピクチャ3)。 The reference picture list management unit 111 assigns a reference picture index to an encoded reference picture to be referred to in inter prediction, and creates a reference list together with a display order and the like. Since B pictures can be encoded with reference to two pictures, two reference lists are held. FIG. 2 shows an example of a reference list in a B picture. A reference picture list 1 in FIG. 2 is an example of a reference picture list in the prediction direction 1 in bi-directional prediction, and is displayed as a reference picture 1 in the display order 2 in the value 0 of the reference picture index 1 and a value 1 in the reference picture index 1. A reference picture 2 in display order 0 is assigned to a reference picture 2 in order 1 and a value 2 of reference picture index 1. That is, the reference picture index is assigned to the encoding target picture in the order of time in display order. On the other hand, the reference picture list 2 is an example of the reference picture list in the prediction direction 2 in the bi-directional prediction. The reference picture index 2 has a value 0 of the reference picture index 2 and the reference picture index 2 has the value 1 of the reference picture index 2. Reference picture 3 in display order 0 is assigned to value 2 of reference picture 1 and reference picture index 2 of 2. In this way, it is possible to assign different reference picture indexes for each reference picture for each prediction direction ( reference pictures 1 and 2 in FIG. 2), or to assign the same reference picture index (see FIG. 2). Picture 3).
 なお、本実施の形態では、参照ピクチャインデックスおよび表示順で参照ピクチャを管理したが、参照ピクチャインデックスおよび符号化順などで参照ピクチャを管理しても構わない。 In the present embodiment, the reference pictures are managed in the reference picture index and the display order. However, the reference pictures may be managed in the reference picture index and the encoding order.
 スキップモード予測方向決定部112は、参照ピクチャリスト管理部111によって作成された参照ピクチャリスト1および2を用いて、後述する方法で、符号化対象ブロックのスキップモードの予測方向を決定する。 The skip mode prediction direction determination unit 112 uses the reference picture lists 1 and 2 created by the reference picture list management unit 111 to determine the prediction direction of the skip mode of the encoding target block by a method to be described later.
 可変長符号化部113は、量子化処理された予測誤差データ、インター予測モード、インター予測方向、スキップフラグ、ピクチャタイプ情報に対し、可変長符号化処理を行うことで、ビットストリームを生成する。 The variable length encoding unit 113 generates a bitstream by performing variable length encoding processing on the quantized prediction error data, inter prediction mode, inter prediction direction, skip flag, and picture type information.
 図3は、本発明に係る動画像符号化方法の処理フローの概要を示す図である。S301では、符号化対象ブロックをスキップモードで符号化する場合の予測方向を決定する。S302では、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードと、隣接ブロック等から生成した予測動きベクトルを用いて予測画像を生成するダイレクトモードと、S301によって決められた予測方向に従って生成した予測動きベクトルを用いて予測画像を生成するスキップモードのコスト比較を行い、より効率のよいインター予測モードを決定する。コスト算出方法に関しては、後述する。S303では、S302で決定したインター予測モードがスキップモードかどうかを判定する。S302の判定結果が真であれば、S304において、スキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。S303の判定結果が偽であれば、決定したインター予測モードに従ってインター予測を行い、予測画像データを生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードおよびインター予測方向を、符号化対象ブロックのビットストリームに付随させる。 FIG. 3 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present invention. In S301, the prediction direction when the encoding target block is encoded in the skip mode is determined. In S302, a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S301. The cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode. The cost calculation method will be described later. In S303, it is determined whether or not the inter prediction mode determined in S302 is the skip mode. If the determination result in S302 is true, a predicted image in skip mode is generated in S304, and the skip flag is set to 1 and attached to the bit stream of the encoding target block. If the determination result in S303 is false, inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bitstream of the block to be encoded is attached. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode and an inter prediction direction are attached to the bit stream of the encoding target block.
 図4は、スキップモード予測方向決定部112における、スキップモード予測方向の決定フローを示す図である。一般的に、予測方向1の参照インデックス1が示す参照ピクチャと、予測方向2の参照インデックス2が示す参照ピクチャとが同一ピクチャの場合、双方向予測では予測方向1および予測方向2の動きベクトルが選択されるが、片方向予測では予測方向1の動きベクトルのみが使用される場合があり、全体的に予測方向2の動きベクトルが少なくなる場合がある。この場合に、スキップモードの予測方向として双方向予測を選択すると、予測方向2の予測動きベクトルの生成に用いることができる隣接ブロックの予測方向2の動きベクトルが少ない傾向にあるため、予測方向2の予測動きベクトルの精度が低くなる可能性がある。そのため、予測方向1の参照インデックス1が示す参照ピクチャと、予測方向2の参照インデックス2が示す参照ピクチャとが同一ピクチャの場合には、スキップモードの予測方向を片方向予測に固定することにより、符号化効率を向上させることができる。なお、本実施の形態では、予測方向1の参照インデックス1が示す参照ピクチャと、予測方向2の参照インデックス2が示す参照ピクチャとが同一ピクチャの場合に、スキップモードの予測方向を片方向に固定するようにしたが、参照ピクチャリスト1および参照ピクチャリスト2の参照ピクチャに対する参照ピクチャインデックスの割り当て方が同じ場合に、スキップモードの予測方向を片方向予測に固定するようにしてもよい。このような場合でも、双方向予測では予測方向1および予測方向2の動きベクトルが選択されるが、片方向予測では予測方向1の動きベクトルのみが使用される場合があり、全体的に予測方向2の動きベクトルが少なくなるため、スキップモードの予測方向を片方向予測に固定することによって、符号化効率を向上させることができる。 FIG. 4 is a diagram illustrating a flow of determining the skip mode prediction direction in the skip mode prediction direction determination unit 112. In general, when the reference picture indicated by the reference index 1 in the prediction direction 1 and the reference picture indicated by the reference index 2 in the prediction direction 2 are the same picture, motion vectors in the prediction direction 1 and the prediction direction 2 are used in bidirectional prediction. Although selected, only the motion vector in the prediction direction 1 may be used in the unidirectional prediction, and the motion vector in the prediction direction 2 may decrease as a whole. In this case, if bi-directional prediction is selected as the prediction direction of the skip mode, there is a tendency that there are few motion vectors in the prediction direction 2 of the adjacent blocks that can be used for generation of the prediction motion vector in the prediction direction 2. There is a possibility that the accuracy of the predicted motion vector will be low. Therefore, when the reference picture indicated by the reference index 1 in the prediction direction 1 and the reference picture indicated by the reference index 2 in the prediction direction 2 are the same picture, by fixing the prediction direction in the skip mode to unidirectional prediction, Encoding efficiency can be improved. In the present embodiment, when the reference picture indicated by the reference index 1 in the prediction direction 1 and the reference picture indicated by the reference index 2 in the prediction direction 2 are the same picture, the prediction direction in the skip mode is fixed in one direction. However, when the reference picture index assignment method for the reference pictures in the reference picture list 1 and the reference picture list 2 is the same, the prediction direction in the skip mode may be fixed to unidirectional prediction. Even in such a case, the motion vector of the prediction direction 1 and the prediction direction 2 is selected in the bidirectional prediction, but only the motion vector of the prediction direction 1 may be used in the unidirectional prediction. Since the motion vector of 2 is reduced, encoding efficiency can be improved by fixing the prediction direction of the skip mode to unidirectional prediction.
 S401において、スキップモードにおける予測方向1の参照ピクチャインデックス1の値を決定する。例えば、スキップモードでは常に値0の参照ピクチャインデックス1を使用するようにしてもよい。S402において、スキップモードにおける予測方向2の参照ピクチャインデックス2の値を決定する。例えば、スキップモードでは常に値0の参照ピクチャインデックス2を使用するようにしてもよい。S403において、参照ピクチャインデックス1の値が示す参照ピクチャと、参照ピクチャインデックス2の値が示す参照ピクチャとが同一ピクチャであるかどうかを、参照ピクチャリスト1および参照ピクチャリスト2を用いて判定する。例えば、参照ピクチャリスト1から参照ピクチャインデックス1の示す参照ピクチャの表示順を求め、参照ピクチャリスト2から参照ピクチャインデックス2の示す参照ピクチャの表示順と比較し、同じ値であれば同一ピクチャであると判定できる。S403において予測方向1および予測方向2の参照するピクチャが同一ピクチャであると判定される場合には、S404においてスキップモードの予測方向フラグを片方向予測に設定し、S403において予測方向1および予測方向2の参照ピクチャが同一ピクチャでないと判定される場合には、S405においてスキップモードの予測方向フラグを双方向予測に設定する。 In S401, the value of the reference picture index 1 in the prediction direction 1 in the skip mode is determined. For example, the reference picture index 1 with a value of 0 may always be used in the skip mode. In S402, the value of the reference picture index 2 in the prediction direction 2 in the skip mode is determined. For example, a reference picture index 2 of 0 may always be used in the skip mode. In S403, it is determined using the reference picture list 1 and the reference picture list 2 whether the reference picture indicated by the value of the reference picture index 1 and the reference picture indicated by the value of the reference picture index 2 are the same picture. For example, the display order of the reference picture indicated by the reference picture index 1 is obtained from the reference picture list 1 and is compared with the display order of the reference picture indicated by the reference picture index 2 from the reference picture list 2. Can be determined. If it is determined in S403 that the pictures to be referred to in the prediction direction 1 and the prediction direction 2 are the same picture, the prediction direction flag in the skip mode is set to unidirectional prediction in S404, and the prediction direction 1 and the prediction direction are determined in S403. If it is determined that the two reference pictures are not the same picture, the prediction mode flag in the skip mode is set to bidirectional prediction in S405.
 なお、本実施の形態では、スキップモードの参照ピクチャインデックスの値として常に値0を使用したが、隣接ブロック等の参照ピクチャインデックス値の最小値などを用いても構わない。また、本実施の形態では、S403において表示順を用いて同一ピクチャかどうかを判定したが、符号化順などを用いて判定しても構わない。 In this embodiment, the value 0 is always used as the value of the reference picture index in the skip mode, but the minimum value of the reference picture index value of an adjacent block or the like may be used. In this embodiment, whether or not the pictures are the same is determined using the display order in S403, but may be determined using the encoding order or the like.
 また、S403において、参照ピクチャリスト1および参照ピクチャリスト2の参照ピクチャに対する参照ピクチャインデックスの割り当て方が同じ場合に、同一ピクチャと判定してもよい。このような構成は、例えば、予め決めたインデックスの値に対応するピクチャを参照ピクチャとする場合に、有効である。0の値のインデックスに対応するピクチャを参照ピクチャとするとしている場合において、参照ピクチャリスト1と参照ピクチャリスト2の参照ピクチャに対するインデックスの割り当て方が同じ場合には、参照ピクチャリスト1と参照ピクチャリスト2の0の値のインデックスに対応するピクチャは同一となる。 In S403, when the reference picture index is assigned to the reference pictures in the reference picture list 1 and the reference picture list 2 in the same way, they may be determined as the same picture. Such a configuration is effective, for example, when a picture corresponding to a predetermined index value is used as a reference picture. In the case where the picture corresponding to the index of 0 is used as the reference picture, when the index allocation method for the reference pictures in the reference picture list 1 and the reference picture list 2 is the same, the reference picture list 1 and the reference picture list The pictures corresponding to the index of 0 of 2 are the same.
 図5は、インター予測制御部109における、インター予測モードの決定フローを示す図である。 FIG. 5 is a diagram showing an inter prediction mode determination flow in the inter prediction control unit 109.
 S501において、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードのコストCostInterを、後述する方法で算出する。S502において、隣接ブロック等の動きベクトルを用いて予測ベクトルを生成し、予測ベクトルを用いて予測画像を生成するダイレクトモードのコストCostDirectを、後述する方法で算出する。S503において、決定したスキップモード予測方向フラグに従って、予測画像を生成するスキップモードのコストCostSkipを、後述する方法で算出する。S504において、CostInter、CostDirect、および、CostSkipを比較し、CostInterが最小であるか否かを判定する。S504の判定結果が真であれば、S505においてインター予測モードを動きベクトル検出モードに決定し、インター予測モードを動きベクトル検出モードに設定する。S504の判定結果が偽であれば、S506においてCostDirectとCostSkipとの比較を行い、CostDirectが小さいか否かを判定する。S506の判定結果が真であれば、S507においてインター予測モードをダイレクトモードに決定し、インター予測モード情報をダイレクトモードに設定する。S506の判定結果が偽であれば、S508においてインター予測モードをスキップモードに設定し、インター予測モード情報にスキップモードを設定する。 In S501, a cost CostInter of a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result is calculated by a method described later. In S502, a prediction vector is generated using a motion vector such as an adjacent block, and a cost CostDirect in a direct mode for generating a prediction image using the prediction vector is calculated by a method described later. In S503, according to the determined skip mode prediction direction flag, the cost CostSkip of the skip mode for generating the predicted image is calculated by the method described later. In step S504, CostInter, CostDirect, and CostSkip are compared to determine whether CostInter is the minimum. If the determination result in S504 is true, in S505, the inter prediction mode is determined as the motion vector detection mode, and the inter prediction mode is set in the motion vector detection mode. If the determination result in S504 is false, CostDirect and CostSkip are compared in S506 to determine whether CostDirect is small. If the determination result in S506 is true, the inter prediction mode is determined to be the direct mode in S507, and the inter prediction mode information is set to the direct mode. If the determination result in S506 is false, the inter prediction mode is set to the skip mode in S508, and the skip mode is set to the inter prediction mode information.
 次に、図5におけるS501のCostInter算出の方法について、図6の処理フローを用いて詳細に説明する。S601では、予測方向1の参照ピクチャインデックス1の示す参照ピクチャ1、および予測方向2の参照ピクチャインデックス2の示す参照ピクチャ2に対し、動き検出を行い、それぞれの参照ピクチャに対する動きベクトル1および動きベクトル2を生成する。ここで動き検出は、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックを参照ブロックとする。そして、符号化対象ブロック位置と、参照ブロック位置から、動きベクトルを求める。S602では、S601で求めた動きベクトル1を用いて、予測方向1の予測画像を生成し、そのコストCostInterUni1を、例えば、R-D最適化モデルの以下の式で算出する。 Next, the CostInter calculation method of S501 in FIG. 5 will be described in detail using the processing flow of FIG. In S601, motion detection is performed on reference picture 1 indicated by reference picture index 1 in prediction direction 1 and reference picture 2 indicated by reference picture index 2 in prediction direction 2, and motion vector 1 and motion vector for each reference picture are detected. 2 is generated. Here, in motion detection, a difference value between a coding target block in a coded picture and a block in a reference picture is calculated, and a block in the reference picture having the smallest difference value is set as a reference block. Then, a motion vector is obtained from the encoding target block position and the reference block position. In S602, a prediction image in the prediction direction 1 is generated using the motion vector 1 obtained in S601, and the cost CostInterUni1 is calculated by, for example, the following equation of the RD optimization model.
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式1において、Dは符号化歪を表し、ある動きベクトルで生成した予測画像を用いて符号化対象ブロックを符号化および復号化して得られた画素値と、符号化対象ブロックの元の画素値との差分絶対値和などを用いる。また、Rは発生符号量を表し、予測画像生成に用いた動きベクトルを符号化することに必要な符号量などを用いる。またλはラグランジュの未定乗数である。S603では、S601で求めた動きベクトル2を用いて、予測方向2の予測画像を生成し、式1よりCostInterUni2を算出する。S604では、S601で求めた動きベクトル1と動きベクトル2を用いて、双方向の予測画像を生成し、式1よりCostInterBiを算出する。ここで、双方向の予測画像は、例えば、動きベクトル1から求めた予測画像と、動きベクトル2から求めた予測画像の、画素毎に加算平均を行ったものを双方向予測画像とする。S605は、CostInterUni1、CostInterUni2、および、CostInterBiの値を比較し、CostInterBiが最小であるか否かを判定する。S605の判定結果が真であれば、S606において、動きベクトル検出モードの予測方向を双方向予測に決定し、CostInterBiをCostInterに設定する。S605の判定結果が偽であれば、S607においてCostInterUni1とCostInterUni2とを比較し、CostInterUni1の値が小さいか否かを判定する。S607の判定結果が真であれば、S608において、動きベクトル検出モードを予測方向1の片方向予測1に決定し、CostInterUni1をCostInterに設定する。S607の判定結果が偽であれば、S609において、動きベクトル検出モードを予測方向2の片方向予測2に決定し、CostInterUni2をCostInterに設定する。 In Equation 1, D represents encoding distortion, and a pixel value obtained by encoding and decoding a block to be encoded using a prediction image generated with a certain motion vector, and an original pixel value of the block to be encoded The sum of absolute differences is used. R represents the generated code amount, and the code amount necessary for encoding the motion vector used for predictive image generation is used. Λ is Lagrange's undetermined multiplier. In step S603, a predicted image in the prediction direction 2 is generated using the motion vector 2 obtained in step S601, and CostInterUni2 is calculated from Equation 1. In S604, a bidirectional prediction image is generated using the motion vector 1 and the motion vector 2 obtained in S601, and CostInterBi is calculated from Equation 1. Here, the bidirectional prediction image is, for example, a prediction image obtained from the motion vector 1 and a prediction image obtained from the motion vector 2 obtained by performing an arithmetic average for each pixel as the bidirectional prediction image. In step S605, the values of CostInterUni1, CostInterUni2, and CostInterBi are compared to determine whether CostInterBi is the minimum. If the determination result in S605 is true, in S606, the prediction direction of the motion vector detection mode is determined to be bidirectional prediction, and CostInterBi is set to CostInter. If the determination result in S605 is false, CostInterUni1 and CostInterUni2 are compared in S607 to determine whether the value of CostInterUni1 is small. If the determination result in S607 is true, in S608, the motion vector detection mode is determined as one-way prediction 1 in the prediction direction 1, and CostInterUni1 is set to CostInter. If the determination result in S607 is false, in S609, the motion vector detection mode is determined as unidirectional prediction 2 in the prediction direction 2, and CostInterUni2 is set to CostInter.
 なお、本実施の形態では、双方向の予測画像生成時に、画素毎の加算平均を行ったが、重みつき加算平均等を行っても構わない。 In the present embodiment, the addition average for each pixel is performed at the time of bidirectional prediction image generation, but a weighted addition average or the like may be performed.
 次に、図5におけるS502のCostDirect算出の方法について、図7の処理フローを用いて詳細に説明する。S701では、予測方向1のダイレクトベクトル1および予測方向2のダイレクトベクトル2を算出する。ここで、ダイレクトベクトルは、例えば隣接ブロックの動きベクトルを用いて算出する。その例を図8を用いて説明する。図8において、動きベクトルMV_Aは、符号化対象ブロックの左隣に位置する隣接ブロックAの動きベクトル、動きベクトルMV_Bは、符号化対象ブロックの上隣に位置する隣接ブロックBの動きベクトル、動きベクトルMV_Cは、符号化対象ブロックの右上隣に位置する隣接ブロックCの動きベクトルである。ダイレクトベクトルは、例えば、隣接ブロックの動きベクトルであるMV_A、MV_B、MV_Cの中間値Median(MV_A,MV_B,MV_C)から算出される。ここで、中間値は、以下のように導出される。 Next, the CostDirect calculation method of S502 in FIG. 5 will be described in detail using the processing flow of FIG. In S701, the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated. Here, the direct vector is calculated using, for example, a motion vector of an adjacent block. An example of this will be described with reference to FIG. In FIG. 8, a motion vector MV_A is a motion vector of an adjacent block A located on the left side of the encoding target block, and a motion vector MV_B is a motion vector and a motion vector of an adjacent block B located on the upper side of the encoding target block. MV_C is a motion vector of the adjacent block C located on the upper right side of the encoding target block. The direct vector is calculated from, for example, an intermediate value Median (MV_A, MV_B, MV_C) of MV_A, MV_B, and MV_C that are motion vectors of adjacent blocks. Here, the intermediate value is derived as follows.
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 予測方向1のダイレクトベクトル1は、隣接ブロックの予測方向1の動きベクトルを用いて式2より算出される。また、予測方向2のダイレクトベクトル2は、隣接ブロックの予測方向2の動きベクトルを用いて式2より算出される。なお、符号化対象ブロックの予測方向と同じ予測方向を持つ隣接ブロックがなければ、ダイレクトベクトルとして値0の動きベクトルなどを用いても構わない。 The direct vector 1 in the prediction direction 1 is calculated from Equation 2 using the motion vector in the prediction direction 1 of the adjacent block. Further, the direct vector 2 in the prediction direction 2 is calculated from Equation 2 using the motion vector in the prediction direction 2 of the adjacent block. If there is no adjacent block having the same prediction direction as the encoding target block, a motion vector having a value of 0 may be used as the direct vector.
 S702では、S701で求めたダイレクトベクトル1とダイレクトベクトル2を用いて、双方向の予測画像を生成し、式1よりCostDirectBiを算出する。ここで、双方向の予測画像は、例えば、ダイレクトベクトル1から求めた予測画像と、ダイレクトベクトル2から求めた予測画像の、画素毎に加算平均を行ったものを双方向予測画像とする。S703では、ダイレクトベクトル1を用いて、予測方向1の予測画像を生成し、そのコストCostDirectUni1を式1より算出する。S704では、S701で求めたダイレクトベクトル2を用いて、予測方向2の予測画像を生成し、式1よりCostDirectUni2を算出する。S705では、CostDirectUni1、CostDirectUni2、および、CostDirectBiの値を比較し、CostDirectBiが最小であるか否かを判定する。S705の判定結果が真であれば、S706において、ダイレクトモードの予測方向を双方向予測に決定し、CostDirctBiをCostDirectに設定する。S705の判定結果が偽であれば、S707においてCostDirectUni1とCostDirectUni2とを比較し、CostDirectUni1の値が小さいか否かを判定する。S707の判定結果が真であれば、S708において、ダイレクトモードを予測方向1の片方向予測1に決定し、CostDirectUni1をCostDirectに設定する。S707の判定結果が偽であれば、S709において、ダイレクトモードを予測方向2の片方向予測2に決定し、CostDirectUni2をCostDirectに設定する。 In S702, a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2 obtained in S701, and CostDirectBi is calculated from Equation 1. Here, the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image. In S703, a predicted image in the prediction direction 1 is generated using the direct vector 1, and its cost CostDirectUni1 is calculated from Equation 1. In S704, a predicted image in the prediction direction 2 is generated using the direct vector 2 obtained in S701, and CostDirectUni2 is calculated from Equation 1. In S705, the values of CostDirectUni1, CostDirectUni2, and CostDirectBi are compared to determine whether CostDirectBi is minimum. If the determination result in S705 is true, in S706, the direct mode prediction direction is determined to be bidirectional prediction, and CostDirctBi is set to CostDirect. If the determination result in S705 is false, CostDirectUni1 and CostDirectUni2 are compared in S707 to determine whether the value of CostDirectUni1 is small. If the determination result in S707 is true, in S708, the direct mode is determined as one-way prediction 1 in the prediction direction 1, and CostDirectUni1 is set to CostDirect. If the determination result in S707 is false, in S709, the direct mode is determined as one-way prediction 2 in the prediction direction 2, and CostDirectUni2 is set to CostDirect.
 次に、図5におけるS503のCostSkip算出の方法について、図9の処理フローを用いて詳細に説明する。S901では、スキップモード予測方向決定部112が決定したスキップモード予測方向フラグが片方向予測かどうかを判定する。S901の判定結果が真であるならば、S902において、ダイレクトベクトル1を用いて予測方向1の予測画像を生成し、そのコストCostSkipを式1より算出する。S901の判定結果が偽であれば、S903において、ダイレクトベクトル1およびダイレクトベクトル2を用いて、双方向の予測画像を生成し、式1よりCostSkipを算出する。ここで、双方向の予測画像は、例えば、ダイレクトベクトル1から求めた予測画像と、ダイレクトベクトル2から求めた予測画像の、画素毎に加算平均を行ったものを双方向予測画像とする。図10Aおよび図10Bに予測画像生成時の具体例を図で示す。図10Aは、予測方向1の参照ピクチャインデックス1が示す参照ピクチャと、予測方向2の参照ピクチャインデックス2が示す参照ピクチャとが同一ピクチャである場合の例であり、この場合は図4の処理フローより、スキップモード予測方向フラグが片方向予測となり、予測方向1のダイレクトベクトル1によって生成した予測画像を符号化に用いる。一方、図10Bは、予測方向1の参照ピクチャインデックス1が示す参照ピクチャと、予測方向2の参照ピクチャインデックス2が示す参照ピクチャとが異なるピクチャである場合の例であり、この場合は図4の処理フローより、スキップモード予測方向フラグが双方向予測となり、ダイレクトベクトル1およびダイレクトベクトル2を用いて生成した、双方向の予測画像を符号化に用いる。 Next, the CostSkip calculation method of S503 in FIG. 5 will be described in detail using the processing flow of FIG. In S901, it is determined whether or not the skip mode prediction direction flag determined by the skip mode prediction direction determination unit 112 is unidirectional prediction. If the determination result in S901 is true, a predicted image in the prediction direction 1 is generated using the direct vector 1 in S902, and its cost CostSkip is calculated from Equation 1. If the determination result in S901 is false, a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2 in S903, and CostSkip is calculated from Equation 1. Here, the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image. FIG. 10A and FIG. 10B are diagrams showing specific examples when the predicted image is generated. FIG. 10A is an example when the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture. In this case, the processing flow of FIG. Thus, the skip mode prediction direction flag is unidirectional prediction, and the prediction image generated by the direct vector 1 in the prediction direction 1 is used for encoding. On the other hand, FIG. 10B is an example in which the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are different pictures. In this case, FIG. From the processing flow, the skip mode prediction direction flag becomes bidirectional prediction, and a bidirectional prediction image generated using the direct vector 1 and the direct vector 2 is used for encoding.
 なお、本実施の形態では、スキップモード予測方向フラグが片方向予測の場合、ダイレクトベクトル1を用いて予測画像を生成したが、ダイレクトベクトル2を用いて生成するようにしても構わない。 In the present embodiment, when the skip mode prediction direction flag is unidirectional prediction, the prediction image is generated using the direct vector 1, but it may be generated using the direct vector 2.
 このように、本発明によれば、スキップモードの予測方向を決定する際に、符号化対象ブロックに最適な予測方向を選択することができるため、符号化効率を向上させることが可能になる。特に、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャとが同一ピクチャの場合に、隣接ブロックの予測方向に関わらず、片方向予測を選択することにより予測画像の質を向上し、符号化効率を向上させることができる。 Thus, according to the present invention, when determining the prediction direction of the skip mode, it is possible to select the optimal prediction direction for the block to be encoded, so that the encoding efficiency can be improved. In particular, when the reference picture indicated by reference picture index 1 in prediction direction 1 and the reference picture indicated by reference picture index 2 in prediction direction 2 are the same picture, unidirectional prediction is selected regardless of the prediction direction of adjacent blocks. By doing so, the quality of a prediction image can be improved and encoding efficiency can be improved.
 (実施の形態2)
 図11は、本発明に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、実施の形態1のスキップモード予測方向決定部112の代わりに、スキップモード予測方向追加判定部112aを新たに設け、スキップモード予測方向追加フラグがオンの場合は、スキップモードの場合でもインター予測方向を符号化対象ブロック毎に付随させる点において、他の実施の形態と構成が異なる。
(Embodiment 2)
FIG. 11 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present invention. In the present embodiment, instead of the skip mode prediction direction determination unit 112 of the first embodiment, a skip mode prediction direction addition determination unit 112a is newly provided, and when the skip mode prediction direction addition flag is on, the skip mode Even in this case, the configuration differs from the other embodiments in that the inter prediction direction is attached to each encoding target block.
 図12は、本実施の形態に係る動画像符号化方法の処理フローの概要である。S1201では、符号化対象ブロックをスキップモードで符号化する場合に、予測方向を追加するかどうかを判定し、追加する場合はスキップモード追加フラグをオンにする。S1202では、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードと、隣接ブロック等から生成した予測動きベクトルを用いて予測画像を生成するダイレクトモードと、S1201によって追加した予測方向に従って生成した予測動きベクトルを用いて予測画像を生成するスキップモードのコスト比較を行い、より効率のよいインター予測モードを決定する。ここで、コスト算出方法は、式1などを利用する。S1203では、S1202で決定したインター予測モードがスキップモードかどうかを判定する。S1203の判定結果が真であれば、S1204において、スキップモード追加フラグがオンかどうかを判定し、S1204の判定結果が真であれば、S1205においてスキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。また、スキップモードのインター予測方向もビットストリームに付随させる。S1204の判定結果が偽であれば、スキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。S1203の判定結果が偽であれば、決定したインター予測モードに従ってインター予測を行い、予測画像データを生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードおよびインター予測方向を、符号化対象ブロックのビットストリームに付随させる。 FIG. 12 is an outline of the processing flow of the moving picture coding method according to the present embodiment. In step S1201, it is determined whether or not to add a prediction direction when the encoding target block is encoded in the skip mode, and when it is added, the skip mode addition flag is turned on. In S1202, a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction direction added in S1201. The cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the above is performed to determine a more efficient inter prediction mode. Here, Formula 1 etc. are utilized for the cost calculation method. In S1203, it is determined whether or not the inter prediction mode determined in S1202 is the skip mode. If the determination result in S1203 is true, it is determined in S1204 whether the skip mode addition flag is on. If the determination result in S1204 is true, a predicted image in skip mode is generated in S1205, and the skip flag is set to 1. Is attached to the bit stream of the encoding target block. Also, the inter prediction direction in the skip mode is attached to the bitstream. If the determination result in S1204 is false, skip mode prediction image generation is performed, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S1203 is false, inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bitstream of the encoding target block is attached. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode and an inter prediction direction are attached to the bit stream of the encoding target block.
 図13は、スキップモード予測方向追加判定部112aにおける、スキップモード予測方向追加フラグの決定フローを示す図である。 FIG. 13 is a diagram illustrating a determination flow of the skip mode prediction direction addition flag in the skip mode prediction direction addition determination unit 112a.
 S1301において、スキップモードにおける予測方向1の参照ピクチャインデックス1の値を決定する。例えば、スキップモードでは常に値0の参照ピクチャインデックス1を使用するようにしてもよい。S1302において、スキップモードにおける予測方向2の参照ピクチャインデックス2の値を決定する。例えば、スキップモードでは常に値0の参照ピクチャインデックス2を使用するようにしてもよい。S1303において、参照ピクチャインデックス1の値が示す参照ピクチャと、参照ピクチャインデックス2の値が示す参照ピクチャが同一ピクチャであるかどうかを、参照ピクチャリスト1および2を用いて判定する。例えば、参照ピクチャリスト1から参照ピクチャインデックス1の示す参照ピクチャの表示順を求め、参照ピクチャリスト2から参照ピクチャインデックス2の示す参照ピクチャの表示順と比較し、同じ値であれば同一ピクチャと判定できる。S1303において予測方向1および予測方向2の参照するピクチャが同一ピクチャであると判定される場合には、S1304においてスキップモードの予測方向追加フラグをオンに設定する。S1303において予測方向1と2の参照ピクチャが同一ピクチャでないと判定される場合には、S1305においてスキップモードの予測方向追加フラグをオフに設定する。 In S1301, the value of the reference picture index 1 in the prediction direction 1 in the skip mode is determined. For example, the reference picture index 1 with a value of 0 may always be used in the skip mode. In S1302, the value of the reference picture index 2 in the prediction direction 2 in the skip mode is determined. For example, a reference picture index 2 of 0 may always be used in the skip mode. In S1303, it is determined using reference picture lists 1 and 2 whether the reference picture indicated by the value of reference picture index 1 and the reference picture indicated by the value of reference picture index 2 are the same picture. For example, the display order of the reference picture indicated by the reference picture index 1 is obtained from the reference picture list 1 and is compared with the display order of the reference picture indicated by the reference picture index 2 from the reference picture list 2. it can. If it is determined in S1303 that the pictures referred to in the prediction direction 1 and the prediction direction 2 are the same picture, the prediction direction addition flag in the skip mode is set to ON in S1304. If it is determined in S1303 that the reference pictures in prediction directions 1 and 2 are not the same picture, the prediction direction addition flag in the skip mode is set to OFF in S1305.
 なお、本実施の形態では、スキップモードの参照ピクチャインデックスの値として常に値0を使用したが、隣接ブロック等の参照ピクチャインデックス値の最小値などを用いても構わない。また、本実施の形態では、S1303において表示順を用いて同一ピクチャかどうかを判定したが、符号化順などを用いて判定しても構わない。 In this embodiment, the value 0 is always used as the value of the reference picture index in the skip mode, but the minimum value of the reference picture index value of an adjacent block or the like may be used. In the present embodiment, it is determined whether or not the pictures are the same using the display order in S1303, but may be determined using the encoding order or the like.
 次に、本実施の形態におけるスキップモードのCostSkip算出の方法について、図14の処理フローを用いて詳細に説明する。なお、インター予測モードの決定フローおよび、CostInter、CostDirectの算出方法は、実施の形態1の図5、図6、および、図7と同様であるため、説明を省略する。 Next, a method of calculating the SkipSkip in the skip mode according to the present embodiment will be described in detail using the processing flow of FIG. Note that the determination flow of the inter prediction mode and the calculation method of CostInter and CostDirect are the same as those in FIGS. 5, 6, and 7 of the first embodiment, and thus description thereof is omitted.
 S1401では、予測方向1のダイレクトベクトル1および予測方向2のダイレクトベクトル2を、実施の形態1で説明した方法で算出する。そして、求めたダイレクトベクトル1およびダイレクトベクトル2を用いて、双方向の予測画像を生成し、式1よりCostSkipBiを算出する。ここで、双方向の予測画像は、例えば、ダイレクトベクトル1から求めた予測画像と、ダイレクトベクトル2から求めた予測画像の、画素毎に加算平均を行ったものを双方向予測画像とする。S1402では、スキップモード予測方向追加フラグがオンかどうかを判定する。S1402の判定結果が真ならば、S1403において、ダイレクトベクトル1を用いて、予測方向1の予測画像を生成し、そのコストCostSkipUni1を式1より算出する。S1404では、S1401で求めたダイレクトベクトル2を用いて、予測方向2の予測画像を生成し、式1よりCostSkipUni2を算出する。S1405では、CostSkipUni1、CostSkipUni2、および、CostSkipBiの値を比較し、CostSkipUni1が最小であるか否かを判定する。S1405の判定結果が真であれば、S1406において、スキップモードを予測方向1の片方向予測1に決定し、CostSkipUni1をCostSkipに設定する。S1405の判定結果が偽であれば、S1407においてCostSkipUni2とCostSkipBiとを比較し、CostSkipUni2の値が小さいか否かを判定する。S1407の判定が真であれば、S1408において、スキップモードを予測方向2の片方向予測2に決定し、CostSkipUni2をCostSkipに設定する。S1402の判定結果およびS1407の判定結果がともに偽であれば、S1409において、スキップモードを双方向予測に決定し、CostSkipBiをCostSkipに設定する。 In S1401, the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated by the method described in the first embodiment. Then, a bidirectional prediction image is generated using the obtained direct vector 1 and direct vector 2, and CostSkipBi is calculated from Equation 1. Here, the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image. In S1402, it is determined whether the skip mode prediction direction addition flag is on. If the determination result in S1402 is true, a predicted image in the prediction direction 1 is generated using the direct vector 1 in S1403, and its cost CostSkipUni1 is calculated from Equation 1. In S1404, a predicted image in the prediction direction 2 is generated using the direct vector 2 obtained in S1401, and CostSkipUni2 is calculated from Equation 1. In S1405, the values of CostSkipUni1, CostSkipUni2, and CostSkipBi are compared to determine whether CostSkipUni1 is minimum. If the determination result in S1405 is true, in S1406, the skip mode is determined as one-way prediction 1 in the prediction direction 1, and CostSkipUni1 is set to CostSkip. If the determination result in S1405 is false, CostSkipUni2 and CostSkipBi are compared in S1407 to determine whether the value of CostSkipUni2 is small. If the determination in S1407 is true, in S1408, the skip mode is determined as one-way prediction 2 in the prediction direction 2, and CostSkipUni2 is set to CostSkip. If both the determination result in S1402 and the determination result in S1407 are false, in S1409, the skip mode is determined to be bidirectional prediction, and CostSkipBi is set to CostSkip.
 このように、本発明によれば、スキップモードの予測方向を決定する際に、符号化対象ブロックに最適な予測方向を選択することができるため、符号化効率を向上させることが可能になる。特に、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャが同一ピクチャの場合に、隣接ブロックの予測方向に関わらず、スキップモードでも予測方向をビットストリームに付随させることで、符号化対象ブロックに最適な予測方向を選択することにより、予測画像の質を向上し、符号化効率を改善することができる。 Thus, according to the present invention, when determining the prediction direction of the skip mode, it is possible to select the optimal prediction direction for the block to be encoded, so that the encoding efficiency can be improved. In particular, when the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture, the prediction direction is set even in the skip mode regardless of the prediction direction of the adjacent block. By being attached to the bitstream, by selecting the optimal prediction direction for the block to be encoded, the quality of the predicted image can be improved and the encoding efficiency can be improved.
 (実施の形態3)
 図15は、本実施の形態に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、スキップモード予測方向決定部112が生成したスキップモード予測方向フラグを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随させる点において、他の実施の形態と構成が異なる。
(Embodiment 3)
FIG. 15 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment. In the present embodiment, header information (for example, an H.264 picture parameter set or slice) that gives the skip mode prediction direction flag generated by the skip mode prediction direction determination unit 112 to the bit stream for each processing unit such as a picture. The configuration differs from the other embodiments in that it is attached to a header or the like.
 図16は、本実施の形態に係る動画像符号化方法の処理フローの概要である。S1601では、符号化対象ブロックをスキップモードで符号化する場合の予測方向を決定し、決定したスキップモード予測方向フラグを、ピクチャヘッダ等に付随させる。ここで、スキップモードの予測方向の決定方法は、実施の形態1の図4のフローなどが利用できる。S1602では、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードと、隣接ブロック等から生成した予測動きベクトルを用いて予測画像を生成するダイレクトモードと、S1601によって決められた予測方向に従って生成した予測動きベクトルを用いて予測画像を生成するスキップモードのコスト比較を行い、より効率のよいインター予測モードを決定する。ここで、コスト算出方法は、式1などを利用する。S1603では、S1602で決定したインター予測モードがスキップモードかどうかを判定する。S1603の判定結果が真であれば、S1604において、スキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。S1603の判定結果が偽であれば、決定したインター予測モードに従ってインター予測を行い、予測画像データを生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードおよびインター予測方向を、符号化対象ブロックのビットストリームに付随させる。なお、インター予測モード決定方法等は、実施の形態1と同様であるため説明を省略する。 FIG. 16 is an outline of a processing flow of the moving picture coding method according to the present embodiment. In S1601, the prediction direction when the encoding target block is encoded in the skip mode is determined, and the determined skip mode prediction direction flag is attached to the picture header or the like. Here, the flow of FIG. 4 of Embodiment 1 etc. can be utilized for the determination method of the prediction direction of skip mode. In S1602, a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S1601. The cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode. Here, Formula 1 etc. are utilized for the cost calculation method. In S1603, it is determined whether the inter prediction mode determined in S1602 is a skip mode. If the determination result in S1603 is true, in S1604, a predicted image in the skip mode is generated, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S1603 is false, inter prediction is performed according to the determined inter prediction mode, prediction image data is generated, the skip flag is set to 0, and the bit stream of the block to be encoded is attached. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode and an inter prediction direction are attached to the bit stream of the encoding target block. In addition, since the inter prediction mode determination method etc. are the same as that of Embodiment 1, description is abbreviate | omitted.
 このように、本発明によれば、スキップモード予測方向フラグを、ピクチャヘッダ等に明示的に付与するため、スキップモードの予測方向をピクチャ毎に柔軟に切り替えることができるようになり、符号化効率を向上させることが可能になる。 Thus, according to the present invention, since the skip mode prediction direction flag is explicitly added to the picture header or the like, the prediction mode of the skip mode can be flexibly switched for each picture, and the coding efficiency It becomes possible to improve.
 (実施の形態4)
 図17は、本実施の形態に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、スキップモード予測方向追加判定部112aが生成したスキップモード予測方向追加フラグを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随させる点において、他の実施の形態と構成が異なる。
(Embodiment 4)
FIG. 17 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment. In the present embodiment, header information (for example, a picture parameter set of H.264) that adds the skip mode prediction direction addition flag generated by the skip mode prediction direction addition determination unit 112a to the bit stream for each processing unit such as a picture. In other respects, the configuration differs from the other embodiments.
 図18は、本実施の形態に係る動画像符号化方法の処理フローの概要を示す図である。S1801では、符号化対象ブロックをスキップモードで符号化する場合に、予測方向を追加するかどうかを判定し、追加する場合はスキップモード追加フラグをオンにする。そして、決定したスキップモード予測方向追加フラグをピクチャヘッダ等に付随させる。ここで、予測方向追加の決定方法は、実施の形態2の図13などが利用できる。S1802では、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードと、隣接ブロック等から生成した予測動きベクトルを用いて予測画像を生成するダイレクトモードと、S1801によって追加した予測方向に従って生成した予測動きベクトルを用いて予測画像を生成するスキップモードのコスト比較を行い、より効率のよいインター予測モードを決定する。ここで、コスト算出方法は、式1などを利用する。S1803では、S1802で決定したインター予測モードがスキップモードかどうかを判定する。S1803の判定結果が真であれば、S1804において、スキップモード追加フラグがオンかどうかを判定する。S1804の判定結果が真であれば、S1805においてスキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。また、スキップモードのインター予測方向もビットストリームに付随させる。S1804の判定結果が偽であれば、スキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。S1803の判定結果が偽であれば、決定したインター予測モードに従ってインター予測を行い、予測画像データを生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードおよびインター予測方向を、符号化対象ブロックのビットストリームに付随させる。なお、インター予測モード決定方法等は、実施の形態2と同様であるため説明を省略する。 FIG. 18 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment. In step S1801, it is determined whether or not to add a prediction direction when the encoding target block is encoded in the skip mode, and when it is added, the skip mode addition flag is turned on. Then, the determined skip mode prediction direction addition flag is attached to the picture header or the like. Here, as a method of determining the prediction direction addition, FIG. 13 of the second embodiment can be used. In S1802, a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction direction added in S1801. The cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the above is performed to determine a more efficient inter prediction mode. Here, Formula 1 etc. are utilized for the cost calculation method. In S1803, it is determined whether or not the inter prediction mode determined in S1802 is the skip mode. If the determination result in S1803 is true, it is determined in S1804 whether the skip mode addition flag is on. If the determination result in S1804 is true, a predicted image in the skip mode is generated in S1805, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. Also, the inter prediction direction in the skip mode is attached to the bitstream. If the determination result in S1804 is false, predicted image generation in the skip mode is performed, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S1803 is false, inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bitstream of the encoding target block is attached. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode and an inter prediction direction are attached to the bit stream of the encoding target block. In addition, since the inter prediction mode determination method etc. are the same as that of Embodiment 2, description is abbreviate | omitted.
 このように、本発明によれば、スキップモード予測方向追加フラグを、ピクチャヘッダ等に明示的に付与するため、スキップモードの予測方向を追加するかどうかをピクチャ毎に柔軟に切り替えることができるようになり、符号化効率を向上させることが可能になる。 As described above, according to the present invention, since the skip mode prediction direction addition flag is explicitly added to the picture header or the like, whether to add the prediction mode of the skip mode can be flexibly switched for each picture. Thus, the encoding efficiency can be improved.
 (実施の形態5)
 図19は、本実施の形態に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。
(Embodiment 5)
FIG. 19 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
 動画像復号化装置は、図19に示すように、可変長復号化部1901、逆量子化部1902、逆直交変換部1903、ブロックメモリ1904、フレームメモリ1905、イントラ予測部1906、インター予測部1907、インター予測制御部1908、参照ピクチャリスト管理部1909、および、スキップモード予測方向決定部1910を備える。 As illustrated in FIG. 19, the moving picture decoding apparatus includes a variable length decoding unit 1901, an inverse quantization unit 1902, an inverse orthogonal transform unit 1903, a block memory 1904, a frame memory 1905, an intra prediction unit 1906, and an inter prediction unit 1907. An inter prediction control unit 1908, a reference picture list management unit 1909, and a skip mode prediction direction determination unit 1910.
 可変長復号化部1901は、入力されたビットストリームに対し、可変長復号化処理を行い、ピクチャタイプ情報、インター予測モード、インター予測方向、スキップフラグ、可変長復号化処理を行った量子化係数を生成する。逆量子化部1902は、可変長復号化処理を行った量子化係数に対し、逆量子化処理を行う。逆直交変換部1903は、逆量子化処理を行った直交変換係数を、周波数領域から、画像領域への変換し、予測誤差画像データとする。ブロックメモリ1904は、予測誤差画像データと、予測画像データが加算されて生成された画像列を、ブロック単位で保存する。フレームメモリ1905は、画像列を、フレーム単位で保存する。イントラ予測部1906は、ブロックメモリ1904に保存されているブロック単位の画像列を用いて、イントラ予測することにより、復号化対象ブロックの予測画像データを生成する。インター予測部1907は、フレームメモリ1905に保存されているフレーム単位の画像列を用いて、インター予測することにより、復号化対象ブロックの予測画像データを生成する。インター予測制御部1908は、インター予測モード、インター予測方向、スキップフラグに応じて、インター予測における動きベクトルと予測画像データ生成方法を制御する。 The variable length decoding unit 1901 performs variable length decoding processing on the input bitstream, and performs the picture type information, the inter prediction mode, the inter prediction direction, the skip flag, and the quantized coefficient that has been subjected to the variable length decoding processing. Is generated. The inverse quantization unit 1902 performs an inverse quantization process on the quantized coefficient that has been subjected to the variable length decoding process. The inverse orthogonal transform unit 1903 transforms the orthogonal transform coefficient that has been subjected to the inverse quantization process from the frequency domain to the image domain to obtain prediction error image data. The block memory 1904 stores prediction error image data and an image sequence generated by adding the prediction image data in units of blocks. The frame memory 1905 stores the image sequence in units of frames. The intra prediction unit 1906 generates predicted image data of the decoding target block by performing intra prediction using the block-by-block image sequence stored in the block memory 1904. The inter prediction unit 1907 generates predicted image data of the decoding target block by performing inter prediction using the frame-by-frame image sequence stored in the frame memory 1905. The inter prediction control unit 1908 controls the motion vector and the prediction image data generation method in the inter prediction according to the inter prediction mode, the inter prediction direction, and the skip flag.
 参照ピクチャリスト管理部1909は、インター予測で参照する符号化済みの参照ピクチャに参照ピクチャインデックスを割り当て、表示順等とともに参照リストを作成する(実施の形態1の図2と同様)。Bピクチャでは、2つのピクチャを参照して符号化を行えるため、2つの参照リストを保持する。 The reference picture list management unit 1909 assigns a reference picture index to an encoded reference picture to be referred to in inter prediction, and creates a reference list along with the display order (similar to FIG. 2 in the first embodiment). Since B pictures can be encoded with reference to two pictures, two reference lists are held.
 なお、本実施の形態では、参照ピクチャインデックスと表示順で参照ピクチャを管理したが、参照ピクチャインデックスと符号化順などで参照ピクチャを管理しても構わない。 In this embodiment, the reference picture is managed in the reference picture index and the display order. However, the reference picture may be managed in the reference picture index and the encoding order.
 スキップモード予測方向決定部1910は、参照ピクチャリスト管理部1909によって作成された参照ピクチャリスト1および2を用いて、符号化対象ブロックのスキップモードの予測方向を決定する。なお、スキップモード予測方向フラグの決定フローは実施の形態1の図4と同様であるため、説明を省略する。 The skip mode prediction direction determination unit 1910 uses the reference picture lists 1 and 2 created by the reference picture list management unit 1909 to determine the prediction mode of the skip mode of the encoding target block. Note that the flow for determining the skip mode prediction direction flag is the same as that in FIG.
 最後に、復号化した予測誤差画像データと、予測画像データとを加算することにより、復号画像列を生成する。 Finally, a decoded image sequence is generated by adding the decoded prediction error image data and the prediction image data.
 図20は、本実施の形態に係る動画像復号化方法の処理フローの概要を示す図である。S2001では、ビットストリームから復号したスキップフラグが1かどうかを判定する。S2001の判定結果が真であれば、S2002において、スキップモード予測方向フラグが片方向予測かどうかを判定する。S2002の判定結果が真であれば、S2003において、ダイレクトベクトル1を算出し、片方向予測画像を生成する。S2002の判定結果が偽であれば、S2004において、ダイレクトベクトル1およびダイレクトベクトル2を算出し、双方向予測画像を生成する。S2001の判定結果が偽、つまり、スキップモードでなければ、S2005において、復号したインター予測モードが動きベクトル検出モードかどうかを判定する。S2005の判定結果が真であれば、S2006において、復号したインター予測方向および動きベクトルを用いて予測画像を生成する。S2005の判定結果が偽、つまり、ダイレクトモードであれば、S2007において、復号したインター予測方向に応じてダイレクトベクトル1、ダイレクトベクトル2を算出し、予測画像を生成する。 FIG. 20 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment. In S2001, it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S2001 is true, it is determined in S2002 whether the skip mode prediction direction flag is unidirectional prediction. If the determination result in S2002 is true, direct vector 1 is calculated in S2003, and a one-way predicted image is generated. If the determination result in S2002 is false, in S2004, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S2001 is false, that is, if it is not the skip mode, it is determined in S2005 whether the decoded inter prediction mode is the motion vector detection mode. If the determination result in S2005 is true, a predicted image is generated in S2006 using the decoded inter prediction direction and motion vector. If the determination result in S2005 is false, that is, the direct mode, in S2007, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a predicted image is generated.
 なお、本実施の形態では、図20のS2003において、ダイレクトベクトル1を用いてスキップモードの片方向予測画像を生成するとしたが、動画像符号化方法と合わせて、ダイレクトベクトル2を用いて片方向予測画像を生成するようにしても構わない。 In the present embodiment, the one-way predicted image in the skip mode is generated using the direct vector 1 in S2003 of FIG. 20, but the one-way prediction is performed using the direct vector 2 together with the moving picture coding method. A predicted image may be generated.
 図21は、本実施の形態に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。図21において、skip_flagはスキップフラグ、pred_modeはインター予測モード、inter_pred_idcはインター予測方向を表す。 FIG. 21 is a diagram illustrating an example of a bitstream syntax in the video decoding method according to the present embodiment. In FIG. 21, skip_flag represents a skip flag, pred_mode represents an inter prediction mode, and inter_pred_idc represents an inter prediction direction.
 このように、本発明によれば、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャが同一ピクチャの場合に、隣接ブロックの予測方向に関わらず、片方向予測を選択することにより符号化効率を向上したビットストリームを適切に復号することが可能になる。 As described above, according to the present invention, when the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture, the prediction direction of the adjacent block is affected. Instead, it is possible to appropriately decode a bitstream with improved encoding efficiency by selecting unidirectional prediction.
 (実施の形態6)
 図22は、本実施の形態に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、実施の形態5のスキップモード予測方向決定部1910の代わりに、スキップモード予測方向追加判定部1910aを新たに設け、スキップモード予測方向追加フラグがオンの場合は、スキップモードの場合でもインター予測方向を符号化対象ブロック毎に付随させたビットストリームを復号できる点において、他の実施の形態と構成が異なる。なお、スキップモード予測方向追加判定フローに関しては、実施の形態2の図13と同様のため、説明を省略する。
(Embodiment 6)
FIG. 22 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment. In the present embodiment, instead of the skip mode prediction direction determination unit 1910 of the fifth embodiment, a skip mode prediction direction addition determination unit 1910a is newly provided, and when the skip mode prediction direction addition flag is on, the skip mode Even in this case, the configuration is different from the other embodiments in that a bitstream in which the inter prediction direction is associated with each encoding target block can be decoded. Note that the skip mode prediction direction addition determination flow is the same as that of FIG.
 図23は、本実施の形態に係る動画像復号化方法の処理フローの概要を示す図である。S2301では、ビットストリームから復号したスキップフラグが1かどうかを判定する。S2301の判定結果が真であれば、S2302において、スキップモード予測方向追加フラグがオンかどうかを判定する。S2302の判定結果が真であれば、S2303において、インター予測方向を復号し、復号したインター予測方向に応じてダイレクトベクトル1とダイレクトベクトル2の少なくとも一つを算出し、片方向もしくは双方向の予測画像を生成する。S2302の判定結果が偽であれば、ダイレクトベクトル1およびダイレクトベクトル2を算出して双方向予測画像を生成する。S2301の判定結果が偽、つまり、スキップモードでなければ、S2305において、復号したインター予測モードが動きベクトル検出モードかどうかを判定する。S2305の判定結果が真であれば、S2306において、復号したインター予測方向および動きベクトルを用いて予測画像を生成する。S2305の判定結果が偽、つまり、ダイレクトモードであれば、S2307において、復号したインター予測方向に応じてダイレクトベクトル1、ダイレクトベクトル2を算出し、予測画像を生成する。 FIG. 23 is a diagram showing an outline of the processing flow of the video decoding method according to the present embodiment. In S2301, it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S2301 is true, it is determined in S2302 whether the skip mode prediction direction addition flag is on. If the determination result in S2302 is true, in S2303, the inter prediction direction is decoded, and at least one of the direct vector 1 and the direct vector 2 is calculated according to the decoded inter prediction direction, and one-way or bidirectional prediction is performed. Generate an image. If the determination result in S2302 is false, the direct vector 1 and the direct vector 2 are calculated to generate a bidirectional prediction image. If the determination result in S2301 is false, that is, if it is not the skip mode, it is determined in S2305 whether the decoded inter prediction mode is the motion vector detection mode. If the determination result in S2305 is true, a predicted image is generated in S2306 using the decoded inter prediction direction and motion vector. If the determination result in S2305 is false, that is, if it is the direct mode, in S2307, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a predicted image is generated.
 図24は、本実施の形態に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。図24において、skip_flagはスキップフラグ、pred_modeはインター予測モード、inter_pred_idcはインター予測方向を表す。 FIG. 24 is a diagram showing an example of the bitstream syntax in the video decoding method according to the present embodiment. In FIG. 24, skip_flag represents a skip flag, pred_mode represents an inter prediction mode, and inter_pred_idc represents an inter prediction direction.
 このように、本発明によれば、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャが同一ピクチャの場合に、隣接ブロックの予測方向に関わらず、スキップモードでも予測方向をビットストリームに付随させることにより、符号化効率を向上したビットストリームを適切に復号することが可能になる。 As described above, according to the present invention, when the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture, the prediction direction of the adjacent block is affected. In addition, by attaching the prediction direction to the bitstream even in the skip mode, it is possible to appropriately decode the bitstream with improved encoding efficiency.
 (実施の形態7)
 図25は、本実施の形態に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、スキップモード予測方向決定部1910が生成したスキップモード予測方向フラグを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随されたビットストリームを復号できる点において、他の実施の形態と構成が異なる。
(Embodiment 7)
FIG. 25 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment. In the present embodiment, header information (for example, H.264 picture parameter set or slice) that gives the skip mode prediction direction flag generated by the skip mode prediction direction determination unit 1910 to the bit stream for each processing unit such as a picture. The configuration differs from the other embodiments in that the bit stream attached to the header or the like can be decoded.
 図26は、本実施の形態に係る動画像復号化方法の処理フローの概要を示す図である。S2601では、ビットストリームから復号したスキップフラグが1かどうかを判定する。S2601の判定結果が真であれば、S2602において、ビットストリームから復号したスキップモード予測方向フラグが片方向予測かどうかを判定する。S2602が真であれば、S2603において、ダイレクトベクトル1を算出し、片方向予測画像を生成する。S2602の判定結果が偽であれば、S2604において、ダイレクトベクトル1およびダイレクトベクトル2を算出し、双方向予測画像を生成する。S2601の判定結果が偽、つまり、スキップモードでなければ、S2605において、復号したインター予測モードが動きベクトル検出モードかどうかを判定する。S2605の判定結果が真であれば、S2606において、復号したインター予測方向および動きベクトルを用いて予測画像を生成する。S2605の判定結果が偽、つまり、ダイレクトモードであれば、S2607において、復号したインター予測方向に応じてダイレクトベクトル1、ダイレクトベクトル2を算出し、予測画像を生成する。 FIG. 26 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment. In S2601, it is determined whether or not the skip flag decoded from the bit stream is 1. If the determination result in S2601 is true, it is determined in S2602 whether or not the skip mode prediction direction flag decoded from the bitstream is unidirectional prediction. If S2602 is true, in S2603, the direct vector 1 is calculated and a one-way predicted image is generated. If the determination result in S2602 is false, in S2604, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S2601 is false, that is, if it is not the skip mode, it is determined in S2605 whether the decoded inter prediction mode is the motion vector detection mode. If the determination result in S2605 is true, a predicted image is generated in S2606 using the decoded inter prediction direction and motion vector. If the determination result in S2605 is false, that is, if it is the direct mode, in S2607, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a predicted image is generated.
 なお、本実施の形態では、図26のS2603において、ダイレクトベクトル1を用いてスキップモードの片方向予測画像を生成するとしたが、動画像符号化方法と合わせて、ダイレクトベクトル2を用いて片方向予測画像を生成するようにしても構わない。 In this embodiment, the one-way predicted image in the skip mode is generated using the direct vector 1 in S2603 of FIG. 26. However, the one-way image using the direct vector 2 is combined with the moving image coding method. A predicted image may be generated.
 図27は、本実施の形態に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。図27において、skip_flagはスキップフラグ、pred_modeはインター予測モード、inter_pred_idcはインター予測方向を表す。また、ピクチャヘッダ等に付加されるskip_pred_idcはスキップフラグ予測方向を表す。 FIG. 27 is a diagram illustrating an example of a bitstream syntax in the video decoding method according to the present embodiment. In FIG. 27, skip_flag represents a skip flag, pred_mode represents an inter prediction mode, and inter_pred_idc represents an inter prediction direction. Also, skip_pred_idc added to the picture header or the like represents the skip flag prediction direction.
 このように、本発明によれば、スキップモード予測方向フラグを、ピクチャヘッダ等に明示的に付与することにより、スキップモードの予測方向をピクチャ毎に柔軟に切り替えることで符号化効率を向上させたビットストリームを適切に復号することが可能になる。 As described above, according to the present invention, coding efficiency is improved by flexibly switching the prediction direction of the skip mode for each picture by explicitly assigning the skip mode prediction direction flag to the picture header or the like. It becomes possible to properly decode the bitstream.
 (実施の形態8)
 図28は、本実施の形態に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、スキップモード予測方向追加判定部1910aが生成したスキップモード予測方向追加フラグを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随させビットストリームを復号できる点において、他の実施の形態と構成が異なる。
(Embodiment 8)
FIG. 28 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment. In the present embodiment, header information (for example, a picture parameter set of H.264) that adds a skip mode prediction direction addition flag generated by the skip mode prediction direction addition determination unit 1910a to a bit stream for each processing unit such as a picture. The configuration differs from the other embodiments in that the bit stream can be decoded by being attached to the header.
 図29は、本実施の形態に係る動画像復号化方法の処理フローの概要を示す図である。S2901では、ビットストリームから復号したスキップフラグが1かどうかを判定する。S2901の判定結果が真であれば、S2902において、ビットストリームから復号したスキップモード予測方向追加フラグがオンかどうかを判定する。S2902の判定結果が真であれば、S2903において、インター予測方向を復号し、復号したインター予測方向に応じてダイレクトベクトル1とダイレクトベクトル2の少なくとも一つを算出し、片方向もしくは双方向の予測画像を生成する。S2902の判定結果が偽であれば、ダイレクトベクトル1およびダイレクトベクトル2を算出して双方向予測画像を生成する。S2901の判定結果が偽、つまり、スキップモードでなければ、S2905において、復号したインター予測モードが動きベクトル検出モードかどうかを判定する。S2905の判定結果が真であれば、S2906において、復号したインター予測方向および動きベクトルを用いて予測画像を生成する。S2905の判定結果が偽、つまり、ダイレクトモードであれば、S2907において、復号したインター予測方向に応じてダイレクトベクトル1、ダイレクトベクトル2を算出し、予測画像を生成する。 FIG. 29 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment. In S2901, it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S2901 is true, it is determined in S2902 whether or not the skip mode prediction direction addition flag decoded from the bitstream is on. If the determination result in S2902 is true, in S2903, the inter prediction direction is decoded, and at least one of the direct vector 1 and the direct vector 2 is calculated according to the decoded inter prediction direction, and one-way or bidirectional prediction is performed. Generate an image. If the determination result in S2902 is false, a direct vector 1 and a direct vector 2 are calculated to generate a bidirectional prediction image. If the determination result in S2901 is false, that is, if it is not the skip mode, it is determined in S2905 whether the decoded inter prediction mode is the motion vector detection mode. If the determination result in S2905 is true, a predicted image is generated in S2906 using the decoded inter prediction direction and motion vector. If the determination result in S2905 is false, that is, if it is the direct mode, in S2907, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a prediction image is generated.
 図30は、本実施の形態に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。図30において、skip_flagはスキップフラグ、pred_modeはインター予測モード、inter_pred_idcはインター予測方向を表す。また、ピクチャヘッダ等に付加されるskip_add_dirはスキップフラグ予測方向追加フラグを表す。 FIG. 30 is a diagram illustrating an example of a bitstream syntax in the video decoding method according to the present embodiment. In FIG. 30, skip_flag represents a skip flag, pred_mode represents an inter prediction mode, and inter_pred_idc represents an inter prediction direction. Further, skip_add_dir added to the picture header or the like represents a skip flag prediction direction addition flag.
 このように、本発明によれば、スキップモード予測方向追加フラグを、ピクチャヘッダ等に明示的に付与することにより、スキップモードの予測方向を追加するかどうかをピクチャ毎に柔軟に切り替えることで符号化効率を向上させたビットストリームを適切に復号することが可能になる。 As described above, according to the present invention, by explicitly assigning the skip mode prediction direction addition flag to the picture header or the like, it is possible to flexibly switch whether to add the prediction mode of the skip mode for each picture. It is possible to appropriately decode a bit stream with improved efficiency.
 (実施の形態9)
 図32は、本実施の形態に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。
(Embodiment 9)
FIG. 32 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment.
 動画像符号化装置は、図32に示すように、直交変換部3201、量子化部3202、逆量子化部3203、逆直交変換部3204、ブロックメモリ3205、フレームメモリ3206、イントラ予測部3207、インター予測部3208、インター予測制御部3209、ピクチャタイプ決定部3210、参照ピクチャリスト管理部3211、ダイレクトモード予測方向決定部3212、および、可変長符号化部3213を備える。 As shown in FIG. 32, the moving image encoding apparatus includes an orthogonal transform unit 3201, a quantization unit 3202, an inverse quantization unit 3203, an inverse orthogonal transform unit 3204, a block memory 3205, a frame memory 3206, an intra prediction unit 3207, an inter prediction unit A prediction unit 3208, an inter prediction control unit 3209, a picture type determination unit 3210, a reference picture list management unit 3211, a direct mode prediction direction determination unit 3212, and a variable length encoding unit 3213 are provided.
 直交変換部3201は、後述する手段で生成された予測画像データと、入力画像列との予測誤差データに対し、画像領域から、周波数領域への変換を行う。量子化部3202は、周波数領域に変換された予測誤差データに対し、量子化処理を行う。逆量子化部3203は、量子化部3202により、量子化処理された予測誤差データに対し、逆量子化処理を行う。逆直交変換部3204は、逆量子化処理された予測誤差データに対し、周波数領域から、画像領域への変換を行う。ブロックメモリ3205は、予測画像データと逆量子化処理された予測誤差データから求めた復号画像をブロック単位で保存する。フレームメモリ3206は、復号画像をフレーム単位で保存する。ピクチャタイプ決定部3210は、Iピクチャ、Bピクチャ、または、Pピクチャのいずれのピクチャタイプで入力画像列を符号化するかを決定し、ピクチャタイプ情報を生成する。イントラ予測部3207は、ブロックメモリ3205に保存されているブロック単位の復号画像を用いて、符号化対象ブロックのイントラ予測による予測画像データを生成する。インター予測部3208は、フレームメモリ3206に保存されているフレーム単位の復号画像を用いて、符号化対象ブロックのインター予測による予測画像データを生成する。 The orthogonal transform unit 3201 performs transformation from the image domain to the frequency domain on the prediction error data between the predicted image data generated by the means described later and the input image sequence. The quantization unit 3202 performs a quantization process on the prediction error data converted into the frequency domain. The inverse quantization unit 3203 performs inverse quantization processing on the prediction error data quantized by the quantization unit 3202. The inverse orthogonal transform unit 3204 performs transform from the frequency domain to the image domain on the prediction error data subjected to the inverse quantization process. The block memory 3205 stores the decoded image obtained from the prediction image data and the prediction error data subjected to the inverse quantization process in units of blocks. The frame memory 3206 stores the decoded image in units of frames. The picture type determination unit 3210 determines which of the I picture, B picture, or P picture is used to encode the input image sequence, and generates picture type information. The intra prediction unit 3207 uses the decoded image in units of blocks stored in the block memory 3205 to generate predicted image data based on intra prediction of the encoding target block. The inter prediction unit 3208 uses the decoded image in units of frames stored in the frame memory 3206 to generate predicted image data based on inter prediction of the current block.
 参照ピクチャリスト管理部3211は、インター予測で参照する符号化済みの参照ピクチャに参照ピクチャインデックスを割り当て、表示順等とともに参照リストを作成する。Bピクチャでは、2つのピクチャを参照して符号化を行えるため、2つの参照リストを保持する。図33に、Bピクチャにおける参照リストの例を示す。図33における参照ピクチャリスト1は、双方向予測における予測方向1の参照ピクチャリストの例であり、参照ピクチャインデックス1の値0に表示順2の参照ピクチャ1、参照ピクチャインデックス1の値1に表示順1の参照ピクチャ2、参照ピクチャインデックス1の値2に表示順0の参照ピクチャ3を割り当てている。つまり、符号化対象ピクチャに対して、表示順で時間的に近い順に参照ピクチャインデックスを割り当てている。一方、参照ピクチャリスト2は、双方向予測における予測方向2の参照ピクチャリストの例であり、参照ピクチャインデックス2の値0に表示順1の参照ピクチャ2、参照ピクチャインデックス2の値1に表示順2の参照ピクチャ1、参照ピクチャインデックス2の値2に表示順0の参照ピクチャ3を割り当てている。このように、各参照ピクチャに対して、予測方向毎に異なる参照ピクチャインデックスを割り当てることや(図33の参照ピクチャ1、2)、同じ参照ピクチャインデックスを割り当てることが可能である(図33の参照ピクチャ3)。 The reference picture list management unit 3211 assigns a reference picture index to an encoded reference picture that is referred to in inter prediction, and creates a reference list together with a display order and the like. Since B pictures can be encoded with reference to two pictures, two reference lists are held. FIG. 33 shows an example of a reference list in a B picture. A reference picture list 1 in FIG. 33 is an example of a reference picture list in the prediction direction 1 in bi-directional prediction, and is displayed as a reference picture 1 with a reference picture index 1 value 0 and a reference picture index 1 with a reference picture index 1 value 1. A reference picture 2 in display order 0 is assigned to a reference picture 2 in order 1 and a value 2 of reference picture index 1. That is, the reference picture index is assigned to the encoding target picture in the order of time in display order. On the other hand, the reference picture list 2 is an example of the reference picture list in the prediction direction 2 in the bi-directional prediction. The reference picture index 2 has a value 0 of the reference picture index 2 and the reference picture index 2 has the value 1 of the reference picture index 2. Reference picture 3 in display order 0 is assigned to value 2 of reference picture 1 and reference picture index 2 of 2. In this way, it is possible to assign different reference picture indexes for each reference picture for each prediction direction ( reference pictures 1 and 2 in FIG. 33), or to assign the same reference picture index (see FIG. 33). Picture 3).
 なお、本実施の形態では、参照ピクチャインデックスと表示順で参照ピクチャを管理したが、参照ピクチャインデックスと符号化順などで参照ピクチャを管理しても構わない。 In this embodiment, the reference picture is managed in the reference picture index and the display order. However, the reference picture may be managed in the reference picture index and the encoding order.
 ダイレクトモード予測方向決定部3212は、参照ピクチャリスト管理部3211によって作成された参照ピクチャリスト1および参照ピクチャリスト2を用いて、後述する方法で、符号化対象ブロックのダイレクトモードの予測方向を決定する。 The direct mode prediction direction determination unit 3212 uses the reference picture list 1 and the reference picture list 2 created by the reference picture list management unit 3211 to determine the direct mode prediction direction of the block to be encoded by a method described later. .
 可変長符号化部3213は、量子化処理された予測誤差データ、インター予測モード、インター予測方向フラグ、スキップフラグ、ピクチャタイプ情報に対し、可変長符号化処理を行うことで、ビットストリームを生成する。 The variable length coding unit 3213 generates a bitstream by performing variable length coding processing on the quantized prediction error data, inter prediction mode, inter prediction direction flag, skip flag, and picture type information. .
 図34は、本実施の形態に係る動画像符号化方法の処理フローの概要を示す図である。S3401では、符号化対象ブロックをダイレクトモードで符号化する場合の予測方向を決定する。S3402では、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードと、隣接ブロック等から生成した予測動きベクトルを用いて予測画像を生成するダイレクトモードと、S3401によって決められた予測方向に従って生成した予測動きベクトルを用いて予測画像を生成するスキップモードのコスト比較を行い、より効率のよいインター予測モードを決定する。コスト算出方法に関しては、後述する。S3403では、S3402で決定したインター予測モードがスキップモードかどうかを判定する。S3402の判定結果が真であれば、S3404において、スキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。S3403の判定結果が偽であれば、S3405において、決定したインター予測モードがダイレクトモードかつ、後述する方法で決定したダイレクト予測方向固定フラグがオンかどうかを判定する。S3405の判定結果が真であれば、S3406において、ダイレクトモードの双方向予測画像を生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードを、符号化対象ブロックのビットストリームに付随させる。S3405の判定結果が偽であれば、決定したインター予測モードに従ってインター予測を行い、予測画像データを生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モード、および、インター予測方向が予測方向1の片方向予測、または、予測方向2の片方向予測、または、予測方向1と予測方向2を用いた双方向予測かどうかを示すインター予測方向フラグを、符号化対象ブロックのビットストリームに付随させる。 FIG. 34 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment. In S3401, the prediction direction when the encoding target block is encoded in the direct mode is determined. In S3402, a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S3401. The cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed, and a more efficient inter prediction mode is determined. The cost calculation method will be described later. In S3403, it is determined whether the inter prediction mode determined in S3402 is the skip mode. If the determination result in S3402 is true, in S3404, a predicted image in the skip mode is generated, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S3403 is false, it is determined in S3405 whether or not the determined inter prediction mode is the direct mode and the direct prediction direction fixed flag determined by the method described later is on. If the determination result in S3405 is true, in S3406, a bi-directional prediction image in the direct mode is generated, the skip flag is set to 0, and it is attached to the bit stream of the encoding target block. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode is attached to the bit stream of the encoding target block. If the determination result in S3405 is false, inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bitstream of the encoding target block is attached. In addition, the inter prediction mode indicating the motion vector detection mode or the direct mode, and the unidirectional prediction in which the inter prediction direction is the prediction direction 1, the unidirectional prediction in the prediction direction 2, or the prediction direction 1 and the prediction direction 2 are set. An inter prediction direction flag indicating whether or not the bidirectional prediction is used is attached to the bit stream of the block to be encoded.
 図35は、ダイレクトモード予測方向決定部3212における、ダイレクトモード予測方向の決定フローを示す図である。一般的に、予測方向1の参照インデックス1が示す参照ピクチャと、予測方向2の参照インデックス2が示す参照ピクチャが同一ピクチャの場合、双方向予測と片方向予測のコストが比較的近くなる傾向があるため、どちらか一方の予測方向に固定することにより、インター予測方向フラグを符号化対象ブロックごとに付随させる必要がなくなる。本実施の形態では、加算平均等の影響で比較的ノイズの少ない予測画像を生成することができる双方向予測に固定する例を用いて、以下、説明を行う。なお、ノイズの影響等の少ない画像の場合などは、処理量の観点などから、片方向予測に固定するようにしても構わない。 FIG. 35 is a diagram showing a direct mode prediction direction determination flow in the direct mode prediction direction determination unit 3212. In general, when the reference picture indicated by the reference index 1 in the prediction direction 1 and the reference picture indicated by the reference index 2 in the prediction direction 2 are the same picture, the costs of bidirectional prediction and unidirectional prediction tend to be relatively close. Therefore, by fixing to one of the prediction directions, it is not necessary to attach an inter prediction direction flag for each encoding target block. In the present embodiment, description will be given below using an example in which the prediction is fixed to bidirectional prediction that can generate a prediction image with relatively little noise due to the influence of addition averaging or the like. In the case of an image with little influence of noise or the like, it may be fixed to unidirectional prediction from the viewpoint of processing amount.
 S3501において、ダイレクトモードにおける予測方向1の参照ピクチャインデックス1の値を決定する。例えば、ダイレクトモードでは常に値0の参照ピクチャインデックス1を使用するようにしてもよい。S3502において、ダイレクトモードにおける予測方向2の参照ピクチャインデックス2の値を決定する。例えば、ダイレクトモードでは常に値0の参照ピクチャインデックス2を使用するようにしてもよい。S3503において、参照ピクチャインデックス1の値が示す参照ピクチャと、参照ピクチャインデックス2の値が示す参照ピクチャとが同一ピクチャであるかどうかを、参照ピクチャリスト1および参照ピクチャリスト2を用いて判定する。例えば、参照ピクチャリスト1から参照ピクチャインデックス1の示す参照ピクチャの表示順を求め、参照ピクチャリスト2から参照ピクチャインデックス2の示す参照ピクチャの表示順と比較し、同じ値であれば同一ピクチャと判定できる。S3503において予測方向1および予測方向2の参照するピクチャが同一ピクチャであると判定される場合には、S3504において、ダイレクトモードの予測方向を双方向予測に決定し、ダイレクトモード予測方向固定フラグをオンに設定する。S3503において予測方向1および予測方向2の参照ピクチャが同一ピクチャでないと判定される場合には、S3505においてダイレクトモード予測方向固定フラグをオフに設定する。 In S3501, the value of the reference picture index 1 in the prediction direction 1 in the direct mode is determined. For example, in the direct mode, the reference picture index 1 having a value of 0 may always be used. In S3502, the value of the reference picture index 2 in the prediction direction 2 in the direct mode is determined. For example, the reference picture index 2 having a value of 0 may always be used in the direct mode. In S3503, it is determined using the reference picture list 1 and the reference picture list 2 whether the reference picture indicated by the value of the reference picture index 1 and the reference picture indicated by the value of the reference picture index 2 are the same picture. For example, the display order of the reference picture indicated by the reference picture index 1 is obtained from the reference picture list 1 and is compared with the display order of the reference picture indicated by the reference picture index 2 from the reference picture list 2. it can. If it is determined in S3503 that the pictures to be referenced in the prediction direction 1 and the prediction direction 2 are the same picture, in S3504, the direct mode prediction direction is determined to be bidirectional prediction, and the direct mode prediction direction fixed flag is turned on. Set to. If it is determined in S3503 that the reference pictures in the prediction direction 1 and the prediction direction 2 are not the same picture, the direct mode prediction direction fixed flag is set to OFF in S3505.
 なお、本実施の形態では、ダイレクトモードの参照ピクチャインデックスの値として常に値0を使用したが、隣接ブロック等の参照ピクチャインデックス値の最小値などを用いても構わない。また、本実施の形態では、S3503において表示順を用いて同一ピクチャかどうかを判定したが、符号化順などを用いて判定しても構わない。 In this embodiment, the value 0 is always used as the value of the reference picture index in the direct mode, but the minimum value of the reference picture index value of an adjacent block or the like may be used. In this embodiment, whether or not the pictures are the same is determined using the display order in S3503, but may be determined using the encoding order or the like.
 また、S3503において、参照ピクチャリスト1および参照ピクチャリスト2の参照ピクチャに対する参照ピクチャインデックスの割り当て方が同じ場合に、同一ピクチャと判定してもよい。このような構成は、例えば、予め決めたインデックスの値に対応するピクチャを参照ピクチャとする場合に、有効である。0の値のインデックスに対応するピクチャを参照ピクチャとするとしている場合において、参照ピクチャリスト1と参照ピクチャリスト2の参照ピクチャに対するインデックスの割り当て方が同じ場合には、参照ピクチャリスト1と参照ピクチャリスト2の0の値のインデックスに対応するピクチャは同一となる。 In S3503, when the reference picture index is assigned to the reference pictures in the reference picture list 1 and the reference picture list 2 in the same way, they may be determined as the same picture. Such a configuration is effective, for example, when a picture corresponding to a predetermined index value is used as a reference picture. In the case where the picture corresponding to the index of 0 is used as the reference picture, when the index allocation method for the reference pictures in the reference picture list 1 and the reference picture list 2 is the same, the reference picture list 1 and the reference picture list The pictures corresponding to the index of 0 of 2 are the same.
 図36は、インター予測制御部3209における、インター予測モードの決定フローを示す図である。 FIG. 36 is a diagram showing an inter prediction mode determination flow in the inter prediction control unit 3209.
 S3601において、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードのコストCostInterを、後述する方法で算出する。S3602において、隣接ブロック等の動きベクトルを用いて予測ベクトルを生成し、予測ベクトルを用いて予測画像を生成するダイレクトモードのコストCostDirectを、後述する方法で算出する。S3603において、決定したスキップモード予測方向フラグに従って、予測画像を生成するスキップモードのコストCostSkipを、後述する方法で算出する。S3604において、CostInter、CostDirect、および、CostSkipを比較し、CostInterが最小であるか否かを判定する。S3604の判定結果が真であれば、S3605においてインター予測モードを動きベクトル検出モードに決定し、インター予測モードを動きベクトル検出モードに設定する。S3604の判定結果が偽であれば、S3606においてCostDirectとCostSkipとの比較を行い、CostDirectが小さいか否かを判定する。S3606の判定結果が真であれば、S3607においてインター予測モードをダイレクトモードに決定し、インター予測モードをダイレクトモードに設定する。S3606の判定が偽であれば、S3608においてインター予測モードをスキップモードに設定し、インター予測モードにスキップモードを設定する。 In S3601, a cost CostInter of a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result is calculated by a method described later. In S3602, a cost CostDirect in a direct mode for generating a prediction vector using a motion vector such as an adjacent block and generating a prediction image using the prediction vector is calculated by a method described later. In S3603, according to the determined skip mode prediction direction flag, the cost CostSkip of the skip mode for generating the predicted image is calculated by the method described later. In S3604, CostInter, CostDirect, and CostSkip are compared to determine whether CostInter is the minimum. If the determination result in S3604 is true, the inter prediction mode is determined to be the motion vector detection mode in S3605, and the inter prediction mode is set to the motion vector detection mode. If the determination result in S3604 is false, a comparison between CostDirect and CostSkip is performed in S3606 to determine whether CostDirect is small. If the determination result in S3606 is true, the inter prediction mode is determined to be the direct mode in S3607, and the inter prediction mode is set to the direct mode. If the determination in S3606 is false, the inter prediction mode is set to the skip mode in S3608, and the skip mode is set to the inter prediction mode.
 次に、図36におけるS3601のCostInter算出の方法について、図37の処理フローを用いて詳細に説明する。S3701は、予測方向1の参照ピクチャインデックス1の示す参照ピクチャ1、および予測方向2の参照ピクチャインデックス2の示す参照ピクチャ2に対し、動き検出を行い、それぞれの参照ピクチャに対する動きベクトル1および動きベクトル2を生成する。ここで動き検出は、符号化ピクチャ内の符号化対象ブロックと、参照ピクチャ内のブロックとの差分値を算出し、最も差分値の小さい参照ピクチャ内のブロックを参照ブロックとする。そして、符号化対象ブロック位置と、参照ブロック位置から、動きベクトルを求める。S3702では、S3701で求めた動きベクトル1を用いて、予測方向1の予測画像を生成し、そのコストCostInterUni1を、例えば、R-D最適化モデルの以下の式で算出する。 Next, the CostInter calculation method in S3601 in FIG. 36 will be described in detail using the processing flow in FIG. S3701 performs motion detection on reference picture 1 indicated by reference picture index 1 in prediction direction 1 and reference picture 2 indicated by reference picture index 2 in prediction direction 2, and motion vector 1 and motion vector for each reference picture are detected. 2 is generated. Here, in motion detection, a difference value between a coding target block in a coded picture and a block in a reference picture is calculated, and a block in the reference picture having the smallest difference value is set as a reference block. Then, a motion vector is obtained from the encoding target block position and the reference block position. In S3702, a prediction image in the prediction direction 1 is generated using the motion vector 1 obtained in S3701, and the cost CostInterUni1 is calculated by, for example, the following equation of the RD optimization model.
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 式5において、Dは符号化歪を表し、ある動きベクトルで生成した予測画像を用いて符号化対象ブロックを符号化および復号化して得られた画素値と、符号化対象ブロックの元の画素値との差分絶対値和などを用いる。また、Rは発生符号量を表し、予測画像生成に用いた動きベクトルを符号化することに必要な符号量などを用いる。またλはラグランジュの未定乗数である。S3703では、S3701で求めた動きベクトル2を用いて、予測方向2の予測画像を生成し、式5よりCostInterUni2を算出する。S3704では、S3701で求めた動きベクトル1と動きベクトル2を用いて、双方向の予測画像を生成し、式5よりCostInterBiを算出する。ここで、双方向の予測画像は、例えば、動きベクトル1から求めた予測画像と、動きベクトル2から求めた予測画像の、画素毎に加算平均を行ったものを双方向予測画像とする。S3705では、CostInterUni1、CostInterUni2、および、CostInterBiの値を比較し、CostInterBiが最小であるか否かを判定する。S3705の判定結果が真であれば、S3706において、動きベクトル検出モードの予測方向を双方向予測に決定し、CostInterBiをCostInterに設定する。S3705の判定結果が偽であれば、S3707においてCostInterUni1とCostInterUni2とを比較し、CostInterUni1の値が小さいか否かを判定する。S3707の判定結果が真であれば、S3708において、動きベクトル検出モードを予測方向1の片方向予測1に決定し、CostInterUni1をCostInterに設定する。S3707の判定結果が偽であれば、S3709において、動きベクトル検出モードを予測方向2の片方向予測2に決定し、CostInterUni2をCostInterに設定する。 In Expression 5, D represents encoding distortion, and a pixel value obtained by encoding and decoding a block to be encoded using a prediction image generated with a certain motion vector, and an original pixel value of the block to be encoded The sum of absolute differences is used. R represents the generated code amount, and the code amount necessary for encoding the motion vector used for predictive image generation is used. Λ is Lagrange's undetermined multiplier. In S3703, a prediction image in the prediction direction 2 is generated using the motion vector 2 obtained in S3701, and CostInterUni2 is calculated from Equation 5. In S3704, a bidirectional prediction image is generated using the motion vector 1 and the motion vector 2 obtained in S3701, and CostInterBi is calculated from Equation 5. Here, the bidirectional prediction image is, for example, a prediction image obtained from the motion vector 1 and a prediction image obtained from the motion vector 2 obtained by performing an arithmetic average for each pixel as the bidirectional prediction image. In S3705, the values of CostInterUni1, CostInterUni2, and CostInterBi are compared to determine whether CostInterBi is minimum. If the determination result in S3705 is true, in S3706, the prediction direction of the motion vector detection mode is determined to be bidirectional prediction, and CostInterBi is set to CostInter. If the determination result in S3705 is false, CostInterUni1 and CostInterUni2 are compared in S3707 to determine whether the value of CostInterUni1 is small. If the determination result in S3707 is true, in S3708, the motion vector detection mode is determined to be one-way prediction 1 in the prediction direction 1, and CostInterUni1 is set to CostInter. If the determination result in S3707 is false, in S3709, the motion vector detection mode is determined as unidirectional prediction 2 in the prediction direction 2, and CostInterUni2 is set to CostInter.
 なお、本実施の形態では、双方向の予測画像生成時に、画素毎の加算平均を行ったが、重みつき加算平均等を行っても構わない。 In the present embodiment, the addition average for each pixel is performed at the time of bidirectional prediction image generation, but a weighted addition average or the like may be performed.
 次に、図36におけるS3602のCostDirect算出の方法について、図38の処理フローを用いて詳細に説明する。S3801では、予測方向1のダイレクトベクトル1および予測方向2のダイレクトベクトル2を算出する。ここで、ダイレクトベクトルは、例えば隣接ブロックの動きベクトルを用いて算出する。その例を図39を用いて説明する。図39において、動きベクトルMV_Aは、符号化対象ブロックの左隣に位置する隣接ブロックAの動きベクトル、動きベクトルMV_Bは、符号化対象ブロックの上隣に位置する隣接ブロックBの動きベクトル、動きベクトルMV_Cは、符号化対象ブロックの右上隣に位置する隣接ブロックCの動きベクトルである。ダイレクトベクトルは、例えば、隣接ブロックの動きベクトルであるMV_A、MV_B、MV_Cの中間値Median(MV_A,MV_B,MV_C)から算出される。ここで、中間値は、以下のように導出される。 Next, the CostDirect calculation method of S3602 in FIG. 36 will be described in detail using the processing flow of FIG. In S3801, the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated. Here, the direct vector is calculated using, for example, a motion vector of an adjacent block. An example will be described with reference to FIG. In FIG. 39, a motion vector MV_A is a motion vector of an adjacent block A located on the left side of the encoding target block, and a motion vector MV_B is a motion vector and a motion vector of an adjacent block B located above the encoding target block. MV_C is a motion vector of the adjacent block C located on the upper right side of the encoding target block. The direct vector is calculated from, for example, an intermediate value Median (MV_A, MV_B, MV_C) of MV_A, MV_B, and MV_C that are motion vectors of adjacent blocks. Here, the intermediate value is derived as follows.
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000006
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
Figure JPOXMLDOC01-appb-M000008
 予測方向1のダイレクトベクトル1は、隣接ブロックの予測方向1の動きベクトルを用いて式6より算出される。また、予測方向2のダイレクトベクトル2は、隣接ブロックの予測方向2の動きベクトルを用いて式2より算出される。なお、符号化対象ブロックの予測方向と同じ予測方向を持つ隣接ブロックがなければ、ダイレクトベクトルとして値0の動きベクトルなどを用いても構わない。 The direct vector 1 in the prediction direction 1 is calculated from Equation 6 using the motion vector in the prediction direction 1 of the adjacent block. Further, the direct vector 2 in the prediction direction 2 is calculated from Equation 2 using the motion vector in the prediction direction 2 of the adjacent block. If there is no adjacent block having the same prediction direction as the encoding target block, a motion vector having a value of 0 may be used as the direct vector.
 S3802では、S3801で求めたダイレクトベクトル1およびダイレクトベクトル2を用いて、双方向の予測画像を生成し、式5よりCostDirectBiを算出する。ここで、双方向の予測画像は、例えば、ダイレクトベクトル1から求めた予測画像と、ダイレクトベクトル2から求めた予測画像との、画素毎に加算平均を行ったものを双方向予測画像とする。S3803では、ダイレクトモード予測方向フラグがオフかどうかを判定する。S3803の判定結果が真であれば、S3804において、ダイレクトベクトル1を用いて、予測方向1の予測画像を生成し、そのコストCostDirectUni1を式1より算出する。S3805では、S3801で求めたダイレクトベクトル2を用いて、予測方向2の予測画像を生成し、式5よりCostDirectUni2を算出する。S3806では、CostDirectUni1、CostDirectUni2、および、CostDirectBiの値を比較し、CostDirectBiが最小であるか否かを判定する。S3806の判定結果が真であれば、S3807において、ダイレクトモードの予測方向を双方向予測に決定し、CostDirctBiをCostDirectに設定する。S3806が偽であれば、S3808においてCostDirectUni1とCostDirectUni2とを比較し、CostDirectUni1の値が小さいか否かを判定する。S3808の判定結果が真であれば、S3809において、ダイレクトモードを予測方向1の片方向予測1に決定し、CostDirectUni1をCostDirectに設定する。S3808の判定結果が偽であれば、S3810において、ダイレクトモードを予測方向2の片方向予測2に決定し、CostDirectUni2をCostDirectに設定する。S3803において、ダイレクト予測方向固定フラグがオンならば、S3807において、ダイレクトモードの予測方向を双方向予測に決定し、CostDirctBiをCostDirectに設定する。 In S3802, a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2 obtained in S3801, and CostDirectBi is calculated from Equation 5. Here, the bidirectional prediction image is, for example, a bidirectional prediction image obtained by averaging the prediction image obtained from the direct vector 1 and the prediction image obtained from the direct vector 2 for each pixel. In S3803, it is determined whether the direct mode prediction direction flag is off. If the determination result in S3803 is true, a predicted image in the prediction direction 1 is generated using the direct vector 1 in S3804, and the cost CostDirectUni1 is calculated from Equation 1. In S3805, a predicted image in the prediction direction 2 is generated using the direct vector 2 obtained in S3801, and CostDirectUni2 is calculated from Equation 5. In S3806, the values of CostDirectUni1, CostDirectUni2, and CostDirectBi are compared to determine whether CostDirectBi is minimum. If the determination result in S3806 is true, in S3807, the direct mode prediction direction is determined to be bidirectional prediction, and CostDirctBi is set to CostDirect. If S3806 is false, CostDirectUni1 and CostDirectUni2 are compared in S3808 to determine whether the value of CostDirectUni1 is small. If the determination result in S3808 is true, in S3809, the direct mode is determined as one-way prediction 1 in the prediction direction 1, and CostDirectUni1 is set to CostDirect. If the determination result in S3808 is false, in S3810, the direct mode is determined as one-way prediction 2 in the prediction direction 2, and CostDirectUni2 is set to CostDirect. If the direct prediction direction fixed flag is ON in S3803, in S3807, the direct mode prediction direction is determined to be bidirectional prediction, and CostDirctBi is set to CostDirect.
 次に、図36におけるS3603のCostSkip算出の方法について、図40の処理フローを用いて詳細に説明する。S4001では、予測方向1のダイレクトベクトル1および予測方向2のダイレクトベクトル2を算出する。S4002では、ダイレクトベクトル1とダイレクトベクトル2とを用いて、双方向の予測画像を生成し、式5よりCostSkipを算出する。ここで、双方向の予測画像は、例えば、ダイレクトベクトル1から求めた予測画像と、ダイレクトベクトル2から求めた予測画像の、画素毎に加算平均を行ったものを双方向予測画像とする。 Next, the CostSkip calculation method in S3603 in FIG. 36 will be described in detail using the processing flow in FIG. In S4001, the direct vector 1 in the prediction direction 1 and the direct vector 2 in the prediction direction 2 are calculated. In S4002, a bidirectional prediction image is generated using the direct vector 1 and the direct vector 2, and CostSkip is calculated from Equation 5. Here, the bidirectional prediction image is, for example, a prediction image obtained from the direct vector 1 and a prediction image obtained from the direct vector 2 obtained by performing an addition average for each pixel as the bidirectional prediction image.
 このように、本発明によれば、ダイレクトモードの予測方向を決定する際に、周辺ブロックの予測方向に関わらず、符号化対象ブロックに最適な予測方向を選択してビットストリームに付随させることで、ダイレクトモードの予測画像の質を向上でき、符号化効率を向上させることが可能になる。 As described above, according to the present invention, when determining the prediction direction of the direct mode, the optimal prediction direction for the encoding target block is selected and attached to the bitstream regardless of the prediction direction of the neighboring blocks. Therefore, the quality of the prediction image in the direct mode can be improved, and the encoding efficiency can be improved.
 また、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャが同一ピクチャの場合は、双方向予測と片方向予測のコストが比較的近くなる傾向があるため、ダイレクトモードの予測方向を、比較的ノイズの少ない予測画像を生成することができる双方向予測に固定する。これにより、ダイレクトモードの予測方向フラグを、符号化対象ブロック毎に常に付随させる必要がなくなり、余分な情報量を抑制することで符号化効率を向上させることが可能になる。 Also, when the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture, the costs of bidirectional prediction and unidirectional prediction tend to be relatively close. Therefore, the direct mode prediction direction is fixed to bidirectional prediction that can generate a prediction image with relatively little noise. As a result, it is not necessary to always associate the prediction direction flag in the direct mode for each block to be encoded, and it is possible to improve the encoding efficiency by suppressing the amount of extra information.
 (実施の形態10)
 図41は、本実施の形態に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、ダイレクトモード予測方向決定部3212が生成したダイレクトモード予測方向固定フラグを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随させる点において、他の実施の形態と構成が異なる。
(Embodiment 10)
FIG. 41 is a block diagram showing a configuration of an embodiment of a video encoding apparatus using the video encoding method according to the present embodiment. In the present embodiment, the header information (for example, the H.264 picture parameter set or the header parameter that gives the direct mode prediction direction fixed flag generated by the direct mode prediction direction determination unit 3212 to the bit stream for each processing unit such as a picture) The configuration differs from the other embodiments in that it is attached to a slice header or the like.
 図42は、本実施の形態に係る動画像符号化方法の処理フローの概要を示す図である。S4201では、符号化対象ブロックをダイレクトモードで符号化する場合の予測方向を決定し、決定したダイレクト予測方向固定フラグを、ピクチャヘッダ等に付随させる。ここで、ダイレクトモードの予測方向の決定方法は、実施の形態9の図35のフローなどが利用できる。S4202では、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードと、隣接ブロック等から生成した予測動きベクトルを用いて予測画像を生成するダイレクトモードと、S4201によって決められた予測方向に従って生成した予測動きベクトルを用いて予測画像を生成するスキップモードのコスト比較を行い、より効率のよいインター予測モードを決定する。ここで、コスト算出方法は、式5などを利用する。S4203では、S4202で決定したインター予測モードがスキップモードかどうかを判定する。S4203の判定結果が真であれば、S4204において、スキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。S4203の判定結果が偽であれば、S4205において、決定したインター予測モードがダイレクトモードかつ、ダイレクト予測方向固定フラグがオンかどうかを判定する。S4205の判定結果が真であれば、S4206において、ダイレクトモードの双方向予測画像を生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードを、符号化対象ブロックのビットストリームに付随させる。S4205の判定結果が偽であれば、決定したインター予測モードに従ってインター予測を行い、予測画像データを生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モード、および、インター予測方向が予測方向1の片方向予測、または、予測方向2の片方向予測、または、予測方向1と予測方向2を用いた双方向予測かどうかを示すインター予測方向フラグを、符号化対象ブロックのビットストリームに付随させる。なお、インター予測モード決定方法等は、実施の形態9と同様であるため説明を省略する。 FIG. 42 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment. In S4201, the prediction direction when the encoding target block is encoded in the direct mode is determined, and the determined direct prediction direction fixed flag is attached to the picture header or the like. Here, as a method for determining the prediction direction in the direct mode, the flow of FIG. 35 of the ninth embodiment can be used. In S4202, a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S4201. The cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode. Here, Formula 5 etc. are utilized for the cost calculation method. In S4203, it is determined whether the inter prediction mode determined in S4202 is the skip mode. If the determination result in S4203 is true, in S4204, a predicted image in the skip mode is generated, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S4203 is false, it is determined in S4205 whether the determined inter prediction mode is the direct mode and the direct prediction direction fixed flag is on. If the determination result in S4205 is true, in S4206, a bi-directional prediction image in the direct mode is generated, the skip flag is set to 0, and it is attached to the bit stream of the encoding target block. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode is attached to the bit stream of the encoding target block. If the determination result in S4205 is false, inter prediction is performed according to the determined inter prediction mode, predictive image data is generated, the skip flag is set to 0, and the bit stream of the encoding target block is attached. In addition, the inter prediction mode indicating the motion vector detection mode or the direct mode, and the unidirectional prediction in which the inter prediction direction is the prediction direction 1, the unidirectional prediction in the prediction direction 2, or the prediction direction 1 and the prediction direction 2 are set. An inter prediction direction flag indicating whether or not the bidirectional prediction is used is attached to the bit stream of the block to be encoded. Note that the inter prediction mode determination method and the like are the same as those in Embodiment 9, and thus the description thereof is omitted.
 このように、本発明によれば、ダイレクトモード予測方向固定フラグを、ピクチャヘッダ等に明示的に付与するため、ダイレクトモードの予測方向を双方向予測に固定するかどうかを、ピクチャ毎に柔軟に切り替えることができるようになり、符号化効率を向上させることが可能になる。 As described above, according to the present invention, since the direct mode prediction direction fixed flag is explicitly added to the picture header or the like, whether or not the direct mode prediction direction is fixed to bidirectional prediction can be flexibly determined for each picture. It becomes possible to switch, and it becomes possible to improve encoding efficiency.
 (実施の形態11)
 図43は、本実施の形態に係る動画像符号化方法を用いた動画像符号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、ダイレクトモード予測方向決定部3212が生成したダイレクトモード予測方向フラグと、ダイレクトモード予測方向固定フラグとを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随させる点において、他の実施の形態と構成が異なる。
(Embodiment 11)
FIG. 43 is a block diagram showing a configuration of an embodiment of a moving picture coding apparatus using the moving picture coding method according to the present embodiment. In the present embodiment, header information (for example, header information) that gives the direct mode prediction direction flag generated by the direct mode prediction direction determination unit 3212 and the direct mode prediction direction fixed flag to the bitstream for each processing unit such as a picture. H.264 picture parameter set, slice header, etc.) is different from the other embodiments.
 図44は、本実施の形態に係る動画像符号化方法の処理フローの概要を示す図である。S4401では、符号化対象ブロックをダイレクトモードで符号化する場合の予測方向を決定し、決定したダイレクトモード予測方向固定フラグ、および、ダイレクト予測方向フラグを、ピクチャヘッダ等に付随させる。ここで、ダイレクトモードの予測方向の決定方法は、実施の形態9の図35のフローなどが利用できる。S4402では、動き検出結果による動きベクトルを用いて予測画像を生成する動きベクトル検出モードと、隣接ブロック等から生成した予測動きベクトルを用いて予測画像を生成するダイレクトモードと、S4401において決められた予測方向に従って生成した予測動きベクトルを用いて予測画像を生成するスキップモードのコスト比較を行い、より効率のよいインター予測モードを決定する。ここで、コスト算出方法は、式5などを利用する。S4403では、S4402で決定したインター予測モードがスキップモードかどうかを判定しする。S4403の判定結果が真であれば、S4404において、スキップモードの予測画像生成を行い、スキップフラグを1として、符号化対象ブロックのビットストリームに付随させる。S4403の判定結果が偽であれば、S4405において、決定したインター予測モードがダイレクトモードかつ、ダイレクト予測方向固定フラグがオンかどうかを判定する。S4405の判定結果が真であれば、S4406において、S4401で決定したダイレクトモードの予測方向に従って予測画像を生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードを、符号化対象ブロックのビットストリームに付随させる。S4405の判定結果が偽であれば、決定したインター予測モードに従ってインター予測を行い、予測画像データを生成し、スキップフラグを0として、符号化対象ブロックのビットストリームに付随させる。また、動きベクトル検出モードかダイレクトモードかを示すインター予測モードおよびインター予測方向フラグを、符号化対象ブロックのビットストリームに付随させる。なお、インター予測モード決定方法等は、実施の形態9と同様であるため説明を省略する。 FIG. 44 is a diagram showing an outline of the processing flow of the moving picture coding method according to the present embodiment. In S4401, the prediction direction when the encoding target block is encoded in the direct mode is determined, and the determined direct mode prediction direction fixed flag and the direct prediction direction flag are attached to the picture header or the like. Here, as a method for determining the prediction direction in the direct mode, the flow of FIG. 35 of the ninth embodiment can be used. In S4402, a motion vector detection mode for generating a predicted image using a motion vector based on a motion detection result, a direct mode for generating a predicted image using a predicted motion vector generated from an adjacent block, and the prediction determined in S4401. The cost comparison of the skip mode for generating a predicted image using the predicted motion vector generated according to the direction is performed to determine a more efficient inter prediction mode. Here, Formula 5 etc. are utilized for the cost calculation method. In S4403, it is determined whether the inter prediction mode determined in S4402 is a skip mode. If the determination result in S4403 is true, a predicted image in skip mode is generated in S4404, and the skip flag is set to 1 to accompany the bit stream of the encoding target block. If the determination result in S4403 is false, it is determined in S4405 whether the determined inter prediction mode is the direct mode and the direct prediction direction fixed flag is on. If the determination result in S4405 is true, in S4406, a prediction image is generated according to the prediction direction of the direct mode determined in S4401, and the skip flag is set to 0 and is attached to the bit stream of the encoding target block. In addition, an inter prediction mode indicating the motion vector detection mode or the direct mode is attached to the bit stream of the encoding target block. If the determination result in S4405 is false, inter prediction is performed according to the determined inter prediction mode, predicted image data is generated, the skip flag is set to 0, and the bit stream of the block to be encoded is attached. In addition, an inter prediction mode and an inter prediction direction flag indicating the motion vector detection mode or the direct mode are attached to the bit stream of the encoding target block. Note that the inter prediction mode determination method and the like are the same as those in Embodiment 9, and thus the description thereof is omitted.
 このように、本発明によれば、ダイレクトモード予測方向固定フラグおよび、ダイレクト予測方向フラグを、ピクチャヘッダ等に明示的に付与するため、ダイレクトモードの予測方向を、ある予測方向に固定するかどうかを、ピクチャ毎に柔軟に切り替えることができるようになり、符号化効率を向上させることが可能になる。 Thus, according to the present invention, whether the direct mode prediction direction is fixed to a certain prediction direction in order to explicitly give the direct mode prediction direction fixed flag and the direct prediction direction flag to the picture header or the like. Can be flexibly switched for each picture, and the encoding efficiency can be improved.
 (実施の形態12)
 図45は、本実施の形態に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。
(Embodiment 12)
FIG. 45 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment.
 動画像復号化装置は、図45に示すように、可変長復号化部4501、逆量子化部4502、逆直交変換部4503、ブロックメモリ4504、フレームメモリ4505、イントラ予測部4506、インター予測部4507、インター予測制御部4508、参照ピクチャリスト管理部4509、および、ダイレクトモード予測方向決定部4510を備える。 As shown in FIG. 45, the moving picture decoding apparatus includes a variable length decoding unit 4501, an inverse quantization unit 4502, an inverse orthogonal transform unit 4503, a block memory 4504, a frame memory 4505, an intra prediction unit 4506, and an inter prediction unit 4507. , An inter prediction control unit 4508, a reference picture list management unit 4509, and a direct mode prediction direction determination unit 4510.
 可変長復号化部4501は、入力されたビットストリームに対し、可変長復号化処理を行い、ピクチャタイプ情報、インター予測モード、インター予測方向フラグ、スキップフラグ、可変長復号化処理を行った量子化係数を生成する。逆量子化部4502は、可変長復号化処理を行った量子化係数に対し、逆量子化処理を行う。逆直交変換部4503は、逆量子化処理を行った直交変換係数を、周波数領域から、画像領域への変換し、予測誤差画像データとする。ブロックメモリ4504は、予測誤差画像データと、予測画像データが加算されて生成された画像列を、ブロック単位で保存する。フレームメモリ4505は、画像列を、フレーム単位で保存する。イントラ予測部4506は、ブロックメモリ4504に保存されているブロック単位の画像列を用いて、イントラ予測することにより、復号化対象ブロックの予測画像データを生成する。インター予測部4507は、フレームメモリ4505に保存されているフレーム単位の画像列を用いて、インター予測することにより、復号化対象ブロックの予測画像データを生成する。インター予測制御部4508は、インター予測モード、インター予測方向、スキップフラグに応じて、インター予測における動きベクトルと予測画像データ生成方法を制御する。 The variable length decoding unit 4501 performs variable length decoding processing on the input bitstream, and performs quantization on which picture type information, inter prediction mode, inter prediction direction flag, skip flag, and variable length decoding processing are performed. Generate coefficients. The inverse quantization unit 4502 performs an inverse quantization process on the quantization coefficient that has been subjected to the variable length decoding process. The inverse orthogonal transform unit 4503 transforms the orthogonal transform coefficient that has been subjected to the inverse quantization process from the frequency domain to the image domain to obtain prediction error image data. The block memory 4504 stores prediction error image data and an image sequence generated by adding the prediction image data in units of blocks. The frame memory 4505 stores the image sequence in units of frames. The intra prediction unit 4506 generates predicted image data of the decoding target block by performing intra prediction using the block-by-block image sequence stored in the block memory 4504. The inter prediction unit 4507 generates predicted image data of the decoding target block by performing inter prediction using the frame-by-frame image sequence stored in the frame memory 4505. The inter prediction control unit 4508 controls the motion vector and the prediction image data generation method in the inter prediction according to the inter prediction mode, the inter prediction direction, and the skip flag.
 参照ピクチャリスト管理部4509は、インター予測で参照する符号化済みの参照ピクチャに参照ピクチャインデックスを割り当て、表示順等とともに参照リストを作成する(実施の形態9の図33と同様)。Bピクチャでは、2つのピクチャを参照して符号化を行えるため、2つの参照リストを保持する。 The reference picture list management unit 4509 assigns a reference picture index to an encoded reference picture to be referred to in inter prediction, and creates a reference list along with the display order (similar to FIG. 33 in the ninth embodiment). Since B pictures can be encoded with reference to two pictures, two reference lists are held.
 なお、本実施の形態では、参照ピクチャインデックスと表示順で参照ピクチャを管理したが、参照ピクチャインデックスと符号化順などで参照ピクチャを管理しても構わない。 In this embodiment, the reference picture is managed in the reference picture index and the display order. However, the reference picture may be managed in the reference picture index and the encoding order.
 ダイレクトモード予測方向決定部4510は、参照ピクチャリスト管理部4509によって作成された参照ピクチャリスト1および参照ピクチャリスト2を用いて、符号化対象ブロックのダイレクトモードの予測方向を決定し、ダイレクトモード予測方向固定フラグを設定する。なお、ダイレクトモード予測方向固定フラグの決定フローは実施の形態9の図35と同様であるため、説明を省略する。 The direct mode prediction direction determination unit 4510 uses the reference picture list 1 and the reference picture list 2 created by the reference picture list management unit 4509 to determine the direct mode prediction direction of the block to be encoded, and the direct mode prediction direction Set a fixed flag. Note that the determination flow of the direct mode prediction direction fixed flag is the same as that in FIG.
 最後に、復号化した予測誤差画像データと、予測画像データとを加算することにより、復号画像列を生成する。 Finally, a decoded image sequence is generated by adding the decoded prediction error image data and the prediction image data.
 図46は、本実施の形態に係る動画像復号化方法の処理フローの概要を示す図である。S4601では、ビットストリームから復号したスキップフラグが1かどうかを判定する。S4601の判定結果が真であれば、S4602において、ダイレクトベクトル1およびダイレクトベクトル2を算出し、双方向予測画像を生成する。S4601の判定結果が偽、つまり、スキップモードでなければ、S4603において、復号した予測モードがダイレクトモードかどうかを判定する。S4603の判定結果が真であれば、S4604においてダイレクトモード予測方向固定フラグがオンかどうかを判定する。S4604の判定結果が真であれば、S4605において、ダイレクトベクトル1およびダイレクトベクトル2を算出し、双方向予測画像を生成する。S4604の判定結果が偽であれば、S4606において、復号したインター予測方向に応じてダイレクトベクトル1およびダイレクトベクトル2を算出し、予測画像を生成する。S4603の判定結果が偽、つまり、動きベクトル検出モードであれば、復号したインター予測方向および動きベクトルを用いて予測画像を生成する。なお、本実施の形態では、S4605において、ダイレクトモード予測方向固定フラグがオンならば、双方向予測画像を生成するようにしたが、符号化方法に合わせて、例えば、片方向予測画像を生成するようにしても構わない。 FIG. 46 is a diagram showing an outline of the processing flow of the video decoding method according to the present embodiment. In S4601, it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S4601 is true, direct vector 1 and direct vector 2 are calculated in S4602, and a bidirectional prediction image is generated. If the determination result in S4601 is false, that is, if it is not the skip mode, it is determined in S4603 whether the decoded prediction mode is the direct mode. If the determination result in S4603 is true, it is determined in S4604 whether the direct mode prediction direction fixed flag is on. If the determination result in S4604 is true, in S4605, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S4604 is false, in S4606, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction, and a predicted image is generated. If the determination result in S4603 is false, that is, the motion vector detection mode, a predicted image is generated using the decoded inter prediction direction and motion vector. In this embodiment, if the direct mode prediction direction fixed flag is on in S4605, a bidirectional prediction image is generated. However, for example, a unidirectional prediction image is generated in accordance with the encoding method. It doesn't matter if you do.
 図47は、本実施の形態に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。図47において、skip_flagはスキップフラグ、pred_modeはインター予測モード、inter_pred_idcはインター予測方向フラグを表す。 FIG. 47 is a diagram showing an example of bitstream syntax in the video decoding method according to the present embodiment. In FIG. 47, skip_flag represents a skip flag, pred_mode represents an inter prediction mode, and inter_pred_idc represents an inter prediction direction flag.
 このように、本発明によれば、ダイレクトモードの予測方向を決定する際に、周辺ブロックの予測方向に関わらず、符号化対象ブロックに最適な予測方向を選択してビットストリームに付随させることにより符号化効率を向上したビットストリームを適切に復号することが可能になる。 Thus, according to the present invention, when determining the prediction direction of the direct mode, by selecting the optimal prediction direction for the encoding target block and attaching it to the bitstream regardless of the prediction direction of the neighboring blocks. It becomes possible to appropriately decode a bit stream with improved encoding efficiency.
 また、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャが同一ピクチャの場合は、ダイレクトモードの予測方向を双方向予測に固定し、ダイレクトモードの予測方向フラグをビットストリームに付随させないことで、余分な情報量を抑制して符号化効率を向上したビットストリームを適切に復号することが可能になる。 When the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture, the prediction direction in the direct mode is fixed to bidirectional prediction, and the direct mode By not attaching the prediction direction flag to the bitstream, it is possible to appropriately decode a bitstream that has improved the encoding efficiency by suppressing the amount of extra information.
 (実施の形態13)
 図48は、本実施の形態に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、可変長復号化部4501が生成したダイレクトモード予測方向固定フラグを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随されたビットストリームを復号できる点において、他の実施の形態と構成が異なる。
(Embodiment 13)
FIG. 48 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment. In the present embodiment, header information (for example, H.264 picture parameter set or slice) that gives the direct mode prediction direction fixed flag generated by the variable length decoding unit 4501 to the bitstream for each processing unit such as a picture. The configuration differs from the other embodiments in that the bit stream attached to the header or the like can be decoded.
 図49は、本実施の形態に係る動画像復号化方法の処理フローの概要を示す図である。S4901では、ビットストリームから復号したスキップフラグが1かどうかを判定する。S4901の判定結果が真であれば、S4902において、ダイレクトベクトル1およびダイレクトベクトル2を算出し、双方向予測画像を生成する。S4901の判定結果が偽、つまり、スキップモードでなければ、S4903において、復号した予測モードがダイレクトモードかどうかを判定する。S4903の判定結果が真であれば、S4904においてビットストリームから復号したダイレクトモード予測方向固定フラグがオンかどうかを判定する。S4904の判定結果が真であれば、S4905において、ダイレクトベクトル1およびダイレクトベクトル2を算出し、双方向予測画像を生成する。S4904の判定結果が偽であれば、S4906において、復号したインター予測方向フラグに応じてダイレクトベクトル1およびダイレクトベクトル2を算出し、予測画像を生成する。S4903の判定結果が偽、つまり、動きベクトル検出モードであれば、復号したインター予測方向フラグおよび動きベクトルを用いて予測画像を生成する。なお、本実施の形態では、S4905において、ダイレクトモード予測方向固定フラグがオンならば、双方向予測画像を生成するようにしたが、符号化方法に合わせて、例えば、片方向予測画像を生成するようにしても構わない。図50は、本実施の形態に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。図50において、skip_flagはスキップフラグ、pred_modeはインター予測モード、inter_pred_idcはインター予測方向フラグを表す。また、ピクチャヘッダ等に付加されるfixed_direct_predはダイレクトモード予測方向固定フラグを表す。 FIG. 49 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment. In S4901, it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S4901 is true, in S4902, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S4901 is false, that is, if it is not the skip mode, it is determined in S4903 whether the decoded prediction mode is the direct mode. If the determination result in S4903 is true, it is determined whether the direct mode prediction direction fixed flag decoded from the bitstream in S4904 is on. If the determination result in S4904 is true, in S4905, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S4904 is false, in S4906, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction flag, and a predicted image is generated. If the determination result in S4903 is false, that is, the motion vector detection mode, a predicted image is generated using the decoded inter prediction direction flag and motion vector. In this embodiment, if the direct mode prediction direction fixed flag is on in S4905, a bidirectional prediction image is generated. However, in accordance with the encoding method, for example, a unidirectional prediction image is generated. It doesn't matter if you do. FIG. 50 is a diagram illustrating an example of the bitstream syntax in the video decoding method according to the present embodiment. In FIG. 50, skip_flag represents a skip flag, pred_mode represents an inter prediction mode, and inter_pred_idc represents an inter prediction direction flag. Also, fixed_direct_pred added to the picture header or the like represents a direct mode prediction direction fixed flag.
 このように、本発明によれば、ダイレクトモード予測方向固定フラグを、ピクチャヘッダ等に明示的に付与することにより、ダイレクトモードの予測方向を双方向予測に固定するかどうかを、ピクチャ毎に柔軟に切り替えることで符号化効率を向上させたビットストリームを適切に復号することが可能になる。 As described above, according to the present invention, whether or not to fix the direct mode prediction direction to bidirectional prediction can be flexibly set for each picture by explicitly assigning the direct mode prediction direction fixed flag to the picture header or the like. By switching to, it becomes possible to appropriately decode a bit stream with improved encoding efficiency.
 (実施の形態14)
 図51は、本実施の形態に係る動画像復号化方法を用いた動画像復号化装置の一実施の形態の構成を示すブロック図である。本実施の形態においては、可変長復号化部4501が生成したダイレクト予測方向フラグ、および、ダイレクトモード予測方向固定フラグを、ピクチャなどの処理単位毎にビットストリームに付与するヘッダ情報(例えば、H.264のピクチャパラメータセットやスライスヘッダなど)に付随されたビットストリームを復号できる点において、他の実施の形態と構成が異なる。
(Embodiment 14)
FIG. 51 is a block diagram showing a configuration of an embodiment of a moving picture decoding apparatus using the moving picture decoding method according to the present embodiment. In the present embodiment, header information (for example, H.264) that adds the direct prediction direction flag and the direct mode prediction direction fixed flag generated by the variable length decoding unit 4501 to the bitstream for each processing unit such as a picture. H.264 picture parameter set, slice header, etc.) can be decoded, and the configuration is different from the other embodiments.
 図52は、本実施の形態に係る動画像復号化方法の処理フローの概要を示す図である。S5201では、ビットストリームから復号したスキップフラグが1かどうかを判定する。S5201の判定結果が真であれば、S5202において、ダイレクトベクトル1およびダイレクトベクトル2を算出し、双方向予測画像を生成する。S5201の判定結果が偽、つまり、スキップモードでなければ、S5203において、復号した予測モードがダイレクトモードかどうかを判定する。S5203の判定結果が真であれば、S5204において、ビットストリームから復号したダイレクトモード予測方向固定フラグがオンかどうかを判定する。S5204の判定結果が真であれば、S5205において、ビットストリームから復号したダイレクトモード予測フラグに応じて、ダイレクトベクトル1およびダイレクトベクトル2を算出し、予測画像を生成する。S5204の判定結果が偽であれば、S5206において、復号したインター予測方向フラグに応じてダイレクトベクトル1、ダイレクトベクトル2を算出し、予測画像を生成する。S5203の判定結果が偽、つまり、動きベクトル検出モードであれば、復号したインター予測方向フラグおよび動きベクトルを用いて予測画像を生成する。 FIG. 52 is a diagram showing an outline of the processing flow of the moving picture decoding method according to the present embodiment. In S5201, it is determined whether or not the skip flag decoded from the bitstream is 1. If the determination result in S5201 is true, in S5202, the direct vector 1 and the direct vector 2 are calculated, and a bidirectional prediction image is generated. If the determination result in S5201 is false, that is, if it is not the skip mode, it is determined in S5203 whether the decoded prediction mode is the direct mode. If the determination result in S5203 is true, it is determined in S5204 whether the direct mode prediction direction fixed flag decoded from the bit stream is on. If the determination result in S5204 is true, in S5205, the direct vector 1 and the direct vector 2 are calculated according to the direct mode prediction flag decoded from the bit stream, and a predicted image is generated. If the determination result in S5204 is false, in S5206, the direct vector 1 and the direct vector 2 are calculated according to the decoded inter prediction direction flag, and a predicted image is generated. If the determination result in S5203 is false, that is, the motion vector detection mode, a predicted image is generated using the decoded inter prediction direction flag and motion vector.
 図53は、本実施の形態に係る動画像復号化方法におけるビットストリームのシンタックスの一例を示す図である。図53において、skip_flagはスキップフラグ、pred_modeはインター予測モード、inter_pred_idcはインター予測方向フラグを表す。また、ピクチャヘッダ等に付加されるfixed_direct_predはダイレクトモード予測方向固定フラグ、direct_pred_idcはダイレクト予測方向フラグを表す。 FIG. 53 is a diagram showing an example of the bitstream syntax in the video decoding method according to the present embodiment. In FIG. 53, skip_flag represents a skip flag, pred_mode represents an inter prediction mode, and inter_pred_idc represents an inter prediction direction flag. Further, fixed_direct_pred added to a picture header or the like represents a direct mode prediction direction fixed flag, and direct_pred_idc represents a direct prediction direction flag.
 このように、本発明によれば、ダイレクトモード予測方向固定フラグ、および、ダイレクト予測方向フラグを、ピクチャヘッダ等に明示的に付与することにより、ダイレクトモードの予測方向を、ある予測方向に固定するかどうかを、ピクチャ毎に柔軟に切り替えることで符号化効率を向上させたビットストリームを適切に復号することが可能になる。 As described above, according to the present invention, the direct mode prediction direction fixed flag and the direct prediction direction flag are explicitly added to the picture header or the like, thereby fixing the direct mode prediction direction to a certain prediction direction. It is possible to appropriately decode a bit stream with improved coding efficiency by switching whether or not for each picture.
 (実施の形態15)
 本実施の形態では、実施の形態1と実施の形態9とを組み合わせる場合について説明する。実施の形態1では、予測方向1の参照インデックス1が示す参照ピクチャと、予測方向2の参照インデックス2が示す参照ピクチャとが同一ピクチャの場合には、スキップモードの予測方向を片方向予測に固定することにより、符号化効率を向上させる例を示した。
(Embodiment 15)
In this embodiment, a case where Embodiment 1 and Embodiment 9 are combined will be described. In Embodiment 1, when the reference picture indicated by the reference index 1 in the prediction direction 1 and the reference picture indicated by the reference index 2 in the prediction direction 2 are the same picture, the prediction direction in the skip mode is fixed to unidirectional prediction. This shows an example of improving the coding efficiency.
 また、実施の形態9では、予測方向1の参照ピクチャインデックス1の示す参照ピクチャと、予測方向2の参照ピクチャインデックス2の示す参照ピクチャとが同一ピクチャの場合は、ダイレクトモードの双方向予測と片方向予測とのコストが比較的近くなる傾向があるため、ダイレクトモードの予測方向を、双方向予測および片方向予測のどちらか一方に固定することで、ダイレクトモードの予測方向フラグを、符号化対象ブロック毎に常に付随させる必要がなくなり、余分な情報量を抑制することで符号化効率を向上させる例を示した。 Also, in Embodiment 9, when the reference picture indicated by the reference picture index 1 in the prediction direction 1 and the reference picture indicated by the reference picture index 2 in the prediction direction 2 are the same picture, bi-directional prediction in the direct mode and one piece Since the cost with direction prediction tends to be relatively close, the prediction direction flag of direct mode is encoded by fixing the prediction direction of direct mode to either bidirectional prediction or unidirectional prediction. An example has been shown in which it is not necessary to always accompany each block, and the encoding efficiency is improved by suppressing the amount of extra information.
 実施の形態1と実施の形態9とを組み合わせる場合、予測方向1の参照インデックス1が示す参照ピクチャと、予測方向2の参照インデックス2が示す参照ピクチャとが同一ピクチャの場合には、スキップモードの予測方向を片方向予測に固定することで、スキップモードの符号化効率を向上させることができる一方、スキップモードにおいて片方向予測よりも双方向予測の方がコストが低かった一部の符号化対象ブロックは、ダイレクトモードの双方向予測として符号化されるようになる。そのため、ダイレクトモードの予測方向を、双方向予測に固定することにより、より多くのダイレクトモードの予測方向フラグを、符号化対象ブロック毎に常に付随させる必要がなくなり、余分な情報量を抑制することで符号化効率を向上させることができる。 When combining Embodiment 1 and Embodiment 9, if the reference picture indicated by reference index 1 in prediction direction 1 and the reference picture indicated by reference index 2 in prediction direction 2 are the same picture, skip mode By fixing the prediction direction to unidirectional prediction, it is possible to improve the coding efficiency of the skip mode, but in the skip mode, some encoding targets for which bi-directional prediction is less expensive than unidirectional prediction The block will be encoded as direct mode bi-directional prediction. Therefore, by fixing the prediction direction of the direct mode to bidirectional prediction, it is not necessary to always attach more prediction direction flags of the direct mode for each encoding target block, and the amount of extra information is suppressed. Thus, encoding efficiency can be improved.
 すなわち、予測方向1の参照インデックス1が示す参照ピクチャと、予測方向2の参照インデックス2が示す参照ピクチャとが同一ピクチャの場合には、スキップモードの予測方向を片方向予測に固定し、ダイレクトモードの予測方向を双方向予測に固定する。スキップモードの予測方向を片方向に固定することにより、予測精度を高めることができるが、一部の符号化対象ブロックに関しては、双方向予測の方が予測精度が高くなる。従って、ダイレクトモードの予測方向を双方向に固定することにより、スキップモードを片方向予測に固定したことにより、予測精度が低下する一部の符号化対象ブロックの予測精度を高めることが可能となる。更に、ダイレクトモードを双方向予測に固定することにより、ダイレクトモードの予測方向フラグが不要となるため、より符号化効率を向上させることが可能となる。このように、実施の形態15の構成により、符号化効率を向上させつつ、予測精度を高めることが可能となる。 That is, when the reference picture indicated by the reference index 1 in the prediction direction 1 and the reference picture indicated by the reference index 2 in the prediction direction 2 are the same picture, the prediction direction in the skip mode is fixed to unidirectional prediction, and the direct mode The prediction direction is fixed to bidirectional prediction. By fixing the prediction direction of the skip mode to one direction, the prediction accuracy can be improved. However, for some coding target blocks, the bidirectional prediction has a higher prediction accuracy. Accordingly, by fixing the prediction direction of the direct mode in both directions, it becomes possible to improve the prediction accuracy of some coding target blocks whose prediction accuracy is reduced by fixing the skip mode to unidirectional prediction. . Furthermore, by fixing the direct mode to bidirectional prediction, the direct mode prediction direction flag becomes unnecessary, and thus the encoding efficiency can be further improved. Thus, with the configuration of the fifteenth embodiment, it is possible to improve the prediction accuracy while improving the encoding efficiency.
 (実施の形態16)
 上記各実施の形態で示した動画像符号化方法または動画像復号化方法の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 16)
By recording a program for realizing the configuration of the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments on a storage medium, the computer system in which the processing shown in each of the above embodiments is independent It becomes possible to carry out easily. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法や動画像復号化方法の応用例とそれを用いたシステムを説明する。 Further, application examples of the moving picture encoding method and the moving picture decoding method shown in the above embodiments and a system using the same will be described.
 図54は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 54 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 This content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図54のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration as shown in FIG. 54, and any element may be connected in combination. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. The mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, the content (for example, music live video) captured by the user using the camera ex113 is encoded as described in the above embodiments, and transmitted to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it.
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図55に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置または動画像復号化装置のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する。 In addition to the example of the content supply system ex100, as shown in FIG. 55, at least one of the video encoding device and the video decoding device of each of the above embodiments is incorporated in the digital broadcasting system ex200. be able to. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in the above embodiments. Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by a device such as the television (receiver) ex300 or the set top box (STB) ex217.
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図56は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 56 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 Further, the television ex300 decodes the audio data and the video data, or encodes each information, the audio signal processing unit ex304, the signal processing unit ex306 including the video signal processing unit ex305, and the decoded audio signal. A speaker ex307 for outputting, and an output unit ex309 having a display unit ex308 such as a display for displaying the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図57に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 57 shows the configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects reflected light from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo controller ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various kinds of information held in the buffer ex404, and generates and adds new information as necessary, and the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 is composed of, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図58に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 58 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図56に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Also, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. Note that the configuration of the car navigation ex211 may be, for example, the configuration shown in FIG. 56 with the addition of a GPS receiver, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
 図59(a)は、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 59 (a) is a diagram showing a mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図59(b)を用いて説明する。携帯電話ex114は、表示部ex358および操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話および電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by the user's operation, the power supply circuit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex356から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex356.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声信号入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. The encoded video data is sent to the multiplexing / separating unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio signal input unit ex356 while the camera unit ex365 images a video, a still image, and the like, and the encoded audio data is sent to the multiplexing / separating unit ex353. Send it out.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調回路部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation circuit unit ex352, subjected to digital analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments, and the display unit ex358 via the LCD control unit ex359. From, for example, video and still images included in a moving image file linked to a home page are displayed. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data is multiplexed with video data is received and transmitted. However, in addition to audio data, character data related to video is multiplexed. It may be converted data, or may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態17)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 17)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図60は、多重化データの構成を示す図である。図60に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラファイックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 60 shows a structure of multiplexed data. As shown in FIG. 60, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図61は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 61 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図62は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図62における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図62の矢印yy1,yy2, yy3, yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 62 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 62 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As shown by arrows yy1, yy2, yy3, and yy4 in FIG. 62, a plurality of Video Presentation Units in a video stream are divided into pictures, B pictures, and P pictures, and are stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図63は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図63下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 63 shows the format of TS packets that are finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 63, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図64はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 64 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図65に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 65, the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図65に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 As shown in FIG. 65, the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図66に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 66, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図67に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 67 shows the steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態18)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図68に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 18)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 68 shows a configuration of the LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex510が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex510の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex510 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex510 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of progress in semiconductor technology or other derived technology, it is naturally possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態19)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 19)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図69は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 69 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図68のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図68の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態Bで記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態Bで記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図71のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for the identification of the video data, for example, the identification information described in Embodiment B may be used. The identification information is not limited to that described in Embodiment B, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図70は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 70 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態20)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 20)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図72(a)のex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明は、逆量子化に特徴を有していることから、例えば、逆量子化については専用の復号処理部ex901を用い、それ以外のエントロピー符号化、デブロッキング・フィルタ、動き補償のいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For the common processing content, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for the other processing content unique to the present invention not corresponding to the MPEG4-AVC standard, the dedicated decoding processing unit ex901 is used. Configuration is conceivable. In particular, since the present invention is characterized by inverse quantization, for example, a dedicated decoding processing unit ex901 is used for inverse quantization, and other entropy coding, deblocking filter, motion compensation, and the like are used. For any or all of the processes, it is conceivable to share the decoding processing unit. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図72(b)のex1000に示す。この例では、本発明に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 72 (b) shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to processing content unique to the present invention, a dedicated decoding processing unit ex1002 corresponding to processing content specific to other conventional standards, and a moving picture decoding method of the present invention A common decoding processing unit ex1003 corresponding to processing contents common to other conventional video decoding methods is used. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in the processing content specific to the present invention or other conventional standards, and may be capable of executing other general-purpose processing. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, by sharing the decoding processing unit with respect to the processing contents common to the moving picture decoding method of the present invention and the moving picture decoding method of the conventional standard, the circuit scale of the LSI is reduced, and the cost is reduced. It is possible to reduce.
 動画像符号化方法、動画像符号化装置、動画像復号化方法、および、動画像復号化装置に関し、符号化対象ピクチャに最も適したスキップモードおよびダイレクトモードの予測方向を導出することにより、符号化効率を向上させる。 The present invention relates to a moving image encoding method, a moving image encoding device, a moving image decoding method, and a moving image decoding device. Improve efficiency.
  101、3201           直交変換部
  102、3202           量子化部
  103、1902、3203、4502 逆量子化部
  104、1903、3204、4503 逆直交変換部
  105、1904、3205、4504 ブロックメモリ
  106、1905、3206、4505 フレームメモリ
  107、1906、3207、4506 イントラ予測部
  108、1907、3208、4507 インター予測部
  109、1908、3209、4508 インター予測制御部
  110、3210           ピクチャタイプ決定部
  111、1909、3211、4509 参照ピクチャリスト管理部
  112、1910           スキップモード予測方向決定部
  112a、1910a         スキップモード予測方向追加判定部
  113、3213           可変長符号化部
 1901、4501           可変長復号化部
 3212、4510           ダイレクトモード予測方向決定部
101, 3201 Orthogonal transformation unit 102, 3202 Quantization unit 103, 1902, 3203, 4502 Inverse quantization unit 104, 1903, 3204, 4503 Inverse orthogonal transformation unit 105, 1904, 3205, 4504 Block memory 106, 1905, 3206, 4505 Frame memory 107, 1906, 3207, 4506 Intra prediction unit 108, 1907, 3208, 4507 Inter prediction unit 109, 1908, 3209, 4508 Inter prediction control unit 110, 3210 Picture type determination unit 111, 1909, 3211, 4509 Reference picture list Management unit 112, 1910 Skip mode prediction direction determination unit 112a, 1910a Skip mode prediction direction addition determination unit 113, 3213 Variable length coding unit 1901, 4501 Variable length decoding unit 3212, 4510 Direct mode prediction direction determination unit

Claims (18)

  1.  符号化対象ブロックを含む符号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記符号化対象ブロックを符号化する動画像符号化方法であって、
     前記符号化対象ブロックを符号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、前記2つ以上の参照ピクチャインデックスが示す参照ピクチャが同一ピクチャであるか否かを判定する同一参照ピクチャ判定ステップと、
     前記同一参照ピクチャ判定ステップにおける判定結果に基づいて、前記符号化対象ブロックを所定の符号化モードで符号化する際の予測方向を切り替える予測方向切替ステップと
     を含む動画像符号化方法。
    A video encoding method for encoding at least one reference picture index assigned to at least one reference picture different from an encoding target picture including an encoding target block and encoding the encoding target block. And
    The same reference for determining whether or not the reference pictures indicated by the two or more reference picture indexes are the same picture when the two or more reference picture indexes are used when the encoding target block is encoded A picture determination step;
    A video encoding method comprising: a prediction direction switching step of switching a prediction direction when encoding the block to be encoded in a predetermined encoding mode based on a determination result in the same reference picture determination step.
  2.  前記所定の符号化モードはスキップモードであり、
     前記予測方向切替ステップでは、
     前記同一参照ピクチャ判定ステップにおける判定結果が真であれば、前記スキップモードの前記予測方向を、前記参照ピクチャを1つ参照して符号化を行う片方向予測に設定し、
     前記同一参照ピクチャ判定ステップにおける判定結果が偽であれば、前記スキップモードの前記予測方向を、前記参照ピクチャを少なくとも2つ以上参照して符号化を行う双方向予測に設定する
     請求項1記載の動画像符号化方法。
    The predetermined encoding mode is a skip mode;
    In the prediction direction switching step,
    If the determination result in the same reference picture determination step is true, the prediction direction of the skip mode is set to unidirectional prediction that performs encoding with reference to one reference picture,
    The prediction mode in the skip mode is set to bi-prediction in which encoding is performed with reference to at least two reference pictures if the determination result in the same reference picture determination step is false. Video encoding method.
  3.  符号化対象ブロックを含む符号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記符号化対象ブロックを符号化する動画像符号化方法であって、
     前記符号化対象ブロックを符号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、前記2つ以上の参照ピクチャインデックスが示す参照ピクチャが同一ピクチャであるか否かを判定する同一参照ピクチャ判定ステップと、
     前記同一参照ピクチャ判定ステップにおける判定結果に基づいて、前記符号化対象ブロックを所定の符号化モードで符号化する際の予測方向を追加する予測方向追加ステップと
     を含む動画像符号化方法。
    A video encoding method for encoding at least one reference picture index assigned to at least one reference picture different from an encoding target picture including an encoding target block and encoding the encoding target block. And
    The same reference for determining whether or not the reference pictures indicated by the two or more reference picture indexes are the same picture when the two or more reference picture indexes are used when the encoding target block is encoded A picture determination step;
    A prediction direction adding step of adding a prediction direction when encoding the block to be encoded in a predetermined encoding mode based on a determination result in the same reference picture determination step.
  4.  前記所定の符号化モードはスキップモードであり、
     前記予測方向追加ステップは、
     前記同一参照ピクチャ判定ステップにおける判定結果が偽であれば、前記スキップモードの前記予測方向を、前記参照ピクチャを少なくとも2つ以上参照して符号化を行う双方向予測に設定し、
     前記同一参照ピクチャ判定ステップにおける判定結果が真であれば、前記スキップモードの前記予測方向に、前記双方向予測に加え、前記参照ピクチャを1つ参照して符号化を行う片方向予測を追加し、最終的に前記符号化対象ブロックの符号化に用いた前記予測方向をビットストリームに付加する
     請求項3記載の動画像符号化方法。
    The predetermined encoding mode is a skip mode;
    The prediction direction adding step includes
    If the determination result in the same reference picture determination step is false, the prediction direction of the skip mode is set to bi-prediction that performs encoding with reference to at least two reference pictures,
    If the determination result in the same reference picture determination step is true, in addition to the bi-directional prediction, uni-directional prediction that performs encoding with reference to one reference picture is added to the prediction direction of the skip mode. The moving picture coding method according to claim 3, wherein the prediction direction used for coding the block to be coded is finally added to the bitstream.
  5.  符号化対象ブロックを含む符号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記符号化対象ブロックを符号化する動画像符号化方法であって、
     前記符号化対象ブロックを符号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、
     前記符号化対象ブロックを所定の符号化モードで符号化する際の予測方向をヘッダ情報に付加するステップと、
     前記予測方向に基づいて、前記符号化対象ブロックを所定の符号化モードで符号化するステップと
     を含む動画像符号化方法。
    A video encoding method for encoding at least one reference picture index assigned to at least one reference picture different from an encoding target picture including an encoding target block and encoding the encoding target block. And
    When using the two or more reference picture indexes when encoding the encoding target block,
    Adding a prediction direction to the header information when the encoding target block is encoded in a predetermined encoding mode;
    Encoding the block to be encoded in a predetermined encoding mode based on the prediction direction.
  6.  前記所定の符号化モードはスキップモードであり、
     前記ヘッダ情報に付加した前記予測方向が片方向予測の場合に、前記参照ピクチャを1つ参照して前記符号化対象ブロックの符号化を行い、
     前記ヘッダ情報に付加した前記予測方向が双方向予測の場合に、前記参照ピクチャを少なくとも2つ以上参照して前記符号化対象ブロックの符号化を行う
     請求項5記載の動画像符号化方法。
    The predetermined encoding mode is a skip mode;
    When the prediction direction added to the header information is unidirectional prediction, the encoding target block is encoded with reference to one reference picture,
    The moving picture encoding method according to claim 5, wherein when the prediction direction added to the header information is bi-directional prediction, the encoding target block is encoded with reference to at least two reference pictures.
  7.  符号化対象ブロックを含む符号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記符号化対象ブロックを符号化する動画像符号化方法であって、
     前記符号化対象ブロックを符号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、前記符号化対象ブロックを所定の符号化モードで符号化する際に予測方向を追加するか否かを表すフラグをヘッダ情報に付加するステップと、
     前記フラグに基づいて、前記符号化対象ブロックを所定の符号化モードで符号化するステップと
     を含む動画像符号化方法。
    A video encoding method for encoding at least one reference picture index assigned to at least one reference picture different from an encoding target picture including an encoding target block and encoding the encoding target block. And
    Whether or not to add a prediction direction when encoding the encoding target block in a predetermined encoding mode when the two or more reference picture indexes are used when encoding the encoding target block Adding a flag representing the header information;
    And a step of encoding the block to be encoded in a predetermined encoding mode based on the flag.
  8.  前記所定の符号化モードはスキップモードであり、
     前記ヘッダ情報に付加した前記フラグがオフの場合は、前記参照ピクチャを少なくとも2つ以上参照する双方向予測を用いて前記符号化対象ブロックの符号化を行い、
     前記ヘッダ情報に付加した前記フラグがオンの場合は、前記双方向予測に加え、前記参照ピクチャを1つ参照して符号化を行う片方向予測を行い、最終的に前記符号化対象ブロックの符号化に用いた前記予測方向をビットストリームに付加する
     請求項7記載の動画像符号化方法。
    The predetermined encoding mode is a skip mode;
    When the flag added to the header information is off, the encoding target block is encoded using bi-directional prediction that refers to at least two or more reference pictures.
    When the flag added to the header information is on, in addition to the bi-directional prediction, uni-directional prediction is performed by referring to one reference picture and finally encoding of the block to be encoded The moving image encoding method according to claim 7, wherein the prediction direction used for conversion is added to a bitstream.
  9.  前記同一参照ピクチャ判定ステップでは、前記参照ピクチャインデックスが割り当てられた前記参照ピクチャの表示順、もしくは符号化順を用いて判定する
     請求項1から8のいずれか1項記載の動画像符号化方法。
    The moving picture coding method according to any one of claims 1 to 8, wherein in the same reference picture determination step, determination is performed using a display order or an encoding order of the reference pictures to which the reference picture index is assigned.
  10.  復号化対象ブロックを含む復号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記復号化対象ブロックを復号化する動画像復号化方法であって、
     前記復号化対象ブロックを復号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、前記2つ以上の参照ピクチャインデックスが示す参照ピクチャが同一ピクチャであるか否かを判定する同一参照ピクチャ判定ステップと、
     前記同一参照ピクチャ判定ステップにおける判定結果に基づいて、前記復号化対象ブロックを所定の復号化モードで復号化する際の予測方向を切り替える予測方向切替ステップと
     を含む動画像復号化方法。
    A moving picture decoding method in which at least two or more reference picture indexes are assigned to at least one or more reference pictures different from a decoding target picture including a decoding target block, and the decoding target block is decoded. And
    The same reference for determining whether or not the reference pictures indicated by the two or more reference picture indexes are the same picture when using the two or more reference picture indexes when decoding the decoding target block A picture determination step;
    A video decoding method comprising: a prediction direction switching step of switching a prediction direction when decoding the block to be decoded in a predetermined decoding mode based on a determination result in the same reference picture determination step.
  11.  前記所定の復号化モードはスキップモードであり、
     前記予測方向切替ステップでは、
     前記同一参照ピクチャ判定ステップにおける判定結果が真であれば、前記スキップモードの前記予測方向を、前記参照ピクチャを1つ参照して復号化を行う片方向予測に設定し、
     前記同一参照ピクチャ判定ステップにおける判定結果が偽であれば、前記スキップモードの前記予測方向を、前記参照ピクチャを少なくとも2つ以上参照して復号化を行う双方向予測に設定する
     請求項10記載の動画像復号化方法。
    The predetermined decoding mode is a skip mode;
    In the prediction direction switching step,
    If the determination result in the same reference picture determination step is true, the prediction direction of the skip mode is set to one-way prediction in which decoding is performed with reference to one reference picture,
    11. The prediction direction of the skip mode is set to bi-prediction in which decoding is performed with reference to at least two reference pictures if the determination result in the same reference picture determination step is false. A video decoding method.
  12.  復号化対象ブロックを含む復号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記復号化対象ブロックを復号化する動画像復号化方法であって、
     前記復号化対象ブロックを復号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、前記2つ以上の参照ピクチャインデックスが示す参照ピクチャが同一ピクチャであるか否かを判定する同一参照ピクチャ判定ステップと、
     前記同一参照ピクチャ判定ステップにおける判定結果に基づいて、前記復号化対象ブロックを所定の復号化モードで復号化する際の予測方向を復号するステップと
     を含む動画像復号化方法。
    A moving picture decoding method in which at least two or more reference picture indexes are assigned to at least one or more reference pictures different from a decoding target picture including a decoding target block, and the decoding target block is decoded. And
    The same reference for determining whether or not the reference pictures indicated by the two or more reference picture indexes are the same picture when using the two or more reference picture indexes when decoding the decoding target block A picture determination step;
    Decoding a prediction direction when decoding the decoding target block in a predetermined decoding mode based on a determination result in the same reference picture determining step.
  13.  前記所定の復号化モードはスキップモードであり、
     前記同一参照ピクチャ判定ステップにおける判定結果が偽であれば、前記スキップモードの前記予測方向を、前記参照ピクチャを少なくとも2つ以上参照して復号化を行う双方向予測に設定し、
     前記同一参照ピクチャ判定ステップにおける判定結果が真であれば、前記スキップモードの前記予測方向をビットストリームから復号し、復号した前記予測方向に基づいて前記復号化対象ブロックの復号化を行う
     請求項12記載の動画像復号化方法。
    The predetermined decoding mode is a skip mode;
    If the determination result in the same reference picture determination step is false, the prediction direction of the skip mode is set to bi-prediction that performs decoding with reference to at least two reference pictures,
    13. If the determination result in the same reference picture determination step is true, the prediction direction in the skip mode is decoded from a bitstream, and the decoding target block is decoded based on the decoded prediction direction. The moving picture decoding method as described.
  14.  復号化対象ブロックを含む復号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記復号化対象ブロックを復号化する動画像復号化方法であって、
     前記復号化対象ブロックを復号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合に、
     前記復号化対象ブロックを所定の復号化モードで復号化する際の予測方向をヘッダ情報から復号するステップと、
     前記復号した予測方向に基づいて、前記復号化対象ブロックを所定の復号化モードで復号化するステップと
     を含む動画像復号化方法。
    A moving picture decoding method in which at least two or more reference picture indexes are assigned to at least one or more reference pictures different from a decoding target picture including a decoding target block, and the decoding target block is decoded. And
    When the two or more reference picture indexes are used when decoding the decoding target block,
    Decoding the prediction direction when decoding the decoding target block in a predetermined decoding mode from header information;
    Decoding the block to be decoded in a predetermined decoding mode based on the decoded prediction direction.
  15.  前記所定の復号化モードはスキップモードであり、
     前記ヘッダ情報から復号した前記予測方向が片方向予測の場合に、前記参照ピクチャを1つ参照して前記復号化対象ブロックの復号化を行い、
     前記ヘッダ情報から復号した前記予測方向が双方向予測の場合に、前記参照ピクチャを少なくとも2つ以上参照して前記復号化対象ブロックの復号化を行う
     請求項14記載の動画像復号化方法。
    The predetermined decoding mode is a skip mode;
    When the prediction direction decoded from the header information is unidirectional prediction, the decoding target block is decoded with reference to one reference picture,
    The moving picture decoding method according to claim 14, wherein when the prediction direction decoded from the header information is bi-directional prediction, the decoding target block is decoded with reference to at least two reference pictures.
  16.  復号化対象ブロックを含む復号化対象ピクチャとは異なる少なくとも1つ以上の参照ピクチャに対し、少なくとも2つ以上の参照ピクチャインデックスを割り当てて前記復号化対象ブロックを復号化する動画像復号化方法であって、
     前記復号化対象ブロックを復号化する際に、前記2つ以上の参照ピクチャインデックスを用いる場合は、
     前記復号化対象ブロックを所定の復号化モードで復号化する際に予測方向を追加したか否かを表すフラグをヘッダ情報から復号するステップと、
     前記フラグに基づいて、前記復号化対象ブロックを所定の復号化モードで復号化するステップと
     を含む動画像復号化方法。
    A moving picture decoding method in which at least two or more reference picture indexes are assigned to at least one or more reference pictures different from a decoding target picture including a decoding target block, and the decoding target block is decoded. And
    When using the two or more reference picture indexes when decoding the decoding target block,
    Decoding a flag indicating whether or not a prediction direction is added when decoding the decoding target block in a predetermined decoding mode from header information;
    Decoding the block to be decoded in a predetermined decoding mode based on the flag.
  17.  前記所定の復号化モードはスキップモードであり、
     前記ヘッダから復号した前記フラグがオフの場合に、前記参照ピクチャを少なくとも2つ以上参照する双方向予測を用いて前記復号化対象ブロックの復号化を行い、
     前記ヘッダ情報から復号した前記フラグがオンの場合に、ビットストリームから前記予測方向を復号し、復号した前記予測方向に基づいて前記復号化対象ブロックの復号化を行う
     請求項16記載の動画像復号化方法。
    The predetermined decoding mode is a skip mode;
    When the flag decoded from the header is OFF, the decoding target block is decoded using bi-directional prediction that references at least two reference pictures.
    The video decoding according to claim 16, wherein when the flag decoded from the header information is on, the prediction direction is decoded from a bitstream, and the decoding target block is decoded based on the decoded prediction direction. Method.
  18.  同一参照ピクチャ判定ステップは、前記参照ピクチャインデックスが割り当てられた前記参照ピクチャの表示順、もしくは符号化順を用いて判定する
     請求項10から17のいずれか1項記載の動画像復号化方法。
     
    The moving picture decoding method according to any one of claims 10 to 17, wherein the same reference picture determination step is determined using a display order or an encoding order of the reference pictures to which the reference picture index is assigned.
PCT/JP2011/007281 2010-12-28 2011-12-26 Moving image coding method and moving image decoding method WO2012090478A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201061427669P 2010-12-28 2010-12-28
US61/427,669 2010-12-28

Publications (1)

Publication Number Publication Date
WO2012090478A1 true WO2012090478A1 (en) 2012-07-05

Family

ID=46382614

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007281 WO2012090478A1 (en) 2010-12-28 2011-12-26 Moving image coding method and moving image decoding method

Country Status (1)

Country Link
WO (1) WO2012090478A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012172668A1 (en) * 2011-06-15 2015-02-23 株式会社東芝 Moving picture encoding method and apparatus, and moving picture decoding method and apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004023458A (en) * 2002-06-17 2004-01-22 Toshiba Corp Moving picture encoding/decoding method and apparatus
JP2004032355A (en) * 2002-06-26 2004-01-29 Nippon Telegr & Teleph Corp <Ntt> Motion picture encoding method, motion picture decoding method, and apparatus for the both method
JP2004048711A (en) * 2002-05-22 2004-02-12 Matsushita Electric Ind Co Ltd Method for coding and decoding moving picture and data recording medium
WO2010070818A1 (en) * 2008-12-16 2010-06-24 株式会社日立製作所 Moving image encoding device, moving image encoding method, moving image decoding device and moving image decoding method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004048711A (en) * 2002-05-22 2004-02-12 Matsushita Electric Ind Co Ltd Method for coding and decoding moving picture and data recording medium
JP2004023458A (en) * 2002-06-17 2004-01-22 Toshiba Corp Moving picture encoding/decoding method and apparatus
JP2004032355A (en) * 2002-06-26 2004-01-29 Nippon Telegr & Teleph Corp <Ntt> Motion picture encoding method, motion picture decoding method, and apparatus for the both method
WO2010070818A1 (en) * 2008-12-16 2010-06-24 株式会社日立製作所 Moving image encoding device, moving image encoding method, moving image decoding device and moving image decoding method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"Test model under Consideration Output Document (draft007), Joint Collaborative Team on Video Coding (JCT-VC) of ITU-T SG16 WP3 and ISO/IEC JTC1/SC29/WG11 2nd Meeting Document: JCTVC-B205", ITU-T, October 2010 (2010-10-01), GENEVA, CH, pages 35, 53, 61 - 63, 80-82 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2012172668A1 (en) * 2011-06-15 2015-02-23 株式会社東芝 Moving picture encoding method and apparatus, and moving picture decoding method and apparatus

Similar Documents

Publication Publication Date Title
JP6167409B2 (en) Image decoding method and image decoding apparatus
JP6478133B2 (en) Moving picture decoding method, moving picture decoding apparatus, moving picture encoding method, and moving picture encoding apparatus
JP5347082B1 (en) Decoding method and decoding apparatus
JP5393924B2 (en) Moving picture decoding method, moving picture decoding apparatus, and program
JP6422011B2 (en) Moving picture encoding method, moving picture decoding method, moving picture encoding apparatus, and moving picture decoding apparatus
JP5893570B2 (en) Image encoding method and image decoding method
JP5883431B2 (en) Image encoding method and image decoding method
WO2014010192A1 (en) Image encoding method, image decoding method, image encoding device and image decoding device
JP6304571B2 (en) Moving picture decoding method and moving picture decoding apparatus
JP2013187905A (en) Methods and apparatuses for encoding and decoding video
WO2012090495A1 (en) Image encoding method and image decoding method
WO2012081246A1 (en) Image encoding method and image decoding method
WO2012090478A1 (en) Moving image coding method and moving image decoding method
WO2015001700A1 (en) Image encoding method and image encoding device
WO2012073481A1 (en) Video-image encoding method and video-image decoding method
WO2012081225A1 (en) Image encoding method and image decoding method
WO2012096157A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11854349

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP