WO2012089135A1 - 信道信噪比反馈的方法及装置 - Google Patents

信道信噪比反馈的方法及装置 Download PDF

Info

Publication number
WO2012089135A1
WO2012089135A1 PCT/CN2011/084869 CN2011084869W WO2012089135A1 WO 2012089135 A1 WO2012089135 A1 WO 2012089135A1 CN 2011084869 W CN2011084869 W CN 2011084869W WO 2012089135 A1 WO2012089135 A1 WO 2012089135A1
Authority
WO
WIPO (PCT)
Prior art keywords
noise ratio
signal
subband
band
sub
Prior art date
Application number
PCT/CN2011/084869
Other languages
English (en)
French (fr)
Inventor
李云波
李斌
李靖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2012089135A1 publication Critical patent/WO2012089135A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0632Channel quality parameters, e.g. channel quality indicator [CQI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0658Feedback reduction
    • H04B7/066Combined feedback for a number of channels, e.g. over several subcarriers like in orthogonal frequency division multiplexing [OFDM]

Definitions

  • Embodiments of the present invention relate to communication technologies, and in particular, to a method and apparatus for a signal to noise ratio feedback method in a wireless local area network.
  • WLAN has become an important way of indoor wireless access.
  • the transmission bandwidth of WLAN has also increased from 40MHz to 80MHz, even to 160MHz, and the maximum number of antennas has increased from 4 to 8.
  • beamforming techniques are mostly used to effectively increase the throughput of the system.
  • the beamforming technique needs to know the channel state information or the beamforming matrix, which is also called the V matrix.
  • the system feeds back the V matrix while also feeding back the average signal-to-noise ratio (SNR-average) across all data carriers in the entire frequency band.
  • SNR-average average signal-to-noise ratio
  • the dynamic range of the signal-to-noise ratio may be large, thereby increasing the probability that the signal-to-noise ratio (PT-SNR) of each data carrier overflows the prescribed range of the standard.
  • PT-SNR signal-to-noise ratio
  • SNR plus the feedback method of each carrier difference is used continuously, the performance loss will be caused because the carrier signal-to-noise ratio exceeds the feedback range without increasing the feedback bit, if the per-carrier is increased by Feedback bits to increase the feedback dynamic range will greatly increase the feedback overhead. Therefore, it is difficult to achieve feedback of the signal-to-noise ratio of each carrier as much as possible without increasing the number of feedback bits. Summary of the invention
  • Embodiments of the present invention provide a method for channel signal to noise ratio feedback method, which uses molecular band feedback average
  • a method for feeding back a channel signal-to-noise ratio, respectively, feeding back a signal-to-noise ratio according to each space-time stream comprising: transmitting a sub-band average signal-to-noise ratio, wherein the sub-band average signal-to-noise ratio is corresponding to the sub-band average signal-to-noise ratio The sum of the signal to noise ratios on the data subcarriers included in the subband divided by the number of data subcarriers included in the subband corresponding to the subband average signal to noise ratio;
  • the carrier signal to noise ratio is a difference between a signal to noise ratio on a data subcarrier included in the subband corresponding to the subband average signal to noise ratio and an average signal to noise ratio of the subband;
  • the subband corresponding to the average SNR of the subband is a communication subband in the communication frequency band, and the communication frequency band includes N communication subbands, M spacetime streams, and each of the spacetimes Flowing on one of the communication subbands corresponding to one of the subband average signal to noise ratios, each space time stream corresponding to a carrier signal to noise ratio on a data subcarrier included in the communication subband, where N is greater than A natural number equal to 2, M is a natural number.
  • a device for channel signal-to-noise ratio feedback is further provided, and the signal-to-noise ratio is respectively fed back according to each space-time stream, including:
  • An average signal to noise ratio transmitting unit configured to send a subband average signal to noise ratio, wherein the subband average signal to noise ratio is a sum of signal to noise ratios on data subcarriers included in a subband corresponding to the subband average signal to noise ratio Dividing the number of data subcarriers included in the subband corresponding to the average SNR of the subband;
  • a carrier signal to noise ratio transmitting unit configured to send a carrier signal to noise ratio, where the carrier signal to noise ratio is a signal to noise ratio on the data subcarrier included in the subband corresponding to the subband average signal to noise ratio and the subband average The difference between the signal to noise ratio;
  • the subband corresponding to the average SNR of the subband is a communication subband in the communication frequency band, and the communication frequency band includes N communication subbands, M spacetime streams, and each of the spacetimes Flowing on one of the communication subbands corresponding to one of the subband average signal to noise ratios, each space time stream corresponding to a carrier signal to noise ratio on a data subcarrier included in the communication subband, where N is greater than A natural number equal to 2, M is a natural number.
  • Figure 1 is a schematic diagram of the entire communication band divided into two sub-bands.
  • FIG. 2 is a flow chart of a method for transmitting a signal to noise ratio according to the embodiment.
  • FIG. 3 is a flow chart 1 of a method for transmitting a signal to noise ratio according to still another embodiment.
  • FIG. 4 is a flow chart 2 of a method for transmitting a signal to noise ratio according to still another embodiment.
  • FIG. 5 is a schematic structural diagram of an apparatus for channel signal to noise ratio feedback according to an embodiment of the present invention.
  • DETAILED DESCRIPTION In order to support subsequent multi-user multi-antenna systems (MU-MIMO), better use of beamforming techniques requires increased feedback of the signal to noise ratio on each carrier. When feeding back the signal-to-noise ratio on each carrier, it is necessary to feed back the average signal-to-noise ratio of the sub-bands in the full-band, and feedback the difference between the true signal-to-noise ratio and the average signal-to-noise ratio on the carrier. This difference is called For PT-SNR.
  • FIG. 1 is a schematic diagram showing the entire communication band divided into two sub-bands.
  • a full frequency band is divided into 2 sub-bands, each sub-band contains a plurality of sub-carriers, and possibly the frequency of the two sub-bands is discontinuous. In practical applications, it can be divided into 2 sub-bands or multiple sub-bands according to the requirements of the system.
  • the 160MHz communication band can be divided into two 80MHz, or four 40MHz, or eight 20MHz.
  • Each subband may contain multiple data subcarriers, respectively.
  • the subband is 80 MHz or 40 MHz or 20 MHz.
  • a full band of 160 MHz may include two subbands of 80 MHz, or one subband of 80 MHz and two subunits of 40 MHz. band.
  • the communication band is 80 MHz for the full band, and the subband is 40 MHz or 20 MHz.
  • the subband is 20 MHz.
  • the full band is 120MHz, then the subband is 80MHz or 60MHz or 40MHz or 20MHz. The number of subbands and the division do not affect the method flow of signal to noise ratio feedback.
  • the feedback is respectively performed according to each space-time stream, and the signal-to-noise ratio feedback mode of each space-time stream is the same.
  • the following description is based on the feedback of a space-time stream SNR. Example.
  • a method for transmitting a signal-to-noise ratio is performed.
  • a beamformee performs SNR feedback to a beamformer. This process is described in the processing flow of the beam receiver.
  • the subband average signal to noise ratio is a sum of signal to noise ratios on the data subcarriers included in the subband corresponding to the subband average signal to noise ratio divided by the subband average signal to noise ratio The number of data subcarriers included in the corresponding subband.
  • S202 Send a carrier signal to noise ratio, where the carrier signal to noise ratio is a difference between a signal to noise ratio on a data subcarrier included in a subband corresponding to the subband average signal to noise ratio and an average signal to noise ratio of the subband.
  • the subband corresponding to the subband average signal to noise ratio is a communication subband in the communication frequency band.
  • the communication frequency band includes N communication subbands, M space time streams, and each of the space time streams corresponds to an average signal to noise ratio of the subbands on one of the communication subbands, and each space time stream is
  • the data subcarrier included in the communication subband corresponds to a carrier signal to noise ratio, where N is a natural number greater than or equal to 2, and M is a natural number.
  • the steps of calculating the average signal to noise ratio and the carrier signal to noise ratio after calculating the average signal to noise ratio and the carrier signal to noise ratio may not specify the order of the first, firstly transmitting the average signal to noise ratio or transmitting the carrier signal to noise ratio first. Can achieve the same effect.
  • the system may send the signal to noise ratio by default when the beam receiver feedbacks the signal to noise ratio, and transmit the subband average signal to noise of each subband in the full frequency band. ratio.
  • the manner of determining the feedback signal to noise ratio may also be determined according to the transmission mode identification bit in the request data frame sent by the received beamformer, and the transmission mode identifier is used by the beam receiver to determine whether to transmit the subband average signal to noise ratio. For example, if the transmission mode flag is 1, it is the sub-band average signal-to-noise ratio of each sub-band to be fed back. If the transmission mode flag is 0, the average signal-to-noise ratio of the full band is transmitted.
  • the average SNR of all sub-bands can be transmitted using one data frame.
  • the subbands corresponding to the average SNR of the subbands may be identified by setting the subband identification bits in the data frame.
  • the subband identification may be used in the scheme of dividing the two subbands. A bit of 0 indicates the first subband and 1 indicates the second subband.
  • the subband identification bits are placed in the average SNR feedback data frame of the beam receiver. ⁇
  • the sub-band identification bits can be omitted in the agreed order, for example, the number of the sub-bands is agreed, and the sub-band numbers are fed back in ascending order.
  • the feedback data frame identifier may be set to identify the feedback data frame, and the feedback data frame identifier may be placed in the sub-band average SNR feedback data frame of the beam receiver, or may be placed in the beam. The average SNR feedback of the former is requested in the data frame.
  • the sub-bands corresponding to the sub-band average SNR can be identified by setting the sub-band identification bits for each feedback data frame. For example, when the feedback data frame includes two sub-bands, The subband identification bit is 0 to indicate a subband with a smaller subband number, and 1 to a subband with a larger subband number.
  • the subband identification bits are placed in the average SNR feedback data frame of the beam receiver. ⁇
  • feedback can be performed in the agreed sub-band order, and the sub-band identification bits are omitted, for example, the sub-band numbers are fed back in ascending order.
  • the average sub-band SNR may be: firstly, the average SNR of the first space-time stream in the i-th sub-band is sent, where i takes a value from 1 to N, and then the second space-time stream is sequentially transmitted.
  • the average sub-band SNR may be: firstly, the average SNR of the Xth space-time stream in the first sub-band is sequentially transmitted, where X takes a value from 1 to M, and then the Xth space-time stream is sequentially transmitted in the second sub- Belt flat Mean SNR, where x is the value from x ⁇ until the xth null time stream is averaged in the Nth subband, where X is from 1 to M; that is, all empty on the first subband is completed.
  • the feedback of the current stream, and then the feedback of all the space-time streams on the second sub-band, until the air-time stream on all sub-bands is sent.
  • Transmitting the carrier signal to noise ratio may include: separately transmitting a difference between a signal to noise ratio of the first to the Mth space-time streams on each of the data subcarriers and an average signal to noise ratio of the subband to which the data subcarrier belongs.
  • the communication band is 160 MHz for the full band and the two bands are 80 MHz.
  • the carrier signal to noise ratio per data subcarrier in the subband is represented by 4 times M bits, that is, each of the space time
  • the signal to noise ratio of the stream is represented by 4 bits.
  • the carrier signal-to-noise ratio of each data subcarrier in the subband ranges from -8dB to 7dB, and its absolute value is a non-negative integer multiple of ldB, that is, the granularity is ldB.
  • the number of bits representing the carrier signal-to-noise ratio may be increased. For example, when the average SNR of the first 80 MHz and the average SNR of the second 80 MHz exceed 4 dB, each sub-band in the sub-band
  • the carrier signal-to-noise ratio of the carrier is represented by 5 times M bits, where each carrier's signal-to-noise ratio is represented by 5 bits.
  • the average SNR of n subbands is sent separately.
  • the average SNR of the i-th sub-band is equal to the sum of the signal-to-noise ratios on all data sub-carriers included in the i-th sub-band divided by the number of data sub-carriers included in the sub-band.
  • the carrier signal to noise ratio PT-SNR of all data subcarriers in the entire communication band is transmitted.
  • the PT-SNR of each data subcarrier in the i-th subband is the difference between the signal to noise ratio of the subcarrier and the average signal to noise ratio of the i th subband, i is taken from 1 to n.
  • the average SNR of each subband is represented by 8 bits.
  • the signal-to-noise ratio information of each space-time stream in sub-band 1 is transmitted, and then the average signal-to-noise ratio of each space-time stream in sub-band 2 is transmitted until the average signal-to-noise ratio is transmitted on all sub-bands.
  • a method of subsequently transmitting a carrier signal-to-noise ratio PT-SNR a carrier signal-to-noise ratio per carrier.
  • the carrier signal-to-noise ratio per carrier is represented by 4 bits, and a total of 4 ⁇ ⁇ bits are transmitted.
  • the transmission content indicates the signal to noise ratio of the first to the Mth space-time streams on the subcarrier.
  • the difference between the average signal-to-noise ratio of the corresponding space-time stream on the i-th sub-band represents a range of -8 dB to 7 dB, and a granularity of ldB.
  • the carrier signal-to-noise ratio expressed in dB
  • the 4th feedback of the first data subcarrier of subband 1 indicates the signal-to-noise ratio of the space-time-to-noise flow from the 1st to the chord-to-noise ratio on the sub-carrier and the corresponding space-time stream in the 1st sub-band
  • the difference in the average signal-to-noise ratio above is expressed in dB, indicating a range of -8dB to 7dB, granularity ldB.
  • the second data subcarrier of subband 1 carries the ⁇ feedback content indicating the SNR of the space-time-to-noise ratio from the 1st to the Mth wave on the subcarrier and the corresponding space-time stream in the 1st subband
  • the difference in the average signal-to-noise ratio above is expressed in dB, indicating a range of -8dB to 7dB, granularity ldB.
  • the 4 ⁇ feedback content of the N1th data subcarrier of subband 1 indicates the signal-to-noise ratio of the space-time-to-noise ratio of the space-to-noise ratio from the 1st to the Mth carrier on the subcarrier and the corresponding space-time stream on the 1st subband.
  • the difference in the average signal-to-noise ratio, expressed in dB, represents a range of -8dB to 7dB, granularity ldB.
  • the carrier of the first data subcarrier of subband n is ⁇ .
  • the feedback content indicates the signal-to-noise ratio of the space-time-to-noise flow from the first to the M-waves on the sub-carrier and the corresponding space-time stream in the n-th subband.
  • the difference in the average signal-to-noise ratio above is expressed in dB, indicating a range of -8dB to 7dB, granularity ldB.
  • the carrier of the first data subcarrier of subband n is ⁇ .
  • the feedback content indicates the signal-to-noise ratio of the space-time-to-noise flow from the first to the M-waves on the sub-carrier and the corresponding space-time stream in the n-th subband.
  • the difference in the average signal-to-noise ratio, in dB Indicates that the range is -8dB to 7dB, and the granularity is ldB.
  • the feedback content indicates the 1st to the Mth on the subcarrier
  • the range is -8dB to 7dB, and the granularity is ldB.
  • the carrier SNR dynamic range of each 80MHz subband is -6dB ⁇ 5dB, that is, the above specified carrier signal to noise ratio feedback range leaves a margin of 2dB at each end.
  • the carrier SNR dynamic range over the entire 160 MHz communication band will exceed the standard carrier SNR feedback range.
  • the carrier signal-to-noise ratio feedback is changed from 4 bits to 5 bits, and the feedback overhead is increased by 25%.
  • the feedback overhead is increased by ⁇ + ⁇ ) - 25 , and the molecular-to-feedback feedback average signal-to-noise ratio method of this patent is used.
  • the overhead is increased by 8 / ( 8 + 4 ) - 0. 4 % , which significantly saves the overhead of feedback.
  • the method of using the feedback-average signal-to-noise ratio of the molecule is used to transmit the average signal-to-noise ratio (SNR) and carrier-to-noise ratio of the sub-band respectively.
  • the carrier signal-to-noise Since the average signal-to-noise ratio of the sub-bands in the full-band is transmitted, the carrier signal-to-noise is effectively reduced.
  • the dynamic range of the ratio can more accurately feedback the carrier signal-to-noise ratio without increasing the total feedback overhead.
  • the average SNR is another transmission mode, and the average SNR of each space-time stream in each sub-band is represented by 8 bits.
  • the average SNR of the carrier space-time stream 1 on each sub-band is transmitted, and then the average SNR of the carrier space-time stream 2 on each sub-band is completed until the average SNR of all carrier space-time streams on each sub-band Send.
  • embodiments of the present invention also provide an apparatus for implementing the above method.
  • the device is used to implement the above method.
  • Each of the above methods can be implemented and implemented in a channel signal to noise ratio feedback device, and the operation of the channel signal to noise ratio feedback device is also performed on the above method.
  • the communication channel includes at least two communication sub-bands, each sub-band carrying at least one data sub-carrier, and respectively feeding back a signal-to-noise ratio according to each space-time stream.
  • the method includes: Transmitting a first sub-band average signal to noise ratio, the first sub-band average signal to noise ratio being an average of a signal to noise ratio of the data subcarriers included in the first subband;
  • the differential signal to noise ratio of the data subcarrier is a difference between a signal to noise ratio of the first subband data subcarrier and a first subband average signal to noise ratio (ie, a carrier Signal to noise ratio; transmitting a second sub-band average signal to noise ratio, the second sub-band average signal to noise ratio being an average of signal to noise ratios of data subcarriers included in the second subband;
  • differential signal to noise ratio of the second subband data subcarrier where the differential signal to noise ratio of the data subcarrier is a difference between a signal to noise ratio of the second subband data subcarrier and a second subband average signal to noise ratio.
  • the first sub-band average signal to noise ratio and the second sub-band average signal to noise ratio may be carried in the first data frame
  • the differential signal to noise ratio of the first subband data subcarrier and the differential signal to noise ratio of the second subband data subcarrier are transmitted in the second data frame.
  • the first sub-band average signal to noise ratio bearer is transmitted in the first data frame;
  • the second subband average signal to noise ratio bearer is sent in the second data frame;
  • the differential signal to noise ratio of the first subband data subcarrier and the differential signal to noise ratio of the second subband data subcarrier are transmitted in the third data frame;
  • the first data frame further includes: a first sub-band identifier bit, configured to identify that the sub-band average signal-to-noise ratio carried by the first data frame corresponds to the first sub-band;
  • the second data frame further includes: a second sub-band identifier bit, configured to identify that the sub-band average signal to noise ratio carried by the second data frame corresponds to the second sub-band.
  • the beam receiver performs SNR feedback to the beamformer.
  • the beam receiver can be either an access point (AP) or a station, and the beamformer can be either an access point or a workstation.
  • the beam receiver is a workstation and the beamformer is an access point.
  • FIG. 3 a schematic structural diagram of a device for channel signal to noise ratio feedback according to an embodiment of the present invention is shown.
  • the device may be an access point or workstation in a WLAN system.
  • the description of the device below is primarily a description of the functional deployment of the SNR feedback, and of course other common inevitable features and functions.
  • Channel SNR feedback means 30 includes
  • the average signal to noise ratio transmitting unit 301 is configured to send a subband average signal to noise ratio, and the subband average signal to noise ratio is a sum of signal to noise ratios on data subcarriers included in the subband corresponding to the subband average signal to noise ratio.
  • the carrier signal to noise ratio transmitting unit 303 is configured to send a carrier signal to noise ratio, where the carrier signal to noise ratio is a signal to noise ratio on the data subcarrier included in the subband corresponding to the subband average signal to noise ratio and the subband The difference in average signal to noise ratio.
  • the subband corresponding to the average signal to noise ratio of the subband is a communication subband in the communication frequency band, and the communication frequency band includes N communication subbands, M spacetime streams, and each of the spacetime streams is in one
  • the communication subband corresponds to one of the subband average signal to noise ratios
  • each of the space time streams corresponds to a carrier signal to noise ratio on a data subcarrier included in the communication subband, where N is greater than or equal to 2 Natural number, M is a natural number.
  • each space-time stream corresponds to one carrier signal-to-noise ratio on one of the sub-bands, and N is a natural number greater than or equal to 2, M The average SNR of the space-time stream in the i-th sub-band, where i takes the value from 1 to N, and then sequentially sends the average SNR of the second space-time stream in the ith sub-band, where i takes values from 1 to N.
  • the average signal-to-noise ratio transmission unit 301 transmits the sub-band average SNR, including: first transmitting the Xth space in sequence The average SNR of the current sub-band, where X is from 1 to M, and then the average SNR of the Xth space-time stream in the second sub-band is transmitted, where X is from 1 to M, until The average SNR of the Xth space-time stream in the Nth sub-band is transmitted in sequence, where X is taken from ijM.
  • the carrier signal-to-noise ratio transmitting unit 303 when transmitting the carrier signal-to-noise ratio of each data subcarrier in the subband, includes: transmitting a carrier signal to noise ratio of each data subcarrier in the subband includes: transmitting each of the foregoing The difference between the signal-to-noise ratio of the first to the Mth space-time streams on the data subcarriers and the average signal-to-noise ratio of the subbands to which the data subcarriers belong.
  • the further carrier signal to noise ratio transmitting unit 303 is further configured to use a 4 times M bits to represent a carrier signal to noise ratio per data subcarrier in the subband, wherein a signal to noise ratio of each space time stream is represented by 4 bits, a carrier
  • the signal-to-noise ratio ranges from -8dB to 7dB with an absolute value of 1 dB non-negative integer multiples.
  • the method further includes a request data frame receiving unit 305, where the request data frame receiving unit is configured to receive a request data frame, where the request data frame is used to request to send a subband average signal to noise ratio, and the request data frame includes sending A mode identifier bit, the transmission mode identifier bit is used to determine whether to send the sub-band average signal to noise ratio.
  • the transmission of a specific average signal to noise ratio and carrier signal to noise ratio can be referred to the method embodiment.
  • the device with the feedback average signal-to-noise ratio of the molecular band is used to respectively transmit the average signal-to-noise ratio (SNR) and the carrier signal-to-noise ratio of the sub-band, and the effective signal-to-noise ratio is effectively reduced due to the average signal-to-noise ratio of the sub-bands in the full-band transmission.
  • SNR average signal-to-noise ratio
  • the dynamic range of the small carrier signal-to-noise ratio can more accurately feedback the carrier signal-to-noise ratio without increasing the total feedback overhead.
  • the foregoing program may be stored in a computer readable storage medium, and the program is executed when executed.
  • the foregoing steps include the steps of the foregoing method embodiments; and the foregoing storage medium includes: a medium that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例提供了一种反馈信道信噪比的方法,包括:发送子带平均信噪比,所述子带平均信噪比为该子带平均信噪比对应的子带所包含的数据子载波上的信噪比之和除以该子带平均信噪比对应的子带所包含的数据子载波数量;发送载波信噪比,该载波信噪比为所述子带平均信噪比对应的子带所包含的数据子载波上的信噪比与所述子带平均信噪比的差值。上述方法,通过分子带反馈平均SNR提高反馈SNR的性能。同时还给出了实现上述方法的装置。

Description

信道信噪比反馈的方法及装置 技术领域
本发明实施例涉及通信技术,尤其涉及无线局域网中信噪比反馈方法的方 法及装置。
背景技术
目前 WLAN成为室内无线接入的一种重要方式。 随着通信技术的发展, 为 了适应高速接入的需求 , WLAN的传输带宽也从 40MHz增加到 80MHz,甚至到 160MHz, 最多的天线数也从 4跟增加到 8根。 现在的 WLAN系统中,大多釆用了波束形成技术用以有效的提高系统的吞 吐量。 波束形成技术需要知道信道状态信息或者波束形成矩阵, 波束形成矩阵 又称 V矩阵。 当前的标准中, 系统反馈 V矩阵的同时还反馈了整个频带内所有 数据载波上的平均信噪比 ( SNR— average ) 。 现在技术的变化是将通信频带从 40MHz增加到 80MHz, 甚至到 160MHz, 并且需要支持不连续的 80MHz加 80MHz。整个频带过宽的情况下,信噪比的动 态范围可能很大,从而增大了每数据载波信噪比(PT - SNR )溢出标准规定范 围的机率。 此时如果继续使用一个全频带上的信噪比加每载波差值反馈的方 法,在不增加反馈比特的情况下会由于载波信噪比超过反馈范围而造成性能的 损失,如果通过增加每载波反馈比特来提高反馈动态范围会使得反馈开销大大 增加。 所以难以实现即不增加反馈比特数又能尽量准确的反馈每载波的信噪 比。 发明内容
本发明实施例提供一种信道信噪比反馈方法的方法,通过分子带反馈平均
SNR提高反馈 SNR的性能。
一种反馈信道信噪比的方法, 按照每个空时流分别反馈信噪比, 包括: 发送子带平均信噪比,所述子带平均信噪比为该子带平均信噪比对应的子 带所包含的数据子载波上的信噪比之和除以该子带平均信噪比对应的子带所 包含的数据子载波数量;
发送载波信噪比,该载波信噪比为所述子带平均信噪比对应的子带所包含 的数据子载波上的信噪比与所述子带平均信噪比的差值;
其中, 所述子带平均信噪比对应的子带为通信频带中的一通信子带, 所述 通信频带中包含 N个所述通信子带, M个空时流, 每一个所述空时流在一个所 述通信子带上对应一个所述子带平均信噪比,每一个空时流在所述通信子带所 包含的一个数据子载波上对应一个载波信噪比, 其中 N为大于等于 2 的自然 数, M为自然数。
同时还进一步给出一种信道信噪比反馈的装置,按照每个空时流分别反馈 信噪比, 包括:
平均信噪比发送单元, 用于发送子带平均信噪比, 所述子带平均信噪比为 该子带平均信噪比对应的子带所包含的数据子载波上的信噪比之和除以该子 带平均信噪比对应的子带所包含的数据子载波数量;
载波信噪比发送单元, 用于发送载波信噪比, 该载波信噪比为所述子带平 均信噪比对应的子带所包含的数据子载波上的信噪比与所述子带平均信噪比 的差值; 其中, 所述子带平均信噪比对应的子带为通信频带中的一通信子带, 所述 通信频带中包含 N个所述通信子带, M个空时流, 每一个所述空时流在一个所 述通信子带上对应一个所述子带平均信噪比,每一个空时流在所述通信子带所 包含的一个数据子载波上对应一个载波信噪比, 其中 N为大于等于 2 的自然 数, M为自然数。
应用本发明实施例的方法及装置, 釆用分子带反馈平均信噪比的方法, 分 别发送子带的平均信噪比及载波信噪比,载波信噪比将整个通信频段分成多个 子带分别反馈则有效减 d、载波信噪比的动态范围,能够在总的反馈开销相同的 情况下提高反馈载波信噪比的准确性。 附图说明
图 1为整个通信频带分为两个子带的示意图。
图 2为本实施例发送信噪比的方法流程图。
图 3为发送信噪比又一实施例的方法流程图一。
图 4为发送信噪比又一实施例的方法流程图二。
图 5为本发明实施例信道信噪比反馈的装置结构示意图。 具体实施方式 为了支持后续的多用户多天线系统(MU-MIMO ) , 更好的使用波束形成 技术, 需要增加反馈每个载波上的信噪比。 反馈每个载波上的信噪比时, 需要 反馈全频带中子带的平均信噪比,及反馈的是此载波上真实的信噪比与平均信 噪比的差值, 这个差值称之为 PT-SNR。 通过分子带反馈平均信噪比可以实现 反馈比特数增加很少又能尽量准确的反馈每载波的信噪比。 图 1是整个通信频带分为两个子带的示意图。 将一个全频带划分为 2个子 带, 每个子带上包含多个子载波, 还有可能 2个子带的频率是不连续的。 实际 应用中,可以根据对系统的需求分为 2个子带或者多个子带。例如 160MHz的通 信频段可以划分为 2个 80MHz, 或者 4个 40MHz, 或者 8个 20MHz。 每个子带可 以分别包含多个数据子载波。 作为实施例, 通信频带如果全频带 160MHz, 则 子带为 80MHz或 40MHz或 20MHz , 例如一个 160MHz的全频带可以包含 2个 80MHz的子带, 或者包含 1个 80MHz的子带及 2个 40MHz的子带。 通信频带为 全频带 80MHz, 则子带为 40MHz或 20MHz。 或者通信频带为全频带 40MHz, 则子带为 20MHz。 或者全频带 120MHz, 则子带为 80MHz或 60MHz或 40MHz或 20MHz。 子带的多少及划分不影响信噪比反馈的方法流程。
在反馈平均信噪比或者载波信噪比时都是按照每个空时流分别反馈,而每 个空时流的信噪比反馈方式相同,下面以通过对一个空时流 SNR的反馈描述本 实施例。
参阅图 2, 本实施例发送信噪比 ( Signal-to-noise ratio, SNR ) 的方法流程 图,在 WLAN系统中是波束接收器( beamformee )向波束形成器( beamformer ) 进行 SNR反馈。 此流程是以波束接收器的处理流程进行描述。
S201 ,发送子带平均信噪比,子带平均信噪比为该子带平均信噪比对应的 子带所包含的数据子载波上的信噪比之和除以该子带平均信噪比对应的子带 所包含数据子载波的数量。
S202,发送载波信噪比,该载波信噪比为所述子带平均信噪比对应的子带 所包含的数据子载波上的信噪比与所述子带平均信噪比的差值。
在本实施例中, 子带平均信噪比对应的子带为通信频带中的一通信子带, 通信频带中包含 N个所述通信子带, M个空时流, 每一个所述空时流在一个所 述通信子带上对应一个所述子带平均信噪比,每一个空时流在所述通信子带所 包含的一个数据子载波上对应一个载波信噪比, 其中 N为大于等于 2 的自然 数, M为自然数。
在本实施例中计算出平均信噪比及载波信噪比后上述发送平均信噪比及 载波信噪比的步骤可以不规定先后的顺序,先发送平均信噪比或者先发送载波 信噪比都可以达到基本相同的效果。
应用本发明实施例釆用分子带反馈平均信噪比的方法,分别发送子带的平 均信噪比及载波信噪比, 由于发送的是全频带中子带的平均信噪比, 则有效减 小载波信噪比的动态范围,能够在不增加总的反馈开销的情况下提高反馈载波 信噪比准确性。
在实际的应用中,作为进一步的实施例, 系统可以默认波束接收器反馈发 送信噪比时以子带的平均信噪比为粒度发送,即发送全频带中各子带的子带平 均信噪比。还可以根据接收到的波束形成器发送的请求数据帧中的发送方式标 识位决定反馈信噪比的方式,发送方式标识位用于波束接收器决定是否发送子 带平均信噪比。 例如发送方式标识位为 1则为需要反馈各子带的子带平均信噪 比, 如果发送方式标识位为 0, 则发送全频带的平均信噪比。
波束接收器反馈子带平均信噪比时可以使用一个数据帧发送所有子带的 平均 SNR。 釆用此方式反馈平均信噪比时, 可以通过在数据帧中设置子带标 识比特位来标识其中的子带平均 SNR所对应的子带,例如分两个子带的方案中 可以用子带标识比特位为 0表示第一个子带, 1表示第二个子带。子带标识位放 置在波束接收器的平均 SNR反馈数据帧中。 釆用此方式反馈平均信噪比时,还 可以按照约定好的顺序进行反馈而省略子带标识比特, 例如约定子带的编号, 按照子带编号从小到大的顺序进行反馈。
波束接收器反馈子带平均信噪比时可以使用多个数据帧反馈所有子带的 平均 SNR, 每个数据帧中反馈部分子带的平均 SNR。 在此方式反馈平均信噪比 时, 可以设置反馈数据帧标识位用来标识反馈数据帧,反馈数据帧标识位可以 放置在波束接收器的子带平均 SNR反馈数据帧中,也可以放置在波束形成器的 平均 SNR反馈请求数据帧中。 在此方式反馈平均信噪比时, 还可以按照约定好 的顺序依次反馈多个反馈数据帧而省略反馈数据帧标识比特,例如按照反馈数 据帧编号从小到大的顺序进行反馈。釆用此方式反馈平均信噪比时,对于每个 反馈数据帧可以通过设置子带标识比特位来标识其中的子带平均 SNR所对应 子带, 例如反馈数据帧中包含两个子带时可以用子带标识比特位为 0表示子带 编号较小的子带, 1表示子带编号较大的子带。 子带标识位放置在波束接收器 的平均 SNR反馈数据帧中。 釆用此方式反馈平均信噪比时, 对于每个反馈数据 帧还可以按照约定好的子带顺序进行反馈而省略子带标识比特,例如按照子带 编号从小到大的顺序进行反馈。
进一步, 在实施中发送子带平均 SNR可以是:先依次发送第 1个空时流在第 i个子带的平均 SNR, 其中 i取值为从 1到 N, 然后依次发送第 2个空时流在第 i个 子带的平均 SNR, 其中 i取值为从 1到 N, 直到依次发送第 M个空时流在第 i个子 带的平均 SNR, 其中 i取值为从 1到 N; 即完成第一个空时流在所有子带上的反 馈, 然后再对第二个空时流在所有子带上的反馈, 直到所有空时流的 SNR反馈 完成。 或者发送子带平均 SNR可以是:先依次发送第 X个空时流在第 1个子带的 平均 SNR, 其中 X取值为从 1到 M, 然后依次发送第 X个空时流在第 2个子带的平 均 SNR,其中 x取值为从 ^Μ,直到依次发送第 x个空时流在第 N个子带的平均 SNR, 其中 X取值为从 1到 M; 即完成第一个子带上所有空时流的反馈, 然后再 进行第二个子带上所有空时流的反馈, 直到所有子带上的空时流都发送结束。
发送载波信噪比可以包括: 分别发送所述每个数据子载波上从第 1个到第 M个空时流的信噪比与该数据子载波所属子带的平均信噪比的差值。
在更为具体的实施例中, 通信频带为全频带 160MHz, 子带为 2个 80MHz, 子带中每数据子载波的载波信噪比用 4倍的 M个比特表示, 即其中每一个空时 流的信噪比用 4比特表示。
并且子带中每数据子载波的载波信噪比取值范围为 -8dB到 7dB , 其绝对值 为 ldB的非负整数倍, 即粒度为 ldB。
进一步为了提高反馈的准确性, 可以增加表示载波信噪比的比特数, 例如 当所述第一个 80MHz的平均 SNR与第二个 80MHz的平均 SNR差值超过 4dB , 则 子带中每数据子载波的载波信噪比用 5倍的 M个比特表示, 其中每一个载波信 噪比用 5比特表示.
以一具体的场景为例, 例如 160MHz的通信频段可以划分成两个 80MHz , 整个通信频段中含有 N个承载数据的子载波, 现将整个通信频带分为 n个子带, 每个子带分别包含 Nl,N2,...Nn个数据子载波, Nl+N2+...+Nn=N。 由于无论是 平均信噪比还是载波信噪比都是按照每个空时流分别反馈的,而每个空时流的 信噪比反馈方式相同, 这里还是就一个空时流来描述本实施例的方案。
分别发送 n个子带的平均 SNR。第 i个子带的平均 SNR等于第 i个子带所包含 的所有数据子载波上的信噪比之和除以该子带所包含的数据子载波数量。
发送整个通信频段内的所有数据子载波的载波信噪比 PT-SNR。 本实施例 中第 i个子带中的每个数据子载波的 PT-SNR为该子载波的信噪比与第 i个子带 的平均信噪比的差值, i从 1取到 n。
参阅表 1 , 本实施例中平均 SNR反馈方式, 每个子带的平均 SNR用 8个比特 表示。先完成各空时流在子带 1的信噪比信息发送, 然后发送各空时流在子带 2 的平均信噪比, 直到所有子带上的平均信噪比的发送。
表 1平均 SNR发送方式
Figure imgf000009_0001
参阅表 2, 基于上述平均 SNR的发送方式, 后续发送载波信噪比 PT-SNR的 办法。 每载波的载波信噪比用 4个比特表示, 总共发送 4 χ Μ比特。 假设该子载 波属于第 i个子带, 则发送内容表示该子载波上从第 1到第 M个空时流的信噪比 与相对应的空时流在第 i个子带上的平均信噪比的差值, 即载波信噪比, 用 dB 表示, 表示范围为 -8dB到 7dB, 粒度 ldB。 分别发送所述每个数据子载波上从 第 1个到第 M个空时流的信噪比与该数据子载波所属子带上对应的平均信噪比 的差值。
表 2载波信噪比发送方式
发送内容 大小 ( bits ) 含义
子带 1的第 1个数据子载波的载 4χΜ 反馈内容表示该子载波上从第 1到第 Μ 波信噪比 个空时流的信噪比与相对应的空时流在 第 1个子带上的平均信噪比的差值,用 dB 表示,表示范围为 -8dB到 7dB,粒度 ldB。 子带 1的第 2个数据子载波的载 4χΜ 反馈内容表示该子载波上从第 1到第 M 波信噪比 个空时流的信噪比与相对应的空时流在 第 1个子带上的平均信噪比的差值,用 dB 表示,表示范围为 -8dB到 7dB,粒度 ldB。
···
子带 1的第 N1个数据子载波的 4χΜ 反馈内容表示该子载波上从第 1到第 M 载波信噪比 个空时流的信噪比与相对应的空时流在 第 1个子带上的平均信噪比的差值,用 dB 表示,表示范围为 -8dB到 7dB,粒度 ldB。
...
子带 n的第 1个数据子载波的载 4χΜ 反馈内容表示该子载波上从第 1到第 M 波信噪比 个空时流的信噪比与相对应的空时流在 第 n个子带上的平均信噪比的差值,用 dB 表示,表示范围为 -8dB到 7dB,粒度 ldB。 子带 n的第 1个数据子载波的载 4χΜ 反馈内容表示该子载波上从第 1到第 M 波信噪比 个空时流的信噪比与相对应的空时流在 第 n个子带上的平均信噪比的差值,用 dB 表示,表示范围为 -8dB到 7dB,粒度 ldB。
...
4χΜ 反馈内容表示该子载波上从第 1到第 M
个空时流的信噪比与相对应的空时流在 子带 n的第 Nn个数据子载波的 第 n个子带上的平均信噪比的差值,用 dB 载波信噪比 表示,表示范围为 -8dB到 7dB,粒度 ldB。
一般情况下每个 80MHz子带 (子带 1和子带 2 ) 的载波信噪比动态范围是 -6dB ~ 5dB, 即上述规定的载波信噪比反馈范围在两端各留了 2dB的余量。 当 子带 1和子带 2的平均信噪比相差超过 4dB时, 整个 160MHz通信频带上的载波 信噪比动态范围将超过标准规定的载波信噪比反馈范围。这时按照现有标准的 反馈机制就需要增加一个反馈比特用来扩大反馈的动态范围。载波信噪比反馈 量从 4比特变成 5比特, 反馈开销增加 25 %。
如果沿用现有反馈框架, 通过增加 PT-SNR反馈比特数来适应大的动态范 围, 反馈开销增加 ^ + ^^) - 25 , 而釆用本专利的分子带反馈平均信噪比的 方法, 反馈开销增加8 /(8 + 4 ) - 0.4% , 显著地节省了反馈的开销。 显然釆用分 子带反馈平均信噪比的方法, 分别发送子带的平均信噪比及载波信噪比, 由于 发送的是全频带中子带的平均信噪比, 则有效减小载波信噪比的动态范围, 能 够在几乎不增加总的反馈开销的情况下更准确的反馈载波信噪比。
进一步, 参阅表 3 , 本实施例中平均 SNR又一发送方式, 每个子带中每个 空时流的平均 SNR用 8个比特表示。先完成载波空时流 1在各子带上的平均 SNR 的发送, 然后完成载波空时流 2在各子带上的平均 SNR的发送, 直到所有载波 空时流在各子带上的平均 SNR的发送。 表 3平均 SNR发送方式
Figure imgf000012_0001
釆用表 3的方法发送平均 SNR, 仍然可以釆用前述的发送 PT-SNR的办法, 可以达到同样的技术效果。
同时, 本发明实施例还提供实施上述方法的装置。 该装置用于实现上述的 方法, 上述方法中各处理过程均可以在信道信噪比反馈的装置中执行及实现, 信道信噪比反馈的装置的运行也是对上述方法的执行。
下面以两个子带的情况, 描述通信信道的信噪比反馈的又一实施例。 通信信道包括至少两个通信子带,每个子带承载至少一个数据子载波,按 照每个空时流分别反馈信噪比, 参阅图 3 , 方法包括: 发送第一子带平均信噪比,第一子带平均信噪比为第一子带包含的数据子 载波的信噪比的均值;
发送第一子带数据子载波的差分信噪比,该数据子载波的差分信噪比为第 一子带数据子载波的信噪比与第一子带平均信噪比的差值(即载波信噪比) ; 发送第二子带平均信噪比,所述第二子带平均信噪比为第二子带包含的数 据子载波的信噪比的均值;
发送第二子带数据子载波的差分信噪比,该数据子载波的差分信噪比为第 二子带数据子载波的信噪比与第二子带平均信噪比的差值。
进一步的, 参阅图 4, 第一子带平均信噪比及第二子带平均信噪比可以承 载在第一数据帧内发送;
第一子带数据子载波的差分信噪比及第二子带数据子载波的差分信噪比 承载在第二数据帧内发送。
或者第一子带平均信噪比承载在第一数据帧内发送;第二子带平均信噪比 承载在第二数据帧内发送;
第一子带数据子载波的差分信噪比及第二子带数据子载波的差分信噪比 承载在第三数据帧内发送;
第一数据帧进一步包括: 第一子带标识位, 用于标识第一数据帧承载的子 带平均信噪比对应第一子带;
第二数据帧进一步包括: 第二子带标识位, 用于标识第二数据帧承载的子 带平均信噪比对应第二子带。 在 WLAN系统中是波束接收器向波束形成器进行 SNR反馈。在单用户多天 线系统(SU-MIMO ) 中, 波束接收器既可以是接入点 (AP )也可以是工作站 ( station ) , 波束形成器既可以是接入点也可以是工作站。 在 MU-MIMO中, 波束接收器为工作站, 波束形成器为接入点。
参阅图 3 , 本发明实施例信道信噪比反馈的装置结构示意图。 该装置可以 是 WLAN系统中的接入点或者工作站,下面对该装置的描述是主要为了其完成 SNR反馈的功能展开的描述, 当然还应包含其他常见的必然的特征与功能。
仍然在方法的实施例中的场景为例进行功能介绍。信道信噪比反馈的装置 30包括,
平均信噪比发送单元 301 , 用于发送子带平均信噪比, 子带平均信噪比为 该子带平均信噪比对应的子带所包含的数据子载波上的信噪比之和除以该子 带平均信噪比对应的子带所包含数据子载波的数量;
载波信噪比发送单元 303 , 用于发送载波信噪比, 该载波信噪比为所述子 带平均信噪比对应的子带所包含的数据子载波上的信噪比与所述子带平均信 噪比的差值。
其中所述子带平均信噪比对应的子带为通信频带中的一通信子带,通信频 带中包含 N个所述通信子带, M个空时流, 每一个所述空时流在一个所述通信 子带上对应一个所述子带平均信噪比,每一个空时流在所述通信子带所包含的 一个数据子载波上对应一个载波信噪比, 其中 N为大于等于 2 的自然数, M为 自然数。
如果在一个全频带为 160MHz, 并且有 N个通信子带, M个空时流, 每个 空时流在一个所述子带上对应一个载波信噪比, N为大于等于 2 的自然数, M 个空时流在第 i个子带的平均 SNR, 其中 i取值为从 1到 N, 然后依次发送第 2个 空时流在第 i个子带的平均 SNR, 其中 i取值为从 1到 N, 直到依次发送第 M个空 时流在第 i个子带的平均 SNR, 其中 i取值为从 1到 或者平均信噪比发送单元 301发送子带平均 SNR时包括: 先依次发送第 X个空时流在第 1个子带的平均 SNR, 其中 X取值为从 1到 M, 然后依次发送第 X个空时流在第 2个子带的平均 SNR, 其中 X取值为从 1到 M, 直到依次发送第 X个空时流在第 N个子带的平均 SNR, 其中 X取值为从 ijM。 则载波信噪比发送单元 303发送所述子带中每个 数据子载波的载波信噪比时包括:发送所述子带中每个数据子载波的载波信噪 比包括: 分别发送所述每个数据子载波上从第 1个到第 M个空时流的信噪比与 该数据子载波所属的子带的平均信噪比的差值。
进一步载波信噪比发送单元 303进一步用于使用 4倍的 M个比特表示所述 子带中每数据子载波的载波信噪比,其中每一个空时流的信噪比用 4比特表示, 载波信噪比取值范围为 -8dB到 7dB , 其绝对值为 1 dB的非负整数倍。
进一步, 还包括请求数据帧接收单元 305, 所述请求数据帧接收单元用于 接收请求数据帧, 所述请求数据帧用于请求发送子带平均信噪比, 并且所述请 求数据帧中包含发送方式标识位,所述发送方式标识位用于确定是否发送所述 子带平均信噪比。
具体平均信噪比和载波信噪比的发送可以参阅方法实施例。
应用本发明实施例釆用分子带反馈平均信噪比的装置 ,分别发送子带的平 均信噪比及载波信噪比, 由于发送的是全频带中子带的平均信噪比, 则有效减 小载波信噪比的动态范围,能够在不增加总的反馈开销的情况下更准确反馈载 波信噪比。 本领域普通技术人员可以理解:实现上述方法实施例的全部或部分步骤可 以通过程序指令相关的硬件来完成,前述的程序可以存储于一计算机可读取存 储介质中, 该程序在执行时, 执行包括上述方法实施例的步骤; 而前述的存储 介质包括: ROM、 RAM, 磁碟或者光盘等各种可以存储程序代码的介质。

Claims

权 利 要 求
1、 一种反馈信道信噪比的方法, 按照每个空时流分别反馈信噪比, 其特 征在于, 所述方法包括:
发送子带平均信噪比,所述子带平均信噪比为该子带平均信噪比对应的子 带所包含的数据子载波上的信噪比之和除以该子带平均信噪比对应的子带所 包含数据子载波的数量;
发送载波信噪比,该载波信噪比为所述子带平均信噪比对应的子带所包含 的数据子载波上的信噪比与所述子带平均信噪比的差值;
其中, 所述子带平均信噪比对应的子带为通信频带中的一通信子带, 所述 通信频带中包含 N个所述通信子带, M个所述空时流, 每一个所述空时流在一 个所述通信子带上对应一个所述子带平均信噪比,每一个空时流在所述通信子 带所包含的一个数据子载波上对应一个载波信噪比, 其中 N为大于等于 2 的自 然数, M为自然数。
2、 如权利要求 1所述方法, 其特征在于,
所述发送子带平均信噪比包括:先依次发送第 1个空时流在第 i个子带的平 均信噪比, 其中 i取值为从 1到 N, 然后依次发送第 2个空时流在第 i个子带的平 均信噪比, 其中 i取值为从 1到 N, 直到依次发送第 M个空时流在第 i个子带的平 均信噪比, 其中 i取值为从 1到 N;
所述发送载波信噪比包括: 分别发送所述每个数据子载波上从第 1个到第 M个空时流的信噪比与该数据子载波所属子带上对应的平均信噪比的差值。
3、 如权利要求 1所述方法, 其特征在于,
所述发送子带平均信噪比包括:先依次发送第 X个空时流在第 1个子带的平 均 SNR, 其中 x取值为从 1到 M, 然后依次发送第 X个空时流在第 2个子带的平均 SNR, 其中 X取值为从 1到 M, 直到依次发送第 X个空时流在第 N个子带的平均 SNR, 其中 X取值为从 1到 M;
所述发送载波信噪比包括: 分别发送所述每个数据子载波上从第 1个到第 M个空时流的信噪比与该数据子载波所属子带上对应的平均信噪比的差值。
4、 如权利要求 2或 3所述的方法, 其特征在于, 所述载波信噪比用 4倍的 M 个比特表示, 其中每一个载波信噪比用 4比特表示。
5、 如权利要求 2或 3所述的方法, 其特征在于, 所述子带中每个数据子载 波的载波信噪比取值范围为 -8dB到 7dB, 其绝对值为 ldB的非负整数倍。
6、 如权利要求 2或 3所述的方法, 其特征在于, 所述通信频带为全频带
160MHz, 则所述子带为 80MHz或 40MHz或 20MHz; 或者
所述通信频带为全频带 120MHz , 则所述子带为 80MHz或 60MHz或 40MHz 或 20MHz; 或者
所述通信频带为全频带 80MHz, 则所述子带为 40MHz或 20MHz; 或者 所述通信频带为全频带 40MHz, 则所述子带为 20MHz。
7、如权利要求 1所述的方法,其特征在于,所述发送子带平均信噪比包括: 发送 N个第一数据帧, 每一个所述第一数据帧包含一个所述子带所对应的子带 平均信噪比; 或者
发送多个第二数据帧,每个所述第二数据帧包含部分所述子带所对应的子 带平均信噪比。
8、 如权利要求 7所述的方法, 其特征在于, 每一个所述第一数据帧或第二 数据帧中还包含子带标识比特位,所述子带标识比特位用以标识所述数据帧中 携带的子带平均信噪比与所述子带的对应关系。
9、如权利要求 1所述的方法,其特征在于,所述发送子带平均信噪比包括: 发送一个第三数据帧, 所述第三数据帧包含所述 N个子带所对应的子带平均信 噪比。
10、 如权利要求 9所述的方法, 其特征在于, 所述第三数据帧中还包含 N 个子带标识比特位,所述子带标识比特位用以标识所述数据帧中携带的子带平 均信噪比与所述子带的对应关系。
11、 如权利要求 7或 9所述的方法, 其特征在于, 所述请求数据帧中还包括 子带标识比特位,所述子带标识比特位用于确定发送所述子带平均信噪比的顺 序。
12、 如权利要求 1所述的方法, 其特征在于, 所述方法在发送子带平均信 噪比之前还包括:
接收请求数据帧, 所述请求数据帧用于请求发送子带平均信噪比, 并且所 述请求数据帧中包含发送方式标识位,所述发送方式标识位用于确定是否发送 所述子带平均信噪比。
13、 一种反馈信道信噪比的装置, 按照每个空时流分别反馈信噪比, 其特 征在于, 所述装置包括:
平均信噪比发送单元, 用于发送子带平均信噪比, 所述子带平均信噪比为 该子带平均信噪比对应的子带所包含的数据子载波上的信噪比之和除以该子 带平均信噪比对应的子带所包含数据子载波的数量;
载波信噪比发送单元, 用于发送载波信噪比, 该载波信噪比为所述子带平 均信噪比对应的子带所包含的数据子载波上的信噪比与所述子带平均信噪比 的差值;
其中, 所述子带平均信噪比对应的子带为通信频带中的一通信子带, 所述 通信频带中包含 N个所述通信子带, M个所述空时流, 每一个所述空时流在一 个所述通信子带上对应一个所述子带平均信噪比,每一个空时流在所述通信子 带所包含的一个数据子载波上对应一个载波信噪比, 其中 N为大于等于 2 的自 然数, M为自然数。
14、 如权利要求 13所述的装置, 其特征在于, 所述平均信噪比发送单元在 发送所述子带平均 SNR时包括: 先依次发送第 1个空时流在第 i个子带的平均信 噪比, 其中 i取值为从 1到 N, 然后依次发送第 2个空时流在第 i个子带的平均信 噪比, 其中 i取值为从 1到 N, 直到依次发送第 M个空时流在第 i个子带的平均信 噪比, 其中 i取值为从 1到 N;
所述载波信噪比发送单元在发送所述载波信噪比包括: 分别发送所述每 个数据子载波上从第 1个到第 M个空时流的信噪比与该数据子载波所属子带的 平均信噪比的差值。
15、 如权利要求 13所述的装置, 其特征在于, 所述平均信噪比发送单元在 发送所述子带平均 SNR时包括: 先依次发送第 X个空时流在第 1个子带的平均 SNR, 其中 X取值为从 1到 M, 然后依次发送第 X个空时流在第 2个子带的平均 SNR, 其中 X取值为从 1到 M, 直到依次发送第 X个空时流在第 N个子带的平均 SNR, 其中 X取值为从 1到 M;
所述载波信噪比发送单元在发送所述载波信噪比包括: 分别发送所述每 个数据子载波上从第 1个到第 M个空时流的信噪比与该数据子载波所属子带的 平均信噪比的差值。
16、 如权利要求 14或 15所述的装置, 其特征在于, 所述载波信噪比发送单 元进一步用于使用 4倍的 M个比特表示所述载波信噪比, 其中每一个载波信噪 比用 4比特表示。
17、 如权利要求 14或 15所述的装置, 其特征在于, 所述载波信噪比发送单 元发送的载波信噪比取值范围为 -8dB到 7dB, 其绝对值为 ldB的非负整数倍。
18、 如权利要求 13所述的装置, 其特征在于, 所属装置还包括: 请求数据帧接收单元, 所述请求数据帧接收单元用于接收请求数据帧, 所 述请求数据帧用于请求发送子带平均信噪比,并且所述请求数据帧中包含发送 方式标识位, 所述发送方式标识位用于确定是否发送所述子带平均信噪比。
PCT/CN2011/084869 2010-12-30 2011-12-29 信道信噪比反馈的方法及装置 WO2012089135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010616304.2A CN102546132B (zh) 2010-12-30 2010-12-30 信道信噪比反馈的方法及装置
CN201010616304.2 2010-12-30

Publications (1)

Publication Number Publication Date
WO2012089135A1 true WO2012089135A1 (zh) 2012-07-05

Family

ID=46352158

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084869 WO2012089135A1 (zh) 2010-12-30 2011-12-29 信道信噪比反馈的方法及装置

Country Status (2)

Country Link
CN (1) CN102546132B (zh)
WO (1) WO2012089135A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107707286B (zh) * 2016-08-08 2021-07-09 华为技术有限公司 一种信道质量信息的反馈方法及装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463098A (zh) * 2003-06-18 2003-12-24 清华大学 用于ofdm下差错敏感型业务的资源调度方法
CN1463099A (zh) * 2003-06-18 2003-12-24 清华大学 用于ofdm下保障实时业务服务质量的调度方法
CN101026604A (zh) * 2006-02-23 2007-08-29 华为技术有限公司 正交频分复用系统中的信噪比反馈方法以及装置和系统
CN101277167A (zh) * 2006-03-20 2008-10-01 华为技术有限公司 正交频分复用系统中的反馈控制方法、装置及收发信机
US20100054319A1 (en) * 2006-11-30 2010-03-04 Keun-Moo Lee Ofdm wireless mobile communication system and method for estimating snr of channel thereof
WO2010064695A1 (ja) * 2008-12-02 2010-06-10 日本電気株式会社 通信装置、無線通信システム、フィードバック情報演算時の近似方法および記録媒体

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060223446A1 (en) * 2005-03-29 2006-10-05 Francis Dominique Methods of detecting mobile stations not following power control commands
CN101753177B (zh) * 2009-12-25 2015-06-24 西南交通大学 一种基于应答反馈控制信令的信噪比估计方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1463098A (zh) * 2003-06-18 2003-12-24 清华大学 用于ofdm下差错敏感型业务的资源调度方法
CN1463099A (zh) * 2003-06-18 2003-12-24 清华大学 用于ofdm下保障实时业务服务质量的调度方法
CN101026604A (zh) * 2006-02-23 2007-08-29 华为技术有限公司 正交频分复用系统中的信噪比反馈方法以及装置和系统
CN101277167A (zh) * 2006-03-20 2008-10-01 华为技术有限公司 正交频分复用系统中的反馈控制方法、装置及收发信机
US20100054319A1 (en) * 2006-11-30 2010-03-04 Keun-Moo Lee Ofdm wireless mobile communication system and method for estimating snr of channel thereof
WO2010064695A1 (ja) * 2008-12-02 2010-06-10 日本電気株式会社 通信装置、無線通信システム、フィードバック情報演算時の近似方法および記録媒体

Also Published As

Publication number Publication date
CN102546132A (zh) 2012-07-04
CN102546132B (zh) 2014-09-03

Similar Documents

Publication Publication Date Title
US11706718B2 (en) Uplink power control for advanced wireless communication systems
US10064094B2 (en) Null data packet format for long range WLAN
US7804800B2 (en) Efficient training schemes for MIMO based wireless networks
US8942311B2 (en) Low bandwidth PHY transmission in a wider bandwidth
US8369303B2 (en) Techniques for uplink multi-user MIMO MAC support
KR102367780B1 (ko) 무선 통신시스템의 채널 정보 피드백을 위한 장치 및 방법
US9246729B2 (en) Multi-mode indication in subfield in a signal field of a wireless local area network data unit
US20080316935A1 (en) Generating a node-b codebook
US20060146949A1 (en) Multicarrier communication system and methods for communicating with subscriber stations of different bandwidth profiles
US20140294108A1 (en) Extrapolating Channel State Information ("CSI") Estimates From Multiple Packets Sent Over Different Antennas to Generate a Combined CSI Estimate for a MIMO-OFDM System
CN106575988A (zh) 多用户、多输入多输出系统中的并行信道训练
CN107078870A (zh) 无线通信网络中的多用户分配信令
CN103780357B (zh) 一种权重矩阵的反馈方法和相关装置和系统
WO2008019600A1 (fr) Procédé pour effectuer une planification de domaine fréquentiel dans un système duplex à répartition dans le temps, et système correspondant
CN101317412A (zh) 频分多址系统中的干扰测量方法、资源分配方法及其装置
EP1733499B1 (en) Method and apparatus for switching bandwidth in a communication system
TW200952418A (en) A physical layer convergence protocol (PLCP) packet structure for multiple-input-multiple-output (MIMO) communication systems
KR102034530B1 (ko) 무선 통신 시스템에서 다중 프레임 전송 방법 및 전송기
US8995538B2 (en) Power distribution method and apparatus for OFDM system
CN102104994A (zh) 在mimo系统中向用户发射数据的方法和基站
WO2012089135A1 (zh) 信道信噪比反馈的方法及装置
CN101808364A (zh) 载波聚合系统业务传输方法及设备
EP3192200B1 (en) Apparatus and method for channel state information feedback in wireless communication system
US20120069807A1 (en) Transmitter with multiple antennas and data transmission method in the transmitter with multiple antennas
CN109412665A (zh) 信道状态的指示及获取方法、发送设备、接收设备、介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11853401

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11853401

Country of ref document: EP

Kind code of ref document: A1