WO2012089097A1 - 电磁比例阀和包含该电磁比例阀的呼吸机 - Google Patents

电磁比例阀和包含该电磁比例阀的呼吸机 Download PDF

Info

Publication number
WO2012089097A1
WO2012089097A1 PCT/CN2011/084722 CN2011084722W WO2012089097A1 WO 2012089097 A1 WO2012089097 A1 WO 2012089097A1 CN 2011084722 W CN2011084722 W CN 2011084722W WO 2012089097 A1 WO2012089097 A1 WO 2012089097A1
Authority
WO
WIPO (PCT)
Prior art keywords
spring
electromagnetic proportional
proportional valve
valve body
valve
Prior art date
Application number
PCT/CN2011/084722
Other languages
English (en)
French (fr)
Inventor
王军
Original Assignee
北京谊安医疗系统股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京谊安医疗系统股份有限公司 filed Critical 北京谊安医疗系统股份有限公司
Priority to EA201291020A priority Critical patent/EA021720B1/ru
Priority to BR112012026059A priority patent/BR112012026059A2/pt
Publication of WO2012089097A1 publication Critical patent/WO2012089097A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M16/00Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
    • A61M16/20Valves specially adapted to medical respiratory devices
    • A61M16/201Controlled valves
    • A61M16/202Controlled valves electrically actuated
    • A61M16/203Proportional
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K31/00Actuating devices; Operating means; Releasing devices
    • F16K31/02Actuating devices; Operating means; Releasing devices electric; magnetic
    • F16K31/06Actuating devices; Operating means; Releasing devices electric; magnetic using a magnet, e.g. diaphragm valves, cutting off by means of a liquid
    • F16K31/0644One-way valve
    • F16K31/0655Lift valves
    • F16K31/0665Lift valves with valve member being at least partially ball-shaped

Definitions

  • Electromagnetic proportional valve and ventilator including the same
  • the present invention relates to the field of fluid control, and in particular to an electromagnetic proportional valve and a ventilator including the electromagnetic proportional valve.
  • the emergency ventilator generally uses an on-off solenoid valve in combination with a manual flow regulating valve to control the ventilation flow rate and the total amount of ventilation.
  • current therapeutic ventilators generally use a precision proportional valve to simultaneously control the gas flow rate and total amount of ventilation input to the patient.
  • the existing typical proportional valve structure is shown in Figure 1. That is, the movable armature 13, the fixed spool 4, and the electromagnetic force of the coil 9, driven by the electromagnetic force of the coil 9, the valve core moves to the left and right along the guiding and sealing action of the sealing member 16' to achieve the purpose of adjusting the size of the valve port a'.
  • the invention aims to provide an electromagnetic proportional valve and a ventilator including the electromagnetic proportional valve, which can effectively avoid the instability caused by the friction force to the flow control, overcome the hysteresis error of the flow control, and realize the stable control of the small flow rate. , reducing the difficulty of processing and production.
  • an electromagnetic proportional valve comprising a valve body having a cavity; a coil holder sealed at an open end of a cavity of the valve body; and a coil wound around the coil holder
  • the coil holder has an inner cavity, and further includes: an armature fixedly disposed in the inner cavity of the coil holder; the valve core bracket, one side is connected to the first spring fixedly disposed on the inner wall of the valve body, and the other side is connected to the sleeve
  • the second spring on the armature is suspended in the cavity of the valve body by the first spring and the second spring; the valve core is disposed in the valve core bracket.
  • a permanent magnet is disposed at an end of the spool holder facing away from the valve body, and the permanent magnet is coupled to the second spring.
  • the core bracket is sleeved in the first spring and has a stop flange forming a limit on the first spring.
  • the permanent magnet is sleeved on the second spring, and the other end of the second spring abuts on the coil holder.
  • the first spring is a strong spring.
  • the second spring is a weak spring.
  • a sealing ring is disposed on the joint surface of the coil holder and the valve body.
  • a limit block is provided on the end face of the armature opposite to the permanent magnet.
  • a ventilator comprising the electromagnetic proportional valve described above.
  • the valve core is located in the valve core bracket, and is suspended in the cavity of the valve body by a spring connected to the two ends of the valve core bracket, thereby avoiding the movement of the valve core and the valve body to contact each other, and avoiding the friction force.
  • the instability caused by flow control and the hysteresis caused by the change in flow rate can stabilize the flow controlled by the proportional valve for a long time.
  • FIG. 1 is a schematic structural view of a prior art electromagnetic proportional valve
  • FIG. 2 is a schematic structural view of an electromagnetic proportional valve according to an embodiment of the present invention.
  • Figure 3 shows a schematic view of a pipeline connection in accordance with an embodiment of the present invention
  • Figure 4 shows a current-flow monotonic graph in accordance with an embodiment of the present invention.
  • an electromagnetic proportional valve includes a valve body 2 having a cavity; a coil holder 11 sealed at an open end of a cavity of the valve body 2; and a coil 9 wound around the coil holder 11
  • the coil holder 11 has an inner cavity
  • the electromagnetic proportional valve further includes an armature 8 fixedly disposed in the inner cavity of the coil holder 11; the spool holder 5 is connected to the first spring 3 fixedly disposed on the inner wall of the valve body 2 The other side is connected to the second spring 7 sleeved on the armature 8, and is suspended by the first spring 3 and the second spring 7.
  • the valve body 4 is disposed in the cavity of the valve body 2; the valve body 4 is disposed in the valve body bracket 5. The direction of the arrow in the figure represents the direction of gas flow.
  • the embodiment of the present invention is fundamentally identical to the existing proportional valve in that it controls the proportional valve output flow rate depending on the magnitude of the input current.
  • the existing proportional valve relies on the electromagnetic force generated by the coil or the armature to drive the displacement of the valve core to realize the opening or closing of the proportional valve;
  • the invention uses the coil or the armature not directly in contact with the valve core, and uses the permanent magnet and the electromagnet
  • the mutual attraction or repulsive force within a certain distance drives the movement of the spool supported by the strong spring and the weak spring to open or close the proportional valve.
  • the valve body 2 is a supporting member of the electromagnetic proportional valve
  • the left side is a gas source inlet of the proportional valve
  • the filter 1 is installed in the gas source inlet, which can filter the gas entering the proportional valve to prevent impurities from entering, and can ensure the electromagnetic ratio.
  • the control accuracy of the valve extends its service life.
  • the valve port a and the valve body 4 cooperate with each other, that is, the valve core 4 moves to the left or the right to open or close the valve port a.
  • a permanent magnet 6 is mounted on the right side of the spool bracket 5, and a spool 4 is mounted on the left side.
  • the left side of the spool bracket 5 is provided with a strong spring, that is, the first spring 3, and the right side is provided with a weak spring, that is, the second spring 7, and the strong spring and the weak spring interact to support the valve core bracket 5, avoiding the valve core bracket 5 and the valve body 2 contact.
  • One end of the strong spring is disposed on the inner wall of the valve body 2, and the other end is sleeved over the outer wall of the valve body bracket 5 and then abuts against the stop flange 51 of the valve body bracket 5.
  • the permanent magnet 6 protrudes from the end of the valve body bracket 5 facing away from the valve core 4, and extends into the weak spring, that is, the second spring 7, and one end of the weak spring abuts on the side wall of the valve core bracket 5, and the other end 4
  • the wire is attached to the coil holder 11.
  • the gangster 8 is fixedly mounted with the coil bracket 11 and extends out of the coil bracket 11 into the cavity of the valve body 2, which is wound with a weak spring, the armature 8 supports the weak spring, and the weak spring supports the permanent magnet 6.
  • the end face of the armature 8 opposite to the permanent magnet 6 is provided with a limit block 18 for limiting the movement of the permanent magnet 6 with the spool support 5, preventing the permanent magnet 6 from contacting the armature 8 to cause wear of the armature 8, or causing the armature 8 to Changes in nature.
  • the magnetic size and polarity of the armature 8 change with the magnitude and direction of the current flowing into the coil 9.
  • the size of the current and the direction of the current can be controlled to control the size of the spool opening of the electromagnetic proportional valve so that the flow rate of the fluid satisfies the need.
  • the frame 11 is fixedly connected to the valve body 2, and a sealing ring 12 is added on the contact surface to enhance the airtightness of the electromagnetic proportional valve.
  • Terminal 10 is connected to an external power source for energizing the coil and adjusting the current.
  • the coil 9 is supplied with current, and gradually increases, the magnetism of the armature 8 becomes larger and larger, and the armature 8 attracts the permanent magnet 6 to move to the right.
  • the permanent magnet 6 drives the spool bracket 5 to move to the right, and the valve port a gradually opens. As the interaction force between the armature 8 and the permanent magnet 6 increases, the larger spring deformation force can be overcome, and the spool bracket 5 continues to move to the right. Until the permanent magnet 6 hits the limit block 18, that is, the maximum open position of the proportional valve.
  • the electromagnetic proportional valve of the embodiment of the present invention is used on a therapeutic ventilator as an inspiratory flow actuator for a ventilator for accurately controlling the inhaled tidal volume per patient during each breathing cycle, or instantaneous suction flow rate control.
  • a stable flow control effect is obtained, frequent calibration is avoided, and a stable flow control of 0.5 L/m required for ventilator flow rate triggering is obtained, which avoids flow control that is prone to continuous flow change in pressure mode. Hysteresis, which leads to inaccurate pressure control.
  • connection in the ventilator is shown in Figure 3.
  • the gas source is adjusted to a suitable pressure by the pressure reducing valve
  • the flow rate through the valve port 2 and the spool 4 is adjusted from the inlet of the present embodiment.
  • the output flow rate and opening time are controlled by the current flowing from the PCB to the terminal block 10.
  • the ventilator is commissioned, the relationship between the proportional valve output flow and the control current is obtained by standard equipment, as shown in Fig. 4.
  • the electromagnetic proportional valve of the embodiment of the invention has no friction loss, and the electromagnetic force is completely used to overcome the deformation force of the first spring 3 and the second spring 7, thereby controlling the displacement of the spool 4, changing the opening size of the valve port a, from the outlet Flow out, enter the flow monitoring module, ready to enter the patient's airway.
  • the spool is located in the spool bracket and is suspended in the cavity of the valve body by a spring connected to both ends of the spool bracket to avoid
  • the movement of the valve core and the valve body in contact with each other avoids the instability caused by the friction force on the flow control, and the hysteresis caused by the change of the flow rate, and the flow rate controlled by the proportional valve can be kept stable for a long time. Since there is no need to consider the fit between the valve plug and the valve body, the machining requirements of the valve plug and the valve body are reduced, and the processing difficulty is reduced. Since the pressure of the spring can be calculated, the resistance of the spring can be overcome by controlling the magnitude of the current to achieve precise control of the flow rate.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Anesthesiology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Hematology (AREA)
  • Emergency Medicine (AREA)
  • Pulmonology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Magnetically Actuated Valves (AREA)

Abstract

本发明提供了一种电磁比例阀和包含该电磁比例阀的呼吸机。该电磁比例阀包括阀体(2),具有腔体;线圈支架(11),封设在阀体(2)的腔体的开口端;线圈(9),缠绕在线圈支架(11)上;衔铁(8),固定设置在线圈支架(11)的内腔中;阀芯支架(5),一侧连接在第一弹簧(3)上,另一侧连接在第二弹簧(7)上,通过第一弹簧(3)和第二弹簧(7)悬空设置在阀体(2)的腔体内;阀芯(4),设置在阀芯支架(5)内。根据本发明的电磁比例阀能够有效避免摩擦力对流量控制带来的不稳定性,克服流量控制的滞回误差,实现对小流量的稳定控制,降低加工生产的难度。根据本发明的呼吸机,包括上述的电磁比例阀。

Description

电磁比例阀和包含该电磁比例阀的呼吸机 技术领域
本发明涉及流体控制领域, 具体而言, 涉及一种电磁比例阀和包含该电磁 比例阀的呼吸机。
背景技术
在呼吸机、 麻醉机等医疗器械的使用过程中, 需要对患者进行机械通气, 对于正在接受治疗的患者来说, 通气流速的大小和通气总量的控制是非常重要 的, 特别是婴幼儿患者和危重症患者, 不合适的通气流量会对患者带来不适感, 甚至带来危险, 因此通气流量的控制是非常重要的。
急救呼吸机一般釆用通断电磁阀结合手动流量调节阀控制通气流速和通气 总量。 为了达到更好的治疗效果, 目前治疗呼吸机一般釆用精密比例阀来同时 控制输入至患者的气体流速和通气总量。现有的典型的比例阀结构如图 1所示。 即由活动衔铁 13, 固连阀芯 4,, 在线圈 9, 的电磁力驱动下, 阀芯沿起导向作 用和密封作用的密封部件 16' 左右移动, 达到调节阀口 a' 大小的目的。 当然 也有衔铁固定不动, 由线圈带动阀芯左右移动的, 结构大体差不多。 由于这种 比例阀存在相互接触的相对运动, 所以不可避免的就存在摩擦力。 由于静摩擦 力的影响导致比例阀在不同时期的输出流量与输入电流关系发生变化, 这就导 致使用这种比例阀的设备(比如有精确流量要求的呼吸机) 需要定期使用专用 工具校正。 由于动摩擦力的影响削弱了电磁力的作用, 尤其在输入控制电流较 小时, 会严重影响到输入电流与输出电磁力的比例关系, 这也是导致现有比例 阀小流量(比如小于 lL/m或 0.5L/m时 )输出不稳定无法精确控制的原因之一; 而且由于比例阀开启和关闭摩擦力的作用正好相反, 导致现有比例阀开启和关 闭产生很大的滞回。 为了最大限度的减小滞回对流速控制的影响, 不得不研究 复杂的控制算法, 使用标准设备定期校准, 大大增加了成本。
发明内容
本发明旨在提供一种电磁比例阀和包含该电磁比例阀的呼吸机, 能够有效 避免摩擦力对流量控制带来的不稳定性, 克服流量控制的滞回误差, 实现对小 流量的稳定控制, 降低加工生产的难度。
为了实现上述目的, 根据本发明的一个方面, 提供了一种电磁比例阀, 包 括阀体, 具有腔体; 线圈支架, 封设在阀体的腔体的开口端; 线圈, 缠绕在线 圈支架上, 线圈支架具有内腔, 还包括: 衔铁, 固定设置在线圈支架的内腔中; 阀芯支架, 一侧连接在固定设置在阀体内壁上的第一弹簧上, 另一侧连接在套 设在衔铁上的第二弹簧上,通过第一弹簧和第二弹簧悬空设置在阀体的腔体内; 阀芯, 设置在阀芯支架内。
进一步地, 在阀芯支架的背离所述阀芯的一端设置有永磁体, 永磁体连接 在第二弹簧上。
进一步地, 阃芯支架套设在第一弹簧内, 其上具有对第一弹簧形成限位的 止挡凸缘。
进一步地, 永磁体套设在第二弹簧上, 第二弹簧的另一端抵接在线圈支架 上。
进一步地, 第一弹簧为强力弹簧。
进一步地, 第二弹簧为弱弹簧。
进一步地, 线圈支架与阀体的结合面上设置有密封圈。
进一步地, 在衔铁与永磁体相对的端面上设置有限位块。
进一步地, 弱弹簧为变系数弹簧, 其弹力 F与位移 X的关系为?=1«2。 根据本发明的另一方面, 提供了一种呼吸机, 包括上述的电磁比例阀。 根据本发明的技术方案, 阀芯位于阀芯支架内, 并通过连接在阀芯支架两 端的弹簧悬置在阀体的腔体内, 避免了阀芯与阀体相互接触的运动, 避免了摩 擦力对流量控制带来的不稳定性, 以及流量大小变化带来的滞回性, 能够使比 例阀控制的流量长期保持稳定。 由于不需要考虑阀芯与阀体之间的配合, 因此 减少了阀芯和阀体的加工要求, 降低了加工难度。 由于弹簧的压力可以计算, 因此可以通过控制电流的大小来克服弹簧的阻力, 实现对流量的精确控制。 附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解, 本发明的示 意性实施例及其说明用于解释本发明, 并不构成对本发明的不当限定。 在附图 中:
图 1示出了现有技术中的电磁比例阀的结构示意图;
图 2示出了根据本发明的实施例的电磁比例阀的结构示意图;
图 3示出了根据本发明的实施例的管线连接示意图; 以及
图 4示出了才艮据本发明的实施例的电流-流量单调曲线图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本发明。 需要说明的是, 在不 冲突的情况下, 本申请中的实施例及实施例中的特征可以相互组合。
如图 2所示, 根据本发明的实施例, 电磁比例阀包括阀体 2 , 具有腔体; 线 圈支架 11 , 封设在阀体 2的腔体的开口端; 线圈 9, 缠绕在线圈支架 11上, 线 圈支架 11具有内腔, 电磁比例阀还包括衔铁 8, 固定设置在线圈支架 11的内腔 中; 阀芯支架 5 , —侧连接在固定设置在阀体 2 内壁上的第一弹簧 3上, 另一 侧连接在套设在衔铁 8上的第二弹簧 7上, 通过第一弹簧 3和第二弹簧 7悬空 设置在阀体 2的腔体内; 阀芯 4 , 设置在阀芯支架 5 内。 图中箭头方向代表气 体流动方向。
本发明的实施例在基本原理上与现有比例阀相同, 都是依靠输入电流大小 控制比例阀输出流量大小。 区别是: 现有比例阀依靠线圈或衔铁产生的电磁力 驱动阀芯位移实现比例阀的开启或关闭; 本发明釆用的是, 线圈或衔铁与阀芯 不直接接触, 利用永磁体与电磁铁在一定距离内的相互吸引或排斥力驱动由强 力弹簧和弱弹簧支撑的阀芯移动, 实现比例阀的开启或关闭。
阀体 2是电磁比例阀的支撑部件, 左侧为比例阀的气源入口, 气源入口内 安装有过滤器 1 , 能够对进入比例阀中的气体进行过滤, 防止杂质进入, 能够 保证电磁比例阀的控制精度, 延长其使用寿命。 阀口 a与阀芯 4相互配合, 即 阀芯 4左右移动开启或关闭阀口 a。 阀芯支架 5右侧安装永磁体 6 , 左侧安装阀 芯 4。 阀芯支架 5左侧套有强力弹簧即第一弹簧 3 , 右侧套有弱弹簧即第二弹簧 7 , 强力弹簧与弱弹簧相互作用支撑起阀芯支架 5 , 避免阀芯支架 5与阀体 2接 触。 其中强弹簧的一端设置在阀体 2的内壁上, 另一端套过阀芯支架 5的外壁 然后抵接在阀芯支架 5的止挡凸缘 51上。 永磁体 6从阀芯支架 5的背离阀芯 4 的一端伸出, 并伸入弱弹簧即第二弹簧 7 内设置, 弱弹簧的一端抵接在阀芯支 架 5的侧壁上, 另一端 4氏接在线圈支架 11上。 4奸铁8与线圈支架 11固连安装, 并伸出线圈支架 11进入阀体 2的腔体内, 其上缠绕有弱弹簧, 衔铁 8对弱弹簧 起支撑作用, 并使弱弹簧支撑起永磁体 6。 衔铁 8的与永磁体 6相对的端面上 装有限位块 18 , 对于永磁体 6随阀芯支架 5的移动形成限位, 防止永磁体 6与 衔铁 8接触造成衔铁 8的磨损, 或者引起衔铁 8的性质的变化。 衔铁 8的磁性 大小和极性随着通入线圈 9的电流大小和方向改变, 可以通过控制电流的大小 和方向来控制电磁比例阀的阀芯开口大小, 以使流体的流量满足需要。 线圈支 架 11与阀体 2固连,并在接触面上增加了密封环 12,增强了电磁比例阀的气密 性。 接线端子 10连接外部电源, 用于使线圈通电, 并可以调节电流的大小。
整个比例阀内只有一个活动部件阀芯支架 5 , 忽略重力的影响(重力是恒定 不变的, 通过第一弹簧 3和第二弹簧 7相互作用支撑起阀芯支架 5的重力), 在 气源压力、 第一弹簧 3、 第二弹簧 7及与衔铁 8的相互作用力下保持平衡。 如 果保持气源压力不变, 线圈 9通入电流为零, 即永磁体 6与衔铁 8之间没有相 互作用力, 调节第一弹簧 3和第二弹簧 7的长度, 改变相互作用力使阀芯 4移 到最左端与阀口 a配合即关闭气源入口。 这时线圈 9通入电流, 并且逐渐增大, 衔铁 8的磁性越来越大, 衔铁 8吸引永磁体 6向右移动。 为了避免由于永磁体 6与衔铁 8相互位置变化带来的相互作用力变化, 第二弹簧 7被设计成变系数 弹簧即弹力 F与位移 X的关系约为: F=kx2。永磁体 6带动阀芯支架 5向右移动, 阀口 a逐渐打开, 随着衔铁 8与永磁体 6相互作用力增大, 即能克服更大的弹 簧变形力, 阀芯支架 5继续右移, 直到永磁体 6碰到限位块 18 , 即比例阀的最 大开启位置。
本发明的实施例的电磁比例阀使用在治疗呼吸机上, 用作呼吸机的吸气流 量执行机构, 用于精确控制患者每个呼吸周期吸入潮气量, 或者瞬间吸入流量 大小控制。 在实际测试中, 得到了稳定的流量控制效果, 避免了频繁的校准, 并且得到了呼吸机流速触发需要的 0.5L/m的稳定流量控制,避免了压力模式下 流量持续变化容易出现的流量控制滞回现象, 导致压力控制不准的问题。
在呼吸机内的连接方式如图 3所示。 气源经过减压阀调整到合适的压力之 后, 从本实施例的入口进入通过阀口 2与阀芯 4的流量调节。 输出流量大小及 开启时间是从 PCB通入接线端子 10的电流大小来控制, 呼吸机调试时, 通过 标准设备得出比例阀输出流量与控制电流的关系曲线图, 如图 4所示。 由于本 发明的实施例的电磁比例阀没有摩擦损耗, 电磁力完全用于克服第一弹簧 3和 第二弹簧 7的变形力作用, 进而控制阀芯 4的位移, 改变阀口 a的开启大小, 从出口流出, 进入流量监测模块, 准备输入患者气路。
从以上的描述中, 可以看出, 本发明上述的实施例实现了如下技术效果: 阀芯位于阀芯支架内,并通过连接在阀芯支架两端的弹簧悬置在阀体的腔体内, 避免了阀芯与阀体相互接触的运动,避免了摩擦力对流量控制带来的不稳定性, 以及流量大小变化带来的滞回性, 能够使比例阀控制的流量长期保持稳定。 由 于不需要考虑阀芯与阀体之间的配合, 因此减少了阀芯和阀体的加工要求, 降 低了加工难度。 由于弹簧的压力可以计算, 因此可以通过控制电流的大小来克 服弹簧的阻力, 实现对流量的精确控制。
以上所述仅为本发明的优选实施例而已, 并不用于限制本发明, 对于本领 域的技术人员来说, 本发明可以有各种更改和变化。 凡在本发明的精神和原则 之内, 所作的任何修改、 等同替换、 改进等, 均应包含在本发明的保护范围之 内。

Claims

1.一种电磁比例阀, 包括 阀体(2), 具有腔体; 线圈支架 (11 ), 封设在所述阀体(2) 的腔体的开口端; 线圈 (9), 缠绕在所述线圈支架(11 )上, 所述线圈支架(11 )具有内腔, 其特征在于, 还包括: 衔铁 (8), 固定设置在所述线圈支架 (11 ) 的内腔中; 阀芯支架 (5), —侧连接在固定设置在阀体(2) 内壁上的第一弹簧(3) 上, 另一侧连接在套设在所述衔铁 (8)上的第二弹簧(7)上, 通过所述第一 弹簧(3)和所述第二弹簧(7) 悬空设置在所述阀体(2) 的腔体内; 阀芯 (4), 设置在所述阀芯支架(5) 内。
2.根据权利要求 1所述的电磁比例阀, 其特征在于, 在所述阀芯支架(5) 的背离所述阀芯 (4) 的一端设置有永磁体 (6), 所述永磁体 (6)连接在所述 第二弹簧(7)上。
3.根据权利要求 2所述的电磁比例阀, 其特征在于, 所述阀芯支架(5)套 设在所述第一弹簧(3) 内, 其上具有对所述第一弹簧(3)形成限位的止挡凸 缘(51)。
4.根据权利要求 3所述的电磁比例阀, 其特征在于, 所述永磁体 ( 6 )套设 在所述第二弹簧( 7 )上, 所述第二弹簧( 7 )的另一端 4氏接在所述线圈支架( 11 ) 上。
5.根据权利要求 4所述的电磁比例阀, 其特征在于, 所述第一弹簧(3)为 强力弹簧。
6.根据权利要求 4所述的电磁比例阀, 其特征在于, 所述第二弹簧(7)为 弱弹簧。
7.根据权利要求 1至 6中任一项所述的电磁比例阀, 其特征在于, 所述线 圈支架(11 )与所述阀体(2) 的结合面上设置有密封圈 (12)。
8.根据权利要求 1至 6中任一项所述的电磁比例阀, 其特征在于, 在所述 衔铁 (8) 与所述永磁体 (6)相对的端面上设置有限位块(18)。
9.根据权利要求 6所述的电磁比例阀, 其特征在于, 所述弱弹簧为变系数 弹簧, 其弹力 F与位移 X的关系为 F=kx2
10. 一种呼吸机, 其特征在于, 包括权利要求 1至 9中任一项所述的电磁 比例阀。
PCT/CN2011/084722 2010-12-31 2011-12-27 电磁比例阀和包含该电磁比例阀的呼吸机 WO2012089097A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EA201291020A EA021720B1 (ru) 2010-12-31 2011-12-27 Электромагнитный пропорциональный клапан и аппарат искусственной вентиляции легких, содержащий указанный клапан
BR112012026059A BR112012026059A2 (pt) 2010-12-31 2011-12-27 válvula proporcional eletromagnética e um ventilador incluindo a mesma

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010620467.8 2010-12-31
CN 201010620467 CN102266633B (zh) 2010-12-31 2010-12-31 电磁比例阀和包含该电磁比例阀的呼吸机

Publications (1)

Publication Number Publication Date
WO2012089097A1 true WO2012089097A1 (zh) 2012-07-05

Family

ID=45049210

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084722 WO2012089097A1 (zh) 2010-12-31 2011-12-27 电磁比例阀和包含该电磁比例阀的呼吸机

Country Status (4)

Country Link
CN (1) CN102266633B (zh)
BR (1) BR112012026059A2 (zh)
EA (1) EA021720B1 (zh)
WO (1) WO2012089097A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735638C1 (ru) * 2020-06-02 2020-11-05 Игорь Георгиевич Киселев Автоматическая система искусственной вентиляции легких
RU2749760C1 (ru) * 2020-11-27 2021-06-16 Игорь Георгиевич Киселев Автоматическая система искусственной вентиляции легких

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102266633B (zh) * 2010-12-31 2013-08-14 北京谊安医疗系统股份有限公司 电磁比例阀和包含该电磁比例阀的呼吸机
CN104874065A (zh) * 2014-02-28 2015-09-02 北京谊安医疗系统股份有限公司 抑制呼吸机吸气阀阀芯抖动的方法及呼吸机
CN105498066B (zh) * 2016-01-13 2017-09-12 深圳市诺然美泰科技股份有限公司 低压大流量比例控制快速响应装置及其快速响应控制阀
CN108853943B (zh) * 2018-08-30 2020-05-22 武汉携康智能健康设备有限公司 一种人体呼吸训练设备及呼吸训练反馈方法
CN111794883B (zh) * 2020-06-30 2021-09-10 东风越野车有限公司 一种特种车用空气滤清器的可涉水排尘装置及其安装结构
CN113374917B (zh) * 2021-06-30 2022-07-26 王颖颖 一种灵敏度高的比例阀

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557420A (en) * 1982-09-10 1985-12-10 Boschung Mecatronic Ag Electromagnetically controllable spray valve and spray system
EP0867898A1 (de) * 1997-03-24 1998-09-30 Binder Magnete GmbH Elektromagnetisch arbeitende Stelleinrichtung
US20020069842A1 (en) * 2000-12-08 2002-06-13 Curtis Eric Warren Permanent magnet enhanced electromagnetic valve actuator
CN1550273A (zh) * 2003-05-16 2004-12-01 丰田自动车株式会社 电磁驱动式压铸减压阀及其驱动方法和压铸装置
CN101476632A (zh) * 2008-01-03 2009-07-08 富良 增力式电磁安全阀
CN102266633A (zh) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 电磁比例阀和包含该电磁比例阀的呼吸机

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4557420A (en) * 1982-09-10 1985-12-10 Boschung Mecatronic Ag Electromagnetically controllable spray valve and spray system
EP0867898A1 (de) * 1997-03-24 1998-09-30 Binder Magnete GmbH Elektromagnetisch arbeitende Stelleinrichtung
US20020069842A1 (en) * 2000-12-08 2002-06-13 Curtis Eric Warren Permanent magnet enhanced electromagnetic valve actuator
CN1550273A (zh) * 2003-05-16 2004-12-01 丰田自动车株式会社 电磁驱动式压铸减压阀及其驱动方法和压铸装置
CN101476632A (zh) * 2008-01-03 2009-07-08 富良 增力式电磁安全阀
CN102266633A (zh) * 2010-12-31 2011-12-07 北京谊安医疗系统股份有限公司 电磁比例阀和包含该电磁比例阀的呼吸机

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2735638C1 (ru) * 2020-06-02 2020-11-05 Игорь Георгиевич Киселев Автоматическая система искусственной вентиляции легких
RU2749760C1 (ru) * 2020-11-27 2021-06-16 Игорь Георгиевич Киселев Автоматическая система искусственной вентиляции легких

Also Published As

Publication number Publication date
CN102266633A (zh) 2011-12-07
BR112012026059A2 (pt) 2016-06-28
EA201291020A1 (ru) 2013-06-28
CN102266633B (zh) 2013-08-14
EA021720B1 (ru) 2015-08-31

Similar Documents

Publication Publication Date Title
WO2012089097A1 (zh) 电磁比例阀和包含该电磁比例阀的呼吸机
JP6686061B2 (ja) 直線的に作動させられる気体調節弁を有する呼吸補助装置
WO2013097700A1 (zh) 流量控制比例阀
JP4336823B2 (ja) 患者用ベンチレータのための呼気バルブ
US10065008B2 (en) Discreet respiratory therapy system
US7565906B2 (en) Pressure/flow control valve and system using same
CN103055401B (zh) 呼吸机及比例阀
EP3351281A1 (en) Ventilator flow valve
CA2914858A1 (en) Ventilator flow valve
WO2023034611A1 (en) Ventilation system with improved valving
WO2022142469A1 (zh) 一种泄压阀、呼吸支持设备气路及呼吸支持设备
CN101856534B (zh) 三通压力平衡阀及医用呼吸机
WO2008077003A1 (en) Single blower positive airway pressure device and related method
CN112615514A (zh) 一种呼吸支持设备用音圈电机、开关阀及呼吸支持设备
US20140144447A1 (en) Conduit
JP2002136598A (ja) 人工呼吸装置用呼気弁装置
EP3720528A1 (en) System and method for varying pressure from a pressure generator
US9712033B2 (en) System and method for stabilizing a voice coil
CN214337767U (zh) 一种呼吸支持设备用音圈电机、开关阀及呼吸支持设备
JP2011104357A (ja) 人工呼吸器用制御弁
EP4395861A1 (en) Ventilation system with improved valving
CN109771791A (zh) 呼吸机呼气阀控制装置
CN103182134A (zh) 一种高精度压差控制阀
JP2018102637A (ja) 呼吸同調器
JP2018102636A (ja) 呼吸同調器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852271

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2397/MUMNP/2012

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 201291020

Country of ref document: EA

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112012026059

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852271

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112012026059

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20121011