WO2012088878A1 - 光线路终端、光网络单元和无源光网络系统 - Google Patents

光线路终端、光网络单元和无源光网络系统 Download PDF

Info

Publication number
WO2012088878A1
WO2012088878A1 PCT/CN2011/077496 CN2011077496W WO2012088878A1 WO 2012088878 A1 WO2012088878 A1 WO 2012088878A1 CN 2011077496 W CN2011077496 W CN 2011077496W WO 2012088878 A1 WO2012088878 A1 WO 2012088878A1
Authority
WO
WIPO (PCT)
Prior art keywords
rate
uplink data
clock signal
uplink
data
Prior art date
Application number
PCT/CN2011/077496
Other languages
English (en)
French (fr)
Inventor
朱松林
耿丹
张伟良
张德智
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US13/997,989 priority Critical patent/US9071405B2/en
Priority to EP11854178.8A priority patent/EP2645608B1/en
Priority to RU2013129458/07A priority patent/RU2013129458A/ru
Priority to BR112013016773-4A priority patent/BR112013016773B1/pt
Publication of WO2012088878A1 publication Critical patent/WO2012088878A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L7/00Arrangements for synchronising receiver with transmitter
    • H04L7/0075Arrangements for synchronising receiver with transmitter with photonic or optical means
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q11/0067Provisions for optical access or distribution networks, e.g. Gigabit Ethernet Passive Optical Network (GE-PON), ATM-based Passive Optical Network (A-PON), PON-Ring
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0245Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for downstream transmission, e.g. optical line terminal [OLT] to ONU
    • H04J14/0247Sharing one wavelength for at least a group of ONUs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0227Operation, administration, maintenance or provisioning [OAMP] of WDM networks, e.g. media access, routing or wavelength allocation
    • H04J14/0241Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths
    • H04J14/0242Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON
    • H04J14/0249Wavelength allocation for communications one-to-one, e.g. unicasting wavelengths in WDM-PON for upstream transmission, e.g. ONU-to-OLT or ONU-to-ONU
    • H04J14/0252Sharing one wavelength for at least a group of ONUs, e.g. for transmissions from-ONU-to-OLT or from-ONU-to-ONU
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/02Wavelength-division multiplex systems
    • H04J14/0278WDM optical network architectures
    • H04J14/0282WDM tree architectures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J3/00Time-division multiplex systems
    • H04J3/02Details
    • H04J3/06Synchronising arrangements
    • H04J3/0635Clock or time synchronisation in a network
    • H04J3/0685Clock or time synchronisation in a node; Intranode synchronisation
    • H04J3/0697Synchronisation in a packet node
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0064Arbitration, scheduling or medium access control aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0079Operation or maintenance aspects
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04QSELECTING
    • H04Q11/00Selecting arrangements for multiplex systems
    • H04Q11/0001Selecting arrangements for multiplex systems using optical switching
    • H04Q11/0062Network aspects
    • H04Q2011/0086Network resource allocation, dimensioning or optimisation

Definitions

  • Optical line terminal, optical network unit and passive optical network system are Optical line terminal, optical network unit and passive optical network system
  • the present invention relates to the field of communications technologies, and in particular, to an optical line terminal, an optical network unit, a passive optical network system, an uplink bandwidth allocation method, and a rate adaptation method.
  • GPON Gigabit-Capable Passive Optical Network
  • ONT Optical Line Terminal
  • ONU Optical Network Unit
  • ODN Optical Distribute Network
  • the ODN consists of a point-to-multipoint network structure.
  • the ODN consists of passive optical components such as single-mode fibers, optical splitters, and optical connectors.
  • the ODN provides an optical transmission medium for the physical connection between the OLT and the ONU.
  • next-generation PON technology based on GPON technology with a downlink rate of 10 Gbit/s and an uplink rate of 5 Gbit/s ( Or 10Gbit/s) rate requirements for XG PON.
  • the prior art proposes to implement an uplink rate of 5 Gbit/s by using an optical module with a rate of 2.5 Gbit/s at two different wavelengths.
  • this technology requires media access at the OLT.
  • the control chip has two pairs of differential lines for receiving uplink data, which occupies hardware pin resources, which is not conducive to network upgrade and expansion, and wastes valuable wavelength resources.
  • Another technique proposes to use dual binary code technology to enable optical modules with a transmission rate of 2.5 Gbit/s to transmit data at a rate of 5 Gbit/s.
  • this technique requires special modulation techniques, which greatly increases the cost of the ONU.
  • PON The upstream optical link loses multiple optical power budgets, degrading the performance of the upstream optical link.
  • the present invention provides an optical line terminal, an optical network unit, a passive optical network system, an uplink bandwidth allocation method, and a rate adaptation method to solve the problem of not occupying existing wavelength resources and not degrading the uplink optical chain.
  • the uplink direction supports the problem of coexistence of multiple rate time division multiplexing of a single wavelength.
  • the present invention provides an optical line terminal (OLT), the OLT includes: an optical module, a clock data recovery module, a medium access control chip, and a control module, where: the optical module is configured to: Receiving uplink data sent by an optical network unit (ONU) having different transmission rates, and transmitting the uplink data to the clock data recovery module; the clock data recovery module is configured to: receive the uplink data, according to the And the medium access control chip is configured to: save the uplink data and a clock signal corresponding to the uplink data; the control module is configured to: according to the uplink data The clock signal obtains an uplink rate of the uplink data, and allocates an uplink bandwidth to the ONU according to the uplink rate.
  • the optical module is configured to: Receiving uplink data sent by an optical network unit (ONU) having different transmission rates, and transmitting the uplink data to the clock data recovery module
  • the clock data recovery module is configured to: receive the uplink data, according to the
  • the medium access control chip is configured to: save the uplink data and
  • the clock data recovery module when the clock data recovery module is one, the clock data recovery module is configured to receive the uplink data in the following manner, and recover the outbound access control chip: receive uplink data of different transmission rates, and And recovering the n-way clock signal according to the number n of the ONUs of the different transmission rates and the uplink data, and transmitting the clock signal corresponding to the uplink data and the uplink data to the medium access control chip; or, according to Sending a clock signal to the number n of ONUs of different transmission rates and the uplink data, and transmitting the level signal of the one clock signal and the number of data lines for indicating the output parallel signal to the Said media access control chip; wherein said n is a positive integer greater than one.
  • the clock data recovery module is at least two. In the foregoing OLT, when the different transmission rates are 2.5 Gbit/s and 5 Gbit/s;
  • the clock data recovery module is configured to recover the clock signal in the following manner, and send the uplink data and the clock signal corresponding to the uplink data to the media access control chip: according to 2.5 Gbit/s and 5 Gbit/
  • the uplink data of the s rate recovers two clock signals, and sends the uplink data and the clock signal corresponding to the uplink data to the medium access control chip; or, according to the uplink data of 2.5 Gbit/s and 5 Gbit/s rate Recovering one clock signal, and giving a level signal for indicating the number of data lines outputting the parallel signal for the uplink data of 2.5 Gbit/s and 5 Gbit/s, respectively, and transmitting the level signal to the medium Access control chip.
  • the different transmission rates are 2.5 Gbit/s and 5 Gbit/s
  • the first clock data recovery module is configured to: recover from the uplink data at a rate of 2.5 Gbit/s.
  • the clock signal corresponding to the 2.5 Gbit/s rate is sent to the uplink data of the 2.5 Gbit/s rate and the uplink data of the 2.5 Gbit/s rate to the uplink data of the 2.5 Gbit/s rate and the 5 Gbit/s rate.
  • the second clock data recovery module is configured to: recover, according to the uplink data of the 5 Gbit/s rate, a clock access signal corresponding to the uplink data to a media access control chip common to the 2.5 Gbit/s rate and the uplink data of the 5 Gbit/s rate or Send to the 5Gbit/s rate media access control chip; or send the 2.5Gbit/s rate and 5Gbit/s uplink data and the 2.5Gbit/s rate and 5Gbit/s uplink data to the 5Gbit
  • the medium of the /s rate is accessed by the control chip so that the 5Gbit/s rate medium access control chip discards the data of 2.5 Gbit/s rate and retains the data of the 5 Gbit/s rate.
  • the present invention also provides an optical network unit (ONU), where the ONU includes an optical module, a central control unit (CPU), and a medium access control chip (MAC), where: The optical module is configured to: store different sending rates of the ONUs; the CPU is configured to: read the different sending rates stored in the optical module, and send the MAC according to the read sending rate The working rate is adjusted to the read rate read.
  • the optical module includes a register, and the register is configured to: store different transmission rates of the ONUs; the CPU is configured to read the different transmission rates stored in the optical module as follows: The transmission rate of the transmitting device of the optical module is obtained by reading the register through the I 2 C pin of the optical module.
  • the present invention also provides a passive optical network system, the system comprising an optical line terminal (OLT) as described above, and an optical network unit (ONU) having different transmission rates, wherein different The ONUs of the transmission rate have the same illumination wavelength and transmit uplink data under the control of the OLT in a time division multiplexing manner; wherein: the ONU includes an optical module, a central control unit (CPU), and a medium access control chip (MAC).
  • the optical module is configured to: store different sending rates of the ONUs; the CPU is configured to: read the different sending rates stored in the optical module, and send the MAC according to the read sending rate The working rate is adjusted to the sending rate.
  • the present invention further provides an uplink bandwidth allocation method, where the method includes: receiving and forwarding uplink data sent by an optical network unit (ONU) having different transmission rates; and recovering according to the uplink data. a clock signal, and storing the uplink data and the clock signal corresponding to the uplink data; and obtaining an uplink rate of the uplink data according to the clock signal corresponding to the uplink data, and allocating an uplink bandwidth to the ONU according to the uplink rate .
  • ONU optical network unit
  • the step of recovering the clock signal and saving the clock signal corresponding to the uplink data and the uplink data includes: And recovering the n-way clock signal according to the number n of the ONUs of the different transmission rates and the uplink data, and sending the uplink data and the clock signal corresponding to the uplink data to the medium access control chip, to save the uplink data. And a clock signal corresponding to the uplink data; or, recovering a clock signal, and transmitting the road clock signal and a level signal for indicating the number of data lines outputting the parallel signal to the medium access control chip, to The road clock signal and the level signal are saved; wherein the above n is a positive integer greater than one.
  • the clock signal is recovered, and the step of saving the uplink data and the clock signal corresponding to the uplink data includes: according to 2.5 Gbit/s
  • the uplink data of the rate recovers the clock signal corresponding to the 2.5 Gbit/s rate, and is sent to a medium access control chip, clock signal, or 2.5 Gbit/s, which is common to the uplink data of the 2.5 Gbit/s rate and the 5 Gbit/s rate.
  • the s rate medium access control chip recovers the clock signal corresponding to the 5 Gbit/s rate according to the uplink data of the 5 Gbit/s rate, and
  • the clock signal corresponding to the uplink data of the /s rate; or, the clock signal corresponding to the uplink data of the 2.5Gbit/s rate and the 5Gbit/s rate and the uplink data of the 2.5Gbit/s rate and the 5Gbit/s rate is sent to the 5Gbit/s
  • the medium of the rate access control chip is configured to discard the uplink data of the 2.5 Gbit/s rate and the clock signal corresponding to the uplink data of the 2.5 Gbit/s rate by the medium access control chip of the 5 Gbit/s rate, and save the 5 Gbit The uplink data of the /s rate and the clock signal corresponding to the uplink data of the 5 Gbit/s rate.
  • the present invention further provides a rate adaptation method, the method comprising: storing different transmission rates of an optical network unit (ONU); The different transmission rates are read, and the operating rate of the medium access control chip (MAC) in the ONU is adjusted to the read transmission rate according to the read transmission rate.
  • ONU optical network unit
  • MAC medium access control chip
  • the optical line terminal, the optical network unit, the passive optical network system, the uplink bandwidth allocation method, and the rate adaptation method implement the uplink direction without occupying the existing wavelength resources and not degrading the performance of the uplink optical link. Supports multiple rate time division multiplexing coexistence of a single wavelength.
  • FIG. 1 is a schematic structural diagram of a conventional PON system
  • FIG. 2 is a schematic structural diagram of a PON system according to an embodiment of the present invention
  • FIG. 3 is a structural diagram of an ONU in a PON system according to an embodiment of the present invention
  • FIG. 5 is a schematic structural diagram of Embodiment 1 of an OLT in a PON system according to the present invention
  • FIG. 6 is a schematic structural diagram of Embodiment 2 of an OLT in a PON system according to the present invention
  • FIG. 8 is a flowchart of a method for allocating an uplink bandwidth according to an embodiment of the present invention
  • FIG. 9 is a flowchart of a method for rate adaptation according to an embodiment of the present invention.
  • An embodiment of the present invention provides an OLT, where the OLT includes: an optical module, a clock data recovery module, a media access control chip, and a control module, where: the optical module is configured to: receive an optical network unit (ONU) having different transmission rates.
  • OLT optical network unit
  • Sent on The data is sent to the clock data recovery module;
  • the clock data recovery module is configured to: receive the uplink data, recover a clock signal according to the uplink data, and send the uplink data and the clock signal corresponding to the uplink data
  • the media access control chip is configured to: save the uplink data and a clock signal corresponding to the uplink data;
  • the control module is configured to: obtain an uplink rate of the uplink data from the media intervention control chip according to the clock signal corresponding to the uplink data, and allocate an uplink bandwidth to the ONU according to the uplink rate.
  • the number of clock data recovery modules can be dynamically set according to requirements, for example, one, two or three, etc.; of course, two clock data recovery modules can be combined into one dual-rate clock data. Recovery module; three clock data recovery modules can be combined into a three-rate clock data recovery module and so on.
  • the clock data recovery module may be configured to receive uplink data of different transmission rates, and recover the ⁇ road clock signal according to the number ⁇ of the ONUs of different transmission rates and the uplink data. And transmitting the uplink data and the clock signal corresponding to the uplink data to the medium access control chip; or recovering one clock signal, and using the clock signal and the number of data lines for indicating the output parallel signal
  • the flat signal is sent to the medium access control chip; wherein ⁇ is a positive integer greater than one.
  • the clock data recovery module may be further configured to recover two clock signals according to uplink data of 2.5 Gbit/s and 5 Gbit/s, and send the clock signal.
  • the medium access control chip recovers one clock signal according to the uplink data of 2.5 Gbit/s and 5 Gbit/s rate, and gives the parallel data for the 2.5 Gbit/s and 5 Gbit/s rates respectively for indicating the output parallel
  • the number level signal of the data line of the signal, and the level signal is sent to the medium access control chip.
  • the clock data recovery module at this time is a dual-rate clock data recovery module.
  • the clock data recovery module is configured to: receive the uplink data, recover the clock signal according to the uplink data, and send the uplink data and the clock signal corresponding to the uplink data to the medium. Access control chip.
  • the first clock data recovery module can be set to: according to 2.5Gbit/s
  • the uplink data of the rate recovers the clock signal corresponding to the 2.5 Gbit/s rate, and sends the uplink data of the 2.5 Gbit/s rate and the clock signal corresponding to the uplink data of the 2.5 Gbit/s rate to a common medium access control.
  • the uplink data of the rate and its corresponding clock signal are sent to a media access control chip shared by two clock data recovery modules or sent to a medium access control chip of 5 Gbit/s rate; or, 2.5 Gbit/s rate and 5 Gbit
  • the uplink data of the /s rate and the clock signal corresponding to the uplink data of the two rates are sent to the medium access control chip of the 5 Gbit/s rate, so as to be at the above 5 Gbit/s rate.
  • the first clock data recovery module and the second clock data recovery module at this time may be combined into a dual rate clock data recovery module.
  • the clock signal corresponding to different transmission rates can be recovered by expanding the number of clock data recovery modules, which is not detailed here.
  • the OLT can support multiple uplink rate coexistence.
  • the embodiment of the present invention further provides an ONU, where the ONU includes: an optical module, a central processing unit (CPU), and a media access control (MAC) chip, where: the optical module is set to: Different transmission rates of the ONUs described above; the CPU is configured to: read different transmission rates stored in the optical module, and adjust the operating rate of the MAC chip to the read transmission rate according to the read transmission rate.
  • the optical module includes a register, and the register is set to: store different transmission rates of the ONUs; the CPU may further be configured to: read the different transmission rates of the registers through the I 2 C pins of the optical module, thereby obtaining the transmitting device of the optical module The sending rate.
  • the ONU can adapt the working rate of the MAC to the sending rate of the optical module.
  • the embodiment of the present invention further provides a passive optical network system, which includes the OLT according to the foregoing embodiment and the ONU described in the foregoing embodiment, wherein the ONUs of different transmission rates have the same illumination wavelength and are time-divided.
  • the above-mentioned passive optical network system supports a plurality of rate time division multiplexing coexistence of a single wavelength in an uplink direction without occupying existing wavelength resources and degrading the performance of the uplink optical link.
  • Embodiment 1 the ONU can adjust the rate, and there is only one clock data recovery module at the OLT.
  • the topology of a PON system supporting two uplink rates of 2.5 Gbit/s and 5 Gbit/s is shown in FIG. 2, wherein an ONU with an uplink rate of 2.5 Gbit/s and an ONU with an uplink rate of 5 Gbit/s
  • the upstream wavelengths are all 1260-1280 nm, and the two ONUs use the time division multiplexing method to transmit uplink data under the control of the OLT.
  • the ONUs with an uplink rate of 2.5 Gbit/s and the ONUs with an uplink rate of 5 Gbit/s have different optical transmission devices except for the optical module.
  • the other devices are the same.
  • the ONU architecture shown in Figure 3 mainly includes media access. control (MAC) 31 and a physical media dependent (physical medium dependent (PMD) 32 , wherein the upstream rate is 2.
  • MAC media access. control
  • PMD physical medium dependent
  • 5 Gbit / s optical transmission rate of the ONU transmitted optical device module is 2.5Gbit / s
  • up speed is
  • the transmission rate of the optical transceiver of the 5Gbit/s ONU optical module is 5 Gbit/s.
  • This structure is designed to improve the versatility of ONU components at different rates and reduce the cost of ONUs at 5 Gbit/s.
  • the upstream rate of the ONU is stored in the register.
  • the CPU of the ONU reads the register of the ONU optical module through the I2C pin of the ONU optical module, and the transmission rate of the transmitting device of the optical module is 2.5 Gbit/s. 5Gbit/s, then adjust the working speed of the ONU's MAC to the transmission rate of the optical module, which is 2.5Gbit/s or 5Gbit/s.
  • the structure of some components of the OLT is as shown in FIG. 4.
  • the OLT mainly includes an optical module 41, a dual-rate burst mode clock data recovery module 42 and a medium access control chip 43.
  • FIG. 5 is a structural diagram of Embodiment 1 of an OLT in a PON system according to the present invention. After receiving the optical signal carrying the 2.5Gbit/s and 5Gbit/s uplink data sent by the ONU, the optical module of the OLT converts the optical signal into an electrical signal and outputs the signal to the dual-rate burst mode clock data recovery module.
  • Dual rate burst mode clock data After receiving the electrical signal of 2.5 Gbit/s rate, the recovery module recovers the clock signal corresponding to the electrical signal of 2.5 Gbit/s rate, and sends the recovered clock and data to the medium access control chip. After receiving the electrical signal of the 5 Gbit/s rate, the dual-rate burst mode clock data recovery module recovers the clock signal corresponding to the electrical signal of the 5 Gbit/s rate, and sends the recovered clock and data to the medium access control chip. Then, the software system of the OLT can obtain the uplink data and the uplink rate of the ONU that sends the uplink data from the medium access control chip, and the OLT stores the uplink rate information of the ONU, and allocates an uplink bandwidth to the ONU according to the information.
  • Embodiment 2 the ONU can adjust the rate, and there is only one clock data recovery module at the OLT.
  • the topology of a PON system supporting two uplink rates of 2.5 Gbit/s and 5 Gbit/s is shown in FIG. 2, wherein an ONU with an uplink rate of 2.5 Gbit/s and an ONU with an uplink rate of 5 Gbit/s
  • the upstream wavelengths are all 1260-1280 nm, and the two ONUs use the time division multiplexing method to transmit uplink data under the control of the OLT.
  • the ONUs with an uplink rate of 2.5 Gbit/s and the ONUs with an uplink rate of 5 Gbit/s have different optical transmission devices except for the optical module. The other devices are the same.
  • the ONU architecture shown in Figure 3 mainly includes MAC and PMD.
  • the transmission rate of the optical transceiver of the optical module of the ONU with the uplink rate of 2.5 Gbit/s is 2.5 Gbit/s
  • the transmission rate of the optical transceiver of the optical module of the ONU with the uplink rate of 5 Gbit/s is 5 Gbit/s.
  • This structural design is beneficial to improve the versatility of ONU components at different rates and reduce the cost of ONUs at 5Gbit/s.
  • the ONU's optical module stores the upstream rate of the ONU. After the ONU is powered on, the ONU's CPU reads the ONU optical module's register through the I2C pin of the ONU optical module to obtain the transmission rate of the optical module's transmitting device.
  • the OLT mainly includes an optical module 41, a dual-rate burst mode clock data recovery module 42 and a medium access control chip 43.
  • FIG. 5 is a structural diagram of Embodiment 1 of an OLT in a PON system according to the present invention.
  • the optical module of the OLT After receiving an optical signal carrying 2.5 Gbit/s and 5 Gbit/s uplink data transmitted by an ONU, the optical module of the OLT converts the optical signal into Telecommunications No., and output to the dual rate burst mode clock data recovery module. After receiving the 2.5Gbit/s and 5Gbit/s rate signals, the dual-rate burst mode clock data recovery module in the OLT recovers an identical clock signal and transmits the 2.5Gbit/s rate signal using 4 parallel data lines. For the medium access control chip, the signal of 5 Gbit/s rate is transmitted to the medium access control chip by using 8 parallel data lines, and an effective level indication is given to indicate the number of data lines for transmitting parallel signals.
  • Embodiment 3 In this embodiment, the ONU can adjust the rate, and there are two clock data recovery modules at the OLT.
  • the topology of a PON system supporting two uplink rates of 2.5 Gbit/s and 5 Gbit/s is shown in FIG. 2, wherein an ONU with an uplink rate of 2.5 Gbit/s and an ONU with an uplink rate of 5 Gbit/s
  • the upstream wavelengths are all 1260-1280 nm, and the two ONUs use the time division multiplexing method to transmit uplink data under the control of the OLT.
  • the ONUs with an uplink rate of 2.5 Gbit/s and the ONUs with an uplink rate of 5 Gbit/s have different optical transmission devices except for the optical module.
  • the other devices are the same.
  • the ONU architecture shown in Figure 3 mainly includes MAC and PMD.
  • the transmission rate of the optical transceiver of the optical module of the ONU with the uplink rate of 2.5 Gbit/s is 2.5 Gbit/s
  • the transmission rate of the optical transceiver of the optical module of the ONU with the uplink rate of 5 Gbit/s is 5 Gbit/s.
  • This structural design is beneficial to improve the versatility of ONU components at different rates and reduce the cost of ONUs at 5Gbit/s.
  • the ONU's optical module stores the upstream rate of the ONU.
  • the ONU's CPU reads the ONU optical module's register through the I2C pin of the ONU optical module to obtain the transmission rate of the optical module's transmitting device. It is 2.5 Gbit/s or 5 Gbit/s. Then, the working speed of the ONU's MAC is adjusted to be the transmission rate of the optical module, which is 2.5 Gbit/s or 5 Gbit/s.
  • the structure of some components of the OLT is as shown in FIG. 6.
  • the OLT mainly includes an optical module 61, a 2.5 Gbit/s burst mode clock data recovery module 62, a 2.5 Gbit/s medium access control chip 63, and 5 Gbit.
  • FIG. 7 is a structural diagram of Embodiment 2 of an OLT in a PON system according to the present invention.
  • the optical module of the OLT After receiving an optical signal carrying 2.5 Gbit/s and 5 Gbit/s uplink data transmitted by an ONU, the optical module of the OLT converts the optical signal into The electrical signal is divided into two clock data recovery modules that are input to 2.5 Gbit/s and 5 Gbit/s respectively. Burst mode clock data recovery at 2.5 Gbit/s rate
  • the complex module recovers the electrical signal of 2.5 Gbit/s rate and discards the electrical signal of 5 Gbit/s rate, and then transmits the recovered 2.5 Gbit/s data to the 2.5 Gbit/s medium access control chip.
  • the 5Gbit/s rate burst mode clock data recovery module recovers the 2.5Gbit/s rate electrical signal and the 5Gbit/s data
  • the recovered 5Gbit/s data is sent to the medium access control chip and is connected by the medium.
  • the control chip discards data at 2.5 Gbit/s and retains 5 Gbit/s data.
  • the software system of the OLT can obtain the uplink data and the uplink rate of the ONU that sends the uplink data from the medium access control chip, and the OLT stores the uplink rate information of the ONU, and allocates an uplink bandwidth to the ONU according to the information.
  • Embodiment 4 the ONU rate is fixed, and there is only one clock data recovery module at the OLT.
  • the topology of a PON system supporting two uplink rates of 2.5 Gbit/s and 5 Gbit/s is shown in FIG. 2, wherein an ONU with an uplink rate of 2.5 Gbit/s and an ONU with an uplink rate of 5 Gbit/s
  • the upstream wavelengths are all 1260-1280 nm, and the two ONUs use the time division multiplexing method to transmit uplink data under the control of the OLT.
  • the structure of some components of the OLT is as shown in FIG. 4.
  • the OLT mainly includes an optical module 41, a dual-rate burst mode clock data recovery module 42 and a medium access control chip 43.
  • Embodiment 1 of an OLT in a PON system is a structural diagram of Embodiment 1 of an OLT in a PON system according to the present invention.
  • the optical module of the OLT After receiving an optical signal carrying 2.5 Gbit/s and/or 5 Gbit/s uplink data transmitted by an ONU, the optical module of the OLT transmits an optical signal. Converted to an electrical signal and output to a dual rate burst mode clock data recovery module. After receiving the electrical signal of 2.5 Gbit/s rate, the dual-rate burst mode clock data recovery module recovers the clock signal of the electrical signal corresponding to the 2.5 Gbit/s rate, and sends the recovered clock and data to the medium access control. chip.
  • the burst mode clock data recovery module After receiving the electrical signal of the 5 Gbit/s rate, the burst mode clock data recovery module recovers the clock signal corresponding to the electrical signal of the 5 Gbit/s rate, and sends the recovered clock and data to the medium access control chip.
  • the software system of the OLT can obtain the uplink data and the uplink rate of the ONU that sends the uplink data from the medium access control chip.
  • the OLT stores the uplink rate information of the ONU, and allocates an uplink bandwidth to the ONU according to the information.
  • Embodiment 5 In this embodiment, the ONU rate is fixed, and there is only one clock data recovery module at the OLT.
  • the topology of a PON system supporting two uplink rates of 2.5 Gbit/s and 5 Gbit/s is shown in FIG.
  • the upstream wavelengths are all 1260-1280 nm, and the two ONUs use the time division multiplexing method to transmit uplink data under the control of the OLT.
  • the structure of some components of the OLT is as shown in FIG. 4.
  • the OLT mainly includes an optical module 41, a dual-rate burst mode clock data recovery module 42 and a medium access control chip 43.
  • FIG. 5 is a structural diagram of Embodiment 1 of an OLT in a PON system according to the present invention. After receiving an optical signal carrying 2.5 Gbit/s and/or 5 Gbit/s uplink data transmitted by an ONU, the optical module of the OLT transmits an optical signal. Converted to an electrical signal and output to a dual rate burst mode clock data recovery module.
  • the dual-rate burst mode clock data recovery module in the OLT After receiving the 2.5Gbit/s and/or 5Gbit/s rate signals, the dual-rate burst mode clock data recovery module in the OLT recovers the same clock signal and uses 4 parallel data for the 2.5Gbit/s rate signal.
  • the line is transmitted to the medium access control chip, and the signal of 5 Gbit/s rate is transmitted to the medium access control chip by using 8 parallel data lines, and an effective level indication is given to indicate the number of data lines for transmitting the parallel signal.
  • Embodiment 6 In this embodiment, the ONU rate is fixed, and there are two clock data recovery modules at the OLT.
  • the topology of a PON system supporting two uplink rates of 2.5 Gbit/s and 5 Gbit/s is shown in FIG. 2, wherein an ONU with an uplink rate of 2.5 Gbit/s and an ONU with an uplink rate of 5 Gbit/s
  • the upstream wavelengths are all 1260-1280 nm, and the two ONUs use the time division multiplexing method to transmit uplink data under the control of the OLT.
  • the OLT mainly includes an optical module 61, a 2.5 Gbit/s burst mode clock data recovery module 62, a 2.5 Gbit/s medium access control chip 63, and 5 Gbit. /s Burst Mode Clock Data Recovery Module 64 and 5 Gbit/s Media Access Control Chip 65.
  • FIG. 7 is a structural diagram of Embodiment 2 of an OLT in a PON system according to the present invention. After receiving an optical signal carrying 2.5 Gbit/s and/or 5 Gbit/s uplink data transmitted by an ONU, the optical module of the OLT transmits an optical signal.
  • the electrical signal is converted into an electrical signal, and the electrical signal is divided into two burst mode clock data recovery modules that are respectively input to a 2.5 Gbit/s rate and a 5 Gbit/s rate.
  • the 2.5Gbit/s rate burst mode clock data recovery module recovers the 2.5Gbit/s rate electrical signal and discards the 5Gbit/s rate electrical signal, and then transmits the recovered 2.5Gbit/s data to the medium access control. chip.
  • 5Gbit/s rate burst After the mode clock data recovery module recovers the electrical signal of 2.5 Gbit/s rate and the data of 5 Gbit/s, the recovered data is sent to the medium access control chip, and the medium access control chip discards the 2.5 Gbit/s rate. Data and retain 5Gbit/s data.
  • the software system of the OLT can obtain the uplink data and the uplink rate of the ONU that sends the uplink data from the medium access control chip.
  • the OLT stores the uplink rate information of the ONU, and allocates an uplink bandwidth to the ONU according to the information.
  • FIG. 8 is a flowchart of a method for allocating an uplink bandwidth according to an embodiment of the present invention. The method is described from an OLT side. The method includes: Step 801: Receive and forward an optical network unit having different transmission rates. Uplink data sent by the ONU; the optical module in the OLT receives and forwards the uplink data; Step 802: recovers a clock signal according to the uplink data, and sends the uplink data and a clock signal corresponding to the uplink data;
  • the clock signal is sent to the MAC in the OLT; Step 803, the uplink data and the corresponding clock signal are saved;
  • Steps 802 and 803 recover the clock signal according to the uplink data, and save the uplink data and the corresponding clock signal.
  • the control module in the OLT obtains an uplink rate according to the foregoing clock signal, and allocates an uplink bandwidth to the ONU according to the uplink rate.
  • the step of recovering the clock signal and storing the clock data corresponding to the uplink data and the uplink data may include: recovering n according to the number n of ONUs of different transmission rates and the uplink data.
  • a road clock signal and sending the uplink data and a clock signal corresponding to the uplink data to a medium access control core a slice to save the uplink data and a clock signal corresponding to the uplink data; or, recover a clock signal, and send the road clock signal and a level signal for indicating the number of data lines outputting the parallel signal
  • the medium is connected to the control chip to save the clock signal and the level signal; wherein n is a positive integer greater than 1.
  • the steps of recovering the clock signal and saving the uplink data and the clock signal corresponding to the uplink data include: A clock signal corresponding to the 2.5 Gbit/s rate is recovered according to the uplink data of the 2.5 Gbit/s rate, and is sent to a medium access control chip, a clock signal, or the 2.5 Gbit/s rate and the uplink data of the 5 Gbit/s rate. Transmitting to a medium access control chip at a rate of 2.5 Gbit/s to save the clock signal corresponding to the 5 Gbit/s rate according to the uplink data of the 5 Gbit/s rate, and
  • the clock signal corresponding to the uplink data of the /s rate; or, the clock signal corresponding to the uplink data of the 2.5Gbit/s rate and the 5Gbit/s rate and the uplink data of the 2.5Gbit/s rate and the 5Gbit/s rate is sent to the 5Gbit/s
  • the medium of the rate access control chip is configured to discard the uplink data of the 2.5 Gbit/s rate and the clock signal corresponding to the uplink data of the 2.5 Gbit/s rate by the medium access control chip of the 5 Gbit/s rate, and save the 5 Gbit The uplink data of the /s rate and the clock signal corresponding to the uplink data of the 5 Gbit/s rate.
  • the uplink bandwidth allocation method supports multiple uplink rate coexistence. As shown in FIG. 9, a flow chart of the method for adapting the rate of the present invention is performed by the ONU side. The method includes: Step 901: Store different transmission rates of the optical network unit.
  • the ONU optical module includes a register, and the register stores different transmission rates, for example, a transmission rate of 2.5 Gbit/s and 5 Gbit/s, etc.; Step 902: Read the different transmission rates, and send according to the read The rate adjusts the operating rate of the medium access control chip (MAC) in the above ONU to the read transmission rate.
  • MAC medium access control chip
  • the CPU in the ONU reads the transmission rate and adjusts the working rate of the MAC to the read transmission rate according to the read transmission rate.
  • the structure of the ONU that implements the above rate adaptation method can be seen in FIG. 3 , and details are not described herein again. This rate adaptation method enables rate matching.
  • the present invention realizes coexistence of multiple rate time division multiplexing supporting a single wavelength in the uplink direction without occupying existing wavelength resources and without degrading the performance of the uplink optical link.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Signal Processing (AREA)
  • Optical Communication System (AREA)
  • Small-Scale Networks (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种光线路终端、光网络单元、无源光网络系统、上行带宽的分配方法和速率适配方法,其中,OLT包括:光模块、时钟数据恢复模块、媒体接入控制芯片和控制模块,其中:所述光模块设置为:接收具有不同发送速率的ONU发送的上行数据;所述时钟数据恢复模块设置为:接收所述上行数据,根据所述上行数据恢复出时钟信号,并将所述上行数据及所述上行数据对应的时钟信号发送给所述媒体接入控制芯片;所述媒体接入控制芯片设置为:保存所述上行数据及及所述上行数据对应的时钟信号;所述控制模块设置为:根据所述上行数据对应的时钟信号获得该上行数据的上行速率,并根据所述上行速率为所述ONU分配上行带宽。

Description

光线路终端、 光网络单元和无源光网络系统
技术领域 本发明涉及通信技术领域, 尤其涉及一种光线路终端、 光网络单元、 无 源光网络系统、 上行带宽的分配方法和速率适配方法。
背景技术
吉比特无源光网络 ( Gigabit-Capable Passive Optical Network, GPON ) 技术是釆用点到多点拓朴结构的无源光接入技术。 GPON系统的拓朴结构如 图 1所示, GPON由局侧的光线路终端 (Optical Line Terminal, OLT ) 、 用 户侧的光网络单元( Optical Network Unit , ONU ) 以及光分配网络( Optical Distribute Network, ODN )组成, 通常釆用点到多点的网络结构。 ODN由单 模光纤、 分光器以及光连接器等无源光器件组成, ODN为 OLT和 ONU之 间的物理连接提供光传输媒质。 目前广泛应用的 GPON的下行速率为 2.5Gbit/s, 上行速率为 1.25Gbit/s。 随着互联网等通信技术的发展, 接入无源光网络( Passive Optical Network , PON )系统的用户数的逐渐增多,并且用户对带宽的需求日益增加,以 GPON 技术为基础的下一代 PON技术迅速发展,基于 GPON技术的下一代 PON技 技术。由于传统的 GPON技术中下行和上行的速率比为 2: 1 ,基于这种模型, 现在运营商提出了基于 GPON技术的下一代 PON技术为下行速率为 10Gbit/s 并上行速率为 5Gbit/s (或者 10Gbit/s ) 的 XG PON的速率需求。 为满足上述 5Gbit/s上行速率的需求, 现有技术提出利用两个不同波长的速率为 2.5Gbit/s 的光模块实现 5Gbit/s的上行速率, 然而, 这种技术要求 OLT处的媒质接入 控制芯片具有两对接收上行数据的差分线, 占用了硬件的管脚资源, 不利于 网络的升级扩展, 并且浪费了可贵的波长资源。 另一种技术提出利用双二进 制码技术使发送速率 2.5Gbit/s的光模块可以发送 5Gbit/s速率的数据, 但是 这种技术需要使用特殊的调制技术,这大大增加了 ONU的成本,并且在 PON 的上行光链路损失了多个的光功率预算, 劣化了上行光链路的性能。
发明内容 本发明提供了一种光线路终端、 光网络单元、 无源光网络系统、 上行带 宽的分配方法和速率适配方法, 以解决如何在不占用现有的波长资源和不劣 化上行光链路性能的情况下, 上行方向支持单一波长的多种速率时分复用共 存的问题。 为了解决上述技术问题, 本发明提供了一种光线路终端 (OLT ) , 所述 OLT包括: 光模块、 时钟数据恢复模块、 媒体接入控制芯片和控制模块, 其 中: 所述光模块设置为: 接收具有不同发送速率的光网络单元(ONU )发送 的上行数据, 并将所述上行数据发送给所述时钟数据恢复模块; 所述时钟数据恢复模块设置为: 接收所述上行数据, 根据所述上行数据 所述媒体接入控制芯片; 所述媒体接入控制芯片设置为: 保存所述上行数据及及所述上行数据对 应的时钟信号; 所述控制模块设置为: 根据所述上行数据对应的时钟信号获得该上行数 据的上行速率, 并根据所述上行速率为所述 ONU分配上行带宽。 上述 OLT中, 当所述时钟数据恢复模块为一个时, 所述时钟数据恢复模块是设置为按如下方式接收所述上行数据, 恢复出 体接入控制芯片: 接收不同发送速率的上行数据, 以及, 根据不同发送速率 的 ONU的个数 n和所述上行数据恢复出 n路时钟信号, 将所述上行数据及 所述上行数据对应的时钟信号发送给所述媒质接入控制芯片; 或者, 根据不 同发送速率的 ONU的个数 n和所述上行数据恢复出一路时钟信号, 并将该 一路时钟信号和用于指示输出并行信号的数据线的个数的电平信号发送给所 述媒质接入控制芯片; 其中, 所述 n为大于 1的正整数。 上述 OLT中, 所述时钟数据恢复模块为至少两个。 上述 OLT中, 所述不同发送速率为 2.5Gbit/s和 5Gbit/s时;
所述时钟数据恢复模块是设置为按如下方式恢复出时钟信号, 并将所述 上行数据及所述上行数据对应的时钟信号发送给所述媒体接入控制芯片: 根 据 2.5Gbit/s和 5Gbit/s速率的上行数据恢复出两路时钟信号, 并将所述上行 数据及所述上行数据对应的时钟信号发送给媒质接入控制芯片; 或者, 根据 2.5Gbit/s和 5Gbit/s速率的上行数据恢复出一路时钟信号, 并针对 2.5Gbit/s 和 5Gbit/s速率的上行数据分别给出用于指示输出并行信号的数据线的个数 的电平信号, 并将所述电平信号发送给媒质接入控制芯片。 上述 OLT中, 所述不同发送速率为 2.5Gbit/s和 5Gbit/s, 所述时钟数据 恢复模块为两个时, 第一时钟数据恢复模块设置为: 根据 2.5Gbit/s速率的上行数据恢复出与 2.5Gbit/s速率对应的时钟信号, 并将 2.5Gbit/s速率的上行数据及 2.5Gbit/s 速率的上行数据对应的时钟信号发送给 2.5Gbit/s速率和 5Gbit/s速率的上行 数据共同的一个媒质接入控制芯片或者发送给 2.5Gbit/s速率的媒质接入控制 芯片;
第二时钟数据恢复模块设置为: 根据 5Gbit/s速率的上行数据恢复出与 上行数据对应的时钟信号发送给 2.5Gbit/s速率和 5Gbit/s速率的上行数据共 同的一个媒质接入控制芯片或者发送给 5Gbit/s速率的媒质接入控制芯片;或 者,将 2.5Gbit/s速率和 5Gbit/s速率的上行数据及 2.5Gbit/s速率和 5Gbit/s速 率的上行数据对应的时钟信号发送给 5Gbit/s速率的媒质接入控制芯片,以便 由所述 5Gbit/s 速率的媒质接入控制芯片抛弃 2.5Gbit/s 速率的数据保留 5Gbit/s速率的数据。 为了解决上述技术问题, 本发明还提供了一种光网络单元(ONU ) , 所 述 ONU包括光模块、 中央控制单元(CPU )和媒体接入控制芯片 (MAC ) , 其中: 所述光模块设置为: 存储所述 ONU的不同发送速率; 所述 CPU设置为:读取所述光模块中存储的所述不同发送速率,并根据 所读取的发送速率将所述 MAC的工作速率调整为所读取的发送速率。 上述 ONU中, 所述光模块包含寄存器, 所述寄存器设置为: 存储所述 ONU的不同发 送速率; 所述 CPU是设置为按如下方式读取所述光模块中存储的所述不同发送 速率: 通过光模块的 I2C管脚读取所述寄存器获得光模块的发送器件的发送 速率。 为了解决上述技术问题, 本发明还提供了一种无源光网络系统, 所述系 统包括如上所述的光线路终端 (OLT ) , 以及具有不同发送速率的光网络单 元(ONU ) , 其中, 不同发送速率的 ONU的发光波长相同并且以时分复用 的方式在 OLT的控制下发送上行数据; 其中: 所述 ONU: 包括光模块、 中央控制单元(CPU )和媒体接入控制芯片 ( MAC ) , 所述光模块设置为: 存储所述 ONU的不同发送速率; 所述 CPU 设置为: 读取所述光模块中存储的所述不同发送速率, 并根据所读取的发送 速率将所述 MAC的工作速率调整为该发送速率。 为了解决上述技术问题, 本发明还提供了一种上行带宽的分配方法, 所 述方法包括: 接收并转发具有不同发送速率的光网络单元(ONU )发送的上行数据; 根据所述上行数据恢复出时钟信号, 并保存所述上行数据及所述上行数 据对应的时钟信号; 以及 根据所述上行数据对应的时钟信号获得该上行数据的上行速率, 并根据 所述上行速率为所述 ONU分配上行带宽。 上述方法中, 恢复出时钟信号, 并保存所述上行数据及所述上行数据对 应的时钟信号的步骤包括: 根据不同发送速率的 ONU的个数 n和所述上行数据恢复出 n路时钟信 号, 并将所述上行数据及该上行数据对应的时钟信号发送给媒质接入控制芯 片, 以保存所述上行数据及所述上行数据对应的时钟信号; 或者, 恢复出一 路时钟信号, 并将该路时钟信号和用于指示输出并行信号的数据线的个数的 电平信号发送给媒质接入控制芯片, 以保存该路时钟信号和电平信号; 其中, 上述 n为大于 1的正整数。 上述方法中, 当所述不同发送速率为 2.5Gbit/s和 5Gbit/s时, 恢复出时 钟信号, 并保存所述上行数据及所述上行数据对应的时钟信号的步骤包括: 根据 2.5Gbit/s速率的上行数据恢复出与 2.5Gbit/s速率对应的时钟信号, 送给 2.5Gbit/s速率和 5Gbit/s速率的上行数据共同的一个媒质接入控制芯片, 时钟信号, 或者发送给 2.5Gbit/s 速率的媒质接入控制芯片, 以保存所述 以及 根据 5Gbit/s速率的上行数据恢复出与 5Gbit/s速率对应的时钟信号, 并
2.5Gbit/s速率和 5Gbit/s速率的上行数据共同的一个媒质接入控制芯片或者 发送给 5Gbit/s速率的媒质接入控制芯片, 以保存所述 5Gbit/s速率的上行数 据及所述 5Gbit/s速率的上行数据对应的时钟信号; 或者, 将 2.5Gbit/s速率 和 5Gbit/s速率的上行数据及 2.5Gbit/s速率和 5Gbit/s速率的上行数据对应的 时钟信号发送给 5Gbit/s速率的媒质接入控制芯片, 以便由所述 5Gbit/s速率 的媒质接入控制芯片抛弃 2.5Gbit/s速率的上行数据以及所述 2.5Gbit/s速率的 上行数据对应的时钟信号, 并保存 5Gbit/s速率的上行数据以及所述 5Gbit/s 速率的上行数据对应的时钟信号。 为了解决上述技术问题, 本发明还提供了一种速率适配方法, 所述方法 包括: 存储光网络单元(ONU ) 的不同发送速率; 以及 读取所述不同发送速率, 并根据所读取的发送速率将所述 ONU中的媒 体接入控制芯片 (MAC ) 的工作速率调整为所读取的发送速率。
上述光线路终端、 光网络单元、 无源光网络系统、 上行带宽的分配方法 和速率适配方法, 实现了在不占用现有的波长资源和不劣化上行光链路性能 的情况下, 上行方向支持单一波长的多种速率时分复用共存。
附图概述 图 1为现有的 PON系统的拓朴结构图; 图 2为本发明实施例 PON系统的结构示意图; 图 3为本发明实施例 PON系统中 ONU的架构图; 图 4为本发明 PON系统中 OLT的组件实施例一的结构示意图; 图 5为本发明 PON系统中 OLT实施例一的架构图; 图 6为本发明 PON系统中 OLT的组件实施例二的结构示意图; 图 7为本发明 PON系统中 OLT实施例二的架构图; 图 8为本发明实施例上行带宽的分配方法的流程图; 以及 图 9为本发明实施例速率适配方法的流程图。
本发明的较佳实施方式 为使本发明的目的、 技术方案和优点更加清楚明白, 下文中将结合附图 对本发明的实施例进行详细说明。 需要说明的是, 在不冲突的情况下, 本申 请中的实施例及实施例中的特征可以相互任意组合。 本发明实施例提供了一种 OLT, 该 OLT包括: 光模块、 时钟数据恢复 模块、 媒体接入控制芯片和控制模块, 其中: 光模块设置为: 接收具有不同发送速率的光网络单元(ONU )发送的上 行数据, 并将上述上行数据发送给时钟数据恢复模块; 时钟数据恢复模块设置为: 接收上述上行数据, 根据上述上行数据恢复 出时钟信号, 并将上述上行数据及该上行数据对应的时钟信号发送给媒体接 入控制芯片; 媒体接入控制芯片设置为: 保存上述上行数据及该上行数据对应的时钟 信号;
控制模块设置为: 根据上述上行数据对应的时钟信号从所述媒体介入控 制芯片获得该上行数据的上行速率, 并根据该上行速率为上述 ONU分配上 行带宽。 本实施例的 OLT中, 时钟数据恢复模块的个数可以根据需要动态设置, 例如可以设置为一个、 两个或三个等等; 当然, 两个时钟数据恢复模块可以 组合为一个双速率时钟数据恢复模块; 三个时钟数据恢复模块可以组合为一 个三速率时钟数据恢复模块等等。 优选地, 当上述时钟数据恢复模块为一个时, 上述时钟数据恢复模块可 以设置为接收不同发送速率的上行数据,根据不同发送速率的 ONU的个数 η 和上述上行数据恢复出 η路时钟信号, 并将上述上行数据及该上行数据对应 的时钟信号发送给媒质接入控制芯片; 或者, 恢复出一路时钟信号, 并将该 路时钟信号和用于指示输出并行信号的数据线的个数的电平信号发送给媒质 接入控制芯片; 其中, 上述 η 为大于 1 的正整数。 当上述不同发送速率为 2.5Gbit/s 和 5Gbit/s 时; 上述时钟数据恢复模块可以进一步设置为根据 2.5Gbit/s和 5Gbit/s速率的上行数据恢复出两路时钟信号,并将时钟信号发送 给媒质接入控制芯片; 或者, 根据 2.5Gbit/s和 5Gbit/s速率的上行数据恢复 出一路时钟信号, 并针对 2.5Gbit/s和 5Gbit/s速率的上行数据分别给出用于 指示输出并行信号的数据线的个数电平信号 , 并将电平信号发送给媒质接入 控制芯片。 此时的时钟数据恢复模块就是一个双速率的时钟数据恢复模块。 优选地, 当时钟数据恢复模块为至少两个时, 时钟数据恢复模块设置为: 接收上行数据, 根据上述上行数据恢复出时钟信号, 并将上述上行数据及该 上行数据对应的时钟信号发送给媒质接入控制芯片。 当上述不同发送速率为 2.5Gbit/s和 5Gbit/s, 时钟数据恢复模块为两个(即包括第一时钟数据恢复模 块和第二时钟数据恢复模块) 时; 第一时钟数据恢复模块可以设置为: 根据 2.5Gbit/s 速率的上行数据恢复出与 2.5Gbit/s 速率对应的时钟信号, 并将 2.5Gbit/s速率的上行数据及该 2.5Gbit/s速率的上行数据对应的时钟信号发送 给一个共同的媒质接入控制芯片或者发送给 2.5Gbit/s速率的媒质接入控制芯 片; 第二时钟数据恢复模块可以用于根据 5Gbit/s速率的上行数据恢复出与 5Gbit/s速率对应的时钟信号, 并将 5Gbit/s速率的上行数据及其对应的时钟 信号发送给两个时钟数据恢复模块共同的一个媒质接入控制芯片或者发送给 5Gbit/s速率的媒质接入控制芯片; 或者, 将 2.5Gbit/s速率和 5Gbit/s速率的 上行数据及两个速率的上行数据对应的时钟信号发送给 5Gbit/s速率的媒质 接入控制芯片, 以便由上述 5Gbit/s速率的媒质接入控制芯片抛弃 2.5Gbit/s 速率的数据保留 5Gbit/s速率的数据。此时的第一时钟数据恢复模块和第二时 钟数据恢复模块可以组合为一个双速率时钟数据恢复模块。 当然, 若有更多个例如三个或四个发送速率, 均可通过扩展时钟数据恢 复模块的个数来恢复出不同发送速率对应的时钟信号, 此处不再——详述。 该 OLT可以支持多种上行速率共存。 本发明实施例还提供了一种 ONU, 该 ONU包括: 光模块、 中央控制单 元 ( Center Processing Unit, CPU )和媒体接入控制 ( Media Access Control , MAC ) 芯片, 其中: 光模块设置为: 存储上述 ONU的不同发送速率; 上述 CPU设置为: 读取光模块中存储的不同发送速率, 并根据所读取的发送速率 将 MAC芯片的工作速率调整为所读取的发送速率。 优选地, 光模块包含寄存器, 寄存器设置为: 存储上述 ONU的不同发 送速率; CPU可以进一步设置为: 通过光模块的 I2C管脚读取寄存器的不同 发送速率, 从而获得光模块的发送器件的发送速率。 上述 ONU可实现 MAC的工作速率与光模块的发送速率的适配。 本发明实施例还提供了一种无源光网络系统, 该系统包括如上述实施例 所述的 OLT和上述实施例所述的 ONU, 其中, 不同发送速率的 ONU的发 光波长相同并且以时分复用的方式在 OLT的控制下发送上行数据。 上述无源光网络系统, 在不占用现有的波长资源和不劣化上行光链路性 能的情况下, 上行方向支持单一波长的多种速率时分复用共存。
下面以具体的实施例对 OLT、 ONU及包含 OLT和 ONU的无源光网络 系统进行详细说明: 实施例一: 在该实施例中, ONU可以调整速率, OLT处只有一个时钟数据恢复模 块。 支持分别为 2.5Gbit/s和 5Gbit/s的两种上行速率的 PON系统的拓朴结构 如图 2所示, 其中, 上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU的上行波长均为 1260-1280nm, 两种 ONU釆用时分复用的方式在 OLT 控制下发送上行数据。
上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU除光模块部 分的光发送器件的速率不同外, 其他器件均相同, 如图 3所示的 ONU架构 图主要包括媒质接入控制 (MAC ) 31 和物理介质依赖 (Physical Medium Dependent ( PMD ) 32, 其中, 上行速率为 2.5Gbit/s的 ONU的光模块的光发 送器件的发送速率为 2.5Gbit/s, 上行速率为 5Gbit/s的 ONU的光模块的光发 送器件的发送速率为 5Gbit/s, 这种结构设计有利于提高不同速率 ONU组件 的通用性, 降低 5Gbit/s速率 ONU的成本。 ONU的光模块的一个寄存器中 存储了该 ONU的上行速率值, ONU上电后, ONU的 CPU通过 ONU光模 块的 I2C管脚读取 ONU光模块的寄存器, 获得光模块的发送器件的发送速 率是 2.5Gbit/s还是 5Gbit/s, 然后调整 ONU的 MAC的工作速率为光模块的 发送速率, 即为 2.5Gbit/s或者 5Gbit/s。
OLT的部分组件的结构如图 4所示, 该 OLT主要包括光模块 41、 双速 率突发模式时钟数据恢复模块 42和媒质接入控制芯片 43。 图 5所示为本发 明 PON系统中 OLT实施例一的架构图。 该 OLT的光模块接收到携带 ONU 发送的 2.5Gbit/s和 5Gbit/s速率上行数据的光信号后, 将光信号转换为电信 号, 并输出到双速率突发模式时钟数据恢复模块。 双速率突发模式时钟数据 恢复模块收到 2.5Gbit/s速率的电信号后,恢复出对应 2.5Gbit/s速率的电信号 的时钟信号, 并将恢复出的时钟和数据发送给媒质接入控制芯片。 双速率突 发模式时钟数据恢复模块收到 5Gbit/s速率的电信号后, 恢复出对应 5Gbit/s 速率的电信号的时钟信号, 并将恢复出的时钟和数据发送给媒质接入控制芯 片,然后 OLT的软件系统能够从媒质接入控制芯片获得上行数据和发送该上 行数据的 ONU的上行速率, OLT存储该 ONU的上行速率信息, 并根据该 信息为 ONU分配上行带宽。 实施例二: 在该实施例中, ONU可以调整速率, OLT处只有一个时钟数据恢复模 块。 支持分别为 2.5Gbit/s和 5Gbit/s的两种上行速率的 PON系统的拓朴结构 如图 2所示, 其中, 上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU的上行波长均为 1260-1280nm, 两种 ONU釆用时分复用的方式在 OLT 控制下发送上行数据。 上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU除光模块部 分的光发送器件的速率不同外, 其他器件均相同, 如图 3所示的 ONU架构 图主要包括 MAC和 PMD, 其中, 上行速率为 2.5Gbit/s的 ONU的光模块的 光发送器件的发送速率为 2.5Gbit/s, 上行速率为 5Gbit/s的 ONU的光模块的 光发送器件的发送速率为 5Gbit/s, 这种结构设计有利于提高不同速率 ONU 组件的通用性, 降低 5Gbit/s速率 ONU的成本。 ONU的光模块的一个寄存 器中存储了该 ONU的上行速率值, ONU上电后, ONU的 CPU通过 ONU 光模块的 I2C管脚读取 ONU光模块的寄存器, 获得光模块的发送器件的发 送速率是 2.5Gbit/s还是 5Gbit/s, 然后调整 ONU的 MAC的工作速率为光模 块的发送速率, 即为 2.5Gbit/s或者 5Gbit/s。 OLT的部分组件的结构如图 4所示, 该 OLT主要包括光模块 41、 双速 率突发模式时钟数据恢复模块 42和媒质接入控制芯片 43。 图 5所示为本发 明 PON系统中 OLT实施例一的架构图, 该 OLT的光模块接收到携带 ONU 发送的 2.5Gbit/s和 5Gbit/s速率上行数据的光信号后, 将光信号转换为电信 号, 并输出到双速率突发模式时钟数据恢复模块。 OLT中的双速率突发模式 时钟数据恢复模块收到 2.5Gbit/s和 5Gbit/s速率信号后, 恢复出一个相同的 时钟信号, 并将 2.5Gbit/s速率的信号利用 4根并行数据线传输给媒质接入控 制芯片,将 5Gbit/s速率的信号利用 8根并行数据线传输给媒质接入控制芯片, 并给出有效的电平指示说明传输并行信号的数据线的个数。 实施例三: 在该实施例中, ONU可以调整速率, OLT处有两个时钟数据恢复模块。 支持分别为 2.5Gbit/s和 5Gbit/s的两种上行速率的 PON系统的拓朴结构 如图 2所示, 其中, 上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU的上行波长均为 1260-1280nm, 两种 ONU釆用时分复用的方式在 OLT 控制下发送上行数据。
上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU除光模块部 分的光发送器件的速率不同外, 其他器件均相同, 如图 3所示的 ONU架构 图主要包括 MAC和 PMD, 其中, 上行速率为 2.5Gbit/s的 ONU的光模块的 光发送器件的发送速率为 2.5Gbit/s, 上行速率为 5Gbit/s的 ONU的光模块的 光发送器件的发送速率为 5Gbit/s, 这种结构设计有利于提高不同速率 ONU 组件的通用性, 降低 5Gbit/s速率 ONU的成本。 ONU的光模块的一个寄存 器中存储了该 ONU的上行速率值, ONU上电后, ONU的 CPU通过 ONU 光模块的 I2C管脚读取 ONU光模块的寄存器, 获得光模块的发送器件的发 送速率是 2.5Gbit/s还是 5Gbit/s, 然后调整 ONU的 MAC的工作速率为光模 块的发送速率, 即为 2.5Gbit/s或者 5Gbit/s。 在该实施例中 OLT的部分组件的结构如图 6所示, 该 OLT主要包括光 模块 61、 2.5Gbit/s突发模式时钟数据恢复模块 62、 2.5Gbit/s媒质接入控制芯 片 63、 5Gbit/s突发模式时钟数据恢复模块 64和 5Gbit/s媒质接入控制芯片 65。 图 7所示为本发明 PON系统中 OLT实施例二的架构图, 该 OLT的光模 块接收到携带 ONU发送的 2.5Gbit/s和 5Gbit/s速率上行数据的光信号后,将 光信号转换为电信号, 并将电信号分为两路分别输入到 2.5Gbit/s 速率和 5Gbit/s速率的两个时钟数据恢复模块。 2.5Gbit/s速率的突发模式时钟数据恢 复模块恢复出 2.5Gbit/s速率的电信号并抛弃 5Gbit/s速率的电信号, 然后将 恢复出的 2.5Gbit/s的数据发送给 2.5Gbit/s媒质接入控制芯片。 5Gbit/s速率 突发模式时钟数据恢复模块恢复出 2.5Gbit/s速率的电信号和 5Gbit/s的数据 后,将恢复出的 5Gbit/s的数据发送给媒质接入控制芯片,并由媒质接入控制 芯片抛弃 2.5Gbit/s速率的数据和保留 5Gbit/s的数据。 然后 OLT的软件系统 能够从媒质接入控制芯片获得上行数据和发送该上行数据的 ONU的上行速 率, OLT存储该 ONU的上行速率信息, 并根据该信息为 ONU分配上行带 宽。
实施例四 在该实施例中, ONU速率固定, OLT处只有一个时钟数据恢复模块。 支持分别为 2.5Gbit/s和 5Gbit/s的两种上行速率的 PON系统的拓朴结构 如图 2所示, 其中, 上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU的上行波长均为 1260-1280nm, 两种 ONU釆用时分复用的方式在 OLT 控制下发送上行数据。 OLT的部分组件的结构如图 4所示, 该 OLT主要包括光模块 41、 双速 率突发模式时钟数据恢复模块 42和媒质接入控制芯片 43。 图 5所示为本发 明 PON系统中 OLT实施例一的架构图, 该 OLT的光模块接收到携带 ONU 发送的 2.5Gbit/s和 /或 5Gbit/s速率上行数据的光信号后, 将光信号转换为电 信号, 并输出到双速率突发模式时钟数据恢复模块。 双速率突发模式时钟数 据恢复模块收到 2.5Gbit/s速率的电信号后,恢复出对应 2.5Gbit/s速率的电信 号的时钟信号 , 并将恢复出的时钟和数据发送给媒质接入控制芯片。 突发模 式时钟数据恢复模块收到 5Gbit/s速率的电信号后, 恢复出对应 5Gbit/s速率 的电信号的时钟信号 , 并将恢复出的时钟和数据发送给媒质接入控制芯片。 然后 OLT 的软件系统能够从媒质接入控制芯片获得上行数据和发送该上行 数据的 ONU的上行速率, OLT存储该 ONU的上行速率信息, 并根据该信 息为 ONU分配上行带宽。 实施例五: 在该实施例中, ONU速率固定, OLT处只有一个时钟数据恢复模块。 支持分别为 2.5Gbit/s和 5Gbit/s的两种上行速率的 PON系统的拓朴结构 如图 2所示, 其中, 上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU的上行波长均为 1260-1280nm, 两种 ONU釆用时分复用的方式在 OLT 控制下发送上行数据。
OLT的部分组件的结构如图 4所示, 该 OLT主要包括光模块 41、 双速 率突发模式时钟数据恢复模块 42和媒质接入控制芯片 43。 图 5所示为本发 明 PON系统中 OLT实施例一的架构图, 该 OLT的光模块接收到携带 ONU 发送的 2.5Gbit/s和 /或 5Gbit/s速率上行数据的光信号后, 将光信号转换为电 信号, 并输出到双速率突发模式时钟数据恢复模块。 OLT中的双速率突发模 式时钟数据恢复模块收到 2.5Gbit/s和 /或 5Gbit/s速率信号后, 恢复出一个相 同的时钟信号, 并将 2.5Gbit/s速率的信号利用 4根并行数据线传输给媒质接 入控制芯片, 5Gbit/s速率的信号利用 8根并行数据线传输给媒质接入控制芯 片, 并给出有效的电平指示说明传输并行信号的数据线的个数。
实施例六: 在该实施例中, ONU速率固定, OLT处有两个时钟数据恢复模块。 支持分别为 2.5Gbit/s和 5Gbit/s的两种上行速率的 PON系统的拓朴结构 如图 2所示, 其中, 上行速率为 2.5Gbit/s的 ONU和上行速率为 5Gbit/s的 ONU的上行波长均为 1260-1280nm, 两种 ONU釆用时分复用的方式在 OLT 控制下发送上行数据。
在该实施例中 OLT的部分组件的结构如图 6所示, 该 OLT主要包括光 模块 61、 2.5Gbit/s突发模式时钟数据恢复模块 62、 2.5Gbit/s媒质接入控制芯 片 63、 5Gbit/s突发模式时钟数据恢复模块 64和 5Gbit/s媒质接入控制芯片 65。 图 7所示为本发明 PON系统中 OLT实施例二的架构图, 该 OLT的光模 块接收到携带 ONU发送的 2.5Gbit/s和 /或 5Gbit/s速率上行数据的光信号后, 将光信号转换为电信号, 并将电信号分为两路分别输入到 2.5Gbit/s速率和 5Gbit/s速率的两个突发模式时钟数据恢复模块。 2.5Gbit/s速率的突发模式时 钟数据恢复模块恢复出 2.5Gbit/s速率的电信号并抛弃 5Gbit/s速率的电信号, 然后将恢复出的 2.5Gbit/s的数据发送给媒质接入控制芯片。 5Gbit/s速率突发 模式时钟数据恢复模块恢复出 2.5Gbit/s速率的电信号和 5Gbit/s的数据后, 将恢复出的数据发送给媒质接入控制芯片, 并由媒质接入控制芯片抛弃 2.5Gbit/s速率的数据和保留 5Gbit/s的数据。 然后 OLT的软件系统能够从媒 质接入控制芯片获得上行数据和发送该上行数据的 ONU的上行速率, OLT 存储该 ONU的上行速率信息, 并根据该信息为 ONU分配上行带宽。 如图 8所示, 为本发明实施例的上行带宽的分配方法的流程图, 该方法 是从 OLT侧进行描述的, 该方法包括: 步骤 801、 接收并转发具有不同发送速率的光网络单元(ONU )发送的 上行数据; OLT中的光模块接收并转发上述上行数据; 步骤 802、 根据上述上行数据恢复出时钟信号, 并发送上述上行数据及 该上行数据对应的时钟信号;
OLT 中的时钟数据恢复模块恢复出时钟信号后, 将该时钟信号发送至 OLT中的 MAC; 步骤 803、 保存上述上行数据及其对应的时钟信号;
OLT中的 MAC保存时钟信号; 其中, 步骤 802和 803即根据上述上行数据恢复出时钟信号, 并保存上 述上行数据及其对应的时钟信号; 步骤 804、 根据上述上行数据对应的时钟信号获得该上行数据的上行速
OLT中的控制模块根据上述时钟信号获得上行速率, 并根据上述上行速 率为上述 ONU分配上行带宽。 上述上行带宽分配方法中, 恢复出时钟信号, 并保存所述上行数据及所 述上行数据对应的时钟信号的步骤可以包括: 根据不同发送速率的 ONU的个数 n和所述上行数据恢复出 n路时钟信 号, 并将所述上行数据及该上行数据对应的时钟信号发送给媒质接入控制芯 片, 以保存所述上行数据及所述上行数据对应的时钟信号; 或者, 恢复出一 路时钟信号, 并将该路时钟信号和用于指示输出并行信号的数据线的个数的 电平信号发送给媒质接入控制芯片, 以保存该路时钟信号和电平信号; 其中, 上述 n为大于 1的正整数。 或者, 上述上行带宽分配方法中, 当所述不同发送速率为 2.5Gbit/s和 5Gbit/s 时, 恢复出时钟信号, 并保存所述上行数据及所述上行数据对应的时钟信号 的步骤包括: 根据 2.5Gbit/s速率的上行数据恢复出与 2.5Gbit/s速率对应的时钟信号, 送给 2.5Gbit/s速率和 5Gbit/s速率的上行数据共同的一个媒质接入控制芯片, 时钟信号, 或者发送给 2.5Gbit/s 速率的媒质接入控制芯片, 以保存所述 以及 根据 5Gbit/s速率的上行数据恢复出与 5Gbit/s速率对应的时钟信号, 并
2.5Gbit/s速率和 5Gbit/s速率的上行数据共同的一个媒质接入控制芯片或者 发送给 5Gbit/s速率的媒质接入控制芯片, 以保存所述 5Gbit/s速率的上行数 据及所述 5Gbit/s速率的上行数据对应的时钟信号; 或者, 将 2.5Gbit/s速率 和 5Gbit/s速率的上行数据及 2.5Gbit/s速率和 5Gbit/s速率的上行数据对应的 时钟信号发送给 5Gbit/s速率的媒质接入控制芯片, 以便由所述 5Gbit/s速率 的媒质接入控制芯片抛弃 2.5Gbit/s速率的上行数据以及所述 2.5Gbit/s速率的 上行数据对应的时钟信号, 并保存 5Gbit/s速率的上行数据以及所述 5Gbit/s 速率的上行数据对应的时钟信号。 实现上述上行带宽分配的 OLT的结构可参见图 4-图 7 , 此处不再赘述。 该上行带宽的分配方法支持多种上行速率共存。 如图 9所示, 为实施例本发明速率适配方法的流程图, 该方法是从 ONU 侧进行描述的, 该方法包括: 步骤 901、 存储光网络单元的不同发送速率;
ONU的光模块中包含有寄存器,该寄存器中存储有不同的发送速率, 例 如 2.5Gbit/s和 5Gbit/s的发送速率等; 步骤 902、读取上述不同发送速率,并根据所读取的发送速率将上述 ONU 中的媒体接入控制芯片 (MAC ) 的工作速率调整为所读取的发送速率。
ONU中的 CPU读取发送速率, 并根据读取的发送速率将 MAC的工作 速率调整为读取的发送速率。 实现上述速率适配方法的 ONU的结构可参见图 3 , 此处不再赘述。 该速率适配方法可实现速率的匹配。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序 来指令相关硬件完成, 上述程序可以存储于计算机可读存储介质中, 如只读 存储器、 磁盘或光盘等。 可选地, 上述实施例的全部或部分步骤也可以使用 一个或多个集成电路来实现。 相应地, 上述实施例中的各模块 /单元可以釆用 硬件的形式实现, 也可以釆用软件功能模块的形式实现。 本发明不限制于任 何特定形式的硬件和软件的结合。 以上实施例仅用以说明本发明的技术方案而非限制, 仅仅参照较佳实施 例对本发明进行了详细说明。 本领域的普通技术人员应当理解, 可以对本发 明的技术方案进行修改或者等同替换, 而不脱离本发明技术方案的精神和范 围, 均应涵盖在本发明的权利要求范围当中。
工业实用性 本发明实现了在不占用现有的波长资源和不劣化上行光链路性能的情况 下, 上行方向支持单一波长的多种速率时分复用共存。

Claims

权 利 要 求 书
1、 一种光线路终端 (OLT ) , 所述 OLT包括: 光模块、 时钟数据恢复 模块、 媒体接入控制芯片和控制模块, 其中: 所述光模块设置为: 接收具有不同发送速率的光网络单元(ONU )发送 的上行数据, 并将所述上行数据发送给所述时钟数据恢复模块; 所述时钟数据恢复模块设置为: 接收所述上行数据, 根据所述上行数据 所述媒体接入控制芯片; 所述媒体接入控制芯片设置为: 保存所述上行数据及及所述上行数据对 应的时钟信号; 所述控制模块设置为: 根据所述上行数据对应的时钟信号获得该上行数 据的上行速率, 并根据所述上行速率为所述 ONU分配上行带宽。
2、 根据权利要求 1所述的 OLT, 其中, 当所述时钟数据恢复模块为一 个时, 所述时钟数据恢复模块是设置为按如下方式接收所述上行数据, 恢复出 体接入控制芯片: 接收不同发送速率的上行数据, 以及, 根据不同发送速率 的 ONU的个数 n和所述上行数据恢复出 n路时钟信号, 将所述上行数据及 所述上行数据对应的时钟信号发送给所述媒质接入控制芯片; 或者, 根据不 同发送速率的 ONU的个数 n和所述上行数据恢复出一路时钟信号, 并将该 一路时钟信号和用于指示输出并行信号的数据线的个数的电平信号发送给所 述媒质接入控制芯片; 其中, 所述 n为大于 1的正整数。
3、 根据权利要求 1所述的 OLT, 其中, 所述时钟数据恢复模块为至少 两个。
4、 根据权利要求 2所述的 OLT, 其中, 所述不同发送速率为 2.5Gbit/s 和 5Gbit/s时;
所述时钟数据恢复模块是设置为按如下方式恢复出时钟信号, 并将所述 上行数据及所述上行数据对应的时钟信号发送给所述媒体接入控制芯片: 根 据 2.5Gbit/s和 5Gbit/s速率的上行数据恢复出两路时钟信号, 并将所述上行 数据及所述上行数据对应的时钟信号发送给媒质接入控制芯片; 或者, 根据 2.5Gbit/s和 5Gbit/s速率的上行数据恢复出一路时钟信号, 并针对 2.5Gbit/s 和 5Gbit/s速率的上行数据分别给出用于指示输出并行信号的数据线的个数 的电平信号, 并将所述电平信号发送给媒质接入控制芯片。
5、 根据权利要求 3所述的 OLT, 其中, 所述不同发送速率为 2.5Gbit/s 和 5Gbit/s, 所述时钟数据恢复模块为两个时, 第一时钟数据恢复模块设置为: 根据 2.5Gbit/s速率的上行数据恢复出与 2.5Gbit/s速率对应的时钟信号, 并将 2.5Gbit/s速率的上行数据及 2.5Gbit/s 速率的上行数据对应的时钟信号发送给 2.5Gbit/s速率和 5Gbit/s速率的上行 数据共同的一个媒质接入控制芯片或者发送给 2.5Gbit/s速率的媒质接入控制 芯片;
第二时钟数据恢复模块设置为: 根据 5Gbit/s速率的上行数据恢复出与 上行数据对应的时钟信号发送给 2.5Gbit/s速率和 5Gbit/s速率的上行数据共 同的一个媒质接入控制芯片或者发送给 5Gbit/s速率的媒质接入控制芯片;或 者,将 2.5Gbit/s速率和 5Gbit/s速率的上行数据及 2.5Gbit/s速率和 5Gbit/s速 率的上行数据对应的时钟信号发送给 5Gbit/s速率的媒质接入控制芯片,以便 由所述 5Gbit/s 速率的媒质接入控制芯片抛弃 2.5Gbit/s 速率的数据保留 5Gbit/s速率的数据。
6、一种光网络单元( ONU ) ,所述 ONU包括光模块、中央控制单元( CPU ) 和媒体接入控制芯片 (MAC ) , 其中: 所述光模块设置为: 存储所述 ONU的不同发送速率; 所述 CPU设置为:读取所述光模块中存储的所述不同发送速率,并根据 所读取的发送速率将所述 MAC的工作速率调整为所读取的发送速率。
7、 根据权利要求 6所述的 ONU, 其中: 所述光模块包含寄存器, 所述寄存器设置为: 存储所述 ONU的不同发 送速率; 所述 CPU是设置为按如下方式读取所述光模块中存储的所述不同发送 速率: 通过光模块的 I2C管脚读取所述寄存器获得光模块的发送器件的发送 速率。
8、 一种无源光网络系统, 所述系统包括如权利要求 1-5中任一项所述的 光线路终端(OLT ) , 以及具有不同发送速率的光网络单元(ONU ) , 其中, 下发送上行数据; 其中: 所述 ONU: 包括光模块、 中央控制单元(CPU )和媒体接入控制芯片 ( MAC ) , 所述光模块设置为: 存储所述 ONU的不同发送速率; 所述 CPU 设置为: 读取所述光模块中存储的所述不同发送速率, 并根据所读取的发送 速率将所述 MAC的工作速率调整为该发送速率。
9、 一种上行带宽的分配方法, 所述方法包括: 接收并转发具有不同发送速率的光网络单元(ONU )发送的上行数据; 根据所述上行数据恢复出时钟信号, 并保存所述上行数据及所述上行数 据对应的时钟信号; 以及 根据所述上行数据对应的时钟信号获得该上行数据的上行速率, 并根据 所述上行速率为所述 ONU分配上行带宽。
10、 如权利要求 9所述的方法, 其中, 恢复出时钟信号, 并保存所述上 行数据及所述上行数据对应的时钟信号的步骤包括: 根据不同发送速率的 ONU的个数 n和所述上行数据恢复出 n路时钟信 号, 并将所述上行数据及该上行数据对应的时钟信号发送给媒质接入控制芯 片, 以保存所述上行数据及所述上行数据对应的时钟信号; 或者, 恢复出一 路时钟信号, 并将该路时钟信号和用于指示输出并行信号的数据线的个数的 电平信号发送给媒质接入控制芯片, 以保存该路时钟信号和电平信号; 其中, 上述 n为大于 1的正整数。
11、 如权利要求 9所述的方法, 其中, 当所述不同发送速率为 2.5Gbit/s 和 5Gbit/s时,恢复出时钟信号,并保存所述上行数据及所述上行数据对应的 时钟信号的步骤包括: 根据 2.5Gbit/s速率的上行数据恢复出与 2.5Gbit/s速率对应的时钟信号, 送给 2.5Gbit/s速率和 5Gbit/s速率的上行数据共同的一个媒质接入控制芯片, 时钟信号, 或者发送给 2.5Gbit/s 速率的媒质接入控制芯片, 以保存所述 以及 根据 5Gbit/s速率的上行数据恢复出与 5Gbit/s速率对应的时钟信号, 并
2.5Gbit/s速率和 5Gbit/s速率的上行数据共同的一个媒质接入控制芯片或者 发送给 5Gbit/s速率的媒质接入控制芯片, 以保存所述 5Gbit/s速率的上行数 据及所述 5Gbit/s速率的上行数据对应的时钟信号; 或者, 将 2.5Gbit/s速率 和 5Gbit/s速率的上行数据及 2.5Gbit/s速率和 5Gbit/s速率的上行数据对应的 时钟信号发送给 5Gbit/s速率的媒质接入控制芯片, 以便由所述 5Gbit/s速率 的媒质接入控制芯片抛弃 2.5Gbit/s速率的上行数据以及所述 2.5Gbit/s速率的 上行数据对应的时钟信号, 并保存 5Gbit/s速率的上行数据以及所述 5Gbit/s 速率的上行数据对应的时钟信号。
12、 一种速率适配方法, 所述方法包括: 存储光网络单元(ONU ) 的不同发送速率; 以及 读取所述不同发送速率, 并根据所读取的发送速率将所述 ONU中的媒 体接入控制芯片 (MAC ) 的工作速率调整为所读取的发送速率。
PCT/CN2011/077496 2010-12-29 2011-07-22 光线路终端、光网络单元和无源光网络系统 WO2012088878A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US13/997,989 US9071405B2 (en) 2010-12-29 2011-07-22 Optical line terminal, optical network unit and passive optical network system
EP11854178.8A EP2645608B1 (en) 2010-12-29 2011-07-22 Optical line terminal, optical network unit and passive optical network system
RU2013129458/07A RU2013129458A (ru) 2010-12-29 2011-07-22 Оптическое линейное оконечное устройство, оптический сетевой блок и система пассивной оптической сети
BR112013016773-4A BR112013016773B1 (pt) 2010-12-29 2011-07-22 Terminal de linha ótica, unidade de rede ótica e sistema de rede ótica passiva

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010611680.2A CN102547491B (zh) 2010-12-29 2010-12-29 光线路终端、光网络单元和无源光网络系统
CN201010611680.2 2010-12-29

Publications (1)

Publication Number Publication Date
WO2012088878A1 true WO2012088878A1 (zh) 2012-07-05

Family

ID=46353234

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/077496 WO2012088878A1 (zh) 2010-12-29 2011-07-22 光线路终端、光网络单元和无源光网络系统

Country Status (6)

Country Link
US (1) US9071405B2 (zh)
EP (1) EP2645608B1 (zh)
CN (1) CN102547491B (zh)
BR (1) BR112013016773B1 (zh)
RU (1) RU2013129458A (zh)
WO (1) WO2012088878A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104218995B (zh) * 2013-06-04 2018-06-05 中兴通讯股份有限公司 一种onu、通信系统及onu通信方法
CN104467973B (zh) * 2014-10-27 2017-11-07 索尔思光电(成都)有限公司 一种发送电路、接收电路、光纤收发器及其信号处理方法
CN105792026B (zh) * 2014-12-22 2021-07-06 中兴通讯股份有限公司 光线路终端的控制方法、光线路终端及光线路系统
CN106878834B (zh) * 2015-12-10 2020-07-31 深圳市中兴微电子技术有限公司 一种无源光网络兼容装置及其实现方法和光线路终端
CN106921436B (zh) * 2015-12-26 2019-11-05 华为技术有限公司 用于对多种速率的数据进行处理的方法及装置
CN106059723B (zh) * 2016-08-03 2023-04-07 索尔思光电(成都)有限公司 信号产生装置和方法、误码测试仪和方法
US10164706B2 (en) * 2017-02-23 2018-12-25 Cisco Technology, Inc. Multi-identity optics modules
CN112583507B (zh) 2019-09-29 2022-05-10 华为技术有限公司 一种状态控制的方法、数据发送的方法及终端

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009584A (zh) * 2006-01-24 2007-08-01 华为技术有限公司 对无源光网络进行网络速率升级的方法
WO2009102422A1 (en) * 2008-02-15 2009-08-20 Alcatel-Lucent Usa Inc. System, method and computer readable medium for providing dual rate transmission on a gigabit passive optical network
CN101557338A (zh) * 2008-04-08 2009-10-14 华为技术有限公司 实现以太网无源光网络中报文转发的方法、系统及装置
US20100226649A1 (en) * 2009-03-04 2010-09-09 Futurewei Technologies, Inc. Multi-Fiber Ten Gigabit Passive Optical network Optical Line Terminal for Optical Distribution Network Coexistence with Gigabit Passive Optical Network
CN101877798A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 现有无源光网络和下一代无源光网络的共存系统,升级方法

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1642042A (zh) * 2004-01-15 2005-07-20 华为技术有限公司 光通信系统、子速率复用解复用装置及其方法
US7593418B1 (en) * 2004-03-23 2009-09-22 Marvell Israel (M.I.S.L.) Ltd. Apparatus and a method for allocating upstream bandwidth of a shared upstream channel of an optical network
US8712243B2 (en) * 2004-12-17 2014-04-29 Alcatel Lucent Methods and apparatus for achieving multiple bit rates in passive optical networks
CN101035389A (zh) * 2006-03-08 2007-09-12 上海交通大学 在无源光网络的远端设备内进行带宽分配的系统和方法
WO2008108399A1 (ja) * 2007-03-05 2008-09-12 Nec Corporation 光モジュール
CN101355388B (zh) * 2007-07-25 2012-07-04 华为技术有限公司 接收装置和接收方法
JP5136132B2 (ja) * 2008-03-17 2013-02-06 日本電気株式会社 光伝送装置、光伝送システム、装置制御方法、および装置のプログラム
CN101552647B (zh) * 2008-04-03 2013-03-13 华为技术有限公司 一种光信号接收的方法和装置
EP2117167B1 (en) * 2008-05-05 2012-02-15 Nokia Siemens Networks Oy Two and three-stroke discovery process for 10G-EPONs
US8126335B2 (en) * 2008-06-08 2012-02-28 Pmc-Sierra Israel Ltd. Methods and apparatus for next generation access passive optical networks
CN101686418A (zh) * 2008-09-28 2010-03-31 华为技术有限公司 无源光网络中信号传输和处理的方法、系统和装置
US20100189440A1 (en) * 2009-01-28 2010-07-29 Telefonaktiebolaget L M Ericsson (Publ) Methods and Systems for Transmitting Data in Scalable Passive Optical Networks
WO2010092666A1 (ja) * 2009-02-10 2010-08-19 三菱電機株式会社 高速光信号制御部、親局装置およびグラント割り当て方法
JP4888515B2 (ja) * 2009-04-16 2012-02-29 住友電気工業株式会社 動的帯域割当装置及び方法とponシステムの局側装置
CN101848033B (zh) * 2010-04-28 2012-11-14 成都优博创技术有限公司 一种双速率接收装置
CN101854212B (zh) * 2010-05-13 2012-09-12 成都优博创技术有限公司 一种双速率光信号接收装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101009584A (zh) * 2006-01-24 2007-08-01 华为技术有限公司 对无源光网络进行网络速率升级的方法
WO2009102422A1 (en) * 2008-02-15 2009-08-20 Alcatel-Lucent Usa Inc. System, method and computer readable medium for providing dual rate transmission on a gigabit passive optical network
CN101557338A (zh) * 2008-04-08 2009-10-14 华为技术有限公司 实现以太网无源光网络中报文转发的方法、系统及装置
US20100226649A1 (en) * 2009-03-04 2010-09-09 Futurewei Technologies, Inc. Multi-Fiber Ten Gigabit Passive Optical network Optical Line Terminal for Optical Distribution Network Coexistence with Gigabit Passive Optical Network
CN101877798A (zh) * 2009-04-30 2010-11-03 中兴通讯股份有限公司 现有无源光网络和下一代无源光网络的共存系统,升级方法

Also Published As

Publication number Publication date
BR112013016773A2 (pt) 2016-10-11
RU2013129458A (ru) 2015-02-10
CN102547491A (zh) 2012-07-04
EP2645608A1 (en) 2013-10-02
EP2645608A4 (en) 2017-07-19
US20130294774A1 (en) 2013-11-07
BR112013016773B1 (pt) 2021-09-08
US9071405B2 (en) 2015-06-30
CN102547491B (zh) 2015-12-16
EP2645608B1 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
WO2012088878A1 (zh) 光线路终端、光网络单元和无源光网络系统
Zhang et al. Coherent passive optical networks for 100G/λ-and-beyond fiber access: recent progress and outlook
TWI458275B (zh) 用於多數乙太網路被動光學網路(epon)間之鏈結共享的方法及設備
JP5908163B2 (ja) 光回線終端装置及びその実現方法
US11736596B1 (en) Optical module for CXL standard
WO2014079237A1 (zh) 光纤网络的发送、接收、通信系统及信号的调制方法
TW201220732A (en) Cost-effective multi-rate upstream for 10GEPON based on high efficiency coding
WO2015172294A1 (zh) 一种光网络单元onu注册的方法、装置及系统
TW201203892A (en) Pluggable OLT in ethernet passive optical networks
WO2009021435A1 (fr) Procédé, système et appareil pour effectuer l'allongement de la transmission de données dans un réseau optique passif
US20200162186A1 (en) Optical Module and Network Device
WO2004107798A1 (en) Optical burst switch network system and method with just-in-time signaling
US9413466B2 (en) Distributed pon transceiver architecture
WO2012051867A1 (zh) 基于负荷分担方式的数据链路保护方法和系统
WO2010060295A1 (zh) 实现lr-pon的方法、装置及系统
WO2011130985A1 (zh) 可重构编解码器及基于该设备的光码分多址无源光网络
JP2018038026A (ja) ホスト基板、光受信器、光送信器、光トランシーバ、およびホスト基板への光トランシーバの実装方法
JP2011146784A (ja) 光加入者線終端装置
WO2018090296A1 (zh) 无源光网络的通信方法、装置和系统
US20150063811A1 (en) Central-office termination apparatus of adaptively changing connection to subscriber-terminal terminator and path switching method
CN102325280A (zh) 万兆以太无源光网络再生光模块及万兆以太光网络系统
CN203563070U (zh) Cfp光收发模块
US8041215B2 (en) ONT discovery in a DWDM hybrid PON LT configuration
WO2015172375A1 (zh) 一种通信方法、装置及系统
WO2014180253A1 (zh) 一种支持两种无源光网络共存的光组件及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11854178

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2011854178

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 13997989

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013129458

Country of ref document: RU

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112013016773

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112013016773

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20130628