WO2012087035A2 - 인트라 예측 모드 부호화/복호화 방법 및 그 장치 - Google Patents

인트라 예측 모드 부호화/복호화 방법 및 그 장치 Download PDF

Info

Publication number
WO2012087035A2
WO2012087035A2 PCT/KR2011/009957 KR2011009957W WO2012087035A2 WO 2012087035 A2 WO2012087035 A2 WO 2012087035A2 KR 2011009957 W KR2011009957 W KR 2011009957W WO 2012087035 A2 WO2012087035 A2 WO 2012087035A2
Authority
WO
WIPO (PCT)
Prior art keywords
prediction mode
mode
intra prediction
mpm
unit
Prior art date
Application number
PCT/KR2011/009957
Other languages
English (en)
French (fr)
Other versions
WO2012087035A3 (ko
Inventor
이하현
김휘용
임성창
김종호
이진호
정세윤
조숙희
최진수
김진웅
안치득
Original Assignee
한국전자통신연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US13/988,958 priority Critical patent/US9350993B2/en
Priority to JP2013540907A priority patent/JP2014501092A/ja
Priority to CN201180068084.7A priority patent/CN103380622B/zh
Priority to EP18191463.1A priority patent/EP3442234A1/en
Priority to EP11850654.2A priority patent/EP2658262A4/en
Application filed by 한국전자통신연구원 filed Critical 한국전자통신연구원
Publication of WO2012087035A2 publication Critical patent/WO2012087035A2/ko
Publication of WO2012087035A3 publication Critical patent/WO2012087035A3/ko
Priority to US15/055,150 priority patent/US9648327B2/en
Priority to US15/477,714 priority patent/US9838689B2/en
Priority to US15/799,086 priority patent/US10091502B2/en
Priority to US16/117,948 priority patent/US10511836B2/en
Priority to US16/664,731 priority patent/US10939098B2/en
Priority to US17/163,218 priority patent/US11503282B2/en
Priority to US17/965,667 priority patent/US12003707B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/107Selection of coding mode or of prediction mode between spatial and temporal predictive coding, e.g. picture refresh
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/17Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object
    • H04N19/176Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being an image region, e.g. an object the region being a block, e.g. a macroblock
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/105Selection of the reference unit for prediction within a chosen coding or prediction mode, e.g. adaptive choice of position and number of pixels used for prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/109Selection of coding mode or of prediction mode among a plurality of temporal predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/103Selection of coding mode or of prediction mode
    • H04N19/11Selection of coding mode or of prediction mode among a plurality of spatial predictive coding modes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/102Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or selection affected or controlled by the adaptive coding
    • H04N19/13Adaptive entropy coding, e.g. adaptive variable length coding [AVLC] or context adaptive binary arithmetic coding [CABAC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/136Incoming video signal characteristics or properties
    • H04N19/137Motion inside a coding unit, e.g. average field, frame or block difference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/134Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the element, parameter or criterion affecting or controlling the adaptive coding
    • H04N19/157Assigned coding mode, i.e. the coding mode being predefined or preselected to be further used for selection of another element or parameter
    • H04N19/159Prediction type, e.g. intra-frame, inter-frame or bidirectional frame prediction
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/169Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding
    • H04N19/1887Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the coding unit, i.e. the structural portion or semantic portion of the video signal being the object or the subject of the adaptive coding the unit being a variable length codeword
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/10Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding
    • H04N19/189Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding
    • H04N19/196Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using adaptive coding characterised by the adaptation method, adaptation tool or adaptation type used for the adaptive coding being specially adapted for the computation of encoding parameters, e.g. by averaging previously computed encoding parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/517Processing of motion vectors by encoding
    • H04N19/52Processing of motion vectors by encoding by predictive encoding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/513Processing of motion vectors
    • H04N19/521Processing of motion vectors for estimating the reliability of the determined motion vectors or motion vector field, e.g. for smoothing the motion vector field or for correcting motion vectors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/593Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving spatial prediction techniques
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/70Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by syntax aspects related to video coding, e.g. related to compression standards
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/90Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using coding techniques not provided for in groups H04N19/10-H04N19/85, e.g. fractals
    • H04N19/91Entropy coding, e.g. variable length coding [VLC] or arithmetic coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/60Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding
    • H04N19/61Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using transform coding in combination with predictive coding

Definitions

  • the present invention relates to image processing, and more particularly, to an intra prediction mode encoding / decoding method and apparatus.
  • an inter prediction technique for predicting a pixel value included in a current picture from a previous and / or subsequent picture in time, and for predicting a pixel value included in a current picture using pixel information in the current picture.
  • An intra prediction technique an entropy encoding technique of allocating a short code to a symbol with a high frequency of appearance and a long code to a symbol with a low frequency of appearance may be used.
  • An object of the present invention is to provide an image encoding method and apparatus for improving image encoding / decoding efficiency.
  • Another object of the present invention is to provide an image decoding method and apparatus for improving image encoding / decoding efficiency.
  • Another technical problem of the present invention is to provide an intra prediction method and apparatus for improving image encoding / decoding efficiency.
  • Another technical problem of the present invention is to provide an intra prediction mode encoding method and apparatus for improving image encoding / decoding efficiency.
  • Another technical problem of the present invention is to provide an intra prediction mode decoding method and apparatus for improving image encoding / decoding efficiency.
  • An embodiment of the present invention is an intra prediction method.
  • the method may include deriving neighbor prediction mode information from a left neighbor prediction mode and a top neighbor prediction mode, using the derived neighbor prediction mode information, deriving an intra prediction mode for a decoding target unit, and the derived intra. And performing intra prediction on the decoding target unit, based on a prediction mode, wherein the left peripheral prediction mode is an intra prediction mode of a left peripheral unit adjacent to a left side of the decoding target unit, and the upper peripheral prediction mode.
  • the peripheral prediction mode information includes at least one of angle difference information and mode number information, and the angle difference information is an angle of the left peripheral prediction mode.
  • the mode number information includes a mode number of the left peripheral prediction mode and a mode number of the upper peripheral prediction mode.
  • the deriving of the intra prediction mode comprises: receiving and decoding the MPM index for the decoding target unit, using the neighbor prediction mode information, and selecting a Most Probable Mode (MPM) for the decoding target unit. Determining a candidate, generating an MPM list using the determined MPM candidate, and deriving an intra prediction mode of the decoding target unit using the decoded MPM index and the generated MPM list.
  • the MPM index may be an index indicating the same candidate as the intra prediction mode of the decoding target unit among the MPM candidates included in the MPM list.
  • determining of the MPM candidate may further include determining the left neighbor prediction mode and the top neighbor prediction mode as the MPM candidate, and the number of MPM candidates included in the MPM list is It may be a predetermined fixed number.
  • the MPM candidate determining step may further include determining a predetermined intra prediction mode as an additional MPM candidate when the left peripheral prediction mode and the upper peripheral prediction mode are the same.
  • the predetermined intra prediction mode may be a planar mode.
  • the predetermined intra prediction mode may be a DC mode.
  • the step of determining the MPM candidate may further include determining a predetermined intra prediction mode as an additional MPM candidate.
  • the predetermined intra prediction mode may be a planar mode.
  • the deriving of the intra prediction mode comprises: selecting a context model for the decoding target unit from a plurality of context models using the neighboring prediction mode information, and using the selected context model, The method may further include performing entropy decoding on the intra prediction mode information of the decoding target unit, wherein the intra prediction mode information may include at least one of an MPM flag, an MPM index, and a remaining mode.
  • the context model corresponding to the angle difference information may be selected as the context model for the decoding target unit.
  • the context model corresponding to the mode number information can be selected as the context model for the decoding target unit.
  • a context model corresponding to the angle difference information and the mode number information may be selected as the context model for the decoding target unit.
  • the deriving of the intra prediction mode comprises selecting a VLC table for the decoding target unit from a plurality of Variable Length Coding (VLC) tables using the neighboring prediction mode information and the selected VLC table.
  • the method may further include performing entropy decoding on the intra prediction mode information of the decoding target unit, wherein the intra prediction mode information may include at least one of an MPM flag, an MPM index, and a remaining mode.
  • the VLC table selection step the VLC table corresponding to the angle difference information may be selected as the VLC table for the decoding target unit.
  • the VLC table corresponding to the mode number information may be selected as the VLC table for the decoding target unit.
  • the VLC table corresponding to the angle difference information and the mode number information may be selected as the VLC table for the decoding target unit.
  • Another embodiment of the present invention is an intra prediction mode decoding method.
  • the method may include deriving neighbor prediction mode information from a left neighbor prediction mode and a top neighbor prediction mode, and deriving an intra prediction mode for a decoding target unit using the derived neighbor prediction mode information.
  • the left peripheral prediction mode is an intra prediction mode of a left peripheral unit adjacent to the left side of the decoding target unit
  • the upper peripheral prediction mode is an intra prediction mode of an upper peripheral unit adjacent to the top of the decoding target unit
  • the peripheral prediction mode information Includes at least one of angle difference information and mode number information, wherein the angle difference information includes a difference between an angle of the left peripheral prediction mode and an angle of the upper peripheral prediction mode, and the mode number information includes the left peripheral Mode number of the prediction mode and the mode of the upper peripheral prediction mode Including the number.
  • the deriving of the intra prediction mode comprises: receiving and decoding an MPM index for the decoding target unit, using the neighbor prediction mode information, and selecting a Most Probable Mode (MPM) for the decoding target unit Determining a candidate, generating an MPM list using the determined MPM candidate, and deriving an intra prediction mode of the decoding target unit using the decoded MPM index and the generated MPM list.
  • the MPM index may be an index indicating the same candidate as the intra prediction mode of the decoding target unit among the MPM candidates included in the MPM list.
  • the deriving of the intra prediction mode comprises: selecting a context model for the decoding target unit from a plurality of context models using the surrounding prediction mode information, and using the selected context model, The method may further include performing entropy decoding on the intra prediction mode information of the decoding target unit, wherein the intra prediction mode information may include at least one of an MPM flag, an MPM index, and a remaining mode.
  • the deriving of the intra prediction mode comprises: selecting a VLC table for the decoding target unit from a plurality of VLC tables using the neighboring prediction mode information, and using the selected VLC table;
  • the method may further include performing entropy decoding on the intra prediction mode information of the decoding target unit, wherein the intra prediction mode information may include at least one of an MPM flag, an MPM index, and a remaining mode.
  • image encoding / decoding efficiency can be improved.
  • the image decoding method According to the image decoding method according to the present invention, the image encoding / decoding efficiency can be improved.
  • image encoding / decoding efficiency may be improved.
  • image encoding / decoding efficiency may be improved.
  • image encoding / decoding efficiency may be improved.
  • FIG. 1 is a block diagram illustrating a configuration of an image encoding apparatus according to an embodiment of the present invention.
  • FIG. 2 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
  • FIG. 3 is a conceptual diagram schematically illustrating an embodiment of a reconstructed neighboring unit for an encoding / decoding target unit.
  • FIG. 4 is a flowchart schematically illustrating an embodiment of an intra prediction mode encoding method according to the present invention.
  • FIG. 5 is a flowchart illustrating an embodiment of a method of performing entropy encoding using neighboring prediction mode information.
  • FIG. 6 is a table illustrating an embodiment of a method of selecting a context model according to angle difference information.
  • FIG. 7 is a table illustrating an embodiment of a method of selecting a VLC table according to angle difference information.
  • FIG. 8 is a table illustrating an embodiment of a codeword assigned to each of a plurality of VLC tables.
  • FIG. 9 is a table illustrating an embodiment of a method of selecting a context model according to a mode number of the surrounding prediction mode.
  • FIG. 10 is a table illustrating an embodiment of a method of selecting a VLC table according to a mode number of a neighbor prediction mode.
  • FIG. 11 is a table illustrating an embodiment of a method of selecting a context model using angle difference information between surrounding prediction modes and mode number information of the surrounding prediction mode.
  • FIG. 12 is a table illustrating an embodiment of a method of selecting a VLC table using angle difference information between surrounding prediction modes and mode number information of the surrounding prediction mode.
  • FIG. 13 is a flowchart schematically illustrating an embodiment of an intra prediction mode decoding method according to the present invention.
  • FIG. 14 is a flowchart illustrating an embodiment of a method of performing entropy decoding using neighboring prediction mode information.
  • first and second may be used to describe various components, but the components should not be limited by the terms. The terms are used only for the purpose of distinguishing one component from another.
  • the first component may be referred to as the second component, and similarly, the second component may also be referred to as the first component.
  • each component shown in the embodiments of the present invention are shown independently to represent different characteristic functions, and do not mean that each component is made of separate hardware or one software component unit.
  • each component is included in each component for convenience of description, and at least two of the components may be combined into one component, or one component may be divided into a plurality of components to perform a function.
  • Integrated and separate embodiments of the components are also included within the scope of the present invention without departing from the spirit of the invention.
  • the components may not be essential components for performing essential functions in the present invention, but may be optional components for improving performance.
  • the present invention can be implemented including only the components essential for implementing the essentials of the present invention except for the components used for improving performance, and the structure including only the essential components except for the optional components used for improving performance. Also included in the scope of the present invention.
  • FIG. 1 is a block diagram illustrating a configuration of an image encoding apparatus according to an embodiment of the present invention.
  • the image encoding apparatus 100 may include a motion predictor 111, a motion compensator 112, an intra predictor 120, a switch 115, a subtractor 125, and a converter 130. And a quantization unit 140, an entropy encoding unit 150, an inverse quantization unit 160, an inverse transform unit 170, an adder 175, a filter unit 180, and a reference picture buffer 190.
  • the image encoding apparatus 100 may encode an input image in an intra mode or an inter mode and output a bitstream.
  • Intra prediction means intra prediction and inter prediction means inter prediction.
  • the switch 115 may be switched to intra, and in the inter mode, the switch 115 may be switched to inter.
  • the image encoding apparatus 100 may generate a prediction block for an input block of an input image and then encode a residual between the input block and the prediction block.
  • the intra predictor 120 may generate a prediction block by performing spatial prediction using pixel values of blocks that are already encoded around the current block.
  • the motion predictor 111 may obtain a motion vector by searching for a region that best matches an input block in the reference image stored in the reference picture buffer 190 during the motion prediction process.
  • the motion compensator 112 may generate a prediction block by performing motion compensation using the motion vector.
  • the subtractor 125 may generate a residual block by the difference between the input block and the generated prediction block.
  • the transform unit 130 may output a transform coefficient by performing a transform on the residual block.
  • the quantization unit 140 may output the quantized coefficient by quantizing the input transform coefficient according to the quantization parameter.
  • the entropy encoder 150 outputs a bit stream by entropy coding a symbol according to a probability distribution based on values calculated by the quantizer 140 or encoding parameter values calculated in the encoding process. can do.
  • the entropy encoding method is a method of receiving symbols having various values and expressing them in a decodable column while removing statistical redundancy.
  • the symbol means a syntax element, a coding parameter, a residual signal value, or the like that is to be encoded / decoded.
  • the encoding parameter is a parameter necessary for encoding and decoding, and may include information that may be inferred in the encoding or decoding process as well as information encoded by the encoder and transmitted to the decoder such as a syntax element. Means necessary information.
  • the encoding parameter may include, for example, values or statistics such as an intra / inter prediction mode, a movement / motion vector, a reference picture index, a coding block pattern, a residual signal presence, a quantization parameter, a unit size, and unit partition information. have.
  • the entropy encoder 150 may store a table for performing entropy encoding, such as a variable length coding (VLC) table, and the entropy encoder 150 may store the stored variable length encoding. Entropy encoding may be performed using the (VLC) table. In addition, the entropy encoder 150 derives a binarization method of a target symbol and a probability model of a target symbol / bin, and then performs entropy encoding using the derived binarization method or a probability model. You may.
  • VLC variable length coding
  • CABAC context-adaptive binary arithmetic coding
  • binarization means expressing a symbol value as a binary sequence (bin sequence / string).
  • a bin means the value of each binary number (0 or 1) when the symbol is represented as a column of binary numbers through binarization.
  • the probability model refers to a predicted probability of a symbol / bin to be encoded / decoded, which can be derived through a context model.
  • the context model is a probabilistic model for bins of one or more binarized symbols and may be selected by statistics of recently encoded data symbols.
  • the CABAC entropy encoding method binarizes non-binarized symbols to transform them into bins, and uses the encoding information of neighboring and encoding target blocks or the information of symbols / bins encoded in the previous step to construct a context model.
  • the bitstream may be generated by performing an arithmetic encoding of the bin by predicting the occurrence probability of the bin according to the determined context model.
  • the CABAC entropy encoding method may update the context model using information on the encoded symbol / bin for the context model of the next symbol / bin.
  • the quantized coefficients may be inversely quantized by the inverse quantizer 160 and inversely transformed by the inverse transformer 170.
  • the inverse quantized and inverse transformed coefficients are added to the prediction block by the adder 175 and a reconstruction block is generated.
  • the reconstruction block passes through the filter unit 180, and the filter unit 180 applies at least one or more of a deblocking filter, a sample adaptive offset (SAO), and an adaptive loop filter (ALF) to the reconstruction block or the reconstruction picture. can do.
  • the reconstructed block that has passed through the filter unit 180 may be stored in the reference picture buffer 190.
  • FIG. 2 is a block diagram illustrating a configuration of an image decoding apparatus according to an embodiment of the present invention.
  • the image decoding apparatus 200 may include an entropy decoder 210, an inverse quantizer 220, an inverse transformer 230, an intra predictor 240, a motion compensator 250, and an adder ( 255, a filter unit 260, and a reference picture buffer 270.
  • the image decoding apparatus 200 may receive a bitstream output from the encoder and perform decoding in an intra mode or an inter mode, and output a reconstructed image, that is, a reconstructed image.
  • the switch In the intra mode, the switch may be switched to intra, and in the inter mode, the switch may be switched to inter.
  • the image decoding apparatus 200 may obtain a residual block from the input bitstream, generate a prediction block, and then add the residual block and the prediction block to generate a reconstructed block, that is, a reconstruction block.
  • the entropy decoder 210 may entropy decode the input bitstream according to a probability distribution to generate symbols including symbols in the form of quantized coefficients.
  • the entropy decoding method is a method of generating each symbol by receiving a binary string.
  • the entropy decoding method is similar to the entropy coding method described above.
  • the CABAC entropy decoding method receives a bin corresponding to each syntax element in a bitstream, and decodes syntax element information and decoding information of neighboring and decoding target blocks or information of a symbol / bin decoded in a previous step.
  • a context model may be determined using the context model, and a probability corresponding to the value of each syntax element may be generated by performing arithmetic decoding of the bin by predicting a probability of occurrence of a bin according to the determined context model.
  • the CABAC entropy decoding method may update the context model by using the information of the decoded symbol / bin for the context model of the next symbol / bin.
  • the entropy decoding method When the entropy decoding method is applied, a small number of bits are allocated to a symbol having a high probability of occurrence and a large number of bits are allocated to a symbol having a low probability of occurrence, whereby the size of the bit string for each symbol is increased. Can be reduced. Therefore, the compression performance of image decoding can be improved through an entropy decoding method.
  • the quantized coefficient is inversely quantized by the inverse quantizer 220 and inversely transformed by the inverse transformer 230, and as a result of the inverse quantization / inverse transformation of the quantized coefficient, a residual block may be generated.
  • the intra predictor 240 may generate a prediction block by performing spatial prediction using pixel values of blocks that are already encoded around the current block.
  • the motion compensator 250 may generate a predictive block by performing motion compensation using the reference image stored in the motion vector and the reference picture buffer 270.
  • the residual block and the prediction block may be added through the adder 255, and the added block may pass through the filter unit 260.
  • the filter unit 260 may apply at least one or more of the deblocking filter, SAO, and ALF to the reconstructed block or the reconstructed picture.
  • the filter unit 260 may output a reconstructed image, that is, a reconstructed image.
  • the reconstructed picture may be stored in the reference picture buffer 270 and used for inter prediction.
  • a unit means a unit of image encoding and decoding.
  • a coding or decoding unit refers to a divided unit when an image is divided and encoded or decoded.
  • a block, a coding unit (CU), an encoding block, and a prediction unit (PU) are used.
  • One unit may be further divided into smaller sub-units.
  • the prediction unit refers to a basic unit that is a unit of performing prediction and / or motion compensation.
  • the prediction unit may be divided into a plurality of partitions, and each partition may be called a prediction unit partition.
  • each of the plurality of partitions may be a basic unit that is a unit of performing prediction and / or motion compensation.
  • each partition in which the prediction unit is divided may also be called a prediction unit.
  • intra prediction may be performed according to the intra prediction mode of the encoding / decoding target unit.
  • each of the intra prediction modes may have a prediction direction corresponding thereto, and each prediction direction may have a predetermined angle value. Therefore, the intra prediction mode of the encoding / decoding target unit may represent prediction direction information for the encoding / decoding target unit.
  • the encoder may encode and transmit an intra prediction mode to the decoder.
  • the encoder may use a method of predicting the intra prediction mode in order to reduce the amount of transmitted bits and to increase encoding efficiency.
  • the encoder may encode the prediction mode of the encoding target unit by using the prediction mode of the reconstructed neighboring unit adjacent to the encoding target unit.
  • prediction modes used as prediction values for the intra prediction mode of the encoding target unit are referred to as Most Probable Mode (MPM).
  • MPM Most Probable Mode
  • the reconstructed neighboring unit is a unit that has already been encoded or decoded and reconstructed, and is a unit adjacent to the encoding / decoding target unit, a unit located at the upper right corner of the encoding / decoding target unit, and located at the upper left corner of the encoding / decoding target unit. It may include a unit located in the lower left corner of the unit and / or encoding / decoding target unit.
  • FIG. 3 is a conceptual diagram schematically illustrating an embodiment of a reconstructed neighboring unit for an encoding / decoding target unit.
  • the reconstructed peripheral unit for the encoding / decoding target unit E includes a left peripheral unit A adjacent to the left of the E unit, a top peripheral unit B adjacent to the top of the E unit, and an E unit.
  • the left peripheral unit is called unit A
  • the upper peripheral unit is called unit B
  • the upper right corner unit is called unit C
  • the upper left corner unit is called unit D.
  • the encoding / decoding target unit is called unit E.
  • FIG. 4 is a flowchart schematically illustrating an embodiment of an intra prediction mode encoding method according to the present invention.
  • the encoder may determine an intra prediction mode of an encoding target unit (S410).
  • the encoder may derive information about the neighbor prediction mode (S420).
  • the neighbor prediction mode may mean an intra prediction mode of the reconstructed neighbor unit.
  • the information about the surrounding prediction mode is referred to as the surrounding prediction mode information.
  • Each of the reconstructed neighboring units may have an intra prediction mode.
  • the encoder may derive the neighbor prediction mode information for the unit having the intra prediction mode among the reconstructed neighbor units.
  • the surrounding prediction mode information may include an angle difference between the surrounding prediction modes and / or a mode number of the surrounding prediction mode.
  • each of the intra prediction modes may have a corresponding prediction direction, and each prediction direction may have a predetermined angle value.
  • each of the surrounding prediction modes may have a predetermined angle value, and the encoder may derive the angle difference between the surrounding prediction modes.
  • the information on the angle difference between the surrounding prediction modes is called angle difference information.
  • each of the intra prediction modes may have a mode number corresponding thereto, and the encoder may derive and / or determine the mode number of the neighboring prediction mode.
  • the mode number assigned to the intra prediction mode may be determined according to the occurrence probability of the intra prediction mode. For example, a low mode number may be assigned to a prediction mode having a high probability of occurrence. Therefore, the mode number of the surrounding prediction mode, derived by the encoder, may indicate the mode order of the surrounding prediction mode.
  • mode number information the information about the mode number of the neighbor prediction mode.
  • the encoder may encode the intra prediction mode for the encoding target unit by using the derived neighbor prediction mode information (S430).
  • the encoder may derive the MPM candidate for the encoding target unit to encode the intra prediction mode for the encoding target unit.
  • the MPM candidate may be derived using the intra prediction mode of the reconstructed neighboring unit.
  • the encoder may use at least one of prediction modes of A, B, C, and D units.
  • the encoder may not use the unavailable unit for MPM candidate derivation.
  • a unit encoded / decoded by a pulse code modulation (PCM) scheme and / or a unit encoded / decoded by inter prediction may not include information related to an intra prediction mode.
  • a unit encoded / decoded by the PCM scheme and / or by inter prediction may not be used for MPM candidate derivation.
  • a unit encoded / decoded by a Constrained Intra Prediction (CIP) scheme may exist.
  • a unit encoded by inter prediction may not be used as a reference unit, and intra prediction may be performed using only a DC mode among intra prediction modes.
  • the encoder may not use the unit encoded / decoded in the DC mode to derive the MPM candidate.
  • the encoder is assigned a prediction mode to which the smallest table index is allocated among the prediction mode of the left peripheral unit A and the prediction mode of the upper peripheral unit B (eg, Min (A, B)) can be selected as an MPM candidate included in the MPM list.
  • the encoder indexes the table. Regardless of which prediction mode you choose.
  • the table index may be assigned to the prediction mode based on the occurrence frequency and the statistics of the prediction mode. For example, the smallest table index value may be assigned to the prediction mode with the highest occurrence frequency, and the highest table index value may be assigned to the prediction mode with the lowest occurrence frequency.
  • the table index may not be allocated according to the frequency of occurrence of the prediction mode. That is, the table indexes may not be sorted according to the frequency of occurrence.
  • the encoder may select, as an MPM candidate included in the MPM list, a prediction mode having a higher frequency of occurrence from among the prediction mode of the unit A and the prediction mode of the unit B, regardless of the table index value.
  • the encoder may use a predetermined fixed number N of MPM candidates to encode the intra prediction mode.
  • N may be a positive integer.
  • the number of MPM candidates included in the MPM list may be two.
  • the encoder may select the prediction mode of the left peripheral unit A and the prediction mode of the upper peripheral unit B as MPM candidates.
  • the number of MPM candidates derived from unit A and unit B may be less than two.
  • the MPM derived from the encoder The number of candidates may be one.
  • the remaining MPM candidates may be set and / or derived in a predetermined mode. That is, the encoder may select a predetermined mode as an additional MPM candidate.
  • the predetermined mode may be fixed to DC.
  • the predetermined mode may be a planar mode when the prediction modes of the unit A and the unit B are not the planner mode, or may be the DC mode when the prediction modes of the unit A and the unit B are the planner mode. .
  • the number of MPM candidates derived from the encoder may be one.
  • the remaining MPM candidates may be set and / or derived in a predetermined mode. That is, the encoder may select a predetermined mode as an additional MPM candidate.
  • the predetermined mode may be, for example, a DC mode or a planar mode.
  • the number of MPM candidates included in the MPM list may be three.
  • the encoder may select, as an MPM candidate, a prediction mode having the highest frequency of occurrence from the prediction mode of the left peripheral unit A, the prediction mode of the upper peripheral unit B, and the prediction mode of the previously encoded unit.
  • the number of MPM candidates derived from unit A and unit B may be less than two.
  • the MPM derived from the encoder may be one.
  • a unit for selecting a prediction mode having a high frequency of occurrence includes a picture to be encoded, a picture to be encoded, a slice coding unit (LCU), a coding unit (CU), and / or a PU (including a picture to be encoded). Prediction Unit).
  • the encoder may use a counter to calculate the frequency of occurrence of the prediction mode. When a counter is used, the encoder may initialize the counter after encoding the prediction mode selection unit. That is, the counter may be initialized in the prediction mode selection unit.
  • the encoder may generate the MPM list using the derived MPM candidate.
  • the encoder may determine whether the same MPM candidate as the prediction mode of the encoding target unit exists in the MPM list.
  • the encoder may transmit a flag indicating whether the same MPM candidate as the prediction mode of the encoding target unit exists in the MPM list to the decoder.
  • the flag is referred to as an MPM flag.
  • the MPM flag transmitted to the decoder may be represented as prev_intra_luma_pred_flag. For example, when the same MPM candidate as the prediction mode of the encoding target unit exists in the MPM list, 1 may be allocated to the MPM flag, and 0 may be allocated otherwise.
  • the encoder may transmit an index indicating to which decoder among the MPM candidates in the MPM list the prediction mode of the encoding target unit is the same.
  • the index is referred to as an MPM index.
  • the encoder and the decoder may use the MPM candidate indicated by the MPM index in the intra prediction mode of the encoding target unit.
  • the encoder may not encode the MPM index. In addition, even when the decoder knows the same MPM candidate as the prediction mode of the decoding target unit, the encoder may not encode the MPM index. In this case, the encoder may encode only the MPM flag and transmit it to the decoder.
  • the encoder may derive a remaining mode using the prediction mode of the current encoding target unit and the MPM list.
  • the remaining mode may be derived using the intra prediction mode except the MPM candidate.
  • the encoder may encode the generated remaining mode and transmit it to the decoder.
  • the remaining mode may be represented by rem_intra_luma_pred_mode.
  • the encoder may not use the reconstructed neighboring unit and / or the MPM candidate in encoding the intra prediction mode of the encoding target unit. In this case, the encoder may entropy-encode the intra prediction mode itself of the encoding target unit and transmit the entropy encoding to the decoder.
  • the encoder may entropy-encode the aforementioned MPM flag, the MPM index, the remaining mode, and / or the intra prediction mode itself, and transmit the entropy encoding to the decoder.
  • the encoder may perform arithmetic encoding using only one context model, and may use fixed bit encoding.
  • the intra prediction mode information of the reconstructed neighboring unit since the intra prediction mode information of the reconstructed neighboring unit is not used, the coding efficiency may be low. Accordingly, a method of performing entropy encoding using information about the intra prediction mode of the reconstructed neighboring unit, that is, the neighbor prediction mode information may be provided.
  • the surrounding prediction mode information may include an angle difference between the surrounding prediction modes and / or a mode number of the surrounding prediction mode.
  • embodiments of a method of performing entropy encoding on an encoding target unit using the neighbor prediction mode information will be described.
  • FIG. 5 is a flowchart illustrating an embodiment of a method of performing entropy encoding using neighboring prediction mode information.
  • the encoder may select a context model and / or a VLC table for an encoding target unit using the surrounding prediction mode information (S510).
  • the variable length coding (VLC) table may have the same meaning as the variable length coding table.
  • the encoder may select and use one context model from among a plurality of context models.
  • the encoder may select the context model using the angle difference information between the surrounding prediction modes, and may select the context model using the mode number and / or mode order of the surrounding prediction modes.
  • the encoder may also select the context model by using the angle difference information and the mode number information together.
  • the encoder may select and use one VLC table among a plurality of VLC tables in performing entropy encoding.
  • the encoder may select the VLC table using the angle difference information between the neighboring prediction modes, and may select the context model using the mode number and / or mode order of the neighboring prediction modes.
  • the encoder may also select the context model by using the angle difference information and the mode number information together.
  • the encoder may perform entropy encoding on the intra prediction mode of the encoding target unit by using the selected context model and / or the VLC table (S520).
  • the syntax element for which entropy encoding is performed may include an MPM flag, an MPM index, a remaining mode, and / or an intra prediction mode itself.
  • FIG. 6 is a table illustrating an embodiment of a method of selecting a context model according to angle difference information.
  • 610 of FIG. 6 is a table illustrating an embodiment of angle difference information between surrounding prediction modes.
  • VER may indicate vertical direction prediction
  • HOR may indicate horizontal direction prediction
  • DC may indicate DC prediction.
  • each of the intra prediction modes may have a corresponding prediction direction, and each prediction direction may have a predetermined angle value. Therefore, the prediction direction difference between the surrounding prediction modes may be defined as the angle difference between the surrounding prediction modes.
  • the encoder and the decoder may store the same table including the angle difference information, and the encoder and the decoder may derive the angle difference between the neighboring prediction modes by using the stored table.
  • 620 of FIG. 6 is a table illustrating an embodiment of a context category according to an angle difference between neighboring prediction modes.
  • d may represent an angle difference value
  • ctxN N may be 1,2, 3 or 4
  • Th1 Threshold1
  • Th2 Threshold2
  • Th3 Theshold3
  • Th4 Th4
  • the encoder may select one context model from four different context models using angle difference information. For example, when the angle difference between the neighboring prediction modes is larger than Th1 and less than Th2, the encoder may select ctx2 as a context model for the encoding target unit.
  • 630 of FIG. 6 is a table illustrating another embodiment of a context category according to an angle difference between neighboring prediction modes. Referring to 630 of FIG. 6, the encoder may select one context model from four different context models using angle difference information.
  • the intra prediction mode of the left peripheral unit A is 1 (HOR) and the intra prediction mode of the upper peripheral unit B is 33 (HOR + 7).
  • 1 (HOR) may indicate a prediction mode having a mode number of 1
  • 33 (HOR + 7) may indicate a prediction mode having a mode number of 33.
  • an angle difference between neighboring prediction modes may be 35.
  • the encoder may select ctx1 as the context model for the encoding target unit.
  • the angle difference information is derived using the left peripheral unit A and the upper peripheral unit B is described, but the method for deriving the angle difference information is not limited to the above embodiment.
  • the angle difference information between the surrounding prediction modes may be derived in various ways using available units among the reconstructed neighboring units.
  • each context model ctx1 to ctx4 may have different initial values.
  • different initial values may be used to determine the probability values of the Most Probable State (MPS) and the MPS, and encoding parameters such as quantization parameters may be used to determine the MPS and the MPS probability values.
  • MPS Most Probable State
  • FIG. 7 is a table illustrating an embodiment of a method of selecting a VLC table according to angle difference information.
  • each of the intra prediction modes may have a corresponding prediction direction, and each prediction direction may have a predetermined angle value. Therefore, the prediction direction difference between the surrounding prediction modes may be defined as the angle difference between the surrounding prediction modes.
  • the encoder and the decoder may store the same table including the angle difference information, and the encoder and the decoder may derive the angle difference between the neighboring prediction modes by using the stored table.
  • 720 of FIG. 7 is a table illustrating an embodiment of a VLC table category according to an angle difference between neighboring prediction modes.
  • d may represent an angle difference value
  • VLCN (N may be 1,2,3 or 4) may represent a VLC table applied to a syntax element of a coding target unit.
  • Th1 Threshold1
  • Th2 Threshold2
  • Th3 Theshold3
  • Th4 Th4
  • the encoder may select one table from four different VLC tables using angle difference information. For example, when the angle difference between the neighboring prediction modes is larger than Th1 and less than Th2, the encoder may select VLC2 as the VLC table for the encoding target unit.
  • FIG. 7 is a table illustrating another embodiment of a VLC table category according to an angle difference between neighboring prediction modes.
  • the encoder may select one table from four different VLC tables using angle difference information.
  • VLC1 is encoded when the angle difference value is 45 or less
  • VLC2 when the angle difference value is greater than 45 and 90 or less
  • VLC3 when the angle difference value is greater than 90 and 135 or less
  • VLC4 when the angle difference value is greater than 135. Can be selected as the VLC table for the target unit.
  • the intra prediction mode of the left peripheral unit A is 1 (HOR) and the intra prediction mode of the upper peripheral unit B is 33 (HOR + 7).
  • 1 (HOR) may indicate a prediction mode having a mode number of 1
  • 33 (HOR + 7) may indicate a prediction mode having a mode number of 33.
  • an angle difference between neighboring prediction modes may be 35.
  • the encoder may select VLC1 as the VLC table for the encoding target unit.
  • FIG. 7 is a table illustrating another embodiment of a VLC table category according to an angle difference between neighboring prediction modes.
  • the encoder may select one table from two different VLC tables using angle difference information.
  • the intra prediction mode of the left peripheral unit A is 1 (HOR) and the intra prediction mode of the upper peripheral unit B is 1 (HOR).
  • 1 (HOR) may indicate a prediction mode in which the mode number is 1.
  • the encoder may select VLC1 as the VLC table for the encoding target unit.
  • the intra prediction mode of the left peripheral unit A is 1 (HOR) and the intra prediction mode of the upper peripheral unit B is 33 (HOR + 7).
  • 1 (HOR) may indicate a prediction mode having a mode number of 1
  • 33 (HOR + 7) may indicate a prediction mode having a mode number of 33.
  • the encoder may select VLC2 as the VLC table for the encoding target unit.
  • the angle difference information is derived using the left peripheral unit A and the upper peripheral unit B is described, but the method for deriving the angle difference information is not limited to the above embodiment.
  • the angle difference information between the surrounding prediction modes may be derived in various ways using available units among the reconstructed neighboring units.
  • FIG. 8 is a table illustrating an embodiment of a codeword assigned to each of a plurality of VLC tables.
  • an assigned codeword may vary according to each symbol value and / or each syntax element value.
  • the encoder can improve coding efficiency by allocating a short word codeword to a symbol having a high probability of occurrence.
  • the encoder may update each VLC table in the encoding process. For example, in the VLC1 of FIG. 8, when the occurrence frequency of the symbol value 2 is higher than the occurrence frequency of the symbol value 1, the encoder is configured to codeword '01' assigned to symbol value 1 and codeword 'allocated to symbol value 2'. You can change 001 '. After performing the update, the encoder may perform entropy encoding using the updated VLC table.
  • FIG. 9 is a table illustrating an embodiment of a method of selecting a context model according to a mode number of the surrounding prediction mode.
  • 910 of FIG. 9 is a table illustrating an embodiment of a mode number assigned to a neighbor prediction mode. 910 of FIG. 9 illustrates an embodiment where the number of intra prediction modes that a reconstructed neighboring unit may have is 34.
  • the mode number assigned to the intra prediction mode may be determined according to the occurrence probability of the intra prediction mode.
  • a low mode number may be assigned to a prediction mode having a high probability of occurrence.
  • the occurrence probability of the VER prediction mode may be the highest. Therefore, the mode number of the surrounding prediction mode may indicate the mode order of the surrounding prediction mode.
  • ctxN (N is 1, 2, 3, or 4) may represent a context model applied to the syntax element of the encoding target unit.
  • the encoder may select one context model from four different context models using the mode number of the neighbor prediction mode.
  • the intra prediction mode of the left peripheral unit A is 0 (VER) and the intra prediction mode of the upper peripheral unit B is 6 (VER + 6).
  • 0 (VER) may indicate a prediction mode in which the mode number is 0
  • 6 (VER + 6) may indicate a prediction mode in which the mode number is 6.
  • the mode number of the unit A and the mode number of the unit B may be included in the same context category. Since the context model corresponding to the context category is ctx1, the encoder may select ctx1 as the context model for the encoding target unit.
  • the intra prediction mode of the left peripheral unit A is 8 (HOR + 4) and the intra prediction mode of the upper peripheral unit B is 21 (VER-1).
  • 8 (HOR + 4) may indicate a prediction mode with a mode number of 8
  • 21 (VER-1) may indicate a prediction mode with a mode number of 21.
  • the mode number of the unit A and the mode number of the unit B may be included in different context categories.
  • the encoder may select a context model corresponding to the smaller mode number (eg, mode number 8). Since the context model corresponding to the mode number 8 is ctx2, the encoder may select ctx2 as the context model for the encoding target unit.
  • the mode number information used for the context model selection may be derived in various ways using available units among the restored neighboring units.
  • FIG. 10 is a table illustrating an embodiment of a method of selecting a VLC table according to a mode number of a neighbor prediction mode.
  • 1010 of FIG. 10 is a table illustrating an embodiment of a mode number assigned to a neighbor prediction mode. 1010 illustrates an embodiment where the number of intra prediction modes that a reconstructed neighboring unit may have is 34.
  • the mode number assigned to the intra prediction mode may be determined according to the occurrence probability of the intra prediction mode.
  • a low mode number may be assigned to a prediction mode having a high probability of occurrence.
  • the probability of occurrence of the VER prediction mode may be the highest. Therefore, the mode number of the surrounding prediction mode may indicate the mode order of the surrounding prediction mode.
  • 1020 of FIG. 10 is a table illustrating an embodiment of a VLC table category according to a mode number of the neighbor prediction mode.
  • VLCN (N is 1, 2, 3, or 4) may indicate a VLC table applied to a syntax element of a coding target unit.
  • the encoder may select one table from four different VLC tables by using the mode number of the neighbor prediction mode.
  • the intra prediction mode of the left peripheral unit A is 0 (VER) and the intra prediction mode of the upper peripheral unit B is 6 (VER + 6).
  • 0 (VER) may indicate a prediction mode in which the mode number is 0
  • 6 (VER + 6) may indicate a prediction mode in which the mode number is 6.
  • the mode number of the unit A and the mode number of the unit B may be included in the same category. Since the VLC table corresponding to the category is VLC1, the encoder may select VLC1 as the VLC table for the encoding target unit.
  • the intra prediction mode of the left peripheral unit A is 8 (HOR + 4) and the intra prediction mode of the upper peripheral unit B is 21 (VER-1).
  • 8 (HOR + 4) may indicate a prediction mode with a mode number of 8
  • 21 (VER-1) may indicate a prediction mode with a mode number of 21.
  • the mode number of the unit A and the mode number of the unit B may be included in different categories.
  • the encoder may select a VLC table corresponding to the smaller mode number (eg, mode number 8). Since the VLC table corresponding to mode number 8 is VLC2, the encoder may select VLC2 as the VLC table for the encoding target unit.
  • the mode number information used for the context model selection may be derived in various ways using available units among the restored neighboring units.
  • FIG. 11 is a table illustrating an embodiment of a method of selecting a context model using angle difference information between surrounding prediction modes and mode number information of the surrounding prediction mode.
  • ctxN (N is 1, 2, 3, or 4) may represent a context model applied to the syntax element of the encoding target unit.
  • the encoder may select one context model from four different context models using an angle difference between the neighbor prediction modes and a mode number of the neighbor prediction modes.
  • the intra prediction mode of the left peripheral unit A is 1 (HOR) and the intra prediction mode of the upper peripheral unit B is 33 (HOR + 7).
  • 1 (HOR) may indicate a prediction mode having a mode number of 1
  • 33 (HOR + 7) may indicate a prediction mode having a mode number of 33.
  • the angle difference between the surrounding prediction modes may be 35.
  • the encoder can select a context model corresponding to the smaller mode number (eg, mode number 1). Accordingly, the encoder may select ctx1 as the context model for the encoding target unit.
  • FIG. 12 is a table illustrating an embodiment of a method of selecting a VLC table using angle difference information between surrounding prediction modes and mode number information of the surrounding prediction mode.
  • VLCN (N is 1, 2, 3, or 4) may indicate a VLC table applied to a syntax element of a coding target unit.
  • the encoder may select one table from four different VLC tables using an angle difference between the neighbor prediction modes and a mode number of the neighbor prediction modes.
  • the intra prediction mode of the left peripheral unit A is 0 (VER) and the intra prediction mode of the upper peripheral unit B is 0 (VER).
  • 0 (VER) may indicate a prediction mode in which the mode number is zero.
  • the angle difference between the surrounding prediction modes may be zero.
  • the encoder may select a VLC table corresponding to the same category. Accordingly, the encoder may select VLC1 as the VLC table for the encoding target unit.
  • the intra prediction mode of the left peripheral unit A is 1 (HOR) and the intra prediction mode of the upper peripheral unit B is 33 (HOR + 7).
  • 1 (HOR) may indicate a prediction mode having a mode number of 1
  • 33 (HOR + 7) may indicate a prediction mode having a mode number of 33.
  • the angle difference between the surrounding prediction modes may be 35 instead of 0.
  • the encoder may select a VLC table corresponding to a smaller mode number (eg, mode number 1). Accordingly, the encoder may select VLC2 as the VLC table for the encoding target unit.
  • the encoder may derive the neighbor prediction mode information on the encoding target unit by using the reconstructed neighbor unit.
  • the surrounding prediction mode information may include an angle difference between the surrounding prediction modes and / or a mode number of the surrounding prediction mode.
  • the number of the restored peripheral units may be two or more.
  • the encoder may select two units having a coding parameter most similar to the coding parameters of the encoding target prediction unit from the reconstructed neighboring units, and use the same to derive the neighboring prediction mode information.
  • the number of intra prediction modes that the encoding target unit may have may differ from the number of intra prediction modes that the reconstructed neighboring unit may have.
  • the encoder may use only the intra prediction mode that the encoding target unit and the reconstructed neighboring unit have in common in deriving the neighboring prediction mode information.
  • a first syntax element related to an intra prediction mode and a predetermined second syntax element different from the first syntax element may be expressed together.
  • the VLC table in this case may be called an integrated VLC table.
  • the encoder may encode the first syntax element and the second syntax element together using an integrated VLC table.
  • the encoder can efficiently encode the intra prediction mode by using information about the neighbor prediction mode. Therefore, efficient encoding according to the change of the surrounding situation is possible and the coding efficiency can be improved.
  • FIG. 13 is a flowchart schematically illustrating an embodiment of an intra prediction mode decoding method according to the present invention.
  • the decoder may derive information about the neighbor prediction mode (S1310).
  • the surrounding prediction mode information may include an angle difference between the surrounding prediction modes and / or a mode number of the surrounding prediction mode.
  • the decoder may derive the neighbor prediction mode information using the same method as the encoder.
  • the decoder may decode the intra prediction mode for the decoding target unit by using the derived neighbor prediction mode information (S1320).
  • the decoder may derive the MPM candidate for the decoding target unit to derive the intra prediction mode for the decoding target unit.
  • the MPM candidate may be derived using the intra prediction mode of the reconstructed neighboring unit.
  • the decoder may use the surrounding prediction mode information (eg, the angular difference between the surrounding prediction modes and / or the mode number of the surrounding prediction mode) in deriving the MPM candidate. Since the MPM candidate derivation method is the same as the MPM candidate derivation method in the encoder, it will be omitted.
  • the decoder may generate the MPM list using the derived MPM candidate.
  • the encoder may encode the MPM flag and transmit it to the decoder.
  • the MPM flag is a flag indicating whether or not the same MPM candidate as the prediction mode of the encoding target unit exists in the MPM list.
  • the decoder may receive and decode the MPM flag. The decoder may determine whether the same MPM candidate as the prediction mode of the decoding target unit exists in the MPM list using the decoded MPM flag.
  • the encoder may encode the MPM index and transmit the encoded MPM index to the decoder.
  • the MPM index is an index indicating which prediction mode of the encoding target unit is the same as any MPM candidate among MPM candidates in the MPM list.
  • the decoder may receive and decode the MPM index. The decoder may use the MPM candidate indicated by the decoded MPM index among the MPM candidates in the MPM list in the intra prediction mode of the decoding target unit.
  • the encoder may not encode the MPM index. In addition, even when the decoder knows the same MPM candidate as the prediction mode of the decoding target unit, the encoder may not encode the MPM index. In this case, the decoder may omit the reception and decoding of the MPM index.
  • the encoder may encode the remaining mode and transmit it to the decoder.
  • the decoder may receive and decode the remaining mode.
  • the encoder may not use the reconstructed neighboring unit and / or the MPM candidate in encoding the intra prediction mode of the encoding target unit. That is, the encoder may entropy-encode the intra prediction mode itself of the encoding target unit and transmit the entropy encoding to the decoder. In this case, the decoder may receive the encoded intra prediction mode itself and entropy decode it.
  • the decoder may perform entropy decoding on the above-described MPM flag, MPM index, remaining mode, and / or intra prediction mode itself.
  • the decoder may perform arithmetic decoding using only one context model, and may use fixed bit decoding.
  • the intra prediction mode information of the reconstructed neighboring unit since the intra prediction mode information of the reconstructed neighboring unit is not used, the decoding efficiency may be low. Accordingly, a method of performing entropy decoding using information on the intra prediction mode of the reconstructed neighboring unit, that is, the neighbor prediction mode information may be provided.
  • FIG. 14 is a flowchart illustrating an embodiment of a method of performing entropy decoding using neighboring prediction mode information.
  • the decoder may select a context model and / or a VLC table for a decoding target unit by using neighboring prediction mode information (S1410).
  • the decoder may select and use one context model from a plurality of context models.
  • the decoder may select the context model using the angle difference information between the surrounding prediction modes, and may select the context model using the mode number and / or mode order of the surrounding prediction modes.
  • the decoder may select the context model by using the angle difference information and the mode number information together.
  • the decoder may select and use one VLC table among a plurality of VLC tables in performing entropy decoding.
  • the decoder may select the VLC table using the angle difference information between the neighboring prediction modes, and may select the context model using the mode number and / or mode order of the neighboring prediction modes.
  • the decoder may select the context model by using the angle difference information and the mode number information together.
  • the decoder may select the context model and / or the VLC table for the decoding object unit in the same manner as the encoder. Since specific embodiments of the context model selection method and the VLC table selection method have been described above, they will be omitted.
  • the decoder may perform entropy decoding on the intra prediction mode of the decoding target unit by using the selected context model and / or the VLC table (S1420).
  • the syntax element in which entropy decoding is performed may include an MPM flag, an MPM index, a remaining mode, and / or an intra prediction mode itself.
  • the decoder can efficiently decode the intra prediction mode by using information about the neighbor prediction mode. Therefore, it is possible to efficiently decode according to the change of the surrounding situation, and the decoding efficiency can be improved.
  • the methods are described based on a flowchart as a series of steps or blocks, but the present invention is not limited to the order of steps, and certain steps may occur in a different order or at the same time than other steps described above. Can be. Also, one of ordinary skill in the art appreciates that the steps shown in the flowcharts are not exclusive, that other steps may be included, or that one or more steps in the flowcharts may be deleted without affecting the scope of the present invention. I can understand.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

본 발명에 따른 인트라 예측 방법은 좌측 주변 예측 모드 및 상단 주변 예측 모드로부터 주변 예측 모드 정보를 도출하는 단계, 도출된 주변 예측 모드 정보를 이용하여, 복호화 대상 유닛에 대한 인트라 예측 모드를 도출하는 단계 및 인트라 예측 모드에 기반하여, 복호화 대상 유닛에 대한 인트라 예측을 수행하는 단계를 포함한다. 본 발명에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.

Description

인트라 예측 모드 부호화/복호화 방법 및 그 장치
본 발명은 영상 처리에 관한 것으로서, 보다 상세하게는 인트라 예측 모드 부호화/복호화 방법 및 장치에 관한 것이다.
최근 HD(High Definition) 해상도를 가지는 방송 서비스가 국내뿐만 아니라 세계적으로 확대되면서, 많은 사용자들이 고해상도, 고화질의 영상에 익숙해지고 있으며 이에 따라 많은 기관들이 차세대 영상기기에 대한 개발에 박차를 가하고 있다. 또한 HDTV와 더불어 HDTV의 4배 이상의 해상도를 갖는 UHD(Ultra High Definition)에 대한 관심이 증대되면서 보다 높은 해상도, 고화질의 영상에 대한 압축기술이 요구되고 있다.
영상 압축을 위해, 시간적으로 이전 및/또는 이후의 픽쳐로부터 현재 픽쳐에 포함된 픽셀값을 예측하는 인터(inter) 예측 기술, 현재 픽쳐 내의 픽셀 정보를 이용하여 현재 픽쳐에 포함된 픽셀값을 예측하는 인트라(intra) 예측 기술, 출현 빈도가 높은 심볼(symbol)에 짧은 부호를 할당하고 출현 빈도가 낮은 심볼에 긴 부호를 할당하는 엔트로피 부호화 기술 등이 사용될 수 있다.
본 발명의 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 영상 부호화 방법 및 장치를 제공함에 있다.
본 발명의 다른 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 영상 복호화 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 인트라 예측 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 인트라 예측 모드 부호화 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 기술적 과제는 영상 부호화/복호화 효율을 높일 수 있는 인트라 예측 모드 복호화 방법 및 장치를 제공함에 있다.
1. 본 발명의 일 실시 형태는 인트라 예측 방법이다. 상기 방법은 좌측 주변 예측 모드 및 상단 주변 예측 모드로부터 주변 예측 모드 정보를 도출하는 단계, 상기 도출된 주변 예측 모드 정보를 이용하여, 복호화 대상 유닛에 대한 인트라 예측 모드를 도출하는 단계 및 상기 도출된 인트라 예측 모드에 기반하여, 상기 복호화 대상 유닛에 대한 인트라 예측을 수행하는 단계를 포함하되, 상기 좌측 주변 예측 모드는 상기 복호화 대상 유닛의 좌측에 인접한 좌측 주변 유닛의 인트라 예측 모드이고, 상기 상단 주변 예측 모드는 상기 복호화 대상 유닛의 상단에 인접한 상단 주변 유닛의 인트라 예측 모드이고, 상기 주변 예측 모드 정보는 각도 차이 정보 및 모드 번호 정보 중 적어도 하나를 포함하고, 상기 각도 차이 정보는 상기 좌측 주변 예측 모드의 각도와 상기 상단 주변 예측 모드의 각도의 차이값을 포함하고, 상기 모드 번호 정보는 상기 좌측 주변 예측 모드의 모드 번호 및 상기 상단 주변 예측 모드의 모드 번호를 포함한다.
2. 1에 있어서, 상기 인트라 예측 모드 도출 단계는, 상기 복호화 대상 유닛에 대한 MPM 인덱스를 수신하여 복호화하는 단계, 상기 주변 예측 모드 정보를 이용하여, 상기 복호화 대상 유닛에 대한 MPM(Most Probable Mode) 후보를 결정하는 단계, 상기 결정된 MPM 후보를 이용하여, MPM 리스트를 생성하는 단계 및 상기 복호화된 MPM 인덱스 및 상기 생성된 MPM 리스트를 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드를 도출하는 단계를 더 포함할 수 있고, 상기 MPM 인덱스는 상기 MPM 리스트에 포함된 MPM 후보 중에서, 상기 복호화 대상 유닛의 인트라 예측 모드와 동일한 후보를 지시하는 인덱스일 수 있다.
3. 2에 있어서, 상기 MPM 후보 결정 단계는, 상기 좌측 주변 예측 모드 및 상기 상단 주변 예측 모드를 상기 MPM 후보로 결정하는 단계를 더 포함할 수 있고, 상기 MPM 리스트에 포함되는 MPM 후보의 개수는 소정의 고정된 개수일 수 있다.
4. 3에 있어서, 상기 좌측 주변 예측 모드와 상기 상단 주변 예측 모드가 동일한 경우, 상기 MPM 후보 결정 단계는, 소정의 인트라 예측 모드를 추가 MPM 후보로 결정하는 단계를 더 포함할 수 있다.
5. 4에 있어서, 상기 소정의 인트라 예측 모드는 플래너(planar) 모드일 수 있다.
6. 5에 있어서, 상기 좌측 주변 예측 모드 및 상기 상단 주변 예측 모드가 플래너 모드인 경우, 상기 소정의 인트라 예측 모드는 DC 모드일 수 있다.
7. 3에 있어서, 상기 좌측 주변 유닛 또는 상기 상단 주변 유닛이 가용하지 않은 경우, 상기 MPM 후보 결정 단계는, 소정의 인트라 예측 모드를 추가 MPM 후보로 결정하는 단계를 더 포함할 수 있다.
8. 7에 있어서, 상기 소정의 인트라 예측 모드는 플래너(planar) 모드일 수 있다.
9. 1에 있어서, 상기 인트라 예측 모드 도출 단계는, 상기 주변 예측 모드 정보를 이용하여, 복수의 문맥 모델 중에서 상기 복호화 대상 유닛에 대한 문맥 모델을 선택하는 단계 및 상기 선택된 문맥 모델을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되, 상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함할 수 있다.
10. 9에 있어서, 상기 문맥 모델 선택 단계에서는, 상기 각도 차이 정보에 대응하는 문맥 모델을 상기 복호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.
11. 9에 있어서, 상기 문맥 모델 선택 단계에서는, 상기 모드 번호 정보에 대응하는 문맥 모델을 상기 복호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.
12. 9에 있어서, 상기 문맥 모델 선택 단계에서는, 상기 각도 차이 정보 및 상기 모드 번호 정보에 대응하는 문맥 모델을 상기 복호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.
13. 1에 있어서, 상기 인트라 예측 모드 도출 단계는, 상기 주변 예측 모드 정보를 이용하여, 복수의 VLC(Variable Length Coding) 테이블 중에서 상기 복호화 대상 유닛에 대한 VLC 테이블을 선택하는 단계 및 상기 선택된 VLC 테이블을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되, 상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함할 수 있다.
14. 13에 있어서, 상기 VLC 테이블 선택 단계에서는, 상기 각도 차이 정보에 대응하는 VLC 테이블을 상기 복호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
15. 13에 있어서, 상기 VLC 테이블 선택 단계에서는, 상기 모드 번호 정보에 대응하는 VLC 테이블을 상기 복호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
16. 13에 있어서, 상기 VLC 테이블 선택 단계에서는, 상기 각도 차이 정보 및 상기 모드 번호 정보에 대응하는 VLC 테이블을 상기 복호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
17. 본 발명의 다른 실시 형태는 인트라 예측 모드 복호화 방법이다. 상기 방법은 좌측 주변 예측 모드 및 상단 주변 예측 모드로부터 주변 예측 모드 정보를 도출하는 단계 및 상기 도출된 주변 예측 모드 정보를 이용하여, 복호화 대상 유닛에 대한 인트라 예측 모드를 도출하는 단계를 포함하고, 상기 좌측 주변 예측 모드는 상기 복호화 대상 유닛의 좌측에 인접한 좌측 주변 유닛의 인트라 예측 모드이고, 상기 상단 주변 예측 모드는 상기 복호화 대상 유닛의 상단에 인접한 상단 주변 유닛의 인트라 예측 모드이고, 상기 주변 예측 모드 정보는 각도 차이 정보 및 모드 번호 정보 중 적어도 하나를 포함하고, 상기 각도 차이 정보는 상기 좌측 주변 예측 모드의 각도와 상기 상단 주변 예측 모드의 각도의 차이값을 포함하고, 상기 모드 번호 정보는 상기 좌측 주변 예측 모드의 모드 번호 및 상기 상단 주변 예측 모드의 모드 번호를 포함한다.
18. 17에 있어서, 상기 인트라 예측 모드 도출 단계는, 상기 복호화 대상 유닛에 대한 MPM 인덱스를 수신하여 복호화하는 단계, 상기 주변 예측 모드 정보를 이용하여, 상기 복호화 대상 유닛에 대한 MPM(Most Probable Mode) 후보를 결정하는 단계, 상기 결정된 MPM 후보를 이용하여, MPM 리스트를 생성하는 단계 및 상기 복호화된 MPM 인덱스 및 상기 생성된 MPM 리스트를 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드를 도출하는 단계를 더 포함할 수 있고, 상기 MPM 인덱스는 상기 MPM 리스트에 포함된 MPM 후보 중에서, 상기 복호화 대상 유닛의 인트라 예측 모드와 동일한 후보를 지시하는 인덱스일 수 있다.
19. 17에 있어서, 상기 인트라 예측 모드 도출 단계는, 상기 주변 예측 모드 정보를 이용하여, 복수의 문맥 모델 중에서 상기 복호화 대상 유닛에 대한 문맥 모델을 선택하는 단계 및 상기 선택된 문맥 모델을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되, 상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함할 수 있다.
20. 17에 있어서, 상기 인트라 예측 모드 도출 단계는, 상기 주변 예측 모드 정보를 이용하여, 복수의 VLC 테이블 중에서 상기 복호화 대상 유닛에 대한 VLC 테이블을 선택하는 단계 및 상기 선택된 VLC 테이블을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되, 상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함할 수 있다.
본 발명에 따른 영상 부호화 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
본 발명에 따른 영상 복호화 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
본 발명에 따른 인트라 예측 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
본 발명에 따른 인트라 예측 모드 부호화 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
본 발명에 따른 인트라 예측 모드 복호화 방법에 의하면, 영상 부호화/복호화 효율이 향상될 수 있다.
도 1은 본 발명이 적용되는 영상 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2는 본 발명이 적용되는 영상 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 3은 부호화/복호화 대상 유닛에 대한 복원된 주변 유닛의 실시예를 개략적으로 나타내는 개념도이다.
도 4는 본 발명에 따른 인트라 예측 모드 부호화 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 5는 주변 예측 모드 정보를 이용한 엔트로피 부호화 수행 방법의 일 실시예를 나타내는 흐름도이다.
도 6은 각도 차이 정보에 따라 문맥 모델을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 7은 각도 차이 정보에 따라 VLC 테이블을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 8은 복수의 VLC 테이블 각각에 할당되는 코드워드의 일 실시예를 나타내는 테이블이다.
도 9는 주변 예측 모드의 모드 번호에 따라 문맥 모델을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 10은 주변 예측 모드의 모드 번호에 따라 VLC 테이블을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 11은 주변 예측 모드 간의 각도 차이 정보 및 주변 예측 모드의 모드 번호 정보를 이용하여 문맥 모델을 선택하는 방법의 일 실시예를 나타내는 테이블이다.
도 12는 주변 예측 모드 간의 각도 차이 정보 및 주변 예측 모드의 모드 번호 정보를 이용하여 VLC 테이블을 선택하는 방법의 일 실시예를 나타내는 테이블이다.
도 13은 본 발명에 따른 인트라 예측 모드 복호화 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 14는 주변 예측 모드 정보를 이용한 엔트로피 복호화 수행 방법의 일 실시예를 나타내는 흐름도이다.
이하, 도면을 참조하여 본 발명의 실시 형태에 대하여 구체적으로 설명한다. 본 명세서의 실시예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
어떤 구성 요소가 다른 구성 요소에 “연결되어” 있다거나 “접속되어” 있다고 언급된 때에는, 그 다른 구성 요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있으나, 중간에 다른 구성 요소가 존재할 수도 있다고 이해되어야 할 것이다. 아울러, 본 발명에서 특정 구성을 “포함”한다고 기술하는 내용은 해당 구성 이외의 구성을 배제하는 것이 아니며, 추가적인 구성이 본 발명의 실시 또는 본 발명의 기술적 사상의 범위에 포함될 수 있음을 의미한다.
제1, 제2 등의 용어는 다양한 구성요소들을 설명하는데 사용될 수 있지만, 상기 구성요소들은 상기 용어들에 의해 한정되어서는 안 된다. 상기 용어들은 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용된다. 예를 들어, 본 발명의 권리 범위를 벗어나지 않으면서 제1 구성요소는 제2 구성요소로 명명될 수 있고, 유사하게 제2 구성요소도 제1 구성요소로 명명될 수 있다.
또한 본 발명의 실시예에 나타나는 구성부들은 서로 다른 특징적인 기능들을 나타내기 위해 독립적으로 도시되는 것으로, 각 구성부들이 분리된 하드웨어나 하나의 소프트웨어 구성단위로 이루어짐을 의미하지 않는다. 즉, 각 구성부는 설명의 편의상 각각의 구성부로 나열하여 포함한 것으로 각 구성부 중 적어도 두 개의 구성부가 합쳐져 하나의 구성부로 이루어지거나, 하나의 구성부가 복수 개의 구성부로 나뉘어져 기능을 수행할 수 있고 이러한 각 구성부의 통합된 실시예 및 분리된 실시예도 본 발명의 본질에서 벗어나지 않는 한 본 발명의 권리범위에 포함된다.
또한, 일부의 구성 요소는 본 발명에서 본질적인 기능을 수행하는 필수적인 구성 요소는 아니고 단지 성능을 향상시키기 위한 선택적 구성 요소일 수 있다. 본 발명은 단지 성능 향상을 위해 사용되는 구성 요소를 제외한 본 발명의 본질을 구현하는데 필수적인 구성부만을 포함하여 구현될 수 있고, 단지 성능 향상을 위해 사용되는 선택적 구성 요소를 제외한 필수 구성 요소만을 포함한 구조도 본 발명의 권리범위에 포함된다.
도 1은 본 발명이 적용되는 영상 부호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 1을 참조하면, 상기 영상 부호화 장치(100)는 움직임 예측부(111), 움직임 보상부(112), 인트라 예측부(120), 스위치(115), 감산기(125), 변환부(130), 양자화부(140), 엔트로피 부호화부(150), 역양자화부(160), 역변환부(170), 가산기(175), 필터부(180) 및 참조 픽쳐 버퍼(190)를 포함한다.
영상 부호화 장치(100)는 입력 영상에 대해 인트라(intra) 모드 또는 인터(inter) 모드로 부호화를 수행하고 비트스트림을 출력할 수 있다. 인트라 예측은 화면 내 예측, 인터 예측은 화면 간 예측을 의미한다. 인트라 모드인 경우 스위치(115)가 인트라로 전환되고, 인터 모드인 경우 스위치(115)가 인터로 전환될 수 있다. 영상 부호화 장치(100)는 입력 영상의 입력 블록에 대한 예측 블록을 생성한 후, 입력 블록과 예측 블록의 차분(residual)을 부호화할 수 있다.
인트라 모드인 경우, 인트라 예측부(120)는 현재 블록 주변의 이미 부호화된 블록의 픽셀값을 이용하여 공간적 예측을 수행하여 예측 블록을 생성할 수 있다.
인터 모드인 경우, 움직임 예측부(111)는, 움직임 예측 과정에서 참조 픽쳐 버퍼(190)에 저장되어 있는 참조 영상에서 입력 블록과 가장 매치가 잘 되는 영역을 찾아 움직임 벡터를 구할 수 있다. 움직임 보상부(112)는 움직임 벡터를 이용하여 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다.
감산기(125)는 입력 블록과 생성된 예측 블록의 차분에 의해 잔차 블록(residual block)을 생성할 수 있다. 변환부(130)는 잔차 블록에 대해 변환(transform)을 수행하여 변환 계수(transform coefficient)를 출력할 수 있다. 그리고 양자화부(140)는 입력된 변환 계수를 양자화 파라미터에 따라 양자화하여 양자화된 계수(quantized coefficient)를 출력할 수 있다.

엔트로피 부호화부(150)는, 양자화부(140)에서 산출된 값들 또는 부호화 과정에서 산출된 부호화 파라미터 값 등을 기초로 심볼(symbol)을 확률 분포에 따라 엔트로피 부호화하여 비트스트림(bit stream)을 출력할 수 있다. 엔트로피 부호화 방법은 다양한 값을 갖는 심볼을 입력 받아, 통계적 중복성을 제거하면서, 복호화 가능한 2진수의 열로 표현하는 방법이다.
여기서, 심볼이란 부호화/복호화 대상 신택스 요소(syntax element) 및 부호화 파라미터(coding parameter), 잔여 신호(residual signal)의 값 등을 의미한다. 부호화 파라미터는 부호화 및 복호화에 필요한 매개변수로서, 신택스 요소와 같이 부호화기에서 부호화되어 복호화기로 전달되는 정보뿐만 아니라, 부호화 혹은 복호화 과정에서 유추될 수 있는 정보를 포함할 수 있으며 영상을 부호화하거나 복호화할 때 필요한 정보를 의미한다. 부호화 파라미터는 예를 들어 인트라/인터 예측모드, 이동/움직임 벡터, 참조 픽쳐 인덱스, 부호화 블록 패턴, 잔여 신호 유무, 양자화 파라미터, 유닛 크기, 유닛 파티션(partition) 정보 등의 값 또는 통계를 포함할 수 있다.
엔트로피 부호화가 적용되는 경우, 높은 발생 확률을 갖는 심볼(symbol)에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 부호화 대상 심볼들에 대한 비트열의 크기가 감소될 수 있다. 따라서 엔트로피 부호화를 통해서 영상 부호화의 압축 성능이 높아질 수 있다.
엔트로피 부호화를 위해 지수 골룸(exponential golomb), CAVLC(Context-Adaptive Variable Length Coding), CABAC(Context-Adaptive Binary Arithmetic Coding)과 같은 부호화 방법이 사용될 수 있다. 예를 들어, 엔트로피 부호화부(150)에는 가변 길이 부호화(VLC: Variable Lenghth Coding/Code) 테이블과 같은 엔트로피 부호화를 수행하기 위한 테이블이 저장될 수 있고, 엔트로피 부호화부(150)는 저장된 가변 길이 부호화(VLC) 테이블을 사용하여 엔트로피 부호화를 수행할 수 있다. 또한 엔트로피 부호화부(150)는 대상 심볼의 이진화(binarization) 방법 및 대상 심볼/빈(bin)의 확률 모델(probability model)을 도출한 후, 도출된 이진화 방법 또는 확률 모델을 사용하여 엔트로피 부호화를 수행할 수도 있다.
여기서, 이진화(binarization)란 심볼의 값을 2진수의 열(bin sequence/string)로 표현하는 것을 의미한다. 빈(bin)은 심볼이 이진화를 통해 2진수의 열로 표현될 때, 각각의 2진수의 값(0 또는 1)을 의미한다. 확률 모델이란, 문맥 모델(context model)을 통해서 도출될 수 있는 부호화/복호화 대상 심볼/빈의 예측된 확률을 의미한다. 문맥 모델은 하나 또는 그 이상의 이진화된 심볼의 빈(bin)에 대한 확률 모델이며, 최근에 부호화된 데이터 심볼의 통계에 의해 선택될 수 있다.
보다 상세하게, CABAC 엔트로피 부호화 방법은, 이진화되지 않은 심볼을 이진화(binarization)하여 빈으로 변환하고, 주변 및 부호화 대상 블록의 부호화 정보 혹은 이전 단계에서 부호화된 심볼/빈의 정보를 이용하여 문맥 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 부호화(arithmetic encoding)를 수행하여 비트스트림을 생성할 수 있다. 이때, CABAC 엔트로피 부호화 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 부호화된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다.

도 1의 실시예에 따른 영상 부호화 장치는 인터 예측 부호화, 즉 화면 간 예측 부호화를 수행하므로, 현재 부호화된 영상은 참조 영상으로 사용되기 위해 복호화되어 저장될 필요가 있다. 따라서 양자화된 계수는 역양자화부(160)에서 역양자화되고 역변환부(170)에서 역변환될 수 있다. 역양자화, 역변환된 계수는 가산기(175)를 통해 예측 블록과 더해지고 복원 블록이 생성된다.
복원 블록은 필터부(180)를 거치고, 필터부(180)는 디블록킹 필터(deblocking filter), SAO(Sample Adaptive Offset), ALF(Adaptive Loop Filter) 중 적어도 하나 이상을 복원 블록 또는 복원 픽쳐에 적용할 수 있다. 필터부(180)를 거친 복원 블록은 참조 픽쳐 버퍼(190)에 저장될 수 있다.

도 2는 본 발명이 적용되는 영상 복호화 장치의 일 실시예에 따른 구성을 나타내는 블록도이다.
도 2를 참조하면, 상기 영상 복호화 장치(200)는 엔트로피 복호화부(210), 역양자화부(220), 역변환부(230), 인트라 예측부(240), 움직임 보상부(250), 가산기(255), 필터부(260) 및 참조 픽쳐 버퍼(270)를 포함한다.
영상 복호화 장치(200)는 부호화기에서 출력된 비트스트림을 입력 받아 인트라 모드 또는 인터 모드로 복호화를 수행하고 재구성된 영상, 즉 복원 영상을 출력할 수 있다. 인트라 모드인 경우 스위치가 인트라로 전환되고, 인터 모드인 경우 스위치가 인터로 전환될 수 있다. 영상 복호화 장치(200)는 입력 받은 비트스트림으로부터 잔차 블록(residual block)을 얻고 예측 블록을 생성한 후 잔차 블록과 예측 블록을 더하여 재구성된 블록, 즉 복원 블록을 생성할 수 있다.

엔트로피 복호화부(210)는, 입력된 비트스트림을 확률 분포에 따라 엔트로피 복호화하여, 양자화된 계수(quantized coefficient) 형태의 심볼을 포함한 심볼들을 생성할 수 있다. 엔트로피 복호화 방법은 2진수의 열을 입력 받아 각 심볼들을 생성하는 방법이다. 엔트로피 복호화 방법은 상술한 엔트로피 부호화 방법과 유사하다.
보다 상세하게, CABAC 엔트로피 복호화 방법은, 비트스트림에서 각 신택스 요소에 해당하는 빈을 수신하고, 복호화 대상 신택스 요소 정보와 주변 및 복호화 대상 블록의 복호화 정보 혹은 이전 단계에서 복호화된 심볼/빈의 정보를 이용하여 문맥 모델을 결정하고, 결정된 문맥 모델에 따라 빈(bin)의 발생 확률을 예측하여 빈의 산술 복호화(arithmetic decoding)를 수행하여 각 신택스 요소의 값에 해당하는 심볼을 생성할 수 있다. 이때, CABAC 엔트로피 복호화 방법은 문맥 모델 결정 후 다음 심볼/빈의 문맥 모델을 위해 복호화된 심볼/빈의 정보를 이용하여 문맥 모델을 업데이트할 수 있다.
엔트로피 복호화 방법이 적용되는 경우, 높은 발생 확률을 갖는 심볼에 적은 수의 비트가 할당되고 낮은 발생 확률을 갖는 심볼에 많은 수의 비트가 할당되어 심볼이 표현됨으로써, 각 심볼들에 대한 비트열의 크기가 감소될 수 있다. 따라서 엔트로피 복호화 방법을 통해서 영상 복호화의 압축 성능이 높아질 수 있다.

양자화된 계수는 역양자화부(220)에서 역양자화되고 역변환부(230)에서 역변환되며, 양자화된 계수가 역양자화/역변환 된 결과, 잔차 블록(residual block)이 생성될 수 있다.
인트라 모드인 경우, 인트라 예측부(240)는 현재 블록 주변의 이미 부호화된 블록의 픽셀값을 이용하여 공간적 예측을 수행하여 예측 블록을 생성할 수 있다. 인터 모드인 경우, 움직임 보상부(250)는 움직임 벡터 및 참조 픽쳐 버퍼(270)에 저장되어 있는 참조 영상을 이용하여 움직임 보상을 수행함으로써 예측 블록을 생성할 수 있다.
잔차 블록과 예측 블록은 가산기(255)를 통해 더해지고, 더해진 블록은 필터부(260)를 거칠 수 있다. 필터부(260)는 디블록킹 필터, SAO, ALF 중 적어도 하나 이상을 복원 블록 또는 복원 픽쳐에 적용할 수 있다. 필터부(260)는 재구성된 영상, 즉 복원 영상을 출력할 수 있다. 복원 영상은 참조 픽쳐 버퍼(270)에 저장되어 인터 예측에 사용될 수 있다.

이하, 유닛(unit)은 영상 부호화 및 복호화의 단위를 의미한다. 영상 부호화 및 복호화 시 부호화 혹은 복호화 단위는, 영상을 분할하여 부호화 혹은 복호화 할 때 그 분할된 단위를 의미하므로, 블록, 부호화 유닛 (CU: Coding Unit), 부호화 블록, 예측 유닛 (PU: Prediction Unit), 예측 블록, 변환 유닛(TU: Transform Unit), 변환 블록(transform block) 등으로 불릴 수 있다. 하나의 유닛은 크기가 더 작은 하위 유닛으로 더 분할될 수 있다.
여기서, 예측 유닛은 예측 및/또는 움직임 보상 수행의 단위가 되는 기본 유닛을 의미한다. 예측 유닛은 복수의 파티션(partition)으로 분할될 수 있으며, 각각의 파티션은 예측 유닛 파티션(prediction unit partition)으로 불릴 수도 있다. 예측 유닛이 복수의 파티션으로 분할된 경우, 복수의 파티션 각각이 예측 및/또는 움직임 보상 수행의 단위가 되는 기본 유닛일 수 있다. 이하, 본 발명의 실시예에서는 예측 유닛이 분할된 각각의 파티션도 예측 유닛으로 불릴 수 있다.

한편, 인트라 예측은 부호화/복호화 대상 유닛의 인트라 예측 모드에 따라 수행될 수 있다. 이 때, 인트라 예측 모드 각각은 이에 해당하는 예측 방향(prediction direction)을 가질 수 있으며, 각각의 예측 방향은 소정의 각도 값을 가질 수 있다. 따라서, 부호화/복호화 대상 유닛의 인트라 예측 모드는, 상기 부호화/복호화 대상 유닛에 대한 예측 방향 정보를 나타낼 수도 있다.
부호화기는 인트라 예측 모드를 부호화하여 복호화기로 전송할 수 있다. 부호화기는 부호화 대상 유닛에 대한 인트라 예측 모드를 부호화하여 전송할 때, 전송되는 비트량을 감소시키고 부호화 효율을 높이기 위해, 인트라 예측 모드를 예측 하는 방법을 사용할 수 있다.
부호화 대상 유닛의 예측 모드는 복원된 주변 유닛의 예측 모드와 동일할 확률이 높으므로, 부호화기는 부호화 대상 유닛에 인접한 복원된 주변 유닛의 예측 모드를 이용하여 부호화 대상 유닛의 예측 모드를 부호화할 수 있다. 이하, 부호화 대상 유닛의 인트라 예측 모드에 대한 예측값으로 사용되는 예측 모드들은 MPM(Most Probable Mode)이라 한다. 여기서, 복원된 주변 유닛은 이미 부호화 또는 복호화되어 복원된 유닛으로서, 부호화/복호화 대상 유닛에 인접한 유닛, 부호화/복호화 대상 유닛의 우측 상단 코너에 위치한 유닛, 부호화/복호화 대상 유닛의 좌측 상단 코너에 위치한 유닛 및/또는 부호화/복호화 대상 유닛의 좌측 하단 코너에 위치한 유닛을 포함할 수 있다.

도 3은 부호화/복호화 대상 유닛에 대한 복원된 주변 유닛의 실시예를 개략적으로 나타내는 개념도이다.
도 3을 참조하면, 부호화/복호화 대상 유닛(E)에 대한 복원된 주변 유닛에는, E 유닛의 좌측에 인접한 좌측 주변 유닛(A), E 유닛의 상단에 인접한 상단 주변 유닛(B), E 유닛의 우측 상단 코너에 위치한 우측 상단 코너 유닛(C) 및 E 유닛의 좌측 상단 코너에 위치한 좌측 상단 코너 유닛(D) 등이 있을 수 있다.
이하, 후술되는 본 명세서의 실시예들에서, 좌측 주변 유닛은 유닛 A, 상단 주변 유닛은 유닛 B, 우측 상단 코너 유닛은 유닛 C, 좌측 상단 코너 유닛은 유닛 D라 한다. 또한 부호화/복호화 대상 유닛은 유닛 E라 한다.

도 4는 본 발명에 따른 인트라 예측 모드 부호화 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 4를 참조하면, 부호화기는 부호화 대상 유닛의 인트라 예측 모드를 결정할 수 있다(S410).

또한, 부호화기는 주변 예측 모드에 관한 정보를 도출할 수 있다(S420). 여기서, 주변 예측 모드는 복원된 주변 유닛의 인트라 예측 모드를 의미할 수 있다. 이하, 주변 예측 모드에 관한 정보는 주변 예측 모드 정보라 한다.
복원된 주변 유닛 각각은 인트라 예측 모드를 가질 수 있다. 이 때, 부호화기는 복원된 주변 유닛 중에서 인트라 예측 모드를 가진 유닛에 대해, 주변 예측 모드 정보를 도출할 수 있다. 주변 예측 모드 정보에는 주변 예측 모드 간의 각도 차이 및/또는 주변 예측 모드의 모드 번호 등이 있을 수 있다.
상술한 바와 같이, 인트라 예측 모드 각각은 이에 해당하는 예측 방향을 가질 수 있으며, 각각의 예측 방향은 소정의 각도 값을 가질 수 있다. 따라서, 주변 예측 모드 각각은 소정의 각도 값을 가질 수 있으며, 부호화기는 주변 예측 모드 간의 각도 차이를 도출할 수 있다. 이하, 주변 예측 모드 간의 각도 차이에 관한 정보는 각도 차이 정보라 한다.
또한, 인트라 예측 모드 각각은 이에 해당하는 모드 번호를 가질 수 있으며, 부호화기는 주변 예측 모드의 모드 번호를 도출 및/또는 판별할 수 있다. 인트라 예측 모드에 할당되는 모드 번호는, 상기 인트라 예측 모드의 발생 확률에 따라 결정될 수 있다. 예를 들어, 발생 확률이 높은 예측 모드에는 낮은 모드 번호가 할당될 수 있다. 따라서, 부호화기에 의해 도출된, 주변 예측 모드의 모드 번호는, 주변 예측 모드의 모드 순서를 나타낼 수도 있다. 이하, 주변 예측 모드의 모드 번호에 관한 정보는 모드 번호 정보라 한다.

다시 도 4를 참조하면, 부호화기는 도출된 주변 예측 모드 정보를 이용하여, 부호화 대상 유닛에 대한 인트라 예측 모드를 부호화할 수 있다(S430).
부호화기는, 부호화 대상 유닛에 대한 인트라 예측 모드를 부호화하기 위해, 부호화 대상 유닛에 대한 MPM 후보를 도출할 수 있다. MPM 후보는 복원된 주변 유닛의 인트라 예측 모드를 이용하여 도출될 수 있다. 이 때, 부호화기는 A, B, C, D 유닛의 예측 모드 중 적어도 하나 이상을 이용할 수 있다.
복원된 주변 유닛 중에서 가용하지 않은 유닛이 존재하는 경우, 부호화기는 상기 가용하지 않은 유닛을 MPM 후보 도출에 이용하지 않을 수 있다. 또한, 복원된 주변 유닛 중에서, PCM(Pulse Code Modulation) 방식에 의해 부호화/복호화된 유닛 및/또는 인터 예측에 의해 부호화/복호화된 유닛은, 인트라 예측 모드에 관련된 정보를 포함하지 않을 수 있다. 따라서, PCM 방식에 의해 및/또는 인터 예측에 의해 부호화/복호화된 유닛은, MPM 후보 도출에 이용되지 않을 수 있다. 또한, 복원된 주변 유닛 중에서, CIP(Constrained Intra Prediction) 방식에 의해 부호화/복호화된 유닛이 존재할 수 있다. 상기 CIP 방식에 의해 부호화/복호화되는 유닛에서는, 인터 예측에 의해 부호화된 유닛이 참조 유닛으로 이용되지 않을 수 있으며, 인트라 예측 모드 중에서 DC 모드만을 이용하여 인트라 예측이 수행될 수도 있다. 이 때, 부호화기는 상기 DC 모드에서 부호화/복호화된 유닛을, MPM 후보 도출에 이용하지 않을 수 있다.

MPM 후보 도출 방법의 일 실시예로, 부호화기는 좌측 주변 유닛 A의 예측 모드 및 상단 주변 유닛 B의 예측 모드 중에서 가장 작은 테이블 인덱스(table index)가 할당된 예측 모드(예를 들어, Min(A, B))를, MPM 리스트에 포함되는 MPM 후보로 선택할 수 있다. 이 때, 상기 각도 차이 정보가, 유닛 A의 예측 모드 각도와 유닛 B의 예측 모드 각도가 동일함을 지시하는 경우, 즉 유닛 A의 모드 번호와 유닛 B의 모드 번호가 동일한 경우, 부호화기는 테이블 인덱스에 관계 없이 예측 모드를 선택할 수 있다.
상기 테이블 인덱스는 예측 모드의 발생 빈도 및 통계에 기반하여 예측 모드에 할당될 수 있다. 예를 들어, 발생 빈도가 가장 높은 예측 모드에는 가장 작은 테이블 인덱스 값이 할당되고, 발생 빈도가 가장 낮은 예측 모드에는 가장 높은 테이블 인덱스 값이 할당될 수 있다.
상기 테이블 인덱스는 상기 예측 모드의 발생 빈도에 맞게 할당되지 않을 수도 있다. 즉, 상기 테이블 인덱스는 발생 빈도에 따라 정렬되어 있지 않을 수 있다. 이 때, 부호화기는 테이블 인덱스 값에 관계 없이, 유닛 A의 예측 모드 및 유닛 B의 예측 모드 중에서 발생 빈도가 더 높은 예측 모드를, MPM 리스트에 포함되는 MPM 후보로 선택할 수도 있다.

부호화기는 인트라 예측 모드를 부호화하기 위해, 소정의 고정된 개수(N)의 MPM 후보를 이용할 수도 있다. 여기서, N은 양의 정수일 수 있다.
일 실시예로, MPM 리스트에 포함되는 MPM 후보의 개수는 2개일 수 있다. 예를 들어, 부호화기는 좌측 주변 유닛 A의 예측 모드 및 상단 주변 유닛 B의 예측 모드를, MPM 후보로 선택할 수 있다.
이 때, 유닛 A 및 유닛 B로부터 도출되는 MPM 후보의 개수가 2개 미만일 수 있다. 일례로, 각도 차이 정보가, 유닛 A의 예측 모드 각도와 유닛 B의 예측 모드 각도가 동일함을 지시하는 경우, 즉 유닛 A의 모드 번호와 유닛 B의 모드 번호가 동일한 경우, 부호화기에서 도출되는 MPM 후보의 개수는 1개일 수 있다. 이 때, 유닛 A 및 유닛 B로부터 도출되는 MPM 후보를 제외한, 나머지 MPM 후보는, 소정의 모드로 설정 및/또는 도출될 수 있다. 즉, 부호화기는 소정의 모드를 추가 MPM 후보로 선택할 수 있다. 일례로, 상기 소정의 모드는 DC로 고정될 수 있다. 또한, 상기 소정의 모드는 유닛 A 및 유닛 B의 예측 모드가 플래너 모드가 아닌 경우에는 플래너(planar) 모드일 수 있고, 유닛 A 및 유닛 B의 예측 모드가 플래너 모드인 경우에 DC 모드일 수도 있다.
또한, 복원된 주변 유닛 중에서 가용하지 않은 유닛이 존재하는 경우, 부호화기에서 도출되는 MPM 후보의 개수는 1개일 수 있다. 이 때, 유닛 A 및 유닛 B로부터 도출되는 MPM 후보를 제외한, 나머지 MPM 후보는, 소정의 모드로 설정 및/또는 도출될 수 있다. 즉, 부호화기는 소정의 모드를 추가 MPM 후보로 선택할 수 있다. 여기서, 상기 소정의 모드는 예를 들어, DC 모드 또는 플래너(planar) 모드일 수 있다.
다른 실시예로, MPM 리스트에 포함되는 MPM 후보의 개수는 3개일 수 있다. 예를 들어, 부호화기는 좌측 주변 유닛 A의 예측 모드, 상단 주변 유닛 B의 예측 모드 및 이전에 부호화된 유닛의 예측 모드 중에서 가장 발생 빈도가 높은 예측 모드를, MPM 후보로 선택할 수 있다.
이 때, 유닛 A 및 유닛 B로부터 도출되는 MPM 후보의 개수가 2개 미만일 수 있다. 일례로, 각도 차이 정보가, 유닛 A의 예측 모드 각도와 유닛 B의 예측 모드 각도가 동일함을 지시하는 경우, 즉 유닛 A의 모드 번호와 유닛 B의 모드 번호가 동일한 경우, 부호화기에서 도출되는 MPM 후보의 개수는 1개일 수 있다. 또한, 복원된 주변 유닛 중에서 가용하지 않은 유닛이 존재할 수도 있다. 유닛 A 및 유닛 B로부터 도출되는 MPM 후보의 개수가 2개 미만인 경우, 부호화기는 이전에 부호화된 유닛의 예측 모드 중에서, 발생 빈도가 높은 순서로 복수 개의 예측 모드를 MPM 후보로 선택할 수도 있다.
발생 빈도가 높은 예측 모드를 선택하는 단위 즉, 예측 모드 선택 단위는, 부호화 대상 유닛이 포함된, 부호화 대상 픽쳐, 부호화 대상 슬라이스, LCU(Largest Coding Unit), CU(Coding Unit) 및/또는 PU(Prediction Unit) 단위일 수 있다. 부호화기는 예측 모드의 발생 빈도를 계산하기 위해, 카운터(counter)를 이용할 수도 있다. 카운터가 사용되는 경우, 부호화기는 상기 예측 모드 선택 단위에 대한 부호화를 수행한 후, 상기 카운터를 초기화할 수 있다. 즉, 상기 카운터는 상기 예측 모드 선택 단위로 초기화될 수 있다.

상술한 방법에 의해 MPM 후보가 도출되면, 부호화기는 도출된 MPM 후보를 이용하여 MPM 리스트를 생성할 수 있다. 부호화기는 MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하는지 여부를 판단할 수 있다. 이 때, 부호화기는 MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하는지 여부를 지시하는 플래그를 복호화기로 전송할 수 있다. 이하, 상기 플래그는 MPM 플래그라 한다.
일 실시예로, 복호화기로 전송되는 MPM 플래그는 prev_intra_luma_pred_flag로 나타내어질 수 있다. 예를 들어, MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하는 경우 MPM 플래그에 1이 할당될 수 있고, 그렇지 않은 경우 0이 할당될 수 있다.
MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하는 경우, 부호화기는 부호화 대상 유닛의 예측 모드가 MPM 리스트 내의 MPM 후보들 중 어떤 MPM 후보와 동일한지를 지시하는 인덱스(index)를 복호화기로 전송할 수 있다. 이하, 상기 인덱스는 MPM 인덱스라 한다. 이 때, 부호화기 및 복호화기는 MPM 인덱스가 지시하는 MPM 후보를, 부호화 대상 유닛의 인트라 예측 모드로 사용할 수 있다.
MPM 리스트에 포함된 MPM 후보의 개수가 1개인 경우, 부호화기는 MPM 인덱스를 부호화하지 않을 수 있다. 또한, 복호화기가 복호화 대상 유닛의 예측 모드와 동일한 MPM 후보를 알 수 있는 경우에도 부호화기는 MPM 인덱스를 부호화하지 않을 수 있다. 이 때, 부호화기는 MPM 플래그만을 부호화하여 복호화기로 전송할 수도 있다.
MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하지 않는 경우, 부호화기는 현재 부호화 대상 유닛의 예측 모드 및 MPM 리스트를 이용하여 리메이닝 모드(remaining mode)를 도출할 수 있다. 여기서, 리메이닝 모드는 MPM 후보를 제외한 인트라 예측 모드를 이용하여 도출될 수 있다. 부호화기는 생성된 리메이닝 모드를 부호화하여 복호화기로 전송할 수 있다. 일 실시예로 상기 리메이닝 모드는 rem_intra_luma_pred_mode로 나타내어질 수 있다.

부호화기는, 부호화 대상 유닛의 인트라 예측 모드를 부호화함에 있어, 복원된 주변 유닛 및/또는 MPM 후보를 이용하지 않을 수도 있다. 이 때, 부호화기는 부호화 대상 유닛의 인트라 예측 모드 자체를 엔트로피 부호화하여 복호화기로 전송할 수 있다.

한편, 부호화기는 상술한 MPM 플래그, MPM 인덱스, 리메이닝 모드 및/또는 인트라 예측 모드 자체를 엔트로피 부호화하여 복호화기로 전송할 수 있다. 이 때, 신택스 요소 각각에 대한 엔트로피 부호화를 수행함에 있어, 부호화기는 하나의 문맥 모델만을 이용하여 산술 부호화를 수행할 수 있고, 고정 비트 부호화를 사용할 수도 있다. 그러나, 이 경우 복원된 주변 유닛의 인트라 예측 모드 정보를 사용하지 않으므로, 부호화 효율이 낮을 수 있다. 따라서, 복원된 주변 유닛의 인트라 예측 모드에 관한 정보, 즉 주변 예측 모드 정보를 이용하여 엔트로피 부호화를 수행하는 방법이 제공될 수 있다. 상술한 바와 같이, 주변 예측 모드 정보에는 주변 예측 모드 간의 각도 차이 및/또는 주변 예측 모드의 모드 번호 등이 있을 수 있다. 이하, 주변 예측 모드 정보를 이용하여 부호화 대상 유닛에 대한 엔트로피 부호화를 수행하는 방법의 실시예들이 서술된다.

도 5는 주변 예측 모드 정보를 이용한 엔트로피 부호화 수행 방법의 일 실시예를 나타내는 흐름도이다.
도 5를 참조하면, 부호화기는 주변 예측 모드 정보를 이용하여, 부호화 대상 유닛에 대한 문맥 모델 및/또는 VLC 테이블을 선택할 수 있다(S510). 여기서, VLC(Variable Length Coding) 테이블은 가변 길이 부호화 테이블과 동일한 의미를 가질 수 있다.
부호화기는 엔트로피 부호화를 수행함에 있어, 복수의 문맥 모델 중에서 하나의 문맥 모델을 선택하여 사용할 수 있다. 이 때, 부호화기는 주변 예측 모드 간의 각도 차이 정보를 이용하여 문맥 모델을 선택할 수 있고, 주변 예측 모드의 모드 번호 및/또는 모드 순서를 이용하여 문맥 모델을 선택할 수도 있다. 또한 부호화기는 각도 차이 정보 및 모드 번호 정보를 함께 이용하여 문맥 모델을 선택할 수도 있다.
또한 부호화기는 엔트로피 부호화를 수행함에 있어, 복수의 VLC 테이블 중에서 하나의 VLC 테이블을 선택하여 사용할 수 있다. 이 때, 부호화기는 주변 예측 모드 간의 각도 차이 정보를 이용하여 VLC 테이블을 선택할 수 있고, 주변 예측 모드의 모드 번호 및/또는 모드 순서를 이용하여 문맥 모델을 선택할 수도 있다. 또한 부호화기는 각도 차이 정보 및 모드 번호 정보를 함께 이용하여 문맥 모델을 선택할 수도 있다.
부호화기는 상기 선택된 문맥 모델 및/또는 VLC 테이블을 이용하여, 부호화 대상 유닛의 인트라 예측 모드에 대한 엔트로피 부호화를 수행할 수 있다(S520). 이 때, 엔트로피 부호화가 수행되는 신택스 요소에는, 상술한 바와 같이, MPM 플래그, MPM 인덱스, 리메이닝 모드 및/또는 인트라 예측 모드 자체 등이 있을 수 있다.

도 6은 각도 차이 정보에 따라 문맥 모델을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 6의 610은 주변 예측 모드 간의 각도 차이 정보의 실시예를 나타내는 테이블이다. 도 6의 610에서, VER은 수직 방향 예측, HOR은 수평 방향 예측, DC는 DC 예측을 나타낼 수 있다.
상술한 바와 같이, 인트라 예측 모드 각각은 이에 해당하는 예측 방향을 가질 수 있으며, 각각의 예측 방향은 소정의 각도 값을 가질 수 있다. 따라서, 주변 예측 모드 간의 예측 방향 차이는 주변 예측 모드 간의 각도 차이로 정의될 수 있다. 부호화기 및 복호화기에는 각도 차이 정보를 포함하는 테이블이 동일하게 저장되어 있을 수 있으며, 부호화기 및 복호화기는 상기 저장된 테이블을 이용하여 주변 예측 모드 간의 각도 차이를 도출할 수 있다.
도 6의 620은, 주변 예측 모드 간의 각도 차이에 따른 문맥 카테고리의 일 실시예를 나타내는 테이블이다. 도 6의 620에서, d는 각도 차이 값을 나타내고, ctxN(N은 1,2,3 또는 4)은 부호화 대상 유닛의 신택스 요소에 적용되는 문맥 모델을 나타낼 수 있다. 또한 Th1(Threshold1), Th2(Threshold2), Th3(Threshold3), Th4(Threshold4)는 각각 각도 차이의 임계값을 나타낼 수 있다.
도 6의 620을 참조하면, 부호화기는 각도 차이 정보를 이용하여, 서로 다른 4개의 문맥 모델 중에서 하나의 문맥 모델을 선택할 수 있다. 예를 들어, 주변 예측 모드 간의 각도 차이가 Th1보다 크고 Th2 이하인 경우, 부호화기는 ctx2를 부호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.
도 6의 630은, 주변 예측 모드 간의 각도 차이에 따른 문맥 카테고리의 다른 실시예를 나타내는 테이블이다. 도 6의 630을 참조하면, 부호화기는 각도 차이 정보를 이용하여, 서로 다른 4개의 문맥 모델 중 하나의 문맥 모델을 선택할 수 있다.
예를 들어, 좌측 주변 유닛 A의 인트라 예측 모드가 1(HOR)이고, 상단 주변 유닛 B의 인트라 예측 모드가 33(HOR+7)이라 가정한다. 여기서, 1(HOR)은 모드 번호가 1인 예측 모드, 33(HOR+7)은 모드 번호가 33인 예측 모드를 나타낼 수 있다. 이 때, 도 6의 610을 참조하면 주변 예측 모드 간의 각도 차이는 35일 수 있다. 따라서, 부호화기는 ctx1을 부호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.
상술한 실시예에서는, 좌측 주변 유닛 A 및 상단 주변 유닛 B를 이용하여 각도 차이 정보를 도출하는 경우가 서술되고 있지만, 각도 차이 정보를 도출하는 방법은 상기 실시예에 한정되지 않는다. 주변 예측 모드 간의 각도 차이 정보는 복원된 주변 유닛 중에서 가용한 유닛을 이용하여 다양한 방법으로 도출될 수 있다.
또한, 상술한 실시예에서 각 문맥 모델(ctx1 내지 ctx4)은 서로 다른 초기값을 가질 수 있다. 이 때, 각 문맥 모델에서는 서로 다른 초기값을 이용하여 MPS(Most Probable State) 및 MPS의 확률값이 결정될 수 있으며, MPS 및 MPS 확률값 결정에는 양자화 파라미터 등의 부호화 파라미터가 사용될 수 있다.

도 7은 각도 차이 정보에 따라 VLC 테이블을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 7의 710은 주변 예측 모드 간의 각도 차이 정보의 실시예를 나타내는 테이블이다. 상술한 바와 같이, 인트라 예측 모드 각각은 이에 해당하는 예측 방향을 가질 수 있으며, 각각의 예측 방향은 소정의 각도 값을 가질 수 있다. 따라서, 주변 예측 모드 간의 예측 방향 차이는 주변 예측 모드 간의 각도 차이로 정의될 수 있다. 부호화기 및 복호화기에는 각도 차이 정보를 포함하는 테이블이 동일하게 저장되어 있을 수 있으며, 부호화기 및 복호화기는 상기 저장된 테이블을 이용하여 주변 예측 모드 간의 각도 차이를 도출할 수 있다.
도 7의 720은, 주변 예측 모드 간의 각도 차이에 따른 VLC 테이블 카테고리의 일 실시예를 나타내는 테이블이다. 도 7의 720에서, d는 각도 차이 값을 나타내고, VLCN(N은 1,2,3 또는 4)은 부호화 대상 유닛의 신택스 요소에 적용되는 VLC 테이블을 나타낼 수 있다. 또한 Th1(Threshold1), Th2(Threshold2), Th3(Threshold3), Th4(Threshold4)는 각각 각도 차이의 임계값을 나타낼 수 있다.
도 7의 720을 참조하면, 부호화기는 각도 차이 정보를 이용하여, 서로 다른 4개의 VLC 테이블 중에서 하나의 테이블을 선택할 수 있다. 예를 들어, 주변 예측 모드 간의 각도 차이가 Th1보다 크고 Th2 이하인 경우, 부호화기는 VLC2를 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
도 7의 730은, 주변 예측 모드 간의 각도 차이에 따른 VLC 테이블 카테고리의 다른 실시예를 나타내는 테이블이다. 도 7의 730을 참조하면, 부호화기는 각도 차이 정보를 이용하여, 서로 다른 4개의 VLC 테이블 중 하나의 테이블을 선택할 수 있다. 도 7의 730에서는, 각도 차이 값이 45 이하일 때는 VLC1, 각도 차이 값이 45보다 크고 90 이하일 때는 VLC2, 각도 차이 값이 90보다 크고 135 이하일 때는 VLC3, 각도 차이 값이 135보다 클 때는 VLC4가 부호화 대상 유닛에 대한 VLC 테이블로 선택될 수 있다.
예를 들어, 좌측 주변 유닛 A의 인트라 예측 모드가 1(HOR)이고, 상단 주변 유닛 B의 인트라 예측 모드가 33(HOR+7)이라 가정한다. 여기서, 1(HOR)은 모드 번호가 1인 예측 모드, 33(HOR+7)은 모드 번호가 33인 예측 모드를 나타낼 수 있다. 이 때, 도 7의 710을 참조하면 주변 예측 모드 간의 각도 차이는 35일 수 있다. 따라서, 부호화기는 VLC1을 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
도 7의 740은, 주변 예측 모드 간의 각도 차이에 따른 VLC 테이블 카테고리의 또 다른 실시예를 나타내는 테이블이다. 도 7의 740을 참조하면, 부호화기는 각도 차이 정보를 이용하여, 서로 다른 2개의 VLC 테이블 중 하나의 테이블을 선택할 수 있다. 도 7의 740에서는, 각도 차이 값이 0인 경우, 즉 주변 예측 모드가 서로 동일한 경우(d=0)에는, VLC1이 부호화 대상 유닛에 대한 VLC 테이블로 선택될 수 있다. 또한, 각도 차이 값이 0이 아닌 경우, 즉 주변 예측 모드가 서로 동일하지 않은 경우(d!=0)에는, VLC2가 부호화 대상 유닛에 대한 VLC 테이블로 선택될 수 있다.
예를 들어, 좌측 주변 유닛 A의 인트라 예측 모드가 1(HOR)이고, 상단 주변 유닛 B의 인트라 예측 모드가 1(HOR)이라 가정한다. 여기서, 1(HOR)은 모드 번호가 1인 예측 모드를 나타낼 수 있다. 이 때, 좌측 주변 유닛 A의 인트라 예측 모드와 상단 주변 유닛 B의 인트라 예측 모드가 동일하므로, 주변 예측 모드 간의 각도 차이는 0일 수 있다. 따라서, 부호화기는 VLC1을 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
또 다른 예로, 좌측 주변 유닛 A의 인트라 예측 모드가 1(HOR)이고, 상단 주변 유닛 B의 인트라 예측 모드가 33(HOR+7)이라 가정한다. 여기서, 1(HOR)은 모드 번호가 1인 예측 모드, 33(HOR+7)은 모드 번호가 33인 예측 모드를 나타낼 수 있다. 이 때, 좌측 주변 유닛 A의 인트라 예측 모드와 상단 주변 유닛 B의 인트라 예측 모드가 동일하지 않으므로, 주변 예측 모드 간의 각도 차이는 0이 아닐 수 있다. 따라서, 부호화기는 VLC2를 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
상술한 실시예에서는, 좌측 주변 유닛 A 및 상단 주변 유닛 B를 이용하여 각도 차이 정보를 도출하는 경우가 서술되고 있지만, 각도 차이 정보를 도출하는 방법은 상기 실시예에 한정되지 않는다. 주변 예측 모드 간의 각도 차이 정보는 복원된 주변 유닛 중에서 가용한 유닛을 이용하여 다양한 방법으로 도출될 수 있다.

도 8은 복수의 VLC 테이블 각각에 할당되는 코드워드의 일 실시예를 나타내는 테이블이다.
도 8을 참조하면, 각각의 VLC 테이블에서는, 각각의 심볼 값 및/또는 각각의 신택스 요소 값에 따라, 할당되는 코드워드가 달라질 수 있다. 이 때, 부호화기는 발생 확률이 높은 심볼에 짧은 길이의 코드워드를 할당함으로써, 부호화 효율을 향상시킬 수 있다.
부호화기는 부호화 과정에서 각각의 VLC 테이블을 업데이트할 수도 있다. 예를 들어, 도 8의 VLC1에서, 심볼 값 2의 발생 빈도가 심볼 값 1의 발생 빈도보다 높은 경우, 부호화기는 심볼 값 1에 할당된 코드워드 ‘01’과 심볼 값 2에 할당된 코드워드 ‘001’을 바꿀 수 있다. 업데이트 수행 후에, 부호화기는 업데이트된 VLC 테이블을 이용하여 엔트로피 부호화를 수행할 수 있다.

도 9는 주변 예측 모드의 모드 번호에 따라 문맥 모델을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 9의 910은 주변 예측 모드에 할당되는 모드 번호의 실시예를 나타내는 테이블이다. 도 9의 910은 복원된 주변 유닛이 가질 수 있는 인트라 예측 모드의 개수가 34개인 경우의 실시예를 도시한다.
상술한 바와 같이, 인트라 예측 모드에 할당되는 모드 번호는, 인트라 예측 모드의 발생 확률에 따라 결정될 수 있다. 이 때, 발생 확률이 높은 예측 모드에는 낮은 모드 번호가 할당될 수 있다. 예를 들어, 도 9의 910의 테이블에서는, VER 예측 모드의 발생 확률이 가장 높을 수 있다. 따라서, 주변 예측 모드의 모드 번호는 주변 예측 모드의 모드 순서를 나타낼 수도 있다.
도 9의 920은, 주변 예측 모드의 모드 번호에 따른 문맥 카테고리의 일 실시예를 나타내는 테이블이다. 도 9의 920에서, ctxN(N은 1,2,3 또는 4)은 부호화 대상 유닛의 신택스 요소에 적용되는 문맥 모델을 나타낼 수 있다. 도 9의 920을 참조하면, 부호화기는 주변 예측 모드의 모드 번호를 이용하여, 서로 다른 4개의 문맥 모델 중에서 하나의 문맥 모델을 선택할 수 있다.
일례로, 좌측 주변 유닛 A의 인트라 예측 모드가 0(VER)이고, 상단 주변 유닛 B의 인트라 예측 모드가 6(VER+6)이라 가정한다. 여기서, 0(VER)은 모드 번호가 0인 예측 모드, 6(VER+6)은 모드 번호가 6인 예측 모드를 나타낼 수 있다. 이 때, 도 9의 920을 참조하면 유닛 A의 모드 번호와 유닛 B의 모드 번호는 동일한 문맥 카테고리에 포함될 수 있다. 상기 문맥 카테고리에 해당되는 문맥 모델은 ctx1이므로, 부호화기는 ctx1을 부호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.
다른 예로, 좌측 주변 유닛 A의 인트라 예측 모드가 8(HOR+4)이고, 상단 주변 유닛 B의 인트라 예측 모드가 21(VER-1)이라 가정한다. 여기서, 8(HOR+4)은 모드 번호가 8인 예측 모드, 21(VER-1)은 모드 번호가 21인 예측 모드를 나타낼 수 있다. 도 9의 920을 참조하면 유닛A의 모드 번호와 유닛 B의 모드 번호는 서로 다른 문맥 카테고리에 포함될 수 있다. 이 때, 부호화기는 더 작은 모드 번호(예를 들어, 모드 번호 8)에 대응하는 문맥 모델을 선택할 수 있다. 모드 번호 8에 해당되는 문맥 모델은 ctx2이므로, 부호화기는 ctx2를 부호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.
상술한 실시예에서는, 좌측 주변 유닛 A 및 상단 주변 유닛 B를 이용하여 문맥 모델을 선택하는 경우가 서술되고 있지만, 문맥 모델을 선택하는 방법은 상기 실시예에 한정되지 않는다. 문맥 모델 선택에 사용되는 모드 번호 정보는, 복원된 주변 유닛 중에서 가용한 유닛을 이용하여 다양한 방법으로 도출될 수 있다.

도 10은 주변 예측 모드의 모드 번호에 따라 VLC 테이블을 선택하는 방법의 실시예를 나타내는 테이블이다.
도 10의 1010은 주변 예측 모드에 할당되는 모드 번호의 실시예를 나타내는 테이블이다. 도 10의 1010은 복원된 주변 유닛이 가질 수 있는 인트라 예측 모드의 개수가 34개인 경우의 실시예를 도시한다.
상술한 바와 같이, 인트라 예측 모드에 할당되는 모드 번호는, 인트라 예측 모드의 발생 확률에 따라 결정될 수 있다. 이 때, 발생 확률이 높은 예측 모드에는 낮은 모드 번호가 할당될 수 있다. 예를 들어, 도 10의 1010의 테이블에서는, VER 예측 모드의 발생 확률이 가장 높을 수 있다. 따라서, 주변 예측 모드의 모드 번호는 주변 예측 모드의 모드 순서를 나타낼 수도 있다.
도 10의 1020은, 주변 예측 모드의 모드 번호에 따른 VLC 테이블 카테고리의 일 실시예를 나타내는 테이블이다. 도 10의 1020에서, VLCN(N은 1,2,3 또는 4)은 부호화 대상 유닛의 신택스 요소에 적용되는 VLC 테이블을 나타낼 수 있다. 도 10의 1020을 참조하면, 부호화기는 주변 예측 모드의 모드 번호를 이용하여, 서로 다른 4개의 VLC 테이블 중에서 하나의 테이블을 선택할 수 있다.
일례로, 좌측 주변 유닛 A의 인트라 예측 모드가 0(VER)이고, 상단 주변 유닛 B의 인트라 예측 모드가 6(VER+6)이라 가정한다. 여기서, 0(VER)은 모드 번호가 0인 예측 모드, 6(VER+6)은 모드 번호가 6인 예측 모드를 나타낼 수 있다. 이 때, 도 10의 1020을 참조하면 유닛 A의 모드 번호와 유닛 B의 모드 번호는 동일한 카테고리에 포함될 수 있다. 상기 카테고리에 해당되는 VLC 테이블은 VLC1이므로, 부호화기는 VLC1을 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
다른 예로, 좌측 주변 유닛 A의 인트라 예측 모드가 8(HOR+4)이고, 상단 주변 유닛 B의 인트라 예측 모드가 21(VER-1)이라 가정한다. 여기서, 8(HOR+4)은 모드 번호가 8인 예측 모드, 21(VER-1)은 모드 번호가 21인 예측 모드를 나타낼 수 있다. 도 10의 1020을 참조하면 유닛A의 모드 번호와 유닛 B의 모드 번호는 서로 다른 카테고리에 포함될 수 있다. 이 때, 부호화기는 더 작은 모드 번호(예를 들어, 모드 번호 8)에 대응하는 VLC 테이블을 선택할 수 있다. 모드 번호 8에 해당되는 VLC 테이블은 VLC2이므로, 부호화기는 VLC2를 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
상술한 실시예에서는, 좌측 주변 유닛 A 및 상단 주변 유닛 B를 이용하여 문맥 모델을 선택하는 경우가 서술되고 있지만, 문맥 모델을 선택하는 방법은 상기 실시예에 한정되지 않는다. 문맥 모델 선택에 사용되는 모드 번호 정보는, 복원된 주변 유닛 중에서 가용한 유닛을 이용하여 다양한 방법으로 도출될 수 있다.

도 11은 주변 예측 모드 간의 각도 차이 정보 및 주변 예측 모드의 모드 번호 정보를 이용하여 문맥 모델을 선택하는 방법의 일 실시예를 나타내는 테이블이다.
도 11에서, ctxN(N은 1,2,3 또는 4)은 부호화 대상 유닛의 신택스 요소에 적용되는 문맥 모델을 나타낼 수 있다. 도 11을 참조하면, 부호화기는 주변 예측 모드 간의 각도 차이 및 주변 예측 모드의 모드 번호를 이용하여, 서로 다른 4개의 문맥 모델 중에서 하나의 문맥 모델을 선택할 수 있다.
예를 들어, 좌측 주변 유닛 A의 인트라 예측 모드가 1(HOR)이고, 상단 주변 유닛 B의 인트라 예측 모드가 33(HOR+7)이라 가정한다. 여기서, 1(HOR)은 모드 번호가 1인 예측 모드, 33(HOR+7)은 모드 번호가 33인 예측 모드를 나타낼 수 있다. 이 때, 주변 예측 모드 간의 각도 차이는 35일 수 있다. 또한 유닛A의 모드 번호와 유닛 B의 모드 번호가 서로 다른 카테고리에 포함되므로, 부호화기는 더 작은 모드 번호(예를 들어, 모드 번호 1)에 대응하는 문맥 모델을 선택할 수 있다. 따라서, 부호화기는 ctx1을 부호화 대상 유닛에 대한 문맥 모델로 선택할 수 있다.

도 12는 주변 예측 모드 간의 각도 차이 정보 및 주변 예측 모드의 모드 번호 정보를 이용하여 VLC 테이블을 선택하는 방법의 일 실시예를 나타내는 테이블이다.
도 12에서, VLCN(N은 1,2,3 또는 4)은 부호화 대상 유닛의 신택스 요소에 적용되는 VLC 테이블을 나타낼 수 있다. 도 12를 참조하면, 부호화기는 주변 예측 모드 간의 각도 차이 및 주변 예측 모드의 모드 번호를 이용하여, 서로 다른 4개의 VLC 테이블 중에서 하나의 테이블을 선택할 수 있다.
일례로, 좌측 주변 유닛 A의 인트라 예측 모드가 0(VER)이고, 상단 주변 유닛 B의 인트라 예측 모드가 0(VER)이라 가정한다. 여기서, 0(VER)은 모드 번호가 0인 예측 모드를 나타낼 수 있다. 이 때, 주변 예측 모드 간의 각도 차이는 0일 수 있다. 또한 유닛 A의 모드 번호와 유닛 B의 모드 번호는 동일한 카테고리에 포함되므로, 부호화기는 상기 동일한 카테고리에 해당되는 VLC 테이블을 선택할 수 있다. 따라서, 부호화기는 VLC1을 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.
다른 예로서, 좌측 주변 유닛 A의 인트라 예측 모드가 1(HOR)이고, 상단 주변 유닛 B의 인트라 예측 모드가 33(HOR+7)이라 가정한다. 여기서, 1(HOR)은 모드 번호가 1인 예측 모드, 33(HOR+7)은 모드 번호가 33인 예측 모드를 나타낼 수 있다. 이 때, 주변 예측 모드 간의 각도 차이는 0이 아니고 35일 수 있다. 또한 유닛A의 모드 번호와 유닛 B의 모드 번호가 서로 다른 카테고리에 포함되므로, 부호화기는 더 작은 모드 번호(예를 들어, 모드 번호 1)에 대응하는 VLC 테이블을 선택할 수 있다. 따라서, 부호화기는 VLC2를 부호화 대상 유닛에 대한 VLC 테이블로 선택할 수 있다.

한편 상술한 바와 같이, 부호화기는 복원된 주변 유닛을 이용하여, 부호화 대상 유닛에 대한 주변 예측 모드 정보를 도출할 수 있다. 여기서, 주변 예측 모드 정보에는 주변 예측 모드 간의 각도 차이 및/또는 주변 예측 모드의 모드 번호 등이 있을 수 있다.
상기 복원된 주변 유닛의 개수는 2 이상일 수도 있다. 이 때, 부호화기는 복원된 주변 유닛 중에서, 부호화 대상 예측 유닛의 부호화 파라미터와 가장 유사한 부호화 파라미터를 갖는 2개의 유닛을 선택하여, 주변 예측 모드 정보 도출에 이용할 수 있다.
또한, 부호화 대상 유닛이 가질 수 있는 인트라 예측 모드의 개수와 복원된 주변 유닛이 가질 수 있는 인트라 예측 모드의 개수는 서로 다를 수 있다. 이 때, 부호화기는 주변 예측 모드 정보를 도출함에 있어, 부호화 대상 유닛과 복원된 주변 유닛이 공통적으로 가질 수 있는 인트라 예측 모드만을 이용할 수도 있다.
또한, 엔트로피 부호화에 사용되는 VLC 테이블에서는, 인트라 예측 모드에 관련된 제1 신택스 요소 및 상기 제1 신택스 요소와는 다른 소정의 제2 신택스 요소가 함께 표현될 수 있다. 이러한 경우의 VLC 테이블은 통합 VLC 테이블로 불릴 수 있다. 이 때, 부호화기는 통합 VLC 테이블을 이용하여, 상기 제1 신택스 요소와 상기 제2 신택스 요소를 함께 부호화할 수 있다.

상술한 인트라 예측 모드 부호화 방법에 의하면, 부호화기는 주변 예측 모드에 관한 정보를 이용하여, 인트라 예측 모드를 효율적으로 부호화할 수 있다. 따라서, 주변 상황의 변화에 따른 효율적인 부호화가 가능하고, 부호화 효율이 향상될 수 있다.

도 13은 본 발명에 따른 인트라 예측 모드 복호화 방법의 일 실시예를 개략적으로 나타내는 흐름도이다.
도 13을 참조하면, 복호화기는 주변 예측 모드에 관한 정보를 도출할 수 있다(S1310). 여기서, 주변 예측 모드 정보에는 주변 예측 모드 간의 각도 차이 및/또는 주변 예측 모드의 모드 번호 등이 있을 수 있다. 복호화기는, 부호화기와 동일한 방법을 이용하여 주변 예측 모드 정보를 도출할 수 있다.
주변 예측 모드 정보가 도출되면, 복호화기는 도출된 주변 예측 모드 정보를 이용하여, 복호화 대상 유닛에 대한 인트라 예측 모드를 복호화할 수 있다(S1320).
복호화기는, 복호화 대상 유닛에 대한 인트라 예측 모드를 도출하기 위해, 복호화 대상 유닛에 대한 MPM 후보를 도출할 수 있다. MPM 후보는 복원된 주변 유닛의 인트라 예측 모드를 이용하여 도출될 수 있다. 복호화기는 MPM 후보를 도출함에 있어, 주변 예측 모드 정보(예를 들어, 주변 예측 모드 간의 각도 차이 및/또는 주변 예측 모드의 모드 번호)를 이용할 수도 있다. MPM 후보 도출 방법은 부호화기에서의 MPM 후보 도출 방법과 동일하므로, 생략하기로 한다. MPM 후보가 도출되면, 복호화기는 도출된 MPM 후보를 이용하여 MPM 리스트를 생성할 수 있다.
상술한 바와 같이, 부호화기는 MPM 플래그를 부호화하여 복호화기로 전송할 수 있다. 여기서, MPM 플래그는 MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하는지 여부를 지시하는 플래그이다. 이 때, 복호화기는 상기 MPM 플래그를 수신하여 복호화할 수 있다. 복호화기는 상기 복호화된 MPM 플래그를 이용하여, MPM 리스트 내에 복호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하는지 여부를 판단할 수 있다.
MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하는 경우, 부호화기는 MPM 인덱스를 부호화하여 복호화기로 전송할 수 있다. 여기서 MPM 인덱스는, 부호화 대상 유닛의 예측 모드가 MPM 리스트 내의 MPM 후보들 중 어떤 MPM 후보와 동일한지를 지시하는 인덱스이다. 이 때, 복호화기는 상기 MPM 인덱스를 수신하여 복호화할 수 있다. 복호화기는 MPM 리스트 내의 MPM 후보들 중에서 복호화된 MPM 인덱스가 지시하는 MPM 후보를, 복호화 대상 유닛의 인트라 예측 모드로 사용할 수 있다.
MPM 리스트에 포함된 MPM 후보의 개수가 1개인 경우, 부호화기는 MPM 인덱스를 부호화하지 않을 수 있다. 또한, 복호화기가 복호화 대상 유닛의 예측 모드와 동일한 MPM 후보를 알 수 있는 경우에도 부호화기는 MPM 인덱스를 부호화하지 않을 수 있다. 이 때, 복호화기는 상기 MPM 인덱스의 수신, 복호화 과정을 생략할 수 있다.
MPM 리스트 내에 부호화 대상 유닛의 예측 모드와 동일한 MPM 후보가 존재하지 않는 경우, 부호화기는 리메이닝 모드를 부호화하여 복호화기로 전송할 수 있다. 이 때, 복호화기는 상기 리메이닝 모드를 수신하여 복호화할 수 있다.
부호화기는, 부호화 대상 유닛의 인트라 예측 모드를 부호화함에 있어, 복원된 주변 유닛 및/또는 MPM 후보를 이용하지 않을 수도 있다. 즉, 부호화기는 부호화 대상 유닛의 인트라 예측 모드 자체를 엔트로피 부호화하여 복호화기로 전송할 수 있다. 이 때, 복호화기는 상기 부호화된 인트라 예측 모드 자체를 수신하여 엔트로피 복호화할 수 있다.

한편, 복호화기는 상술한 MPM 플래그, MPM 인덱스, 리메이닝 모드 및/또는 인트라 예측 모드 자체에 대한 엔트로피 복호화를 수행할 수 있다. 이 때, 신택스 요소 각각에 대한 엔트로피 복호화를 수행함에 있어, 복호화기는 하나의 문맥 모델만을 이용하여 산술 복호화를 수행할 수 있고, 고정 비트 복호화를 사용할 수도 있다. 그러나, 이 경우 복원된 주변 유닛의 인트라 예측 모드 정보를 사용하지 않으므로, 복호화 효율이 낮을 수 있다. 따라서, 복원된 주변 유닛의 인트라 예측 모드에 관한 정보, 즉 주변 예측 모드 정보를 이용하여 엔트로피 복호화를 수행하는 방법이 제공될 수 있다.

도 14는 주변 예측 모드 정보를 이용한 엔트로피 복호화 수행 방법의 일 실시예를 나타내는 흐름도이다.
도 14를 참조하면, 복호화기는 주변 예측 모드 정보를 이용하여, 복호화 대상 유닛에 대한 문맥 모델 및/또는 VLC 테이블을 선택할 수 있다(S1410).
복호화기는 엔트로피 복호화를 수행함에 있어, 복수의 문맥 모델 중에서 하나의 문맥 모델을 선택하여 사용할 수 있다. 이 때, 복호화기는 주변 예측 모드 간의 각도 차이 정보를 이용하여 문맥 모델을 선택할 수 있고, 주변 예측 모드의 모드 번호 및/또는 모드 순서를 이용하여 문맥 모델을 선택할 수도 있다. 또한 복호화기는 각도 차이 정보 및 모드 번호 정보를 함께 이용하여 문맥 모델을 선택할 수도 있다.
또한 복호화기는 엔트로피 복호화를 수행함에 있어, 복수의 VLC 테이블 중에서 하나의 VLC 테이블을 선택하여 사용할 수 있다. 이 때, 복호화기는 주변 예측 모드 간의 각도 차이 정보를 이용하여 VLC 테이블을 선택할 수 있고, 주변 예측 모드의 모드 번호 및/또는 모드 순서를 이용하여 문맥 모델을 선택할 수도 있다. 또한 복호화기는 각도 차이 정보 및 모드 번호 정보를 함께 이용하여 문맥 모델을 선택할 수도 있다.
복호화기는, 부호화기와 동일한 방법으로, 복호화 대상 유닛에 대한 문맥 모델 및/또는 VLC 테이블을 선택할 수 있다. 문맥 모델 선택 방법 및 VLC 테이블 선택 방법의 구체적인 실시예는 상술한 바 있으므로, 생략하기로 한다.
복호화기는 상기 선택된 문맥 모델 및/또는 VLC 테이블을 이용하여, 복호화 대상 유닛의 인트라 예측 모드에 대한 엔트로피 복호화를 수행할 수 있다(S1420). 이 때, 엔트로피 복호화가 수행되는 신택스 요소에는, 상술한 바와 같이, MPM 플래그, MPM 인덱스, 리메이닝 모드 및/또는 인트라 예측 모드 자체 등이 있을 수 있다.

상술한 인트라 예측 모드 복호화 방법에 의하면, 복호화기는 주변 예측 모드에 관한 정보를 이용하여 인트라 예측 모드를 효율적으로 복호화할 수 있다. 따라서, 주변 상황의 변화에 따른 효율적인 복호화가 가능하고, 복호화 효율이 향상될 수 있다.

상술한 실시예들에서, 방법들은 일련의 단계 또는 블록으로서 순서도를 기초로 설명되고 있으나, 본 발명은 단계들의 순서에 한정되는 것은 아니며, 어떤 단계는 상술한 바와 다른 단계와 다른 순서로 또는 동시에 발생할 수 있다. 또한, 당해 기술 분야에서 통상의 지식을 가진 자라면 순서도에 나타난 단계들이 배타적이지 않고, 다른 단계가 포함되거나, 순서도의 하나 또는 그 이상의 단계가 본 발명의 범위에 영향을 미치지 않고 삭제될 수 있음을 이해할 수 있을 것이다.
상술한 실시예는 다양한 양태의 예시들을 포함한다. 다양한 양태들을 나타내기 위한 모든 가능한 조합을 기술할 수는 없지만, 해당 기술 분야의 통상의 지식을 가진 자는 다른 조합이 가능함을 인식할 수 있을 것이다. 따라서, 본 발명은 이하의 특허청구범위 내에 속하는 모든 다른 교체, 수정 및 변경을 포함한다고 할 것이다.

Claims (20)

  1. 좌측 주변 예측 모드 및 상단 주변 예측 모드로부터 주변 예측 모드 정보를 도출하는 단계;
    상기 도출된 주변 예측 모드 정보를 이용하여, 복호화 대상 유닛에 대한 인트라 예측 모드를 도출하는 단계; 및
    상기 도출된 인트라 예측 모드에 기반하여, 상기 복호화 대상 유닛에 대한 인트라 예측을 수행하는 단계를 포함하되,
    상기 좌측 주변 예측 모드는 상기 복호화 대상 유닛의 좌측에 인접한 좌측 주변 유닛의 인트라 예측 모드이고, 상기 상단 주변 예측 모드는 상기 복호화 대상 유닛의 상단에 인접한 상단 주변 유닛의 인트라 예측 모드이고,
    상기 주변 예측 모드 정보는 각도 차이 정보 및 모드 번호 정보 중 적어도 하나를 포함하고, 상기 각도 차이 정보는 상기 좌측 주변 예측 모드의 각도와 상기 상단 주변 예측 모드의 각도의 차이값을 포함하고, 상기 모드 번호 정보는 상기 좌측 주변 예측 모드의 모드 번호 및 상기 상단 주변 예측 모드의 모드 번호를 포함하는 것을 특징으로 하는 인트라 예측 방법.
  2. 청구항 1에 있어서,
    상기 인트라 예측 모드 도출 단계는,
    상기 복호화 대상 유닛에 대한 MPM 인덱스를 수신하여 복호화하는 단계;
    상기 주변 예측 모드 정보를 이용하여, 상기 복호화 대상 유닛에 대한 MPM(Most Probable Mode) 후보를 결정하는 단계;
    상기 결정된 MPM 후보를 이용하여, MPM 리스트를 생성하는 단계; 및
    상기 복호화된 MPM 인덱스 및 상기 생성된 MPM 리스트를 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드를 도출하는 단계를 더 포함하고,
    상기 MPM 인덱스는 상기 MPM 리스트에 포함된 MPM 후보 중에서, 상기 복호화 대상 유닛의 인트라 예측 모드와 동일한 후보를 지시하는 인덱스인 인트라 예측 방법.
  3. 청구항 2에 있어서,
    상기 MPM 후보 결정 단계는,
    상기 좌측 주변 예측 모드 및 상기 상단 주변 예측 모드를 상기 MPM 후보로 결정하는 단계를 더 포함하고,
    상기 MPM 리스트에 포함되는 MPM 후보의 개수는 소정의 고정된 개수인 것을 특징으로 하는 인트라 예측 방법.
  4. 청구항 3에 있어서,
    상기 좌측 주변 예측 모드와 상기 상단 주변 예측 모드가 동일한 경우,
    상기 MPM 후보 결정 단계는,
    소정의 인트라 예측 모드를 추가 MPM 후보로 결정하는 단계를 더 포함하는 것을 특징으로 하는 인트라 예측 방법.
  5. 청구항 4에 있어서,
    상기 소정의 인트라 예측 모드는 플래너(planar) 모드인 것을 특징으로 하는 인트라 예측 방법.
  6. 청구항 5에 있어서,
    상기 좌측 주변 예측 모드 및 상기 상단 주변 예측 모드가 플래너 모드인 경우,
    상기 소정의 인트라 예측 모드는 DC 모드인 것을 특징으로 하는 인트라 예측 방법.
  7. 청구항 3에 있어서,
    상기 좌측 주변 유닛 또는 상기 상단 주변 유닛이 가용하지 않은 경우,
    상기 MPM 후보 결정 단계는,
    소정의 인트라 예측 모드를 추가 MPM 후보로 결정하는 단계를 더 포함하는 것을 특징으로 하는 인트라 예측 방법.
  8. 청구항 7에 있어서, 상기 소정의 인트라 예측 모드는 플래너(planar) 모드인 것을 특징으로 하는 인트라 예측 방법.
  9. 청구항 1에 있어서,
    상기 인트라 예측 모드 도출 단계는,
    상기 주변 예측 모드 정보를 이용하여, 복수의 문맥 모델 중에서 상기 복호화 대상 유닛에 대한 문맥 모델을 선택하는 단계; 및
    상기 선택된 문맥 모델을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되,
    상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함하는 것을 특징으로 인트라 예측 방법.
  10. 청구항 9에 있어서,
    상기 문맥 모델 선택 단계에서는,
    상기 각도 차이 정보에 대응하는 문맥 모델을 상기 복호화 대상 유닛에 대한 문맥 모델로 선택하는 것을 특징으로 하는 인트라 예측 방법.
  11. 청구항 9에 있어서,
    상기 문맥 모델 선택 단계에서는,
    상기 모드 번호 정보에 대응하는 문맥 모델을 상기 복호화 대상 유닛에 대한 문맥 모델로 선택하는 것을 특징으로 하는 인트라 예측 방법.
  12. 청구항 9에 있어서,
    상기 문맥 모델 선택 단계에서는,
    상기 각도 차이 정보 및 상기 모드 번호 정보에 대응하는 문맥 모델을 상기 복호화 대상 유닛에 대한 문맥 모델로 선택하는 것을 특징으로 하는 인트라 예측 방법.
  13. 청구항 1에 있어서,
    상기 인트라 예측 모드 도출 단계는,
    상기 주변 예측 모드 정보를 이용하여, 복수의 VLC(Variable Length Coding) 테이블 중에서 상기 복호화 대상 유닛에 대한 VLC 테이블을 선택하는 단계; 및
    상기 선택된 VLC 테이블을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되,
    상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함하는 것을 특징으로 인트라 예측 방법.
  14. 청구항 13에 있어서,
    상기 VLC 테이블 선택 단계에서는,
    상기 각도 차이 정보에 대응하는 VLC 테이블을 상기 복호화 대상 유닛에 대한 VLC 테이블로 선택하는 것을 특징으로 하는 인트라 예측 방법.
  15. 청구항 13에 있어서,
    상기 VLC 테이블 선택 단계에서는,
    상기 모드 번호 정보에 대응하는 VLC 테이블을 상기 복호화 대상 유닛에 대한 VLC 테이블로 선택하는 것을 특징으로 하는 인트라 예측 방법.
  16. 청구항 13에 있어서,
    상기 VLC 테이블 선택 단계에서는,
    상기 각도 차이 정보 및 상기 모드 번호 정보에 대응하는 VLC 테이블을 상기 복호화 대상 유닛에 대한 VLC 테이블로 선택하는 것을 특징으로 하는 인트라 예측 방법.
  17. 좌측 주변 예측 모드 및 상단 주변 예측 모드로부터 주변 예측 모드 정보를 도출하는 단계; 및
    상기 도출된 주변 예측 모드 정보를 이용하여, 복호화 대상 유닛에 대한 인트라 예측 모드를 도출하는 단계를 포함하고,
    상기 좌측 주변 예측 모드는 상기 복호화 대상 유닛의 좌측에 인접한 좌측 주변 유닛의 인트라 예측 모드이고, 상기 상단 주변 예측 모드는 상기 복호화 대상 유닛의 상단에 인접한 상단 주변 유닛의 인트라 예측 모드이고,
    상기 주변 예측 모드 정보는 각도 차이 정보 및 모드 번호 정보 중 적어도 하나를 포함하고, 상기 각도 차이 정보는 상기 좌측 주변 예측 모드의 각도와 상기 상단 주변 예측 모드의 각도의 차이값을 포함하고, 상기 모드 번호 정보는 상기 좌측 주변 예측 모드의 모드 번호 및 상기 상단 주변 예측 모드의 모드 번호를 포함하는 것을 특징으로 하는 인트라 예측 모드 복호화 방법.
  18. 청구항 17에 있어서,
    상기 인트라 예측 모드 도출 단계는,
    상기 복호화 대상 유닛에 대한 MPM 인덱스를 수신하여 복호화하는 단계;
    상기 주변 예측 모드 정보를 이용하여, 상기 복호화 대상 유닛에 대한 MPM(Most Probable Mode) 후보를 결정하는 단계;
    상기 결정된 MPM 후보를 이용하여, MPM 리스트를 생성하는 단계; 및
    상기 복호화된 MPM 인덱스 및 상기 생성된 MPM 리스트를 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드를 도출하는 단계를 더 포함하고,
    상기 MPM 인덱스는 상기 MPM 리스트에 포함된 MPM 후보 중에서, 상기 복호화 대상 유닛의 인트라 예측 모드와 동일한 후보를 지시하는 인덱스인 인트라 예측 모드 복호화 방법.
  19. 청구항 17에 있어서,
    상기 인트라 예측 모드 도출 단계는,
    상기 주변 예측 모드 정보를 이용하여, 복수의 문맥 모델 중에서 상기 복호화 대상 유닛에 대한 문맥 모델을 선택하는 단계; 및
    상기 선택된 문맥 모델을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되,
    상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함하는 것을 특징으로 인트라 예측 모드 복호화 방법.
  20. 청구항 17에 있어서,
    상기 인트라 예측 모드 도출 단계는,
    상기 주변 예측 모드 정보를 이용하여, 복수의 VLC 테이블 중에서 상기 복호화 대상 유닛에 대한 VLC 테이블을 선택하는 단계; 및
    상기 선택된 VLC 테이블을 이용하여, 상기 복호화 대상 유닛의 인트라 예측 모드 정보에 대한 엔트로피 복호화를 수행하는 단계를 더 포함하되,
    상기 인트라 예측 모드 정보는 MPM 플래그, MPM 인덱스 및 리메이닝 모드 중 적어도 하나를 포함하는 것을 특징으로 인트라 예측 모드 복호화 방법.
PCT/KR2011/009957 2010-12-21 2011-12-21 인트라 예측 모드 부호화/복호화 방법 및 그 장치 WO2012087035A2 (ko)

Priority Applications (12)

Application Number Priority Date Filing Date Title
US13/988,958 US9350993B2 (en) 2010-12-21 2011-12-21 Intra prediction mode encoding/decoding method and apparatus for same
JP2013540907A JP2014501092A (ja) 2010-12-21 2011-12-21 イントラ予測モード符号化/復号化方法及びその装置
CN201180068084.7A CN103380622B (zh) 2010-12-21 2011-12-21 帧内预测模式编码/解码方法和用于其的设备
EP18191463.1A EP3442234A1 (en) 2010-12-21 2011-12-21 Intra prediction mode encoding/decoding method and appartus for same
EP11850654.2A EP2658262A4 (en) 2010-12-21 2011-12-21 INTRA PREDICTION MODE CODING / DECODING METHOD AND CORRESPONDING APPARATUS
US15/055,150 US9648327B2 (en) 2010-12-21 2016-02-26 Intra prediction mode encoding/decoding method and apparatus for same
US15/477,714 US9838689B2 (en) 2010-12-21 2017-04-03 Intra prediction mode encoding/decoding method and apparatus for same
US15/799,086 US10091502B2 (en) 2010-12-21 2017-10-31 Intra prediction mode encoding/decoding method and apparatus for same
US16/117,948 US10511836B2 (en) 2010-12-21 2018-08-30 Intra prediction mode encoding/decoding method and apparatus for same
US16/664,731 US10939098B2 (en) 2010-12-21 2019-10-25 Intra prediction mode encoding/decoding method and apparatus for same
US17/163,218 US11503282B2 (en) 2010-12-21 2021-01-29 Intra prediction mode encoding/decoding method and apparatus for same
US17/965,667 US12003707B2 (en) 2010-12-21 2022-10-13 Intra prediction mode encoding/decoding method and apparatus for same

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
KR10-2010-0131086 2010-12-21
KR20100131086 2010-12-21
KR10-2011-0016610 2011-02-24
KR20110016610 2011-02-24
KR10-2011-0046785 2011-05-18
KR20110046785A KR20120070479A (ko) 2010-12-21 2011-05-18 화면 내 예측 방향 정보 부호화/복호화 방법 및 그 장치
KR10-2011-0139469 2011-12-21
KR1020110139469A KR101502758B1 (ko) 2010-12-21 2011-12-21 인트라 예측 모드 부호화/복호화 방법 및 그 장치

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US13/988,958 A-371-Of-International US9350993B2 (en) 2010-12-21 2011-12-21 Intra prediction mode encoding/decoding method and apparatus for same
US15/055,150 Continuation US9648327B2 (en) 2010-12-21 2016-02-26 Intra prediction mode encoding/decoding method and apparatus for same

Publications (2)

Publication Number Publication Date
WO2012087035A2 true WO2012087035A2 (ko) 2012-06-28
WO2012087035A3 WO2012087035A3 (ko) 2012-09-07

Family

ID=46688327

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009957 WO2012087035A2 (ko) 2010-12-21 2011-12-21 인트라 예측 모드 부호화/복호화 방법 및 그 장치

Country Status (7)

Country Link
US (8) US9350993B2 (ko)
EP (2) EP3442234A1 (ko)
JP (3) JP2014501092A (ko)
KR (11) KR20120070479A (ko)
CN (5) CN107105235B (ko)
HK (3) HK1243263A1 (ko)
WO (1) WO2012087035A2 (ko)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357535A (zh) * 2015-11-05 2016-02-24 广东中星电子有限公司 一种帧内预测模式编解码方法及设备
WO2016159631A1 (ko) * 2015-03-29 2016-10-06 엘지전자(주) 비디오 신호의 인코딩/디코딩 방법 및 장치
JP2017038382A (ja) * 2012-01-20 2017-02-16 パンテック カンパニー リミテッド 画面内予測方法及び画像復号化装置
US9843799B2 (en) 2011-05-30 2017-12-12 Funai Electric Co., Ltd. Picture coding device, picture coding method and picture coding program as well as picture decoding device, picture decoding method, and picture decoding program
JP2018191332A (ja) * 2011-06-28 2018-11-29 サムスン エレクトロニクス カンパニー リミテッド ビデオ復号化方法及びその装置
WO2019035658A1 (ko) * 2017-08-17 2019-02-21 엘지전자 주식회사 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Families Citing this family (74)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120070479A (ko) 2010-12-21 2012-06-29 한국전자통신연구원 화면 내 예측 방향 정보 부호화/복호화 방법 및 그 장치
JP5481698B2 (ja) * 2011-05-30 2014-04-23 株式会社Jvcケンウッド 画像符号化装置、画像符号化方法及び画像符号化プログラム
US9654785B2 (en) 2011-06-09 2017-05-16 Qualcomm Incorporated Enhanced intra-prediction mode signaling for video coding using neighboring mode
KR101876173B1 (ko) * 2011-06-17 2018-07-09 엘지전자 주식회사 인트라 예측 모드 부호화/복호화 방법 및 장치
US20130016769A1 (en) 2011-07-17 2013-01-17 Qualcomm Incorporated Signaling picture size in video coding
US11039138B1 (en) * 2012-03-08 2021-06-15 Google Llc Adaptive coding of prediction modes using probability distributions
KR20150090031A (ko) * 2012-11-27 2015-08-05 인텔렉추얼디스커버리 주식회사 깊이 정보를 이용한 부호화/복호화 방법 및 장치
US20150016516A1 (en) * 2013-07-15 2015-01-15 Samsung Electronics Co., Ltd. Method for intra prediction improvements for oblique modes in video coding
KR102317682B1 (ko) * 2013-12-19 2021-10-26 삼성전자주식회사 인트라 예측을 수반한 비디오 부호화 방법 및 그 장치, 비디오 복호화 방법 및 그 장치
WO2015145504A1 (ja) * 2014-03-25 2015-10-01 株式会社ソシオネクスト 画像復号装置、画像復号方法、及び集積回路
KR101866973B1 (ko) * 2015-06-05 2018-06-12 인텔렉추얼디스커버리 주식회사 화면내 예측에서의 참조 화소 구성에 관한 부호화/복호화 방법 및 장치
KR101875762B1 (ko) * 2015-06-05 2018-07-06 인텔렉추얼디스커버리 주식회사 화면 내 예측 모드에 대한 부호화/복호화 방법 및 장치
US10045022B2 (en) * 2015-08-25 2018-08-07 Synopsys, Inc. Adaptive content dependent intra prediction mode coding
KR20170058837A (ko) 2015-11-19 2017-05-29 한국전자통신연구원 화면내 예측모드 부호화/복호화 방법 및 장치
KR101771220B1 (ko) 2016-05-02 2017-08-24 가천대학교 산학협력단 자기공명영상 시스템
WO2018016823A1 (ko) 2016-07-18 2018-01-25 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
US20190215521A1 (en) * 2016-09-22 2019-07-11 Mediatek Inc. Method and apparatus for video coding using decoder side intra prediction derivation
WO2018062788A1 (ko) * 2016-09-30 2018-04-05 엘지전자(주) 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
CN109792521A (zh) * 2016-10-04 2019-05-21 韩国电子通信研究院 用于对图像进行编码/解码的方法和设备以及存储比特流的记录介质
FR3058019A1 (fr) * 2016-10-21 2018-04-27 Orange Procede de codage et de decodage de parametres d'image, dispositif de codage et de decodage de parametres d'image et programmes d'ordinateur correspondants
CN117119184A (zh) 2017-01-02 2023-11-24 Lx 半导体科技有限公司 图像编码/解码方法、图像数据的发送方法以及存储介质
US10630974B2 (en) 2017-05-30 2020-04-21 Google Llc Coding of intra-prediction modes
US10356411B2 (en) 2017-05-30 2019-07-16 Google Llc Adaptation of scan order entropy coding
JP7039815B2 (ja) * 2017-06-22 2022-03-23 ホアウェイ・テクノロジーズ・カンパニー・リミテッド フレーム内予測方法および装置
WO2019076138A1 (en) 2017-10-16 2019-04-25 Huawei Technologies Co., Ltd. METHOD AND APPARATUS FOR ENCODING
WO2019098758A1 (ko) 2017-11-16 2019-05-23 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2019103491A1 (ko) 2017-11-22 2019-05-31 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
WO2019103543A1 (ko) * 2017-11-23 2019-05-31 엘지전자 주식회사 비디오 신호를 엔트로피 인코딩, 디코딩하는 방법 및 장치
CN117176958A (zh) 2017-11-28 2023-12-05 Lx 半导体科技有限公司 图像编码/解码方法、图像数据的传输方法和存储介质
KR20240005173A (ko) 2018-03-08 2024-01-11 삼성전자주식회사 비디오 복호화 방법 및 장치, 비디오 부호화 방법 및 장치
KR20240055111A (ko) 2018-03-30 2024-04-26 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 인트라 예측 기반 영상/비디오 코딩 방법 및 그 장치
WO2019191713A1 (en) * 2018-03-30 2019-10-03 Hulu, LLC Intra prediction mode signaling for video coding
WO2019194441A1 (ko) * 2018-04-02 2019-10-10 엘지전자 주식회사 적응적으로 도출되는 mpm 리스트에 기반한 영상 코딩 방법 및 그 장치
WO2019216608A1 (ko) * 2018-05-07 2019-11-14 엘지전자 주식회사 컨텍스트 기반 인트라 예측 모드 정보 코딩을 이용한 영상 코딩 방법 및 그 장치
CN110662054B (zh) 2018-06-29 2023-01-06 北京字节跳动网络技术有限公司 用于视频处理的方法、装置、计算机可读存储介质
CN110662065A (zh) * 2018-06-29 2020-01-07 财团法人工业技术研究院 图像数据解码方法及解码器、图像数据编码方法及编码器
CA3105330C (en) 2018-06-29 2023-12-05 Beijing Bytedance Network Technology Co., Ltd. Interaction between lut and amvp
EP3794825A1 (en) 2018-06-29 2021-03-24 Beijing Bytedance Network Technology Co. Ltd. Update of look up table: fifo, constrained fifo
CN114466197A (zh) 2018-06-29 2022-05-10 北京字节跳动网络技术有限公司 用于查找表更新的编码的运动信息的选择
WO2020003283A1 (en) 2018-06-29 2020-01-02 Beijing Bytedance Network Technology Co., Ltd. Conditions for updating luts
CN110662059B (zh) 2018-06-29 2021-04-20 北京字节跳动网络技术有限公司 使用查找表存储先前编码的运动信息并用其编码后续块的方法和装置
CN110662053B (zh) 2018-06-29 2022-03-25 北京字节跳动网络技术有限公司 使用查找表的视频处理方法、装置和存储介质
TWI734133B (zh) 2018-07-02 2021-07-21 大陸商北京字節跳動網絡技術有限公司 更新查找表的規則
WO2020050697A1 (ko) * 2018-09-06 2020-03-12 엘지전자 주식회사 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치
TW202025760A (zh) 2018-09-12 2020-07-01 大陸商北京字節跳動網絡技術有限公司 要檢查多少個hmvp候選
US10771778B2 (en) * 2018-09-14 2020-09-08 Tencent America LLC Method and device for MPM list generation for multi-line intra prediction
WO2020058896A1 (en) * 2018-09-19 2020-03-26 Beijing Bytedance Network Technology Co., Ltd. Intra mode coding based on history information
WO2020076036A1 (ko) 2018-10-07 2020-04-16 주식회사 윌러스표준기술연구소 복수개의 참조 라인을 위한 mpm 구성 방법을 이용한 비디오 신호 처리 방법 및 장치
KR20230162148A (ko) 2018-10-12 2023-11-28 삼성전자주식회사 교차성분 선형 모델을 이용한 비디오 신호 처리 방법 및 장치
US11159789B2 (en) 2018-10-24 2021-10-26 City University Of Hong Kong Generative adversarial network based intra prediction for video coding
US10848763B2 (en) * 2018-11-14 2020-11-24 Tencent America LLC Method and apparatus for improved context design for prediction mode and coded block flag (CBF)
US11032551B2 (en) * 2018-12-04 2021-06-08 Tencent America LLC Simplified most probable mode list generation scheme
KR20200083316A (ko) * 2018-12-28 2020-07-08 한국전자통신연구원 영상 부호화/복호화 방법, 장치 및 비트스트림을 저장한 기록 매체
CN113454990A (zh) 2018-12-28 2021-09-28 英迪股份有限公司 帧间预测编解码方法及装置
WO2020133380A1 (zh) * 2018-12-29 2020-07-02 富士通株式会社 一种图像的块内编码或解码方法、数据处理装置和电子设备
KR20210092829A (ko) * 2019-01-09 2021-07-26 엘지전자 주식회사 Mpm 리스트를 사용하는 인트라 예측 기반 영상 코딩 방법 및 장치
JP7275286B2 (ja) 2019-01-10 2023-05-17 北京字節跳動網絡技術有限公司 Lut更新の起動
CN113383554B (zh) 2019-01-13 2022-12-16 北京字节跳动网络技术有限公司 LUT和共享Merge列表之间的交互
WO2020147773A1 (en) 2019-01-16 2020-07-23 Beijing Bytedance Network Technology Co., Ltd. Inserting order of motion candidates in lut
CN110166772B (zh) * 2019-03-12 2021-04-27 浙江大华技术股份有限公司 帧内预测模式的编解码方法、装置、设备和可读存储介质
WO2020184821A1 (ko) * 2019-03-12 2020-09-17 엘지전자 주식회사 Mpm 리스트를 구성하는 방법 및 장치
CN110062227B (zh) * 2019-03-12 2021-04-27 浙江大华技术股份有限公司 帧内预测模式的编解码方法、装置、设备和可读存储介质
CN111294602B (zh) * 2019-03-14 2022-07-08 北京达佳互联信息技术有限公司 一种帧内预测模式编解码方法和装置及设备
US11405638B2 (en) * 2019-03-17 2022-08-02 Tencent America LLC Method and apparatus for video coding by determining intra prediction direction based on coded information of neighboring blocks
WO2020192611A1 (en) 2019-03-22 2020-10-01 Beijing Bytedance Network Technology Co., Ltd. Interaction between merge list construction and other tools
BR112021018554A2 (pt) * 2019-03-23 2021-11-30 Huawei Tech Co Ltd Codificador, decodificador e métodos correspondentes para predição intra
EP4319159A3 (en) * 2019-03-23 2024-04-03 LG Electronics Inc. Method for coding image on basis of intra prediction using mpm list and apparatus therefor
KR20210126765A (ko) * 2019-03-23 2021-10-20 엘지전자 주식회사 영상 코딩 시스템에서의 인트라 예측 기반 영상 코딩
US11057619B2 (en) 2019-03-23 2021-07-06 Lg Electronics Inc. Image coding method and apparatus based on intra prediction using MPM list
WO2020197225A1 (ko) * 2019-03-24 2020-10-01 엘지전자 주식회사 영상 코딩 시스템에서 인트라 예측을 위한 후보 리스트 구성
CN114128265A (zh) * 2019-06-13 2022-03-01 Lg 电子株式会社 简化mip模式映射的图像编码/解码方法和设备,以及发送比特流的方法
JP7362786B2 (ja) 2019-06-13 2023-10-17 エルジー エレクトロニクス インコーポレイティド 単純化されたmpmリスト生成方法を用いる画像符号化/復号化方法、装置、及びビットストリームを伝送する方法
JP7401566B2 (ja) 2019-06-24 2023-12-19 ヒョンダイ モーター カンパニー 動画データのイントラ予測コーディングのための方法及び記録媒体
KR20220036985A (ko) 2019-08-31 2022-03-23 엘지전자 주식회사 영상 디코딩 방법 및 그 장치

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100798446B1 (ko) * 2001-09-26 2008-01-28 에스케이 텔레콤주식회사 적응적 더블 스캔 방법
US7236524B2 (en) * 2002-05-28 2007-06-26 Sharp Laboratories Of America, Inc. Methods and systems for image intra-prediction mode communication
EP1553782A3 (en) 2002-05-28 2005-07-27 Sharp Kabushiki Kaisha Methods and systems for image intra-prediction mode estimation, communication, and organization
KR100750136B1 (ko) * 2005-11-02 2007-08-21 삼성전자주식회사 영상의 부호화, 복호화 방법 및 장치
JP5188875B2 (ja) * 2007-06-04 2013-04-24 株式会社エヌ・ティ・ティ・ドコモ 画像予測符号化装置、画像予測復号装置、画像予測符号化方法、画像予測復号方法、画像予測符号化プログラム、及び画像予測復号プログラム
US8488668B2 (en) * 2007-06-15 2013-07-16 Qualcomm Incorporated Adaptive coefficient scanning for video coding
KR100871588B1 (ko) * 2007-06-25 2008-12-02 한국산업기술대학교산학협력단 인트라 부호화 장치 및 그 방법
KR100924048B1 (ko) 2007-07-30 2009-10-27 한국과학기술원 비디오 부호화에서 화면내 방향성 예측모드 고속 결정방법
KR100940444B1 (ko) * 2007-12-18 2010-02-10 한국전자통신연구원 공간적 에지 검출을 이용한 인트라 예측 모드 구성 방법
KR20090095316A (ko) * 2008-03-05 2009-09-09 삼성전자주식회사 영상 인트라 예측 방법 및 장치
US20090245371A1 (en) * 2008-03-28 2009-10-01 Samsung Electronics Co., Ltd. Method and apparatus for encoding/decoding information about intra-prediction mode of video
CN100596202C (zh) * 2008-05-30 2010-03-24 四川虹微技术有限公司 一种快速帧内模式选择方法
CN101742323B (zh) * 2008-11-05 2013-05-01 上海天荷电子信息有限公司 无再损视频编码和解码的方法和装置
EP2393296A1 (en) * 2009-01-29 2011-12-07 Panasonic Corporation Image coding method and image decoding method
BRPI1008081A2 (pt) * 2009-02-06 2017-10-17 Thomson Licensing metodos e aparelho para sinalizacao intra-modal implicita e semi-implicita para codificadores e desodificadores de video
WO2010102935A1 (en) * 2009-03-09 2010-09-16 Thomson Licensing Estimation of the prediction mode for the intra coding mode
KR101128580B1 (ko) 2009-04-09 2012-03-23 한국전자통신연구원 화면내 예측 시스템에서 최적 모드를 예측하는 장치 및 방법
CN101621692B (zh) * 2009-07-27 2011-04-20 宁波大学 一种基于预测模式的h.264/avc视频信息隐藏方法
CN102972028B (zh) * 2010-05-17 2015-08-12 Lg电子株式会社 新的帧内预测模式
US8902978B2 (en) * 2010-05-30 2014-12-02 Lg Electronics Inc. Enhanced intra prediction mode signaling
US20110317757A1 (en) * 2010-06-25 2011-12-29 Qualcomm Incorporated Intra prediction mode signaling for finer spatial prediction directions
KR101227520B1 (ko) * 2010-07-09 2013-01-31 엘지전자 주식회사 다중 안테나 무선 통신 시스템에서 상향링크 참조 신호 송신 방법 및 이를 위한 장치
JP5798556B2 (ja) * 2010-07-15 2015-10-21 シャープ株式会社 復号装置、符号化装置
KR20120070479A (ko) 2010-12-21 2012-06-29 한국전자통신연구원 화면 내 예측 방향 정보 부호화/복호화 방법 및 그 장치
KR20130049522A (ko) * 2011-11-04 2013-05-14 오수미 인트라 예측 블록 생성 방법
KR101827939B1 (ko) * 2011-12-13 2018-02-12 주식회사 스카이미디어테크 적응적인 인트라 예측 모드 부호화 방법 및 장치, 그리고 복호화 방법 및 장치
US20150036743A1 (en) * 2012-02-02 2015-02-05 Electronics And Telecommunications Research Institute Interlayer prediction method and device for image signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10015487B2 (en) 2011-05-30 2018-07-03 Funai Electric Co., Ltd. Picture coding device, picture coding method and picture coding program as well as picture decoding device, picture decoding method, and picture decoding program
US10298922B2 (en) 2011-05-30 2019-05-21 Funai Electric Co., Ltd. Picture coding device, picture coding method and picture coding program as well as picture decoding device, picture decoding method, and picture decoding program
US10200686B2 (en) 2011-05-30 2019-02-05 Funai Electric Co., Ltd. Picture coding device, picture coding method and picture coding program as well as picture decoding device, picture decoding method, and picture decoding program
US9843799B2 (en) 2011-05-30 2017-12-12 Funai Electric Co., Ltd. Picture coding device, picture coding method and picture coding program as well as picture decoding device, picture decoding method, and picture decoding program
US10165268B2 (en) 2011-05-30 2018-12-25 Funai Electric Co., Ltd. Picture coding device, picture coding method and picture coding program as well as picture decoding device, picture decoding method, and picture decoding program
JP2018191332A (ja) * 2011-06-28 2018-11-29 サムスン エレクトロニクス カンパニー リミテッド ビデオ復号化方法及びその装置
US9854239B2 (en) 2012-01-20 2017-12-26 Intellectual Discovery Co., Ltd. Intra prediction mode mapping method and device using the method
JP2018152863A (ja) * 2012-01-20 2018-09-27 インテレクチュアル ディスカバリー カンパニー リミテッド 画面内予測方法及び画像復号化装置
US9986238B2 (en) 2012-01-20 2018-05-29 Intellectual Discovery Co., Ltd. Intra prediction mode mapping method and device using the method
US10158852B2 (en) 2012-01-20 2018-12-18 Intellectual Discovery Co., Ltd. Intra prediction mode mapping method and device using the method
JP2017038382A (ja) * 2012-01-20 2017-02-16 パンテック カンパニー リミテッド 画面内予測方法及び画像復号化装置
US10616575B2 (en) 2012-01-20 2020-04-07 Intellectual Discovery Co., Ltd. Intra prediction mode mapping method and device using the method
US10863173B2 (en) 2012-01-20 2020-12-08 Dolby Laboratories Licensing Corporation Intra prediction mode mapping method and device using the method
WO2016159631A1 (ko) * 2015-03-29 2016-10-06 엘지전자(주) 비디오 신호의 인코딩/디코딩 방법 및 장치
CN105357535A (zh) * 2015-11-05 2016-02-24 广东中星电子有限公司 一种帧内预测模式编解码方法及设备
CN105357535B (zh) * 2015-11-05 2019-09-03 广东中星微电子有限公司 一种帧内预测模式编解码方法及设备
WO2019035658A1 (ko) * 2017-08-17 2019-02-21 엘지전자 주식회사 인트라 예측 모드 기반 영상 처리 방법 및 이를 위한 장치

Also Published As

Publication number Publication date
CN103380622A (zh) 2013-10-30
KR101822475B1 (ko) 2018-03-09
US20210160485A1 (en) 2021-05-27
KR20240076397A (ko) 2024-05-30
HK1243261A1 (zh) 2018-07-06
US9648327B2 (en) 2017-05-09
KR101822474B1 (ko) 2018-03-09
EP2658262A2 (en) 2013-10-30
KR20180014109A (ko) 2018-02-07
US20230039888A1 (en) 2023-02-09
CN107105236A (zh) 2017-08-29
US20160182905A1 (en) 2016-06-23
US20130243087A1 (en) 2013-09-19
KR20190006043A (ko) 2019-01-16
US20170208327A1 (en) 2017-07-20
KR20130110124A (ko) 2013-10-08
HK1243263A1 (zh) 2018-07-06
US20180063524A1 (en) 2018-03-01
CN107105237B (zh) 2021-06-01
KR101502758B1 (ko) 2015-03-17
US10939098B2 (en) 2021-03-02
KR101937213B1 (ko) 2019-01-11
KR102614661B1 (ko) 2023-12-15
US20200059644A1 (en) 2020-02-20
KR20200133320A (ko) 2020-11-27
US10511836B2 (en) 2019-12-17
CN107071430A (zh) 2017-08-18
CN107105236B (zh) 2020-06-09
CN103380622B (zh) 2016-10-26
KR101510115B1 (ko) 2015-04-10
KR20130106340A (ko) 2013-09-27
WO2012087035A3 (ko) 2012-09-07
CN107105235A (zh) 2017-08-29
EP2658262A4 (en) 2016-01-06
US12003707B2 (en) 2024-06-04
US9350993B2 (en) 2016-05-24
CN107071430B (zh) 2020-06-02
US10091502B2 (en) 2018-10-02
HK1243262A1 (zh) 2018-07-06
JP2014501092A (ja) 2014-01-16
EP3442234A1 (en) 2019-02-13
US11503282B2 (en) 2022-11-15
CN107105237A (zh) 2017-08-29
KR20230175145A (ko) 2023-12-29
KR20120070479A (ko) 2012-06-29
JP2014197883A (ja) 2014-10-16
KR20130110125A (ko) 2013-10-08
US20180376138A1 (en) 2018-12-27
KR20120070536A (ko) 2012-06-29
JP2014197884A (ja) 2014-10-16
KR20220044923A (ko) 2022-04-12
CN107105235B (zh) 2021-08-24
US9838689B2 (en) 2017-12-05

Similar Documents

Publication Publication Date Title
KR102614661B1 (ko) 인트라 예측 모드 부호화/복호화 방법 및 컴퓨터로 읽을 수 있는 기록 매체
KR102018112B1 (ko) 참조 유닛 결정 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850654

Country of ref document: EP

Kind code of ref document: A2

WWE Wipo information: entry into national phase

Ref document number: 13988958

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2013540907

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE