WO2012087005A2 - 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법 - Google Patents

란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법 Download PDF

Info

Publication number
WO2012087005A2
WO2012087005A2 PCT/KR2011/009869 KR2011009869W WO2012087005A2 WO 2012087005 A2 WO2012087005 A2 WO 2012087005A2 KR 2011009869 W KR2011009869 W KR 2011009869W WO 2012087005 A2 WO2012087005 A2 WO 2012087005A2
Authority
WO
WIPO (PCT)
Prior art keywords
lactide
metal complex
copolymer
poly
lanthanide metal
Prior art date
Application number
PCT/KR2011/009869
Other languages
English (en)
French (fr)
Other versions
WO2012087005A3 (ko
Inventor
정봉현
이창수
Original Assignee
한국생명공학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국생명공학연구원 filed Critical 한국생명공학연구원
Publication of WO2012087005A2 publication Critical patent/WO2012087005A2/ko
Publication of WO2012087005A3 publication Critical patent/WO2012087005A3/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/552Glass or silica
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/551Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being inorganic
    • G01N33/553Metal or metal coated
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/582Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • G01N33/585Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
    • G01N33/587Nanoparticles

Definitions

  • the present invention relates to a fluorescent nanoparticle using a lanthanide metal complex and a method for manufacturing the same, and more particularly, to a surface of a porous silica nanoparticle coated with a biopolymer, and then to a surface of the coated biopolymer.
  • the present invention relates to a fluorescent nanoparticle using a lanthanide metal complex having improved fluorescence stability and biocompatibility in biodiagnosis or analysis, and a method of manufacturing the same.
  • Nanoporous silica colloidal particles are well-defined nanostructure systems that self-assemble nanoscale devices into larger hierarchical structures, very complex shapes commonly found in living systems. Since the study of the first ordered mesoporous silica was reported in 1992, much research has been conducted on its synthesis, analysis and application. Nanoparticles with regularly ordered pore structure, large surface area and pore volume are known to be very useful materials for biotechnology such as delivery of drugs, enzymes, DNA, etc. The mesoporous silica nanoparticles are expected to be used as multifunctional materials such as light emission, magnetic force, cell display, and therapeutic function.
  • Fluorescent nanoparticles are similar in size to functional biomaterials (eg proteins), so biocompatible nanoparticles can be expected to breakthrough in biological and medical applications.
  • the semiconducting quantum dots are much better than the organic light emitting materials used in conventional bio-optical imaging, and the light emission color changes depending on the size, so that these characteristics can be used to obtain optical images of various colors. .
  • group III-V and group I-III-VI quantum dots are also used in biotechnology by using various emission regions from visible to near infrared region due to their high optical stability, good quantum efficiency and excellent chemical stability. It suggests application possibilities.
  • III-V and I-III-VI quantum dots do not contain toxic components such as Cd, they can be safely injected into the living body and searched and traced.
  • quantum dot compositions and non-quantum dot fluorescent nanoparticles of group III-V and group I-III-VI which are alternative quantum dot compositions that deviate from the Cd component, have been developed, group II-VI semiconductor quantum dots that still contain Cd are still being developed. It does not reach the outstanding optical characteristic which it has.
  • the present inventors have made efforts to solve the problems of the prior art, and as a result, after coating a bio-compatible biopolymer on the surface of the porous silica nanoparticles, by combining the lanthanide metal complex to the coated biopolymer to the fluorescent nanoparticles When prepared, it was confirmed that the lanthanide metal complex is stably bonded to the porous silica nanoparticles to improve fluorescence stability and biocompatibility, thereby completing the present invention.
  • the main object of the present invention is to provide a fluorescent nanoparticle using a lanthanide metal complex which is not only biocompatible but also has improved fluorescence stability, and a method of manufacturing the same.
  • the present invention comprises the steps of (a) coating a biopolymer on the surface of the porous silica nanoparticles; And (b) binding the lanthanide metal complex to the coated biopolymer to produce fluorescent nanoparticles.
  • the present invention also provides a fluorescent nanoparticle produced by the above method, characterized in that the biopolymer and the lanthanide metal complex are bonded to the surface of the porous silica nanoparticle.
  • the present invention also provides a method for labeling a biomaterial using fluorescent nanoparticles in which a biopolymer and a lanthanide metal complex are bonded to the surface of the porous silica nanoparticles.
  • FIG. 1 is a schematic diagram of fluorescent nanoparticles using a lanthanide metal complex according to the present invention.
  • 3 is an optical microscope image according to the presence or absence of biopolymer coated on the surface of the porous silica nanoparticles.
  • Figure 4 is a graph of the measurement of the surface charge before and after the silane coupling agent treatment of the fluorescent nanoparticles using the lanthanide metal complex according to the present invention.
  • porous silica nanoparticles are silica nanostructures having fine pore sizes of several nanometers to several micrometers, and have a well-defined regularity of pore arrays and material properties (pore size, ratio). Surface area, surface characteristics) can be adjusted, it is also called mesoporous silica.
  • biomaterial refers to a biologically derived material such as proteins, enzymes, antibodies, peptides, lipids, DNA, RNA and PNA.
  • the present invention in one aspect, (a) coating the biopolymer on the surface of the porous silica nanoparticles; And (b) bonding the coated biopolymer and the lanthanide metal complex to produce fluorescent nanoparticles.
  • the fluorescent nanoparticles according to the present invention the biopolymer 120 on the surface of the porous silica nanoparticles in order to bond the lanthanide metal complex 130, a fluorescent material on the surface of the porous silica nanoparticles (110) ) Is coated.
  • the biopolymer 120 is not particularly limited as long as it is a biocompatible polymer.
  • “Biocompatibility” refers to a material that is biocompatible as a medical material capable of performing a biological function or deriving an appropriate reaction to perform an effective function.
  • the biopolymer 120 is a polyglycolide, a copolymer of glycolide, a glycolide-lactide copolymer, a glycolide-trimethylene carbonate copolymer (Glycolide-trimethylene carbonate copolymers), polylactides (Polylactides), poly-L-lactide, poly-D-lactide, poly-DL-lactide ( Poly-DLlactide), L-lactide / DL-lactide copolymer, L-lactide / D-lactide copolymer, polylactide copolymer, lactide-trimethylene glycolide copolymer, lactide-trimethylene Carbonate copolymer, lactide / ⁇ -valerolactone copolymer, lactide / ⁇ -caprolactone copolymer, polydepeptide (glycine-DL-lactide copolymer) [Polydepsipeptides), polylact
  • the present invention coats the porous silica nanoparticles 110 with a biocompatible, biodegradable biopolymer 120, and thus does not have the non-eco-friendly and toxic components of the existing fluorescent nanoparticles.
  • This lanthanide metal has the advantage of increasing fluorescence efficiency when forming coordination bonds with ligands such as biopolymers.
  • the fluorescent nanoparticles 140 are manufactured by chemically coordinating the lanthanide metal complex 130.
  • the lanthanide metal complex 130 has a relatively long fluorescence time of 50 to 1000 seconds while providing spectroscopic advantages in terms of sensitivity and signal / noise ratio as well as strong luminescence properties and high light safety over a wide pH range. It is very useful in the field of optically detecting or analyzing various phenomena within.
  • the lanthanide metal complex is Eu (2-thenoyltrifluoroacetone) 3 2H 2 O, [Eu ⁇ 4- (phenyl) -6- (2'-pyridyl) pyridine-2-carboxylate ⁇ 3 ], [Eu- ( NO 3 ) 3 (2,2'-bipyrimidine) 2 ], La (2-thenoyltrifluoroacetone) 3 2 H 2 O, [La ⁇ 4- (phenyl) -6- (2'-pyridyl) pyridine-2-carboxylate ⁇ 3 ], [La- (NO 3 ) 3 (2,2'-bipyrimidine) 2 ] Tb (2-thenoyltrifluoroacetone) 3 ⁇ 2H 2 O, [Tb ⁇ 4- (phenyl) -6- (2-pyridyl) pyridine-2-carboxylate ⁇ 3 ] and [Tb- (NO 3 ) 3 (2,2'-bipyrimidine
  • the fluorescent nanoparticle 140 using the lanthanide metal complex according to the present invention further includes a step of modifying with a silane coupling agent to fix at least one functional group capable of binding to a biomaterial. It may include.
  • the silane coupling agent is 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropyltriethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 2- (3.4-epoxycyclohexyl) ethyltri Epoxy group-containing silane coupling agents such as methoxysilane, 3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, 3-triethoxysilyl-N- (1.3- (Meth) acryl-group containing silane coupling agents, such as amino group containing silane coupling agents, such as dimethylbutylidene) propylamine, 3-acryloxypropyl trimethoxysilane, and 3-methacryloxypropyl triethoxysilane, 3- Isocyanate group-containing silane coupling agents such as isocyanatepropyltrimethoxy
  • the present invention relates to a fluorescent nanoparticle produced by the method of any one of the above, characterized in that the biopolymer and the lanthanide metal complex are bonded to the surface of the porous silica nanoparticles.
  • Fluorescent nanoparticles 140 by using a bio-friendly biopolymer 120 to stably attach the lanthanide metal complex 130 having excellent fluorescence efficiency to the porous silica nanoparticles 110, the existing silica nanoparticles It solves the problem that it cannot be used for precise diagnosis and analysis due to the fall of fluorescent material from particle or decrease of fluorescence efficiency over time, and it keeps fine nanoparticle shape for a long time, such as bio imaging, drug delivery It may be provided for bioanalysis and is very useful because it may be used in a biosensor for optically detecting or analyzing various phenomena in a biomaterial.
  • the present invention relates to a method for labeling a biomaterial using fluorescent nanoparticles in which a biopolymer and a lanthanide metal complex are bonded to a porous silica nanoparticle surface.
  • Fluorescent nanoparticles using a lanthanide metal complex according to the present invention can be used for labeling a biomaterial by immobilizing one or more functional groups capable of binding to the biomaterial to the biomaterial.
  • porous silica nanoparticles were dispersed in 0.5 mL poly-3-hydroxybutyrate (PHB) solution (35 mg / mL in CHCl 3 ), and allowed to stand at room temperature for about 16 hours, followed by drying by centrifugation.
  • PHB poly-3-hydroxybutyrate
  • the PHB-coated porous silica nanoparticles obtained in Example 1-1 were added to an ethanol mixture (6 mg / mL) mixed with europium ⁇ -diketone (EuC), followed by oxygen and europium ⁇ -diketone of the carbonyl group of PHB. Eu was reacted for about 16 hours to form a complex. When the reaction was completed, the mixture was separated by centrifugation, washed and dried to prepare fluorescent nanoparticles. In order to measure the fluorescence of the fluorescent nanoparticles thus prepared, the presence or absence of fluorescence was measured using a fluorescence scanner (Axon / GenePix 4200 professional, USA).
  • Example 1-2 To 1 mg of the fluorescent nanoparticles prepared in Example 1-2, 1 ml of APTMS (3-aminopropyltrimethoxysilane) 1% ethanol solution was added and reacted for 4 hours to modify the surface of the fluorescent nanoparticles with an amine group.
  • Surface potential Zeta-potential & Particle size Analyzer, ELSZ-2, Otsuka Electronics, JAPAN was measured according to pH change in order to confirm the adhesion of amine groups to the surface of fluorescent nanoparticles.
  • the functionalization of the positively charged amine group on the surface was confirmed from the change in the range of 40 mV to -20 mV in the nanoparticles after APTMS surface treatment.
  • Fluorescent nanoparticles using lanthanide metal complexes according to the present invention have high fluorescence intensity and long fluorescence lifetime and biocompatibility by bonding lanthanide metal complexes to the surface of silica particles coated with biopolymers. Can be effectively used.

Abstract

본 발명은 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법에 관한 것으로, 보다 상세하게는, 다공성 실리카 나노입자 표면에 바이오폴리머를 코팅시킨 다음, 상기 코팅된 바이오폴리머 표면에 란타나이드 금속착체를 결합시킴으로써, 바이오 진단 및 분석시 형광 안정성과 생체 친화성이 향상된 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법에 관한 것이다. 본 발명에 따른 란타나이드 금속착체를 이용한 형광 나노입자는 바이오폴리머가 코팅된 실리카 입자표면에 란타나이드 금속착체를 결합시킴으로써 높은 형광 강도와 긴 형광 수명을 가지는 동시에 생체 친화성이 있어 바이오 진단 및 분석 등에 효과적으로 활용될 수 있다.

Description

란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법
본 발명은 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법에 관한 것으로, 보다 상세하게는, 다공성 실리카 나노입자 표면에 바이오폴리머를 코팅시킨 다음, 상기 코팅된 바이오폴리머 표면에 란타나이드 금속착체를 결합시킴으로써, 바이오 진단 또는 분석시 형광 안정성과 생체 친화성이 향상된 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법에 관한 것이다.
다공성 실리카 나노입자(nanoporous silica colloidal particle)는 생물계에서 일반적으로 관찰되는 더 큰 계층구조(hierarchal structure), 매우 복잡한 모양 속에 나노크기 장치를 자기 조립하는 잘 정의된 나노구조 시스템이다. 1992년 최초로 정렬된 메조포러스 실리카에 대한 연구가 보고가 된 이후로, 이의 합성, 분석, 응용에 대한 연구가 많이 진행되고 있다. 규칙적으로 정렬된 기공(pore) 구조, 큰 표면적과 기공 부피를 갖는 나노입자는 약물, 효소, DNA 등의 전달과 같은 바이오 분야에 매우 유용한 소재로 알려져 있으며, 바이오 분야에 적용 가능한 나노입자는 진단, 이미징, 치료 등의 분야에 사용되는데, 메조포러스 실리카 나노입자는 발광, 자기력, 세포 표시, 치료 기능 등의 다기능성 소재로서 사용될 것으로 기대되고 있다.
한편, 형광 나노입자는 그 크기 범주가 기능성 생체 물질(예: 단백질)과 유사하므로, 생체 친화적인 나노입자는 생체 및 의학 응용에 있어 획기적인 발전을 예상할 수 있다. 예를 들면, 반도체성 양자점은 그 발광특성이 기존의 생체 광학 이미징에 사용되던 유기 발광체보다 훨씬 우수하며, 크기에 따라 발광색이 변하기 때문에 이러한 특징을 이용하면 다양한 여러 색의 광학 영상을 얻는데 사용할 수 있다.
또한, 특정 세포 및 조직의 표적화(targeting)를 위한 작용기(functional group)와의 결합이 용이하고, 방출하는 빛이 안정적이기 때문에 유전자 발현과 연관된 세포관찰이나 비침습적 생체영상에서도 효과적으로 사용될 수 있다(C. Loo, A. Lowers, et al, Nano Lett., 5:709,2005).
미국 버클리 대학의 Alivisatos 교수 연구팀과 UCLA Weiss 교수 연구팀은 양자점에 바이오틴 등의 생체 인식분자를 이용하여 쥐의 모세 혈관을 광학 이미징하는 데 성공하였으며, 두 가지 다른 크기의 CdSe/ZnS 코어/쉘 반도체 양자점을 사용함으로써 멀티컬러 이미징도 가능함이 보고되었다(M. Bruchez Jr., et al, Science, 281:2013,1998).
이러한 연구는 무기물계 양자점을 최초로 바이오분야에 응용했다는 것에 그 의의를 두고 있다. 한편 CdSe 양자점이 장기간 자외선에 노출되면 독성이 강한 Cd2+이온이 양자점으로부터 용출될 수 있는 가능성이 있다고 보고되었고(S. J. Cho, et al, Langmuir, 23:1974,2007), 오랜 시간 혈관 내에 머물러 있을 경우 표면보호물질이 유실되어 활성화 산소를 생성함으로써 이로 인한 DNA의 손상과 세포사멸을 유발할 수 있다고 보고되었다(M. Green et al, Chem. Commun, 121,2005).
따라서, 이러한 부작용을 방지하기 위한 표면처리 방법에 관한 연구가 집중적으로 이루어져 왔으며, 그 중 실리카로 코팅처리 하는 것이 한 방편으로 제시되고 있다.
III-V족 및 I-III-VI족 양자점 역시 II-VI족 양자점과 마찬가지로 높은 광학적 안정성, 양호한 양자 효율 및 우수한 화학안정성으로 인해 가시광선 영역에서부터 근적외선 영역까지 다양한 발광 영역을 이용하여 바이오 분야에 큰 응용 가능성을 제시한다. 또한 III-V족 및 I-III-VI족 양자점은 Cd과 같은 독성성분을 함유하지 않고 있기 때문에 안전하게 생체 내에 주입하여 탐색 및 추적이 가능하다.
그러나, 탁월한 광학특성을 보이는 대부분의 반도체 양자점은 Cd 등을 함유하고 있는 조성으로 구성되어 있다. 이와 같은 양자점이 갖는 비친환경성 및 독성은 형광 나노입자의 시장 진입에 걸림돌로 작용했던 요인 중의 하나이다. 비록 Cd 성분을 탈피하는 대체 양자점 조성인 III-V족 및 I-III-VI족 계열 조성의 양자점 조성 및 비 양자점 형광 나노입자가 개발되고는 있지만, 아직 Cd을 함유하고 있는 II-VI족 반도체 양자점이 갖는 우수한 광학특성에는 미치지 못하고 있다.
이에, 본 발명자들은 상기 종래기술의 문제점을 해결하고자 예의 노력한 결과, 다공성 실리카 나노입자 표면에 생체친화적인 바이오폴리머를 코팅시킨 다음, 상기 코팅된 바이오폴리머에 란타나이드 금속 착제를 결합시켜 형광 나노입자를 제조할 경우, 상기 란타나이드 금속착체가 안정적으로 다공성 실리카 나노입자에 결합되어 형광 안정성과 생체친화성이 향상됨을 확인하고, 본 발명을 완성하게 되었다.
발명의 요약
본 발명의 주된 목적은 생체 친화적일 뿐만 아니라, 형광 안정성이 향상된 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법을 제공하는데 있다.
상기 목적을 달성하기 위하여, 본 발명은 (a) 다공성 실리카 나노입자 표면에 바이오폴리머를 코팅시키는 단계; 및 (b) 상기 코팅된 바이오폴리머에 란타나이드 금속착체를 결합시켜 형광 나노입자를 제조하는 단계를 포함하는 란타나이드 금속착체를 이용한 형광 나노입자의 제조방법을 제공한다.
본 발명은 또한, 상기 방법에 의해 제조되고, 다공성 실리카 나노입자 표면에 바이오폴리머 및 란타나이드 금속착체가 결합되어 있는 것을 특징으로 하는 형광 나노입자를 제공한다.
본 발명은 또한, 상기 다공성 실리카 나노입자 표면에 바이오폴리머 및 란타나이드 금속착체가 결합되어 있는 형광 나노입자를 이용한 생체물질의 표지방법을 제공한다.
도 1은 본 발명에 따른 란타나이드 금속착체를 이용한 형광 나노입자에 대한 모식도이다.
도 2는 다공성 실리카 나노입자에 바이오폴리머를 코팅시키기 전(b)/후(a)의 FT-IR의 흡수 스펙트럼이다.
도 3은 다공성 실리카 나노입자 표면에 코팅된 바이오폴리머 유무에 따른 광학현미경 이미지이다.
도 4는 본 발명에 따른 란타나이드 금속착체를 이용한 형광 나노입자의 실란 커플링제 처리 전후의 표면전하를 측정한 결과 그래프이다.
발명의 상세한 설명 및 구체적인 구현예
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 갖는다. 일반적으로, 본 명세서에서 사용된 명명법 은 본 기술분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.
본 발명의 상세한 설명 등에서 사용되는 주요 용어의 정의는 다음과 같다.
본원에서, "다공성 실리카 나노입자"란 수 나노에서 수 마이크로 크기의 세공(finepore)를 가지는 실리카 나노구조체로서, 기공배열의 규칙성이 잘 정의되어 있으며 사용환경에 맞도록 물질 특성 (기공크기, 비표면적, 표면특성)을 조절할 수 있는 것을 특징으로 하며, 메조포러스 실리카라고도 한다.
본원에서, "생체물질"이란 단백질, 효소, 항체, 펩티드, 지질, DNA, RNA 및 PNA 등 생체 유래 물질을 말한다.
본 발명은 일 관점에서, (a) 다공성 실리카 나노입자 표면에 바이오폴리머를 코팅시키는 단계; 및 (b) 상기 코팅된 바이오폴리머와 란타나이드 금속착체를 결합시켜 형광 나노입자를 제조하는 단계를 포함하는 란타나이드 금속착체를 이용한 형광 나노입자의 제조방법에 관한 것이다.
본 발명에 따른 형광 나노입자는 도 1에 나타난 바와 같이, 다공성 실리카 나노입자(110)의 표면에 형광 물질인 란타나이드 금속착체(130)를 결합시키기 위해 상기 다공성 실리카 나노입자 표면에 바이오폴리머(120)를 코팅시킨다.
이때, 상기 바이오폴리머(120)는 생체 적합한 고분자이면, 특별히 제한되지 않는다.“생체적합”이란 생물학적 작용을 수행가능하거나 적절한 반응을 도출하여 효과적인 기능을 하는 의료용 재료로 생체 적용가능한 물질을 의미한다.
본 발명에 있어서, 바이오폴리머(120)는 폴리글리코라이드(Polyglycolide), 글리코라이드 공중합체(Copolymers of glycolide), 글리코라이드-락티드 공중합체(Glycolide-lactide copolymers), 글리코라이드-트리메틸렌 카보네이트 공중합체(Glycolide-trimethylene carbonate copolymers), 폴리락티드(Polylactides), 폴리-L-락티드(Poly-L-lactide), 폴리-D-락티드(Poly-D-lactide), 폴리-DL-락티드(Poly-DLlactide), L-락티드/DL-락티드 공중합체, L-락티드/D-락티드 공중합체, 폴리락티드 공중합체, 락티드-트리메틸렌 글리코라이드 공중합체, 락티드-트리메틸렌 카보네이트 공중합체, 락티드/δ-바레로락톤(δ-valerolactone) 공중합체, 락티드/ε-카프로락톤 공중합체, 폴리데프시펩티드(글리신-DL-락티드 공중합체)[Polydepsipeptides(glycine-DL-lactide copolymer)], 폴리락티드/에틸렌옥사이드 공중합체, 애시미트리컬리 3,6-서브스티튜티드 폴리-1,4-디옥산-2,5-디온스 (Asymmetrically 3,6-substituted poly-1,4-dioxane-2,5-diones), 폴리(3-하이드록시부틸레이트)((Poly(3-hydroxybutyrate)), 폴리-3-하이드록시부틸레이트/3-하이드록시바레레이트(β-hydroxyvalerate) 공중합체, 폴리-β-하이드록시프로피오네이트(Poly-β-hydroxypropionate), 폴리-p-디옥산온, 폴리-δ-바레로락톤(Poly-δ-valerolactone), 폴리-ε-카프로락톤, 이들의 공중합체 또는 이들의 블랜드 등을 예시할 수 있으나, 이로 제한되지 않는다. 바람직하게는, 폴리(3-하이드록시부틸레이트) 또는 폴리-3-하이드록시부틸레이트/3-하이드록시바레레이트 공중합체인 폴리(3-하이드록시부틸레이트-코-3-하이드록시발레이트)이다.
본 발명은 다공성 실리카 나노입자(110)에 생체친화적이고, 생분해성인 바이오폴리머(120)를 코팅함으로써, 기존 형광 나노입자가 갖는 비친환경성 및 독성성분을 가지고 있지 않기 때문에 안전하게 생체 내에 주입하여 탐색 및 추적이 용이하고, 란타나이드 금속은 바이오폴리머와 같은 리간드와 배위결합 형성 시 형광 효율이 증가하는 장점이 있다.
이와 같이, 본 발명은 다공성 실리카 나노입자(110) 표면에 바이오폴리머(120)가 코팅되면, 란타나이드 금속착체(130)를 화학적으로 배위결합시켜 형광 나노입자(140)를 제조한다.
란타나이드 금속착체(130)은 넓은 pH 범위에서 강한 발광 특성과 높은 광 안전성은 물론 민감성 및 신호/잡음비와 관련하여 분광학상 장점을 제공하는 동시에 50 내지 1000초의 상대적으로 긴 형광시간을 가져, 생체물질 내의 다양한 현상을 광학적으로 검출 또는 분석하는 분야에 매우 유용하다.
이때, 상기 란타나이드 금속착체는 Eu(2-thenoyltrifluoroacetone)3·2H2O,[Eu{4-(phenyl)-6-(2’-pyridyl)pyridine-2-carboxylate}3], [Eu-(NO3)3(2,2’-bipyrimidine)2], La(2-thenoyltrifluoroacetone)3·2H2O,[La{4-(phenyl)-6-(2’-pyridyl)pyridine-2-carboxylate}3], [La-(NO3)3(2,2’-bipyrimidine)2]Tb(2-thenoyltrifluoroacetone)3·2H2O,[Tb{4-(phenyl)-6-(2-pyridyl)pyridine-2-carboxylate}3] 및 [Tb-(NO3)3(2,2’-bipyrimidine)2]로 구성된 군에서 선택된다.
한편, 본 발명에 따른 란타나이드 금속착체를 이용한 형광 나노입자(140)는 도 2에 나타난 바와 같이, 생체물질에 결합할 수 있는 하나 이상의 작용기를 고정시키기 위해 실란 커플링제로 개질시키는 단계를 추가로 포함할 수 있다.
이때, 실란 커플링제는 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필메틸디에톡시실란, 2-(3.4-에폭시시클로헥실)에틸트리메톡시실란 등의 에폭시기 함유 실란 커플링제, 3-아미노프로필트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필메틸디메톡시실란, 3-트리에톡시실릴-N- (1.3-디메틸부틸리덴)프로필아민 등의 아미노기 함유 실란 커플링제, 3-아클릴록시프로필트리메톡시실란, 3-메타크릴록시프로필트리에톡시실란 등의 (메타)아크릴기 함유 실란 커플링제, 3-이소시아네이트프로필트리에톡시실란 등의 이소시아네이트기 함유 실란 커플링제 및 이들의 혼합물로부터 선택된다.
본 발명은 다른 관점에서, 어느 한 항의 방법에 의해 제조되고, 다공성 실리카 나노입자 표면에 바이오폴리머 및 란타나이드 금속착체가 결합되어 있는 것을 특징으로 하는 형광 나노입자에 관한 것이다.
본 발명에 따른 형광 나노입자(140)는 생체 친화적인 바이오폴리머(120)를 사용하여 형광효율이 우수한 란타나이드 금속착체(130)를 다공성 실리카 나노입자(110)에 안정적으로 부착시킴으로써, 기존 실리카 나노입자에서 형광물질이 떨어져 나가거나 시간이 지날수록 형광효율이 감소하는 등의 이유로 정밀한 진단 및 분석에 이용할 수 없다는 문제점을 해결하고, 미세 나노입자 형태를 오랜 시간 유지시켜 주어 바이오 이미징, 약물전달과 같은 바이오 분석을 위하여 제공될 수 있으며, 생체물질 내의 다양한 현상을 광학적으로 검출 또는 분석하는 바이오 센서에 이용할 수 있어 매우 유용하다.
본 발명은 또 다른 관점에서, 다공성 실리카 나노입자 표면에 바이오폴리머 및 란타나이드 금속착체가 결합되어 있는 형광 나노입자를 이용한 생체물질의 표지방법에 관한 것이다.
본 발명에 따른 란타나이드 금속착체를 이용한 형광 나노입자는 생체물질에 결합할 수 있는 하나 이상의 작용기를 고정시켜 생체물질에 고정시킴으로써 생체물질의 표지를 위하여 사용될 수 있다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는다는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
실시예 1: 형광 나노입자의 제조
1-1: 바이오폴리머 결합
0.5 mL poly-3-hydroxybutyrate(PHB)용액(35 mg/mL in CHCl3)에 5 mg의 다공성 실리카 나노입자를 분산시켜 약 16시간 동안 상온에 놓아둔 후 원심분리기로 분리하여 건조시켰다. 다공성 실리카 나노입자에 PHB가 결합됨을 확인하기 위해서 FT-IR을 이용하여 측정한 결과, 도 3에 나타난 바와 같이, PHB를 코팅한 후에 1065 cm-1에서 Si-O결합의 stretching vibration에 의한 강하고 넓은 흡수밴드가 관찰되었고, 1723 cm-1에서 PHB의 C=O stretching vibration 피크가 사라짐으로서 다공성 실리카 나노입자에 PHB가 코팅이 되었음을 확인하였다.
1-2: 란타나이드 금속착체의 결합
실시예 1-1에서 수득된 PHB가 코팅된 다공성 실리카 나노입자를 europium β-diketone(EuC)가 혼합된 에탄올 혼합물(6mg/mL)에 첨가시킨 다음, PHB의 carbonyl 그룹의 oxygen과 europium β-diketone의 Eu가 복합체(complex)를 이루도록 약 16시간 동안 반응시켰다. 상기 반응이 완료되면, 상기 혼합물을 원심분리기로 분리한 다음, 세척 및 건조시켜 형광 나노입자를 제조하였다. 이렇게 제조된 형광 나노입자의 형광성을 측정하기 위해 형광스캐너 (Axon/GenePix 4200 professional, USA)를 이용하여 형광 유무를 측정하였다.
그 결과, 도 4에 나타난 바와 같이, PHB가 코팅되지 않은 다공성 실리카 입자의 경우(a) 실리카 입자 표면에 유로품 착체가 결합되지 않아 유로퓸 착체(EuC)의 형광성을 확인할 수 없었고, PHB가 코팅된 실리카 입자의 경우(b)에는 유로퓸 착체가 결합되어 붉은색의 형광성을 보이는 것으로 나타났다.
1-3: 작용기 부착
실시예 1-2에서 제조된 형광 나노입자 1mg에 APTMS(3-aminopropyltrimethoxysilane) 1% 에탄올 용액 1ml를 첨가시킨 다음, 4시간 동안 반응시켜 상기 형광 나노입자의 표면을 아민기로 개질시켰다. 형광 나노입자의 표면에 아민기 부착여부를 확인하기 위하여 pH 변화에 따른 표면전위(Zeta-potential & Particle size Analyzer, ELSZ-2, Otsuka Electronics, JAPAN)를 측정하였다.
그 결과, APTMS 표면처리 후의 나노입자에서 40 mV ~ -20 mV 사이의 범위에서 변화하는 것으로부터 표면에 양전하를 띄는 아민기의 기능화(functionalization)를 확인할 수 있었다.
이상으로 본 발명 내용의 특정한 부분을 상세히 기술하였는 바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시예일뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.
본 발명에 따른 란타나이드 금속착체를 이용한 형광 나노입자는 바이오폴리머가 코팅된 실리카 입자표면에 란타나이드 금속착체를 결합시킴으로써 높은 형광 강도와 긴 형광 수명을 가지는 동시에 생체 친화성이 있어 바이오 진단 및 분석 등에 효과적으로 활용될 수 있다.

Claims (8)

  1. 다음 단계를 포함하는 란타나이드 금속착체를 이용한 형광 나노입자의 제조방법:
    (a) 다공성 실리카 나노입자 표면에 바이오폴리머를 코팅시키는 단계; 및
    (b) 상기 코팅된 바이오폴리머에 란타나이드 금속착체를 결합시켜 형광 나노입자를 제조하는 단계.
  2. 제1항에 있어서, 상기 바이오폴리머는 폴리글리코라이드(Polyglycolide), 글리코라이드 공중합체(Copolymers of glycolide), 글리코라이드-락티드 공중합체(Glycolide-lactide copolymers), 글리코라이드-트리메틸렌 카보네이트 공중합체(Glycolide-trimethylene carbonate copolymers), 폴리락티드(Polylactides), 폴리-L-락티드(Poly-L-lactide), 폴리-D-락티드(Poly-D-lactide), 폴리-DL-락티드(Poly-DLlactide), L-락티드/DL-락티드 공중합체, L-락티드/D-락티드 공중합체, 폴리락티드 공중합체, 락티드-트리메틸렌 글리코라이드 공중합체, 락티드-트리메틸렌 카보네이트 공중합체, 락티드/δ-바레로락톤(δ-valerolactone) 공중합체, 락티드/ε-카프로락톤 공중합체, 폴리데프시펩티드(글리신-DL-락티드 공중합체)[Polydepsipeptides(glycine-DL-lactide copolymer)], 폴리락티드/에틸렌옥사이드 공중합체, 애시미트리컬리 3,6-서브스티튜티드 폴리-1,4-디옥산-2,5-디온스 (Asymmetrically 3,6-substituted poly-1,4-dioxane-2,5-diones), 폴리(3-하이드록시부틸레이트)((Poly(3-hydroxybutyrate)), 폴리-3-하이드록시부틸레이트/3-하이드록시바레레이트(β-hydroxyvalerate) 공중합체, 폴리-β-하이드록시프로피오네이트(Poly-β-hydroxypropionate), 폴리-p-디옥산온, 폴리-δ-바레로락톤(Poly-δ-valerolactone), 폴리-ε-카프로락톤 및 이들의 혼합물로 구성된 군에서 선택되는 것을 특징으로 하는 형광 나노입자의 제조방법.
  3. 제1항에 있어서, 상기 란타나이드 금속착제는 Eu(2-thenoyltrifluoroacetone)3·2H2O,[Eu{4-(phenyl)-6-(2’-pyridyl)pyridine-2-carboxylate}3], [Eu-(NO3)3(2,2’-bipyrimidine)2], La(2-thenoyltrifluoroacetone)3·2H2O,[La{4-(phenyl)-6-(2’-pyridyl)pyridine-2-carboxylate}3], [La-(NO3)3(2,2’-bipyrimidine)2]Tb(2-thenoyltrifluoroacetone)3·2H2O, [Tb{4-(phenyl)-6-(2’-pyridyl)pyridine-2-carboxylate}3], [Tb-(NO3)3(2,2’-bipyrimidine)2]로 구성된 군에서 선택되는 것을 특징으로 하는 형광 나노입자의 제조방법.
  4. 제1항에 있어서, 상기 (b) 단계는 생체물질을 고정시키기 위해 바이오폴리머와 란타나이드 금속착체를 결합시킨 다음, 실란 커플링제로 개질시키는 단계를 추가로 포함하는 것을 특징으로 하는 형광 나노입자의 제조방법.
  5. 제4항에 있어서, 상기 실란 커플링제는 3-글리시독시프로필트리메톡시실란, 3-글리시독시프로필트리에톡시실란, 3-글리시독시프로필메틸디에톡시실란, 2-(3.4-에폭시시클로헥실)에틸트리메톡시실란, 3-아미노프로필트리메톡시실란, N-2-(아미노에틸)-3-아미노프로필메틸디메톡시실란, 3-트리에톡시실릴-N- (1.3-디메틸부틸리덴)프로필아민, 3-아클릴록시프로필트리메톡시실란, 3-메타크릴록시프로필트리에톡시실란, 3-이소시아네이트프로필트리에톡시실란 및 이들의 혼합물로부터 구성된 군에서 선택되는 것을 특징으로 하는 형광 나노입자의 제조방법.
  6. 제1항에 있어서, 상기 (b) 단계의 란타나이드 금속착체는 배위결합으로 바이오폴리머와 결합되어 있는 것을 특징으로 하는 형광 나노입자의 제조방법.
  7. 제1항 내지 제6항 중 어느 한 항의 방법에 의해 제조되고, 바이오폴리머로 코팅되어 있는 다공성 실리카 나노입자에 바이오폴리머 및 란타나이드 금속착체가 결합되어 있는 것을 특징으로 하는 형광 나노입자.
  8. 제7항의 바이오폴리머로 코팅되어 있는 다공성 실리카 나노입자에 바이오폴리머 및 란타나이드 금속착체가 결합되어 있는 형광 나노입자를 이용한 생체물질의 표지방법.
PCT/KR2011/009869 2010-12-21 2011-12-20 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법 WO2012087005A2 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2010-0131711 2010-12-21
KR1020100131711A KR101311920B1 (ko) 2010-12-21 2010-12-21 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법

Publications (2)

Publication Number Publication Date
WO2012087005A2 true WO2012087005A2 (ko) 2012-06-28
WO2012087005A3 WO2012087005A3 (ko) 2012-09-07

Family

ID=46314615

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2011/009869 WO2012087005A2 (ko) 2010-12-21 2011-12-20 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법

Country Status (2)

Country Link
KR (1) KR101311920B1 (ko)
WO (1) WO2012087005A2 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540318A (zh) * 2013-10-11 2014-01-29 上海大学 稀土配合物嫁接的发光二氧化钛介孔微球的制备方法
CN104941681A (zh) * 2014-03-31 2015-09-30 华东理工大学 基于萘酰亚胺衍生物的荧光传感材料及其应用
CN112458795A (zh) * 2020-11-24 2021-03-09 陕西科技大学 基于镧系金属有机框架的光致变色荧光纳米纸及制备方法

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101423589B1 (ko) * 2013-03-27 2014-07-28 주식회사 메디센서 란탄족 착물을 포함하는 무독성 형광 입자
KR101495194B1 (ko) * 2013-11-12 2015-02-25 연세대학교 산학협력단 란타나이드 복합구조체를 포함하는 양이온 정성/정량적 검출 분석용 센서 및 이를 이용한 검출 분석 방법
KR102525693B1 (ko) * 2021-03-15 2023-04-24 건양대학교 산학협력단 공유결합에 의한 베타-디케톤 유로퓸 복합체가 포함된 다공질 실리카 형광나노입자의 제조방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004857A (ko) * 2004-03-19 2007-01-09 이 아이 듀폰 디 네모아 앤드 캄파니 전기 전도성 유기 중합체/나노입자 복합체 및 그것의 사용방법
KR20080015076A (ko) * 2005-04-01 2008-02-18 스퍼드닉, 인코포레이티드 광 형광 물질을 갖는 스크린을 구비한 디스플레이 시스템및 장치
KR20090058543A (ko) * 2006-09-06 2009-06-09 디에스엠 아이피 어셋츠 비.브이. 코어-쉘 나노입자
KR20100085941A (ko) * 2007-09-28 2010-07-29 나노코 테크놀로지스 리미티드 코어 쉘 나노입자들 및 이들의 준비 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100624648B1 (ko) * 1997-12-09 2006-09-19 에스비에이 머티어리얼스 인코포레이티드 메소구조의 무기 산화물을 제조하기 위한 블록 중합체 공정
FR2863053B1 (fr) * 2003-11-28 2007-04-06 Univ Claude Bernard Lyon Nouvelles sondes hybrides a luminescence exaltee
AR055099A1 (es) 2005-07-28 2007-08-08 Alza Corp Formulaciones liquidas para la administracion controlada de derivados de bencisoxazol
ES2301296B1 (es) 2005-09-16 2009-05-29 Consejo Superior Investig. Cientificas Manoparticula biosensora, procedimiento de elaboracion y sus aplicaciones.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070004857A (ko) * 2004-03-19 2007-01-09 이 아이 듀폰 디 네모아 앤드 캄파니 전기 전도성 유기 중합체/나노입자 복합체 및 그것의 사용방법
KR20080015076A (ko) * 2005-04-01 2008-02-18 스퍼드닉, 인코포레이티드 광 형광 물질을 갖는 스크린을 구비한 디스플레이 시스템및 장치
KR20090058543A (ko) * 2006-09-06 2009-06-09 디에스엠 아이피 어셋츠 비.브이. 코어-쉘 나노입자
KR20100085941A (ko) * 2007-09-28 2010-07-29 나노코 테크놀로지스 리미티드 코어 쉘 나노입자들 및 이들의 준비 방법

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
'Fluorescent nanoparticles, Quantum Dot' POLYMER SCIENCE AND TECHNOLOGY vol. 16, no. 2., April 2005, page 223 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103540318A (zh) * 2013-10-11 2014-01-29 上海大学 稀土配合物嫁接的发光二氧化钛介孔微球的制备方法
CN104941681A (zh) * 2014-03-31 2015-09-30 华东理工大学 基于萘酰亚胺衍生物的荧光传感材料及其应用
CN104941681B (zh) * 2014-03-31 2019-08-13 华东理工大学 基于萘酰亚胺衍生物的荧光传感材料及其应用
CN112458795A (zh) * 2020-11-24 2021-03-09 陕西科技大学 基于镧系金属有机框架的光致变色荧光纳米纸及制备方法

Also Published As

Publication number Publication date
WO2012087005A3 (ko) 2012-09-07
KR101311920B1 (ko) 2013-09-26
KR20120070236A (ko) 2012-06-29

Similar Documents

Publication Publication Date Title
WO2012087005A2 (ko) 란타나이드 금속착체를 이용한 형광 나노입자 및 그 제조방법
Wang et al. ‘Green’-synthesized near-infrared PbS quantum dots with silica–PEG dual-layer coating: ultrastable and biocompatible optical probes for in vivo animal imaging
Kumar et al. TiO 2 and its composites as promising biomaterials: a review
Mansur Quantum dots and nanocomposites
Sounderya et al. Use of core/shell structured nanoparticles for biomedical applications
Yong et al. Biocompatible near‐infrared quantum dots as ultrasensitive probes for long‐term in vivo imaging applications
Xiong et al. Stable aqueous ZnO@ polymer core− shell nanoparticles with tunable photoluminescence and their application in cell imaging
Graf et al. A general method for the controlled embedding of nanoparticles in silica colloids
CN101652126B (zh) 活性试剂的多级递送
US20070190100A1 (en) Engineering of material surfaces
Jayasree et al. Mannosylated chitosan-zinc sulphide nanocrystals as fluorescent bioprobes for targeted cancer imaging
Sun et al. Photostability and pH sensitivity of CdSe/ZnSe/ZnS quantum dots in living cells
Chandran et al. An electric field responsive drug delivery system based on chitosan–gold nanocomposites for site specific and controlled delivery of 5-fluorouracil
Loginova et al. Biodistribution and stability of CdSe core quantum dots in mouse digestive tract following per os administration: Advantages of double polymer/silica coated nanocrystals
Zakharchenko et al. Stimuli-responsive hierarchically self-assembled 3D porous polymer-based structures with aligned pores
Lu et al. Biocompatible fluorescence-enhanced ZrO2–CdTe quantum dot nanocomposite for in vitro cell imaging
CN102796224A (zh) 多功能仿生聚合物及其制备方法和应用
CN111732729B (zh) 一种电荷可控的聚合物材料及其制备方法与应用
CN112156083B (zh) 一种聚集诱导发光纳米颗粒及其制备方法和应用
KR20150097039A (ko) 근적외선 광학영상용 실리카 중심 및 은 껍질 나노입자 및 그의 제조방법
US20100044673A1 (en) Labeling fluorescent compound
Grabowska-Jadach et al. Studies on influence of polymer modifiers for fluorescent nanocrystals’ cytotoxicity
JP5168092B2 (ja) 半導体ナノ粒子標識剤
Wang et al. Optical applications of quantum dots in biological system
Sheikh et al. Interaction of Nanomaterials With Living Cells

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851527

Country of ref document: EP

Kind code of ref document: A2

NENP Non-entry into the national phase in:

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851527

Country of ref document: EP

Kind code of ref document: A2