WO2012086532A1 - 表示装置 - Google Patents

表示装置 Download PDF

Info

Publication number
WO2012086532A1
WO2012086532A1 PCT/JP2011/079141 JP2011079141W WO2012086532A1 WO 2012086532 A1 WO2012086532 A1 WO 2012086532A1 JP 2011079141 W JP2011079141 W JP 2011079141W WO 2012086532 A1 WO2012086532 A1 WO 2012086532A1
Authority
WO
WIPO (PCT)
Prior art keywords
luminance
display
main panel
liquid crystal
panel
Prior art date
Application number
PCT/JP2011/079141
Other languages
English (en)
French (fr)
Inventor
岳洋 村尾
福島 浩
知男 高谷
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Priority to AU2011346458A priority Critical patent/AU2011346458A1/en
Priority to SG2013048921A priority patent/SG191344A1/en
Priority to US13/996,958 priority patent/US20130293795A1/en
Publication of WO2012086532A1 publication Critical patent/WO2012086532A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/34Stereoscopes providing a stereoscopic pair of separated images corresponding to parallactically displaced views of the same object, e.g. 3D slide viewers
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/24Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type involving temporal multiplexing, e.g. using sequentially activated left and right shutters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/356Image reproducers having separate monoscopic and stereoscopic modes
    • H04N13/359Switching between monoscopic and stereoscopic modes
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • G02F1/294Variable focal length devices

Definitions

  • the present invention relates to a display device having a switch panel capable of switching image display between two-dimensional display and three-dimensional display.
  • a display device having a switch panel capable of switching an image display between a two-dimensional display and a three-dimensional display has two liquid crystal panels arranged to face each other as disclosed in, for example, Japanese Patent Laid-Open No. 5-122733.
  • the display device displays an image on one liquid crystal panel (main panel), and displays a black and white barrier stripe image on the other liquid crystal panel (switch panel).
  • the other liquid crystal panel functions as a parallax barrier, and an image displayed on one liquid crystal panel is visually recognized as a three-dimensional stereoscopic image. If the barrier / striped image is not displayed on the other liquid crystal panel, the image displayed on the one liquid crystal panel is visually recognized as it is, so that a two-dimensional image display is obtained.
  • the luminance of the light source such as the backlight is reduced in the case of the two-dimensional display so that the luminance of the display screen seen from the viewer side is approximately the same in the case of the two-dimensional display and the case of the three-dimensional display.
  • a method of matching the brightness in the case of three-dimensional display can be considered.
  • the luminance of the light source changes rapidly in response to switching between the two-dimensional display and the three-dimensional display.
  • the switch panel is a liquid crystal panel
  • the two-dimensional display and the three-dimensional display are switched. It is difficult to suddenly change the alignment state of the liquid crystal molecules in accordance with the switching. Then, when switching between the two-dimensional display and the three-dimensional display, an unnatural luminance change occurs on the display screen due to a timing difference between the luminance change of the light source and the change in the state of the liquid crystal, and the viewer feels uncomfortable. There is.
  • An object of the present invention is to provide a display device having a switch panel capable of switching between two-dimensional display and three-dimensional display of an image, so that the viewer feels uncomfortable when switching between the two-dimensional display and the three-dimensional display. This is to prevent such an unnatural luminance change from occurring.
  • a display device includes a main panel that displays an image, a two-dimensional mode that is arranged to face the main panel and visually recognizes an image displayed on the main panel as a two-dimensional image, A switch panel that can be switched to a three-dimensional mode for viewing the image stereoscopically, a brightness control unit that changes the brightness of the main panel when the mode is switched by the switch panel, and mode switching by the switch panel And a visual correction unit that makes it difficult to visually recognize the luminance change of the main panel on the visual recognition side.
  • the display device prevents an unnatural luminance change that causes the viewer to feel uncomfortable when the image display is switched between the two-dimensional display and the three-dimensional display. it can.
  • FIG. 1 is a diagram showing a schematic configuration of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the switch panel.
  • FIG. 3 is a diagram illustrating an example of a change in luminance of the display screen when switching from the three-dimensional display to the two-dimensional display when the screen is viewed from the normal direction.
  • FIG. 4 is a diagram schematically illustrating the movement of liquid crystal molecules in the liquid crystal layer when switching from the three-dimensional display to the two-dimensional display.
  • FIG. 5 is a diagram illustrating an example of a change in luminance of the display screen when switching from the three-dimensional display to the two-dimensional display when the screen is viewed from the viewing angle direction.
  • FIG. 1 is a diagram showing a schematic configuration of a liquid crystal display device according to Embodiment 1 of the present invention.
  • FIG. 2 is a cross-sectional view showing a schematic configuration of the switch panel.
  • FIG. 3 is
  • FIG. 6 is a diagram illustrating an example of a change in luminance of the display screen when switching from the two-dimensional display to the three-dimensional display when the screen is viewed from the normal direction.
  • FIG. 7 is a block diagram illustrating a schematic configuration of a visual correction unit of the liquid crystal display device according to the first embodiment.
  • FIG. 8 is a diagram illustrating an example of the luminance of the backlight corrected by the luminance correction of the visual recognition correction unit.
  • FIG. 9 is a diagram illustrating an example of the luminance of the display screen after the luminance correction.
  • FIG. 10 is a block diagram illustrating a schematic configuration of a visual correction unit according to a modification of the first embodiment.
  • FIG. 11 is a block diagram illustrating a schematic configuration of a visual correction unit of the liquid crystal display device according to the second embodiment.
  • FIG. 12 is a diagram schematically illustrating an example of a case where the luminance change of the display screen due to the response delay of the liquid crystal is hidden by the black display of the screen.
  • FIG. 13 is a block diagram illustrating a schematic configuration of a visual correction unit of the liquid crystal display device according to the third embodiment.
  • FIG. 14 is a diagram illustrating an example of a case where the display screen luminance change due to the response delay of the liquid crystal is hidden by backlight luminance adjustment.
  • FIG. 15 is a cross-sectional view illustrating a schematic configuration of a switch panel of the display device according to the third embodiment.
  • a display device includes a main panel that displays an image, a two-dimensional mode that is arranged to face the main panel and visually recognizes an image displayed on the main panel as a two-dimensional image, A switch panel that can be switched to a three-dimensional mode for viewing the image stereoscopically, a brightness control unit that changes the brightness of the main panel when the mode is switched by the switch panel, and mode switching by the switch panel And a visual correction unit that makes it difficult to visually recognize the luminance change of the main panel on the visual recognition side (first configuration).
  • the luminance control unit switches the luminance of the main panel, and the visual correction unit makes it difficult to visually recognize the luminance change on the viewer side. can do. Therefore, it is possible to switch between the two-dimensional display and the three-dimensional display without giving the viewer a sense of incongruity.
  • the luminance means the luminous intensity per unit surface area of the light emitter when the light emitter is viewed.
  • the luminance of the main panel means the luminous intensity per unit surface area of the main panel when the main panel is viewed when the main panel itself emits light.
  • the luminance of the main panel means the luminous intensity per unit surface area of the main panel when viewing the display surface of the main panel.
  • the brightness of the display screen means the luminous intensity per unit surface area of the screen located closest to the viewing side when viewing the display screen of the display device.
  • the visual correction unit is configured to change the luminance of the main panel so that the luminance change of the main panel is not easily seen from the visual recognition side when the mode is switched by the switch panel. It is preferable (2nd structure).
  • the second configuration preferably further includes a light source unit that emits light to the main panel, and the visual correction unit is configured to change a luminance of the light source unit. 3 configuration).
  • the luminance of the light source unit means the luminous intensity per unit surface area when the light source unit is visually recognized.
  • the visual correction unit adjusts the luminance of the main panel so that the luminance of the display screen viewed from the visual side becomes constant when the mode is switched by the switch panel. It is preferable to be configured as described above (fourth configuration).
  • the visual correction unit includes a temperature detection unit that detects an ambient temperature, and a correction value for correcting the luminance of the main panel according to the ambient temperature.
  • the correction value storage unit stores the correction value stored in the correction value storage unit according to the ambient temperature detected by the temperature detection unit and the brightness of the main panel using the correction value It is preferable to have a luminance correction unit that corrects (fifth configuration).
  • the correction value storage unit stores a luminance correction value corresponding to the ambient temperature. For this reason, it is possible to read a correction value corresponding to the ambient temperature from the correction value storage unit and correct the luminance of the main panel by the luminance correction unit. Thereby, the luminance change of the display screen at the time of switching between the two-dimensional display and the three-dimensional display becomes difficult to be visually recognized on the viewer side. Therefore, switching between the two-dimensional display and the three-dimensional display can be performed without giving the viewer a sense of incongruity.
  • the visual correction unit is based on a luminance detection unit that detects luminance on the visual recognition side of the display screen and the luminance detected by the luminance detection unit. It is preferable to have a luminance adjusting unit that adjusts the luminance of the main panel (sixth configuration).
  • the luminance of the main panel is adjusted according to the luminance on the viewing side of the display screen, the luminance change on the display screen at the time of switching between the two-dimensional display and the three-dimensional display is less likely to be visually recognized by the viewer. Therefore, switching between the two-dimensional display and the three-dimensional display can be performed without giving the viewer a sense of incongruity.
  • the visual correction unit is configured to change a gradation of an image displayed on the main panel so that a change in luminance of the main panel is difficult to be visually recognized from the visual side. Is preferable (seventh configuration). Thereby, when switching between the two-dimensional display and the three-dimensional display, it is possible to prevent the viewer from visually recognizing the luminance change on the display screen that gives a sense of incongruity.
  • the visual correction unit may prevent the luminance change of the main panel from being viewed from the viewer side when the mode is switched by the switch panel.
  • the display screen is preferably changed to a black state (eighth configuration).
  • the display screen becomes black display (black state), so an unnatural display screen at the time of switching between 2D display and 3D display. Can be prevented from being visually recognized by a viewer. Therefore, switching between the two-dimensional display and the three-dimensional display can be performed without giving the viewer a sense of incongruity.
  • the black state includes not only a completely dark state where the luminance of the display screen is almost zero, but also a small luminance that does not allow a change in the luminance of the display screen when switching between the two-dimensional display and the three-dimensional display.
  • the display correction unit sets the display screen to a black state
  • the luminance of the main panel is increased after the display panel is set to a black state by gradually decreasing the luminance of the main panel. It is preferable to be configured to increase gradually (9th configuration).
  • the display screen when switching between 2D display and 3D display by the switch panel, the display screen can be made black without any discomfort, and switching between 2D display and 3D display can be performed without any discomfort. be able to.
  • the switch panel preferably includes a liquid crystal layer and a pair of electrodes disposed so as to sandwich the liquid crystal layer (tenth embodiment). Configuration).
  • the liquid crystal layer functions as a liquid crystal lens when a voltage is applied to the pair of electrodes (an eleventh configuration).
  • the switch panel functions as a liquid crystal lens
  • the liquid crystal layer becomes thick, so that the luminance change due to the response delay of the liquid crystal when switching between the two-dimensional display and the three-dimensional display becomes more remarkable. Therefore, in such a configuration, a more remarkable effect can be obtained by applying the above-described first to ninth configurations.
  • the dimension of the structural member in each figure does not represent the dimension of an actual structural member, the dimension ratio of each structural member, etc. faithfully.
  • FIG. 1 shows a schematic configuration of a liquid crystal display device 1 (display device) according to an embodiment of the present invention.
  • the liquid crystal display device 1 is formed by stacking a plurality of members in the thickness direction.
  • the liquid crystal display device 1 includes a main panel 2 that displays an image, a switch panel 3 that displays a slit-shaped black and white image (stripe image), and the main panel 2 and the switch panel 3 sandwiched therebetween.
  • the liquid crystal display device 1 includes a backlight 7.
  • a polarizing plate 4 As shown in FIG. 1, in the liquid crystal display device 1, a polarizing plate 4, a main panel 2, a polarizing plate 5, a switch panel 3, a polarizing plate 6, and a backlight 7 (light source) are sequentially arranged from the viewing side (front side in FIG. 1). Part) is laminated.
  • the polarizing plate 5 serves as both a polarizing plate disposed on the back side of the main panel 2 and a polarizing plate disposed on the viewing side of the switch panel 3.
  • the backlight 7 for example, a direct type, an edge light type, or a planar light source type can be used.
  • a light source of the backlight 7 a cold cathode tube, a light emitting diode (LED), etc. can be used, for example.
  • the liquid crystal display device 1 forms a parallax barrier by displaying a stripe image on the switch panel 3, and the right-eye image among the images displayed on the main panel 2 is only for the right eye and the left eye.
  • This is a so-called parallax barrier type three-dimensional image display device in which the image for viewing is visible only to the left eye. Therefore, the main panel 2 displays the left-eye image and the right-eye image on one screen in synchronization with the display of the stripe image on the switch panel 3.
  • the liquid crystal display device 1 according to this embodiment is used as a two-dimensional image display device, the display of the switch panel 3 is stopped and the switch panel 3 is made transparent. That is, the switch panel 3 is configured to be switchable between a three-dimensional mode for displaying the image of the main panel 2 as a three-dimensional image and a two-dimensional mode for displaying the image as a two-dimensional image.
  • the main panel 2 is, for example, a VA (Vertical Alignment) type liquid crystal panel.
  • the main panel 2 includes an active matrix substrate in which a large number of pixels are arranged in a matrix, and a counter substrate disposed to face the active matrix substrate.
  • the main panel 2 includes a liquid crystal layer capable of switching between a birefringent state of light and a light transmission state between the active matrix substrate and the counter substrate.
  • the main panel 2 may be a liquid crystal panel other than the VA type.
  • the active matrix substrate has a plurality of TFTs (Thin Film Transistor, not shown), a pixel electrode, and a plurality of wirings (source wiring, gate wiring, etc.) on a transparent substrate such as a glass substrate. . Since the TFT is the same as the conventional one, detailed description is omitted.
  • the pixel electrode is a transparent electrode and is formed of a light-transmitting conductive material such as ITO (indium tin oxide).
  • the pixel electrodes are spaced apart from each other for each pixel.
  • the pixel electrode defines a pixel as a unit of image display.
  • the source electrode, the gate electrode, and the drain electrode of the TFT are connected to the source wiring, the gate wiring, and the pixel electrode, respectively.
  • the point that a TFT is driven by inputting a signal to the TFT through the gate wiring and the source wiring is the same as that of the conventional liquid crystal display device, and thus detailed description is omitted.
  • the counter substrate is obtained by providing a counter electrode made of a transparent conductive film such as ITO on a transparent substrate such as a glass substrate.
  • the counter substrate is provided with RGB color filters.
  • the liquid crystal layer by controlling the electric field applied to the liquid crystal layer, that is, the voltage applied between the counter electrode and the pixel electrode, the liquid crystal layer causes the light transmission state and the light to be birefringent.
  • the state can be switched in units of pixels. That is, by controlling the application of an electric field to the liquid crystal layer by the TFT, a region where light passes through the light transmission region of the liquid crystal layer and is colored by the color filter is displayed as a color image.
  • the color filter is provided on the counter substrate.
  • the present invention is not limited to this, and a configuration without a color filter may be used.
  • the switch panel 3 is, for example, a TN (Twisted Nematic) type liquid crystal panel.
  • TN Transmission Nematic
  • a stripe image displayed on the switch panel 3 can be displayed with a higher contrast than other types of liquid crystal panels. Therefore, the liquid crystal display device 1 according to the present embodiment can display a three-dimensional image with high display quality.
  • the switch panel 3 includes a substrate 21 on which electrodes are formed in a slit shape, and a counter substrate 22 arranged to face the substrate 21 (see FIG. 2).
  • the switch panel 3 includes a liquid crystal layer 23 between the substrate 21 and the counter substrate 22 that can be switched between a state of rotating light and a light transmission state.
  • the three-dimensional mode is realized by forming the light transmission state region in the liquid crystal layer 23 in a stripe shape.
  • the switch panel 3 by rotating the light in the entire area of the liquid crystal layer 23, the switch panel 3 becomes transparent and becomes a two-dimensional mode.
  • Alignment films 21a and 22a are provided on the surfaces of the substrate 21 and the counter substrate 22 on the liquid crystal layer 23 side, respectively.
  • the alignment films 21a and 22a are subjected to a rubbing process in which the surface is rubbed in one direction with a cloth or the like.
  • the alignment films 21a and 22a of the substrate 21 and the counter substrate 22 have a rubbing direction of the alignment film 21 a provided on the substrate 21 and a rubbing direction of the alignment film 22 a provided on the counter substrate 22 from the viewing side. It is rubbed so as to be shifted by about 90 degrees.
  • the liquid crystal molecules in the liquid crystal layer 23 can be arranged in a twisted state so as to have an angle difference of 90 degrees between the substrate 21 side and the counter substrate 22 side. Therefore, the switch panel 3 functions as a TN liquid crystal panel.
  • the substrate 21 of the switch panel 3 is not limited to the above-described configuration as long as it can display a stripe image on the switch panel 3.
  • any substrate such as an active matrix substrate in which a large number of pixels are arranged in a matrix form may be used. Such a configuration may be adopted.
  • the brightness of the display screen of the liquid crystal display device (the screen positioned closest to the viewing side) is smaller in the case of three-dimensional display than in the case of two-dimensional display. Therefore, when the display of the image on the liquid crystal display device is switched between the two-dimensional display and the three-dimensional display, the luminance of the display screen may change, and the viewer may feel uncomfortable.
  • the brightness of the backlight 7 is reduced so as to be approximately the same as the brightness of the display screen in the case of three-dimensional display when viewed from the viewing side. Can be considered.
  • the brightness of the display screen can be made comparable between the two-dimensional display and the three-dimensional display, and the viewer is greatly discomfort when switching between the two-dimensional display and the three-dimensional display. Can be prevented.
  • the luminance of the backlight 7 when the luminance of the backlight 7 is changed in the case of two-dimensional display as described above, the luminance of the backlight 7 changes almost simultaneously with switching between the two-dimensional display and the three-dimensional display.
  • the orientation of the liquid crystal in the switch panel 3 does not change instantaneously.
  • the switch panel 3 composed of TN liquid crystal when the switch panel 3 is changed from the three-dimensional mode to the two-dimensional mode, that is, when the electric field applied to the liquid crystal of the switch panel 3 is set to zero, the backflow phenomenon described later. This phenomenon occurs.
  • the movement of the liquid crystal molecules fluctuates during the realignment of the liquid crystal molecules, and the luminance of the main panel 2 greatly fluctuates several times.
  • luminance of the main panel 2 appears also as a brightness
  • FIG. 3 shows an example of a change in luminance of the display screen when switching from 3D display to 2D display.
  • 3D display 3D in the figure, the same in the following description
  • 2D display 2D in the figure, the same in the following description
  • the luminance of the backlight 7 is changed. If not, the brightness of the display screen increases (broken line in the figure).
  • the luminance of the display screen can be made comparable between the three-dimensional display and the two-dimensional display (solid line in the figure).
  • the above-described backflow phenomenon will be described in detail with reference to FIGS.
  • the liquid crystal molecules 23a stand in the liquid crystal layer 23 (the major axis direction of the liquid crystal molecules 23a is the thickness direction of the liquid crystal layer 23). State).
  • the angle formed by the alignment films 21a and 22a and the liquid crystal molecules 23a is increased, so that the strain energy is increased. Therefore, when the electric field applied to the liquid crystal layer 23 is zero, as shown in FIG.
  • the liquid crystal molecules 23a in the vicinity of the alignment films 21a and 22a try to re-align at the moment when the electric field is zero, A flow of liquid crystal is generated (the luminance of the display screen at this time is I in FIG. 3).
  • the liquid crystal molecules 23a that are located inside the liquid crystal layer 23 and have not yet started moving are moved back by the movement of the realignment of the liquid crystal molecules 23a in the vicinity of the alignment films 21a and 22a. It will move in the opposite direction to returning to the orientation (state of FIG. 4D).
  • the transmittance of the liquid crystal layer 23 is rapidly lowered, and the luminance of the display screen is lowered.
  • the bounding of the transmittance is gradually ended, and the transmittance of the liquid crystal layer 23 is stabilized.
  • the brightness of the display screen is also constant (III in FIG. 3).
  • the liquid crystal molecules 23a are gradually twisted in the thickness direction of the liquid crystal layer 23 when viewed from the viewing direction.
  • the liquid crystal molecules 23a are simplified to simplify the illustration. The twist of is omitted.
  • FIG. 3 The luminance change shown in FIG. 3 is an example when viewed from the normal direction with respect to the screen.
  • FIG. 5 shows the luminance change of the display screen.
  • the 6 o'clock direction is the viewing angle direction, but the viewing angle direction varies depending on the rubbing direction of the switch panel 3.
  • the brightness of the display screen varies depending on the viewing direction of the screen of the liquid crystal display device.
  • the viewpoint when viewing the three-dimensional image is viewed from the normal direction in the center of the screen of the liquid crystal display device.
  • the viewpoint will be described with reference to an example of the viewpoint.
  • the viewpoint of the three-dimensional image may be a viewpoint from a direction other than the normal direction at the center of the screen, and the luminance correction described later may be corrected not only from the viewpoint of the three-dimensional image but also from other viewpoints. .
  • the luminance change of the display screen is greatly influenced by the behavior of the liquid crystal molecules 23a of the switch panel 3. Therefore, the brightness of the display screen varies greatly depending on the ambient temperature (the ambient temperature of the liquid crystal display device 1) that affects the movement of the liquid crystal molecules 23a. Therefore, the change in luminance of the display screen shown in FIGS. 3 and 5 changes under the influence of the ambient temperature.
  • the examples shown in FIGS. 3 and 5 are cases where the ambient temperature is 25 ° C.
  • the backflow phenomenon as described above occurs only when the electric field applied to the switch panel 3 is made zero, that is, when the image display is switched from the three-dimensional display to the two-dimensional display.
  • the movement of the liquid crystal molecules is slow with respect to the change in the luminance of the backlight 7, so that the luminance of the display screen varies as shown in FIG.
  • FIG. 6 is an example of a luminance change at the viewpoint of the above-described three-dimensional image.
  • the backflow phenomenon does not occur as in the case of switching from the three-dimensional display to the two-dimensional display (FIGS. 3 and 5). Is considerably shorter than the case of switching from 3D display to 2D display.
  • the electric field applied to the liquid crystal is set to zero and the liquid crystal molecules wait for the natural alignment to return to the original orientation, whereas when switching from 2D display to 3D display.
  • the liquid crystal switching time is shortened because an electric field is applied to the liquid crystal to control the alignment of the liquid crystal molecules.
  • the luminance is corrected when switching between the two-dimensional display and the three-dimensional display so that the display screen does not cause a strange luminance change.
  • the liquid crystal display device 1 controls the luminance of the backlight 7 in accordance with a luminance control unit 30 for controlling the luminance of the main panel 2 and a control signal output from the luminance control unit 30. And a backlight control unit 35.
  • the liquid crystal display device 1 also includes a display switching unit 36 that outputs a signal to the luminance control unit 30 when switching between two-dimensional display and three-dimensional display, and a luminance control unit that detects the ambient temperature of the liquid crystal display device 1.
  • 30 includes a temperature detection unit 37 that outputs a signal.
  • the luminance control unit 30 changes the luminance of the backlight 7 to the backlight control unit 35 when a signal indicating that switching between the two-dimensional display and the three-dimensional display is performed from the display switching unit 36.
  • Control signal for output Specifically, when a signal indicating that the display switching unit 36 has switched to the three-dimensional display is input from the display switching unit 36, the luminance control unit 30 outputs a control signal that increases the luminance of the backlight 7.
  • the luminance control unit 30 outputs a control signal that decreases the luminance of the backlight 7. Thereby, the luminance control unit 30 can change the luminance of the main panel 2.
  • the luminance control unit 30 stores a luminance correction unit 31 that outputs a correction signal for correcting the luminance of the backlight 7, and a luminance correction value corresponding to the ambient temperature detected by the temperature detection unit 37.
  • a correction value storage unit 32 storing a luminance correction unit 31 that outputs a correction signal for correcting the luminance of the backlight 7, and a luminance correction value corresponding to the ambient temperature detected by the temperature detection unit 37.
  • the luminance correction unit 31 is configured to read out a luminance correction value from the correction value storage unit 32 in accordance with the ambient temperature detected by the temperature detection unit 37 and output it as a control signal to the backlight control unit 35.
  • the luminance correction unit 31 and the correction value storage unit 32 together with the temperature detection unit 37 constitute a visual correction unit 10.
  • the visual correction unit 10 may include configurations other than the luminance correction unit 31, the correction value storage unit 32, and the temperature detection unit 37.
  • the correction value stored in the correction value storage unit 32 is, for example, a change in luminance of the display screen (main panel) due to the operating characteristics of the liquid crystal at each temperature when viewed from the normal direction to the screen (FIG. 3).
  • a luminance change of 2 is a value (or function) that makes almost zero.
  • An example when the brightness of the backlight 7 is corrected by the correction value is shown in FIG.
  • the luminance of the backlight 7 shown in FIG. 8 is set to a value that makes the luminance change of the display screen shown by the broken line in FIG. 9 constant as shown by the solid line in FIG. Therefore, by using a correction value so that the luminance of the backlight 7 becomes the luminance shown in FIG.
  • the luminance change of the display screen can be made almost zero (constant luminance) as shown by the solid line in FIG. .
  • the correction value is set so that the luminance change of the display screen at the time of switching from the three-dimensional display to the two-dimensional display becomes almost zero.
  • the correction value may be set so that the luminance change of the display screen is reduced.
  • the correction value (or function) stored in the correction value storage unit 32 may be a value such that the luminance change of the display screen when viewed from another direction with respect to the screen is almost zero. However, it may be a value that reduces the change in luminance of the display screen when viewed from a plurality of directions.
  • the backlight control unit 35 controls the backlight 7 so as to change the luminance of the backlight 7.
  • the backlight 7 is constituted by an LED
  • the luminance of the backlight 7 is controlled by controlling the current supplied to the LED.
  • the control method of the backlight 7 is not limited to the above-described method.
  • the luminance of the backlight 7 is corrected according to the ambient temperature when switching between the two-dimensional display and the three-dimensional display. Therefore, even when the liquid crystal characteristic of the switch panel 3 changes according to the ambient temperature, the luminance of the backlight 7 can be changed according to the change of the characteristic. Therefore, it is possible to more reliably reduce the change in luminance of the display screen when switching between the two-dimensional display and the three-dimensional display. Therefore, it is possible to prevent the viewer from feeling uncomfortable when switching between the two-dimensional display and the three-dimensional display.
  • FIG. 10 shows a modification of the first embodiment.
  • the configuration of this modified example is different from the configuration of the first embodiment described above in that the luminance is corrected according to the luminance of the display screen.
  • the same components as those in the first embodiment are denoted by the same reference numerals, and only different parts will be described below.
  • the liquid crystal display device includes a luminance control unit 40, a backlight control unit 35, a display switching unit 36, and a luminance detection unit 42.
  • the luminance control unit 40 is configured to control the luminance of the backlight 7 in accordance with switching between two-dimensional display and three-dimensional display.
  • the luminance control unit 40 includes a luminance adjustment unit 41 that adjusts the luminance of the backlight 7 in accordance with the luminance of the display screen detected by the luminance detection unit 42.
  • the luminance adjustment unit 41 generates a correction signal so that the luminance of the display screen detected by the luminance detection unit 42 substantially matches the target value, with the luminance of the display screen in the case of two-dimensional display as a target value.
  • This correction signal is output to the backlight control unit 35. Thereby, the luminance of the backlight 7 is adjusted by the backlight control unit 35.
  • the luminance detection unit 42 is configured by, for example, a photosensor provided on the viewing side of the liquid crystal display device.
  • the luminance detection unit 42 is provided at a position where the luminance of the display screen on the viewing side in the liquid crystal display device can be detected.
  • the visual adjustment unit 11 is configured by the luminance adjustment unit 41 and the luminance detection unit 42.
  • the visual recognition correction unit 11 may include a configuration other than the luminance adjustment unit 41 and the luminance detection unit 42.
  • FIG. 11 shows a configuration for reducing the uncomfortable feeling of luminance change of the main panel 2 that occurs when switching between two-dimensional display and three-dimensional display in the liquid crystal display device according to the second embodiment. Since the basic configuration of the liquid crystal display device is the same as that of the first embodiment, description of the configuration of the liquid crystal display device is omitted.
  • the liquid crystal display device includes a display switching unit 36 similar to that of the first embodiment and a correction signal for changing the image to black display (black state) at the time of display switching.
  • a display correction unit 51 (visual correction unit) for outputting and a display control unit 56 for outputting an image data signal in accordance with the correction signal are provided.
  • the liquid crystal display device also includes a luminance control unit that outputs a control signal to the backlight control unit 35.
  • the display control unit 56 is configured to output an image data signal for displaying an image on the main panel 2 to a source driver (not shown).
  • a source driver (not shown).
  • the image data signal output from the display control unit 56 is input to a source driver (not shown).
  • the source driver generates and outputs a gradation display signal based on the input image data signal.
  • This gradation display signal is supplied to each pixel of the main panel 2 via a source line (not shown). As a result, a black image is displayed on the main panel 2.
  • the display correction unit 51 When the display correction unit 51 receives a signal for switching between the two-dimensional display and the three-dimensional display from the display switching unit 36, the display correction unit 51 outputs a correction signal for performing black display to the display control unit 56. That is, when the display correction unit 51 switches between the two-dimensional display and the three-dimensional display, the display control unit 56 receives a low gradation (for example, a black display) while the luminance fluctuates unnaturally. A correction signal that outputs an image data signal of (zero level gradation) is output.
  • the display correction unit 51 includes a timer unit 52 that counts the output time of a correction signal for black display.
  • the predetermined time is set to be equal to or longer than the time when the luminance change of the main panel 2 causes the viewer to feel uncomfortable when switching between the two-dimensional display and the three-dimensional display.
  • the predetermined time may be set to the longest time among the switching times of the switch panel 3 assumed in the liquid crystal display device, or may be changed according to the ambient temperature.
  • the image is displayed in black for a predetermined time, so that it is possible to prevent the luminance fluctuation of the main panel 2 from being visually recognized during the switching time of the switch panel 3. Therefore, it is possible to prevent a viewer from visually recognizing a change in luminance of the main panel 2 that gives a sense of discomfort when switching between the two-dimensional display and the three-dimensional display.
  • the solid line in FIG. 12 has shown the luminance change of the display screen.
  • the display correction unit 51 gradually reduces the brightness of the display screen to black display when the image is displayed in black, and gradually from the black display state. Further, it may be configured to be able to realize a fade-in in which the luminance of the display screen is increased to return to the original luminance.
  • the display correction unit 51 may be configured to perform only one of fade-out and fade-in.
  • the black display is not only in the case where the brightness is completely reduced to zero and not in a black state, but the change in brightness of the main panel 2 at the time of switching between the two-dimensional display and the three-dimensional display cannot be visually recognized.
  • the case of reducing the brightness of the display screen is also included. That is, in the present embodiment, the gradation of the image data signal output from the display control unit 45 is not limited to the zero level, and the luminance change of the main panel 2 at the time of switching between the two-dimensional display and the three-dimensional display cannot be visually recognized. It may be a gradation signal of a level that reduces the brightness of the display screen to a certain extent.
  • FIG. 13 shows a configuration for reducing a sense of incongruity due to a change in luminance of the main panel 2 that occurs when switching between two-dimensional display and three-dimensional display in the liquid crystal display device according to the third embodiment.
  • the configuration of this embodiment is different from the configuration of the second embodiment in that the display control unit in the above-described second embodiment is a backlight control unit and a black state is realized by the luminance of the backlight. Therefore, the basic configuration of the liquid crystal display device is the same as that of the above-described first embodiment, and thus the description of the configuration of the liquid crystal display device is omitted. Further, the same parts as those of the above-described second embodiment are denoted by the same reference numerals, and the description thereof is omitted.
  • the liquid crystal display device includes a display switching unit 36, a luminance control unit 60, and a backlight control unit 35 that controls the backlight 7 as in the first embodiment.
  • the luminance control unit 60 outputs a control signal for the backlight control unit 35 based on the signal output from the display switching unit 36.
  • the luminance control unit 60 reduces the luminance of the backlight 7 so that an unnatural change in luminance of the main panel 2 is not visually recognized when switching between two-dimensional display and three-dimensional display. (Visual correction part).
  • the display correction unit 61 has a timer unit 62 for counting the output time of the control signal.
  • the timer 62 counts a predetermined time from the output start of the control signal, the signal output of the control signal from the display correction unit 61 is stopped. Thereby, like the second embodiment, the control signal can be output for a predetermined time.
  • the control signal output from the display correction unit 61 is a signal that lowers the luminance of the backlight 7 and makes the screen black. Therefore, when the backlight control unit 35 receives this control signal, the screen of the liquid crystal display device becomes black, and the luminance change of the main panel 2 at the time of switching between the two-dimensional display and the three-dimensional display becomes difficult to be visually recognized.
  • FIG. 14 shows a change in luminance of the backlight 7 when switching from the three-dimensional display to the two-dimensional display.
  • a solid line in FIG. 14 after switching from the three-dimensional display to the two-dimensional display, the luminance of the backlight 7 is decreased for a predetermined time, thereby causing the main panel 2 caused by the backflow phenomenon of the switch panel 3. The luminance change is less visible.
  • the alternate long and short dash line in FIG. 14 does not perform luminance correction by the display correction unit 61 as described above when switching from the three-dimensional display to the two-dimensional display, and simply performs the backlight 7 in the two-dimensional display. This is a case in which the luminance of is reduced compared to the case of three-dimensional display.
  • the display correction unit 61 fades out the luminance of the backlight 7 to gradually reduce the luminance of the backlight 7 and gradually changes from the black state when the screen is changed to the black state. It may be configured to be able to realize a fade-in that increases the luminance of the backlight 7 and returns it to the original luminance.
  • the display correction unit 61 may be configured to perform only one of fade-out and fade-in.
  • the black state is not only when the backlight 7 is completely turned off, but also when the backlight 7 is not visible to the extent that the luminance change of the main panel 2 is not visible when switching between the two-dimensional display and the three-dimensional display. This includes the case of reducing the brightness of the.
  • the luminance of the main panel 2 caused by the operation of the liquid crystal of the switch panel 3 is reduced by reducing the luminance of the backlight 7 when switching between the two-dimensional display and the three-dimensional display.
  • the change of was made invisible. Accordingly, it is possible to prevent a change in luminance that causes a viewer to feel uncomfortable on the display screen when switching between the two-dimensional display and the three-dimensional display.
  • FIG. 15 shows a schematic configuration of a switch panel of the liquid crystal display device according to the fourth embodiment.
  • the configuration of the switch panel is different from the configuration of the first embodiment described above. In the following description, only different parts will be described, and description of parts common to the configuration of the first embodiment will be omitted.
  • the switch panel 101 has a pair of substrates 102 and 103 facing each other, and a liquid crystal layer 104 is provided between the substrates.
  • a liquid crystal layer 104 is provided between the substrates.
  • two first electrodes 105 and 106 are formed on the surface on the liquid crystal layer 104 side with a gap 110.
  • a second electrode 107 is formed on the surface on the liquid crystal layer 104 side.
  • liquid crystal molecules are arranged in the liquid crystal layer 104 in accordance with the electric field.
  • a so-called liquid crystal lens is formed in which the phase change of the incident light differs depending on the position in the surface direction of the panel.
  • the switch panel 101 By configuring the switch panel 101 as described above, when an electric field is applied to the liquid crystal layer 104, a part of the liquid crystal layer 104 functions like an optical lens. Accordingly, the right-eye image and the left-eye image are displayed on the switch panel 101, and the liquid crystal layer 104 functions as an optical lens, whereby the left-eye image on the main panel 2 is displayed on the left eye by the liquid crystal layer 104. In addition, the image for the right eye of the main panel 2 can reach the right eye. Thus, the switch panel 101 allows the viewer to visually recognize the binary image displayed on the main panel 2 as a three-dimensional image.
  • the image on the main panel 2 can be viewed as it is as a two-dimensional image.
  • the configuration of a three-dimensional display device including such a liquid crystal lens is the same as that of a general device, and thus detailed description of the configuration is omitted.
  • the thickness of the liquid crystal layer 104 of the switch panel 101 is larger than that of the liquid crystal layer of the switch panel displaying the stripe image as in the first embodiment. It will be much larger. Therefore, the switching time until the orientation of the liquid crystal molecules is switched in the liquid crystal layer 104 of the switch panel 101 is longer than that in the configuration of the first embodiment. Even in such a configuration, by applying the configuration as in Embodiments 1 to 3 described above, it is possible to reduce the luminance change of the display screen when switching between the two-dimensional display and the three-dimensional display.
  • the configurations of the above-described first to third embodiments are applied to the liquid crystal display device including the switch panel 101 that configures the liquid crystal lens.
  • a TN liquid crystal panel is used as the switch panel 3.
  • the switch panel may be an STN liquid crystal or another type of liquid crystal panel, and may be a panel having any configuration as long as it can be switched between two-dimensional display and three-dimensional display. Good.
  • a liquid crystal display device is targeted.
  • this is not restrictive, and other display devices such as an organic EL may be used.
  • the main panel is comprised by organic EL, this main panel itself serves as a light source part.
  • the display device according to the present invention can be used for a display device including a switch panel that can switch an image display between a two-dimensional display and a three-dimensional display.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Liquid Crystal Display Device Control (AREA)
  • Liquid Crystal (AREA)

Abstract

画像の表示を2次元表示と3次元表示とに切替可能なスイッチパネルを有する表示装置において、2次元表示と3次元表示との切替時に、表示画面に視認者に違和感を与えるような不自然な輝度変化が生じるのを防止する。液晶表示装置(1)は、画像を表示するメインパネル(2)と、メインパネル(2)に対向して配置されていて、該メインパネル(2)に表示される画像を、そのまま2次元画像として視認させる2次元モードと、立体的に視認させる3次元モードとに切替可能なスイッチパネル(3)と、スイッチパネル(3)によるモード切替の際にメインパネル(2)の輝度を変更する輝度制御部(30)と、スイッチパネル(3)によるモード切替の際に、メインパネル(2)の輝度変化を視認側で視認しにくくする視認修正部(10)とを有する。

Description

表示装置
 本発明は、画像の表示を2次元表示と3次元表示とに切替可能なスイッチパネルを有する表示装置に関する。
 従来より、画像の表示を2次元表示と3次元表示とに切替可能なスイッチパネルを有する表示装置が知られている。このような表示装置は、例えば特開平5-122733号公報に開示されるように、対向して配置される2枚の液晶パネルを有する。前記表示装置は、一方の液晶パネル(メインパネル)には画像を表示し、他方の液晶パネル(スイッチパネル)には白黒のバリア・ストライプ画像を表示する。これにより、他方の液晶パネルが視差バリアとして機能し、一方の液晶パネルに表示された画像が3次元の立体画像として視認される。なお、他方の液晶パネルにバリア・ストライプ画像を表示しないようにすれば、一方の液晶パネルに表示された画像がそのまま視認されるため、2次元の画像表示となる。
 ところで、前記特開平5-122733号公報に開示されている構成において、他方の液晶パネル(スイッチパネル)を動作させて、2次元表示と3次元表示とを切り替える場合、視認側から見える表示画面の輝度が大きく変化する。すなわち、3次元表示の場合には、スイッチパネルにバリア・ストライプ画像を表示するため、該バリア・ストライプ画像によって覆われる部分で表示画面の輝度が低下する。そのため、3次元表示の場合には、視認側で視認される表示画面の輝度が2次元表示の場合に比べて低下する。
 これに対し、2次元表示の場合と3次元表示の場合とで視認側から見える表示画面の輝度が同程度になるように、2次元表示の場合に、バックライト等の光源の輝度を低下させて3次元表示の場合の輝度に合わせる方法が考えられる。
 このような構成の場合、光源の輝度は2次元表示と3次元表示との切替に対して迅速に変化するが、スイッチパネルが例えば液晶パネルの場合には、2次元表示と3次元表示との切替に応じて液晶分子の配向状態を急に変化させることは難しい。そうすると、2次元表示と3次元表示とを切り替える際に、光源の輝度変化と液晶の状態変化とのタイミングのずれ等によって、表示画面に不自然な輝度変化が生じて視認者に違和感を与えることがある。
 本発明の目的は、画像の表示を2次元表示と3次元表示とに切替可能なスイッチパネルを有する表示装置において、2次元表示と3次元表示との切替時に、表示画面に視認者に違和感を与えるような不自然な輝度変化が生じるのを防止することにある。
 本発明の一実施形態にかかる表示装置は、画像を表示するメインパネルと、前記メインパネルに対向して配置され、前記メインパネルに表示される画像を2次元画像として視認させる2次元モードと、前記画像を立体的に視認させる3次元モードとに切替可能なスイッチパネルと、前記スイッチパネルによるモード切替の際に前記メインパネルの輝度を変更する輝度制御部と、前記スイッチパネルによるモード切替の際に、前記メインパネルの輝度変化を視認側で視認しにくくする視認修正部とを有する。
 本発明の一実施形態に係る表示装置により、画像の表示を2次元表示と3次元表示とで切り替える際に、表示画面に視認者に違和感を与えるような不自然な輝度変化が生じるのを防止できる。
図1は、本発明の実施形態1に係る液晶表示装置の概略構成を示す図である。 図2は、スイッチパネルの概略構成を示す断面図である。 図3は、画面を法線方向から見た場合に、3次元表示から2次元表示に切り替えたときの表示画面の輝度変化の一例を示す図である。 図4は、3次元表示から2次元表示に切り替えた際の液晶層内での液晶分子の動きを模式的に示す図である。 図5は、画面を視角方向から見た場合に、3次元表示から2次元表示に切り替えたときの表示画面の輝度変化の一例を示す図である。 図6は、画面を法線方向から見た場合に、2次元表示から3次元表示に切り替えたときの表示画面の輝度変化の一例を示す図である。 図7は、実施形態1に係る液晶表示装置の視認補正部の概略構成を示すブロック図である。 図8は、視認補正部の輝度補正によって補正されたバックライトの輝度の一例を示す図である。 図9は、輝度補正後の表示画面の輝度の一例を示す図である。 図10は、実施形態1の変形例に係る視認補正部の概略構成を示すブロック図である。 図11は、実施形態2に係る液晶表示装置の視認補正部の概略構成を示すブロック図である。 図12は、液晶の応答遅れによる表示画面の輝度変化を画面の黒表示によって隠した場合の一例を模式的に示す図である。 図13は、実施形態3に係る液晶表示装置の視認補正部の概略構成を示すブロック図である。 図14は、液晶の応答遅れによる表示画面の輝度変化を、バックライトの輝度調整によって隠した場合の一例を示す図である。 図15は、実施形態3に係る表示装置のスイッチパネルの概略構成を示す断面図である。
 本発明の一実施形態にかかる表示装置は、画像を表示するメインパネルと、前記メインパネルに対向して配置され、前記メインパネルに表示される画像を2次元画像として視認させる2次元モードと、前記画像を立体的に視認させる3次元モードとに切替可能なスイッチパネルと、前記スイッチパネルによるモード切替の際に前記メインパネルの輝度を変更する輝度制御部と、前記スイッチパネルによるモード切替の際に、前記メインパネルの輝度変化を視認側で視認しにくくする視認修正部とを有する(第1の構成)。
 以上の構成では、スイッチパネルの動作によって2次元モードと3次元モードとを切り替える場合に、輝度制御部によってメインパネルの輝度を切り替えるとともに、視認修正部によって、その輝度変化を視認側で視認しにくくすることができる。したがって、視認者に違和感を与えることなく2次元表示と3次元表示とを切り替えることができる。
 ここで、輝度とは、発光体を視認したときの該発光体の単位表面積当たりの光度を意味する。具体的には、メインパネルの輝度とは、メインパネル自体が発光している場合には、メインパネルを視認したときの該メインパネルの単位表面積当たりの光度を意味する。一方、メインパネルの他に光源が設けられている場合には、メインパネルの輝度とは、該メインパネルの表示面を視認したときの該メインパネルの単位表面積当たりの光度を意味する。また、表示画面の輝度とは、表示装置の表示画面を視認した際に、最も視認側に位置する画面の単位表面積あたりの光度を意味する。
 前記第1の構成において、前記視認修正部は、前記スイッチパネルによるモード切替の際に前記メインパネルの輝度変化が視認側から視認されにくいように、該メインパネルの輝度を変化させるように構成されているのが好ましい(第2の構成)。
 このように視認修正部によってメインパネルの輝度を変化させることによって、2次元表示と3次元表示とを切り替える際に、違和感を与えるような表示画面の輝度変化が視認者に視認されるのを防止できる。
 前記第2の構成において、前記メインパネルに対して光を出射する光源部をさらに備えていて、前記視認修正部は、前記光源部の輝度を変化させるように構成されているのが好ましい(第3の構成)。これにより、2次元表示と3次元表示とを切り替える際に、違和感を与えるような表示画面の輝度変化が視認者に視認されるのを防止できる。ここで、光源部の輝度とは、光源部を視認したときの単位表面積当たりの光度を意味する。
 前記第2または第3の構成において、前記視認修正部は、前記スイッチパネルによるモード切替の際に視認側から視認される表示画面の輝度が一定になるように、前記メインパネルの輝度調整を行うように構成されているのが好ましい(第4の構成)。
 これにより、スイッチパネルのモード切替の際に視認側で視認される表示画面の輝度が一定になるため、2次元表示と3次元表示との切替を違和感なく行うことができる。
 前記第2から第4の構成のうちいずれか一つの構成において、前記視認修正部は、周囲温度を検出する温度検出部と、前記メインパネルの輝度を周囲温度に応じて補正するための補正値が記憶された補正値記憶部と、前記温度検出部で検出された周囲温度に応じて、前記補正値記憶部に記憶された補正値を読み出すとともに、該補正値を用いて前記メインパネルの輝度を補正する輝度補正部とを有するのが好ましい(第5の構成)。
 こうすることで、スイッチパネルが液晶パネルの場合、その特性は周囲温度に応じて変化するが、このような変化に対しても適切な輝度補正を行うことができる。補正値記憶部には、周囲温度に応じた輝度の補正値が記憶されている。そのため、該補正値記憶部から周囲温度に応じた補正値を読み込んで輝度補正部によってメインパネルの輝度を補正することができる。これにより、2次元表示と3次元表示との切替時における表示画面の輝度変化が視認側で視認されにくくなる。よって、2次元表示と3次元表示との切替を、視認者に違和感を与えることなく行うことができる。
 前記第2から第4の構成のうちいずれか一つの構成において、前記視認修正部は、表示画面の視認側の輝度を検出する輝度検出部と、前記輝度検出部によって検出された輝度に基づいて前記メインパネルの輝度を調整する輝度調整部とを有するのが好ましい(第6の構成)。
 これにより、表示画面の視認側の輝度に応じてメインパネルの輝度を調整するため、2次元表示と3次元表示との切替時における表示画面での輝度変化が視認者に視認されにくくなる。よって、2次元表示と3次元表示との切替を、視認者に違和感を与えることなく行うことができる。
 前記第1の構成において、前記視認修正部は、前記メインパネルの輝度変化が視認側から視認されにくいように、該メインパネルに表示される画像の階調を変化させるように構成されているのが好ましい(第7の構成)。これにより、2次元表示と3次元表示とを切り替える際に、違和感を与えるような表示画面での輝度変化が視認者に視認されるのを防止できる。
 前記第2、第3及び第6の構成のうちいずれか一つの構成において、前記視認修正部は、前記スイッチパネルによるモード切替の際に、前記メインパネルの輝度変化を視認側から視認されないように、表示画面を黒状態に変更するように構成されているのが好ましい(第8の構成)。
 これにより、スイッチパネルによって2次元表示と3次元表示とを切り替える際には、表示画面が黒表示(黒状態)になるため、2次元表示と3次元表示との切替時における不自然な表示画面の輝度変化が視認者に視認されるのを防止できる。よって、2次元表示と3次元表示との切替を、視認者に違和感を与えることなく行うことができる。
 ここで、黒状態とは、表示画面の輝度がほとんどゼロの真っ暗な状態だけでなく、2次元表示と3次元表示とを切り替える際の表示画面の輝度変化を視認できない程度の小さい輝度も含む。
 前記第8の構成において、前記視認修正部は、表示画面を黒状態にする際に、前記メインパネルの輝度を徐々に小さくして前記表示画面を黒状態にした後、該メインパネルの輝度を徐々に大きくするように構成されているのが好ましい(第9の構成)。
 こうすることで、スイッチパネルによって2次元表示と3次元表示とを切り替える際に、より違和感なく表示画面を黒状態にすることができ、2次元表示と3次元表示との切替をより違和感なく行うことができる。
 前記第1から第9の構成のうちいずれか一つの構成において、前記スイッチパネルは、液晶層と、該液晶層を挟み込むように配置される一対の電極とを備えているのが好ましい(第10の構成)。
 このようにスイッチパネルが液晶パネルの場合には、液晶の応答遅れによって、2次元表示と3次元表示との切替時に表示画面で不自然な輝度変化が視認されやすい。よって、上述の第1から第9のような構成を適用することにより、2次元表示と3次元表示との切替時における不自然な表示画面の輝度変化が視認者に視認されるのを防止できる。
 前記第10の構成において、前記スイッチパネルは、前記一対の電極に電圧を印加した際に前記液晶層が液晶レンズとして機能するのが好ましい(第11の構成)。このように、スイッチパネルが液晶レンズとして機能する場合には、液晶層が厚くなるため、2次元表示と3次元表示との切替時における液晶の応答遅れに起因する輝度変化がより顕著になる。したがって、このような構成において、上述の第1から第9のような構成を適用することにより、より顕著な効果が得られる。
 以下、本発明の表示装置の好ましい実施形態について、図面を参照しながら説明する。なお、各図中の構成部材の寸法は、実際の構成部材の寸法及び各構成部材の寸法比率等を忠実に表したものではない。
 [実施形態1]
 (全体構成)
 図1に、本発明の一実施形態に係る液晶表示装置1(表示装置)の概略構成を示す。この液晶表示装置1は、複数の部材を厚み方向に重ねることによって形成される。具体的には、液晶表示装置1は、画像を表示するメインパネル2と、スリット状の白黒画像(ストライプ画像)を表示するスイッチパネル3と、該メインパネル2及びスイッチパネル3を間に挟むように配置される3枚の偏光板4,5,6とを備えている。また、液晶表示装置1はバックライト7を備えている。
 図1に示すように、液晶表示装置1では、視認側(図1の手前側)から順に、偏光板4、メインパネル2、偏光板5、スイッチパネル3、偏光板6、バックライト7(光源部)が積層されている。この実施形態に係る液晶表示装置1では、偏光板5が、メインパネル2の背面側に配置される偏光板とスイッチパネル3の視認側に配置される偏光板とを兼用している。なお、バックライト7としては、例えば、直下型やエッジライト型、平面光源型を用いることができる。また、バックライト7の光源としては、例えば、冷陰極管や発光ダイオード(LED)等を用いることができる。
 本実施形態に係る液晶表示装置1は、スイッチパネル3にストライプ画像を表示することにより、視差バリアを形成して、メインパネル2に表示される画像のうち右目用の画像は右目のみに、左目用の画像は左目のみに見えるようにする、いわゆる視差バリア方式の3次元画像表示装置である。したがって、メインパネル2は、スイッチパネル3のストライプ画像の表示と同期して、左目用画像及び右目用画像を一つの画面上に表示する。なお、本実施形態に係る液晶表示装置1を2次元画像の表示装置として用いる場合には、スイッチパネル3の表示を停止して、該スイッチパネル3を透明化させる。すなわち、スイッチパネル3は、メインパネル2の画像を3次元画像として表示する3次元モードと、該画像を2次元画像として表示する2次元モードとに切替可能に構成されている。
 メインパネル2は、例えばVA(Vertical Alignment)型の液晶パネルである。メインパネル2は、特に図示しないが、多数の画素がマトリクス状に配列されたアクティブマトリクス基板と、該アクティブマトリクス基板に対向して配置される対向基板と、を備えている。また、メインパネル2は、アクティブマトリクス基板と対向基板との間に、光を複屈折させる状態と光透過状態とを切替可能な液晶層を備えている。なお、メインパネル2は、VA型以外の液晶パネルであってもよい。
 アクティブマトリクス基板は、ガラス基板等の透明基板上に、複数のTFT(Thin Film Transistor;薄膜トランジスタ、図示省略)、画素電極及び複数の配線(ソース配線、ゲート配線等)などが設けられたものである。なお、TFTは、従来と同じであるため、詳しい説明を省略する。
 画素電極は、透明電極であり、例えばITO(インジウム錫酸化物)等の透光性を有する導電性材料によって形成されている。画素電極は、画素毎に互いに離間して配置されている。この画素電極によって、画像表示の一単位となる画素が規定される。
 特に図示しないが、TFTのソース電極、ゲート電極及びドレイン電極は、ソース配線、ゲート配線、画素電極にそれぞれ接続されている。ゲート配線及びソース配線を介してTFTに信号を入力して該TFTを駆動する点は、従来の液晶表示装置と同じであるため、詳しい説明を省略する。
 対向基板は、ガラス基板等の透明基板上に、ITO等の透明導電膜からなる対向電極などが設けられたものである。また、対向基板には、RGBのカラーフィルタが設けられている。
 上述のような構成のメインパネル2では、液晶層に印加する電界、すなわち対向電極と画素電極との間に印加する電圧を制御することにより、該液晶層を光透過状態と光を複屈折させる状態とに画素単位で切り替えることができる。すなわち、TFTによって液晶層への電界の印加を制御することにより、液晶層の光透過領域を光が通過してカラーフィルタによって着色された領域がカラー画像として表示される。
 なお、本実施形態では、対向基板にカラーフィルタを設けた構成としているが、この限りではなく、カラーフィルタのない構成であってもよい。
 スイッチパネル3は、例えばTN(Twisted Nematic)型の液晶パネルである。このようにスイッチパネル3をTN型の液晶パネルとすることで、該スイッチパネル3に表示されるストライプ画像を他の方式の液晶パネルに比べて高コントラストで表示することが可能になる。したがって、本実施形態に係る液晶表示装置1によって、表示品位の高い3次元画像を表示することができる。
 スイッチパネル3は、スリット状に電極が形成された基板21と、該基板21に対向して配置される対向基板22とを備えている(図2参照)。また、スイッチパネル3は、基板21と対向基板22との間に、光を旋光させる状態と光透過状態とを切替可能な液晶層23を備えている。なお、スイッチパネル3において、液晶層23内で光透過状態となる領域をストライプ状に形成することで3次元モードが実現される。一方、スイッチパネル3において、液晶層23の全領域で光を旋光させることによりスイッチパネル3が透明状態となって2次元モードとなる。
 また、基板21及び対向基板22における液晶層23側の面には、それぞれ、配向膜21a,22aが設けられている。これらの配向膜21a,22aには、表面が布等によって一方向にラビングされるラビング処理が施されている。このような配向膜21a,22aにラビング処理を施すことによって、液晶層23内の液晶分子を一定方向に配向させることが可能となる。本実施形態では、基板21及び対向基板22の配向膜21a,22aは、基板21に設けられた配向膜21aのラビング方向と対向基板22に設けられた配向膜22aのラビング方向とが視認側から見て略90度ずれるようにラビングされる。
 これにより、液晶層23内の液晶分子を、基板21側と対向基板22側とで90度の角度差を有するようにねじれた状態で配置できる。よって、スイッチパネル3はTN方式の液晶パネルとして機能する。
 なお、スイッチパネル3の基板21は、スイッチパネル3にストライプ画像を表示可能な構成であれば、上述の構成に限らず、例えば、多数の画素がマトリクス状に配列されたアクティブマトリクス基板など、どのような構成であってもよい。
 (輝度補正)
 上述のような構成の液晶表示装置1において、メインパネル2の画像を3次元画像として視認させる場合、上述のように、スイッチパネル3にストライプ画像を表示させて、右目用の画像は右目のみに、左目用の画像は左目のみに見えるようにする。そうすると、スイッチパネル3に表示されたストライプ画像によってバックライト7の光の一部が遮られる。これにより、視認側から見たときのメインパネル2の輝度が、スイッチパネル3にストライプ画像が表示されていない場合に比べて低下する。すなわち、視認側から見たときに、液晶表示装置の表示画面(最も視認側に位置する画面)の輝度は、2次元表示の場合に比べて3次元表示の場合の方が小さくなる。そのため、液晶表示装置の画像の表示を、2次元表示と3次元表示とで切り替える際に、表示画面の輝度が変化して、視認者が違和感を覚える場合がある。
 これに対し、液晶表示装置の画像を2次元表示にする場合に、視認側から見て3次元表示の場合の表示画面の輝度と同程度になるように、バックライト7の輝度を低下させる構成が考えられる。これにより、2次元表示の場合と3次元表示の場合とで、表示画面の輝度を同程度にすることができ、2次元表示と3次元表示との切替時に視認者に対して大きな違和感を与えるのを防止できる。
 ところで、上述のように2次元表示の場合にバックライト7の輝度を変更すると、該バックライト7の輝度は2次元表示と3次元表示との切替とほぼ同時に変化する。一方、スイッチパネル3内では液晶分子の動きにタイムラグがあるため、スイッチパネル3の液晶の配向は瞬時には変化しない。特に、TN液晶によって構成されたスイッチパネル3では、スイッチパネル3を3次元モードから2次元モードに変更した場合、すなわちスイッチパネル3の液晶にかける電界をゼロにする場合に、後述するバックフロー現象と呼ばれる現象が発生する。そのため、液晶分子の再配向時に該液晶分子の動きがふらついて、メインパネル2の輝度が数回、大きく変動する。なお、メインパネル2の輝度の変動は、視認側の表示画面の輝度変化としても現れるため、以下の説明では、表示画面の輝度変化として説明する。
 3次元表示から2次元表示に切り替えた場合の表示画面の輝度変化の一例を図3に示す。この図3から分かるように、3次元表示(図中の3D、以下の説明において同じ)から2次元表示(図中の2D、以下の説明において同じ)に切り替えると、バックライト7の輝度を変更しない場合には表示画面の輝度が大きくなる(図中の破線)。これに対し、バックライト7の輝度を変更することにより3次元表示と2次元表示とで表示画面の輝度を同程度にすることができる(図中の実線)。しかしながら、バックライト7の輝度を変更しても、スイッチパネル3のモード切替時に生じるバックフロー現象によって液晶分子がふらつくため、表示画面の輝度が大きく変動している。なお、このようなバックフロー現象による表示画面の輝度の変動は、バックライト7の輝度の変更の有無に関係なく生じる。
 ここで、図3及び図4を用いて、上述のバックフロー現象について詳細に説明する。図4(A)に示すように、液晶層23に電界をかけているときには、液晶分子23aが液晶層23内で立った状態(液晶分子23aの長軸方向が液晶層23の厚み方向となる状態)である。このとき、配向膜21a,22aの近傍では、該配向膜21a,22aと液晶分子23aとのなす角度が大きくなるため、ひずみエネルギーが大きくなる。そのため、液晶層23にかける電界をゼロにすると、図4(B)に示すように、電界をゼロにした瞬間に配向膜21a,22a近傍の液晶分子23aが再配向しようとして、その周囲に大きな液晶の流れを生じさせる(このときの表示画面の輝度は図3のI)。これにより、図4(C)に示すように、液晶層23の内部に位置し且つまだ動き出していない液晶分子23aは、配向膜21a,22a近傍の液晶分子23aの再配向の動きによって、元の配向(図4(D)の状態)に戻るのとは逆方向に動くことになる。その結果、図3のIIに示すように、液晶層23の透過率が急激に低下して表示画面の輝度が下がる。その後、液晶層23の内部の液晶分子23aが徐々に元の配向(図4(D)の状態)に戻るため、透過率のバウンディングも徐々に終了して、液晶層23の透過率が安定し、表示画面の輝度も一定になる(図3のIII)。
 なお、液晶分子23aは、既述のとおり、視認方向から見て、液晶層23の厚み方向に徐々に捩れて配置されているが、図4では、図示を簡略化するために、液晶分子23aの捩れを省略して示している。
 前記図3に示す輝度変化は、画面に対して法線方向から見た場合の一例である。視認側の視角方向(本実施形態の場合には、視認側から見て画面上側を0時方向とし、画面下側を6時方向とした場合に、6時方向に相当する)から見た場合の表示画面の輝度変化を図5に示す。なお、この実施形態では、6時方向を視角方向としているが、スイッチパネル3のラビング方向によって視角方向は変わる。
 このように、液晶表示装置の画面を見る方向によって、表示画面の輝度は異なるが、以下の説明では、3次元画像を見る際の視点を、液晶表示装置の画面中央を法線方向から見た場合の視点とし、当該視点の場合の例を用いて説明する。なお、3次元画像の視点は、画面中央の法線方向以外の方向からの視点でもよく、後述する輝度の補正も、3次元画像の視点だけでなく、他の視点における補正であってもよい。
 なお、上述のとおり、表示画面の輝度変化は、スイッチパネル3の液晶分子23aの挙動に大きく影響を受ける。そのため、表示画面の輝度は、液晶分子23aの動きに影響を与える周囲温度(液晶表示装置1の周囲の温度)によって大きく変わる。したがって、前記図3及び図5に示す表示画面の輝度変化は、周囲温度の影響を受けて変わる。なお、前記図3及び図5に示す例は、周囲温度が25℃の場合である。
 また、上述のようなバックフロー現象が生じるのは、スイッチパネル3にかかる電界をゼロにした場合、すなわち画像の表示を3次元表示から2次元表示に切り替える際だけである。しかしながら、画像表示を2次元表示から3次元表示に切り替える際にも、バックライト7の輝度変化に対して液晶分子の動きが遅いため、図6に示すような表示画面の輝度の変動が生じる。なお、図6は、上述の3次元画像の視点における輝度変化の一例である。
 図6から分かるように、2次元表示から3次元表示に切り替える場合には、3次元表示から2次元表示に切り替える場合(図3、図5)のようなバックフロー現象は発生せず、切替時間も3次元表示から2次元表示に切り替える場合に比べてかなり短い。3次元表示から2次元表示に切り替える場合には、液晶にかける電界をゼロにして液晶分子が元の配向に自然に戻るのを待つのに対し、2次元表示から3次元表示に切り替える際には、液晶に電界をかけて液晶分子の配向を制御するため、液晶の切替時間は短くなる。
 上述のように、2次元表示と3次元表示との切替の際には、視認側から見て、表示画面の輝度が大きく変動するため、視認者に違和感を与える場合がある。本実施形態では、2次元表示と3次元表示との切替の際に輝度の補正を行い、表示画面に違和感のある輝度変化が生じないようにする。
 図7に示すように、液晶表示装置1は、メインパネル2の輝度を制御するための輝度制御部30と、該輝度制御部30から出力される制御信号に応じてバックライト7の輝度を制御するバックライト制御部35とを備える。また、液晶表示装置1は、2次元表示と3次元表示との切替の際に輝度制御部30に信号を出力する表示切替部36と、液晶表示装置1の周囲温度を検出して輝度制御部30に信号を出力する温度検出部37とを備える。
 輝度制御部30は、表示切替部36から2次元表示と3次元表示との切替が行われた旨の信号が出力されると、バックライト制御部35に対してバックライト7の輝度を変更するための制御信号を出力する。具体的には、輝度制御部30は、表示切替部36から3次元表示に切り替えられた旨の信号が入力されると、バックライト7の輝度を増大させるような制御信号を出力する。一方、輝度制御部30は、表示切替部36から2次元表示に切り替えられた旨の信号が入力されると、バックライト7の輝度を低下させるような制御信号を出力する。これにより、輝度制御部30は、メインパネル2の輝度を変更することができる。
 また、輝度制御部30は、バックライト7の輝度を補正するための補正信号を出力する輝度補正部31と、温度検出部37によって検出された周囲温度に応じた輝度の補正値が記憶された補正値記憶部32とを備えている。輝度補正部31は、温度検出部37によって検出された周囲温度に応じて補正値記憶部32から輝度の補正値を読み出して、制御信号としてバックライト制御部35に出力するように構成されている。これらの輝度補正部31及び補正値記憶部32は、温度検出部37とともに、視認修正部10を構成する。なお、この視認修正部10は、輝度補正部31、補正値記憶部32及び温度検出部37以外の構成を含んでいてもよい。
 補正値記憶部32に記憶されている補正値は、例えば画面に対して法線方向から見た場合(図3)に、各温度の液晶の動作特性に起因する表示画面の輝度変化(メインパネル2の輝度変化)をほとんどゼロにするような値(または関数)である。この補正値によってバックライト7の輝度を補正した場合の一例を図8に示す。この図8に示すバックライト7の輝度は、図9に破線で示す表示画面の輝度変化を、図9に実線で示す輝度一定にする値に設定される。よって、バックライト7の輝度が図8に示す輝度になるような補正値を用いることにより、図9に実線で示すように、表示画面の輝度変化をほとんどゼロ(輝度一定)にすることができる。図8及び図9の例では、3次元表示から2次元表示への切替時における表示画面の輝度変化がほぼゼロになるように、前記補正値を設定しているが、この限りではなく、図3の場合に比べて、表示画面の輝度変化が小さくなるように補正値を設定すればよい。
 なお、補正値記憶部32に記憶されている補正値(または関数)は、画面に対して他の方向から見た場合の表示画面の輝度変化がほとんどゼロになるような値であってもよいし、複数の方向から見た場合に表示画面の輝度変化が低減されるような値であってもよい。
 バックライト制御部35は、輝度制御部30から制御信号が入力されると、バックライト7の輝度を変化させるように該バックライト7を制御する。具体的には、例えばバックライト7がLEDによって構成されている場合には、該LEDに供給する電流を制御して、バックライト7の輝度を制御する。なお、既述のとおり、バックライト7の構成は、種々の構成であってもよいため、バックライト7の制御方法は上述の方法に限定されない。
 (実施形態1の効果)
 以上より、本実施形態では、2次元表示と3次元表示との切替の際に、表示画面の輝度変化が2次元表示の場合と3次元表示の場合とで小さくなるように、バックライト7の輝度を変化させた。これにより、2次元表示の場合と3次元表示の場合とでメインパネル2及び表示画面の輝度が変わるのを防止できる。
 また、本実施形態では、2次元表示と3次元表示との切替の際に、周囲温度に応じてバックライト7の輝度を補正した。これにより、周囲温度に応じてスイッチパネル3の液晶の特性が変化した場合でも、その特性の変化に応じてバックライト7の輝度を変化させることができる。よって、2次元表示と3次元表示との切替の際における表示画面の輝度変化をより確実に低減することができる。したがって、2次元表示と3次元表示との切替時に視認者に違和感を与えるのを防止できる。
 (実施形態1の変形例)
 図10に、実施形態1の変形例を示す。この変形例の構成は、輝度の補正を、表示画面の輝度に応じて行う点で上述の実施形態1の構成とは異なる。以下の説明において、上述の実施形態1と同一の構成には同一の符号を付して、異なる部分についてのみ以下で説明する。
 具体的には、液晶表示装置は、輝度制御部40と、バックライト制御部35と、表示切替部36と、輝度検出部42とを備えている。輝度制御部40は、2次元表示と3次元表示との切替に応じてバックライト7の輝度を制御するように構成されている。また、輝度制御部40は、輝度検出部42によって検出された表示画面の輝度に応じてバックライト7の輝度を調整する輝度調整部41を備えている。この輝度調整部41は、2次元表示の場合の表示画面の輝度を目標値として、輝度検出部42によって検出された表示画面の輝度が前記目標値とほぼ一致するように補正信号を生成する。この補正信号は、バックライト制御部35に出力される。これにより、バックライト制御部35によって、バックライト7の輝度が調整される。
 輝度検出部42は、例えば、液晶表示装置の視認側に設けられたフォトセンサーなどによって構成される。また、この輝度検出部42は、液晶表示装置における視認側の表示画面の輝度を検出可能な位置に設けられている。輝度調整部41及び輝度検出部42によって視認修正部11が構成される。なお、視認修正部11は、輝度調整部41及び輝度検出部42以外の構成を含んでいていても良い。
 このように、視認側の画面の輝度に応じてバックライト7の輝度を制御することにより、2次元表示と3次元表示との切替の際に生じる表示画面の輝度変化を低減することができる。これにより、2次元表示と3次元表示との切替の際に視認者に違和感を与えるのを防止できる。
 [実施形態2]
 図11に、実施形態2に係る液晶表示装置において、2次元表示と3次元表示との切替の際に生じるメインパネル2の輝度変化の違和感を低減するための構成を示す。液晶表示装置の基本的な構成は、上述の実施形態1の場合と同様なので、液晶表示装置の構成についての説明は省略する。
 具体的には、図11に示すように、液晶表示装置は、実施形態1と同様の表示切替部36と、表示切替の際に画像を黒表示(黒状態)に変更するための補正信号を出力する表示補正部51(視認修正部)と、該補正信号に応じて画像データ信号を出力する表示制御部56とを備えている。なお、特に図示しないが、液晶表示装置は、バックライト制御部35に制御信号を出力する輝度制御部も備えている。
 表示制御部56は、メインパネル2に画像を表示するための画像データ信号を図示しないソースドライバに出力するように構成されている。表示制御部56は、表示補正部51から補正信号を受け取ると、該補正信号に応じて低い階調(例えばゼロレベルの階調)の画像データ信号を生成し、出力する。この表示制御部56から出力された画像データ信号は、図示しないソースドライバに入力される。このソースドライバでは、入力された画像データ信号に基づいて階調表示信号を生成して出力する。この階調表示信号は、図示しないソース線を介してメインパネル2の各画素に供給される。これにより、メインパネル2には、黒状態の画像が表示される。
 表示補正部51は、表示切替部36から、2次元表示と3次元表示との切替の信号を受け取ると、表示制御部56に対して黒表示を行うための補正信号を出力する。すなわち、この表示補正部51は、2次元表示と3次元表示とを切り替える際に、輝度が不自然に変動する間、画像を黒表示にするために、表示制御部56から低い階調(例えばゼロレベルの階調)の画像データ信号を出力させるような補正信号を出力する。また、表示補正部51は、黒表示のための補正信号の出力時間をカウントするタイマー部52を備えている。このタイマー部52によって、黒表示の補正信号の出力開始から所定時間がカウントされると、表示補正部51では、前記補正信号の出力が停止される。したがって、上述の構成により、画像の黒表示を所定時間、継続して行った後、通常の画像表示に戻すことができる。前記所定時間は、2次元表示と3次元表示との切替の際に視認者に違和感を与えるようなメインパネル2の輝度変化が生じる時間以上に設定される。また、前記所定時間は、液晶表示装置において想定されるスイッチパネル3の切替時間の中で、最も長い時間に設定されてもよいし、周囲温度に応じて変更してもよい。
 こうすることで、図12に斜線で示すように、所定時間の間、画像が黒表示になるため、スイッチパネル3の切替時間におけるメインパネル2の輝度の変動が視認されるのを防止できる。よって、2次元表示と3次元表示との切替の際に、違和感を与えるようなメインパネル2の輝度変化が視認者に視認されるのを防止できる。なお、図12中の実線は、表示画面の輝度変化を示している。
 また、表示補正部51は、図12に破線で示すように、画像を黒表示にする際に、徐々に表示画面の輝度を小さくして黒表示にするフェードアウト、及び、黒表示の状態から徐々に表示画面の輝度を大きくして元の輝度に戻すフェードインを実現可能に構成されていてもよい。なお、表示補正部51は、フェードアウト及びフェードインのうち一方のみを行うように構成されていてもよい。
 この実施形態において、黒表示とは、完全に輝度をゼロにして真っ黒な状態にする場合だけでなく、2次元表示と3次元表示との切替の際におけるメインパネル2の輝度変化を視認できない程度に、表示画面の輝度を小さくする場合も含む。すなわち、本実施形態において、表示制御部45から出力する画像データ信号の階調は、ゼロレベルに限らず、2次元表示と3次元表示との切替の際におけるメインパネル2の輝度変化を視認できない程度に表示画面の輝度を小さくするレベルの階調の信号であってもよい。
 (実施形態2の効果)
 以上より、この実施形態によれば、2次元表示と3次元表示との切替の際に、不自然なメインパネル2の輝度変化がなくなるまでの間(所定期間)、画像を黒表示にした。これにより、2次元表示と3次元表示との切替の際に、視認者が、違和感を覚えるような輝度変化を視認するのを防止できる。
 [実施形態3]
 図13に、実施形態3に係る液晶表示装置において、2次元表示と3次元表示との切替の際に生じるメインパネル2の輝度変化による違和感を低減するための構成を示す。この実施形態の構成は、上述の実施形態2における表示制御部がバックライト制御部となり、バックライトの輝度によって黒状態を実現した点で、実施形態2の構成と異なる。よって、液晶表示装置の基本的な構成は、上述の実施形態1の場合と同様なので、液晶表示装置の構成についての説明は省略する。また、上述の実施形態2の構成と同様の部分は、同一の符号を付して、その説明を省略する。
 具体的には、この実施形態に係る液晶表示装置は、実施形態1と同様の表示切替部36と、輝度制御部60と、バックライト7を制御するバックライト制御部35とを備える。輝度制御部60は、表示切替部36から出力される信号に基づいて、バックライト制御部35に対する制御信号を出力する。また、輝度制御部60は、2次元表示と3次元表示との切替の際に、不自然なメインパネル2の輝度変化が視認されないように、バックライト7の輝度を低下させる表示補正部61(視認修正部)を備えている。
 表示補正部61は、前記制御信号の出力時間をカウントするためのタイマー部62を有する。このタイマー部62によって前記制御信号の出力開始から所定時間がカウントされると、表示補正部61からの制御信号の信号出力が停止される。これにより、実施形態2と同様、前記制御信号を所定時間の間、出力することができる。
 表示補正部61から出力される制御信号は、バックライト7の輝度を低下させて画面を黒状態にする信号である。よって、この制御信号をバックライト制御部35が受け取ると、液晶表示装置の画面は黒くなって、2次元表示と3次元表示との切替時におけるメインパネル2の輝度変化が視認されにくくなる。
 図14に、3次元表示から2次元表示に切り替えた際のバックライト7の輝度変化を示す。この図14に実線で示すように、3次元表示から2次元表示に切り替えた後、所定時間の間、バックライト7の輝度を低下させることにより、スイッチパネル3のバックフロー現象によって生じるメインパネル2の輝度変化が視認されにくくなる。なお、図14における一点鎖線は、3次元表示から2次元表示に切り替える際に、上述のような表示補正部61による輝度の補正を行うことなく、単に、2次元表示の際に、バックライト7の輝度を3次元表示の場合に比べて小さくした場合である。
 また、表示補正部61は、図14に破線で示すように、画面を黒状態にする際に、徐々にバックライト7の輝度を小さくして黒状態にするフェードアウト、及び、黒状態から徐々にバックライト7の輝度を大きくして元の輝度に戻すフェードインを実現可能に構成されていてもよい。なお、表示補正部61は、フェードアウト及びフェードインのうち一方のみを行うように構成されていてもよい。
 この実施形態において、黒状態とは、バックライト7を完全に消灯した場合だけでなく、2次元表示と3次元表示との切替時におけるメインパネル2の輝度変化を視認できない程度に、バックライト7の輝度を小さくする場合も含む。
 (実施形態3の効果)
 以上の構成により、本実施形態では、2次元表示と3次元表示との切替の際に、バックライト7の輝度を低下させることにより、スイッチパネル3の液晶の動作に起因するメインパネル2の輝度の変動を視認できないようにした。これにより、2次元表示と3次元表示との切替の際に、表示画面で、視認者に違和感を与えるような輝度変化が生じるのを防止できる。
 [実施形態4]
 図15に、実施形態4に係る液晶表示装置のスイッチパネルの概略構成を示す。この実施形態4の構成は、スイッチパネルの構成が上述の実施形態1の構成とは異なる。以下の説明では、異なる部分のみを説明し、実施形態1の構成と共通の部分は説明を省略する。
 具体的には、図15に示すように、スイッチパネル101は、対向する一対の基板102,103を有し、それらの基板間に液晶層104が設けられている。一方の基板102には、液晶層104側の面に、隙間110をあけて配置された2つの第1電極105,106が形成されている。また、他方の基板103には、液晶層104側の面に第2電極107が形成されている。
 上述のような構成において、第1電極105,106と第2電極107との間に電圧を印加すると、第1電極105,106の隙間110側に近い部分では、図15に示すように、第1電極105,106間に電場が形成される。なお、隙間110から離れた部分では、第1電極105,106と第2電極107との間に、基板102,103に対して垂直な電場が形成される。前記図15では、説明のために電場を破線で模式的に示している。また、図15において、基板102,103及び液晶層104は断面だが、ハッチングを省略している。
 上述のような電場が基板102,103間に形成されることにより、液晶層104内では、電場に応じて液晶分子が配列する。これにより、パネルの面方向の位置によって入射光の位相変化が異なる、いわゆる液晶レンズが構成される。
 スイッチパネル101を上述のような構成にすることで、液晶層104に電界を印加すると、該液晶層104の一部は光学レンズのように機能する。よって、スイッチパネル101に右眼用画像及び左眼用画像を表示させるとともに、液晶層104を光学レンズとして機能させることにより、該液晶層104によって、メインパネル2の左眼用画像を左眼に到達させるとともに、該メインパネル2の右眼用画像を右眼に到達させることができる。これにより、スイッチパネル101によって、メインパネル2に表示される2元画像を視認者に3次元画像として視認させることが可能となる。一方、スイッチパネル101の液晶層104に電界を印加しなければ、メインパネル2の画像をそのまま2次元画像として視認することができる。なお、このような液晶レンズを含んだ3次元の表示装置の構成は一般的な装置と同様なので、構成の詳しい説明は省略する。
 このような液晶レンズを構成するスイッチパネル101を用いた液晶表示装置では、該スイッチパネル101の液晶層104の厚みが、実施形態1のようなストライプ画像を表示するスイッチパネルの液晶層に比べて格段に大きくなる。そのため、スイッチパネル101の液晶層104内で液晶分子の配向が切り替わるまでの切替時間は、上述の実施形態1の構成の場合よりも長くなる。このような構成においても、上述の実施形態1~3のような構成を適用することにより、2次元表示と3次元表示との切替時における表示画面の輝度変化を低減することができる。
 (実施形態4の効果)
 以上より、本実施形態では、液晶レンズを構成するスイッチパネル101を備えた液晶表示装置において、上述の実施形態1~3の構成を適用した。これにより、2次元表示と3次元表示との切替時間が長いスイッチパネル101の構成においても、2次元表示と3次元表示との切替時に視認者に違和感を与えるような表示画面の輝度変化が生じるのを防止できる。
 [その他の実施形態]
 以上、本発明の実施の形態を説明したが、上述した実施の形態は本発明を実施するための例示に過ぎない。よって、本発明は上述した実施の形態に限定されることなく、その趣旨を逸脱しない範囲内で上述した実施の形態を適宜変形して実施することが可能である。
 前記各実施形態では、スイッチパネル3として、TN方式の液晶パネルを用いている。しかしながら、スイッチパネルは、STN液晶や他のタイプの液晶パネルであってもよいし、2次元表示と3次元表示とに切替可能な表示パネルであれば、どのような構成のパネルであってもよい。
 前記各実施形態では、液晶表示装置を対象としている。しかしながら、この限りではなく、有機EL等の他の表示装置であってもよい。なお、メインパネルが有機ELによって構成されている場合には、該メインパネル自体が光源部を兼ねる。
 本発明による表示装置は、画像の表示を2次元表示と3次元表示とに切替可能なスイッチパネルを備えた表示装置に利用可能である。

Claims (11)

  1.  画像を表示するメインパネルと、
     前記メインパネルに対向して配置され、前記メインパネルに表示される画像を2次元画像として視認させる2次元モードと、前記画像を立体的に視認させる3次元モードとに切替可能なスイッチパネルと、
     前記スイッチパネルによるモード切替の際に前記メインパネルの輝度を変更する輝度制御部と、
     前記スイッチパネルによるモード切替の際に、前記メインパネルの輝度変化を視認側で視認しにくくする視認修正部とを有する、表示装置。
  2.  前記視認修正部は、前記スイッチパネルによるモード切替の際に前記メインパネルの輝度変化が視認側から視認されにくいように、該メインパネルの輝度を変化させるように構成されている、請求項1に記載の表示装置。
  3.  前記メインパネルに対して光を出射する光源部をさらに備えていて、
     前記視認修正部は、前記光源部の輝度を変化させるように構成されている、請求項2に記載の表示装置。
  4.  前記視認修正部は、前記スイッチパネルによるモード切替の際に視認側から視認される表示画面の輝度が一定になるように、前記メインパネルの輝度調整を行うように構成されている、請求項2または3に記載の表示装置。
  5.  前記視認修正部は、
      周囲温度を検出する温度検出部と、
      前記メインパネルの輝度を周囲温度に応じて補正するための補正値が記憶された補正値記憶部と、
      前記温度検出部で検出された周囲温度に応じて、前記補正値記憶部に記憶された補正値を読み出すとともに、該補正値を用いて前記メインパネルの輝度を補正する輝度補正部とを有する、請求項2から4のいずれか一つに記載の表示装置。
  6.  前記視認修正部は、
      表示画面の視認側の輝度を検出する輝度検出部と、
      前記輝度検出部によって検出された輝度に基づいて前記メインパネルの輝度を調整する輝度調整部とを有する、請求項2から4のいずれか一つに記載の表示装置。
  7.  前記視認修正部は、前記メインパネルの輝度変化が視認側から視認されにくいように、該メインパネルに表示される画像の階調を変化させるように構成されている、請求項1に記載の表示装置。
  8.  前記視認修正部は、前記スイッチパネルによるモード切替の際に、前記メインパネルの輝度変化を視認側から視認されないように、表示画面を黒状態に変更するように構成されている、請求項2、3、6のいずれか一つに記載の表示装置。
  9.  前記視認修正部は、表示画面を黒状態にする際に、前記メインパネルの輝度を徐々に小さくして前記表示画面を黒状態にした後、該メインパネルの輝度を徐々に大きくするように構成されている、請求項8に記載の表示装置。
  10.  前記スイッチパネルは、液晶層と、該液晶層を挟み込むように配置される一対の電極とを備えている、請求項1から9のいずれか一つに記載の表示装置。
  11.  前記スイッチパネルは、前記一対の電極に電圧を印加した際に前記液晶層が液晶レンズとして機能する、請求項10に記載の表示装置。
PCT/JP2011/079141 2010-12-24 2011-12-16 表示装置 WO2012086532A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
AU2011346458A AU2011346458A1 (en) 2010-12-24 2011-12-16 Display device
SG2013048921A SG191344A1 (en) 2010-12-24 2011-12-16 Display device
US13/996,958 US20130293795A1 (en) 2010-12-24 2011-12-16 Display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-287936 2010-12-24
JP2010287936 2010-12-24

Publications (1)

Publication Number Publication Date
WO2012086532A1 true WO2012086532A1 (ja) 2012-06-28

Family

ID=46313805

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079141 WO2012086532A1 (ja) 2010-12-24 2011-12-16 表示装置

Country Status (4)

Country Link
US (1) US20130293795A1 (ja)
AU (1) AU2011346458A1 (ja)
SG (1) SG191344A1 (ja)
WO (1) WO2012086532A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603863A (zh) * 2012-09-06 2015-05-06 夏普株式会社 图像显示装置、图像显示装置的控制方法、图像显示装置的控制程序以及记录有该控制程序的记录介质

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150059686A (ko) * 2013-11-22 2015-06-02 삼성전자주식회사 영상 처리 방법 및 장치
CN103744228A (zh) * 2013-11-29 2014-04-23 深圳市华星光电技术有限公司 三维液晶显示设备及其控制方法
CN106710531B (zh) * 2017-01-19 2019-11-05 深圳市华星光电技术有限公司 背光控制电路及电子装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973049A (ja) * 1995-06-29 1997-03-18 Canon Inc 画像表示方法及びそれを用いた画像表示装置
JPH09189893A (ja) * 1996-01-09 1997-07-22 Nec Corp 液晶プロジェクタ
JP2002072375A (ja) * 2000-08-25 2002-03-12 Mitsubishi Electric Corp 液晶制御装置
JP2009237352A (ja) * 2008-03-27 2009-10-15 Sony Corp 液晶表示装置
JP2010282090A (ja) * 2009-06-05 2010-12-16 Sony Corp 立体表示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0973049A (ja) * 1995-06-29 1997-03-18 Canon Inc 画像表示方法及びそれを用いた画像表示装置
JPH09189893A (ja) * 1996-01-09 1997-07-22 Nec Corp 液晶プロジェクタ
JP2002072375A (ja) * 2000-08-25 2002-03-12 Mitsubishi Electric Corp 液晶制御装置
JP2009237352A (ja) * 2008-03-27 2009-10-15 Sony Corp 液晶表示装置
JP2010282090A (ja) * 2009-06-05 2010-12-16 Sony Corp 立体表示装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104603863A (zh) * 2012-09-06 2015-05-06 夏普株式会社 图像显示装置、图像显示装置的控制方法、图像显示装置的控制程序以及记录有该控制程序的记录介质
US20150161951A1 (en) * 2012-09-06 2015-06-11 Sharp Kabushiki Kaisha Image display device, control method for image display device, and recording medium recording control program
US9583047B2 (en) * 2012-09-06 2017-02-28 Sharp Kabushiki Kaisha Image display device, control method for image display device, and recording medium recording control program

Also Published As

Publication number Publication date
SG191344A1 (en) 2013-08-30
AU2011346458A1 (en) 2013-07-11
US20130293795A1 (en) 2013-11-07

Similar Documents

Publication Publication Date Title
US10848740B2 (en) Three-dimensional display device and display method
US7515340B1 (en) Three-dimensional display device
US8823783B2 (en) Stereoscopic image display apparatus and method
TWI463218B (zh) 顯示裝置
US8582043B2 (en) 2D/3D switchable LC lens unit for use in a display device
US8223279B2 (en) Three-dimensional (3D) display system and method
KR101679076B1 (ko) 영상표시장치
JP2004258631A (ja) 立体画像表示装置
WO2012096032A1 (ja) 立体画像表示装置
US20180149876A1 (en) Method and apparatus for controlling three-dimensional display device, and three-dimensional display device
US20110134115A1 (en) Display device, liquid crystal shutter glasses and display system using the same
US8854440B2 (en) Three dimensional image display device and a method of driving the same
JP2012037808A (ja) 立体表示装置および液晶バリア装置
WO2012086532A1 (ja) 表示装置
US8928739B2 (en) Three dimensional image display device
JP4501370B2 (ja) 表示装置
US20110157500A1 (en) Stereoscopic display device and stereoscopic image displaying method
TWI471609B (zh) 立體影像顯示裝置與立體影像驅動方法
JP4873069B2 (ja) 表示装置
US11605321B2 (en) Three-dimensional-image display device
TWI413043B (zh) 2d/3d可切換式顯示裝置及其驅動方法
US9063339B2 (en) Stereoscopic display system and driving method thereof
TWI408664B (zh) 立體顯示器以及顯示器
JP4407176B2 (ja) 表示装置
WO2013125466A1 (ja) 表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852032

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 13996958

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2011346458

Country of ref document: AU

Date of ref document: 20111216

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 11852032

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP