WO2012086477A1 - 逆浸透処理装置 - Google Patents

逆浸透処理装置 Download PDF

Info

Publication number
WO2012086477A1
WO2012086477A1 PCT/JP2011/078858 JP2011078858W WO2012086477A1 WO 2012086477 A1 WO2012086477 A1 WO 2012086477A1 JP 2011078858 W JP2011078858 W JP 2011078858W WO 2012086477 A1 WO2012086477 A1 WO 2012086477A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
reverse osmosis
resistor
pipe
permeated
Prior art date
Application number
PCT/JP2011/078858
Other languages
English (en)
French (fr)
Inventor
光太郎 北村
真人 大西
一隆 鈴木
Original Assignee
株式会社日立プラントテクノロジー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立プラントテクノロジー filed Critical 株式会社日立プラントテクノロジー
Publication of WO2012086477A1 publication Critical patent/WO2012086477A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/12Spiral-wound membrane modules comprising multiple spiral-wound assemblies
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/06Specific process operations in the permeate stream
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/14Pressure control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2311/00Details relating to membrane separation process operations and control
    • B01D2311/16Flow or flux control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/19Specific flow restrictors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/025Reverse osmosis; Hyperfiltration
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/08Seawater, e.g. for desalination
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/05Conductivity or salinity
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the present invention relates to a reverse osmosis treatment apparatus, and more particularly to a reverse osmosis treatment apparatus that eliminates unevenness in the amount of permeated water between an element on the supply water side and an element on the concentrate side.
  • RO reverse osmosis membrane
  • a reverse osmosis pressure is utilized in a desalination treatment apparatus using a reverse osmosis membrane (hereinafter referred to as RO (Reverse Osmosis) membrane. Therefore, as shown in FIG.
  • the RO membrane elements 122 are arranged in series, and each RO membrane element 122 is connected by a water collecting pipe 134 at the center of the RO membrane element 122.
  • Supply water is supplied from one of the desalination treatment apparatuses by a high-pressure pump, and the inside of the pressurized container 124 is pressurized by the opening degree of a valve installed on the concentrated water side.
  • the pressurized pressure exceeds the osmotic pressure of the feed water, it passes through the RO membrane, and demineralized water (permeated water) flows into the central water collecting pipe 134.
  • the supply water supplied into the pressurized container 124 has a salt concentration that increases from the supply water side to the concentrated water side, so that the pressure in the pressurized container 124 eventually becomes the final stage salt concentration and the amount of permeated water.
  • the pressure to be pressurized is determined by the supply water flow velocity on the membrane surface. Accordingly, since the pressure on the supply water side in the pressurized container 124 is more than necessary, the amount of permeated water increases.
  • FIG. 12 shows the relationship between the position of the RO membrane element and the relative flux (relative flux) when seven RO membrane elements 122 are arranged in series. The element position in FIG. 12 is the number from the supply water side. As shown in FIG.
  • Patent Document 1 a plug that closes the water collection pipe at the connection portion of the RO membrane element at the center in the pressurized container, and a collection closed by the plug are disclosed.
  • a seawater desalination apparatus provided with a permeate line for discharging permeate separated from a water pipe into the front and rear.
  • This invention is made
  • the water collection piping in a pressurization container can be isolate
  • a first aspect of the present invention is a reverse osmosis treatment apparatus, which is a pressure vessel, an introduction pipe for supplying water to be treated to one end of the pressure vessel, and the pressure vessel. And a plurality of reverse osmosis membrane elements provided in the pressure vessel and provided with a reverse osmosis membrane, the reverse osmosis membrane element further comprising: A water collection pipe through which the permeated water that has passed through the reverse osmosis membrane flows, the water collection pipe connecting the plurality of reverse osmosis membrane elements in series in the pressure vessel, and the water collection pipe includes the permeation pipe A resistor that separates water into a front stage that is a supply side of the treated water and a rear stage that is a discharge side of the concentrated water, a first discharge pipe that discharges the permeated water in the front stage, and the rear stage A second discharge pipe for discharging permeated water, wherein the first discharge pipe is a first discharge pipe.
  • the resistor is provided in the water collecting pipe of the reverse osmosis membrane element including the reverse osmosis membrane, and the first discharge pipe and the second discharge pipe that discharge the permeated water from both sides of the resistor. It has. Therefore, since the amount of permeated water at the front stage can be suppressed by the first valve, the amount of permeated water at the rear stage can be relatively increased, and the non-uniformity in the amount of permeated water of the reverse osmosis membrane element is eliminated as compared with the conventional art. be able to. Therefore, the amount of permeated water can be increased with the same pressure, so that power saving can be achieved. Furthermore, it is possible to prevent the occurrence of extremely osmotic reverse osmosis membrane elements, thereby enabling long-term use.
  • the resistor in the reverse osmosis treatment device according to the first aspect, can be installed at an arbitrary position in the water collecting pipe.
  • finer flow rate control can be achieved by providing the resistor at an arbitrary position in the water collecting pipe instead of the connection portion of each reverse osmosis membrane element. . Therefore, processing can be performed under more optimal conditions.
  • the resistor is impermeable to water.
  • the water collecting pipe can be divided by the resistor, so that the pressure in the water collecting pipe can be controlled with the resistor as a boundary. Therefore, the amount of permeated water can be easily adjusted.
  • the resistor is water permeable.
  • the resistor is formed of a porous material.
  • the resistor is formed with a slit through which permeated water passes.
  • the resistance body can be made water permeable, or a slit can be provided to allow permeate to pass therethrough, so that resistance can be provided in the water collection pipe.
  • the amount of permeate can be made equal.
  • a plurality of the resistors are provided in the water collecting pipe.
  • the pressure in the water collection pipe can be adjusted more finely, so the non-uniformity in the amount of permeate is eliminated. be able to.
  • the reverse osmosis treatment apparatus is configured to extract permeate from both sides of a pressure vessel, and has a resistor in the water collection pipe, and the position of this resistor is set at an arbitrary position in the water collection pipe. It can be moved. Therefore, the amount of permeated water from both sides can be adjusted by adjusting the pressure in the pressure vessel with the valve. Therefore, since the permeated water can be generated by effectively applying pressure to the RO membrane element, the cost can be reduced.
  • FIG. 3 is a front view of the element shown in FIG. 2.
  • sectional drawing which shows schematic structure of the reverse osmosis processing apparatus of embodiment. It is the graph which showed the relative flux of the permeated water of the reverse osmosis processing apparatus of embodiment. It is the graph which showed the relative flux of the permeated water of the reverse osmosis processing apparatus which has arrange
  • FIG. 1 is a block diagram of a desalination treatment system 20 in which the reverse osmosis treatment apparatus 10 of the embodiment is incorporated.
  • the desalination processing system in this invention can be used for the system which carries out reverse osmosis processing of to-be-processed water, such as drainage reuse, pure water manufacture, brine water desalination, seawater desalination, etc., for example.
  • the desalination treatment system 20 shown in the figure is composed of a tank 12 in which treated water is stored, a high-pressure pump 14, and a reverse osmosis treatment device 10.
  • the water to be treated in the tank 12 is supplied to the reverse osmosis treatment device 10 by the high pressure pump 14 at a high pressure, and is subjected to reverse osmosis treatment (desalting treatment) by each RO membrane (treatment membrane) of the reverse osmosis treatment device 10.
  • the water is separated into desalted permeated water (separated water) 16 and concentrated water (treated water) 18 in which the salt content is concentrated.
  • the permeated water 16 thus obtained is discharged to the outside of the reverse osmosis treatment device 10 through a discharge pipe, and the concentrated water 18 is similarly discharged through a discharge pipe different from the discharge pipe for discharging the permeated water. It is discharged outside the reverse osmosis treatment apparatus 10.
  • the desalination processing system 20 of embodiment supplies the to-be-processed water to the reverse osmosis processing apparatus 10 with the high voltage
  • a valve is provided in the concentrated water outlet side of the reverse osmosis processing apparatus 10, The pressure in the reverse osmosis treatment apparatus 10 is set according to the opening of the valve.
  • raw water may be used as it is, but it is preferable to use water to be treated from which turbid components and the like contained in the raw water are removed by pretreatment.
  • pretreatment include use of a filter and treatment of introducing raw water into a sedimentation basin and adding a bactericide such as chlorine to precipitate and remove particles in the raw water and sterilize microorganisms.
  • water to be treated may be used by adding a flocculant such as iron chloride to raw water to agglomerate turbid components and filtering them off.
  • a plurality of elements 22 shown in FIG. 2 are connected in series, filled in the cylindrical vessel 24 shown in FIG. 5 to form a module 26, and this module 26 is connected singly or in parallel, thereby reverse osmosis.
  • the processing device 10 is configured.
  • the element 22 is configured by arranging a membrane unit 32 including an RO membrane 28 and a discharge pipe 30 around a water collection pipe 34.
  • the membrane unit 32 has four bag-like RO membranes 28, 28... Radially connected to the outer periphery of the water collecting pipe 34. These RO membranes 28, 28. It is configured by winding in a spiral around the water collection pipe 34.
  • One end of the bag-like RO membrane 28 is opened, and the RO membrane 28 is bonded to the water collection pipe 34 so that the opening communicates with the through hole 36 of the water collection pipe 34 shown in FIG.
  • the water to be treated flows on the outer surface of the RO membrane 28 and passes through the RO membrane 28 to be desalted.
  • the desalted water that has passed through the RO membrane 28 is collected from the inside of the RO membrane 28 into the water collection pipe 34 through the opening of the RO membrane 28 and the through holes 36 of the water collection pipe 34.
  • the water is discharged from the element 22 from the water collecting pipe 34 through the discharge pipe 30.
  • 3 is a mesh spacer disposed inside the RO membrane 28.
  • the spacer 38 holds the RO membrane 28 so that the inner space of the RO membrane 28 is not crushed even when the RO membrane 28 is wound in a spiral shape.
  • Reference numeral 40 denotes a mesh spacer disposed between the adjacent RO membranes 28 and 28.
  • the spacers 40 are also radially bonded to the outer periphery of the water collecting pipe 34 in the same manner as the RO membrane 28.
  • FIG. 5 is a cross-sectional view of the reverse osmosis treatment apparatus 10 of the embodiment. Both ends of the vessel 24 are opened so that water to be treated is introduced and discharged. A predetermined operating pressure is applied by the high-pressure pump 14 at the opening on the introduction side. 5 shows a module 26 in which five elements 22, 22... Are connected in series, the number of elements 22 is not limited to five. Further, the vessel 24 can be constituted by FRP (Fiber Reinforced Plastic) or the like so as to withstand high pressure (5 MPa or more).
  • FRP Fiber Reinforced Plastic
  • the vessel 24 includes an introduction pipe 56 that introduces the water to be treated into the vessel 24, and a third discharge that discharges the remaining concentrated water that has not been permeated to the water collection pipe 34.
  • a tube 62 is provided.
  • a concentrated water discharge valve 66 for adjusting the pressure in the vessel 24 is provided at the outlet of the third discharge pipe 62.
  • a resistor 80 is provided in the water collecting pipe 34, a first discharge pipe 58 and a second discharge pipe 60 are provided on both sides of the vessel 24, and the permeated water that has passed through the RO membrane 28 is passed through the first discharge pipe. 58, the element 22 is discharged through the second discharge pipe 60.
  • a measuring instrument 68 and a first valve 64 are provided at the outlet of the first discharge pipe 58, and a measuring instrument 70 is provided at the outlet of the second discharge pipe 60.
  • the water to be treated supplied from the tank 12 of FIG. 1 via the introduction pipe 56 is guided to the element 22 through the flow path 57, and the water to be treated passes through the RO membrane 28 of the element 22.
  • water is collected in the water collection pipe 34.
  • a resistor 80 is provided in the water collecting pipe 34, and the permeated water collected on the supply water side from the resistor 80 is supplied to the outside of the vessel 24 from the first discharge pipe 58. Discharged. Further, the permeated water collected on the concentrated water side is discharged from the second discharge pipe 60 to the outside of the vessel 24. The concentrated water that has not passed through the RO membrane 28 is discharged to the outside of the vessel 24 through the third discharge pipe 62.
  • the permeated water is separated into the supply water side and the concentrated water side and discharged from the first discharge pipe 58 and the second discharge pipe 60. be able to.
  • Non-uniformity in the amount of permeated water at the element position was (1) water temperature, (2) feed salt concentration, (3) water permeability and salt rejection of the RO membrane itself, (4) averaged over all membranes in the vessel. It is determined by the amount of permeated water around the membrane area, (5) recovery rate, and (6) pressure. Among these, (3), (4), and (5) are determined at the time of design. (1) and (2) change due to environmental changes, and (6) changes when the film is contaminated by operation. By adjusting the opening of the first valve 64, the concentrated water discharge valve 66, and the position of the resistor 80 according to the changes in (1), (2) and (6), the overall stability is achieved. The amount of permeated water can be secured. In particular, (1) since the water temperature varies depending on the season, it is necessary to appropriately adjust the water temperature.
  • the position of the resistor 80 is not provided at the element unit, that is, at the connection portion of the element, but each element in the vessel is considered as one long element, and the position of the resistor 80 of the water collecting pipe is arbitrarily determined. can do.
  • the position of the resistor 80 can be adjusted by pushing it out from either one of the elements 22 with something like a long bar.
  • the amount of permeated water can be adjusted by determining the opening degree of the first valve 64 and the concentrated water discharge valve 66 by the measuring instruments 68 and 70 provided in the first discharge pipe 58 and the second discharge pipe 60. It can also be done.
  • the measuring instruments 68 and 70 a flow meter and a pressure gauge can be used.
  • FIG. 6 is a diagram showing the relationship between the position of the RO membrane element and the relative flux of the permeated water in the reverse osmosis treatment apparatus of the embodiment.
  • the non-permeable resistor 80 among the seven elements is installed at the end of the second element from the supply water side, and the first flow rate measurement value of the measuring instrument 68 is used as an index.
  • This is data obtained by conducting an experiment by adjusting the amount of permeated water of the first discharge pipe 58 with the valve 64 and setting the relative flux at the previous stage to 1.0 or less.
  • FIG. 6 conventionally, a large amount of permeated water is generated from the supply water side, and the amount of permeate decreases as it goes to the concentrated water side.
  • the resistor 80 is provided, and the first discharge pipe 58 is provided on the supply water side to discharge the permeate, so that the first discharge pipe 58 is connected.
  • the first valve 64 By adjusting the first valve 64, the pressure in the water collection pipe 34 on the supply water side can be adjusted. Then, the opening degree of the first valve 64 can be adjusted by a numerical value measured by the measuring device 68. Conventionally, the flow rate of the permeated water from the supply water side is large. However, in the present invention, the pressure on the supply water side can be adjusted, so the flow rate of the permeate water on the supply water side can be lowered than before. .
  • the salt concentration on the concentrated water side can be reduced as compared with the conventional case, so that the non-uniformity of the permeated water amount of each RO membrane element can be eliminated.
  • the permeated water is discharged from both sides of the first discharge pipe 58 and the second discharge pipe 60 of the vessel 24, and the water collection pipe is formed according to the opening degree of the first valve 64 and the concentrated water discharge valve 66.
  • the pressure in 34 By adjusting the pressure in 34, the non-uniformity of the permeated water amount of each RO membrane can be eliminated. Therefore, power saving can be achieved and contamination of the RO membrane on the supply water side can be suppressed.
  • a constant flow valve may be used as the first valve 64 instead of the adjustment valve capable of adjusting the opening.
  • the constant flow valve is used, the amount of permeated water in the water collecting pipe 34 is adjusted only by adjusting the position of the resistor 80.
  • FIG. 7 shows data when the position of the impermeable resistor 80 is installed at the end of the fourth element from the supply side.
  • the supply pressure to the vessel 24, that is, the pressure applied to the final stage of the element 22 can be adjusted to be the lowest. Power saving can be achieved by adjusting the supply pressure into the vessel 24 to be the lowest, and since the salt concentration is low in the previous stage, a predetermined flow rate of permeate can be maintained and stable. The permeated water can also be generated.
  • the salt concentration rejection rate when the amount of water permeated through the RO membrane changes, the salt concentration rejection rate also changes. In that case, it is also possible to monitor the blocking rate and adjust the opening of the first valve 64, the concentrated water discharge valve 66, and the position of the resistor 80.
  • the salt concentration rejection rate can be easily measured by measuring the electrical conductivity of the first discharge pipe 58 and the second discharge pipe 60.
  • the resistor 80 As the resistor 80, as shown in FIG. 9A, the entire resistor 80 is an elastic body 82, or as shown in FIG. 9B, an O-ring-shaped elastic body 82 is installed on a non-elastic body 84. Is preferred.
  • the resistor 80 is installed by bringing the elastic body 82 into close contact with the inner wall of the water collecting pipe 34.
  • the contact portion with the inner wall is preferably formed of an elastic body 82.
  • an elastic body for example, EPDM (ethylene propylene diene rubber), silicone or the like can be used.
  • the resistor 80 can be made impermeable as shown in FIG. 10A and can be completely closed by the resistor 80 so that the permeate cannot move through the water collection pipe 34. Further, as shown in FIG. 10B, it is possible to make the water permeable using a porous material. Moreover, as shown to FIG. 10C and 10D, a slit can be provided between the resistor 80 and the inner wall of the water collection piping 34, and the movement of permeated water can also be enabled.
  • FIG. 8 shows data when the resistor of FIG. 10C is installed at the center of the second element from the supply side and at the center of the fifth element from the supply side. According to FIG. 8, it is possible to obtain a substantially uniform flux.
  • the number of the resistors 80 is not limited, and a plurality of resistors 80 may be installed. By installing a plurality of resistors 80, the pressure in the water collecting pipe 34 can be adjusted more finely, so that the non-uniformity of the permeated water amount of each RO membrane can be eliminated.
  • a resistor 80 that does not have water permeability can be used as the main resistor 80, and a resistor having water permeability can also be installed in order to adjust the amount of permeated water.
  • SYMBOLS 10 Reverse osmosis processing apparatus, 12 ... Tank, 14 ... High pressure pump, 16 ... Permeate, 18 ... Concentrated water, 20 ... Desalination processing system, 22 ... Element, 24 ... Vessel, 26 ... Module, 28 ... RO membrane, DESCRIPTION OF SYMBOLS 30 ... Drain pipe, 32 ... Membrane unit, 34 ... Water collecting pipe, 36 ... Through-hole, 38, 40 ... Spacer, 56 ... Introducing pipe, 57 ... Flow path, 58 ... First discharge pipe, 60 ... Second Discharge pipe, 62 ... third discharge pipe, 64 ... first valve, 66 ... concentrated water discharge valve, 68, 70 ... measuring instrument, 80 ... resistor, 82 ... elastic body, 84 ... non-elastic body

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

 逆浸透処理装置において、被処理水を供給する導入管56を備える圧力容器24内に、逆浸透膜28を備える複数の逆浸透膜エレメント22が、前記逆浸透膜28を通過した透過水が流れる集水配管34により直列に接続されている。集水配管34中に、透過水を、被処理水の供給側である前段と濃縮水の排出側である後段とに分離する抵抗体80と、前段の透過水を排出する第1の排出管58と、後段の透過水を排出する第2の排出管60と、濃縮水を排出する第3の排出管62とを備える。第1の排出管58は第1のバルブ64を有する。加圧容器内の圧力を調節することで、透過水の量を調節し、透過水量の不均一さを解消することができる。

Description

逆浸透処理装置
 本発明は、逆浸透処理装置に係り、特に、供給水側のエレメントと濃縮水側のエレメントの透過水量の不均一さを解消する逆浸透処理装置に関する。
 逆浸透膜(以下、RO(Reverse Osmosis)膜)を使用した脱塩処理装置では、逆浸透圧を利用するため、図11に示すように、円筒状に構成された加圧容器124内に複数のRO膜エレメント122を直列で配置し、RO膜エレメント122の中央にある集水配管134で各RO膜エレメント122が接続されている。供給水は、脱塩処理装置の一方から高圧ポンプにより供給され、濃縮水側に設置されたバルブの開度によって、加圧容器124内を加圧にする。加圧された圧力が、供給水の浸透圧を越えた場合に、RO膜を透過し、中央の集水配管134に脱塩水(透過水)が流れ込む。
 加圧容器124内に供給した供給水は、供給水側から濃縮水側に向って、塩濃度が高くなるため、加圧容器124内の圧力は最終的には最終段の塩濃度と透過水量、膜面の供給水流速によって加圧される圧力が決定される。したがって、加圧容器124内の供給水側は、必要以上に圧力がかかるため、透過水量が増加する。例えばRO膜エレメント122を7本直列で配置した場合のRO膜エレメントの位置とRelative Flux(相対的流束)の関係を図12に示す。図12中のエレメント位置は、供給水側からの本数である。図12に示すように、供給水側の透過水量が多く、濃縮水側にいくにつれ、透過水量が下がることがわかる。これは、被処理水は濃縮水側にいくにつれ塩濃度が高くなるため、濃縮水側では、高い圧力が必要になるが、供給水側においても同じ圧力がかかるため、供給水側でより多くの透過水が生成されるからである。このように、図12に示すように、加圧容器124内における透過水量が不均一であることにより、必要動力の増加、供給水側のRO膜エレメントの汚染が進行する。
 このような問題を解決するため、例えば、下記の特許文献1には、加圧容器内の中央部でRO膜エレメントの接続部分に集水配管を閉塞するプラグと、このプラグにより閉塞された集水配管から前後に分かれた透過水を各々外部に排出する透過水ラインを設けた海水淡水化装置が記載されている。
特開2010-179264号公報
 しかしながら、特許文献1に記載されている装置では、集水配管を閉塞するプラグは、RO膜エレメントの接続部に設けられているため、さらに細かい調節をすることができなかった。また、RO膜エレメントの接続部に設けられているため、RO膜エレメントの交換を行なう際、通常であれば、最も汚れ易い供給水側のRO膜エレメントを取り除き、濃縮水側に新たなRO膜エレメントを追加することで、交換を行なうことができるが、特許文献1に記載の装置では、プラグの位置が変わってしまうため、一度分解をしてプラグを付け直す必要があった。
 本発明はこのような事情に鑑みてなされたものであり、加圧容器内の集水配管を任意の位置で容易に分離することができ、その分離前後の加圧容器内の圧力を調節することで透過水の量を調節する。これにより、RO膜エレメントの透過水量の不均一さを解消し、所望の透過水量を少ない動力で得ることができる逆浸透処理装置を提供することを目的とする。
 前記目的を達成するために、本発明の第1態様は、逆浸透処理装置であって、圧力容器と、前記圧力容器の一方の端部に被処理水を供給する導入管と、前記圧力容器の他方の端部に濃縮水を排出する濃縮水排出管と、前記圧力容器内に設けられ、且つ、逆浸透膜を備える複数の逆浸透膜エレメントとを備え、前記逆浸透膜エレメントは更に、前記逆浸透膜を通過した透過水が流れる集水配管であって、前記複数の逆浸透膜エレメントを前記圧力容器内で直列に接続する集水配管とを備え、前記集水配管は、前記透過水を、前記被処理水の供給側である前段と、濃縮水の排出側である後段と、に分離する抵抗体と、前段の前記透過水を排出する第1の排出管と、後段の前記透過水を排出する第2の排出管と、を備え、前記第1の排出管は第1のバルブを備える逆浸透処理装置を提供する。
 第1の態様によれば、逆浸透膜を備える逆浸透膜エレメントの集水配管内に抵抗体を設け、その抵抗体の両側から透過水を排出する第1の排出管と第2の排出管を備えている。したがって、第1のバルブで前段の透過水量を抑えることができるので、相対的に後段の透過水量を増やすことができ、逆浸透膜エレメントの透過水量の不均一さを従来と比較すると、解消することができる。したがって、同じ圧力で、透過水量を増やすことができるので、省動力化を図ることができる。さらに、極端に汚れやすい逆浸透膜エレメントの発生を防ぐことができるため、長期の使用を可能とすることができる。
 第2の態様によれば、第1の態様に係る逆浸透処理装置において、前記抵抗体は前記集水配管内の任意の位置に設置可能である。
 第2の態様に係る逆浸透処理装置では、抵抗体を各逆浸透膜エレメントの接続部ではなく、集水配管内の任意の位置に設けることで、より細かい流量制御を可能とすることができる。したがって、より最適な条件で処理を行なうことができる。
 第3の態様によれば、第1又は第2の態様に係る逆浸透処理装置において、前記抵抗体は、非透水性である。
 第3の態様に係る逆浸透処理装置では、抵抗体により集水配管を分断させることができるので、抵抗体を境にして集水配管内の圧力を制御することができる。したがって、透過水量の調節を容易に行なうことができる。
 第4の態様によれば、第1又は第2の態様に係る逆浸透処理装置において、前記抵抗体は、透水性である。
 第5の態様によれば、第4態様に係る逆浸透処理装置において、前記抵抗体は、多孔性材料で形成されている。
 第6の態様によれば、第1から第5の態様のいずれかに係る逆浸透処理装置において、前記抵抗体に、透過水が通過するスリットが形成されている。
 第4から第6の態様に係る逆浸透処理装置では、抵抗体を透水性、あるいは、スリットを設けて透過水を通過可能とすることで、集水配管内に抵抗を持たせることができるので、透過水量を等しくすることができる。
 第7の態様によれば、第1から第6の態様のいずれかに係る逆浸透処理装置において、前記抵抗体が、前記集水配管中に複数設けられている。
 第7の態様に係る逆浸透処理装置では、抵抗体を集水配管中に複数設けることで、より細かく集水配管中の圧力を調節することができるので、透過水量の不均一さを解消することができる。
 本発明に係る逆浸透処理装置は、圧力容器の両側から透過水を抜き取るように構成され、集水配管中に抵抗体を有し、この抵抗体の位置を集水配管中の任意の箇所に移動できるようにしている。そのため、バルブにより圧力容器内の圧力を調節し、両側からの透過水量を調節することができる。したがって、RO膜エレメントに効果的に圧力を付与して透過水を生成することができるので、コストを下げることができる。
実施の形態の逆浸透処理装置が設置された脱塩処理システムのブロック図である。 実施の形態の逆浸透処理装置のエレメントの構成を示した斜視図である。 図2に示したエレメントのRO膜が巻回される前の状態を示したエレメントの正面図である。 図2に示したエレメントの正面図である。 実施の形態の逆浸透処理装置の概略構成を示す断面図である。 実施の形態の逆浸透処理装置の透過水の相対的流束を示したグラフ図である。 抵抗体を他の位置に配置した逆浸透処理装置の透過水の相対的流束を示したグラフ図である。 抵抗体をさらに他の位置に配置した逆浸透処理装置の透過水の相対的流束を示したグラフ図である。 集水配管中の抵抗体を示す断面図(その1)である。 集水配管中の抵抗体を示す断面図(その2)である。 集水配管中の抵抗体を示す正面図(その1)である。 集水配管中の抵抗体を示す正面図(その2)である。 集水配管中の抵抗体を示す正面図(その3)である。 集水配管中の抵抗体を示す正面図(その4)である。 従来の逆浸透処理装置の概略構成を示す断面図である。 従来の逆浸透処理装置のRO膜エレメントの位置と透過水の相対的流束の関係を示したグラフ図である。
 以下、添付図面に従って本発明の好ましい実施の形態について説明する。本発明は以下の好ましい実施の形態により説明されるが、本発明の範囲を逸脱すること無く、多くの手法により変更を行なうことができ、本実施の形態以外の他の実施の形態を利用することができる。したがって、本発明の範囲内における全ての変更が請求の範囲に含まれる。
 図1は、実施の形態の逆浸透処理装置10が組み込まれた脱塩処理システム20のブロック図である。なお、本発明における脱塩処理システムは、例えば、排水再利用、純水製造、かん水淡水化、海水淡水化など、被処理水を逆浸透処理するシステムに用いることができる。
 同図に示す脱塩処理システム20は、被処理水が貯留されたタンク12、高圧ポンプ14、および逆浸透処理装置10から構成される。タンク12の被処理水は、高圧ポンプ14によって逆浸透処理装置10に高圧で供給され、逆浸透処理装置10の各RO膜(処理膜)によって逆浸透処理(脱塩処理)されることにより、脱塩された透過水(分離水)16と、塩分が濃縮された濃縮水(被処理水)18とに分離される。このようにして得られた透過水16は、排出管を介して逆浸透処理装置10の外部に排出され、濃縮水18も同様に、透過水を排出する排出管とは異なる排出管を介して逆浸透処理装置10の外部に排出される。なお、実施の形態の脱塩処理システム20は、高圧ポンプ14によって被処理水を逆浸透処理装置10に高圧で供給しているが、逆浸透処理装置10の濃縮水出口側にバルブを設け、バルブの開度により逆浸透処理装置10内の圧力を設定している。
 タンク12内の被処理水としては、原水をそのまま使用してもよいが、前処理を施して原水に含まれる濁質成分等を除去した被処理水を使用することが好ましい。前処理としては、フィルタ利用、および沈殿池に原被処理水を導入して塩素等の殺菌剤を添加し、原水中の粒子を沈殿除去するとともに微生物を殺菌する等の処理がある。また、原水に塩化鉄等の凝集剤を添加して濁質成分を凝集させ、これを濾過して除去した被処理水を使用してもよい。
 図2に示すエレメント22を複数個直列に接続し、これを図5に示す円筒状のベッセル24に充填してモジュール26とし、このモジュール26を単独で、又は並列に接続することにより、逆浸透処理装置10は構成される。
 図2に示すようにエレメント22は、RO膜28と排出管30とを含む膜ユニット32が集水配管34の周囲に配置されて構成されている。膜ユニット32は図3の如く、4枚の袋体状のRO膜28、28…が集水配管34の外周部に放射状に接続され、これらのRO膜28、28…を、図4の如く集水配管34の周囲にスパイラル状に巻回することにより構成される。袋体状のRO膜28の一端は開口され、この開口部が図3に示す集水配管34の透孔36と連通するようにRO膜28が集水配管34に接着されている。被処理水は、RO膜28の外表面を流れ、RO膜28を透過することにより脱塩される。そして、RO膜28を透過した脱塩後の透過水は、RO膜28の内側からRO膜28の開口、および集水配管34の透孔36を介して集水配管34内に集水され、集水配管34から排出管30を介してエレメント22から排出される。なお、図3の符号38は、RO膜28の内部に配置されるメッシュ状のスペーサーである。このスペーサー38によって、RO膜28がスパイラル状に巻かれてもRO膜28の内部空間が潰れないように保持される。また、符号40は、隣接するRO膜28、28の間に配置されたメッシュ状のスペーサーである。このスペーサー40もRO膜28と同様に集水配管34の外周部に放射状に接着されている。
 図5は、実施の形態の逆浸透処理装置10の断面図である。ベッセル24の両端は、被処理水が導入、排出されるように開口されている。導入側の開口部では、高圧ポンプ14によって所定の操作圧力が負荷されるようになっている。なお、図5には、5個のエレメント22、22…を直列に接続したモジュール26が示されているが、エレメント22の個数は5個に限定されるものではない。また、ベッセル24は、高圧(5MPa以上)に耐え得るようにFRP(Fiber Reinforced Plastic)等によって構成することもできる。
 図5に示すように、ベッセル24には、ベッセル24内に被処理水を導入する導入管56と、被処理水が集水配管34へ透過せず残った濃縮水を排出する第3の排出管62を備えている。第3の排出管62の出口には、ベッセル24内の圧力を調節する濃縮水排出バルブ66を備えている。また、集水配管34中に抵抗体80を備え、ベッセル24の両側に第1の排出管58、第2の排出管60を設け、RO膜28を透過した透過水は、第1の排出管58、第2の排出管60を介してエレメント22から排出される。また、第1の排出管58の出口には、計測器68、第1のバルブ64を備え、第2の排出管60の出口には、計測器70を備えている。
 このベッセル24によれば、図1のタンク12から導入管56を介して供給された被処理水は、流路57を介してエレメント22に導かれ、被処理水はエレメント22のRO膜28を順次通過したのち、集水配管34に集水される。本実施形態においては、集水配管34中に抵抗体80を備え、抵抗体80を境にして、供給水側に集水された透過水は、第1の排出管58からベッセル24の外部に排出される。また、濃縮水側に集水された透過水は、第2の排出管60からベッセル24の外部に排出される。RO膜28を通過しなかった濃縮水は、第3の排出管62を介してベッセル24の外部に排出される。
 本発明のように、抵抗体80を集水配管34中に設けることで、透過水を供給水側と濃縮水側に分離し、第1の排出管58および第2の排出管60から排出することができる。
 エレメント位置における透過水量の不均一さは、(1)水温、(2)供給水塩濃度、(3)RO膜自体の透水性および塩阻止率、(4)ベッセル内の全膜に平均化した膜面積辺りの透過水量、(5)回収率、(6)圧力、により決定される。この中で、(3)および(4)、(5)は設計時に決定するものである。(1)、(2)は環境の変化により、(6)は運転により膜が汚染した場合に変化する。(1)、(2)および(6)の変化に応じて、第1のバルブ64、濃縮水排出バルブ66の開度、および、抵抗体80の位置を調節することで、全体的に安定した透過水量を確保することができる。特に、(1)水温は、季節によって異なるため、水温の変化により適宜調整を行なう必要がある。
 抵抗体80の位置は、エレメント単位、すなわち、エレメントの接続部に設けるのではなく、ベッセル内の各エレメントを1本の長いエレメントと考え、その集水配管の抵抗体80の位置を任意に決定することができる。抵抗体80の位置の調整には、エレメント22のいずれか一方から、長い棒のようなもので押し出すことで調整することができる。
 また、第1の排出管58および第2の排出管60に設けられた計測器68、70により第1のバルブ64、濃縮水排出バルブ66の開度を決定することで、透過水量の調整を行なうこともできる。計測器68、70としては、流量計、圧力計を用いることができる。
 図6は、実施の形態の逆浸透処理装置のRO膜エレメントの位置と透過水の相対的流束の関係を示した図である。なお、本発明のデータは、エレメント7個のうち非透水性の抵抗体80を供給水側から2個目のエレメントの末端部に設置し、計測器68の流量測定値を指標に第1のバルブ64で第1の排出管58の透過水量を調節し、前段のRelative Fluxを1.0以下になるようにして実験を行なったデータである。図6に示すように、従来では、供給水側から多くの透過水が生成され、濃縮水側にいくにつれ、透過水の量が下がっていた。これに対し、本発明では、抵抗体80を設けて、供給水側に第1の排出管58を設けて透過水を排出しているので、第1の排出管58に接続して設けられた第1のバルブ64を調節することにより供給水側の集水配管34内の圧力の調整を行なうことができる。そして、第1のバルブ64の開度の調節は、計測器68により測定した数値により行なうことができる。従来は、供給水側からの透過水の流量が多かったが、本発明においては、供給水側の圧力を調整することができるので、供給水側の透過水の流量を従来より下げることができる。そのため、濃縮水側の塩濃度を従来に比べ低くすることができるので、各RO膜エレメントの透過水量の不均一さを解消することができる。このように、透過水をベッセル24の第1の排出管58、第2の排出管60の両側から排出する構成とし、第1のバルブ64、濃縮水排出バルブ66の開度により、集水配管34内の圧力を調節することで、各RO膜の透過水量の不均一さを解消することができる。したがって、省動力化を図ることができるとともに、供給水側のRO膜の汚れを抑制することができる。
 本発明においては、第1のバルブ64として、開度の調整が可能な調整弁の代わりに定流量弁を用いることもできる。定流量弁を用いた場合は、抵抗体80の位置を調整することのみで集水配管34の透過水量の調整を行なう。
 非透水性の抵抗体80の位置を供給側から4個目のエレメントの末端部に設置した場合のデータを図7に示す。図7によれば、ベッセル24への供給圧力、すなわち、エレメント22の最終段にかける圧力が最も低くなるように調整することができる。ベッセル24内への供給圧力が最も低くなるように調整することで省動力化を図ることができるとともに、前段は塩濃度が低いので、所定の透過水の流量を保持することができ、安定して透過水の生成も行なうことができる。
 さらに、RO膜の透過水量が変わると、塩濃度の阻止率も変化する。その場合、阻止率をモニタリングして、第1のバルブ64、濃縮水排出バルブ66の開度、抵抗体80の位置を調整することも可能である。塩濃度の阻止率としては、第1の排出管58および第2の排出管60の電気伝導度を測定することで簡易に測定することができる。
 次に抵抗体80について説明する。抵抗体80としては、図9Aに示すように、抵抗体80全体が弾性体82であるもの、あるいは、図9Bに示すように、非弾性体84にOリング状の弾性体82を設置するものが好適である。集水配管34の内壁に弾性体82を密着させることにより抵抗体80を設置する。抵抗体80の位置調整は上述したように、集水配管34の端部から押し出すことにより調整するため、内壁との接触部分は弾性体82で構成されていることが好ましい。しかしながら、透過水の水流により位置が変わらないような、集水配管34の内壁と抵抗を有するものが好ましい。このような弾性体としては、例えば、EPDM(エチレンプロピレンジエンゴム)、シリコーンなどを使用することができる。
 抵抗体80は図10Aに示すように非透水性とし、抵抗体80で集水配管34中を透過水が移動できないように完全に閉止することもできる。また、図10Bに示すように、多孔性材料を用いて透水性とすることも可能である。また、図10C、10Dに示すように、抵抗体80と集水配管34の内壁との間にスリットを設けて、透過水の移動を可能にすることもできる。図10Cの抵抗体を、供給側から2個目のエレメントの中央部および供給側から5個目のエレメントの中央部に設置した場合のデータを図8に示す。図8によれば、ほぼ均等なFluxとすることができる。透過水を抵抗体80間で移動可能とすることで、抵抗体80を挟んだ集水配管34内の両側で抵抗を持たせることができるので、透過水量を等しくすることができる。また、抵抗体80に透水性を持たせる場合は、抵抗体80の数は限定されず、複数設置することも可能である。抵抗体80を複数設置することで、集水配管34内の圧力をより細かく調節することができるので、各RO膜の透過水量の不均一さを解消させることができる。同様に、主となる抵抗体80として透水性を有さない抵抗体80を用い、さらに、透過水量の調整を行なうために、透水性を有する抵抗体を併せて設置することも可能である。
 10…逆浸透処理装置、12…タンク、14…高圧ポンプ、16…透過水、18…濃縮水、20…脱塩処理システム、22…エレメント、24…ベッセル、26…モジュール、28…RO膜、30…排出管、32…膜ユニット、34…集水配管、36…透孔、38、40…スペーサー、56…導入管、57…流路、58…第1の排出管、60…第2の排出管、62…第3の排出管、64…第1のバルブ、66…濃縮水排出バルブ、68、70…計測器、80…抵抗体、82…弾性体、84…非弾性体

Claims (7)

  1.  逆浸透処理装置であって、
     圧力容器と、
     前記圧力容器の一方の端部に被処理水を供給する導入管と、
     前記圧力容器の他方の端部に濃縮水を排出する濃縮水排出管と、
     前記圧力容器内に設けられ、且つ、逆浸透膜を備える複数の逆浸透膜エレメントと、を備え、
     前記逆浸透膜エレメントは更に、
     前記逆浸透膜を通過した透過水が流れる集水配管であって、前記複数の逆浸透膜エレメントを前記圧力容器内で直列に接続する集水配管と、を備え、
     前記集水配管は、
     前記透過水を、前記被処理水の供給側である前段と、濃縮水の排出側である後段と、に分離する抵抗体と、
     前段の前記透過水を排出する第1の排出管と、
     後段の前記透過水を排出する第2の排出管と、を備え、
     前記第1の排出管は第1のバルブを備える、
     逆浸透処理装置。
  2.  前記抵抗体は前記集水配管内の任意の位置に設置可能である、請求項1に記載の逆浸透処理装置。
  3.  前記抵抗体は、非透水性である、請求項1又は2に記載の逆浸透処理装置。
  4.  前記抵抗体は、透水性である、請求項1又は2に記載の逆浸透処理装置。
  5.  前記抵抗体は、多孔性材料で形成されている、請求項4に記載の逆浸透処理装置。
  6.  前記抵抗体に、透過水が通過するスリットが形成されている、請求項1から5のいずれか1項に記載の逆浸透処理装置。
  7.  前記抵抗体が、前記集水配管中に複数設けられている、請求項4から6のいずれか1項に記載の逆浸透処理装置。
PCT/JP2011/078858 2010-12-20 2011-12-14 逆浸透処理装置 WO2012086477A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010283591A JP2012130838A (ja) 2010-12-20 2010-12-20 逆浸透処理装置
JP2010-283591 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086477A1 true WO2012086477A1 (ja) 2012-06-28

Family

ID=46313753

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/078858 WO2012086477A1 (ja) 2010-12-20 2011-12-14 逆浸透処理装置

Country Status (2)

Country Link
JP (1) JP2012130838A (ja)
WO (1) WO2012086477A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418448A (zh) * 2013-08-26 2015-03-18 株式会社日立制作所 淡水化系统
CN108355495A (zh) * 2018-04-19 2018-08-03 深圳市美迪宝实业有限公司 具有调节阀的ro膜滤芯
WO2018182033A1 (ja) * 2017-03-31 2018-10-04 東レ株式会社 造水方法及び造水装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101515446B1 (ko) 2012-11-15 2015-05-11 중앙대학교 산학협력단 멤브레인 복합체 이를 이용한 멤브레인 모듈 및 수처리 방법
CN106413863B (zh) * 2014-05-14 2019-12-13 陶氏环球技术有限责任公司 具有集成式渗透物流量控制器的螺旋卷绕组件

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150924A (ja) * 1990-10-16 1992-05-25 Kurita Water Ind Ltd 膜分離装置
JP2000167358A (ja) * 1998-12-08 2000-06-20 Nitto Denko Corp 膜分離システムおよび膜分離方法
JP2001137672A (ja) * 1999-11-18 2001-05-22 Toray Ind Inc 逆浸透処理装置および造水方法
EP1720639A1 (en) * 2004-02-25 2006-11-15 Dow Gloval Technologies Inc. Apparatus for treating solutions of high osmotic strength
JP2010179264A (ja) * 2009-02-06 2010-08-19 Mitsubishi Heavy Ind Ltd スパイラル型海水淡水化装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04150924A (ja) * 1990-10-16 1992-05-25 Kurita Water Ind Ltd 膜分離装置
JP2000167358A (ja) * 1998-12-08 2000-06-20 Nitto Denko Corp 膜分離システムおよび膜分離方法
JP2001137672A (ja) * 1999-11-18 2001-05-22 Toray Ind Inc 逆浸透処理装置および造水方法
EP1720639A1 (en) * 2004-02-25 2006-11-15 Dow Gloval Technologies Inc. Apparatus for treating solutions of high osmotic strength
JP2007523744A (ja) * 2004-02-25 2007-08-23 ダウ グローバル テクノロジーズ インコーポレーテッド 高い浸透力の溶液を処理する装置
US20070272628A1 (en) * 2004-02-25 2007-11-29 Mickols William E Apparatus for Treating Solutions of High Osmotic Strength
JP2010179264A (ja) * 2009-02-06 2010-08-19 Mitsubishi Heavy Ind Ltd スパイラル型海水淡水化装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104418448A (zh) * 2013-08-26 2015-03-18 株式会社日立制作所 淡水化系统
WO2018182033A1 (ja) * 2017-03-31 2018-10-04 東レ株式会社 造水方法及び造水装置
CN108355495A (zh) * 2018-04-19 2018-08-03 深圳市美迪宝实业有限公司 具有调节阀的ro膜滤芯
CN108355495B (zh) * 2018-04-19 2024-07-02 广州沃刻科技有限公司 具有调节阀的ro膜滤芯

Also Published As

Publication number Publication date
JP2012130838A (ja) 2012-07-12

Similar Documents

Publication Publication Date Title
JP5597122B2 (ja) 逆浸透処理装置
WO2012086478A1 (ja) 逆浸透処理装置
JP5923294B2 (ja) 逆浸透処理装置
WO2012086477A1 (ja) 逆浸透処理装置
US20120125846A1 (en) Filtering method, and membrane-filtering apparatus
JP5791767B2 (ja) 逆浸透処理装置
JPWO2011010500A1 (ja) 造水システム
US10322361B2 (en) Water purifying system and backwash module control method thereof
CN102099302A (zh) 液体净化设备、清洗中空纤维过滤器的方法和清洗中空纤维过滤器的方法的使用
WO2013039224A1 (ja) 淡水製造装置および淡水の製造方法
EP3663266B1 (en) Water purifier and control method of the same
JP6075031B2 (ja) 純水製造装置
JP6216847B2 (ja) 逆浸透処理装置
JP6036808B2 (ja) 造水方法
JP2010253364A (ja) 純水生成装置
US11617987B2 (en) Reverse osmosis apparatus and seawater desalination system having the same
JPWO2018182033A1 (ja) 造水方法及び造水装置
JP2013252505A (ja) 透析用水製造装置
KR101481075B1 (ko) 침지식 연속유동 막여과장치 및 그의 역세척방법
JP5996057B2 (ja) 逆浸透処理装置
KR101334651B1 (ko) 저류조가 없는 정수처리장치 및 이를 이용한 정수처리방법
JP7147291B2 (ja) 純水製造装置、純水の製造方法
CN115297950A (zh) 造水装置的洗涤故障判定方法和洗涤故障判定程序
KR101806348B1 (ko) 평막을 이용한 수처리장치
US20140262991A1 (en) Corrosion and contamination preventing apparatus and subsystem for watermaker systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11852033

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11852033

Country of ref document: EP

Kind code of ref document: A1