WO2012086192A1 - Method for producing polylactic resin composition - Google Patents

Method for producing polylactic resin composition Download PDF

Info

Publication number
WO2012086192A1
WO2012086192A1 PCT/JP2011/007130 JP2011007130W WO2012086192A1 WO 2012086192 A1 WO2012086192 A1 WO 2012086192A1 JP 2011007130 W JP2011007130 W JP 2011007130W WO 2012086192 A1 WO2012086192 A1 WO 2012086192A1
Authority
WO
WIPO (PCT)
Prior art keywords
polylactic acid
acid resin
resin composition
barrel
screw
Prior art date
Application number
PCT/JP2011/007130
Other languages
French (fr)
Japanese (ja)
Inventor
洋昭 岸本
武中 晃
Original Assignee
花王株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 花王株式会社 filed Critical 花王株式会社
Priority to CN201180061592.2A priority Critical patent/CN103260840B/en
Publication of WO2012086192A1 publication Critical patent/WO2012086192A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/20Compounding polymers with additives, e.g. colouring
    • C08J3/203Solid polymers with solid and/or liquid additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/482Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs
    • B29B7/483Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws provided with screw parts in addition to other mixing parts, e.g. paddles, gears, discs the other mixing parts being discs perpendicular to the screw axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/34Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices
    • B29B7/38Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary
    • B29B7/46Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft
    • B29B7/48Mixing; Kneading continuous, with mechanical mixing or kneading devices with movable mixing or kneading devices rotary with more than one shaft with intermeshing devices, e.g. screws
    • B29B7/488Parts, e.g. casings, sealings; Accessories, e.g. flow controlling or throttling devices
    • B29B7/489Screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/30Mixing; Kneading continuous, with mechanical mixing or kneading devices
    • B29B7/58Component parts, details or accessories; Auxiliary operations
    • B29B7/60Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material
    • B29B7/603Component parts, details or accessories; Auxiliary operations for feeding, e.g. end guides for the incoming material in measured doses, e.g. proportioning of several materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/88Adding charges, i.e. additives
    • B29B7/90Fillers or reinforcements, e.g. fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/02Making granules by dividing preformed material
    • B29B9/06Making granules by dividing preformed material in the form of filamentary material, e.g. combined with extrusion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B9/00Making granules
    • B29B9/12Making granules characterised by structure or composition
    • B29B9/14Making granules characterised by structure or composition fibre-reinforced
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/395Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders
    • B29C48/40Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die using screws surrounded by a cooperating barrel, e.g. single screw extruders using two or more parallel screws or at least two parallel non-intermeshing screws, e.g. twin screw extruders
    • B29C48/405Intermeshing co-rotating screws
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/54Screws with additional forward-feeding elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/57Screws provided with kneading disc-like elements, e.g. with oval-shaped elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/505Screws
    • B29C48/625Screws characterised by the ratio of the threaded length of the screw to its outside diameter [L/D ratio]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/25Component parts, details or accessories; Auxiliary operations
    • B29C48/36Means for plasticising or homogenising the moulding material or forcing it through the nozzle or die
    • B29C48/50Details of extruders
    • B29C48/68Barrels or cylinders
    • B29C48/682Barrels or cylinders for twin screws
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/0083Nucleating agents promoting the crystallisation of the polymer matrix
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/10Esters; Ether-esters
    • C08K5/11Esters; Ether-esters of acyclic polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29BPREPARATION OR PRETREATMENT OF THE MATERIAL TO BE SHAPED; MAKING GRANULES OR PREFORMS; RECOVERY OF PLASTICS OR OTHER CONSTITUENTS OF WASTE MATERIAL CONTAINING PLASTICS
    • B29B7/00Mixing; Kneading
    • B29B7/80Component parts, details or accessories; Auxiliary operations
    • B29B7/82Heating or cooling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/04Polyesters derived from hydroxy carboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • C08L71/02Polyalkylene oxides

Definitions

  • the present invention relates to a method for producing a polylactic acid resin composition.
  • a pellet-shaped resin composition is generally used as a molding material. And this resin composition is normally manufactured with an extruder.
  • Patent Document 1 uses a same-direction meshing twin screw extruder, and a cylinder is provided with a vent port at a position away from a feed opening by a predetermined length.
  • the screw between them consists of a solid transport part, a solid compression part, a shear part, and a volatile separation part each having a predetermined length in order from the feed opening side. It is disclosed that the solvent is separated from the vent port by setting the melting point Tm-50) to (Tm + 90) ° C. or (the glass transition temperature Tg of the thermoplastic resin) to (Tg + 120) ° C.
  • a solid transport zone, a mixing zone, and a melting zone are used by a screw element installed between a material supply port and an outlet using a same-direction meshing twin screw extruder. Then, the kneading temperature in each zone is set in a temperature range 0 to 50 ° C. higher than the melting point Tm of the resin or in a temperature range 80 to 150 ° C. higher than the glass transition temperature Tg. It is disclosed that kneading is performed while sequentially passing through these zones.
  • Patent Document 3 a metal hydroxide having an average particle size of 7 ⁇ m or less, which is surface-treated with an epoxy silane coupling agent, is added to 20 to 100 parts by weight of a lactic acid resin that is a biodegradable resin material.
  • An injection molded body containing 120 parts by weight is disclosed.
  • the present invention provides a mixture comprising a polylactic acid resin and a surface-treated inorganic powder having a content of 50 to 200 parts by weight with respect to 100 parts by weight of the polylactic acid resin.
  • a pair of screws having an outer diameter D of 30 mm or more in which screw elements are continuously provided along the length direction are barrels that are divided into a plurality of parts that can be independently set in temperature along the length direction.
  • the length of the downstream part from the position corresponding to the center of the raw material supply port of the barrel among the screw effective parts that are inserted in parallel and the screw elements of the screw are continuously arranged along the length direction.
  • Condition 1 It is provided so as to include at least the range of 6.3D to 13Dmm from the center position of the raw material supply port of the barrel, and the set temperature of the barrel is (Tm + 50) to (Tm + 80) where the melting point of the polylactic acid resin is Tm
  • Tm A first temperature setting zone in which the screw is provided with a conveying element, and a range of at least 19.3 Dmm from the center position of the barrel material supply port on the downstream side of the first temperature setting zone.
  • Condition 2 Provided to have a start point and an end point within a range of 13D to 20.9Dmm from the center position of the raw material supply port of the barrel, a length of 1D to 4Dmm, and a kneading element provided to the screw It has a 1st kneading part.
  • Condition 3 Second kneading provided with a starting point within a range of 20.9 Dmm or more from the center position of the raw material supply port of the barrel, having a length of 1D to 4Dmm, and a kneading element provided on the screw Part.
  • FIG. 1 shows a same-direction meshing twin-screw extruder 100 according to this embodiment.
  • the same-direction meshing twin-screw extruder 100 has a pair of screws 10 and a barrel 20, and the pair of screws 10 are arranged in parallel in the horizontal direction and inserted through the barrel 20. It is provided to be rotatable in the direction.
  • the pair of screws 10 are configured to rotate in the same direction so as to convey and knead the raw material from the upstream side to the downstream side through a gap formed between the screw 10 and the inner wall of the barrel 20.
  • a raw material supply unit 30 is provided at the upstream end of the barrel 20.
  • the raw material supply unit 30 includes a plurality of feeders 31 and a hopper 32, and each of the plurality of feeders 31 supplies each raw material into the barrel 20 from the hopper 32 through the raw material supply port 20a with a set supply amount. It is configured.
  • a rotation drive unit 40 is provided on the upstream side of the barrel 20, and one end of a pair of screws 10 is coupled to the rotation drive unit 40.
  • the rotational drive unit 40 includes a drive motor and a gear box, and the screw 10 is rotationally driven by them at a set rotational speed, and a mixture (hereinafter referred to as “resin”) containing polylactic acid resin and surface-treated inorganic powder.
  • the mixture M ′ is kneaded.
  • a die 22 is provided at the downstream end of the barrel 20.
  • the die 22 has a heater so that a melt-kneaded product (hereinafter referred to as “kneaded product M”) of the resin mixture M ′ is extruded from the discharge port into a predetermined shape such as a string or a sheet at a set temperature. It is configured.
  • the cooling tank 50 and the pelletizing part 60 are provided in the downstream of the barrel 20 in order. Cooling water W is stored in the cooling tank 50, and the kneaded material M pushed out from the die 22 is immersed in the cooling water W to be cooled.
  • the cooling means of the kneaded material M is not limited to water cooling, Air cooling may be sufficient.
  • the pelletizing unit 60 is configured to pelletize the kneaded material M cooled in the cooling tank 50 into a pellet form or the like.
  • the barrel 20 may be provided with a deaeration mechanism or a side feeder.
  • Each screw 10 is configured by connecting a plurality of screw elements 111 and 112 along the length direction of the rotary shaft 12.
  • the outer diameter D of each screw 10 is 30 mm or more, and preferably 35 mm or more.
  • a portion where the screw elements 111 and 112 are continuously provided along the length direction constitutes a screw effective portion, and the length, that is, the sum of the lengths of the screw elements 111 and 112 is the screw. the effective length L e.
  • the ratio of the length L 1 of the downstream portion from the position corresponding to the center to the outer diameter D of the screw 10 with respect to the center of the raw material supply port 20a of the barrel 20 outside the screw 10 in the screw effective portion (reference) L 1 / D) is 30 or more in order to sufficiently knead the resin mixture M ′. Moreover, it is preferable that it is 60 or less from a viewpoint of preventing deterioration by heat_generation
  • the ratio (L 2 / D) of the length L 2 of the screw elements 111 and 112 to the outer diameter D of the screw 10 is preferably, for example, 0.1 to 3.0, and preferably 0.5 to 2.0. Is more preferable.
  • the plurality of screw elements 111 and 112 include a conveying element 111 and a kneading element 112.
  • Each of the pair of screws 10 is configured such that the conveying element 111 or the kneading element 112 can be arranged at an arbitrary position along the length direction thereof, and is conveyed to a portion where the conveying element 111 is provided.
  • the kneading part is constituted in the part where the kneading element 112 is provided.
  • the transport element 111 has a structure in which a strip-shaped screw blade is coupled to the rotary shaft 12 side and provided in a spiral shape.
  • the ratio (P / D) of the screw blade spiral pitch P to the outer diameter D of the screw 10 is, for example, 0.1 to 2.0.
  • the plurality of transport elements 111 provided in each screw 10 may have a uniform spiral pitch P, or may have different spiral pitch P.
  • the conveying speed of the resin mixture M ′ can be controlled by the size of the helical pitch P.
  • the kneading element 112 is configured to give higher shear to the resin mixture M ′ than the conveying element 111.
  • Examples of the kneading element 112 include a forward kneading disk, a reverse kneading disk, a forward rotor, a reverse rotor, a pineapple, a neutral, a wide, and the like as disclosed in JP-A-10-272624.
  • the pair of screws 10 are arranged in parallel in the horizontal direction, but when they rotate in the same direction, they do not have an interference part in a plan view, but in a front view, one rotation locus and the other
  • the rotation trajectory has an overlapping portion, thereby forming a meshing structure.
  • the pair of screws 10 are usually provided with the same type of screw elements 111 and 112 at the same position in the length direction, but when they are rotated in the same direction, they do not have an interference portion in plan view. Different types of screw elements 111 and 112 may be provided at the same position in the length direction.
  • the barrel 20 is configured by connecting a plurality of cylindrical barrel units 21, and a screw insertion hole 23 having a transverse cross-sectional outer shape that is a contour shape formed by a pair of circles intersecting each other in the length direction. It is formed to extend.
  • the number of barrel units 21 provided is, for example, 7 to 20.
  • the ratio (L 3 / D) of the length L 3 of each barrel unit 21 to the outer diameter D of the screw 10 is, for example, 3 to 5.
  • Each barrel unit 21 is provided with a heater. Therefore, the barrel 20 is divided into a plurality of portions of the barrel unit 21 unit, and the temperature can be set independently of each other along the length direction in the divided unit.
  • Each barrel unit 21 is provided with a cooling means (not shown) for temperature control.
  • the heaters of each part, the drive motor of the rotation drive unit 40, and the like are connected to a control unit (not shown).
  • Examples of commercially available same-direction meshing twin screw extruders include the TEM series manufactured by Toshiba Machine, the TEX series manufactured by Nippon Steel, the ZSK type manufactured by Warner, and the PCM series manufactured by Ikekai Tekko. It is done.
  • the raw material used in the method for producing the polylactic acid resin composition according to this embodiment includes a polylactic acid resin and a surface-treated inorganic powder.
  • polylactic acid resin As a polylactic acid resin used as a raw material, polylactic acid obtained by condensation polymerization of only a lactic acid component as a monomer, and a lactic acid component and a hydroxycarboxylic acid component other than lactic acid (hereinafter referred to as “hydroxycarboxylic acid component”) as a monomer are subjected to condensation polymerization. And polylactic acid as a copolymer.
  • the polylactic acid resin may be configured to include any one of these, or may be configured to include both.
  • the polylactic acid resin is preferably a biodegradable resin that is decomposed into a low molecular weight compound by microorganisms in nature.
  • biodegradable means a property that can be decomposed into a low molecular weight compound by a microorganism in nature.
  • JIS K6953 ISO 14855
  • controlled aerobic composting conditions This means biodegradability based on the “Aerobic and Ultimate Biodegradation and Disintegration Test”.
  • the lactic acid component includes optical isomers of L-lactic acid (L form) and D-lactic acid (D form).
  • the polylactic acid resin used as a raw material may include only one of the optical isomers as the lactic acid component, or may include both. From the viewpoint of improving the flexibility, heat resistance, and moldability of the polylactic acid resin composition to be produced, a polylactic acid resin containing a lactic acid component having a high optical purity mainly composed of any optical isomer is preferred.
  • the “main component” refers to a component whose content in the lactic acid component is 50 mol% or more.
  • hydroxycarboxylic acid component examples include hydroxycarboxylic acid compounds such as glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, and hydroxycaproic acid. Of these, glycolic acid and hydroxycaproic acid are preferred from the viewpoint of enhancing the flexibility, heat resistance, and transparency of the polylactic acid resin composition to be produced.
  • the hydroxycarboxylic acid component may be composed of a single species or a plurality of species.
  • the lactic acid component and the hydroxycarboxylic acid component may contain a dimer of lactic acid or a hydroxycarboxylic acid compound.
  • a dimer of lactic acid or a hydroxycarboxylic acid compound Preferable examples include D-lactide and L-lactide which increase the heat resistance and transparency of the polylactic acid resin composition to be produced.
  • the dimer of lactic acid may be contained in any lactic acid component of polylactic acid obtained by condensation polymerization of only a lactic acid component and polylactic acid obtained by condensation polymerization of a lactic acid component and a hydroxycarboxylic acid component.
  • the content of the dimer of lactic acid in the lactic acid component is preferably from 80 to 100 mol%, and from 90 to 100 mol%, from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced. More preferably.
  • the content of the dimer of the hydroxycarboxylic acid compound in the hydroxycarboxylic acid component is preferably 80 to 100 mol% from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced, and 90 More preferably, it is ⁇ 100 mol%.
  • the method for polycondensing only the lactic acid component and the method for polycondensing the lactic acid component and the hydroxycarboxylic acid component are not particularly limited, and known methods can be applied.
  • polylactic acid having an L-lactic acid component or D-lactic acid component of 85 mol% or more and less than 100 mol% and a hydroxycarboxylic acid component of more than 0 mol% and 15 mol% or less can be obtained.
  • the polylactic acid resin used as a raw material is preferably polylactic acid obtained by using lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone as monomers.
  • the optical purity of polylactic acid is preferably 95% or more, more preferably 98% or more, from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced.
  • optical purity of polylactic acid is measured according to the D-body content measurement method described in “Voluntary Standards for Food Containers and Packaging Made of Synthetic Resins such as Polyolefins, Third Edition, Revised June 2004, Part 3, Sanitation Test Method P12-13”. Can be based on.
  • the polylactic acid resin is a stereocomplex polythene composed of two types of polylactic acid obtained by using lactic acid components mainly composed of different isomers from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced. It may be composed of lactic acid.
  • polylactic acid A contained in the stereocomplex polylactic acid comprises 90 to 100 mol% of the L-lactic acid component and 0 to 10 mol% of the other components including the D-lactic acid component.
  • the other polylactic acid (hereinafter referred to as “polylactic acid B”) comprises 90 to 100 mol% of D-lactic acid component and 0 to 10 mol% of other components including L-lactic acid component.
  • the stereocomplex polylactic acid preferably has a weight ratio of polylactic acid A to polylactic acid B (polylactic acid A / polylactic acid B) of 10/90 to 90/10, preferably 20/80/80/20. Is more preferably 40/60 to 60/40.
  • Examples of other components other than the L-lactic acid component and the D-lactic acid component include, for example, dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones having two or more functional groups capable of forming an ester bond in the molecule. And polyesters, polyethers, polycarbonates, etc. having two or more unreacted functional groups in the molecule.
  • the melting point (Tm) of the polylactic acid resin increases the dispersibility of internal additives such as plasticizers and crystal nucleating agents, increases the bending strength of the polylactic acid resin composition to be produced, suppresses deterioration, and productivity. From the viewpoint of increasing the temperature, it is preferably 140 to 250 ° C, more preferably 150 to 240 ° C, and further preferably 160 to 230 ° C.
  • the melting point of the polylactic acid resin can be measured from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121.
  • the polylactic acid resin used as a raw material can be obtained by condensation polymerization of a monomer, and can also be obtained as a commercial product.
  • Examples of such commercially available products include “Lacia series” such as Lacia H-100, H-280, H-400, and H-440 manufactured by Mitsui Chemicals; 3001D, 3051D, 4032D, 4042D, and 6201D manufactured by Nature Works. "Nature Works” such as 6251D, 7000D and 7032D; "Eco Plastic U'z series” such as Eco Plastic U'z S-09, S-12 and S-17 manufactured by Toyota Motor Corporation, etc. Is preferable from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced.
  • inorganic powder with surface treatment examples include metal hydroxides, metal hydrates, and layered silicates.
  • a single kind of inorganic powder may be blended, or a plurality of kinds may be blended.
  • metal hydroxide or metal hydrate examples include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium aluminate hydrate, tin oxide hydrate, progobite, zinc nitrate hexahydrate, Examples thereof include nickel nitrate hexahydrate.
  • aluminum hydroxide and magnesium hydroxide are preferred from the viewpoint of reducing the cost of the polylactic acid resin composition to be produced and improving flame retardancy.
  • Examples of the layered silicate include talc, smectite, kaolin, mica, montmorillonite, etc. Among these, talc and mica are preferable from the viewpoint of improving the heat resistance of the polylactic acid resin composition to be produced.
  • Examples of the surface treatment applied to the inorganic powder include a surface treatment using a silane coupling agent, a higher fatty acid, a titanate coupling agent, a sol-gel coating agent, a silicone polymer coating agent, a resin coating agent, and nitrate. It is done. From the viewpoint of increasing the flexibility and heat resistance of the polylactic acid resin composition to be produced, surface treatment with a silane coupling agent is preferred among these.
  • silane coupling agent examples include coupling agents such as isocyanate silane, amino silane, mercapto silane, epoxy silane, vinyl silane, methacryl silane, and epoxy silane.
  • coupling agents such as isocyanate silane, amino silane, mercapto silane, epoxy silane, vinyl silane, methacryl silane, and epoxy silane.
  • a coupling agent of isocyanate silane, aminosilane, mercaptosilane, or epoxysilane is preferable, and isocyanate silane is more preferable.
  • isocyanate silane examples include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, tris- (3-trimethoxysilylpropyl) isocyanurate, and the like.
  • aminosilane examples include ⁇ -aminopropyltriethoxysilane, n- ⁇ (aminoethyl) ⁇ -aminopropyltriethoxysilane, ⁇ -ureidopropyltriethoxysilane, and the like.
  • Examples of mercaptosilane include 3-mercaptopropyltrimethoxysilane.
  • epoxy silane examples include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane.
  • the inorganic powder subjected to the surface treatment with the silane coupling agent is, for example, sprayed or coated on the surface of the inorganic powder with a solution obtained by dissolving the silane coupling agent in a solvent such as acetone, ethyl acetate or toluene. Then, it can obtain by the method of drying and removing a solvent.
  • a solvent such as acetone, ethyl acetate or toluene.
  • the inorganic powder subjected to the surface treatment with the silane coupling agent has a weight ratio between the silane coupling agent and the inorganic powder (silane coupling).
  • Agent / inorganic powder) is preferably processed at a ratio of 0.1 / 99.9 to 5/95, more preferably 0.3 / 99.7 to 3/97. What was processed as a ratio of 5 / 99.5 to 2/98 is more preferable.
  • the surface-treated inorganic powder is preferably a granule having an average particle size of 10 ⁇ m or less, and more preferably a granule having an average particle size of 0.1 to 5 ⁇ m.
  • This average particle diameter can be obtained from the volume-based median diameter by a diffraction / scattering method.
  • the blending amount of the surface-treated inorganic powder with respect to 100 parts by weight of the polylactic acid resin is 50 to 200 parts by weight from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced, and 60 to 150 parts by weight. It is preferable that
  • the raw material used in the method for producing the polylactic acid resin composition according to this embodiment may further contain a plasticizer.
  • plasticizer examples include polybasic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, 1,3,6-hexanetricarboxylic acid, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, Esters with polyethylene glycol monoalkyl ethers such as triethylene glycol monoethyl ether and tetraethylene glycol monomethyl ether; polyhydric alcohols such as glycerin, ethylene glycol, diglycerin and 1,4-butanediol, ethylene oxide and / or propylene Oxidized adduct acetylated product; hydroxybenzoic acid ester such as 2-ethylhexyl hydroxybenzoate; di-2-ethylhexyl phthalate Phthalates; adipic acid esters such as adipic acid diester and dioctyl adipate; maleic acid esters such as
  • the plasticizer is adipic acid ester such as adipic acid diester, succinic acid ester such as methyltriglycol succinic acid diester, 1,3,6- An ester of hexanetricarboxylic acid and polyethylene glycol (average addition mole number of ethylene oxide 0.5 to 5) monomethyl ether, acetic acid and glycerin or ethylene glycol ethylene oxide adduct (average addition mole number of ethylene oxide 3 to 20); The esters are preferred.
  • a carboxylic acid ester can also be suitably used.
  • the carboxylic acid ester include (1) a monohydric alcohol having an alkyl group having 1 to 4 carbon atoms, (2) a dicarboxylic acid having an alkylene group having 2 to 4 carbon atoms, and (3) 2 carbon atoms. It is preferably obtained from a dihydric alcohol having 6 to 6 alkylene groups, having an acid value of 1 mgKOH / g or less, a hydroxyl value of 5 mgKOH / g or less, and a number average molecular weight of 300 to 700.
  • phosphate esters can also be suitably used.
  • a polyether-type phosphate triester is preferable.
  • the polyether-type phosphoric acid triester may have a target structure or may have an asymmetric structure.
  • the plasticizer a single kind may be blended or a plurality of kinds may be blended.
  • the blending amount of the plasticizer with respect to 100 parts by weight of the polylactic acid resin is preferably 3 to 50 parts by weight, more preferably 3 to 30 parts by weight, from the viewpoint of increasing the flexibility of the polylactic acid resin composition. More preferably, it is 3 to 20 parts by weight.
  • the raw material used in the method for producing the polylactic acid resin composition according to this embodiment may further contain a crystal nucleating agent.
  • crystal nucleating agent examples include fatty acid monoamides, fatty acid bisamides, aromatic carboxylic acid amides, rosinic acid amides, and the like; hydroxy fatty acid esters; aromatic sulfonic acid dialkyl ester metal salts, phenylphosphonic acid metal salts, phosphorus Metal salts such as acid ester metal salts and rosin acid metal salts; carbohydrazides, N-substituted ureas, organic pigments and the like.
  • the crystal nucleating agent has a single compound having a hydroxyl group and an amide group in the molecule, or has a hydroxyl group and an amide group in the molecule.
  • a combination of the compound and a metal salt of phenylphosphonic acid is preferred.
  • Examples of the compound having a hydroxyl group and an amide group in the molecule include hydroxy fatty acid monoamides such as 12-hydroxystearic acid monoethanolami; methylene bis 12-hydroxystearic acid amide, ethylene bis 12-hydroxystearic acid amide, hexamethylene bis And hydroxy fatty acid bisamides such as 12-hydroxystearic acid amide.
  • methylene bis 12-hydroxystearic acid amide ethylene bis 12-hydroxystearic acid amide, hexa Alkylene bishydroxystearic acid amides such as methylene bis 12-hydroxystearic acid amide are preferred, and among these, ethylene bis 12-hydroxystearic acid amide is more preferred.
  • the metal salt of phenylphosphonic acid is a metal salt of phenylphosphonic acid having an optionally substituted phenyl group and a phosphonic group (—PO (OH) 2 ).
  • phenylphosphonic acid having an optionally substituted phenyl group and a phosphonic group (—PO (OH) 2 ).
  • examples thereof include an alkyl group having 1 to 10 and an alkoxycarbonyl group having 1 to 10 carbon atoms in the alkoxy group.
  • phenylphosphonic acid examples include unsubstituted phenylphosphonic acid, methylphenylphosphonic acid, ethylphenylphosphonic acid, propylphenylphosphonic acid, butylphenylphosphonic acid, dimethoxycarbonylphenylphosphonic acid, diethoxycarbonylphenylphosphonic acid, and the like. Of these, unsubstituted phenylphosphonic acid is preferred.
  • Examples of the metal constituting the phenylphosphonic acid metal salt include lithium, sodium, magnesium, aluminum, potassium, calcium, barium, copper, zinc, iron, cobalt, nickel and the like, among which zinc is preferable.
  • the proportion thereof is increased in the molecule from the viewpoint of increasing the flexibility and heat resistance of the polylactic acid resin composition to be produced.
  • the weight ratio of the compound having a hydroxyl group and an amide group to the phenylphosphonic acid metal salt is from 20/80 to 80/20. Is more preferable, 30/70 to 70/30 is more preferable, and 40/60 to 60/40 is still more preferable.
  • a single kind of crystal nucleating agent may be blended, or a plurality of kinds may be blended.
  • the blending amount of the crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin is preferably 0.05 to 10 parts by weight from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced.
  • the amount is more preferably ⁇ 8 parts by weight, and further preferably 0.05 to 5 parts by weight.
  • the raw material used in the method for producing the polylactic acid resin composition according to this embodiment may further contain a hydrolysis inhibitor.
  • the hydrolysis inhibitor is not particularly limited, and examples thereof include those described in paragraphs 0042 to 0044 of JP-A-2009-270087.
  • the hydrolysis inhibitor is preferably a polycarbodiimide compound from the viewpoint of enhancing the moldability of the polylactic acid resin composition to be produced. From the viewpoint of increasing the flexibility, heat resistance, impact resistance of the polylactic acid resin composition to be produced, and the bloom resistance of the organic crystal nucleating agent, a monocarbodiimide compound is preferred. From the viewpoint of enhancing the durability of the polylactic acid resin composition to be produced, a combination of a monocarbodiimide compound and a polycarbodiimide compound is preferable.
  • hydrolysis inhibitor a single species may be blended, or a plurality of species may be blended.
  • the blending amount of the hydrolysis inhibitor with respect to 100 parts by weight of the polylactic acid resin is 0.05 to 10 parts by weight from the viewpoint of enhancing the flexibility, heat resistance and durability of the polylactic acid resin composition to be produced. preferable.
  • the raw materials used in the method for producing the polylactic acid resin composition according to this embodiment include hindered phenols, phosphite antioxidants, hydrocarbon waxes, and anionic surfactant lubricants. Also good.
  • the blending amount of the antioxidant with respect to 100 parts by weight of the polylactic acid resin is, for example, 0.05 to 3 parts by weight.
  • the blending amount of the lubricant with respect to 100 parts by weight of the polylactic acid resin is, for example, 0.1 to 2 parts by weight.
  • the raw material used in the method for producing the polylactic acid resin composition according to the present embodiment is a range that does not deteriorate the flexibility and heat resistance of the polylactic acid resin composition to be produced, and further includes a flame retardant, an antistatic agent, an antifogging agent, It may contain a light stabilizer, an ultraviolet absorber, a pigment, an antifungal agent, an antibacterial agent, a foaming agent, an antidrip agent and the like.
  • the flame retardant is preferably a phosphorus flame retardant from the viewpoint of enhancing the flame retardancy, flexibility, and heat resistance of the polylactic acid resin composition to be produced.
  • the phosphorus-based flame retardant that improves the flame retardancy of the polylactic acid resin composition include phosphate esters, condensed phosphate esters, phosphates, and condensed phosphates.
  • a single type of phosphorus-based flame retardant may be blended, or a plurality of types may be blended.
  • phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate.
  • condensed phosphate ester examples include trialkyl polyphosphate, resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and Examples thereof include condensed phosphate esters such as these condensates.
  • examples of commercially available condensed phosphate esters include PX-200, PX-201, PX-202, CR-733S, CR-741, CR747 manufactured by Daihachi Chemical Co., Ltd., Adeka Stab PFR, FP-500, and FP- manufactured by ADEKA. 600, FP-700, etc., among which PX-200, PX-201, and PX-202 are preferable.
  • phosphates and condensed phosphates include phosphates and polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals in groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines. Etc.
  • Representative salts of polyphosphates include, for example, lithium salts that are metal salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts, etc .; aliphatic amine salts Certain methylamine salts, ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts and the like; pyridine salts, triazine salts, melamine salts, ammonium salts and the like which are aromatic amine salts.
  • phosphates and polyphosphates examples include Taiyen N, Taien L, Taien E, Taien S, Taien H, Clariant Clariant AP475, Clariant AP475, Clariant AP750, Clariant 1312, Clariant 1250, and ADEKA.
  • FP-2100, FP-2100J, and FP-2200 manufactured by Nissan Chemical Industries, and PHOSMEL-200 manufactured by Nissan Chemical Co., Ltd. are preferable.
  • examples of the anti-drip agent include thermosetting resins such as fluororesins and phenol resins.
  • the fluororesin include, for example, a homopolymer or copolymer of a fluorine-containing monomer such as tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoroalkyl vinyl ether; the fluorine-containing monomer, ethylene, propylene, Examples thereof include a copolymer with a copolymerizable monomer such as (meth) acrylate.
  • a single type of anti-drip agent may be blended, or a plurality of types may be blended.
  • a first temperature setting zone is provided in the barrel 20 so as to include a range of at least 6.3D to 13Dmm from the center position of the raw material supply port 20a of the barrel 20.
  • the position display (D display) in the barrel 20 using D means the distance from the center position of the raw material supply port 20a of the barrel 20.
  • the set temperature of the barrel unit 21 is set to (Tm + 50) to (Tm + 80) ° C., where the melting point of the polylactic acid resin is Tm.
  • the set temperature of the barrel unit 21 is preferably 210 to 240 ° C., more preferably 210 to 230 ° C., from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced.
  • an internal additive containing inorganic powder subjected to surface treatment is mixed with polylactic acid resin in a molten state in a barrel 20 set at (Tm + 50) to (Tm + 80) ° C. To form a resin mixture M ′.
  • the start point of the first temperature setting zone is not particularly limited as long as the first temperature setting zone includes at least the range of 6.3D to 13Dmm.
  • the conveying element 111 is provided among the screw elements 111 and 112 in the corresponding part of the screw 10, and therefore the resin mixture M ′ is conveyed and kneaded by the conveying element 111.
  • a second temperature setting zone is provided in the barrel 20 so as to include at least a range after 19.3 Dmm from the center position of the raw material supply port 20a of the barrel 20 on the downstream side of the first temperature setting zone.
  • the set temperature of the barrel unit 21 is set to (Tm ⁇ 20) to (Tm + 40) ° C., preferably (Tm) to (Tm + 30) ° C.
  • the set temperature of the barrel unit 21 is preferably 140 to 200 ° C., more preferably 160 to 190 ° C., from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced.
  • the start point of the second temperature setting zone is downstream from the first temperature setting zone, and is not particularly limited as long as the second temperature setting zone includes a range of at least 19.3 Dmm.
  • the conveying element 111 of the screw elements 111 and 112 may be provided in a corresponding part of the screw 10, and the conveying and mixing of the resin mixture M ′ may be performed by the conveying element 111. And the resin mixture M ′ may be kneaded by the kneading element 112. Note that, as described below, the second kneading part under the condition 3 is included in the second temperature setting zone.
  • a first kneading section having a length of 1D to 4Dmm is provided so as to have a start point and an end point within a range of 13D to 20.9Dmm from the center position of the raw material supply port 20a of the barrel 20.
  • the starting point of the first kneading part is not particularly limited as long as the first kneading part has a starting point and an end point in the range of 13D to 20.9 Dmm, but the flexibility of the polylactic acid resin composition to be manufactured and From the viewpoint of enhancing the heat resistance, it is preferable to position it within 7 Dmm from the end point of the first temperature setting zone, and it is more preferable to position it so as to coincide with the end point of the first temperature setting zone.
  • the kneading element 112 of the screw elements 111 and 112 is provided in a corresponding portion of the screw 10, and accordingly, the resin mixture M ′ is kneaded by the kneading element 112.
  • the set temperature of the barrel unit 21 in the first kneading part is not particularly limited, but from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced, (Tm-20) to (Tm + 80) It is preferable that the temperature is set to 0 ° C., more preferably (Tm ⁇ 10) to (Tm + 70) ° C., more preferably 140 to 240 ° C., and still more preferably 150 to 230 ° C.
  • a second kneading section having a length of 1D to 4Dmm is provided so as to have a starting point within a range of 20.9 DDmm or more from the center position of the raw material supply port 20a of the barrel 20.
  • the starting point of the second kneading part is not particularly limited as long as it is within the range of 20.9 Dmm or more, but from the viewpoint of increasing the flexibility and heat resistance of the polylactic acid resin composition to be produced, the first temperature It is preferably positioned within 15 Dmm from the end point of the set zone, more preferably within 10 Dmm, and even more preferably within 3 Dmm. Further, the start point of the second kneading unit may be positioned so as to coincide with the end point of the first kneading unit, and the first and second kneading units may be configured to be continuous.
  • the kneading element 112 of the screw elements 111, 112 is provided in the corresponding part of the screw 10, and thus the kneading element 112 kneads the resin mixture M ′.
  • the set temperature of the barrel unit 21 is (Tm ⁇ 20) to (Tm + 40) ° C., but the polylactic acid resin composition to be produced is acceptable.
  • the set temperature of the barrel unit 21 in the second kneading part is preferably (Tm) to (Tm + 0) ° C., preferably 140 to 200 ° C., and 160 to 190. More preferably, the temperature is set to ° C.
  • a conveyance unit in which the conveyance element 111 is mounted on the screw 10 may be provided on the upstream side of the first temperature setting zone in the barrel 20.
  • the conveying unit has a length of, for example, 3.0D to 4.2Dmm, and a set temperature of the barrel unit 21 is, for example, (Tm ⁇ 150) to (Tm + 80) ° C.
  • the transport unit preferably includes a range of 0 to 5.0 Dmm.
  • the first temperature setting zone and the first kneading unit may be provided continuously as described above, or a conveyance unit in which the conveyance element 111 is mounted on the screw 10 may be provided therebetween.
  • the discharge amount Q per hour (kg / hour), that is, the raw material supply amount is appropriately set according to the scale of the same-direction meshing twin screw extruder 100, Q is preferably in the range of 0.005D 2.5 to 0.03D 2.5 .
  • the rotation speed N of the screw 10 is appropriately set according to the scale of the same-direction meshing twin-screw extruder 100, and is, for example, 10 to 1500 rpm.
  • the ratio Q / N between the discharge amount Q (kg / hour) and the screw rotation speed N (rpm) is such that the dispersibility of the internal additive including the inorganic powder subjected to the surface treatment is good, and the polylactic acid to be produced From the viewpoint of increasing the flexibility and heat resistance of the resin composition, it is preferable to have a relationship of 0.2 ⁇ Q / N ⁇ 1.5, and a relationship of 0.2 ⁇ Q / N ⁇ 1.0. Is more preferable.
  • the kneaded product M of the polylactic acid resin composition extruded from the barrel 20 through the die 22 is continuously connected to the cooling water W stored in the cooling tank 50. Immerse and solidify by cooling.
  • the temperature of the cooling water W is set to 10 to 40 ° C., for example.
  • the kneaded product M of the polylactic acid resin composition pulled up from the cooling bath 50 is put into the pelletizing unit 60 and pelletized into pellets or chips.
  • the particle size of the pellet-shaped or chip-shaped polylactic acid resin composition is, for example, 2 to 5 mm.
  • the polylactic acid resin of the kneaded product M is preferably crystallized in the pelletizing part 60.
  • the surface temperature of the kneaded material M from the cooling bath 50 to the pelletizing part 60 is preferably maintained at 70 to 120 ° C.
  • the cooling tank 50 may be composed of at least one tank or two or more tanks, and the water temperature is preferably in the range of 10 to 90 ° C. You may use it at a different temperature when comprising with a tank.
  • the pellet-like or chip-like polylactic acid resin composition produced as described above is used for molding materials such as injection molding.
  • the outline of the method for producing the polylactic acid resin composition according to this embodiment is as follows.
  • a mixture comprising a polylactic acid resin and an inorganic powder subjected to a surface treatment having a content of 50 to 200 parts by weight, preferably 60 to 150 parts by weight, based on 100 parts by weight of the polylactic acid resin,
  • the screw elements including the conveying element and the kneading element are continuously provided along the length direction, and a pair of screws having an outer diameter D of 30 mm or more can be set independently of each other along the length direction. From the position corresponding to the center of the raw material supply port of the barrel among the screw effective parts that are inserted in parallel to the barrel divided into parts and the screw elements of the screw are continuously provided along the length direction.
  • Condition 1 It is provided so as to include at least the range of 6.3D to 13Dmm from the center position of the raw material supply port of the barrel, and the set temperature of the barrel is (Tm + 50) to (Tm + 80) where the melting point of polylactic acid resin is Tm
  • Tm + 50 the melting point of polylactic acid resin
  • Tm + 80 the melting point of polylactic acid resin
  • Condition 2 Provided to have a start point and an end point within a range of 13D to 20.9Dmm from the center position of the raw material supply port of the barrel, a length of 1D to 4Dmm, and a kneading element provided to the screw It has a 1st kneading part.
  • Condition 3 Second kneading provided with a starting point within a range of 20.9 Dmm or more from the center position of the raw material supply port of the barrel, having a length of 1D to 4Dmm, and a kneading element provided on the screw Part.
  • the inorganic powder is aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium aluminate hydrate, tin oxide hydrate, progobite, zinc nitrate hexahydrate, or nickel nitrate hexahydrate.
  • the manufacturing method of the polylactic acid resin composition as described in said (2) containing at least 1 sort (s) chosen from the group which consists of a Japanese thing.
  • the blending amount of the crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin is 0.05 to 10 parts by weight, preferably 0.05 to 8 parts by weight, more preferably 0.05 to 5 parts by weight.
  • the ratio (L / D) of the length L of the portion on the downstream side from the position corresponding to the center of the raw material supply port of the barrel to the outer diameter D of the screw is 30 to 60 (1) to (1) 10)
  • the manufacturing method of the polylactic acid resin composition in any one of.
  • the ratio Q / N between the discharge amount Q (kg / hour) of the kneaded material from the same-direction meshing twin screw extruder and the screw rotation speed N (rpm) is 0.2 ⁇ Q / N ⁇ 1 .
  • Example 1 A pellet-like polylactic acid resin composition was produced using a same-direction meshing twin-screw extruder (TEM-41SS, manufactured by Toshiba Machine Co., Ltd.) having the same configuration as that of the above embodiment.
  • TEM-41SS same-direction meshing twin-screw extruder
  • Each screw has a kneading element from the upstream side to the kneading element in the order of a length of 82 mm (2 Dmm) starting from a position of 611 mm (14.9 Dmm) from the position corresponding to the center of the barrel material supply port Then, neutral and reverse kneading were attached in order (first kneading part).
  • the kneading element from the upstream side which is a kneading element, is also kneaded, neutral, in a portion starting at a position of 857 mm (20.9 Dmm) from the position corresponding to the center of the raw material supply port of the barrel. Were attached in order (second kneading section).
  • the conveyance element was provided in the other part of each screw.
  • the barrel had a raw material supply port in the first unit, and the central position of the raw material supply port was 2.07 Dmm from the upstream end of the first unit.
  • the position of each unit in the barrel length direction is 0 to 2.08 Dmm for the first unit, 2.08 D to 6.23 Dmm for the second unit, 6.23D to 10.38Dmm, the fourth unit is 10.38D to 14.53Dmm, the fifth unit is 14.53D to 18.68Dmm, the sixth unit is 18.68D to 22.83Dmm, and the seventh unit is 22.
  • the set temperatures of the barrel units are 50 ° C. for the first to second units (A temperature zone: 0 to 6.23 Dmm (zone length: 6.23 Dmm)) in order from the upstream side, and the third to fourth units (B Temperature zone: 6.23 D to 14.53 Dmm (zone length: 8.30 Dmm)) at 220 ° C. and 5th unit (C temperature zone: 14.53 D to 18.68 Dmm (zone length: 4.15 Dmm))
  • the sixth to eleventh units were set to 180 ° C.
  • Isocyanate-based silane cups based on 99% by weight of polylactic acid resin manufactured by Nature32Works, product number: 4032D, melting point (Tm): 160 ° C.
  • aluminum hydroxide manufactured by Nippon Light Metal Co., Ltd., trade name: B703
  • the formulation was 100 parts by weight of aluminum hydroxide 1 with respect to 100 parts by weight of the polylactic acid resin.
  • fusing point (Tm) was measured from the crystal melting endothermic peak temperature by the temperature rising method of the differential scanning calorimetry (DSC) based on JISK7121.
  • the kneading conditions were a discharge amount Q of 120 kg / hour and a screw rotation speed N of 265 rpm. Therefore, Q / N is 0.453.
  • Example 1 since the raw material was constituted by blending the polylactic acid resin and the surface-treated aluminum hydroxide 1 with the latter 100 parts by weight with respect to the former 100 parts by weight, the raw material structure of the present invention Meet the condition.
  • the B temperature zone includes the range of 6.23D to 14.53Dmm from 6.3D to 13Dmm, the set temperature of 220 ° C is included in (Tm + 50) to (Tm + 80) ° C, and the screw has a conveying element.
  • the D temperature zone included a range from 18.68D to 43.58 Dmm after 19.3 Dmm, and a set temperature of 180 ° C. was included in (Tm ⁇ 20) to (Tm + 40) ° C. Therefore, the B temperature zone corresponds to the first temperature setting zone and the D temperature zone corresponds to the second temperature setting zone, and the condition 1 is satisfied.
  • the first kneading part has a start point of 14.9 Dmm and an end point of 16.9 Dmm within a range of 13D to 20.9 Dmm, a length of 2Dmm is 1D to 4Dmm, and a kneading element is provided on the screw. Condition 2 is satisfied.
  • the second kneading part has a starting point of 20.9 Dmm within a range of 20.9 Dmm and beyond, a length of 2 Dmm is 1 D to 4 D mm, and a kneading element is provided on the screw, so that the condition 3 is satisfied.
  • Example 2 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the blending amount of aluminum hydroxide 1 was 50 parts by weight with respect to 100 parts by weight of the polylactic acid resin.
  • Example 3 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the blending amount of aluminum hydroxide 1 was 200 parts by weight with respect to 100 parts by weight of the polylactic acid resin.
  • Example 4 Instead of surface-treated aluminum hydroxide 1, an silane coupling agent (3-isocyanatepropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) is used for 99% by weight of talc (trade name: Microace P6, manufactured by Nippon Talc Co., Ltd.)
  • talc trade name: Microace P6, manufactured by Nippon Talc Co., Ltd.
  • a polylactic acid resin composition was produced in the same manner as in Example 1 except that 100 parts by weight of talc 1 subjected to a surface treatment of 1% by weight of KBE-9007) was mixed with 100 parts by weight of the polylactic acid resin. This was taken as Example 4.
  • a polylactic acid resin composition was produced in the same manner as in Example 1 except that the discharge amount Q was 290 kg / hour and the screw rotation speed N was 220 rpm. At this time, Q / N is 1.32.
  • Example 7 Screw (screw effective length of a length corresponding thereto as well as the number of barrels unit eight L e: 33.20Dmm, length of the portion of the downstream side from the position corresponding to the center of the raw material supply port of the barrel of the effective screw portion it was prepared analogously to the polylactic acid resin composition as in example 1 except for using the ratio (L 1 /D):31.13) to the outer diameter D of the of L 1 screw, it example 7 did.
  • the sixth to eighth units of the barrel correspond to the D temperature zone (18.68D to 31.13 Dmm (zone length: 12.45 Dmm)).
  • Example 8 Screw (screw effective length of a length corresponding to the same time the number of barrels units and 15 L e: 62.25Dmm, length of the portion of the downstream side from the position corresponding to the center of the raw material supply port of the barrel of the effective screw portion it was prepared analogously to the polylactic acid resin composition as in example 1 except for using the ratio (L 1 /D):60.18) to the outer diameter D of the of L 1 screw, it example 8 did.
  • each unit in the barrel length direction is 43.58D to 47.73Dmm for the 12th unit, 47.73D to 51.88Dmm for the 13th unit, 51.88D to 56.03Dmm for the 14th unit, And the 15th unit is 56.03D to 60.18Dmm.
  • the sixth to fifteenth units of the barrel correspond to the D temperature zone (18.68D to 60.18 Dmm (zone length: 41.50 Dmm)).
  • Example 9 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the A temperature zone was 20 ° C., and this was designated as Example 9.
  • Example 10 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the A temperature zone was 240 ° C., and this was designated as Example 10.
  • Example 11 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the B temperature zone was 210 ° C., and this was designated as Example 11.
  • Example 12 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the B temperature zone was 240 ° C., and this was designated as Example 12.
  • Example 13 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the C temperature zone was 140 ° C., and this was designated as Example 13.
  • Example 14 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the temperature set in the C temperature zone was 240 ° C., and this was designated as Example 14.
  • Example 15 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the D temperature zone was 140 ° C., and this was designated as Example 15.
  • Example 16 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the D temperature zone was 200 ° C., and this was designated as Example 16.
  • Example 17 A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 549 mm from the center position of the raw material supply port (13.4 Dmm) to 82 mm (2 Dmm). This was produced as Example 17.
  • Example 18 A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 771 mm (18.8 Dmm) to 82 mm (2 Dmm) from the center position of the raw material supply port. This was produced as Example 18. In the production of the polylactic acid resin composition of Example 18, the first and second kneading sections were continuously provided.
  • Example 19 A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 611 mm from the center position of the raw material supply port (14.9 Dmm) to 164 mm (4 Dmm). This was produced as Example 19.
  • Example 20 A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the second kneading part was provided in a portion having a length of 1349 mm from the center position of the raw material supply port (32.9 Dmm) to 82 mm (2 Dmm). This was produced as Example 20.
  • Example 21 A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the second kneading part was provided in a portion having a length of 857 mm from the center position of the raw material supply port (20.9 Dmm) to 164 mm (4 Dmm). This was produced as Example 21.
  • Example 22 Instead of aluminum hydroxide 1, amino silane coupling agent (N-phenyl-3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.) is used with respect to 99% by weight of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., trade name: B703).
  • a polylactic acid resin composition was prepared in the same manner as in Example 1 except that 100 parts by weight of aluminum hydroxide 2 having a surface treatment of 1% by weight manufactured by KBM-573) was blended with 100 parts by weight of the polylactic acid resin. This was produced as Example 22.
  • Example 23 Mercapto-based silane coupling agent (3-mercaptopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-) with respect to 99% by weight of aluminum hydroxide (trade name: B703, manufactured by Nippon Light Metal Co., Ltd.) instead of aluminum hydroxide 1
  • a polylactic acid resin composition was produced in the same manner as in Example 1 except that 100 parts by weight of aluminum hydroxide 3 having a surface treatment of 1% by weight of 803) was blended with respect to 100 parts by weight of the polylactic acid resin.
  • Example 24 10 parts by weight of plasticizer 1 (methyltriglycol succinic acid diester), 100 parts by weight of polylactic acid resin, crystal nucleating agent 1 (product name: SLIPAX H, manufactured by Nippon Kasei Co., Ltd.), having a hydroxyl group and an amide group in the molecule 0.5 parts by weight of bisamide), crystal nucleating agent 2 (trade name: PPA-Zn, zinc phenylphosphonate) manufactured by Nissan Chemical Co., Ltd., and hydrolysis inhibitor (trade name: Stavaxol I- manufactured by Rhein Chemie) LF)
  • plasticizer 1 methyltriglycol succinic acid diester
  • crystal nucleating agent 1 product name: SLIPAX H, manufactured by Nippon Kasei Co., Ltd.
  • crystal nucleating agent 2 trade name: PPA-Zn, zinc phenylphosphonate
  • hydrolysis inhibitor trade name: Stavaxol I- manufactured by Rhein Chemie
  • plasticizer 1 was produced as follows.
  • a 3 L flask equipped with a stirrer, thermometer and dehydration tube was charged with 500 g of succinic anhydride, 2463 g of triethylene glycol monomethyl ether, and 9.5 g of paratoluenesulfonic acid-hydrate, and nitrogen (500 mL / min) was added to the space.
  • the reaction was carried out at 110 ° C. for 15 hours under reduced pressure (4 to 10.7 kPa) while blowing.
  • the acid value of the reaction solution was 1.6 (KOH mg / g).
  • the obtained diester had an acid value of 0.2 (KOHmg / g), a saponification value of 276 (KOHmg / g), a hydroxyl value of 1 or less (KOHmg / g), and a hue of APHA200.
  • Example 25 10 parts by weight of plasticizer 2 (trade name: DAIFATTY-101, adipic acid diester manufactured by Daihachi Chemical Co., Ltd.) and crystal nucleating agent 1 (manufactured by Nippon Kasei Co., Ltd., product name: SLIPAX H, molecule) with respect to 100 parts by weight of polylactic acid resin 0.5 parts by weight of a bisamide having a hydroxyl group and an amide group), 0.5 parts by weight of a crystal nucleating agent 2 (product name: PPA-Zn, zinc phenylphosphonate) manufactured by Nissan Chemical Co., Ltd., and a hydrolysis inhibitor (
  • a polylactic acid resin composition was produced in the same manner as in Example 1 except that 1 part by weight of a trade name: Stabaxol I-LF, a carbodiimide compound) manufactured by Rhein Chemie was used.
  • Example 2 A polylactic acid resin composition was prepared in the same manner as in Example 1 except that 100 parts by weight of aluminum hydroxide 4 not subjected to surface treatment was mixed with 100 parts by weight of polylactic acid resin instead of surface-treated aluminum hydroxide 1. This was manufactured as Comparative Example 2.
  • Example 5 A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the D temperature zone was 220 ° C., and this was designated as Comparative Example 5.
  • Example 6 A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 488 mm from the center position of the raw material supply port (11.9 Dmm) to 82 mm (2 Dmm). This was manufactured as Comparative Example 6.
  • the first kneading section is provided in a portion having a length of 940 mm from the center position of the raw material supply port (22.9 Dmm) to 82 mm (2 Dmm), and the second kneading section is positioned at a position of 1022 mm (24.9 Dmm).
  • a polylactic acid resin composition was produced in the same manner as in Example 1 except that it was provided in a portion having a length of 82 mm (2 Dmm).
  • the present invention is useful for a method for producing a polylactic acid resin composition.

Landscapes

  • Mechanical Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

A method for producing a polylactic resin composition, said method comprising kneading a mixture, which contains a polylactic resin and a surface-treated inorganic powder, using a mutual meshing engagement type twin-screw extruder, with the mutual meshing engagement type twin-screw extruder satisfying requirements 1-3. Requirement 1: being provided with: a first temperature-determining zone, said first temperature-determining zone being formed so as to include an area at least 6.3D-13Dmm apart from the center position of a starting material-supply port of a barrel, setting the barrel temperature to (Tm+50)-(Tm+80)oC, and being provided with screws to which conveyance elements are attached; and a second temperature-determining zone, said second temperature-determining zone being formed so as to include an area at least 19.3Dmm or greater apart from the center position of the starting material-supply port of the barrel and setting the barrel temperature to (Tm-20)-(Tm+40)oC. Requirement 2: being provided with a first kneading part, said first kneading part having a length of 1D-4D mm and being provided with screws having kneading elements attached thereto, in an area 13D-20.9Dmm apart from the center position of the starting material-supply port of the barrel. Requirement 3: being provided with a second kneading part, said second kneading part having a length of 1D-4D mm and being provided with screws having kneading elements attached thereto, in an area of 20.9Dmm or greater apart from the center position of the starting material-supply port of the barrel.

Description

ポリ乳酸樹脂組成物の製造方法Method for producing polylactic acid resin composition
 本発明はポリ乳酸樹脂組成物の製造方法に関する。 The present invention relates to a method for producing a polylactic acid resin composition.
 熱可塑性樹脂から樹脂成形品を製造する場合、一般的に、成形材料として例えばペレット状の樹脂組成物が用いられる。そして、かかる樹脂組成物は、通常、押出機により製造される。 When manufacturing a resin molded product from a thermoplastic resin, for example, a pellet-shaped resin composition is generally used as a molding material. And this resin composition is normally manufactured with an extruder.
 押出機を用いた樹脂組成物の製造方法として、例えば、特許文献1には、同方向噛み合型二軸押出機を用い、シリンダにフィード開口部から所定長さだけ離れた位置にベントポートを設置し、この間のスクリューが、フィード開口部側から順に、各々、所定長さの固体輸送部分、固体圧縮部分、剪断部分、及び揮発分分離部分よりなり、この間のシリンダ温度を(熱可塑性樹脂の融点Tm-50)~(Tm+90)℃又は(熱可塑性樹脂のガラス転移温度Tg)~(Tg+120)℃に設定することによりベントポートから溶媒を分離することが開示されている。 As a method for producing a resin composition using an extruder, for example, Patent Document 1 uses a same-direction meshing twin screw extruder, and a cylinder is provided with a vent port at a position away from a feed opening by a predetermined length. The screw between them consists of a solid transport part, a solid compression part, a shear part, and a volatile separation part each having a predetermined length in order from the feed opening side. It is disclosed that the solvent is separated from the vent port by setting the melting point Tm-50) to (Tm + 90) ° C. or (the glass transition temperature Tg of the thermoplastic resin) to (Tg + 120) ° C.
 特許文献2には、同方向噛み合型二軸押出機を用い、シリンダ内を、材料供給口から出口までの間に設置されるスクリューエレメントにより、固体輸送ゾーン、ミキシングゾーン、及び溶融ゾーンの3ゾーンに分画し、そして、各ゾーンでの混練温度を、樹脂の融点Tmより0~50℃高い温度範囲内又はガラス転移温度Tgより80~150℃高い温度範囲内に設定し、材料がこれらのゾーンを順次通過する間に混練を行うことが開示されている。 In Patent Document 2, a solid transport zone, a mixing zone, and a melting zone are used by a screw element installed between a material supply port and an outlet using a same-direction meshing twin screw extruder. Then, the kneading temperature in each zone is set in a temperature range 0 to 50 ° C. higher than the melting point Tm of the resin or in a temperature range 80 to 150 ° C. higher than the glass transition temperature Tg. It is disclosed that kneading is performed while sequentially passing through these zones.
 また、近年の環境問題に対する関心の高まりから、生分解性樹脂材料に注目が集まっている。 In addition, attention has been focused on biodegradable resin materials due to increasing interest in environmental problems in recent years.
 例えば、特許文献3には、生分解性樹脂材料である乳酸系樹脂100重量部に対して、エポキシシランカップリング剤で表面処理された、平均粒径が7μm以下の金属水酸化物を20~120重量部配合してなる射出成形体が開示されている。 For example, in Patent Document 3, a metal hydroxide having an average particle size of 7 μm or less, which is surface-treated with an epoxy silane coupling agent, is added to 20 to 100 parts by weight of a lactic acid resin that is a biodegradable resin material. An injection molded body containing 120 parts by weight is disclosed.
特開2001-047496号公報JP 2001-047496 A 特開2008-155570号公報JP 2008-155570 A 特開2004-263180号公報JP 2004-263180 A
 本発明は、ポリ乳酸樹脂と、前記ポリ乳酸樹脂100重量部に対する含有量が50~200重量部である表面処理を施した無機粉体と、を含む混合物を、各々、搬送エレメント及び混練エレメントを含むスクリューエレメントが長さ方向に沿って連設された外径Dが30mm以上の一対のスクリューが、長さ方向に沿って相互に独立した温度設定が可能な複数の部分に分割されるバレルに並行に挿通され、且つ前記スクリューのスクリューエレメントが長さ方向に沿って連設されて構成されたスクリュー有効部のうち前記バレルの原料供給口の中心に対応する位置から下流側の部分の長さLの前記スクリューの外径Dに対する比(L/D)が30以上である同方向噛み合型二軸押出機を用い、下記条件1~3を満たして混練するポリ乳酸樹脂組成物の製造方法である。
条件1:バレルの原料供給口の中心位置から少なくとも6.3D~13Dmmの範囲を含むように設けられると共に、バレルの設定温度が、ポリ乳酸樹脂の融点をTmとして、(Tm+50)~(Tm+80)℃であり、且つスクリューに搬送エレメントが設けられた第1温度設定ゾーン、及び前記第1温度設定ゾーンより下流側におけるバレルの原料供給口の中心位置から少なくとも19.3Dmm以降の範囲を含むように設けられると共に、バレルの設定温度が(Tm-20)~(Tm+40)℃である第2温度設定ゾーンを有する。
条件2:バレルの原料供給口の中心位置から13D~20.9Dmmの範囲内に始点及び終点を有するように設けられると共に、長さが1D~4Dmmであり、且つスクリューに混練エレメントが設けられた第1混練部を有する。
条件3:バレルの原料供給口の中心位置から20.9Dmm以降の範囲内に始点を有するように設けられると共に、長さが1D~4Dmmであり、且つスクリューに混練エレメントが設けられた第2混練部を有する。
The present invention provides a mixture comprising a polylactic acid resin and a surface-treated inorganic powder having a content of 50 to 200 parts by weight with respect to 100 parts by weight of the polylactic acid resin. A pair of screws having an outer diameter D of 30 mm or more in which screw elements are continuously provided along the length direction are barrels that are divided into a plurality of parts that can be independently set in temperature along the length direction. The length of the downstream part from the position corresponding to the center of the raw material supply port of the barrel among the screw effective parts that are inserted in parallel and the screw elements of the screw are continuously arranged along the length direction. A polylactic acid resin kneaded using the same direction meshing twin screw extruder having a ratio of L to the outer diameter D of the screw of 30 or more (L / D) satisfying the following conditions 1 to 3 It is a manufacturing method of forming compounds.
Condition 1: It is provided so as to include at least the range of 6.3D to 13Dmm from the center position of the raw material supply port of the barrel, and the set temperature of the barrel is (Tm + 50) to (Tm + 80) where the melting point of the polylactic acid resin is Tm A first temperature setting zone in which the screw is provided with a conveying element, and a range of at least 19.3 Dmm from the center position of the barrel material supply port on the downstream side of the first temperature setting zone. And a second temperature setting zone in which the set temperature of the barrel is (Tm−20) to (Tm + 40) ° C.
Condition 2: Provided to have a start point and an end point within a range of 13D to 20.9Dmm from the center position of the raw material supply port of the barrel, a length of 1D to 4Dmm, and a kneading element provided to the screw It has a 1st kneading part.
Condition 3: Second kneading provided with a starting point within a range of 20.9 Dmm or more from the center position of the raw material supply port of the barrel, having a length of 1D to 4Dmm, and a kneading element provided on the screw Part.
実施形態に係る同方向噛み合型二軸押出機を示す。The same direction meshing type twin-screw extruder which concerns on embodiment is shown. バレル内部を示す平面図である。It is a top view which shows the inside of a barrel. バレル内部を示す断面図である。It is sectional drawing which shows a barrel inside.
 以下、実施形態について詳細に説明する。 Hereinafter, embodiments will be described in detail.
 (同方向噛み合型二軸押出機)
 図1は本実施形態に係る同方向噛み合型二軸押出機100を示す。
(Same direction meshing twin screw extruder)
FIG. 1 shows a same-direction meshing twin-screw extruder 100 according to this embodiment.
 本実施形態に係る同方向噛み合型二軸押出機100は、一対のスクリュー10及びバレル20を有しており、一対のスクリュー10が横方向に並行に配置されてバレル20に挿通され且つ同方向に回転可能に設けられている。そして、一対のスクリュー10が同方向に回転して、スクリュー10とバレル20の内壁との間に形成される空隙で原料を上流側から下流側に搬送すると共に混練するように構成されている。 The same-direction meshing twin-screw extruder 100 according to the present embodiment has a pair of screws 10 and a barrel 20, and the pair of screws 10 are arranged in parallel in the horizontal direction and inserted through the barrel 20. It is provided to be rotatable in the direction. The pair of screws 10 are configured to rotate in the same direction so as to convey and knead the raw material from the upstream side to the downstream side through a gap formed between the screw 10 and the inner wall of the barrel 20.
 バレル20の上流端部には原料供給部30が設けられている。原料供給部30は、複数のフィーダー31及びホッパー32を有しており、複数のフィーダー31のそれぞれが各原料を設定供給量でホッパー32から原料供給口20aを介してバレル20内に供給するように構成されている。 A raw material supply unit 30 is provided at the upstream end of the barrel 20. The raw material supply unit 30 includes a plurality of feeders 31 and a hopper 32, and each of the plurality of feeders 31 supplies each raw material into the barrel 20 from the hopper 32 through the raw material supply port 20a with a set supply amount. It is configured.
 バレル20の上流側には回転駆動部40が設けられており、その回転駆動部40に一対のスクリュー10の一端部がそれぞれ結合している。回転駆動部40は、駆動モータ及びギアボックスを有しており、それらによってスクリュー10を設定回転数で回転駆動し、ポリ乳酸樹脂と表面処理を施した無機粉体とを含む混合物(以下「樹脂混合物M’」という。)を混練するように構成されている。 A rotation drive unit 40 is provided on the upstream side of the barrel 20, and one end of a pair of screws 10 is coupled to the rotation drive unit 40. The rotational drive unit 40 includes a drive motor and a gear box, and the screw 10 is rotationally driven by them at a set rotational speed, and a mixture (hereinafter referred to as “resin”) containing polylactic acid resin and surface-treated inorganic powder. The mixture M ′ ”) is kneaded.
 バレル20の下流端にはダイ22が設けられている。ダイ22は、ヒータを有しており、樹脂混合物M’の溶融混練物(以下「混練物M」という。)を設定温度で吐出口から紐状或いはシート状等の所定の形状に押し出すように構成されている。 A die 22 is provided at the downstream end of the barrel 20. The die 22 has a heater so that a melt-kneaded product (hereinafter referred to as “kneaded product M”) of the resin mixture M ′ is extruded from the discharge port into a predetermined shape such as a string or a sheet at a set temperature. It is configured.
 バレル20の下流側には冷却槽50及びペレタイズ部60が順に設けられている。冷却槽50には、冷却水Wが貯留されており、ダイ22から押し出された混練物Mを冷却水Wに浸漬して冷却するように構成されている。なお、混練物Mの冷却手段は、水冷に限定されるものではなく、空冷であってもよい。ペレタイズ部60は、冷却槽50で冷却された混練物Mをペレット状等にペレタイズするように構成されている。 The cooling tank 50 and the pelletizing part 60 are provided in the downstream of the barrel 20 in order. Cooling water W is stored in the cooling tank 50, and the kneaded material M pushed out from the die 22 is immersed in the cooling water W to be cooled. In addition, the cooling means of the kneaded material M is not limited to water cooling, Air cooling may be sufficient. The pelletizing unit 60 is configured to pelletize the kneaded material M cooled in the cooling tank 50 into a pellet form or the like.
 なお、バレル20には脱気機構やサイドフィーダーが設けられていてもよい。 The barrel 20 may be provided with a deaeration mechanism or a side feeder.
 図2及び3は一対のスクリュー10が挿通されたバレル20の内部を示す。 2 and 3 show the inside of the barrel 20 through which the pair of screws 10 are inserted.
 各スクリュー10は、複数のスクリューエレメント111,112が回転軸12の長さ方向に沿って連設されて構成されている。各スクリュー10の外径Dは30mm以上であり、35mm以上であることが好ましい。各スクリュー10は、スクリューエレメント111,112が長さ方向に沿って連設された部分がスクリュー有効部を構成し、また、その長さ、つまり、スクリューエレメント111,112の長さの和がスクリュー有効長Leとなる。スクリュー有効部のうち、スクリュー10外部にあるバレル20の原料供給口20aの中心を基準として、その中心に対応する位置から下流側の部分の長さL1のスクリュー10の外径Dに対する比(L1/D)は、樹脂混合物M’の十分な混練を行うため30以上である。また、樹脂混合物M’の発熱等による劣化を防止する観点からは、60以下であることが好ましい。スクリューエレメント111,112の長さL2のスクリュー10の外径Dに対する比(L2/D)は例えば0.1~3.0であることが好ましく、0.5~2.0であることがより好ましい。 Each screw 10 is configured by connecting a plurality of screw elements 111 and 112 along the length direction of the rotary shaft 12. The outer diameter D of each screw 10 is 30 mm or more, and preferably 35 mm or more. In each screw 10, a portion where the screw elements 111 and 112 are continuously provided along the length direction constitutes a screw effective portion, and the length, that is, the sum of the lengths of the screw elements 111 and 112 is the screw. the effective length L e. The ratio of the length L 1 of the downstream portion from the position corresponding to the center to the outer diameter D of the screw 10 with respect to the center of the raw material supply port 20a of the barrel 20 outside the screw 10 in the screw effective portion (reference) L 1 / D) is 30 or more in order to sufficiently knead the resin mixture M ′. Moreover, it is preferable that it is 60 or less from a viewpoint of preventing deterioration by heat_generation | fever etc. of resin mixture M '. The ratio (L 2 / D) of the length L 2 of the screw elements 111 and 112 to the outer diameter D of the screw 10 is preferably, for example, 0.1 to 3.0, and preferably 0.5 to 2.0. Is more preferable.
 複数のスクリューエレメント111,112は搬送エレメント111及び混練エレメント112を含む。一対のスクリュー10のそれぞれは、その長さ方向に沿って、任意の位置に搬送エレメント111又は混練エレメント112を配置させることができるように構成されており、搬送エレメント111が設けられた部分に搬送部が構成され、混練エレメント112が設けられた部分に混練部が構成される。 The plurality of screw elements 111 and 112 include a conveying element 111 and a kneading element 112. Each of the pair of screws 10 is configured such that the conveying element 111 or the kneading element 112 can be arranged at an arbitrary position along the length direction thereof, and is conveyed to a portion where the conveying element 111 is provided. The kneading part is constituted in the part where the kneading element 112 is provided.
 搬送エレメント111は、図2に示すように、帯状のスクリュー羽根が回転軸12側に結合して螺旋状に設けられた構造を有する。スクリュー羽根の螺旋のピッチPのスクリュー10の外径Dに対する比(P/D)は例えば0.1~2.0である。各スクリュー10に設けられる複数の搬送エレメント111は、螺旋のピッチPが均一であってもよく、また、螺旋のピッチPが異なるものが混在してもよい。なお、この螺旋のピッチPの大小により樹脂混合物M’の搬送速度を制御することができる。 As shown in FIG. 2, the transport element 111 has a structure in which a strip-shaped screw blade is coupled to the rotary shaft 12 side and provided in a spiral shape. The ratio (P / D) of the screw blade spiral pitch P to the outer diameter D of the screw 10 is, for example, 0.1 to 2.0. The plurality of transport elements 111 provided in each screw 10 may have a uniform spiral pitch P, or may have different spiral pitch P. The conveying speed of the resin mixture M ′ can be controlled by the size of the helical pitch P.
 混練エレメント112は、樹脂混合物M’に対して搬送エレメント111よりも高剪断を与えるように構成されている。かかる混練エレメント112としては、例えば特開平10-272624号公報に開示されているように、順ニーディングディスク、逆ニーディングディスク、順ローター、逆ローター、パイナップル、中立、ワイド等が挙げられる。 The kneading element 112 is configured to give higher shear to the resin mixture M ′ than the conveying element 111. Examples of the kneading element 112 include a forward kneading disk, a reverse kneading disk, a forward rotor, a reverse rotor, a pineapple, a neutral, a wide, and the like as disclosed in JP-A-10-272624.
 一対のスクリュー10は、横方向に並行に配置されているが、それらが同方向に回転した際には、平面視において干渉部分を有さないものの、正面視において、一方の回転軌跡と他方の回転軌跡とが重複部分を有し、それにより噛み合い構造を形成する。なお、一対のスクリュー10は、通常は、長さ方向の同じ位置に同種のスクリューエレメント111,112が設けられるが、それらが同方向に回転した際に、平面視において干渉部分を有さなければ、長さ方向の同じ位置に異種のスクリューエレメント111,112が設けられてもよい。 The pair of screws 10 are arranged in parallel in the horizontal direction, but when they rotate in the same direction, they do not have an interference part in a plan view, but in a front view, one rotation locus and the other The rotation trajectory has an overlapping portion, thereby forming a meshing structure. The pair of screws 10 are usually provided with the same type of screw elements 111 and 112 at the same position in the length direction, but when they are rotated in the same direction, they do not have an interference portion in plan view. Different types of screw elements 111 and 112 may be provided at the same position in the length direction.
 バレル20は、複数の筒状のバレルユニット21が連設されて構成されており、横断面外郭形状が、互いに交差する一対の円形で構成される輪郭形状であるスクリュー挿通孔23が長さ方向に延びるように形成されている。バレルユニット21の連設数は例えば7~20個である。各バレルユニット21の長さL3のスクリュー10の外径Dに対する比(L3/D)は例えば3~5である。 The barrel 20 is configured by connecting a plurality of cylindrical barrel units 21, and a screw insertion hole 23 having a transverse cross-sectional outer shape that is a contour shape formed by a pair of circles intersecting each other in the length direction. It is formed to extend. The number of barrel units 21 provided is, for example, 7 to 20. The ratio (L 3 / D) of the length L 3 of each barrel unit 21 to the outer diameter D of the screw 10 is, for example, 3 to 5.
 各バレルユニット21にはヒータが設けられている。従って、バレル20は、バレルユニット21単位の複数の部分に分割され、その分割単位で、長さ方向に沿って相互に独立した温度設定が可能に構成されている。なお、各バレルユニット21には温度制御用の図示しない冷却手段が設けられている。 Each barrel unit 21 is provided with a heater. Therefore, the barrel 20 is divided into a plurality of portions of the barrel unit 21 unit, and the temperature can be set independently of each other along the length direction in the divided unit. Each barrel unit 21 is provided with a cooling means (not shown) for temperature control.
 本実施形態に係る同方向噛み合型二軸押出機100において、各部のヒータや回転駆動部40の駆動モータ等は、図示しない制御部に接続されている。 In the same-direction meshing twin-screw extruder 100 according to this embodiment, the heaters of each part, the drive motor of the rotation drive unit 40, and the like are connected to a control unit (not shown).
 市販の同方向噛み合型二軸押出機としては、例えば、東芝機械社製のTEMシリーズ、日本製鋼所社製のTEXシリーズ、ワーナー社製のZSK型、池貝鉄工社製のPCMシリーズ等が挙げられる。 Examples of commercially available same-direction meshing twin screw extruders include the TEM series manufactured by Toshiba Machine, the TEX series manufactured by Nippon Steel, the ZSK type manufactured by Warner, and the PCM series manufactured by Ikekai Tekko. It is done.
 (ポリ乳酸樹脂組成物の製造方法)
 本実施形態に係る前記同方向噛み合型二軸押出機100を用いたポリ乳酸樹脂組成物の製造方法について説明する。
(Production method of polylactic acid resin composition)
A method for producing a polylactic acid resin composition using the same-direction meshing twin-screw extruder 100 according to this embodiment will be described.
 <原料>
 本実施形態に係るポリ乳酸樹脂組成物の製造方法において用いる原料は、ポリ乳酸樹脂及び表面処理を施した無機粉体を含む。
<Raw material>
The raw material used in the method for producing the polylactic acid resin composition according to this embodiment includes a polylactic acid resin and a surface-treated inorganic powder.
 -ポリ乳酸樹脂-
 原料として用いるポリ乳酸樹脂としては、モノマーとして乳酸成分のみを縮重合させたポリ乳酸、モノマーとして乳酸成分と乳酸以外のヒドロキシカルボン酸成分(以下「ヒドロキシカルボン酸成分」という。)とを縮重合させた共重合体のポリ乳酸が挙げられる。ポリ乳酸樹脂は、これらのいずれか一方が含まれて構成されていてもよく、また、両方が含まれて構成されていてもよい。ポリ乳酸樹脂は、自然界において微生物が関与して低分子化合物に分解される生分解性を有しているものが好ましい。なお、本明細書において「生分解性」とは、自然界において微生物によって低分子化合物に分解され得る性質のことであり、具体的には、JIS K6953(ISO14855)「制御された好気的コンポスト条件の好気的かつ究極的な生分解度及び崩壊度試験」に基づいた生分解性のことを意味する。
-Polylactic acid resin-
As a polylactic acid resin used as a raw material, polylactic acid obtained by condensation polymerization of only a lactic acid component as a monomer, and a lactic acid component and a hydroxycarboxylic acid component other than lactic acid (hereinafter referred to as “hydroxycarboxylic acid component”) as a monomer are subjected to condensation polymerization. And polylactic acid as a copolymer. The polylactic acid resin may be configured to include any one of these, or may be configured to include both. The polylactic acid resin is preferably a biodegradable resin that is decomposed into a low molecular weight compound by microorganisms in nature. In the present specification, “biodegradable” means a property that can be decomposed into a low molecular weight compound by a microorganism in nature. Specifically, JIS K6953 (ISO 14855) “controlled aerobic composting conditions”. This means biodegradability based on the “Aerobic and Ultimate Biodegradation and Disintegration Test”.
 乳酸成分には、L-乳酸(L体)及びD-乳酸(D体)の光学異性体が存在する。原料として用いるポリ乳酸樹脂は、乳酸成分として、いずれか一方の光学異性体のみを含むものであってもよく、また、両方を含むものであってもよい。製造するポリ乳酸樹脂組成物の、可撓性、耐熱性、及び成形性を高める観点からは、いずれかの光学異性体を主成分とする光学純度が高い乳酸成分を含むポリ乳酸樹脂が好ましい。なお、本明細書において「主成分」とは、乳酸成分中の含有量が50モル%以上である成分のことをいう。 The lactic acid component includes optical isomers of L-lactic acid (L form) and D-lactic acid (D form). The polylactic acid resin used as a raw material may include only one of the optical isomers as the lactic acid component, or may include both. From the viewpoint of improving the flexibility, heat resistance, and moldability of the polylactic acid resin composition to be produced, a polylactic acid resin containing a lactic acid component having a high optical purity mainly composed of any optical isomer is preferred. In the present specification, the “main component” refers to a component whose content in the lactic acid component is 50 mol% or more.
 ヒドロキシカルボン酸成分としては、例えば、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシペンタン酸、ヒドロキシカプロン酸等のヒドロキシカルボン酸化合物が挙げられる。これらのうち製造するポリ乳酸樹脂組成物の、可撓性、耐熱性、及び透明性を高める観点からは、グリコール酸、ヒドロキシカプロン酸が好ましい。ヒドロキシカルボン酸成分は、単一種で構成されていてもよく、また、複数種で構成されていてもよい。 Examples of the hydroxycarboxylic acid component include hydroxycarboxylic acid compounds such as glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxypentanoic acid, and hydroxycaproic acid. Of these, glycolic acid and hydroxycaproic acid are preferred from the viewpoint of enhancing the flexibility, heat resistance, and transparency of the polylactic acid resin composition to be produced. The hydroxycarboxylic acid component may be composed of a single species or a plurality of species.
 乳酸成分及びヒドロキシカルボン酸成分には、乳酸或いはヒドロキシカルボン酸化合物の2量体が含まれていてもよい。好適例としては、製造するポリ乳酸樹脂組成物の耐熱性及び透明性を高めるD-ラクチド及びL-ラクチドが挙げられる。なお、乳酸の2量体は、乳酸成分のみを縮重合させたポリ乳酸、及び乳酸成分とヒドロキシカルボン酸成分とを縮重合させたポリ乳酸のいずれの乳酸成分に含有されていてもよい。 The lactic acid component and the hydroxycarboxylic acid component may contain a dimer of lactic acid or a hydroxycarboxylic acid compound. Preferable examples include D-lactide and L-lactide which increase the heat resistance and transparency of the polylactic acid resin composition to be produced. In addition, the dimer of lactic acid may be contained in any lactic acid component of polylactic acid obtained by condensation polymerization of only a lactic acid component and polylactic acid obtained by condensation polymerization of a lactic acid component and a hydroxycarboxylic acid component.
 乳酸成分中の乳酸の2量体の含有量は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、80~100モル%であることが好ましく、90~100モル%であることがより好ましい。 The content of the dimer of lactic acid in the lactic acid component is preferably from 80 to 100 mol%, and from 90 to 100 mol%, from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced. More preferably.
 ヒドロキシカルボン酸成分中のヒドロキシカルボン酸化合物の2量体の含有量は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、80~100モル%であることが好ましく、90~100モル%であることがより好ましい。 The content of the dimer of the hydroxycarboxylic acid compound in the hydroxycarboxylic acid component is preferably 80 to 100 mol% from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced, and 90 More preferably, it is ˜100 mol%.
 乳酸成分のみを縮重合させる方法、及び乳酸成分とヒドロキシカルボン酸成分とを縮重合させる方法は、特に限定されるものではなく、公知の方法を適用することができる。 The method for polycondensing only the lactic acid component and the method for polycondensing the lactic acid component and the hydroxycarboxylic acid component are not particularly limited, and known methods can be applied.
 縮重合させるモノマーを選択すれば、例えば、L-乳酸成分又はD-乳酸成分が85モル%以上100モル%未満で且つヒドロキシカルボン酸成分が0モル%超15モル%以下のポリ乳酸を得ることができる。原料として用いるポリ乳酸樹脂としては、かかるポリ乳酸のうち、乳酸の環状二量体であるラクチド、グリコール酸の環状二量体であるグリコリド、及びカプロラクトンをモノマーとして用いて得られるポリ乳酸が好ましい。なお、ポリ乳酸の光学純度は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、95%以上であることが好ましく、98%以上であることがより好ましい。ポリ乳酸の光学純度は、「ポリオレフィン等合成樹脂製食品容器包装等に関する自主基準 第3版改訂版 2004年6月追補 第3部 衛生試験法 P12-13」記載のD体含有量の測定方法に基づいて求めることができる。 If the monomer to be polycondensed is selected, for example, polylactic acid having an L-lactic acid component or D-lactic acid component of 85 mol% or more and less than 100 mol% and a hydroxycarboxylic acid component of more than 0 mol% and 15 mol% or less can be obtained. Can do. The polylactic acid resin used as a raw material is preferably polylactic acid obtained by using lactide, which is a cyclic dimer of lactic acid, glycolide, which is a cyclic dimer of glycolic acid, and caprolactone as monomers. The optical purity of polylactic acid is preferably 95% or more, more preferably 98% or more, from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced. The optical purity of polylactic acid is measured according to the D-body content measurement method described in “Voluntary Standards for Food Containers and Packaging Made of Synthetic Resins such as Polyolefins, Third Edition, Revised June 2004, Part 3, Sanitation Test Method P12-13”. Can be based on.
 ポリ乳酸樹脂は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、異なる異性体を主成分とする乳酸成分を用いて得られた2種類のポリ乳酸からなるステレオコンプレックスポリ乳酸で構成されていてもよい。 The polylactic acid resin is a stereocomplex polythene composed of two types of polylactic acid obtained by using lactic acid components mainly composed of different isomers from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced. It may be composed of lactic acid.
 ステレオコンプレックスポリ乳酸に含まれる一方のポリ乳酸(以下「ポリ乳酸A」という。)は、L-乳酸成分90~100モル%及びD-乳酸成分を含むその他の成分0~10モル%からなる。他方のポリ乳酸(以下「ポリ乳酸B」という。)は、D-乳酸成分90~100モル%及びL-乳酸成分を含むその他の成分0~10モル%からなる。ステレオコンプレックスポリ乳酸は、ポリ乳酸Aとポリ乳酸Bとの重量比(ポリ乳酸A/ポリ乳酸B)が10/90~90/10であることが好ましく、20/80/80/20であることがより好ましく、40/60~60/40であることがさらに好ましい。なお、L-乳酸成分及びD-乳酸成分以外のその他の成分としては、例えば、エステル結合を形成可能な官能基を分子内に2個以上有するジカルボン酸、多価アルコール、ヒドロキシカルボン酸、ラクトンなどの物質、未反応の前記官能基を分子内に2個以上有するポリエステル、ポリエーテル、ポリカーボネート等が挙げられる。 One polylactic acid (hereinafter referred to as “polylactic acid A”) contained in the stereocomplex polylactic acid comprises 90 to 100 mol% of the L-lactic acid component and 0 to 10 mol% of the other components including the D-lactic acid component. The other polylactic acid (hereinafter referred to as “polylactic acid B”) comprises 90 to 100 mol% of D-lactic acid component and 0 to 10 mol% of other components including L-lactic acid component. The stereocomplex polylactic acid preferably has a weight ratio of polylactic acid A to polylactic acid B (polylactic acid A / polylactic acid B) of 10/90 to 90/10, preferably 20/80/80/20. Is more preferably 40/60 to 60/40. Examples of other components other than the L-lactic acid component and the D-lactic acid component include, for example, dicarboxylic acids, polyhydric alcohols, hydroxycarboxylic acids, and lactones having two or more functional groups capable of forming an ester bond in the molecule. And polyesters, polyethers, polycarbonates, etc. having two or more unreacted functional groups in the molecule.
 ポリ乳酸樹脂の融点(Tm)は、可塑剤及び結晶核剤等の内添剤の分散性を高め、また、製造するポリ乳酸樹脂組成物の曲げ強度を高め、劣化を抑制し、及び生産性を高める観点から、140~250℃であることが好ましく、150~240℃であることがより好ましく、160~230℃であることがさらに好ましい。なお、ポリ乳酸樹脂の融点は、JIS-K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より測定することができる。 The melting point (Tm) of the polylactic acid resin increases the dispersibility of internal additives such as plasticizers and crystal nucleating agents, increases the bending strength of the polylactic acid resin composition to be produced, suppresses deterioration, and productivity. From the viewpoint of increasing the temperature, it is preferably 140 to 250 ° C, more preferably 150 to 240 ° C, and further preferably 160 to 230 ° C. The melting point of the polylactic acid resin can be measured from the crystal melting endothermic peak temperature by the temperature rising method of differential scanning calorimetry (DSC) based on JIS-K7121.
 原料として用いるポリ乳酸樹脂は、モノマーを縮重合させて得ることができる一方、市販の製品として得ることもできる。かかる市販品としては、例えば、三井化学社製のレイシアH-100、H-280、H-400、H-440などの「レイシアシリーズ」;ネイチャーワークス社製の3001D、3051D、4032D、4042D、6201D、6251D、7000D、7032Dなどの「Nature Works」;トヨタ自動車社製のエコプラスチックU'z S-09、S-12、S-17などの「エコプラスチックU'zシリーズ」等が挙げられ、これらは、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から好ましいものである。 The polylactic acid resin used as a raw material can be obtained by condensation polymerization of a monomer, and can also be obtained as a commercial product. Examples of such commercially available products include “Lacia series” such as Lacia H-100, H-280, H-400, and H-440 manufactured by Mitsui Chemicals; 3001D, 3051D, 4032D, 4042D, and 6201D manufactured by Nature Works. "Nature Works" such as 6251D, 7000D and 7032D; "Eco Plastic U'z series" such as Eco Plastic U'z S-09, S-12 and S-17 manufactured by Toyota Motor Corporation, etc. Is preferable from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced.
 -表面処理を施した無機粉体-
 無機粉体としては、例えば、金属水酸化物、金属水和物、層状珪酸塩等が挙げられる。無機粉体は、単一種が配合されてもよく、また、複数種が配合されてもよい。
-Inorganic powder with surface treatment-
Examples of inorganic powders include metal hydroxides, metal hydrates, and layered silicates. A single kind of inorganic powder may be blended, or a plurality of kinds may be blended.
 金属水酸化物又は金属水和物としては、例えば、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、カルシウム・アルミネート水和物、酸化スズ水和物、プロゴバイト、硝酸亜鉛六水和物、硝酸ニッケル六水和物等が挙げられる。これらのうち製造するポリ乳酸樹脂組成物のコストを低減すると共に難燃性を向上させる観点から、水酸化アルミニウム及び水酸化マグネシウムが好ましい。 Examples of the metal hydroxide or metal hydrate include aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium aluminate hydrate, tin oxide hydrate, progobite, zinc nitrate hexahydrate, Examples thereof include nickel nitrate hexahydrate. Of these, aluminum hydroxide and magnesium hydroxide are preferred from the viewpoint of reducing the cost of the polylactic acid resin composition to be produced and improving flame retardancy.
 層状珪酸塩としては、例えば、タルク、スメクタイト、カオリン、マイカ、モンモリロナイト等が挙げられ、これらのうち、製造するポリ乳酸樹脂組成物の耐熱性を高める観点からタルク、マイカが好ましい。 Examples of the layered silicate include talc, smectite, kaolin, mica, montmorillonite, etc. Among these, talc and mica are preferable from the viewpoint of improving the heat resistance of the polylactic acid resin composition to be produced.
 無機粉体に施される表面処理としては、例えば、シランカップリング剤、高級脂肪酸、チタネートカップリング剤、ゾル-ゲルコーティング剤、シリコーンポリマーコーティング剤、樹脂コーティング剤、硝酸塩等を用いる表面処理が挙げられる。製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点からは、これらのうちシランカップリング剤による表面処理が好ましい。 Examples of the surface treatment applied to the inorganic powder include a surface treatment using a silane coupling agent, a higher fatty acid, a titanate coupling agent, a sol-gel coating agent, a silicone polymer coating agent, a resin coating agent, and nitrate. It is done. From the viewpoint of increasing the flexibility and heat resistance of the polylactic acid resin composition to be produced, surface treatment with a silane coupling agent is preferred among these.
 シランカップリング剤としては、例えば、イソシアネートシラン、アミノシラン、メルカプトシラン、エポキシシラン、ビニルシラン、メタクリルシラン、エポキシシラン等のカップリング剤が挙げられる。これらのうち製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、イソシアネートシラン、アミノシラン、メルカプトシラン、エポキシシランのカップリング剤が好ましく、イソシアネートシランがさらに好ましい。 Examples of the silane coupling agent include coupling agents such as isocyanate silane, amino silane, mercapto silane, epoxy silane, vinyl silane, methacryl silane, and epoxy silane. Among these, from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced, a coupling agent of isocyanate silane, aminosilane, mercaptosilane, or epoxysilane is preferable, and isocyanate silane is more preferable.
 イソシアネートシランとしては、例えば、3-イソシアネートプロピルトリメトキシシラン、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート等が挙げられる。 Examples of the isocyanate silane include 3-isocyanatopropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, tris- (3-trimethoxysilylpropyl) isocyanurate, and the like.
 アミノシランとしては、例えば、γ-アミノプロピルトリエトキシシラン、n-β(アミノエチル)γ-アミノプロピルトリエトキシシラン、γ-ウレイドプロピルトリエトキシシラン等が挙げられる。 Examples of the aminosilane include γ-aminopropyltriethoxysilane, n-β (aminoethyl) γ-aminopropyltriethoxysilane, γ-ureidopropyltriethoxysilane, and the like.
 メルカプトシランとしては、例えば、3-メルカプトプロピルトリメトキシシラン等が挙げられる。 Examples of mercaptosilane include 3-mercaptopropyltrimethoxysilane.
 エポキシシランとしては、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン等が挙げられる。 Examples of the epoxy silane include 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, and 3-glycidoxypropylmethyldiethoxysilane.
 シランカップリング剤による表面処理を施した無機粉体は、例えば、シランカップリング剤を、アセトン、酢酸エチル、トルエン等の溶媒に溶解させた溶液を、無機粉体の表面に噴霧又は塗工した後、乾燥して溶媒を除去する方法等により得ることができる。 The inorganic powder subjected to the surface treatment with the silane coupling agent is, for example, sprayed or coated on the surface of the inorganic powder with a solution obtained by dissolving the silane coupling agent in a solvent such as acetone, ethyl acetate or toluene. Then, it can obtain by the method of drying and removing a solvent.
 シランカップリング剤による表面処理を施した無機粉体は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、シランカップリング剤と無機粉体との重量比(シランカップリング剤/無機粉体)を0.1/99.9~5/95の割合として処理したものが好ましく、0.3/99.7~3/97の割合として処理したものがより好ましく、0.5/99.5~2/98の割合として処理したものがさらに好ましい。 From the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced, the inorganic powder subjected to the surface treatment with the silane coupling agent has a weight ratio between the silane coupling agent and the inorganic powder (silane coupling). Agent / inorganic powder) is preferably processed at a ratio of 0.1 / 99.9 to 5/95, more preferably 0.3 / 99.7 to 3/97. What was processed as a ratio of 5 / 99.5 to 2/98 is more preferable.
 表面処理を施した無機粉体は、平均粒径が10μm以下の粒状体であることが好ましく、平均粒径が0.1~5μmの粒状体であることがより好ましい。この平均粒径は、回折・散乱法によって体積基準のメジアン径から求めることができる。 The surface-treated inorganic powder is preferably a granule having an average particle size of 10 μm or less, and more preferably a granule having an average particle size of 0.1 to 5 μm. This average particle diameter can be obtained from the volume-based median diameter by a diffraction / scattering method.
 表面処理を施した無機粉体のポリ乳酸樹脂100重量部に対する配合量は製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から50~200重量部であり、60~150重量部であることが好ましい。 The blending amount of the surface-treated inorganic powder with respect to 100 parts by weight of the polylactic acid resin is 50 to 200 parts by weight from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced, and 60 to 150 parts by weight. It is preferable that
 -可塑剤-
 本実施形態に係るポリ乳酸樹脂組成物の製造方法において用いる原料は、さらに可塑剤を含んでいてもよい。
-Plasticizer-
The raw material used in the method for producing the polylactic acid resin composition according to this embodiment may further contain a plasticizer.
 可塑剤としては、例えば、マロン酸、コハク酸、グルタル酸、アジピン酸、1,3,6-ヘキサントリカルボン酸などの多塩基酸と、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、トリエチレングリコールモノメチルエーテル、トリエチレングリコールモノエチルエーテル、テトラエチレングリコールモノメチルエーテルなどのポリエチレングリコールモノアルキルエーテルとのエステル;グリセリン、エチレングリコール、ジグリセリン、1,4-ブタンジオールなどの多価アルコールに、エチレンオキサイド及び/又はプロピレンオキサイドを付加させた付加物のアセチル化物;ヒドロキシ安息香酸2-エチルヘキシルなどのヒドロキシ安息香酸エステル;フタル酸ジ-2-エチルヘキシルなどのフタル酸エステル;アジピン酸ジエステル、アジピン酸ジオクチルなどのアジピン酸エステル;マレイン酸ジ-n-ブチルなどのマレイン酸エステル;メチルトリグリコールコハク酸ジエステルなどのコハク酸エステル;アセチルクエン酸トリブチルなどのクエン酸エステル;リン酸トリクレジル等のアルキルリン酸エステル;トリメリット酸トリオクチルなどのトリカルボン酸エステル;アセチル化ポリオキシエチレンヘキシルエーテルなどのアセチル化ポリオキシエチレンアルキル(アルキル基の炭素数2~15)エーテル等が挙げられる。 Examples of the plasticizer include polybasic acids such as malonic acid, succinic acid, glutaric acid, adipic acid, 1,3,6-hexanetricarboxylic acid, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, triethylene glycol monomethyl ether, Esters with polyethylene glycol monoalkyl ethers such as triethylene glycol monoethyl ether and tetraethylene glycol monomethyl ether; polyhydric alcohols such as glycerin, ethylene glycol, diglycerin and 1,4-butanediol, ethylene oxide and / or propylene Oxidized adduct acetylated product; hydroxybenzoic acid ester such as 2-ethylhexyl hydroxybenzoate; di-2-ethylhexyl phthalate Phthalates; adipic acid esters such as adipic acid diester and dioctyl adipate; maleic acid esters such as di-n-butyl maleate; succinic acid esters such as methyltriglycol succinic acid diester; Acid esters; alkyl phosphate esters such as tricresyl phosphate; tricarboxylic acid esters such as trioctyl trimellitic acid; acetylated polyoxyethylene alkyl (alkyl group having 2 to 15 carbon atoms) ether such as acetylated polyoxyethylene hexyl ether Is mentioned.
 可塑剤は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、アジピン酸ジエステルなどのアジピン酸エステル、メチルトリグリコールコハク酸ジエステルなどのコハク酸エステル、1,3,6-ヘキサントリカルボン酸とポリエチレングリコール(エチレンオキサイドの平均付加モル数0.5~5)モノメチルエーテルとのエステル、酢酸とグリセリン又はエチレングリコールのエチレンオキサイド付加物(エチレンオキサイドの平均付加モル数3~20)とのエステルが好ましい。 From the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced, the plasticizer is adipic acid ester such as adipic acid diester, succinic acid ester such as methyltriglycol succinic acid diester, 1,3,6- An ester of hexanetricarboxylic acid and polyethylene glycol (average addition mole number of ethylene oxide 0.5 to 5) monomethyl ether, acetic acid and glycerin or ethylene glycol ethylene oxide adduct (average addition mole number of ethylene oxide 3 to 20); The esters are preferred.
 可塑剤としては、カルボン酸エステルも好適に用いることができる。かかるカルボン酸エステルとしては、(1)炭素数が1~4のアルキル基を有する一価アルコール、(2)炭素数が2~4のアルキレン基を有するジカルボン酸、及び(3)炭素数が2~6のアルキレン基を有する二価アルコールから得られ、酸価が1mgKOH/g以下であると共に水酸基価が5mgKOH/g以下であり且つ数平均分子量が300~700であるものが好ましい。 As the plasticizer, a carboxylic acid ester can also be suitably used. Examples of the carboxylic acid ester include (1) a monohydric alcohol having an alkyl group having 1 to 4 carbon atoms, (2) a dicarboxylic acid having an alkylene group having 2 to 4 carbon atoms, and (3) 2 carbon atoms. It is preferably obtained from a dihydric alcohol having 6 to 6 alkylene groups, having an acid value of 1 mgKOH / g or less, a hydroxyl value of 5 mgKOH / g or less, and a number average molecular weight of 300 to 700.
 また、リン酸エステルも好適に用いることができる。かかるリン酸エステルとしては、ポリエーテル型リン酸トリエステルが好ましい。ポリエーテル型リン酸トリエステルは、対象構造を有していてもよく、また、非対称構造を有していてもよい。 In addition, phosphate esters can also be suitably used. As such a phosphate ester, a polyether-type phosphate triester is preferable. The polyether-type phosphoric acid triester may have a target structure or may have an asymmetric structure.
 可塑剤は、単一種が配合されてもよく、また、複数種が配合されてもよい。可塑剤のポリ乳酸樹脂100重量部に対する配合量は、ポリ乳酸樹脂組成物の可撓性を高める観点から、3~50重量部であることが好ましく、3~30重量部であることがより好ましく、3~20重量部であることがさらに好ましい。 As the plasticizer, a single kind may be blended or a plurality of kinds may be blended. The blending amount of the plasticizer with respect to 100 parts by weight of the polylactic acid resin is preferably 3 to 50 parts by weight, more preferably 3 to 30 parts by weight, from the viewpoint of increasing the flexibility of the polylactic acid resin composition. More preferably, it is 3 to 20 parts by weight.
 -結晶核剤-
 本実施形態に係るポリ乳酸樹脂組成物の製造方法において用いる原料は、さらに結晶核剤を含んでいてもよい。
-Crystal nucleating agent-
The raw material used in the method for producing the polylactic acid resin composition according to this embodiment may further contain a crystal nucleating agent.
 結晶核剤としては、例えば、脂肪酸モノアミド、脂肪酸ビスアミド、芳香族カルボン酸アミド、ロジン酸アミドなどのアミド類;ヒドロキシ脂肪酸エステル類;芳香族スルホン酸ジアルキルエステルの金属塩、フェニルホスホン酸金属塩、リン酸エステルの金属塩、ロジン酸類金属塩などの金属塩類;カルボヒドラジド類、N-置換尿素類、有機顔料類等が挙げられる。 Examples of the crystal nucleating agent include fatty acid monoamides, fatty acid bisamides, aromatic carboxylic acid amides, rosinic acid amides, and the like; hydroxy fatty acid esters; aromatic sulfonic acid dialkyl ester metal salts, phenylphosphonic acid metal salts, phosphorus Metal salts such as acid ester metal salts and rosin acid metal salts; carbohydrazides, N-substituted ureas, organic pigments and the like.
 結晶核剤は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、分子中に水酸基とアミド基とを有する化合物の単独使用、又は分子中に水酸基とアミド基とを有する化合物とフェニルホスホン酸金属塩との併用が好ましい。 From the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced, the crystal nucleating agent has a single compound having a hydroxyl group and an amide group in the molecule, or has a hydroxyl group and an amide group in the molecule. A combination of the compound and a metal salt of phenylphosphonic acid is preferred.
 分子中に水酸基とアミド基とを有する化合物としては、例えば、12-ヒドロキシステアリン酸モノエタノールアミなどのヒドロキシ脂肪酸モノアミド;メチレンビス12-ヒドロキシステアリン酸アミド、エチレンビス12-ヒドロキシステアリン酸アミド、ヘキサメチレンビス12-ヒドロキシステアリン酸アミドなどのヒドロキシ脂肪酸ビスアミドが挙げられる。製造するポリ乳酸樹脂組成物の可撓性、耐熱性、耐衝撃性、耐ブルーム性、及び成形性を高める観点からは、メチレンビス12-ヒドロキシステアリン酸アミド、エチレンビス12-ヒドロキシステアリン酸アミド、ヘキサメチレンビス12-ヒドロキシステアリン酸アミド等のアルキレンビスヒドロキシステアリン酸アミドが好ましく、これらのうちエチレンビス12-ヒドロキシステアリン酸アミドがより好ましい。 Examples of the compound having a hydroxyl group and an amide group in the molecule include hydroxy fatty acid monoamides such as 12-hydroxystearic acid monoethanolami; methylene bis 12-hydroxystearic acid amide, ethylene bis 12-hydroxystearic acid amide, hexamethylene bis And hydroxy fatty acid bisamides such as 12-hydroxystearic acid amide. From the viewpoint of improving flexibility, heat resistance, impact resistance, bloom resistance and moldability of the polylactic acid resin composition to be produced, methylene bis 12-hydroxystearic acid amide, ethylene bis 12-hydroxystearic acid amide, hexa Alkylene bishydroxystearic acid amides such as methylene bis 12-hydroxystearic acid amide are preferred, and among these, ethylene bis 12-hydroxystearic acid amide is more preferred.
 フェニルホスホン酸金属塩は、置換基を有してもよいフェニル基及びホスホン基(-PO(OH)2)を有するフェニルホスホン酸の金属塩であり、フェニル基の置換基として、例えば、炭素数1~10のアルキル基、アルコキシ基の炭素数が1~10のアルコキシカルボニル基等が挙げられる。 The metal salt of phenylphosphonic acid is a metal salt of phenylphosphonic acid having an optionally substituted phenyl group and a phosphonic group (—PO (OH) 2 ). Examples thereof include an alkyl group having 1 to 10 and an alkoxycarbonyl group having 1 to 10 carbon atoms in the alkoxy group.
 フェニルホスホン酸としては、例えば、無置換のフェニルホスホン酸、メチルフェニルホスホン酸、エチルフェニルホスホン酸、プロピルフェニルホスホン酸、ブチルフェニルホスホン酸、ジメトキシカルボニルフェニルホスホン酸、ジエトキシカルボニルフェニルホスホン酸等が挙げられ、これらのうち無置換のフェニルホスホン酸が好ましい。 Examples of the phenylphosphonic acid include unsubstituted phenylphosphonic acid, methylphenylphosphonic acid, ethylphenylphosphonic acid, propylphenylphosphonic acid, butylphenylphosphonic acid, dimethoxycarbonylphenylphosphonic acid, diethoxycarbonylphenylphosphonic acid, and the like. Of these, unsubstituted phenylphosphonic acid is preferred.
 フェニルホスホン酸金属塩を構成する金属としては、例えば、リチウム、ナトリウム、マグネシウム、アルミニウム、カリウム、カルシウム、バリウム、銅、亜鉛、鉄、コバルト、ニッケル等が挙げられ、これらのうち亜鉛が好ましい。 Examples of the metal constituting the phenylphosphonic acid metal salt include lithium, sodium, magnesium, aluminum, potassium, calcium, barium, copper, zinc, iron, cobalt, nickel and the like, among which zinc is preferable.
 分子中に水酸基とアミド基とを有する化合物とフェニルホスホン酸金属塩とを併用する場合、それらの割合は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、分子中に水酸基及びアミド基を有する化合物とフェニルホスホン酸金属塩との重量比(分子中に水酸基とアミド基とを有する化合物/フェニルホスホン酸金属塩の重量比)が20/80~80/20であることが好ましく、30/70~70/30であることがより好ましく、40/60~60/40でることがさらに好ましい。 In the case where a compound having a hydroxyl group and an amide group in the molecule and a phenylphosphonic acid metal salt are used in combination, the proportion thereof is increased in the molecule from the viewpoint of increasing the flexibility and heat resistance of the polylactic acid resin composition to be produced. The weight ratio of the compound having a hydroxyl group and an amide group to the phenylphosphonic acid metal salt (weight ratio of the compound having a hydroxyl group and an amide group in the molecule / phenylphosphonic acid metal salt) is from 20/80 to 80/20. Is more preferable, 30/70 to 70/30 is more preferable, and 40/60 to 60/40 is still more preferable.
 結晶核剤は、単一種が配合されてもよく、また、複数種が配合されてもよい。結晶核剤のポリ乳酸樹脂100重量部に対する配合量は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、0.05~10重量部であることが好ましく、0.05~8重量部であることがより好ましく、0.05~5重量部であることがさらに好ましい。 A single kind of crystal nucleating agent may be blended, or a plurality of kinds may be blended. The blending amount of the crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin is preferably 0.05 to 10 parts by weight from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced. The amount is more preferably ˜8 parts by weight, and further preferably 0.05 to 5 parts by weight.
 -加水分解抑制剤-
 本実施形態に係るポリ乳酸樹脂組成物の製造方法において用いる原料は、さらに加水分解抑制剤を含んでいてもよい。
-Hydrolysis inhibitor-
The raw material used in the method for producing the polylactic acid resin composition according to this embodiment may further contain a hydrolysis inhibitor.
 加水分解抑制剤としては、特に限定されるものではなく、例えば、特開2009-270087号公報の段落0042~0044に記載されたものが挙げられる。加水分解抑制剤は、製造するポリ乳酸樹脂組成物の成形性を高める観点から、ポリカルボジイミド化合物が好ましい。製造するポリ乳酸樹脂組成物の可撓性、耐熱性、耐衝撃性、及び有機結晶核剤の耐ブルーム性を高める観点からは、モノカルボジイミド化合物が好ましい。製造するポリ乳酸樹脂組成物の耐久性を高める観点からは、モノカルボジイミド化合物とポリカルボジイミド化合物の併用が好ましい。 The hydrolysis inhibitor is not particularly limited, and examples thereof include those described in paragraphs 0042 to 0044 of JP-A-2009-270087. The hydrolysis inhibitor is preferably a polycarbodiimide compound from the viewpoint of enhancing the moldability of the polylactic acid resin composition to be produced. From the viewpoint of increasing the flexibility, heat resistance, impact resistance of the polylactic acid resin composition to be produced, and the bloom resistance of the organic crystal nucleating agent, a monocarbodiimide compound is preferred. From the viewpoint of enhancing the durability of the polylactic acid resin composition to be produced, a combination of a monocarbodiimide compound and a polycarbodiimide compound is preferable.
 加水分解抑制剤は、単一種が配合されてもよく、また、複数種が配合されてもよい。加水分解抑制剤のポリ乳酸樹脂100重量部に対する配合量は、製造するポリ乳酸樹脂組成物の可撓性、耐熱性、及び耐久性を高める観点から、0.05~10重量部であることが好ましい。 As the hydrolysis inhibitor, a single species may be blended, or a plurality of species may be blended. The blending amount of the hydrolysis inhibitor with respect to 100 parts by weight of the polylactic acid resin is 0.05 to 10 parts by weight from the viewpoint of enhancing the flexibility, heat resistance and durability of the polylactic acid resin composition to be produced. preferable.
 -その他の原料成分-
 本実施形態に係るポリ乳酸樹脂組成物の製造方法において用いる原料は、その他に、ヒンダードフェノールやフォスファイト系の酸化防止剤、炭化水素系ワックス類やアニオン型界面活性剤の滑剤を含んでいてもよい。酸化防止剤のポリ乳酸樹脂100重量部に対する配合量は例えば0.05~3重量部である。滑剤のポリ乳酸樹脂100重量部に対する配合量は例えば0.1~2重量部である。
-Other ingredients-
In addition, the raw materials used in the method for producing the polylactic acid resin composition according to this embodiment include hindered phenols, phosphite antioxidants, hydrocarbon waxes, and anionic surfactant lubricants. Also good. The blending amount of the antioxidant with respect to 100 parts by weight of the polylactic acid resin is, for example, 0.05 to 3 parts by weight. The blending amount of the lubricant with respect to 100 parts by weight of the polylactic acid resin is, for example, 0.1 to 2 parts by weight.
 本実施形態に係るポリ乳酸樹脂組成物の製造方法において用いる原料は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を劣化させない範囲で、さらに難燃剤、帯電防止剤、防曇剤、光安定剤、紫外線吸収剤、顔料、防カビ剤、抗菌剤、発泡剤、ドリップ防止剤等を含んでいてもよい。 The raw material used in the method for producing the polylactic acid resin composition according to the present embodiment is a range that does not deteriorate the flexibility and heat resistance of the polylactic acid resin composition to be produced, and further includes a flame retardant, an antistatic agent, an antifogging agent, It may contain a light stabilizer, an ultraviolet absorber, a pigment, an antifungal agent, an antibacterial agent, a foaming agent, an antidrip agent and the like.
 前記添加剤のうち難燃剤としては、製造するポリ乳酸樹脂組成物の難燃性、可撓性、及び耐熱性を高める観点から、リン系難燃剤が好ましい。ポリ乳酸樹脂組成物の難燃性を向上させるリン系難燃剤としては、例えば、リン酸エステル、縮合リン酸エステル、リン酸塩、縮合リン酸塩等が挙げられる。リン系難燃剤は、単一種が配合されてもよく、また、複数種が配合されてもよい。 Among the additives, the flame retardant is preferably a phosphorus flame retardant from the viewpoint of enhancing the flame retardancy, flexibility, and heat resistance of the polylactic acid resin composition to be produced. Examples of the phosphorus-based flame retardant that improves the flame retardancy of the polylactic acid resin composition include phosphate esters, condensed phosphate esters, phosphates, and condensed phosphates. A single type of phosphorus-based flame retardant may be blended, or a plurality of types may be blended.
 リン酸エステルとしては、例えば、トリメチルホスフェート、トリエチルホスフェート、トリブチルホスフェート、トリ(2-エチルヘキシル)ホスフェート、トリブトキシエチルホスフェート、トリフェニルホスフェート、トリクレジルホスフェート、トリキシレニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、トリス(フェニルフェニル)ホスフェート、トリナフチルホスフェート、クレジルジフェニルホスフェート、キシレニルジフェニルホスフェート、ジフェニル(2-エチルヘキシル)ホスフェート、ジ(イソプロピルフェニル)フェニルホスフェート、モノイソデシルホスフェート、2-アクリロイルオキシエチルアシッドホスフェート、2-メタクリロイルオキシエチルアシッドホスフェート、ジフェニル-2-アクリロイルオキシエチルホスフェート、ジフェニル-2-メタクリロイルオキシエチルホスフェート、メラミンホスフェート、ジメラミンホスフェート、メラミンピロホスフェート、トリフェニルホスフィンオキサイド、トリクレジルホスフィンオキサイド、メタンホスホン酸ジフェニル、フェニルホスホン酸ジエチル、レジルシノールビス(ジフェニルホスフェート)、ビスフェノールAビス(ジフェニルホスフェート)、ホスファフェナンスレン等が挙げられ、これらのうちトリフェニルホスフェート、トリス(イソプロピルフェニル)ホスフェート、クレジルジフェニルホスフェートが好ましい。 Examples of phosphate esters include trimethyl phosphate, triethyl phosphate, tributyl phosphate, tri (2-ethylhexyl) phosphate, tributoxyethyl phosphate, triphenyl phosphate, tricresyl phosphate, trixylenyl phosphate, tris (isopropylphenyl) phosphate. , Tris (phenylphenyl) phosphate, trinaphthyl phosphate, cresyl diphenyl phosphate, xylenyl diphenyl phosphate, diphenyl (2-ethylhexyl) phosphate, di (isopropylphenyl) phenyl phosphate, monoisodecyl phosphate, 2-acryloyloxyethyl acid Phosphate, 2-methacryloyloxyethyl acid phosphate, dipheny -2-acryloyloxyethyl phosphate, diphenyl-2-methacryloyloxyethyl phosphate, melamine phosphate, dimelamine phosphate, melamine pyrophosphate, triphenylphosphine oxide, tricresylphosphine oxide, diphenyl methanephosphonate, diethyl phenylphosphonate, resist Examples include lucinol bis (diphenyl phosphate), bisphenol A bis (diphenyl phosphate), phosphaphenanthrene, and among these, triphenyl phosphate, tris (isopropylphenyl) phosphate, and cresyl diphenyl phosphate are preferable.
 縮合リン酸エステルとしては、例えば、トリアルキルポリホスフェート、レゾルシノールポリフェニルホスフェート、レゾルシノールポリ(ジ-2,6-キシリル)ホスフェート、ビスフェノールAポリクレジルホスフェート、ハイドロキノンポリ(2,6-キシリル) ホスフェートならびにこれらの縮合物などの縮合リン酸エステル等が挙げられる。市販の縮合リン酸エステルとしては、例えば、大八化学社製PX-200、PX-201、PX-202、CR-733S、CR-741、CR747、ADEKA社製アデカスタブPFR、FP-500、FP-600、FP-700等が挙げられ、これらのうちPX-200、PX-201、PX-202が好ましい。 Examples of the condensed phosphate ester include trialkyl polyphosphate, resorcinol polyphenyl phosphate, resorcinol poly (di-2,6-xylyl) phosphate, bisphenol A polycresyl phosphate, hydroquinone poly (2,6-xylyl) phosphate, and Examples thereof include condensed phosphate esters such as these condensates. Examples of commercially available condensed phosphate esters include PX-200, PX-201, PX-202, CR-733S, CR-741, CR747 manufactured by Daihachi Chemical Co., Ltd., Adeka Stab PFR, FP-500, and FP- manufactured by ADEKA. 600, FP-700, etc., among which PX-200, PX-201, and PX-202 are preferable.
 リン酸塩、縮合リン酸塩としては、例えば、リン酸、ポリリン酸と周期律表1~14族の金属、アンモニア、脂肪族アミン、芳香族アミンとの塩からなるリン酸塩、ポリリン酸塩等が挙げられる。ポリリン酸塩の代表的な塩としては、例えば、金属塩であるリチウム塩、ナトリウム塩、カルシウム塩、バリウム塩、鉄(II)塩、鉄(III)塩、アルミニウム塩など;脂肪族アミン塩であるメチルアミン塩、エチルアミン塩、ジエチルアミン塩、トリエチルアミン塩、エチレンジアミン塩、ピペラジン塩など;芳香族アミン塩であるピリジン塩、トリアジン塩、メラミン塩、アンモニウム塩等が挙げられる。市販のリン酸塩、ポリリン酸塩としては、例えば、太平化学産業社製タイエンN、タイエンL、タイエンE、タイエンS、タイエンH、クラリアント社製ClariantAP475、ClariantAP475、ClariantAP750、Clariant1312、Clariant1250、ADEKA社製FP-2100、FP-2100J、FP-2200、鈴裕化学社製FC730、Budenheimu社製BUDIT3167、日本化学工業社製N-6ME、日産化学社製PHOSMEL-200等が挙げられ、これらのうちADEKA社製FP-2100、FP-2100J、FP-2200、日産化学社製PHOSMEL-200が好ましい。 Examples of phosphates and condensed phosphates include phosphates and polyphosphates composed of salts of phosphoric acid, polyphosphoric acid and metals in groups 1 to 14 of the periodic table, ammonia, aliphatic amines, and aromatic amines. Etc. Representative salts of polyphosphates include, for example, lithium salts that are metal salts, sodium salts, calcium salts, barium salts, iron (II) salts, iron (III) salts, aluminum salts, etc .; aliphatic amine salts Certain methylamine salts, ethylamine salts, diethylamine salts, triethylamine salts, ethylenediamine salts, piperazine salts and the like; pyridine salts, triazine salts, melamine salts, ammonium salts and the like which are aromatic amine salts. Examples of commercially available phosphates and polyphosphates include Taiyen N, Taien L, Taien E, Taien S, Taien H, Clariant Clariant AP475, Clariant AP475, Clariant AP750, Clariant 1312, Clariant 1250, and ADEKA. FP-2100, FP-2100J, FP-2200, Suzuhiro Chemical Co., Ltd. FC730, Budenheimu BUDIT 3167, Nippon Chemical Industry Co., Ltd. N-6ME, Nissan Chemical Co., Ltd. PHOSMEL-200, etc. FP-2100, FP-2100J, and FP-2200 manufactured by Nissan Chemical Industries, and PHOSMEL-200 manufactured by Nissan Chemical Co., Ltd. are preferable.
 さらにドリップ防止剤としては、例えば、フッ素樹脂やフェノール系樹脂などの熱硬化性樹脂等が挙げられる。フッ素樹脂としては、例えば、テトラフルオロエチレン、クロロトリフルオロエチレン、ビニリデンフルオライド、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテルなどのフッ素含有モノマーの単独又は共重合体;前記フッ素含有モノマーと、エチレン、プロピレン、(メタ)アクリレートなどの共重合性モノマーとの共重合体が挙げられる。ドリップ防止剤は、単一種が配合されてもよく、また、複数種が配合されてもよい。 Furthermore, examples of the anti-drip agent include thermosetting resins such as fluororesins and phenol resins. Examples of the fluororesin include, for example, a homopolymer or copolymer of a fluorine-containing monomer such as tetrafluoroethylene, chlorotrifluoroethylene, vinylidene fluoride, hexafluoropropylene, perfluoroalkyl vinyl ether; the fluorine-containing monomer, ethylene, propylene, Examples thereof include a copolymer with a copolymerizable monomer such as (meth) acrylate. A single type of anti-drip agent may be blended, or a plurality of types may be blended.
 <混練>
 本実施形態に係るポリ乳酸樹脂組成物の製造方法では、同方向噛み合型二軸押出機100に原料を投入して下記の条件1~3の下で混練を行う。本実施形態に係るポリ乳酸樹脂組成物の製造方法によれば、ポリ乳酸樹脂と表面処理を施した無機粉体とを含む混合物を同方向噛み合型二軸押出機を用いて混練するに際し、以下の通り、特定の第1及び特定の第2温度設定ゾーン並びに第1及び第2混練部を設けることにより、製造されたポリ乳酸樹脂組成物において、優れた可撓性及び耐熱性を得ることができる。
<Kneading>
In the method for producing a polylactic acid resin composition according to the present embodiment, raw materials are charged into the same-direction meshing twin screw extruder 100 and kneaded under the following conditions 1 to 3. According to the method for producing a polylactic acid resin composition according to the present embodiment, when a mixture containing a polylactic acid resin and a surface-treated inorganic powder is kneaded using a co-directional meshing twin screw extruder, Obtaining excellent flexibility and heat resistance in the manufactured polylactic acid resin composition by providing the specific first and specific second temperature setting zones and the first and second kneading parts as follows. Can do.
 -条件1-
 条件1として、バレル20内に、バレル20の原料供給口20aの中心位置から少なくとも6.3D~13Dmmの範囲を含むように第1温度設定ゾーンを設ける。なお、以下、Dを用いたバレル20内の位置表示(D表示)は、バレル20の原料供給口20aの中心位置からの距離を意味する。
-Condition 1-
As condition 1, a first temperature setting zone is provided in the barrel 20 so as to include a range of at least 6.3D to 13Dmm from the center position of the raw material supply port 20a of the barrel 20. Hereinafter, the position display (D display) in the barrel 20 using D means the distance from the center position of the raw material supply port 20a of the barrel 20.
 第1温度設定ゾーンでは、バレルユニット21の設定温度を、ポリ乳酸樹脂の融点をTmとして、(Tm+50)~(Tm+80)℃に設定する。このバレルユニット21の設定温度は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、210~240℃とすることが好ましく、210~230℃とすることがより好ましい。なお、この第1温度設定ゾーンでは、(Tm+50)~(Tm+80)℃に設定されたバレル20内で、溶融状態のポリ乳酸樹脂に、表面処理を施した無機粉体を含む内添剤が混練により分散し、それによって樹脂混合物M’が形成される。 In the first temperature setting zone, the set temperature of the barrel unit 21 is set to (Tm + 50) to (Tm + 80) ° C., where the melting point of the polylactic acid resin is Tm. The set temperature of the barrel unit 21 is preferably 210 to 240 ° C., more preferably 210 to 230 ° C., from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced. In this first temperature setting zone, an internal additive containing inorganic powder subjected to surface treatment is mixed with polylactic acid resin in a molten state in a barrel 20 set at (Tm + 50) to (Tm + 80) ° C. To form a resin mixture M ′.
 第1温度設定ゾーンの始点は、第1温度設定ゾーンが少なくとも6.3D~13Dmmの範囲を含めば特に限定されるものではない。 The start point of the first temperature setting zone is not particularly limited as long as the first temperature setting zone includes at least the range of 6.3D to 13Dmm.
 第1温度設定ゾーンでは、スクリュー10の対応する部分にスクリューエレメント111,112のうち搬送エレメント111を設け、従って、搬送エレメント111により樹脂混合物M’の搬送及び混練を行う。 In the first temperature setting zone, the conveying element 111 is provided among the screw elements 111 and 112 in the corresponding part of the screw 10, and therefore the resin mixture M ′ is conveyed and kneaded by the conveying element 111.
 加えて、条件1として、バレル20内に、第1温度設定ゾーンより下流側におけるバレル20の原料供給口20aの中心位置から少なくとも19.3Dmm以降の範囲を含むように第2温度設定ゾーンを設ける。 In addition, as condition 1, a second temperature setting zone is provided in the barrel 20 so as to include at least a range after 19.3 Dmm from the center position of the raw material supply port 20a of the barrel 20 on the downstream side of the first temperature setting zone. .
 第2温度設定ゾーンでは、バレルユニット21の設定温度を(Tm-20)~(Tm+40)℃、好ましくは(Tm)~(Tm+30)℃に設定する。このバレルユニット21の設定温度は、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、140~200℃とすることが好ましく、160~190℃とすることがより好ましい。 In the second temperature setting zone, the set temperature of the barrel unit 21 is set to (Tm−20) to (Tm + 40) ° C., preferably (Tm) to (Tm + 30) ° C. The set temperature of the barrel unit 21 is preferably 140 to 200 ° C., more preferably 160 to 190 ° C., from the viewpoint of improving the flexibility and heat resistance of the polylactic acid resin composition to be produced.
 第2温度設定ゾーンの始点は、第1温度設定ゾーンより下流側であり、第2温度設定ゾーンが少なくとも19.3Dmm以降の範囲を含めば特に限定されるものではない。 The start point of the second temperature setting zone is downstream from the first temperature setting zone, and is not particularly limited as long as the second temperature setting zone includes a range of at least 19.3 Dmm.
 第2温度設定ゾーンでは、スクリュー10の対応する部分にスクリューエレメント111,112のうち搬送エレメント111を設け、搬送エレメント111により樹脂混合物M’の搬送及び混練を行ってもよく、また、混練エレメント112を設け、混練エレメント112により樹脂混合物M’の混練を行ってもよい。なお、下記の通り、条件3の第2混練部は、この第2温度設定ゾーンに含まれる。 In the second temperature setting zone, the conveying element 111 of the screw elements 111 and 112 may be provided in a corresponding part of the screw 10, and the conveying and mixing of the resin mixture M ′ may be performed by the conveying element 111. And the resin mixture M ′ may be kneaded by the kneading element 112. Note that, as described below, the second kneading part under the condition 3 is included in the second temperature setting zone.
 -条件2-
 条件2として、バレル20の原料供給口20aの中心位置から13D~20.9Dmmの範囲内に始点及び終点を有するように、長さが1D~4Dmmである第1混練部を設ける。
-Condition 2-
As condition 2, a first kneading section having a length of 1D to 4Dmm is provided so as to have a start point and an end point within a range of 13D to 20.9Dmm from the center position of the raw material supply port 20a of the barrel 20.
 第1混練部の始点は、第1混練部が13D~20.9Dmmの範囲内に始点及び終点を有せば特に限定されるものではないが、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、第1温度設定ゾーンの終点から7Dmm以内に位置付けることが好ましく、第1温度設定ゾーンの終点と一致するように位置付けることがより好ましい。 The starting point of the first kneading part is not particularly limited as long as the first kneading part has a starting point and an end point in the range of 13D to 20.9 Dmm, but the flexibility of the polylactic acid resin composition to be manufactured and From the viewpoint of enhancing the heat resistance, it is preferable to position it within 7 Dmm from the end point of the first temperature setting zone, and it is more preferable to position it so as to coincide with the end point of the first temperature setting zone.
 第1混練部では、スクリュー10の対応する部分にスクリューエレメント111,112のうち混練エレメント112を設け、従って、混練エレメント112により樹脂混合物M’の混練を行う。 In the first kneading section, the kneading element 112 of the screw elements 111 and 112 is provided in a corresponding portion of the screw 10, and accordingly, the resin mixture M ′ is kneaded by the kneading element 112.
 第1混練部におけるバレルユニット21の設定温度は、特に限定されるものではないが、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、(Tm-20)~(Tm+80)℃とすることが好ましく、(Tm-10)~(Tm+70)℃とすることがより好ましく、140~240℃とすることがより好ましく、150~230℃とすることがさらに好ましい。 The set temperature of the barrel unit 21 in the first kneading part is not particularly limited, but from the viewpoint of enhancing the flexibility and heat resistance of the polylactic acid resin composition to be produced, (Tm-20) to (Tm + 80) It is preferable that the temperature is set to 0 ° C., more preferably (Tm−10) to (Tm + 70) ° C., more preferably 140 to 240 ° C., and still more preferably 150 to 230 ° C.
 -条件3-
 条件3として、バレル20の原料供給口20aの中心位置から20.9DDmm以降の範囲内に始点を有するように、長さが1D~4Dmmである第2混練部を設ける。
-Condition 3-
As condition 3, a second kneading section having a length of 1D to 4Dmm is provided so as to have a starting point within a range of 20.9 DDmm or more from the center position of the raw material supply port 20a of the barrel 20.
 第2混練部の始点は、20.9Dmm以降の範囲内に有せば特に限定されるものではないが、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、第1温度設定ゾーンの終点から15Dmm以内に位置付けることが好ましく、10Dmm以内に位置付けることがよりより好ましく、3Dmm以内に位置付けることがさらに好ましい。また、第2混練部の始点を第1混練部の終点と一致するように位置付け、第1及び第2混練部が連続するように構成してもよい。 The starting point of the second kneading part is not particularly limited as long as it is within the range of 20.9 Dmm or more, but from the viewpoint of increasing the flexibility and heat resistance of the polylactic acid resin composition to be produced, the first temperature It is preferably positioned within 15 Dmm from the end point of the set zone, more preferably within 10 Dmm, and even more preferably within 3 Dmm. Further, the start point of the second kneading unit may be positioned so as to coincide with the end point of the first kneading unit, and the first and second kneading units may be configured to be continuous.
 第2混練部では、スクリュー10の対応する部分にスクリューエレメント111,112のうち混練エレメント112を設け、従って、混練エレメント112により樹脂混合物M’の混練を行う。 In the second kneading section, the kneading element 112 of the screw elements 111, 112 is provided in the corresponding part of the screw 10, and thus the kneading element 112 kneads the resin mixture M ′.
 第2混練部は、前記の通り、第2温度設定ゾーンに含まれるので、バレルユニット21の設定温度が(Tm-20)~(Tm+40)℃であるが、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、第2混練部におけるバレルユニット21の設定温度は、(Tm)~(Tm+0)℃とすることが好ましく、140~200℃とすることが好ましく、160~190℃とすることがより好ましい。 Since the second kneading part is included in the second temperature setting zone as described above, the set temperature of the barrel unit 21 is (Tm−20) to (Tm + 40) ° C., but the polylactic acid resin composition to be produced is acceptable. From the viewpoint of improving flexibility and heat resistance, the set temperature of the barrel unit 21 in the second kneading part is preferably (Tm) to (Tm + 0) ° C., preferably 140 to 200 ° C., and 160 to 190. More preferably, the temperature is set to ° C.
 -その他の条件-
 バレル20内の第1温度設定ゾーンの上流側に、スクリュー10に搬送エレメント111を装着した搬送部を設けてもよい。かかる搬送部は、長さが例えば3.0D~4.2Dmmであり、バレルユニット21の設定温度が例えば(Tm-150)~(Tm+80)℃である。この搬送部は0~5.0Dmmの範囲を含むことが好ましい。
-Other conditions-
A conveyance unit in which the conveyance element 111 is mounted on the screw 10 may be provided on the upstream side of the first temperature setting zone in the barrel 20. The conveying unit has a length of, for example, 3.0D to 4.2Dmm, and a set temperature of the barrel unit 21 is, for example, (Tm−150) to (Tm + 80) ° C. The transport unit preferably includes a range of 0 to 5.0 Dmm.
 第1温度設定ゾーン及び第1混練部は、前記の通り、連続して設けてもよく、また、それらの間に、スクリュー10に搬送エレメント111を装着した搬送部を設けてもよい。 The first temperature setting zone and the first kneading unit may be provided continuously as described above, or a conveyance unit in which the conveyance element 111 is mounted on the screw 10 may be provided therebetween.
 また、混練条件として、時間当たりの吐出量Q(kg/時)、すなわち、原料供給量は、同方向噛み合型二軸押出機100のスケールによって適宜設定されるが、
Q=0.005D2.5~0.03D2.5の範囲とすることが好ましい。スクリュー10の回転数Nは、同方向噛み合型二軸押出機100のスケールによって適宜設定されるが、例えば10~1500rpmである。吐出量Q(kg/時)とスクリュー回転数N(rpm)との比Q/Nは、表面処理を施した無機粉体を含む内添剤の分散性を良好なものとし、製造するポリ乳酸樹脂組成物の可撓性及び耐熱性を高める観点から、0.2≦Q/N≦1.5の関係を有することが好ましく、0.2≦Q/N≦1.0の関係を有することがより好ましい。
Further, as the kneading conditions, the discharge amount Q per hour (kg / hour), that is, the raw material supply amount is appropriately set according to the scale of the same-direction meshing twin screw extruder 100,
Q is preferably in the range of 0.005D 2.5 to 0.03D 2.5 . The rotation speed N of the screw 10 is appropriately set according to the scale of the same-direction meshing twin-screw extruder 100, and is, for example, 10 to 1500 rpm. The ratio Q / N between the discharge amount Q (kg / hour) and the screw rotation speed N (rpm) is such that the dispersibility of the internal additive including the inorganic powder subjected to the surface treatment is good, and the polylactic acid to be produced From the viewpoint of increasing the flexibility and heat resistance of the resin composition, it is preferable to have a relationship of 0.2 ≦ Q / N ≦ 1.5, and a relationship of 0.2 ≦ Q / N ≦ 1.0. Is more preferable.
 <冷却>
 本実施形態に係るポリ乳酸樹脂組成物の製造方法では、バレル20からダイ22を介して押し出されたポリ乳酸樹脂組成物の混練物Mを冷却槽50に貯留された冷却水Wに連続して浸漬して冷却固化させる。冷却水Wの温度は例えば10~40℃とする。
<Cooling>
In the method for producing the polylactic acid resin composition according to the present embodiment, the kneaded product M of the polylactic acid resin composition extruded from the barrel 20 through the die 22 is continuously connected to the cooling water W stored in the cooling tank 50. Immerse and solidify by cooling. The temperature of the cooling water W is set to 10 to 40 ° C., for example.
 <ペレタイズ>
 本実施形態に係るポリ乳酸樹脂組成物の製造方法では、冷却槽50から引き上げられたポリ乳酸樹脂組成物の混練物Mをペレタイズ部60に投入してペレット状やチップ状にペレタイズする。ペレット状乃至チップ状のポリ乳酸樹脂組成物の粒径は例えば2~5mmである。
<Pelletize>
In the method for producing a polylactic acid resin composition according to the present embodiment, the kneaded product M of the polylactic acid resin composition pulled up from the cooling bath 50 is put into the pelletizing unit 60 and pelletized into pellets or chips. The particle size of the pellet-shaped or chip-shaped polylactic acid resin composition is, for example, 2 to 5 mm.
 ペレタイズ部60でのペレット状等へのペレタイズ性、ペレットの乾燥、及び在庫時のペレット同士のブロッキング防止の観点から、ペレタイズ部60において混練物Mのポリ乳酸樹脂は結晶化していることが好ましく、結晶化を促進する観点から冷却槽50からペレタイズ部60に至るまでの混練物Mの表面温度を70~120℃に保つことが好ましい。混練物Mの表面温度を前記範囲に保つ観点から、冷却槽50は少なくとも1つ、または2つ以上の槽で構成してもよく、水温は10~90℃の範囲が好ましく、2つ以上の槽で構成する場合は異なる温度で使用してもよい。 From the viewpoints of pelletizing property to pellets in the pelletizing part 60, drying of the pellets, and prevention of blocking between pellets at the time of inventory, the polylactic acid resin of the kneaded product M is preferably crystallized in the pelletizing part 60, From the viewpoint of promoting crystallization, the surface temperature of the kneaded material M from the cooling bath 50 to the pelletizing part 60 is preferably maintained at 70 to 120 ° C. From the viewpoint of keeping the surface temperature of the kneaded material M within the above range, the cooling tank 50 may be composed of at least one tank or two or more tanks, and the water temperature is preferably in the range of 10 to 90 ° C. You may use it at a different temperature when comprising with a tank.
 以上のようにして製造されたペレット状乃至チップ状のポリ乳酸樹脂組成物は、射出成形等の成形材料に供される。 The pellet-like or chip-like polylactic acid resin composition produced as described above is used for molding materials such as injection molding.
 本実施形態に係るポリ乳酸樹脂組成物の製造方法の概要は以下の通りである。 The outline of the method for producing the polylactic acid resin composition according to this embodiment is as follows.
 (1)ポリ乳酸樹脂と、前記ポリ乳酸樹脂100重量部に対する含有量が50~200重量部、好ましくは60~150重量部である表面処理を施した無機粉体と、を含む混合物を、各々、搬送エレメント及び混練エレメントを含むスクリューエレメントが長さ方向に沿って連設された外径Dが30mm以上の一対のスクリューが、長さ方向に沿って相互に独立した温度設定が可能な複数の部分に分割されるバレルに並行に挿通され、且つ前記スクリューのスクリューエレメントが長さ方向に沿って連設されて構成されたスクリュー有効部のうち前記バレルの原料供給口の中心に対応する位置から下流側の部分の長さLの前記スクリューの外径Dに対する比(L/D)が30以上である同方向噛み合型二軸押出機を用い、下記条件1~3を満たして混練するポリ乳酸樹脂組成物の製造方法。
条件1:バレルの原料供給口の中心位置から少なくとも6.3D~13Dmmの範囲を含むように設けられると共に、バレルの設定温度が、ポリ乳酸樹脂の融点をTmとして、(Tm+50)~(Tm+80)℃であり、且つスクリューに搬送エレメントが設けられた第1温度設定ゾーン、及び前記第1温度設定ゾーンより下流側におけるバレルの原料供給口の中心位置から少なくとも19.3Dmm以降の範囲を含むように設けられると共に、バレルの設定温度が(Tm-20)~(Tm+40)℃である第2温度設定ゾーンを有する。
条件2:バレルの原料供給口の中心位置から13D~20.9Dmmの範囲内に始点及び終点を有するように設けられると共に、長さが1D~4Dmmであり、且つスクリューに混練エレメントが設けられた第1混練部を有する。
条件3:バレルの原料供給口の中心位置から20.9Dmm以降の範囲内に始点を有するように設けられると共に、長さが1D~4Dmmであり、且つスクリューに混練エレメントが設けられた第2混練部を有する。
(1) A mixture comprising a polylactic acid resin and an inorganic powder subjected to a surface treatment having a content of 50 to 200 parts by weight, preferably 60 to 150 parts by weight, based on 100 parts by weight of the polylactic acid resin, The screw elements including the conveying element and the kneading element are continuously provided along the length direction, and a pair of screws having an outer diameter D of 30 mm or more can be set independently of each other along the length direction. From the position corresponding to the center of the raw material supply port of the barrel among the screw effective parts that are inserted in parallel to the barrel divided into parts and the screw elements of the screw are continuously provided along the length direction. Using the same direction meshing twin screw extruder in which the ratio (L / D) of the length L of the downstream portion to the outer diameter D of the screw is 30 or more, the following conditions 1 to 3 are satisfied. Method for producing a polylactic acid resin composition is kneaded with.
Condition 1: It is provided so as to include at least the range of 6.3D to 13Dmm from the center position of the raw material supply port of the barrel, and the set temperature of the barrel is (Tm + 50) to (Tm + 80) where the melting point of polylactic acid resin is Tm A first temperature setting zone in which the screw is provided with a conveying element, and a range of at least 19.3 Dmm from the center position of the barrel material supply port on the downstream side of the first temperature setting zone. And a second temperature setting zone in which the set temperature of the barrel is (Tm−20) to (Tm + 40) ° C.
Condition 2: Provided to have a start point and an end point within a range of 13D to 20.9Dmm from the center position of the raw material supply port of the barrel, a length of 1D to 4Dmm, and a kneading element provided to the screw It has a 1st kneading part.
Condition 3: Second kneading provided with a starting point within a range of 20.9 Dmm or more from the center position of the raw material supply port of the barrel, having a length of 1D to 4Dmm, and a kneading element provided on the screw Part.
 (2)前記無機粉体が、金属水酸化物、金属水和物、及び層状珪酸塩のうち少なくとも1種を含む前記(1)に記載のポリ乳酸樹脂組成物の製造方法。 (2) The method for producing a polylactic acid resin composition according to (1), wherein the inorganic powder contains at least one of a metal hydroxide, a metal hydrate, and a layered silicate.
 (3)前記無機粉体が、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、カルシウム・アルミネート水和物、酸化スズ水和物、プロゴバイト、硝酸亜鉛六水和物、及び硝酸ニッケル六水和物からなる群から選ばれる少なくとも1種を含む前記(2)に記載のポリ乳酸樹脂組成物の製造方法。 (3) The inorganic powder is aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium aluminate hydrate, tin oxide hydrate, progobite, zinc nitrate hexahydrate, or nickel nitrate hexahydrate. The manufacturing method of the polylactic acid resin composition as described in said (2) containing at least 1 sort (s) chosen from the group which consists of a Japanese thing.
 (4)前記無機粉体が、タルク、スメクタイト、カオリン、マイカ、及びモンモリロナイトからなる群から選ばれる少なくとも1種を含む前記(2)又は(3)に記載のポリ乳酸樹脂組成物の製造方法。 (4) The method for producing a polylactic acid resin composition according to (2) or (3), wherein the inorganic powder contains at least one selected from the group consisting of talc, smectite, kaolin, mica, and montmorillonite.
 (5)前記混合物は、可塑剤及び結晶核剤をさらに含む前記(1)~(4)のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 (5) The method for producing a polylactic acid resin composition according to any one of (1) to (4), wherein the mixture further includes a plasticizer and a crystal nucleating agent.
 (6)前記可塑剤が、炭素数2~6の脂肪族ジ若しくはトリカルボン酸エステル及び/又は多塩基酸とポリエチレングリコールモノアルキルエーテルとのエステルを含む前記(5)に記載のポリ乳酸樹脂組成物の製造方法。 (6) The polylactic acid resin composition according to (5), wherein the plasticizer includes an aliphatic di- or tricarboxylic acid ester having 2 to 6 carbon atoms and / or an ester of a polybasic acid and polyethylene glycol monoalkyl ether. Manufacturing method.
 (7)前記可塑剤のポリ乳酸樹脂100重量部に対する配合量が3~50重量部、好ましくは3~30重量部、より好ましくは、3~20重量部である前記(5)又は(6)に記載のポリ乳酸樹脂組成物の製造方法。 (7) The above (5) or (6), wherein the blending amount of the plasticizer with respect to 100 parts by weight of the polylactic acid resin is 3 to 50 parts by weight, preferably 3 to 30 parts by weight, more preferably 3 to 20 parts by weight. The manufacturing method of the polylactic acid resin composition as described in 2 ..
 (8)前記結晶核剤が、分子中に水酸基とアミド基とを有する化合物及び/又はフェニルホスホン酸金属塩を含む前記(5)~(7)のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 (8) The polylactic acid resin composition according to any one of (5) to (7), wherein the crystal nucleating agent contains a compound having a hydroxyl group and an amide group in the molecule and / or a phenylphosphonic acid metal salt. Production method.
 (9)前記結晶核剤のポリ乳酸樹脂100重量部に対する配合量が0.05~10重量部、好ましくは0.05~8重量部、さらに好ましくは0.05~5重量部である前記(7)~(8)のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 (9) The blending amount of the crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin is 0.05 to 10 parts by weight, preferably 0.05 to 8 parts by weight, more preferably 0.05 to 5 parts by weight. 7) The method for producing a polylactic acid resin composition according to any one of (8) to (8).
 (10)前記スクリューの外径Dが200mm以下である前記(1)~(9)のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 (10) The method for producing a polylactic acid resin composition according to any one of (1) to (9), wherein the outer diameter D of the screw is 200 mm or less.
 (11)前記バレルの原料供給口の中心に対応する位置から下流側の部分の長さLの前記スクリューの外径Dに対する比(L/D)が30~60である前記(1)~(10)のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 (11) The ratio (L / D) of the length L of the portion on the downstream side from the position corresponding to the center of the raw material supply port of the barrel to the outer diameter D of the screw is 30 to 60 (1) to (1) 10) The manufacturing method of the polylactic acid resin composition in any one of.
 (12)前記同方向噛み合型二軸押出機からの混練物の吐出量Q(kg/時)とスクリュー回転数N(rpm) との比Q/Nが0.2≦Q/N≦1. 5、好ましくは0.2≦Q/N≦1.0である前記(1)~(11)のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 (12) The ratio Q / N between the discharge amount Q (kg / hour) of the kneaded material from the same-direction meshing twin screw extruder and the screw rotation speed N (rpm) is 0.2 ≦ Q / N ≦ 1 . (5) The method for producing a polylactic acid resin composition according to any one of (1) to (11), wherein preferably 0.2 ≦ Q / N ≦ 1.0.
 (ポリ乳酸樹脂組成物の製造)
 以下の実施例1~25及び比較例1~7のポリ乳酸樹脂組成物の製造を行った。それぞれの内容については、表1~5にも示す。
(Production of polylactic acid resin composition)
The following polylactic acid resin compositions of Examples 1 to 25 and Comparative Examples 1 to 7 were produced. The contents of each are also shown in Tables 1 to 5.
 <実施例1>
 前記実施形態と同様の構成の同方向噛み合型二軸押出機(東芝機械社製 TEM-41SS)を用いてペレット状のポリ乳酸樹脂組成物を製造し、それを実施例1とした。
<Example 1>
A pellet-like polylactic acid resin composition was produced using a same-direction meshing twin-screw extruder (TEM-41SS, manufactured by Toshiba Machine Co., Ltd.) having the same configuration as that of the above embodiment.
 各スクリューは、外径Dが41mm及びスクリュー有効長Le(スクリューエレメントが設けられたスクリュー有効部の全長=バレル長)が45.65Dmmのものを用いた。各スクリューには、バレルの原料供給口の中心に対応する位置から611mmの位置(14.9Dmm)を始点とする長さが82mm(2Dmm)の部分に、上流側から混練エレメントである順ニーディング、中立、逆ニーディングを順に取り付けた(第1混練部)。また、バレルの原料供給口の中心に対応する位置から857mmの位置(20.9Dmm)を始点とする長さが82mm(2Dmm)の部分にも、上流側から混練エレメントである順ニーディング、中立を順に取り付けた(第2混練部)。なお、各スクリューのその他の部分には搬送エレメントを設けた。 Each screw has an outer diameter D of 41mm and a screw effective length L e (total length = barrel length of the effective screw portion screw elements are provided) was used as the 45.65Dmm. Each screw has a kneading element from the upstream side to the kneading element in the order of a length of 82 mm (2 Dmm) starting from a position of 611 mm (14.9 Dmm) from the position corresponding to the center of the barrel material supply port Then, neutral and reverse kneading were attached in order (first kneading part). In addition, the kneading element from the upstream side, which is a kneading element, is also kneaded, neutral, in a portion starting at a position of 857 mm (20.9 Dmm) from the position corresponding to the center of the raw material supply port of the barrel. Were attached in order (second kneading section). In addition, the conveyance element was provided in the other part of each screw.
 バレルは、11個のバレルユニット(L3/D=4.15)を連設して構成した。バレルは、第1ユニットに原料供給口を有し、その原料供給口の中心位置が第1ユニットの上流端から2.07Dmmの位置であった。この原料供給口の中心位置を基準とすると、バレルの長さ方向における各ユニットの位置は、第1ユニットが0~2.08Dmm、第2ユニットが2.08D~6.23Dmm、第3ユニットが6.23D~10.38Dmm、第4ユニットが10.38D~14.53Dmm、第5ユニットが14.53D~18.68Dmm、第6ユニットが18.68D~22.83Dmm、第7ユニットが22.83D~26.98Dmm、第8ユニットが26.98D~31.13Dmm、第9ユニットが31.13D~35.28Dmm、第10ユニットが35.28D~39.43D、及び第11ユニットが39.43D~43.58Dmmである。また、スクリュー有効部のうちバレルの原料供給口の中心に対応する位置から下流側の部分の長さL1のスクリューの外径Dに対する比(L1/D)は43.58である。 The barrel was constituted by connecting 11 barrel units (L 3 /D=4.15) continuously. The barrel had a raw material supply port in the first unit, and the central position of the raw material supply port was 2.07 Dmm from the upstream end of the first unit. With reference to the center position of the raw material supply port, the position of each unit in the barrel length direction is 0 to 2.08 Dmm for the first unit, 2.08 D to 6.23 Dmm for the second unit, 6.23D to 10.38Dmm, the fourth unit is 10.38D to 14.53Dmm, the fifth unit is 14.53D to 18.68Dmm, the sixth unit is 18.68D to 22.83Dmm, and the seventh unit is 22. 83D ~ 26.98Dmm, 8th unit is 26.98D ~ 31.13Dmm, 9th unit is 31.13D ~ 35.28Dmm, 10th unit is 35.28D ~ 39.43D, and 11th unit is 39.43D ˜43.58 Dmm. Further, the ratio (L 1 / D) of the length L 1 of the downstream portion from the position corresponding to the center of the barrel raw material supply port in the effective screw portion to the outer diameter D of the screw is 43.58.
 バレルユニットの設定温度は、上流側から順に、第1~第2ユニット(A温度ゾーン:0~6.23Dmm(ゾーン長さ:6.23Dmm))を50℃、第3~第4ユニット(B温度ゾーン:6.23D~14.53Dmm(ゾーン長さ:8.30Dmm))を220℃、並びに第5ユニット(C温度ゾーン:14.53D~18.68Dmm(ゾーン長さ:4.15Dmm))及び第6~第11ユニット(D温度ゾーン:18.68D~43.58Dmm(ゾーン長さ:24.90Dmm))を180℃とした。 The set temperatures of the barrel units are 50 ° C. for the first to second units (A temperature zone: 0 to 6.23 Dmm (zone length: 6.23 Dmm)) in order from the upstream side, and the third to fourth units (B Temperature zone: 6.23 D to 14.53 Dmm (zone length: 8.30 Dmm)) at 220 ° C. and 5th unit (C temperature zone: 14.53 D to 18.68 Dmm (zone length: 4.15 Dmm)) The sixth to eleventh units (D temperature zone: 18.68D to 43.58 Dmm (zone length: 24.90 Dmm)) were set to 180 ° C.
 原料には、ポリ乳酸樹脂(Nature Works社製 品番:4032D、融点(Tm):160℃)、及び水酸化アルミニウム(日本軽金属社製、商品名:B703)99重量%に対し、イソシアネート系シランカップリング剤(3-イソシアネートプロピルトリエトキシシラン、信越化学製、商品名:KBE-9007)を1重量%表面処理を施した水酸化アルミニウム1を用いた。配合は、ポリ乳酸樹脂100重量部に対して水酸化アルミニウム1を100重量部とした。なお、融点(Tm)はJIS K7121に基づく示差走査熱量測定(DSC)の昇温法による結晶融解吸熱ピーク温度より測定した。 Isocyanate-based silane cups based on 99% by weight of polylactic acid resin (manufactured by Nature32Works, product number: 4032D, melting point (Tm): 160 ° C.) and aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., trade name: B703) Aluminum hydroxide 1 having a surface treatment of 1% by weight of a ring agent (3-isocyanatopropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., trade name: KBE-9007) was used. The formulation was 100 parts by weight of aluminum hydroxide 1 with respect to 100 parts by weight of the polylactic acid resin. In addition, melting | fusing point (Tm) was measured from the crystal melting endothermic peak temperature by the temperature rising method of the differential scanning calorimetry (DSC) based on JISK7121.
 混練条件は、吐出量Qを120kg/時及びスクリュー回転数Nを265rpmとした。従って、Q/Nは0.453である。 The kneading conditions were a discharge amount Q of 120 kg / hour and a screw rotation speed N of 265 rpm. Therefore, Q / N is 0.453.
 ここで、実施例1の製造では、ポリ乳酸樹脂及び表面処理を施した水酸化アルミニウム1を、前者100重量部に対して後者100重量部の配合として原料を構成したので、本発明の原料構成条件を満たす。 Here, in the manufacture of Example 1, since the raw material was constituted by blending the polylactic acid resin and the surface-treated aluminum hydroxide 1 with the latter 100 parts by weight with respect to the former 100 parts by weight, the raw material structure of the present invention Meet the condition.
 B温度ゾーンは、6.23D~14.53Dmmが6.3D~13Dmmの範囲を含み、また、設定温度の220℃が(Tm+50)~(Tm+80)℃に含まれ、さらに、スクリューに搬送エレメントが設けられた。D温度ゾーンは、18.68D~43.58Dmmが19.3Dmm以降の範囲を含み、また、設定温度の180℃が(Tm-20)~(Tm+40)℃に含まれた。従って、B温度ゾーンが第1温度設定ゾーンに及びD温度ゾーンが第2温度設定ゾーンにそれぞれ相当し、条件1を満たす。 The B temperature zone includes the range of 6.23D to 14.53Dmm from 6.3D to 13Dmm, the set temperature of 220 ° C is included in (Tm + 50) to (Tm + 80) ° C, and the screw has a conveying element. Provided. The D temperature zone included a range from 18.68D to 43.58 Dmm after 19.3 Dmm, and a set temperature of 180 ° C. was included in (Tm−20) to (Tm + 40) ° C. Therefore, the B temperature zone corresponds to the first temperature setting zone and the D temperature zone corresponds to the second temperature setting zone, and the condition 1 is satisfied.
 第1混練部は、始点14.9Dmm及び終点16.9Dmmを13D~20.9Dmmの範囲内に有し、また、長さ2Dmmが1D~4Dmmであり、さらに、スクリューに混練エレメントを設けたので、条件2を満たす。 The first kneading part has a start point of 14.9 Dmm and an end point of 16.9 Dmm within a range of 13D to 20.9 Dmm, a length of 2Dmm is 1D to 4Dmm, and a kneading element is provided on the screw. Condition 2 is satisfied.
 第2混練部は、始点20.9Dmmを20.9Dmm以降の範囲内に有し、また、長さ2Dmmが1D~4Dmmであり、さらに、スクリューに混練エレメントを設けたので、条件3を満たす。 The second kneading part has a starting point of 20.9 Dmm within a range of 20.9 Dmm and beyond, a length of 2 Dmm is 1 D to 4 D mm, and a kneading element is provided on the screw, so that the condition 3 is satisfied.
 なお、以下の実施例2~25についても同様に、本発明の原料構成条件及び条件1~3を満たす。 In addition, the following Examples 2 to 25 also satisfy the raw material constitution conditions and the conditions 1 to 3 of the present invention.
 <実施例2>
 水酸化アルミニウム1の配合量をポリ乳酸樹脂100重量部に対して50重量部としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例2とした。
<Example 2>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the blending amount of aluminum hydroxide 1 was 50 parts by weight with respect to 100 parts by weight of the polylactic acid resin.
 <実施例3>
 水酸化アルミニウム1の配合量をポリ乳酸樹脂100重量部に対して200重量部としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例3とした。
<Example 3>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the blending amount of aluminum hydroxide 1 was 200 parts by weight with respect to 100 parts by weight of the polylactic acid resin.
 <実施例4>
 表面処理水酸化アルミニウム1の代わりにタルク(日本タルク社製、商品名:ミクロエースP6)99重量%に対し、イソシアネート系シランカップリング剤(3-イソシアネートプロピルトリエトキシシラン、信越化学社製、商品名:KBE-9007)を1重量%表面処理を施したタルク1をポリ乳酸樹脂100重量部に対して100重量部配合したことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例4とした。
<Example 4>
Instead of surface-treated aluminum hydroxide 1, an silane coupling agent (3-isocyanatepropyltriethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.) is used for 99% by weight of talc (trade name: Microace P6, manufactured by Nippon Talc Co., Ltd.) A polylactic acid resin composition was produced in the same manner as in Example 1 except that 100 parts by weight of talc 1 subjected to a surface treatment of 1% by weight of KBE-9007) was mixed with 100 parts by weight of the polylactic acid resin. This was taken as Example 4.
 <実施例5>
  外径Dが37mm及びスクリュー有効長Leが45.65Dmm(=バレル長)のスクリューを用い、また、スクリューには、バレルの原料供給口の中心に対応する位置から551mmの位置(14.9Dmm)から74mm(2Dmm)の長さの部分(第1混練部)、及び773mmの位置(20.9Dmm)から74mm(2Dmm)の長さの部分(第2混練部)のそれぞれに混練エレメントを設け、そして、吐出量Qを95kg/時及びスクリュー回転数Nを280rpmとしたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例5とした。このとき、Q/Nは0.339である。
<Example 5>
Using a screw outer diameter D is 37mm and the screw effective length L e is 45.65Dmm (= barrel length), also in the screw, the position of 551mm from the position corresponding to the center of the raw material supply port of the barrel (14.9Dmm ) To 74 mm (2 Dmm) in length (first kneading section) and 74 mm (2 Dmm) in length (second kneading section) from 773 mm position (20.9 Dmm) A polylactic acid resin composition was produced in the same manner as in Example 1 except that the discharge amount Q was 95 kg / hour and the screw rotation speed N was 280 rpm. At this time, Q / N is 0.339.
 <実施例6>
  外径Dが58mm及びスクリュー有効長Leが45.65Dmm(=バレル長)のスクリューを用い、また、スクリューには、バレルの原料供給口の中心に対応する位置から864mmの位置(14.9Dmm)から116mm(2Dmm)の長さの部分(第1混練部)、及び1212mmの位置(20.9Dmm)から116mm(2Dmm)の長さの部分(第2混練部)のそれぞれに混練エレメントを設け、そして、吐出量Qを290kg/時及びスクリュー回転数Nを220rpmとしたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例6とした。このとき、Q/Nは1.32である。
<Example 6>
Using a screw outer diameter D is 58mm and the screw effective length L e is 45.65Dmm (= barrel length), also in the screw, the position of 864mm from the position corresponding to the center of the raw material supply port of the barrel (14.9Dmm ) To 116 mm (2 Dmm) length part (first kneading part), and a 1212 mm position (20.9 Dmm) to 116 mm (2 Dmm) length part (second kneading part). A polylactic acid resin composition was produced in the same manner as in Example 1 except that the discharge amount Q was 290 kg / hour and the screw rotation speed N was 220 rpm. At this time, Q / N is 1.32.
 <実施例7>
 バレルユニット数を8個とすると共にそれに対応した長さのスクリュー(スクリュー有効長Le:33.20Dmm、スクリュー有効部のうちバレルの原料供給口の中心に対応する位置から下流側の部分の長さL1のスクリューの外径Dに対する比(L1/D):31.13)を用いたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例7とした。なお、バレルの第6~第8ユニットがD温度ゾーン(18.68D~31.13Dmm(ゾーン長さ:12.45Dmm))に相当する。
<Example 7>
Screw (screw effective length of a length corresponding thereto as well as the number of barrels unit eight L e: 33.20Dmm, length of the portion of the downstream side from the position corresponding to the center of the raw material supply port of the barrel of the effective screw portion it was prepared analogously to the polylactic acid resin composition as in example 1 except for using the ratio (L 1 /D):31.13) to the outer diameter D of the of L 1 screw, it example 7 did. The sixth to eighth units of the barrel correspond to the D temperature zone (18.68D to 31.13 Dmm (zone length: 12.45 Dmm)).
 <実施例8>
 バレルユニット数を15個とすると共にそれに対応した長さのスクリュー(スクリュー有効長Le:62.25Dmm、スクリュー有効部のうちバレルの原料供給口の中心に対応する位置から下流側の部分の長さL1のスクリューの外径Dに対する比(L1/D):60.18)を用いたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例8とした。なお、バレルの長さ方向における各ユニットの位置は、第12ユニットが43.58D~47.73Dmm、第13ユニットが47.73D~51.88Dmm、第14ユニットが51.88D~56.03Dmm、及び第15ユニットが56.03D~60.18Dmmである。また、バレルの第6~第15ユニットがD温度ゾーン(18.68D~60.18Dmm(ゾーン長さ:41.50Dmm))に相当する。
<Example 8>
Screw (screw effective length of a length corresponding to the same time the number of barrels units and 15 L e: 62.25Dmm, length of the portion of the downstream side from the position corresponding to the center of the raw material supply port of the barrel of the effective screw portion it was prepared analogously to the polylactic acid resin composition as in example 1 except for using the ratio (L 1 /D):60.18) to the outer diameter D of the of L 1 screw, it example 8 did. The position of each unit in the barrel length direction is 43.58D to 47.73Dmm for the 12th unit, 47.73D to 51.88Dmm for the 13th unit, 51.88D to 56.03Dmm for the 14th unit, And the 15th unit is 56.03D to 60.18Dmm. The sixth to fifteenth units of the barrel correspond to the D temperature zone (18.68D to 60.18 Dmm (zone length: 41.50 Dmm)).
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <実施例9>
 A温度ゾーンの設定温度を20℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例9とした。
<Example 9>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the A temperature zone was 20 ° C., and this was designated as Example 9.
 <実施例10>
 A温度ゾーンの設定温度を240℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例10とした。
<Example 10>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the A temperature zone was 240 ° C., and this was designated as Example 10.
 <実施例11>
 B温度ゾーンの設定温度を210℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例11とした。
<Example 11>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the B temperature zone was 210 ° C., and this was designated as Example 11.
 <実施例12>
 B温度ゾーンの設定温度を240℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例12とした。
<Example 12>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the B temperature zone was 240 ° C., and this was designated as Example 12.
 <実施例13>
 C温度ゾーンの設定温度を140℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例13とした。
<Example 13>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the C temperature zone was 140 ° C., and this was designated as Example 13.
 <実施例14>
 C温度ゾーンの設定温度を240℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例14とした。
<Example 14>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the temperature set in the C temperature zone was 240 ° C., and this was designated as Example 14.
 <実施例15>
 D温度ゾーンの設定温度を140℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例15とした。
<Example 15>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the D temperature zone was 140 ° C., and this was designated as Example 15.
 <実施例16>
 D温度ゾーンの設定温度を200℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例16とした。
<Example 16>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the D temperature zone was 200 ° C., and this was designated as Example 16.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 <実施例17>
 第1混練部を、原料供給口の中心位置から549mmの位置(13.4Dmm)から82mm(2Dmm)の長さの部分に設けたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例17とした。
<Example 17>
A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 549 mm from the center position of the raw material supply port (13.4 Dmm) to 82 mm (2 Dmm). This was produced as Example 17.
 <実施例18>
 第1混練部を、原料供給口の中心位置から771mmの位置(18.8Dmm)から82mm(2Dmm)の長さの部分に設けたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例18とした。この実施例18のポリ乳酸樹脂組成物の製造では、第1及び第2混練部を連続して設けた。
<Example 18>
A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 771 mm (18.8 Dmm) to 82 mm (2 Dmm) from the center position of the raw material supply port. This was produced as Example 18. In the production of the polylactic acid resin composition of Example 18, the first and second kneading sections were continuously provided.
 <実施例19>
 第1混練部を、原料供給口の中心位置から611mmの位置(14.9Dmm)から164mm(4Dmm)の長さの部分に設けたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例19とした。
<Example 19>
A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 611 mm from the center position of the raw material supply port (14.9 Dmm) to 164 mm (4 Dmm). This was produced as Example 19.
 <実施例20>
 第2混練部を、原料供給口の中心位置から1349mmの位置(32.9Dmm)から82mm(2Dmm)の長さの部分に設けたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例20とした。
<Example 20>
A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the second kneading part was provided in a portion having a length of 1349 mm from the center position of the raw material supply port (32.9 Dmm) to 82 mm (2 Dmm). This was produced as Example 20.
 <実施例21>
 第2混練部を、原料供給口の中心位置から857mmの位置(20.9Dmm)から164mm(4Dmm)の長さの部分に設けたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例21とした。
<Example 21>
A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the second kneading part was provided in a portion having a length of 857 mm from the center position of the raw material supply port (20.9 Dmm) to 164 mm (4 Dmm). This was produced as Example 21.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 <実施例22>
 水酸化アルミニウム1の代わりに、水酸化アルミニウム(日本軽金属社製、商品名:B703)99重量%に対し、アミノ系シランカップリング剤(N-フェニル-3-アミノプロピルトリメトキシシラン、信越化学社製、KBM-573)を1重量%表面処理を施した水酸化アルミニウム2をポリ乳酸樹脂100重量部に対して100重量部配合したことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例22とした。
<Example 22>
Instead of aluminum hydroxide 1, amino silane coupling agent (N-phenyl-3-aminopropyltrimethoxysilane, Shin-Etsu Chemical Co., Ltd.) is used with respect to 99% by weight of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., trade name: B703). A polylactic acid resin composition was prepared in the same manner as in Example 1 except that 100 parts by weight of aluminum hydroxide 2 having a surface treatment of 1% by weight manufactured by KBM-573) was blended with 100 parts by weight of the polylactic acid resin. This was produced as Example 22.
 <実施例23>
 水酸化アルミニウム1の代わりに、水酸化アルミニウム(日本軽金属社製、商品名:B703)99重量%に対し、メルカプト系シランカップリング剤(3-メルカプトプロピルトリメトキシシラン、信越化学社製、KBM-803)を1重量%表面処理を施した水酸化アルミニウム3をポリ乳酸樹脂100重量部に対して100重量部配合したことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例23とした。
<Example 23>
Mercapto-based silane coupling agent (3-mercaptopropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd., KBM-) with respect to 99% by weight of aluminum hydroxide (trade name: B703, manufactured by Nippon Light Metal Co., Ltd.) instead of aluminum hydroxide 1 A polylactic acid resin composition was produced in the same manner as in Example 1 except that 100 parts by weight of aluminum hydroxide 3 having a surface treatment of 1% by weight of 803) was blended with respect to 100 parts by weight of the polylactic acid resin. To Example 23.
 <実施例24>
 ポリ乳酸樹脂100重量部に対して、可塑剤1(メチルトリグリコールコハク酸ジエステル)10重量部、結晶核剤1(日本化成社製 商品名:スリパックスH、分子中に水酸基とアミド基とを有するビスアマイド)0.5重量部、結晶核剤2(日産化学社製 商品名:PPA-Zn、フェニルホスホン酸亜鉛)0.5重量部、及び加水分解抑制剤(ラインケミー社製 商品名:スタバクゾールI-LF)1重量部をさらに配合したことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例24とした。
<Example 24>
10 parts by weight of plasticizer 1 (methyltriglycol succinic acid diester), 100 parts by weight of polylactic acid resin, crystal nucleating agent 1 (product name: SLIPAX H, manufactured by Nippon Kasei Co., Ltd.), having a hydroxyl group and an amide group in the molecule 0.5 parts by weight of bisamide), crystal nucleating agent 2 (trade name: PPA-Zn, zinc phenylphosphonate) manufactured by Nissan Chemical Co., Ltd., and hydrolysis inhibitor (trade name: Stavaxol I- manufactured by Rhein Chemie) LF) A polylactic acid resin composition was produced in the same manner as in Example 1 except that 1 part by weight was further blended.
 なお、可塑剤1は以下のようにして作製した。 In addition, the plasticizer 1 was produced as follows.
 攪拌機、温度計、脱水管を備えた3Lフラスコに、無水コハク酸500g、トリエチレングリコールモノメチルエーテル2463g、パラトルエンスルホン酸-水和物9.5gを仕込み、空間部に窒素(500mL/分)を吹き込みながら、減圧下(4~10.7kPa)、110℃で15時間反応させた。反応液の酸価は1.6(KOHmg/g)であった。 A 3 L flask equipped with a stirrer, thermometer and dehydration tube was charged with 500 g of succinic anhydride, 2463 g of triethylene glycol monomethyl ether, and 9.5 g of paratoluenesulfonic acid-hydrate, and nitrogen (500 mL / min) was added to the space. The reaction was carried out at 110 ° C. for 15 hours under reduced pressure (4 to 10.7 kPa) while blowing. The acid value of the reaction solution was 1.6 (KOH mg / g).
 反応液に吸着剤キョーワード500SH(協和化学工業社製)27gを添加して80℃、2.7kPaで45分間攪拌してろ過した後、液温115~200℃、圧力0.03kPaでトリエチレングリコールモノメチルエーテルを留去し、80℃に冷却後、残液を減圧ろ過して、ろ液として、コハク酸とトリエチレングリコールモノメチルエーテルとのジエステルを得た。得られたジエステルは、酸価0.2(KOHmg/g)、鹸化価276(KOHmg/g)、水酸基価1以下(KOHmg/g)、色相APHA200であった。 After adding 27 g of adsorbent KYOWARD 500SH (manufactured by Kyowa Chemical Industry Co., Ltd.) to the reaction solution, stirring and filtering at 80 ° C. and 2.7 kPa for 45 minutes, and then triethylene at a liquid temperature of 115 to 200 ° C. and a pressure of 0.03 kPa. After distilling off glycol monomethyl ether and cooling to 80 ° C., the residual liquid was filtered under reduced pressure to obtain a diester of succinic acid and triethylene glycol monomethyl ether as a filtrate. The obtained diester had an acid value of 0.2 (KOHmg / g), a saponification value of 276 (KOHmg / g), a hydroxyl value of 1 or less (KOHmg / g), and a hue of APHA200.
 <実施例25>
 ポリ乳酸樹脂100重量部に対して、可塑剤2(大八化学社製 商品名:DAIFATTY-101、アジピン酸ジエステル)10重量部、結晶核剤1(日本化成社製 商品名:スリパックスH、分子中に水酸基とアミド基とを有するビスアマイド)0.5重量部、結晶核剤2(日産化学社製 商品名:PPA-Zn、フェニルホスホン酸亜鉛)0.5重量部、及び加水分解抑制剤(ラインケミー社製 商品名:スタバクゾールI-LF、カルボジイミド化合物)1重量部をさらに配合したことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを実施例25とした。
<Example 25>
10 parts by weight of plasticizer 2 (trade name: DAIFATTY-101, adipic acid diester manufactured by Daihachi Chemical Co., Ltd.) and crystal nucleating agent 1 (manufactured by Nippon Kasei Co., Ltd., product name: SLIPAX H, molecule) with respect to 100 parts by weight of polylactic acid resin 0.5 parts by weight of a bisamide having a hydroxyl group and an amide group), 0.5 parts by weight of a crystal nucleating agent 2 (product name: PPA-Zn, zinc phenylphosphonate) manufactured by Nissan Chemical Co., Ltd., and a hydrolysis inhibitor ( A polylactic acid resin composition was produced in the same manner as in Example 1 except that 1 part by weight of a trade name: Stabaxol I-LF, a carbodiimide compound) manufactured by Rhein Chemie was used.
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
 <比較例1>
 表面処理水酸化アルミニウム1の代わりに表面処理を施していない水酸化アルミニウム4(日本系金属社製 商品名:B703)をポリ乳酸樹脂100重量部に対して100重量部配合し、そして、B温度ゾーンの設定温度を180℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを比較例1とした。
<Comparative Example 1>
In place of the surface-treated aluminum hydroxide 1, 100 parts by weight of aluminum hydroxide 4 (product name: B703, manufactured by Nippon Metals Co., Ltd.) that has not been surface-treated is added to 100 parts by weight of the polylactic acid resin, A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the zone was 180 ° C., and this was designated as Comparative Example 1.
 比較例1では、B温度ゾーンの設定温度が、ポリ乳酸樹脂の融点(Tm=160℃)より20℃高い180℃であるので、条件1を満たさず、また、表面処理を施していない水酸化アルミニウム4を用いているので、本発明の原料構成条件を満たさない。 In Comparative Example 1, the set temperature of the B temperature zone is 180 ° C., which is 20 ° C. higher than the melting point (Tm = 160 ° C.) of the polylactic acid resin, so that the condition 1 is not satisfied and the surface treatment is not performed Since aluminum 4 is used, the raw material constituent conditions of the present invention are not satisfied.
 <比較例2>
 表面処理水酸化アルミニウム1の代わりに表面処理を施していない水酸化アルミニウム4をポリ乳酸樹脂100重量部に対して100重量部配合したことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを比較例2とした。
<Comparative Example 2>
A polylactic acid resin composition was prepared in the same manner as in Example 1 except that 100 parts by weight of aluminum hydroxide 4 not subjected to surface treatment was mixed with 100 parts by weight of polylactic acid resin instead of surface-treated aluminum hydroxide 1. This was manufactured as Comparative Example 2.
 比較例2では、表面処理を施していない水酸化アルミニウム4を用いているので、本発明の原料構成条件を満たさない。 In Comparative Example 2, since the aluminum hydroxide 4 not subjected to the surface treatment is used, the raw material constituent conditions of the present invention are not satisfied.
 <比較例3>
 B温度ゾーンの設定温度を180℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを比較例3とした。
<Comparative Example 3>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the B temperature zone was 180 ° C., and this was designated as Comparative Example 3.
 比較例3では、B温度ゾーンの設定温度が180℃であるので、条件1を満たさない。 In Comparative Example 3, since the set temperature of the B temperature zone is 180 ° C., the condition 1 is not satisfied.
 <比較例4>
 B温度ゾーンの設定温度を250℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを比較例4とした。
<Comparative example 4>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the B temperature zone was 250 ° C., and this was designated as Comparative Example 4.
 比較例4では、B温度ゾーンの設定温度がポリ乳酸樹脂の融点(Tm=160℃)より90℃高い250℃であるので、条件1を満たさない。 In Comparative Example 4, the set temperature of the B temperature zone is 250 ° C., which is 90 ° C. higher than the melting point of the polylactic acid resin (Tm = 160 ° C.), so Condition 1 is not satisfied.
 <比較例5>
 D温度ゾーンの設定温度を220℃としたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを比較例5とした。
<Comparative Example 5>
A polylactic acid resin composition was produced in the same manner as in Example 1 except that the set temperature of the D temperature zone was 220 ° C., and this was designated as Comparative Example 5.
 比較例5では、D温度ゾーンの設定温度が220℃であるので、条件1を満たさない。 In Comparative Example 5, since the set temperature of the D temperature zone is 220 ° C., the condition 1 is not satisfied.
 <比較例6>
 第1混練部を、原料供給口の中心位置から488mmの位置(11.9Dmm)から82mm(2Dmm)の長さの部分に設けたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを比較例6とした。
<Comparative Example 6>
A polylactic acid resin composition was prepared in the same manner as in Example 1 except that the first kneading part was provided in a portion having a length of 488 mm from the center position of the raw material supply port (11.9 Dmm) to 82 mm (2 Dmm). This was manufactured as Comparative Example 6.
 比較例6では、第1混練部の始点が13Dmmよりも上流の11.9Dmm及び終点が13.9Dmmであるので、条件2を満たさない。 In Comparative Example 6, since the start point of the first kneading section is 11.9 Dmm upstream and 133.9 Dmm upstream of 13 Dmm, Condition 2 is not satisfied.
 <比較例7>
 第1混練部を、原料供給口の中心位置から940mmの位置(22.9Dmm)から82mm(2Dmm)の長さの部分に設け、また、第2混練部を、1022mmの位置(24.9Dmm)から82mm(2Dmm)の長さの部分に設けたことを除いて実施例1と同様にポリ乳酸樹脂組成物を製造し、それを比較例7とした。
<Comparative Example 7>
The first kneading section is provided in a portion having a length of 940 mm from the center position of the raw material supply port (22.9 Dmm) to 82 mm (2 Dmm), and the second kneading section is positioned at a position of 1022 mm (24.9 Dmm). A polylactic acid resin composition was produced in the same manner as in Example 1 except that it was provided in a portion having a length of 82 mm (2 Dmm).
 比較例7では、第1混練部の始点が20.9Dmmよりも下流の22.9Dmm及び終点が24.9Dmmであるので、条件2を満たさない。 In Comparative Example 7, the start point of the first kneading part is 22.9 Dmm downstream from 20.9 Dmm and the end point is 24.9 Dmm, so Condition 2 is not satisfied.
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
 (試験方法)
 <可撓性試験;曲げ破断歪み>
 実施例1~25及び比較例1~7のそれぞれについて、角柱状試験片(80mm×10mm×4mm)を成形して作製し、JIS K7171に基づいて曲げ試験を行い、曲げ破断歪みを測定した。曲げ試験は、テンシロン(オリエンテック社製 テンシロン万能試験機 型番:RTC-1210A)を用いて行い、クロスヘッド速度は2mm/minとした。曲げ破断歪みの値が大きいほど、可撓性に優れることを示す。結果を表1~5に示す。
(Test method)
<Flexibility test; bending fracture strain>
For each of Examples 1 to 25 and Comparative Examples 1 to 7, prismatic test pieces (80 mm × 10 mm × 4 mm) were formed, subjected to a bending test based on JIS K7171, and bending fracture strain was measured. The bending test was performed using Tensilon (Tensilon Universal Testing Machine Model No .: RTC-1210A manufactured by Orientec Co., Ltd.), and the crosshead speed was 2 mm / min. It shows that it is excellent in flexibility, so that the value of bending fracture strain is large. The results are shown in Tables 1-5.
 <耐熱性試験;荷重撓み温度>
 実施例1~25及び比較例1~7のそれぞれについて、角柱状試験片(80mm×10mm×4mm)を成形して作製し、JIS K7191に基づいて、1.81MPaの負荷がかかった状態で0.34mmの撓みが生じるときの荷重撓み温度を測定した。試験は、熱変形温度測定機(東洋精機製作所社製 型番:B-32)を用いて行った。荷重撓み温度値が大きいほど、耐熱性に優れることを示す。結果を表1~5に示す。
<Heat resistance test; load deflection temperature>
For each of Examples 1 to 25 and Comparative Examples 1 to 7, a prismatic test piece (80 mm × 10 mm × 4 mm) was formed and produced according to JIS K7191, with a load of 1.81 MPa being applied. The load deflection temperature when a deflection of .34 mm occurs was measured. The test was performed using a thermal deformation temperature measuring machine (model number: B-32 manufactured by Toyo Seiki Seisakusho). It shows that it is excellent in heat resistance, so that a load deflection temperature value is large. The results are shown in Tables 1-5.
 本発明はポリ乳酸樹脂組成物の製造方法について有用である。 The present invention is useful for a method for producing a polylactic acid resin composition.
100 同方向噛み合型二軸押出機
10 スクリュー
111 搬送エレメント
112 混練エレメント
12 回転軸
20 バレル
20a 原料供給口
21 バレルユニット
22 ダイ
23 スクリュー挿通孔
30 原料供給部
31 フィーダー
32 ホッパー
40 回転駆動部
50 冷却槽
60 ペレタイズ部
M 混練物
M’ 樹脂混合物
100 In-direction meshing twin screw extruder 10 Screw 111 Conveying element 112 Kneading element 12 Rotating shaft 20 Barrel 20a Raw material supply port 21 Barrel unit 22 Die 23 Screw insertion hole 30 Raw material supply unit 31 Feeder 32 Hopper 40 Rotation drive unit 50 Cooling Tank 60 Pelletizing part M Kneaded material M 'Resin mixture

Claims (12)

  1.  ポリ乳酸樹脂と、前記ポリ乳酸樹脂100重量部に対する含有量が50~200重量部である表面処理を施した無機粉体と、を含む混合物を、
     各々、搬送エレメント及び混練エレメントを含むスクリューエレメントが長さ方向に沿って連設された外径Dが30mm以上の一対のスクリューが、長さ方向に沿って相互に独立した温度設定が可能な複数の部分に分割されるバレルに並行に挿通され、且つ前記スクリューのスクリューエレメントが長さ方向に沿って連設されて構成されたスクリュー有効部のうち前記バレルの原料供給口の中心に対応する位置から下流側の部分の長さLの前記スクリューの外径Dに対する比(L/D)が30以上である同方向噛み合型二軸押出機を用い、下記条件1~3を満たして混練するポリ乳酸樹脂組成物の製造方法。
    条件1:バレルの原料供給口の中心位置から少なくとも6.3D~13Dmmの範囲を含むように設けられると共に、バレルの設定温度が、ポリ乳酸樹脂の融点をTmとして、(Tm+50)~(Tm+80)℃であり、且つスクリューに搬送エレメントが設けられた第1温度設定ゾーン、及び前記第1温度設定ゾーンより下流側におけるバレルの原料供給口の中心位置から少なくとも19.3Dmm以降の範囲を含むように設けられると共に、バレルの設定温度が(Tm-20)~(Tm+40)℃である第2温度設定ゾーンを有する。
    条件2:バレルの原料供給口の中心位置から13D~20.9Dmmの範囲内に始点及び終点を有するように設けられると共に、長さが1D~4Dmmであり、且つスクリューに混練エレメントが設けられた第1混練部を有する。
    条件3:バレルの原料供給口の中心位置から20.9Dmm以降の範囲内に始点を有するように設けられると共に、長さが1D~4Dmmであり、且つスクリューに混練エレメントが設けられた第2混練部を有する。
    A mixture containing a polylactic acid resin and a surface-treated inorganic powder having a content of 50 to 200 parts by weight based on 100 parts by weight of the polylactic acid resin,
    A plurality of screws each having an outer diameter D of 30 mm or more in which screw elements including a conveying element and a kneading element are continuously provided along the length direction can be set independently of each other along the length direction. A position corresponding to the center of the raw material supply port of the barrel among the effective screw portion configured to be inserted in parallel with the barrel divided into the portions and the screw elements of the screw to be continuously provided along the length direction. Kneading using the same direction meshing type twin screw extruder in which the ratio (L / D) of the length L of the downstream portion to the outer diameter D of the screw is 30 or more, satisfying the following conditions 1 to 3 A method for producing a polylactic acid resin composition.
    Condition 1: It is provided so as to include at least the range of 6.3D to 13Dmm from the center position of the raw material supply port of the barrel, and the set temperature of the barrel is (Tm + 50) to (Tm + 80) where the melting point of the polylactic acid resin is Tm A first temperature setting zone in which the screw is provided with a conveying element, and a range of at least 19.3 Dmm from the center position of the barrel material supply port on the downstream side of the first temperature setting zone. And a second temperature setting zone in which the set temperature of the barrel is (Tm−20) to (Tm + 40) ° C.
    Condition 2: Provided to have a start point and an end point within a range of 13D to 20.9Dmm from the center position of the raw material supply port of the barrel, a length of 1D to 4Dmm, and a kneading element provided to the screw It has a 1st kneading part.
    Condition 3: Second kneading provided with a starting point within a range of 20.9 Dmm or more from the center position of the raw material supply port of the barrel, having a length of 1D to 4Dmm, and a kneading element provided on the screw Part.
  2.  前記無機粉体が、金属水酸化物、金属水和物、及び層状珪酸塩のうち少なくとも1種を含む、請求項1に記載のポリ乳酸樹脂組成物の製造方法。 The method for producing a polylactic acid resin composition according to claim 1, wherein the inorganic powder contains at least one of a metal hydroxide, a metal hydrate, and a layered silicate.
  3.  前記無機粉体が、水酸化アルミニウム、水酸化マグネシウム、水酸化カルシウム、カルシウム・アルミネート水和物、酸化スズ水和物、プロゴバイト、硝酸亜鉛六水和物、及び硝酸ニッケル六水和物からなる群から選ばれる少なくとも1種を含む、請求項2に記載のポリ乳酸樹脂組成物の製造方法。 The inorganic powder includes aluminum hydroxide, magnesium hydroxide, calcium hydroxide, calcium aluminate hydrate, tin oxide hydrate, progobite, zinc nitrate hexahydrate, and nickel nitrate hexahydrate. The manufacturing method of the polylactic acid resin composition of Claim 2 containing at least 1 sort (s) chosen from the group which consists of.
  4.  前記無機粉体が、タルク、スメクタイト、カオリン、マイカ、及びモンモリロナイトからなる群から選ばれる少なくとも1種を含む、請求項2又は3に記載のポリ乳酸樹脂組成物の製造方法。 The method for producing a polylactic acid resin composition according to claim 2 or 3, wherein the inorganic powder contains at least one selected from the group consisting of talc, smectite, kaolin, mica, and montmorillonite.
  5.  前記混合物は、可塑剤及び結晶核剤をさらに含む、請求項1乃至4のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 The method for producing a polylactic acid resin composition according to any one of claims 1 to 4, wherein the mixture further contains a plasticizer and a crystal nucleating agent.
  6.  前記可塑剤が、炭素数2~6の脂肪族ジ若しくはトリカルボン酸エステル及び/又は多塩基酸とポリエチレングリコールモノアルキルエーテルとのエステルを含む、請求項5に記載のポリ乳酸樹脂組成物の製造方法。 6. The method for producing a polylactic acid resin composition according to claim 5, wherein the plasticizer includes an aliphatic di- or tricarboxylic acid ester having 2 to 6 carbon atoms and / or an ester of a polybasic acid and a polyethylene glycol monoalkyl ether. .
  7.  前記可塑剤のポリ乳酸樹脂100重量部に対する配合量が3~50重量部である、請求項5又は6に記載のポリ乳酸樹脂組成物の製造方法。 The method for producing a polylactic acid resin composition according to claim 5 or 6, wherein the compounding amount of the plasticizer with respect to 100 parts by weight of the polylactic acid resin is 3 to 50 parts by weight.
  8.  前記結晶核剤が、分子中に水酸基とアミド基とを有する化合物及び/又はフェニルホスホン酸金属塩を含む、請求項5乃至7のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 The method for producing a polylactic acid resin composition according to any one of claims 5 to 7, wherein the crystal nucleating agent comprises a compound having a hydroxyl group and an amide group in the molecule and / or a metal salt of phenylphosphonic acid.
  9.  前記結晶核剤のポリ乳酸樹脂100重量部に対する配合量が0.05~10重量部である、請求項5乃至8のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 The method for producing a polylactic acid resin composition according to any one of claims 5 to 8, wherein the compounding amount of the crystal nucleating agent with respect to 100 parts by weight of the polylactic acid resin is 0.05 to 10 parts by weight.
  10.  前記スクリューの外径Dが200mm以下である、請求項1乃至9のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 The method for producing a polylactic acid resin composition according to any one of claims 1 to 9, wherein an outer diameter D of the screw is 200 mm or less.
  11.  前記バレルの原料供給口の中心に対応する位置から下流側の部分の長さLの前記スクリューの外径Dに対する比(L/D)が30~60である、請求項1乃至10のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 The ratio (L / D) of the length L of the downstream portion from the position corresponding to the center of the raw material supply port of the barrel to the outer diameter D of the screw is 30 to 60. The manufacturing method of the polylactic acid resin composition as described in 2 ..
  12.  前記同方向噛み合型二軸押出機からの混練物の吐出量Q(kg/時)とスクリュー回転数N(rpm) との比Q/Nが0.2≦Q/N≦1. 5である、請求項1乃至11のいずれかに記載のポリ乳酸樹脂組成物の製造方法。 The ratio Q / N between the discharge amount Q (kg / hour) of the kneaded material from the same-direction meshing twin screw extruder and the screw rotation speed N (rpm) is 0.2 ≦ Q / N ≦ 1. The method for producing a polylactic acid resin composition according to any one of claims 1 to 11, which is 5.
PCT/JP2011/007130 2010-12-20 2011-12-20 Method for producing polylactic resin composition WO2012086192A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201180061592.2A CN103260840B (en) 2010-12-20 2011-12-20 The manufacture method of polylactic acid resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010283537A JP5608540B2 (en) 2010-12-20 2010-12-20 Method for producing polylactic acid resin composition
JP2010-283537 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012086192A1 true WO2012086192A1 (en) 2012-06-28

Family

ID=46313483

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/007130 WO2012086192A1 (en) 2010-12-20 2011-12-20 Method for producing polylactic resin composition

Country Status (3)

Country Link
JP (1) JP5608540B2 (en)
CN (1) CN103260840B (en)
WO (1) WO2012086192A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068049A1 (en) * 2014-10-27 2016-05-06 東芝機械株式会社 Extruder and kneading device
EP4071204A4 (en) * 2020-01-20 2023-11-15 Adeka Corporation Method for producing resin composition and method for producing molded article

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180841A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Side feed extruder of powder and extrusion method using the extruder
JP2002371137A (en) * 2001-06-13 2002-12-26 Idemitsu Kosan Co Ltd Method for producing resin composition, resin composition and toner
JP2004263180A (en) * 2003-02-12 2004-09-24 Mitsubishi Plastics Ind Ltd Injection molded body
JP2005035134A (en) * 2003-07-18 2005-02-10 Toray Ind Inc Manufacturing method of resin composition
WO2009022516A1 (en) * 2007-08-10 2009-02-19 Toagosei Co., Ltd. Method for production of adhesive resin composition, resin film, and laminate
JP2009203410A (en) * 2008-02-29 2009-09-10 Toray Ind Inc Thermoplastic resin composition and method for producing the same
WO2009119624A1 (en) * 2008-03-27 2009-10-01 東レ株式会社 Process for producing thermoplastic resin composition
JP2010194955A (en) * 2009-02-26 2010-09-09 Kao Corp Method for producing polylactic acid resin composition

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4176924B2 (en) * 1999-08-11 2008-11-05 旭化成ケミカルズ株式会社 Thermoplastic resin melt-kneading method
FR2807440A1 (en) * 2000-04-06 2001-10-12 Centre Nat Rech Scient POLYMER / POLYMER MICRO-COMPOSITE MATERIALS AND PROCESS FOR THEIR PREPARATION
US8586658B2 (en) * 2006-02-14 2013-11-19 Nec Corporation Polylactic acid resin composition and molded item
MX2009000988A (en) * 2006-07-28 2009-05-13 Teijin Ltd Resin composition, method for producing the same and molded article.
JP5092394B2 (en) * 2006-12-26 2012-12-05 三菱エンジニアリングプラスチックス株式会社 Method for producing thermoplastic resin composition

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10180841A (en) * 1996-12-25 1998-07-07 Asahi Chem Ind Co Ltd Side feed extruder of powder and extrusion method using the extruder
JP2002371137A (en) * 2001-06-13 2002-12-26 Idemitsu Kosan Co Ltd Method for producing resin composition, resin composition and toner
JP2004263180A (en) * 2003-02-12 2004-09-24 Mitsubishi Plastics Ind Ltd Injection molded body
JP2005035134A (en) * 2003-07-18 2005-02-10 Toray Ind Inc Manufacturing method of resin composition
WO2009022516A1 (en) * 2007-08-10 2009-02-19 Toagosei Co., Ltd. Method for production of adhesive resin composition, resin film, and laminate
JP2009203410A (en) * 2008-02-29 2009-09-10 Toray Ind Inc Thermoplastic resin composition and method for producing the same
WO2009119624A1 (en) * 2008-03-27 2009-10-01 東レ株式会社 Process for producing thermoplastic resin composition
JP2010194955A (en) * 2009-02-26 2010-09-09 Kao Corp Method for producing polylactic acid resin composition

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016068049A1 (en) * 2014-10-27 2016-05-06 東芝機械株式会社 Extruder and kneading device
JP2016083869A (en) * 2014-10-27 2016-05-19 東芝機械株式会社 Extruder and kneading device
US11400632B2 (en) 2014-10-27 2022-08-02 Toshiba Kikai Kabushiki Kaisha Extruder screw with conveying portions and barrier portions and extrusion methods using the extruder screw and a plurality of barrel blocks
EP4071204A4 (en) * 2020-01-20 2023-11-15 Adeka Corporation Method for producing resin composition and method for producing molded article

Also Published As

Publication number Publication date
CN103260840A (en) 2013-08-21
CN103260840B (en) 2015-12-02
JP2012131072A (en) 2012-07-12
JP5608540B2 (en) 2014-10-15

Similar Documents

Publication Publication Date Title
KR101260590B1 (en) Polylactic acid resin composition and polylactic acid resin molded body
CN106459544B (en) Highly filled polymer systems
US8829098B2 (en) Polylactic acid resin composition
WO2009099225A1 (en) Resin composition and molded article
JP6143124B2 (en) Polysiloxane-modified polylactic acid resin composition and method for producing the same
EP2264103B1 (en) Polylactic acid resin composite
JPWO2017094900A1 (en) Polylactic acid resin composition, method for producing the same, and molded article
JP5608540B2 (en) Method for producing polylactic acid resin composition
WO2011155119A1 (en) Polylactic acid resin composition and molded body of same
JP2004277720A (en) Polybutylene terephthalate and polybutylene terephthalate composition
WO2017094901A1 (en) Polylactic acid resin composition and polyester resin composition, and methods for producing same and molded articles thereof
JP5479748B2 (en) Polylactic acid resin composition
JP2004277718A (en) Polybutylene terephthalate and polybutylene terephthalate composition
WO2004076524A1 (en) Polybutylene terephthalate and polybutylene terephthalate composition
JP2012188657A (en) Polylactic acid resin composition
JP5247611B2 (en) Method for producing polyamide resin
JP5256068B2 (en) Polylactic acid resin composition
WO2012049896A1 (en) Polylactic resin composition and polylactic resin molded body
US10160857B2 (en) Thermoplastic resin composition and molded article made therefrom
JP2014009267A (en) Injection-molded article formed of polylactic acid resin composition
JP2014047234A (en) Polylactic acid resin composition
JP5261007B2 (en) Polylactic acid resin composition
JP5261006B2 (en) Polylactic acid resin composition
JP2014024895A (en) Flame-retardant resin composition, method for manufacturing the same, and flame-retardant sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11850185

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11850185

Country of ref document: EP

Kind code of ref document: A1