WO2012086009A1 - Mode control waveguide-type laser device - Google Patents

Mode control waveguide-type laser device Download PDF

Info

Publication number
WO2012086009A1
WO2012086009A1 PCT/JP2010/072999 JP2010072999W WO2012086009A1 WO 2012086009 A1 WO2012086009 A1 WO 2012086009A1 JP 2010072999 W JP2010072999 W JP 2010072999W WO 2012086009 A1 WO2012086009 A1 WO 2012086009A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser medium
optical axis
mode
waveguide
Prior art date
Application number
PCT/JP2010/072999
Other languages
French (fr)
Japanese (ja)
Inventor
紀之 宮本
山本 修平
柳澤 隆行
平野 嘉仁
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2012549510A priority Critical patent/JP5389277B2/en
Priority to CN201080068982.8A priority patent/CN103098318B/en
Priority to US13/810,750 priority patent/US9197029B2/en
Priority to EP10861126.0A priority patent/EP2590276B1/en
Priority to PCT/JP2010/072999 priority patent/WO2012086009A1/en
Publication of WO2012086009A1 publication Critical patent/WO2012086009A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08072Thermal lensing or thermally induced birefringence; Compensation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/042Arrangements for thermal management for solid state lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • H01S3/0635Thin film lasers in which light propagates in the plane of the thin film provided with a periodic structure, e.g. using distributed feed-back, grating couplers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements

Definitions

  • the present invention relates to a mode-controlled waveguide laser device used in a high-power laser device.
  • FIG. 9 is a side view showing a configuration of a conventional mode control waveguide type laser device.
  • 10 is a sectional view of the section aa ′ in FIG. 9 as seen from the laser emission side
  • FIG. 11 is a sectional view of the section bb ′ in FIG. 9 as seen from the top.
  • a conventional mode-controlled waveguide laser device includes an excitation semiconductor laser 101 that emits excitation light, a laser medium 105 that emits laser light, and a cladding that is bonded to the lower surface of the laser medium 105. 104 and a heat sink 102 bonded to the lower surface of the clad 104 by a bonding agent 103.
  • the laser medium 105 has a flat plate shape, and has a waveguide structure in the thickness direction (y-axis) of the cross section perpendicular to the optical axis 106 (z-axis) representing the laser oscillation direction. It has a periodic lens effect in a direction (x axis) perpendicular to the direction.
  • An end surface 105a on the incident side of the laser medium 105 is provided with a total reflection film that reflects the laser light, and an antireflection film that reflects part of the laser light and transmits part of the end surface 105b on the emission side. It has been subjected.
  • These total reflection film and partial reflection film are formed by laminating dielectric thin films, for example.
  • the heat sink 102 has an extended tooth structure parallel to the optical axis 106 (z axis).
  • the excitation light incident from the end face 105 a of the laser medium 105 is absorbed by the laser medium 105 and generates a gain for the laser light inside the laser medium 105. Due to the gain generated in the laser medium 105, the laser light oscillates between the end face 105a and the end face 105b perpendicular to the optical axis 106 of the laser medium 105, and a part of the oscillation light passes from the end face 105b to the laser resonator. Output to the outside.
  • the excitation region in the waveguide width direction (x-axis direction) of the excitation light is determined according to the determined power scale of the excitation power, and the mutual interval between the teeth of the extended tooth structure of the heat sink 102 is To depend on.
  • the excitation region in the waveguide width direction of the excitation light is determined according to the excitation power corresponding to the laser output required for the laser device, and each tooth of the heat sink depends on the excitation region. Therefore, the control range of the focal length of the generated thermal lens is limited.
  • the present invention has been made in order to solve the above-described problems, and heat is exhausted over the entire area where heat generation is large, and a thermal lens is generated in the area where heat generation is small, thereby reducing the focal length of the generated thermal lens. It is an object of the present invention to obtain a mode-controlled waveguide type laser device with an extended control range and improved reliability.
  • a mode-controlled waveguide laser device has a flat plate shape, a waveguide structure in the thickness direction of a cross section perpendicular to the optical axis, and a laser medium that generates a gain for laser light, and a laser A cladding that is bonded to one surface of the medium and a heat sink that is bonded to one surface of the laser medium via the cladding; the laser medium generates a lens effect by a refractive index distribution; Is a mode-controlled waveguide laser device that oscillates in a waveguide mode and oscillates in a spatial mode due to a lens effect in a direction perpendicular to the optical axis and thickness direction. A desired temperature distribution is generated in the medium to generate a refractive index distribution in the laser medium.
  • the refractive index distribution generated in the laser medium and the lens effect by adjusting the bonding area between the clad and the heat sink, and in a place where heat generation is large, the entire surface is exhausted to lower the temperature and generate heat.
  • the reliability can be improved by generating a thermal lens in a small area.
  • Example 1 is a side view which shows the structure of the mode control waveguide type laser apparatus which concerns on Embodiment 1 of this invention.
  • Example 1 FIG. 2 is a cross-sectional view of the a-a ′ cross section in FIG. 1 viewed from the laser emission side.
  • Example 1 FIG. 2 is a cross-sectional view of a b-b ′ cross section in FIG. 1 as viewed from above.
  • Example 1 It is explanatory drawing which shows the example of a calculation result of the temperature distribution in a laser medium at the time of excitation at the time of using the mode control waveguide type laser apparatus of FIG.
  • Example 1 It is explanatory drawing which shows the effect at the time of using the mode control waveguide type laser apparatus of FIG.
  • FIG. 5 is a cross-sectional view of a mode-controlled waveguide laser device according to Embodiment 2 of the present invention as viewed from the top along the b-b ′ cross section in FIG. 1.
  • FIG. 5 is a cross-sectional view of a mode-controlled waveguide laser device according to a third embodiment of the present invention viewed from the top along the b-b ′ cross section in FIG. 1.
  • Example 3 is a cross-sectional view of a mode-controlled waveguide laser device according to a fourth embodiment of the present invention as viewed from the top along the b-b ′ cross section in FIG. 1.
  • It is a side view which shows the structure of the conventional mode control waveguide type laser apparatus.
  • FIG. 10 is a cross-sectional view of the a-a ′ cross section in FIG. 9 viewed from the laser emission side.
  • FIG. 10 is a cross-sectional view of the b-b ′ cross section in FIG. 9 as viewed from above.
  • FIG. 1 to 3 are diagrams showing the configuration of a mode-controlled waveguide laser device according to Embodiment 1 of the present invention.
  • FIG. 1 is a side view
  • FIG. 2 is a cross-sectional view taken along line aa ′ of FIG.
  • FIG. 3 is a cross-sectional view of the bb ′ cross section of FIG. 1 viewed from above.
  • a mode-controlled waveguide laser device includes an excitation light incident means 1, a laser medium 5 that emits laser light when the excitation light is incident, and a laser medium.
  • 5 is provided with a clad 4 bonded to the lower surface of 5 and a heat sink 2 bonded to the lower surface of the clad 4 with a bonding agent 3.
  • the laser medium 5 is formed on a flat plate and has a waveguide structure in the thickness direction of a cross section perpendicular to the optical axis 6 representing the laser oscillation direction or the signal light traveling direction.
  • the shape of the end faces 5 a and 5 b perpendicular to the optical axis 6 is, for example, rectangular, and typically has a thickness in the y-axis direction of several ⁇ m to several tens of ⁇ m and a width in the x-axis direction. It has a size of several hundred ⁇ m to several mm.
  • a coordinate system is used in which the long side direction of the rectangular end faces 5a and 5b is the x axis, the short side direction is the y axis, and the optical axis 6 direction is the z axis.
  • the end surfaces 5a and 5b of the laser medium 5 do not necessarily have to be rectangular.
  • the short sides of the end surfaces 5a and 5b may have an arc shape.
  • the clad 4 has a refractive index smaller than that of the laser medium 5 and is bonded to one surface parallel to the xz plane of the laser medium 5.
  • the clad 4 is configured by, for example, depositing a film made of an optical material as a raw material, or optically bonding the optical material to the laser medium 5 by optical contact, diffusion bonding, or the like. Further, as the clad 4, an optical adhesive having a refractive index smaller than that of the laser medium 5 may be used as the clad 4.
  • the heat sink 2 is made of a material having high thermal conductivity, and has a comb shape (see the hatched portion in FIG. 3) in a part of a cross section (yz plane) parallel to the optical axis 6.
  • the comb-shaped end face of the heat sink 2 is bonded to the clad 4 via the bonding agent 3.
  • the heat sink 2 has end surfaces 2a and 2b corresponding to the incident side end surface 5a and the emission side end surface 5b of the laser medium 5, respectively.
  • the bonding agent 3 can be realized by a metal solder, an optical adhesive, a heat conductive adhesive or the like, and exhausts heat generated in the laser medium 5 to the heat sink 2 via the clad 4.
  • the lower surface of the clad 4 may be subjected to metallization (attaching a metal film) in order to increase the bonding strength with the bonding agent 3.
  • the heat sink 2 is made of an optical material, the clad 4 and the heat sink 2 may be directly bonded by, for example, optical contact or diffusion bonding.
  • the excitation light incident means 1 is made of, for example, a semiconductor laser and is disposed close to the end face 5 a of the laser medium 5 or, if necessary, coupled optics between the excitation light emission end face and the end face 5 a of the laser medium 5.
  • a system (not shown) is inserted and arranged. Further, a cooling heat sink (not shown) is joined to the excitation light incident means 1 as necessary.
  • the excitation light emitted from the excitation light incident means 1 enters the xz plane direction from the end surface 5 a of the laser medium 5 and is absorbed by the laser medium 5.
  • the pumping light incident means 1 is a semiconductor laser.
  • a semiconductor laser is not necessarily used as long as the laser medium 5 can have a gain.
  • the end face 5a of the laser medium 5 is provided with a total reflection film that reflects laser light, and the end face 5b is provided with a partial reflection film that transmits part of the laser light.
  • These total reflection film and partial reflection film are formed by laminating dielectric thin films, for example.
  • the total reflection film on the end face 5a is an optical film that transmits the excitation light and reflects the laser light. .
  • a general solid laser material can be used as the laser medium 5.
  • Nd YAG, Nd: YLF, Nd: Glass
  • the upper surface of the laser medium 5 is in contact with air, but a second cladding (not shown) having a smaller refractive index than the laser medium 5 with respect to the upper surface of the laser medium 5 is used. ) May be joined.
  • the propagation mode in the y-axis direction of the laser medium 5 can be arbitrarily set by adjusting the refractive index difference between the laser medium 5 and the second clad. Can be adjusted. Further, if the thickness of the second cladding in the y-axis direction is set large, the rigidity of the laser medium 5 can be increased without affecting the waveguide mode of the laser medium 5.
  • a substrate (not shown) may be bonded to the upper surface of the laser medium 5 via a second bonding agent having a smaller refractive index than the laser medium 5.
  • a second bonding agent for example, an optical adhesive is used
  • the substrate for example, an optical material or metal is used.
  • the y axis direction of the laser medium 5 is adjusted.
  • the propagation mode can be arbitrarily adjusted. If the thickness of the substrate in the y-axis direction is set large, the rigidity of the laser medium 5 can be increased without affecting the waveguide mode of the laser medium 5.
  • the second bonding agent optical adhesive
  • the second bonding agent has lower rigidity than the crystal or glass material, and deforms according to the expansion of the laser medium 5.
  • the stress applied to the laser medium 5 can be relaxed.
  • an optical film (not shown) having a refractive index smaller than that of the laser medium 5 is applied to the upper surface of the laser medium 5, and the optical film surface is almost the same as the laser medium 5 by optical contact or diffusion bonding. You may join the board
  • substrate (not shown) which has a thermal expansion coefficient.
  • the propagation mode in the y-axis direction of the laser medium 5 is arbitrarily adjusted by adjusting the refractive index difference between the laser medium 5 and the optical film. can do. If the thickness of the substrate in the y-axis direction is set large, the rigidity of the laser medium 5 can be increased without affecting the waveguide mode of the laser medium 5.
  • the laser medium 5 and the substrate have substantially the same thermal expansion coefficient, when thermal expansion occurs due to the temperature increase of the laser medium 5, the substrate also expands at substantially the same rate.
  • the optical film between the laser medium 5 and the substrate has a lower density and lower rigidity than a crystal or glass material. Therefore, the optical film is deformed in accordance with the expansion of the substrate and relaxes the stress applied to the laser medium 5. It is possible. Further, when the optical film and the substrate are bonded, it is possible to increase the bonding strength by selecting an optical film material and a substrate that are easy to optically bond.
  • a desired temperature distribution is generated in the laser medium 5 to generate a refractive index distribution in the laser medium 5.
  • a method for generating a lens effect from this refractive index distribution will be described.
  • FIG. 3 focusing on the heat sink 2, in order to clarify the difference between the bonding region bonded to the cladding 4 via the bonding agent 3 and the region not bonded to the cladding 4, the cladding 4 is bonded via the bonding agent 3.
  • the joining region (comb shape) of the heat sink 2 to be joined with is shown by hatching.
  • the total length of the laser medium 5 in the direction of the optical axis 6 (z-axis) is Lo
  • the width of the comb structure portion installed in a part of the optical axis direction is A.
  • the joint part (adjustment side for forming the width A) of the comb structure is provided on the end face 2 b, that is, the emission side of the optical axis 6.
  • the optical material such as the laser medium 5 changes in refractive index almost in proportion to the temperature difference, and a material having a positive refractive index change dn / dT per unit temperature is used as the optical material of the laser medium 5.
  • the refractive index at the center of the two comb teeth having a high temperature increases, and the refractive index decreases as it approaches the comb tooth portion.
  • a thermal lens effect is generated in the x-axis direction with the center portion of the two comb teeth as the optical axis.
  • the refractive index distribution is opposite to the temperature distribution, and the portion of the portion bonded to the comb teeth is used.
  • the refractive index is large, and the refractive index at the center of the two comb teeth is small.
  • a thermal lens effect is generated with the portion bonded to the comb teeth as the optical axis. Since the same effect can be obtained regardless of whether dn / dT is positive or negative, the following description will be made using the case where dn / dT is positive unless otherwise specified.
  • the temperature distribution generated in the laser medium 5 can be changed by changing to the case (when the heat sink 2 has a comb structure in the entire optical axis direction). Therefore, the thermal lens effect generated in the laser medium 5 can be adjusted.
  • the focal length of the thermal lens can be adjusted by changing the width A of the comb structure portion.
  • the comb structure can be installed on the end surface 5a side on the incident side.
  • the temperature rise in the laser medium 5 is highest on the end face 5a side, and the temperature distribution on the end face 5a side is most prominent.
  • the thermal lens focal length can be most easily adjusted by installing a joint having a comb structure on the side end face 5a side.
  • the comb structure may be installed on the end face 5b side on the output side, and when the joint portion having the comb structure is arranged on the end face 5b side, Since the joining surface area with the heat sink 2 is increased on the incident side end face 5a side, the efficiency of exhaust heat is improved. As a result, the thermal lens effect generated in the laser medium 5 can be adjusted, and the thermal lens effect can be suppressed.
  • the optical system in the direction of the optical axis 6 (z axis) is asymmetrical at both end faces 5a, 5b of the laser medium 5, and the laser medium 5 It is obvious that the same effect can be obtained by installing the comb structure portion when the temperature distribution in the inside is distributed in the optical axis direction. Further, the comb structure in the optical axis direction in the laser medium 5 may be provided on both end faces 5a and 5b of the laser medium. With this configuration, the thermal lens focal length can be adjusted even when a temperature distribution symmetrical in the laser optical axis direction in the laser medium 5 occurs, such as side excitation.
  • gap between the comb teeth of the heat sink 2 is normally air, you may fill with the heat insulating material which has a thermal conductivity smaller than the heat sink 2.
  • FIG. In this case, the refractive index distribution in the laser medium 5 is generated by the temperature distribution generated by the difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
  • the front surface on the exhaust heat side of the clad 4 is bonded to the bonding agent 3 and the heat generated in the laser medium 5 is exhausted, so that the temperature rise of the laser medium 5 is suppressed. be able to.
  • the rigidity of the heat sink 2 can be increased as compared with the case where the clad 4 is fixed only by the comb-shaped tip.
  • the mode-controlled waveguide laser device has a flat plate shape and is guided in the thickness direction of the cross section perpendicular to the optical axis 6.
  • a laser medium 5 having a waveguide structure and generating a gain for laser light; a clad 4 joined to one surface of the laser medium 5; a heat sink 2 joined to one surface side of the laser medium 5 via the clad 4;
  • the laser medium 5 generates a lens effect based on the refractive index distribution, and the laser light oscillates in a waveguide mode in the thickness direction, and also due to the lens effect in a direction perpendicular to the optical axis 6 and the thickness direction. Oscillates in spatial mode.
  • a desired temperature distribution is generated in the laser medium 5 according to the bonding area between the clad 4 and the heat sink 2 to generate a refractive index distribution in the laser medium 5.
  • the heat sink 2 includes a joint portion (hatched portion in FIG. 3) having a comb structure parallel to the optical axis 6 in a part of the optical axis 6 of the laser light, and adjusts the range of the comb structure.
  • a desired temperature distribution is generated in the laser medium to generate a refractive index distribution in the laser medium.
  • the junction area between the clad 4 and the heat sink 2 can be adjusted to adjust the refractive index distribution and the lens effect generated in the laser medium 5.
  • a mode-controlled waveguide laser device with improved reliability can be realized.
  • the joint portion (open portion on the adjustment side) having a comb structure is installed on the joint surface excluding the incident surface on which the laser beam of the optical axis 6 of the laser medium 5 is incident. That is, the joint portion having the comb structure is disposed on the end surface 2b side, that is, the joint surface of the emission surface (end surface 5b) from which the laser beam of the optical axis 6 of the laser medium 5 is emitted, and does not constitute a comb tooth. Is disposed on the end surface 2a side, that is, on the joint surface of the incident surface (end surface 5a) of the laser medium 5.
  • Example 2 In the first embodiment (FIGS. 1 to 5), in order to adjust the thermal lens generated in the laser medium 5, a comb structure is formed on a part of the heat sink 2 in the direction of the optical axis 6 (z axis). The temperature distribution in the waveguide is adjusted by adjusting the width A of the comb structure portion. However, as shown in FIG. 6, even if a plurality of comb structure portions in the optical axis direction of the heat sink 2 are provided intermittently, Good.
  • FIG. 6 is a cross-sectional view showing the shape of the heat sink 2 of the mode control waveguide type laser apparatus according to Embodiment 2 of the present invention, and shows the cross section bb ′ of FIG. In this case, the entire configuration is as shown in FIG. 1 except that the comb shape of the heat sink 2 is different from that described above.
  • a plurality of comb structures in the optical axis direction of the heat sink 2 are intermittently arranged, and the focal length of the thermal lens generated in the laser medium 5 can be adjusted by adjusting the width of each comb structure portion. It is. Also, the focal length of the thermal lens can be adjusted by adjusting the number of comb structures having a certain width. In FIG. 6, the width of each comb structure portion is constant, but each width is not necessarily uniform.
  • the joint portion having the comb structure is the laser beam on the optical axis 6 of the laser medium 5.
  • the portions where the and are not joined are alternately distributed. This increases the heat conduction in the optical axis direction.
  • the heat distribution generated in the y-axis direction can be averaged in the direction parallel to the optical axis 6 and the generation of thermal lenses in the y-axis direction is reduced. can do.
  • the gap between the comb teeth of the heat sink 2 is usually air, but may be filled with a heat insulating material having a lower thermal conductivity than the heat sink 2.
  • the refractive index distribution in the laser medium 5 is generated by a temperature distribution generated by a difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
  • Example 3 In laser oscillation in the x-axis direction in the laser resonator, the width (x-axis) of the laser medium 5 is Since it is sufficiently larger than the wavelength of the laser beam, mode selection by the waveguide in the y-axis is not performed, and a spatial mode laser resonator is obtained. Therefore, as shown in FIG. 7, a plurality of comb teeth bonded to the clad 4 via the bonding agent 3 are provided in a direction parallel to the optical axis 6 of the heat sink 2, and two in the x-axis direction in the laser medium 5 are provided. A plurality of oscillation modes that are periodic in the x-axis direction may be generated by periodically generating a thermal lens effect having the center of the comb teeth as the optical axis.
  • FIG. 7 is a cross-sectional view showing the shape of the heat sink 2 of the mode control waveguide type laser apparatus according to Embodiment 3 of the present invention, and shows the cross section bb ′ of FIG. In this case, the entire configuration is as shown in FIG. 1 except that the comb shape of the heat sink 2 is different from that described above.
  • a desired temperature distribution is generated in the laser medium 5 to generate a refractive index distribution in the laser medium 5, and a plurality of lenses are arranged in the x-axis direction based on this refractive index distribution.
  • a lens effect that is an effect is generated, and a mode-controlled waveguide laser device that oscillates in a waveguide mode in the y-axis direction and oscillates in a spatial mode by the lens effect in the x-axis direction is realized.
  • the width A (see FIG. 3) of the comb structure in the direction of the optical axis 6 (z-axis) of the heat sink 2 is determined when the comb structure does not exist in the optical axis direction (when the portions of the comb structures are in contact with each other).
  • the focal length of the thermal medium of the laser medium 5 is adjusted by changing until the entire optical axis direction has a comb structure, or by adjusting the number of comb structure portions existing in the optical axis direction. be able to.
  • the user medium 2 has the optical axis 6 and the thickness direction due to the refractive index distribution.
  • a lens effect that is an effect of arranging a plurality of lenses in a direction perpendicular to (x-axis) is generated, and the laser light oscillates in a waveguide mode in the thickness direction (y-axis), and the optical axis 6 and thickness In the direction perpendicular to the direction (x-axis), a plurality of oscillations occur in the spatial mode due to the lens effect.
  • high output power can be achieved by using a broad area LD having a wide light emitting region that is easy to achieve high output, and an LD array in which emitters are arranged in a row, thereby increasing the output power of excitation light. Even in the mode control waveguide type laser apparatus capable of outputting the laser beam, the thermal lens generated in the laser medium 5 can be controlled.
  • the gap between the comb teeth of the heat sink 2 is usually air, but may be filled with a heat insulating material having a lower thermal conductivity than the heat sink 2.
  • the refractive index distribution in the laser medium 5 is generated by a temperature distribution generated by a difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
  • Example 4 in order to adjust the thermal lens focal length generated in the laser medium 5, a plurality of lens effects are generated in the x-axis direction, and in the waveguide mode in the y-axis direction.
  • a comb structure is provided in the optical axis direction of the heat sink 2, and the width A of the comb structure part or the number of comb structure parts existing is adjusted.
  • the temperature distribution in the waveguide is adjusted.
  • a plurality of comb structures in the direction of the optical axis (z-axis) of the heat sink 2 may be provided intermittently.
  • FIG. 8 is a cross-sectional view showing the shape of the heat sink 2 of the mode control waveguide type laser apparatus according to Embodiment 4 of the present invention, and shows the cross section bb ′ of FIG. In this case, the entire configuration is as shown in FIG. 1 except that the comb shape of the heat sink 2 is different from that described above.
  • a refractive index distribution is generated in the laser medium 5, and a lens effect that is an effect of arranging a plurality of lenses in the x-axis direction is generated by the refractive index distribution, and oscillation is performed in a waveguide mode in the y-axis direction.
  • the above problem can be solved even in an apparatus that oscillates in a spatial mode due to the lens effect.
  • a plurality of comb structure portions in the direction of the optical axis (z axis) of the heat sink 2 are intermittently arranged, and the width A (see FIG. 3) of the comb structure portion is adjusted to adjust the inside of the laser medium 5. It is possible to adjust the focal length of the thermal lens generated in the above, and it is also possible to adjust the focal length of the thermal lens generated in the laser medium 5 by adjusting the number of comb structures having a certain width. In addition, the width A of each comb structure part does not necessarily need to be constant.
  • the heat sink 2 and the clad 4 are bonded via the bonding agent 3 in the optical axis direction.
  • heat conduction in the direction parallel to the optical axis 6 is increased.
  • y The heat distribution generated in the axial direction can be averaged in the direction parallel to the optical axis 6, and the thermal lens in the y-axis direction can be reduced.
  • the gap between the comb teeth of the heat sink 2 is usually air, but may be filled with a heat insulating material having a lower thermal conductivity than the heat sink 2.
  • the refractive index distribution in the laser medium 5 is generated by a temperature distribution generated by a difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
  • the entire surface is exhausted on the incident side where heat generation is large, and the thermal lens is adjusted and generated on the emission side where heat generation is small. Therefore, as shown in FIGS.
  • the joint portion having the structure is disposed on the joint surface of the emission surface (end surface 5b) from which the laser beam of the optical axis 6 of the laser medium 5 is emitted. If priority is given to the above, a joint portion having a comb structure may be provided on the joint surface of the incident-side end surface 5a having a strong temperature distribution.

Abstract

The objective is to provide a mode control waveguide-type laser device with an increased range of control of the focal length of a generated heat lens, and with improved reliability. The laser device is equipped with: a laser medium that has a waveguide structure in the thickness direction of the cross section perpendicular to the light axis (6), and that generates gain with respect to laser light; a cladding adhered to one surface of the laser medium; and a heat sink (2) adhered to the one surface of the laser medium via the cladding. The laser medium generates a lens effect due to the refractive index distribution, and the laser light oscillates in the waveguide mode in the thickness direction, and oscillates in the spatial mode in the direction perpendicular to the light axis and the thickness direction due to the lens effect. A desired temperature distribution is generated in the laser medium and the refractive index distribution within the laser medium is generated due to the junction area of the cladding and the heat sink (2).

Description

モード制御導波路型レーザ装置Mode-controlled waveguide laser device
 この発明は、高出力レーザ装置に用いられるモード制御導波路型レーザ装置に関するものである。 The present invention relates to a mode-controlled waveguide laser device used in a high-power laser device.
 従来から、高輝度発振が可能なレーザ装置を実現するために、図9、図10、図11に示すモード制御導波路型レーザ装置が提案されている(たとえば、特許文献1参照)。
 図9は従来のモード制御導波路型レーザ装置の構成を示す側面図である。また、図10は図9内のa-a’断面をレーザ出射側から見た断面図、図11は図9内のb-b’断面を上面から見た断面図である。
Conventionally, in order to realize a laser device capable of high-intensity oscillation, a mode-controlled waveguide laser device shown in FIGS. 9, 10, and 11 has been proposed (see, for example, Patent Document 1).
FIG. 9 is a side view showing a configuration of a conventional mode control waveguide type laser device. 10 is a sectional view of the section aa ′ in FIG. 9 as seen from the laser emission side, and FIG. 11 is a sectional view of the section bb ′ in FIG. 9 as seen from the top.
 図9~図11において、従来のモード制御導波路型レーザ装置は、励起光を出射する励起用半導体レーザ101と、レーザ光を出射するレーザ媒質105と、レーザ媒質105の下面に接合されたクラッド104と、クラッド104の下面に接合剤103により接合されたヒートシンク102とを備えている。 9 to 11, a conventional mode-controlled waveguide laser device includes an excitation semiconductor laser 101 that emits excitation light, a laser medium 105 that emits laser light, and a cladding that is bonded to the lower surface of the laser medium 105. 104 and a heat sink 102 bonded to the lower surface of the clad 104 by a bonding agent 103.
 レーザ媒質105は、平板状をなし、レーザ発振方向を表す光軸106(z軸)に対して垂直な断面の厚さ方向(y軸)に導波路構造を有し、光軸106および厚さ方向に対して垂直な方向(x軸)に周期的なレンズ効果を有する。 The laser medium 105 has a flat plate shape, and has a waveguide structure in the thickness direction (y-axis) of the cross section perpendicular to the optical axis 106 (z-axis) representing the laser oscillation direction. It has a periodic lens effect in a direction (x axis) perpendicular to the direction.
 レーザ媒質105の入射側の端面105aには、レーザ光を反射する全反射膜が施され、出射側の端面105bには、レーザ光の一部を反射し且つ一部を透過する反射防止膜が施されている。これらの全反射膜および部分反射膜は、たとえば、誘電体薄膜を積層して構成される。 An end surface 105a on the incident side of the laser medium 105 is provided with a total reflection film that reflects the laser light, and an antireflection film that reflects part of the laser light and transmits part of the end surface 105b on the emission side. It has been subjected. These total reflection film and partial reflection film are formed by laminating dielectric thin films, for example.
 図9のように、半導体レーザ101から出射される励起光をレーザ媒質105の端面105aから入射する場合には、端面105aの全反射膜は、励起光を透過し且つレーザ光を反射する光学膜となる。
 また、図10、図11のように、ヒートシンク102は、光軸106(z軸)に対して平行な延長歯構造を有する。
As shown in FIG. 9, when the excitation light emitted from the semiconductor laser 101 enters from the end face 105a of the laser medium 105, the total reflection film on the end face 105a transmits the excitation light and reflects the laser light. It becomes.
As shown in FIGS. 10 and 11, the heat sink 102 has an extended tooth structure parallel to the optical axis 106 (z axis).
 レーザ媒質105の端面105aから入射した励起光は、レーザ媒質105で吸収されて、レーザ媒質105内部でレーザ光に対する利得を発生する。
 レーザ媒質105内部で発生した利得により、レーザ光は、レーザ媒質105の光軸106に垂直な端面105aと端面105bとの間でレーザ発振し、発振光の一部が端面105bからレーザ共振器の外部に出力される。
The excitation light incident from the end face 105 a of the laser medium 105 is absorbed by the laser medium 105 and generates a gain for the laser light inside the laser medium 105.
Due to the gain generated in the laser medium 105, the laser light oscillates between the end face 105a and the end face 105b perpendicular to the optical axis 106 of the laser medium 105, and a part of the oscillation light passes from the end face 105b to the laser resonator. Output to the outside.
 図9~図11に示す従来のモード制御導波路型レーザ装置においては、レーザ装置に要求されるレーザ出力が決定すれば、必要な励起パワーが決定する。
 また、決定した励起パワーのパワースケールにしたがって、励起光の導波路幅方向(x軸方向)の励起領域が決定し、さらに、ヒートシンク102の延長歯構造の各歯の相互間隔は、励起領域に依存して決定する。
In the conventional mode control waveguide type laser apparatus shown in FIGS. 9 to 11, if the laser output required for the laser apparatus is determined, the necessary pumping power is determined.
Further, the excitation region in the waveguide width direction (x-axis direction) of the excitation light is determined according to the determined power scale of the excitation power, and the mutual interval between the teeth of the extended tooth structure of the heat sink 102 is To depend on.
特許第4392024号公報Japanese Patent No. 4392024
 従来のモード制御導波路型レーザ装置は、レーザ装置に要求されるレーザ出力に応じた励起パワーにしたがって、励起光の導波路幅方向の励起領域が決まり、励起領域に依存してヒートシンクの各歯の間隔が決まるので、発生熱レンズの焦点距離の制御範囲が制限されるという課題があった。 In a conventional mode-controlled waveguide type laser device, the excitation region in the waveguide width direction of the excitation light is determined according to the excitation power corresponding to the laser output required for the laser device, and each tooth of the heat sink depends on the excitation region. Therefore, the control range of the focal length of the generated thermal lens is limited.
 この発明は、上記のような課題を解決するためになされたものであり、発熱の大きな箇所では全面で排熱し、発熱の小さな箇所では熱レンズを生成することにより、発生熱レンズの焦点距離の制御範囲を広げて、信頼性を向上させたモード制御導波路型レーザ装置を得ることを目的とする。 The present invention has been made in order to solve the above-described problems, and heat is exhausted over the entire area where heat generation is large, and a thermal lens is generated in the area where heat generation is small, thereby reducing the focal length of the generated thermal lens. It is an object of the present invention to obtain a mode-controlled waveguide type laser device with an extended control range and improved reliability.
 この発明に係るモード制御導波路型レーザ装置は、平板状をなし、光軸に対して垂直な断面の厚さ方向に導波路構造を有し、レーザ光に対する利得を発生するレーザ媒質と、レーザ媒質の一面に接合されたクラッドと、レーザ媒質の一面側にクラッドを介して接合されたヒートシンクと、を備え、レーザ媒質は、屈折率分布によりレンズ効果を生成し、レーザ光は、厚さ方向において導波路モードで発振するとともに、光軸および厚さ方向に垂直な方向において、レンズ効果による空間モードで発振するモード制御導波路型レーザ装置であって、クラッドとヒートシンクとの接合面積により、レーザ媒質に所望の温度分布を発生させてレーザ媒質内の屈折率分布を生成するものである。 A mode-controlled waveguide laser device according to the present invention has a flat plate shape, a waveguide structure in the thickness direction of a cross section perpendicular to the optical axis, and a laser medium that generates a gain for laser light, and a laser A cladding that is bonded to one surface of the medium and a heat sink that is bonded to one surface of the laser medium via the cladding; the laser medium generates a lens effect by a refractive index distribution; Is a mode-controlled waveguide laser device that oscillates in a waveguide mode and oscillates in a spatial mode due to a lens effect in a direction perpendicular to the optical axis and thickness direction. A desired temperature distribution is generated in the medium to generate a refractive index distribution in the laser medium.
 この発明によれば、クラッドとヒートシンクとの接合面積を調整して、レーザ媒質内で発生する屈折率分布およびレンズ効果を調整可能とし、発熱の大きな箇所では全面で排熱して温度を下げ、発熱の小さな箇所では熱レンズを生成することにより、信頼性を向上させることができる。 According to this invention, it is possible to adjust the refractive index distribution generated in the laser medium and the lens effect by adjusting the bonding area between the clad and the heat sink, and in a place where heat generation is large, the entire surface is exhausted to lower the temperature and generate heat. The reliability can be improved by generating a thermal lens in a small area.
この発明の実施の形態1に係るモード制御導波路型レーザ装置の構成を示す側面図である。(実施例1)It is a side view which shows the structure of the mode control waveguide type laser apparatus which concerns on Embodiment 1 of this invention. Example 1 図1内のa-a’断面をレーザ出射側から見た断面図である。(実施例1)FIG. 2 is a cross-sectional view of the a-a ′ cross section in FIG. 1 viewed from the laser emission side. Example 1 図1内のb-b’断面を上面から見た断面図である。(実施例1)FIG. 2 is a cross-sectional view of a b-b ′ cross section in FIG. 1 as viewed from above. Example 1 図1のモード制御導波路型レーザ装置を用いた場合の励起時でのレーザ媒質内温度分布の計算結果例を示す説明図である。(実施例1)It is explanatory drawing which shows the example of a calculation result of the temperature distribution in a laser medium at the time of excitation at the time of using the mode control waveguide type laser apparatus of FIG. Example 1 図1のモード制御導波路型レーザ装置を用いた場合の効果を示す説明図である。(実施例1)It is explanatory drawing which shows the effect at the time of using the mode control waveguide type laser apparatus of FIG. Example 1 この発明の実施の形態2に係るモード制御導波路型レーザ装置を図1内のb-b’断面により上面から見た断面図である。(実施例2)FIG. 5 is a cross-sectional view of a mode-controlled waveguide laser device according to Embodiment 2 of the present invention as viewed from the top along the b-b ′ cross section in FIG. 1. (Example 2) この発明の実施の形態3に係るモード制御導波路型レーザ装置を図1内のb-b’断面により上面から見た断面図である。(実施例3)FIG. 5 is a cross-sectional view of a mode-controlled waveguide laser device according to a third embodiment of the present invention viewed from the top along the b-b ′ cross section in FIG. 1. Example 3 この発明の実施の形態4に係るモード制御導波路型レーザ装置を図1内のb-b’断面により上面から見た断面図である。(実施例4)FIG. 6 is a cross-sectional view of a mode-controlled waveguide laser device according to a fourth embodiment of the present invention as viewed from the top along the b-b ′ cross section in FIG. 1. (Example 4) 従来のモード制御導波路型レーザ装置の構成を示す側面図である。It is a side view which shows the structure of the conventional mode control waveguide type laser apparatus. 図9内のa-a’断面をレーザ出射側から見た断面図である。FIG. 10 is a cross-sectional view of the a-a ′ cross section in FIG. 9 viewed from the laser emission side. 図9内のb-b’断面を上面から見た断面図である。FIG. 10 is a cross-sectional view of the b-b ′ cross section in FIG. 9 as viewed from above.
 (実施例1)
 以下、図面を参照しながら、この発明を実施するための最良の形態について説明する。
 図1~図3はこの発明の実施の形態1に係るモード制御導波路型レーザ装置の構成を示す図であり、図1は側面図、図2は図1のa-a’断面を光軸方向から見た断面図、図3は図1のb-b’断面を上面から見た断面図である。
Example 1
Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings.
1 to 3 are diagrams showing the configuration of a mode-controlled waveguide laser device according to Embodiment 1 of the present invention. FIG. 1 is a side view, and FIG. 2 is a cross-sectional view taken along line aa ′ of FIG. FIG. 3 is a cross-sectional view of the bb ′ cross section of FIG. 1 viewed from above.
 図1~図3において、この発明の実施の形態1に係るモード制御導波路型レーザ装置は、励起光入射手段1と、励起光が入射されてレーザ光を出射するレーザ媒質5と、レーザ媒質5の下面に接合されたクラッド4と、クラッド4の下面に接合剤3により接合されたヒートシンク2とを備えている。
 レーザ媒質5は、平板上をなし、レーザ発振方向または信号光進行方向を表す光軸6に対して垂直な断面の厚さ方向に導波路構造を有する。
1 to 3, a mode-controlled waveguide laser device according to Embodiment 1 of the present invention includes an excitation light incident means 1, a laser medium 5 that emits laser light when the excitation light is incident, and a laser medium. 5 is provided with a clad 4 bonded to the lower surface of 5 and a heat sink 2 bonded to the lower surface of the clad 4 with a bonding agent 3.
The laser medium 5 is formed on a flat plate and has a waveguide structure in the thickness direction of a cross section perpendicular to the optical axis 6 representing the laser oscillation direction or the signal light traveling direction.
 レーザ媒質5は、光軸6に対して垂直な端面5a、5bの形状が、たとえば長方形からなり、典型的には、y軸方向の厚さが数μm~数10μm、x軸方向の幅が数100μm~数mmの大きさを有する。 In the laser medium 5, the shape of the end faces 5 a and 5 b perpendicular to the optical axis 6 is, for example, rectangular, and typically has a thickness in the y-axis direction of several μm to several tens of μm and a width in the x-axis direction. It has a size of several hundred μm to several mm.
 ここでは、長方形の端面5a、5bの長辺方向をx軸、短辺方向をy軸とし、光軸6方向をz軸とした座標系を用いる。
 なお、レーザ媒質5の端面5a、5bは、必ずしも長方形でなくてもよく、たとえば、端面5a、5bの短辺側は円弧形状であっていてもよい。
Here, a coordinate system is used in which the long side direction of the rectangular end faces 5a and 5b is the x axis, the short side direction is the y axis, and the optical axis 6 direction is the z axis.
Note that the end surfaces 5a and 5b of the laser medium 5 do not necessarily have to be rectangular. For example, the short sides of the end surfaces 5a and 5b may have an arc shape.
 クラッド4は、レーザ媒質5に比べて小さな屈折率を有し、レーザ媒質5のxz平面に平行な一面に接合される。
 クラッド4は、たとえば、光学材料を原料とした膜を蒸着するか、または、オプティカルコンタクトや拡散接合などで光学材料をレーザ媒質5と光学的に接合することにより構成される。また、クラッド4として、レーザ媒質5に比べて小さな屈折率を有する光学接着剤を用いてもよい。
The clad 4 has a refractive index smaller than that of the laser medium 5 and is bonded to one surface parallel to the xz plane of the laser medium 5.
The clad 4 is configured by, for example, depositing a film made of an optical material as a raw material, or optically bonding the optical material to the laser medium 5 by optical contact, diffusion bonding, or the like. Further, as the clad 4, an optical adhesive having a refractive index smaller than that of the laser medium 5 may be used.
 ヒートシンク2は、熱伝導度の大きな材料により構成され、光軸6に平行な断面(yz平面)の一部に櫛形状(図3内のハッチング部参照)を有する。ヒートシンク2の櫛形状の端面は、接合剤3を介してクラッド4と接合される。
 また、ヒートシンク2は、レーザ媒質5の入射側の端面5aおよび出射側の端面5bにそれぞれ対応した端面2a、2bを有する。
The heat sink 2 is made of a material having high thermal conductivity, and has a comb shape (see the hatched portion in FIG. 3) in a part of a cross section (yz plane) parallel to the optical axis 6. The comb-shaped end face of the heat sink 2 is bonded to the clad 4 via the bonding agent 3.
The heat sink 2 has end surfaces 2a and 2b corresponding to the incident side end surface 5a and the emission side end surface 5b of the laser medium 5, respectively.
 接合剤3は、金属半田や光学接着剤、熱伝導接着剤等により実現可能であり、レーザ媒質5で発生した熱を、クラッド4を介してヒートシンク2に排熱する。
 なお、クラッド4の下面は、接合剤3との接合の強度を上げるために、メタライズ(金属膜を付着)を施してもよい。
 また、ヒートシンク2を光学材料で構成した場合には、クラッド4とヒートシンク2とを、たとえば、オプティカルコンタクトや拡散接合などにより直接接合してもよい。
The bonding agent 3 can be realized by a metal solder, an optical adhesive, a heat conductive adhesive or the like, and exhausts heat generated in the laser medium 5 to the heat sink 2 via the clad 4.
Note that the lower surface of the clad 4 may be subjected to metallization (attaching a metal film) in order to increase the bonding strength with the bonding agent 3.
Further, when the heat sink 2 is made of an optical material, the clad 4 and the heat sink 2 may be directly bonded by, for example, optical contact or diffusion bonding.
 励起光入射手段1は、たとえば半導体レーザからなり、レーザ媒質5の端面5aに近接配置されるか、または、必要に応じて、励起光出射端面とレーザ媒質5の端面5aとの間に結合光学系(図示せず)を挿入して配置される。
 また、励起光入射手段1には、必要に応じて、冷却用のヒートシンク(図示せず)が接合される。
The excitation light incident means 1 is made of, for example, a semiconductor laser and is disposed close to the end face 5 a of the laser medium 5 or, if necessary, coupled optics between the excitation light emission end face and the end face 5 a of the laser medium 5. A system (not shown) is inserted and arranged.
Further, a cooling heat sink (not shown) is joined to the excitation light incident means 1 as necessary.
 励起光入射手段1から出射された励起光は、レーザ媒質5の端面5aからxz平面方向に入射して、レーザ媒質5に吸収される。
 なお、ここでは一例として、励起光入射手段1を半導体レーザとしたが、レーザ媒質5に利得を持たせることが可能な構成であれば、必ずしも半導体レーザを用いなくてもよい。
The excitation light emitted from the excitation light incident means 1 enters the xz plane direction from the end surface 5 a of the laser medium 5 and is absorbed by the laser medium 5.
Here, as an example, the pumping light incident means 1 is a semiconductor laser. However, a semiconductor laser is not necessarily used as long as the laser medium 5 can have a gain.
 レーザ媒質5の端面5aには、レーザ光を反射する全反射膜が施され、端面5bには、レーザ光の一部を透過する部分反射膜が施されている。これらの全反射膜および部分反射膜は、たとえば誘電体薄膜を積層して構成される。
 なお、励起光入射手段1から出射される励起光を、レーザ媒質5の端面5aから入射する場合には、端面5aの全反射膜は、励起光を透過しレーザ光を反射する光学膜となる。
The end face 5a of the laser medium 5 is provided with a total reflection film that reflects laser light, and the end face 5b is provided with a partial reflection film that transmits part of the laser light. These total reflection film and partial reflection film are formed by laminating dielectric thin films, for example.
When the excitation light emitted from the excitation light incident means 1 is incident from the end face 5a of the laser medium 5, the total reflection film on the end face 5a is an optical film that transmits the excitation light and reflects the laser light. .
 レーザ媒質5としては、一般的な固体レーザ材料を使用することができ、たとえば、Nd:YAG、Nd:YLF、Nd:Glass、Nd:YVO4、Nd:GdVO4、Yb:YAG、Yb:YLF、Yb:KGW、Yb:KYW、Er:Glass、Er:YAG、Tm:YAG、Tm:YLF、Ho:YAG、Ho:YLF、Ho:YAG、Ho:YLF,Ti:Sapphire、Cr:LiSAFなどが用いられる。 As the laser medium 5, a general solid laser material can be used. For example, Nd: YAG, Nd: YLF, Nd: Glass, Nd: YVO4, Nd: GdVO4, Yb: YAG, Yb: YLF, Yb : KGW, Yb: KYW, Er: Glass, Er: YAG, Tm: YAG, Tm: YLF, Ho: YAG, Ho: YLF, Ho: YAG, Ho: YLF, Ti: Sapphire, Cr: LiSAF .
 なお、図1においては、レーザ媒質5の上面が空気に接している構成としたが、レーザ媒質5の上面に対し、レーザ媒質5に比べて小さな屈折率を有する第2のクラッド(図示せず)を接合してもよい。 In FIG. 1, the upper surface of the laser medium 5 is in contact with air, but a second cladding (not shown) having a smaller refractive index than the laser medium 5 with respect to the upper surface of the laser medium 5 is used. ) May be joined.
 このように、レーザ媒質5の上面に第2のクラッドを接合した場合、レーザ媒質5と第2のクラッドの屈折率差を調整することにより、レーザ媒質5のy軸方向の伝搬モードを任意に調整することができる。
 また、第2のクラッドのy軸方向の厚さを大きく設定すれば、レーザ媒質5の導波モードに影響を与えずに、レーザ媒質5の剛性を高くすることが可能である。
As described above, when the second clad is bonded to the upper surface of the laser medium 5, the propagation mode in the y-axis direction of the laser medium 5 can be arbitrarily set by adjusting the refractive index difference between the laser medium 5 and the second clad. Can be adjusted.
Further, if the thickness of the second cladding in the y-axis direction is set large, the rigidity of the laser medium 5 can be increased without affecting the waveguide mode of the laser medium 5.
 また、レーザ媒質5の上面に対し、レーザ媒質5に比べて小さな屈折率を有する第2の接合剤を介して基板(図示せず)を接合してもよい。
 第2の接合剤としては、たとえば光学接着剤が用いられ、基板としては、たとえば光学材料または金属などが用いられる。
Further, a substrate (not shown) may be bonded to the upper surface of the laser medium 5 via a second bonding agent having a smaller refractive index than the laser medium 5.
As the second bonding agent, for example, an optical adhesive is used, and as the substrate, for example, an optical material or metal is used.
 このように、レーザ媒質5の上面に第2の接合剤および基板を接合した場合、レーザ媒質5と第2の接合剤との屈折率差を調整することにより、レーザ媒質5のy軸方向の伝搬モードを任意に調整することができる。
 また、基板のy軸方向の厚さを大きく設定すれば、レーザ媒質5の導波モードに影響を与えずに、レーザ媒質5の剛性を高くすることが可能である。
As described above, when the second bonding agent and the substrate are bonded to the upper surface of the laser medium 5, by adjusting the refractive index difference between the laser medium 5 and the second bonding agent, the y axis direction of the laser medium 5 is adjusted. The propagation mode can be arbitrarily adjusted.
If the thickness of the substrate in the y-axis direction is set large, the rigidity of the laser medium 5 can be increased without affecting the waveguide mode of the laser medium 5.
 また、レーザ媒質5の温度上昇により熱膨張が発生した場合、第2の接合剤(光学接着剤)は結晶やガラス材料に比べて剛性が低く、レーザ媒質5の膨張に合わせて変形するので、レーザ媒質5に与える応力を緩和することが可能である。 Further, when thermal expansion occurs due to the temperature rise of the laser medium 5, the second bonding agent (optical adhesive) has lower rigidity than the crystal or glass material, and deforms according to the expansion of the laser medium 5. The stress applied to the laser medium 5 can be relaxed.
 さらに、レーザ媒質5の上面に対し、レーザ媒質5に比べて小さな屈折率を有する光学膜(図示せず)を施し、光学膜の表面に、オプティカルコンタクトや拡散接合により、レーザ媒質5とほぼ同じ熱膨張率を有する基板(図示せず)を接合してもよい。 Furthermore, an optical film (not shown) having a refractive index smaller than that of the laser medium 5 is applied to the upper surface of the laser medium 5, and the optical film surface is almost the same as the laser medium 5 by optical contact or diffusion bonding. You may join the board | substrate (not shown) which has a thermal expansion coefficient.
 このように、レーザ媒質5の上面に光学膜および基板を接合した場合、レーザ媒質5と光学膜との屈折率差を調整することにより、レーザ媒質5のy軸方向の伝搬モードを任意に調整することができる。
 また、基板のy軸方向の厚さを大きく設定すれば、レーザ媒質5の導波モードに影響を与えずに、レーザ媒質5の剛性を高くすることが可能である。
As described above, when the optical film and the substrate are bonded to the upper surface of the laser medium 5, the propagation mode in the y-axis direction of the laser medium 5 is arbitrarily adjusted by adjusting the refractive index difference between the laser medium 5 and the optical film. can do.
If the thickness of the substrate in the y-axis direction is set large, the rigidity of the laser medium 5 can be increased without affecting the waveguide mode of the laser medium 5.
 また、レーザ媒質5および基板がほぼ同じ熱膨張率を有するので、レーザ媒質5の温度上昇により熱膨張が発生した場合、基板もほぼ同じ割合で膨張する。
 その際、レーザ媒質5と基板との間の光学膜は、結晶やガラス材料に比べて密度が低く、剛性が低いので、基板の膨張に合わせて変形され、レーザ媒質5に与える応力を緩和することが可能である。
 また、光学膜と基板とを接合する際に、光学接合が容易な光学膜材料および基板を選択することにより、接合の強度を高めることが可能である。
Further, since the laser medium 5 and the substrate have substantially the same thermal expansion coefficient, when thermal expansion occurs due to the temperature increase of the laser medium 5, the substrate also expands at substantially the same rate.
At this time, the optical film between the laser medium 5 and the substrate has a lower density and lower rigidity than a crystal or glass material. Therefore, the optical film is deformed in accordance with the expansion of the substrate and relaxes the stress applied to the laser medium 5. It is possible.
Further, when the optical film and the substrate are bonded, it is possible to increase the bonding strength by selecting an optical film material and a substrate that are easy to optically bond.
 次に、図2および図3を参照しながら、図1のモード制御導波路型レーザ装置において、レーザ媒質5内に所望の温度分布を発生させて、レーザ媒質5内の屈折率分布を生成し、この屈折率分布によりレンズ効果を生成する方法について説明する。 Next, referring to FIG. 2 and FIG. 3, in the mode control waveguide type laser apparatus of FIG. 1, a desired temperature distribution is generated in the laser medium 5 to generate a refractive index distribution in the laser medium 5. A method for generating a lens effect from this refractive index distribution will be described.
 図3においては、ヒートシンク2に注目し、接合剤3を介してクラッド4と接合する接合領域と、クラッド4と接合しない領域との違いを明らかにするために、接合剤3を介してクラッド4と接合するヒートシンク2の接合領域(櫛歯形状)をハッチングで示している。
 また、図3に示すように、レーザ媒質5の光軸6(z軸)の方向の全長をLoとし、光軸方向の一部に設置された櫛構造部分の幅をAとする。
 この場合、櫛構造の接合部(幅Aを形成する調整側)は、端面2bすなわち光軸6の出射側に設置されている。
In FIG. 3, focusing on the heat sink 2, in order to clarify the difference between the bonding region bonded to the cladding 4 via the bonding agent 3 and the region not bonded to the cladding 4, the cladding 4 is bonded via the bonding agent 3. The joining region (comb shape) of the heat sink 2 to be joined with is shown by hatching.
Also, as shown in FIG. 3, the total length of the laser medium 5 in the direction of the optical axis 6 (z-axis) is Lo, and the width of the comb structure portion installed in a part of the optical axis direction is A.
In this case, the joint part (adjustment side for forming the width A) of the comb structure is provided on the end face 2 b, that is, the emission side of the optical axis 6.
 レーザ媒質5の端面5aから入射した励起光がレーザ媒質5に吸収されると、吸収した励起光のパワーの一部が熱に変換されて熱を発生し、発生した熱は、クラッド4および接合剤3を介してヒートシンク2に排熱される。 When the excitation light incident from the end face 5a of the laser medium 5 is absorbed by the laser medium 5, a part of the power of the absorbed excitation light is converted into heat to generate heat, and the generated heat is generated in the cladding 4 and the junction. Heat is discharged to the heat sink 2 through the agent 3.
 このとき、ヒートシンク2が光軸6の方向に櫛形をしており、接合剤3により接合される範囲が櫛歯の先端部のみの場合、2つの櫛歯間の中心部には、2つの櫛歯のほぼ中心部からx軸方向の両側に熱の流れが発生する。したがって、2つの櫛歯のほぼ中心部の温度が最大となり、櫛歯の部分に近づくにつれて温度が低下する。 At this time, when the heat sink 2 is comb-shaped in the direction of the optical axis 6 and the range bonded by the bonding agent 3 is only the tip portion of the comb teeth, two combs are provided at the center portion between the two comb teeth. A heat flow is generated on both sides in the x-axis direction from the substantially central portion of the tooth. Therefore, the temperature at the substantially central portion of the two comb teeth becomes the maximum, and the temperature decreases as the portion approaches the comb teeth portion.
 一方、レーザ媒質5などの光学材料は、温度差にほぼ比例して屈折率が変化し、レーザ媒質5の光学材料として、単位温度あたりの屈折率変化dn/dTが正の材料を用いた場合には、温度の高い2つの櫛歯の中心部の屈折率が大きくなり、櫛歯の部分に近づくにつれて屈折率が小さくなる。
 この結果、x軸方向には、2つの櫛歯の中心部を光軸とした熱レンズ効果が発生する。
On the other hand, the optical material such as the laser medium 5 changes in refractive index almost in proportion to the temperature difference, and a material having a positive refractive index change dn / dT per unit temperature is used as the optical material of the laser medium 5. The refractive index at the center of the two comb teeth having a high temperature increases, and the refractive index decreases as it approaches the comb tooth portion.
As a result, a thermal lens effect is generated in the x-axis direction with the center portion of the two comb teeth as the optical axis.
 同様に、レーザ媒質5の光学材料として、単位温度あたりの屈折率変化dn/dTが負の材料を用いた場合には、温度分布と反対の屈折率分布となり、櫛歯に接合された部分の屈折率が大きく、2つの櫛歯の中心部の屈折率が小さくなる。
 この結果、x軸方向には、櫛歯に接合された部分を光軸とした熱レンズ効果が発生する。なお、dn/dTの正負によらず、同様の効果が得られるので、以後、特に明記しない限り、dn/dTが正の場合を用いて説明する。
Similarly, when a material having a negative refractive index change dn / dT per unit temperature is used as the optical material of the laser medium 5, the refractive index distribution is opposite to the temperature distribution, and the portion of the portion bonded to the comb teeth is used. The refractive index is large, and the refractive index at the center of the two comb teeth is small.
As a result, in the x-axis direction, a thermal lens effect is generated with the portion bonded to the comb teeth as the optical axis. Since the same effect can be obtained regardless of whether dn / dT is positive or negative, the following description will be made using the case where dn / dT is positive unless otherwise specified.
 ここで、光軸6(z軸)の方向の櫛構造部分の幅Aを、A/Lo=0の場合(ヒートシンク2の光軸方向に櫛構造が存在しない場合)から、A/Lo=1の場合(ヒートシンク2の光軸方向全体に櫛構造を有する場合)まで変化させることにより、レーザ媒質5内に発生する温度分布を変化させることができる。
 したがって、レーザ媒質5内に発生する熱レンズ効果を調整することができる。
Here, the width A of the comb structure portion in the direction of the optical axis 6 (z-axis) is changed from A / Lo = 0 (when no comb structure exists in the optical axis direction of the heat sink 2) to A / Lo = 1. In this case, the temperature distribution generated in the laser medium 5 can be changed by changing to the case (when the heat sink 2 has a comb structure in the entire optical axis direction).
Therefore, the thermal lens effect generated in the laser medium 5 can be adjusted.
 次に、図4および図5を参照しながら、図1~図3に示したこの発明の実施の形態1において、光軸方向の櫛構造部分の幅Aを、A/Lo=0の場合(ヒートシンク2の光軸方向に櫛構造が存在しない場合)から、A/Lo=1の場合(ヒートシンク2の光軸方向全体に櫛構造を有する場合)まで変化させた場合について説明する。 Next, referring to FIGS. 4 and 5, in the first embodiment of the present invention shown in FIGS. 1 to 3, when the width A of the comb structure portion in the optical axis direction is set to A / Lo = 0 ( A description will be given of a case in which the change is made from the case where the comb structure does not exist in the optical axis direction of the heat sink 2 to the case where A / Lo = 1 (when the comb structure is provided in the entire optical axis direction of the heat sink 2).
 図4、図5はレーザ媒質5としてNd:YVO4を用いた場合の計算例および効果を示す説明図であり、計算条件として、室温25℃において、レーザ媒質5の幅(x軸方向)=200μm、レーザ厚み(y軸方向)=40μm、励起幅(光軸6に平行な方向の櫛歯間隔に同じ)=200μm、励起光パワー=10W(発光波長:808nm)、レーザ光波長=1.064μmの場合を示している。 4 and 5 are explanatory diagrams showing calculation examples and effects when Nd: YVO4 is used as the laser medium 5. As a calculation condition, the width of the laser medium 5 (x-axis direction) = 200 μm at room temperature of 25 ° C. , Laser thickness (y-axis direction) = 40 μm, excitation width (same as comb tooth interval in the direction parallel to the optical axis 6) = 200 μm, excitation light power = 10 W (emission wavelength: 808 nm), laser light wavelength = 1.064 μm Shows the case.
 図4は励起時のレーザ媒質5のy軸方向中心のx軸方向(0~200μm)の温度分布を示し、破線はA/Lo=0の場合の温度分布、実線はA/Lo=1の場合の温度分布である。
 また、図5はDiopter[1/m](熱レンズ焦点距離の逆数)の変化を示ており、A/Lo=0からA/Lo=1まで櫛構造部分の幅Aを変化させた場合のDiopterの変化を示している。
FIG. 4 shows the temperature distribution in the x-axis direction (0 to 200 μm) at the center of the y-axis direction of the laser medium 5 at the time of excitation, the broken line is the temperature distribution when A / Lo = 0, and the solid line is A / Lo = 1. In the case of temperature distribution.
FIG. 5 shows a change in Diopter [1 / m] (the reciprocal of the thermal lens focal length). When the width A of the comb structure portion is changed from A / Lo = 0 to A / Lo = 1, FIG. The change of Diopter is shown.
 図4、図5において、レーザ媒質5の全体を一様励起した場合に、A/Lo=0のときには、レーザ媒質5内で発生する熱レンズ焦点距離は2.9m(Diopter=0.4[1/m])となる。
 また、A/Lo=1のときには、レーザ媒質5内で発生する熱レンズ焦点距離は74.3mm(Diopter=13.46[1/m])となる。
 すなわち、幅Aを「0」から「1」まで変化させることにより、熱レンズ焦点距離を「2.9m~74.3mm」の範囲で任意に調整することが可能となる。
4 and 5, when the entire laser medium 5 is uniformly excited and A / Lo = 0, the thermal lens focal length generated in the laser medium 5 is 2.9 m (Diopter = 0.4 [ 1 / m]).
When A / Lo = 1, the thermal lens focal length generated in the laser medium 5 is 74.3 mm (Diopter = 13.46 [1 / m]).
That is, by changing the width A from “0” to “1”, the focal length of the thermal lens can be arbitrarily adjusted in the range of “2.9 m to 74.3 mm”.
 同様に、レーザ媒質5内の一部を局所的に励起した場合においても、光軸6(z軸)の方向に櫛構造を有していない場合と、光軸方向全体に櫛構造を有する場合とで、排熱の効率は異なるので、櫛構造部分の幅Aを変化させることによって熱レンズ焦点距離を調整可能であることは明らかである。 Similarly, even when a part of the laser medium 5 is locally excited, there is no comb structure in the direction of the optical axis 6 (z axis) and there is a comb structure in the entire optical axis direction. Since the efficiency of exhaust heat differs, it is clear that the focal length of the thermal lens can be adjusted by changing the width A of the comb structure portion.
 また、たとえば、レーザ媒質5の光軸方向の端面5a側から励起を行う端面励起の場合には、櫛構造を入射側の端面5a側に設置することができる。
 このように、レーザ媒質5の端面5a側から励起を行う端面励起の場合、レーザ媒質5内の温度上昇は、端面5a側が最も高くなり、端面5a側の温度分布が最も顕著となるので、入射側の端面5a側に櫛構造を有する接合部を設置することにより、最も容易に熱レンズ焦点距離の調整が可能となる。
Further, for example, in the case of end surface excitation in which excitation is performed from the end surface 5a side in the optical axis direction of the laser medium 5, the comb structure can be installed on the end surface 5a side on the incident side.
As described above, in the case of end-face excitation in which excitation is performed from the end face 5a side of the laser medium 5, the temperature rise in the laser medium 5 is highest on the end face 5a side, and the temperature distribution on the end face 5a side is most prominent. The thermal lens focal length can be most easily adjusted by installing a joint having a comb structure on the side end face 5a side.
 また、入射側の端面5a側から励起を行う端面励起の場合に、櫛構造を出射側の端面5b側に設置してもよく、端面5b側に櫛構造を有する接合部を配置した場合も、入射側の端面5a側はヒートシンク2との接合面積が大きくなるので、排熱の効率が向上する。
 この結果、レーザ媒質5内で発生する熱レンズ効果を調整することができ、且つ、熱レンズ効果を抑制することができる。
Further, in the case of end face excitation in which excitation is performed from the end face 5a side on the incident side, the comb structure may be installed on the end face 5b side on the output side, and when the joint portion having the comb structure is arranged on the end face 5b side, Since the joining surface area with the heat sink 2 is increased on the incident side end face 5a side, the efficiency of exhaust heat is improved.
As a result, the thermal lens effect generated in the laser medium 5 can be adjusted, and the thermal lens effect can be suppressed.
 なお、端面5a側から励起を行う端面励起の場合を例にとって説明したが、光軸6(z軸)の方向の光学系がレーザ媒質5の両端面5a、5bで非対称であり、レーザ媒質5内の温度分布が光軸方向に分布する場合には、上記櫛構造部分を設置することにより、同様の効果が得られることは明らかである。
 また、レーザ媒質5内の光軸方向の櫛構造は、レーザ媒質の端面5a、5b両面に設置してもよい。
 このように構成することによって、側面励起など、レーザ媒質5内のレーザ光軸方向に対称な温度分布が発生する場合でも、熱レンズ焦点距離の調整が可能となる。
Although the case of end face excitation in which excitation is performed from the end face 5a side has been described as an example, the optical system in the direction of the optical axis 6 (z axis) is asymmetrical at both end faces 5a, 5b of the laser medium 5, and the laser medium 5 It is obvious that the same effect can be obtained by installing the comb structure portion when the temperature distribution in the inside is distributed in the optical axis direction.
Further, the comb structure in the optical axis direction in the laser medium 5 may be provided on both end faces 5a and 5b of the laser medium.
With this configuration, the thermal lens focal length can be adjusted even when a temperature distribution symmetrical in the laser optical axis direction in the laser medium 5 occurs, such as side excitation.
 なお、ヒートシンク2の櫛歯間の空隙は、通常空気であるが、ヒートシンク2よりも小さな熱伝導度を有する熱絶縁材料で埋めてもよい。この場合、レーザ媒質5内の屈折率分布は、櫛歯の先端と熱絶縁材料との熱伝導度の差で発生する温度分布によって生成される。
 このように熱絶縁材料を埋めることにより、クラッド4の排熱側の前面が接合剤3に接合されて、レーザ媒質5で発生した熱を排熱するので、レーザ媒質5の温度上昇を抑制することができる。また、クラッド4を櫛形の先端のみで固定した場合に比べて、ヒートシンク2の剛性を高めることができる。
In addition, although the space | gap between the comb teeth of the heat sink 2 is normally air, you may fill with the heat insulating material which has a thermal conductivity smaller than the heat sink 2. FIG. In this case, the refractive index distribution in the laser medium 5 is generated by the temperature distribution generated by the difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
By burying the heat insulating material in this way, the front surface on the exhaust heat side of the clad 4 is bonded to the bonding agent 3 and the heat generated in the laser medium 5 is exhausted, so that the temperature rise of the laser medium 5 is suppressed. be able to. Further, the rigidity of the heat sink 2 can be increased as compared with the case where the clad 4 is fixed only by the comb-shaped tip.
 以上のように、この発明の実施の形態1(図1~図5)に係るモード制御導波路型レーザ装置は、平板状をなし、光軸6に対して垂直な断面の厚さ方向に導波路構造を有し、レーザ光に対する利得を発生するレーザ媒質5と、レーザ媒質5の一面に接合されたクラッド4と、レーザ媒質5の一面側にクラッド4を介して接合されたヒートシンク2と、を備え、レーザ媒質5は、屈折率分布によりレンズ効果を生成し、レーザ光は、厚さ方向において導波路モードで発振するとともに、光軸6および厚さ方向に垂直な方向において、レンズ効果による空間モードで発振する。 As described above, the mode-controlled waveguide laser device according to the first embodiment (FIGS. 1 to 5) of the present invention has a flat plate shape and is guided in the thickness direction of the cross section perpendicular to the optical axis 6. A laser medium 5 having a waveguide structure and generating a gain for laser light; a clad 4 joined to one surface of the laser medium 5; a heat sink 2 joined to one surface side of the laser medium 5 via the clad 4; The laser medium 5 generates a lens effect based on the refractive index distribution, and the laser light oscillates in a waveguide mode in the thickness direction, and also due to the lens effect in a direction perpendicular to the optical axis 6 and the thickness direction. Oscillates in spatial mode.
 上記構成において、クラッド4とヒートシンク2との接合面積により、レーザ媒質5に所望の温度分布を発生させてレーザ媒質5内の屈折率分布を生成する。
 具体的には、ヒートシンク2は、レーザ光の光軸6の一部に、光軸6に平行な櫛構造を有する接合部(図3内のハッチング部)を備え、櫛構造の範囲を調整することにより、レーザ媒質に所望の温度分布を発生させてレーザ媒質内の屈折率分布を生成する。
In the above configuration, a desired temperature distribution is generated in the laser medium 5 according to the bonding area between the clad 4 and the heat sink 2 to generate a refractive index distribution in the laser medium 5.
Specifically, the heat sink 2 includes a joint portion (hatched portion in FIG. 3) having a comb structure parallel to the optical axis 6 in a part of the optical axis 6 of the laser light, and adjusts the range of the comb structure. Thus, a desired temperature distribution is generated in the laser medium to generate a refractive index distribution in the laser medium.
 このように、クラッド4とヒートシンク2との接合面積を調整して、レーザ媒質5内で発生する屈折率分布およびレンズ効果を調整可能とし、発熱の大きな箇所では全面で排熱して温度を下げ、発熱の小さな箇所では熱レンズを生成することにより、信頼性を向上させたモード制御導波路型レーザ装置を実現することができる。 As described above, the junction area between the clad 4 and the heat sink 2 can be adjusted to adjust the refractive index distribution and the lens effect generated in the laser medium 5. By generating a thermal lens at a location where heat generation is small, a mode-controlled waveguide laser device with improved reliability can be realized.
 また、図3において、櫛構造を有する接合部(調整側となる開放部)は、レーザ媒質5の光軸6のレーザ光が入射する入射面を除く接合面に設置されている。
 すなわち、櫛構造を有する接合部は、端面2b側すなわち、レーザ媒質5の光軸6のレーザ光が出射する出射面(端面5b)の接合面に設置されており、櫛歯を構成しない接合部は、端面2a側すなわち、レーザ媒質5の入射面(端面5a)の接合面に設置されている。
Further, in FIG. 3, the joint portion (open portion on the adjustment side) having a comb structure is installed on the joint surface excluding the incident surface on which the laser beam of the optical axis 6 of the laser medium 5 is incident.
That is, the joint portion having the comb structure is disposed on the end surface 2b side, that is, the joint surface of the emission surface (end surface 5b) from which the laser beam of the optical axis 6 of the laser medium 5 is emitted, and does not constitute a comb tooth. Is disposed on the end surface 2a side, that is, on the joint surface of the incident surface (end surface 5a) of the laser medium 5.
 これにより、温度上昇しやすい入射側において発熱を抑制することができる。 This makes it possible to suppress heat generation on the incident side where the temperature is likely to rise.
 (実施例2)
 なお、上記実施の形態1(図1~図5)では、レーザ媒質5内で発生する熱レンズを調整するために、ヒートシンク2の光軸6(z軸)の方向の一部に櫛構造を設け、櫛構造部分の幅Aを調整することにより導波路内の温度分布を調整したが、図6のように、ヒートシンク2の光軸方向の櫛構造部分を、断続的に複数本設けてもよい。
(Example 2)
In the first embodiment (FIGS. 1 to 5), in order to adjust the thermal lens generated in the laser medium 5, a comb structure is formed on a part of the heat sink 2 in the direction of the optical axis 6 (z axis). The temperature distribution in the waveguide is adjusted by adjusting the width A of the comb structure portion. However, as shown in FIG. 6, even if a plurality of comb structure portions in the optical axis direction of the heat sink 2 are provided intermittently, Good.
 以下、図1および図6を参照しながら、この発明の実施の形態2について説明する。
 図6はこの発明の実施の形態2に係るモード制御導波路型レーザ装置のヒートシンク2の形状を示す断面図であり、前述(図1)の断面b-b’を示している。
 この場合、全体構成は、ヒートシンク2の櫛形状が前述と異なる点を除けば、図1に示した通りであり、特に明記しない限り、前述(図1)の励起光入射手段1~レーザ媒質5と同等の機能を有するものとする。
The second embodiment of the present invention will be described below with reference to FIGS.
FIG. 6 is a cross-sectional view showing the shape of the heat sink 2 of the mode control waveguide type laser apparatus according to Embodiment 2 of the present invention, and shows the cross section bb ′ of FIG.
In this case, the entire configuration is as shown in FIG. 1 except that the comb shape of the heat sink 2 is different from that described above. Unless otherwise specified, the excitation light incident means 1 to the laser medium 5 described above (FIG. 1). It shall have the same function.
 前述の実施の形態1(図1~図3)のように単一の櫛構造を設けた場合、ヒートシンク2の光軸方向の櫛構造部分の幅A(図3参照)が狭くなるにつれて、クラッド4とヒートシンク2との接合面積が増大し、排熱により発生する熱分布により、y軸方向にも屈折率分布が発生し、結果として、y軸方向にも熱レンズが生じてしまう。
 これに対し、この発明の実施の形態2(図6)によれば、ヒートシンク2の光軸方向の櫛構造部分を断続的に複数本設けることにより、上記不具合(y軸方向の熱レンズの発生)を解消することができる。
In the case where a single comb structure is provided as in the first embodiment (FIGS. 1 to 3), as the width A (see FIG. 3) of the comb structure portion in the optical axis direction of the heat sink 2 becomes narrower, the clad 4 and the heat sink 2 are increased in area, and a heat distribution generated by exhaust heat causes a refractive index distribution in the y-axis direction, resulting in a thermal lens in the y-axis direction.
On the other hand, according to the second embodiment (FIG. 6) of the present invention, the above problem (generation of a thermal lens in the y-axis direction) is caused by intermittently providing a plurality of comb structure portions in the optical axis direction of the heat sink 2. ) Can be eliminated.
 図6において、ヒートシンク2の光軸方向の櫛構造は、断続的に複数本配置され、レーザ媒質5内で発生する熱レンズの焦点距離は、各櫛構造部分の幅を調整することにより調整可能である。
 また、ある幅の櫛構造の本数を調整することによっても、熱レンズの焦点距離を調整することができる。
 なお、図6においては、各櫛構造部分の幅が一定であるが、各幅は必ずしも均一である必要はない。
In FIG. 6, a plurality of comb structures in the optical axis direction of the heat sink 2 are intermittently arranged, and the focal length of the thermal lens generated in the laser medium 5 can be adjusted by adjusting the width of each comb structure portion. It is.
Also, the focal length of the thermal lens can be adjusted by adjusting the number of comb structures having a certain width.
In FIG. 6, the width of each comb structure portion is constant, but each width is not necessarily uniform.
 以上のように、この発明の実施の形態2(図1、図6)に係るモード制御導波路型レーザ装置によれば、櫛構造を有する接合部は、レーザ媒質5の光軸6のレーザ光が入射する入射面から断続的に複数個設置されており、光軸6(z軸)の方向に、ヒートシンク2とクラッド4とが接合剤3を介して接合する部分と、ヒートシンク2とクラッド4とが接合されない部分とが交互に分布する。
 これにより、光軸方向の熱伝導が増大し、この結果、y軸方向に発生する熱分布を光軸6に平行な方向に平均化することができ、y軸方向の熱レンズの発生を低減することができる。
As described above, according to the mode-controlled waveguide laser device according to the second embodiment (FIGS. 1 and 6) of the present invention, the joint portion having the comb structure is the laser beam on the optical axis 6 of the laser medium 5. Are intermittently provided from the incident surface on which the light is incident, a portion where the heat sink 2 and the clad 4 are joined via the bonding agent 3 in the direction of the optical axis 6 (z axis), and the heat sink 2 and the clad 4. And the portions where the and are not joined are alternately distributed.
This increases the heat conduction in the optical axis direction. As a result, the heat distribution generated in the y-axis direction can be averaged in the direction parallel to the optical axis 6 and the generation of thermal lenses in the y-axis direction is reduced. can do.
 なお、前述と同様に、ヒートシンク2の櫛歯間の空隙は、通常空気であるが、ヒートシンク2よりも小さな熱伝導度を有する熱絶縁材料で埋めてもよい。この場合、レーザ媒質5内の屈折率分布は、櫛歯の先端と熱絶縁材料との熱伝導度の差で発生する温度分布により生成される。
 このように熱絶縁材料を埋めることにより、クラッド4の排熱側の前面が接合剤3に接合されて、レーザ媒質5で発生した熱を排熱するので、レーザ媒質5の温度上昇を抑制することができる。また、クラッド4を櫛形の先端のみで固定した場合に比べて、ヒートシンク2の剛性を高めることができる。
As described above, the gap between the comb teeth of the heat sink 2 is usually air, but may be filled with a heat insulating material having a lower thermal conductivity than the heat sink 2. In this case, the refractive index distribution in the laser medium 5 is generated by a temperature distribution generated by a difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
By burying the heat insulating material in this way, the front surface on the exhaust heat side of the clad 4 is bonded to the bonding agent 3 and the heat generated in the laser medium 5 is exhausted, so that the temperature rise of the laser medium 5 is suppressed. be able to. Further, the rigidity of the heat sink 2 can be increased as compared with the case where the clad 4 is fixed only by the comb-shaped tip.
 (実施例3)
 なお、上記実施の形態1、2(図1~図6)では、特に言及しなかったが、レーザ共振器内のx軸方向におけるレーザ発振においては、レーザ媒質5の幅(x軸)が、レーザ光の波長に比べて十分大きいので、y軸での導波路によるモード選択は行われず、空間モードのレーザ共振器となる。
 そこで、図7のように、ヒートシンク2の光軸6に平行な方向に、接合剤3を介してクラッド4に接合される櫛歯を複数本設け、レーザ媒質5内のx軸方向に2つの櫛歯の中心を光軸とする熱レンズ効果を周期的に発生させることにより、x軸方向に周期的な複数の発振モードを生成可能に構成してもよい。
(Example 3)
Although not particularly mentioned in the first and second embodiments (FIGS. 1 to 6), in laser oscillation in the x-axis direction in the laser resonator, the width (x-axis) of the laser medium 5 is Since it is sufficiently larger than the wavelength of the laser beam, mode selection by the waveguide in the y-axis is not performed, and a spatial mode laser resonator is obtained.
Therefore, as shown in FIG. 7, a plurality of comb teeth bonded to the clad 4 via the bonding agent 3 are provided in a direction parallel to the optical axis 6 of the heat sink 2, and two in the x-axis direction in the laser medium 5 are provided. A plurality of oscillation modes that are periodic in the x-axis direction may be generated by periodically generating a thermal lens effect having the center of the comb teeth as the optical axis.
 以下、図1および図7を参照しながら、この発明の実施の形態3について説明する。
 図7はこの発明の実施の形態3に係るモード制御導波路型レーザ装置のヒートシンク2の形状を示す断面図であり、前述(図1)の断面b-b’を示している。
 この場合、全体構成は、ヒートシンク2の櫛形状が前述と異なる点を除けば、図1に示した通りであり、特に明記しない限り、前述(図1)の励起光入射手段1~レーザ媒質5と同等の機能を有するものとする。
The third embodiment of the present invention will be described below with reference to FIGS.
FIG. 7 is a cross-sectional view showing the shape of the heat sink 2 of the mode control waveguide type laser apparatus according to Embodiment 3 of the present invention, and shows the cross section bb ′ of FIG.
In this case, the entire configuration is as shown in FIG. 1 except that the comb shape of the heat sink 2 is different from that described above. Unless otherwise specified, the excitation light incident means 1 to the laser medium 5 described above (FIG. 1). It shall have the same function.
 この発明の実施の形態3においては、レーザ媒質5に所望の温度分布を発生させてレーザ媒質5内に屈折率分布を生成し、この屈折率分布により、x軸方向に複数のレンズを並べた効果であるレンズ効果を生成し、y軸方向においては導波路モードで発振し、x軸方向にはレンズ効果による空間モードで複数発振するモード制御導波路型レーザ装置を実現する。 In Embodiment 3 of the present invention, a desired temperature distribution is generated in the laser medium 5 to generate a refractive index distribution in the laser medium 5, and a plurality of lenses are arranged in the x-axis direction based on this refractive index distribution. A lens effect that is an effect is generated, and a mode-controlled waveguide laser device that oscillates in a waveguide mode in the y-axis direction and oscillates in a spatial mode by the lens effect in the x-axis direction is realized.
 図7において、ヒートシンク2の光軸6(z軸)の方向の櫛構造の幅A(図3参照)を、光軸方向に櫛構造が存在しない場合(各櫛構造の部分同士が接する場合)から、光軸方向全体が櫛構造である場合まで変化させることにより、または、光軸方向に複数本存在する櫛構造部分の本数を調整することにより、レーザ媒質5の熱レンズ焦点距離を調整することができる。 In FIG. 7, the width A (see FIG. 3) of the comb structure in the direction of the optical axis 6 (z-axis) of the heat sink 2 is determined when the comb structure does not exist in the optical axis direction (when the portions of the comb structures are in contact with each other). The focal length of the thermal medium of the laser medium 5 is adjusted by changing until the entire optical axis direction has a comb structure, or by adjusting the number of comb structure portions existing in the optical axis direction. be able to.
 以上のように、この発明の実施の形態3(図1、図7)に係るモード制御導波路型レーザ装置によれば、ーザ媒質2は、屈折率分布により、光軸6および厚さ方向に垂直な方向(x軸)に複数のレンズを並べた効果であるレンズ効果を生成し、レーザ光は、厚さ方向(y軸)において導波路モードで発振するとともに、光軸6および厚さ方向に垂直な方向(x軸)において、レンズ効果による空間モードで複数発振する。 As described above, according to the mode-controlled waveguide laser device according to the third embodiment (FIGS. 1 and 7) of the present invention, the user medium 2 has the optical axis 6 and the thickness direction due to the refractive index distribution. A lens effect that is an effect of arranging a plurality of lenses in a direction perpendicular to (x-axis) is generated, and the laser light oscillates in a waveguide mode in the thickness direction (y-axis), and the optical axis 6 and thickness In the direction perpendicular to the direction (x-axis), a plurality of oscillations occur in the spatial mode due to the lens effect.
 図7の構成によれば、高出力化が容易な、幅が広い発光領域を持つブロードエリアLDや、エミッタを一列に配置したLDアレーを用いて、励起光の高出力化を図り、高出力のレーザ光を出力可能なモード制御導波路型レーザ装置においても、レーザ媒質5内で発生する熱レンズを制御することができる。 According to the configuration of FIG. 7, high output power can be achieved by using a broad area LD having a wide light emitting region that is easy to achieve high output, and an LD array in which emitters are arranged in a row, thereby increasing the output power of excitation light. Even in the mode control waveguide type laser apparatus capable of outputting the laser beam, the thermal lens generated in the laser medium 5 can be controlled.
 なお、前述と同様に、ヒートシンク2の櫛歯間の空隙は、通常空気であるが、ヒートシンク2よりも小さな熱伝導度を有する熱絶縁材料で埋めてもよい。この場合、レーザ媒質5内の屈折率分布は、櫛歯の先端と熱絶縁材料との熱伝導度の差で発生する温度分布により生成される。
 このように熱絶縁材料を埋めることにより、クラッド4の排熱側の前面が接合剤3に接合されて、レーザ媒質5で発生した熱を排熱するので、レーザ媒質5の温度上昇を抑制することができる。また、クラッド4を櫛形の先端のみで固定した場合に比べて、ヒートシンク2の剛性を高めることができる。
As described above, the gap between the comb teeth of the heat sink 2 is usually air, but may be filled with a heat insulating material having a lower thermal conductivity than the heat sink 2. In this case, the refractive index distribution in the laser medium 5 is generated by a temperature distribution generated by a difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
By burying the heat insulating material in this way, the front surface on the exhaust heat side of the clad 4 is bonded to the bonding agent 3 and the heat generated in the laser medium 5 is exhausted, so that the temperature rise of the laser medium 5 is suppressed. be able to. Further, the rigidity of the heat sink 2 can be increased as compared with the case where the clad 4 is fixed only by the comb-shaped tip.
 (実施例4)
 なお、上記実施の形態3(図7)では、レーザ媒質5内で発生する熱レンズ焦点距離を調整するために、x軸方向に複数のレンズ効果を生成し、y軸方向では導波路モードで発振し、x軸方向ではレンズ効果による空間モードで複数発振する装置において、ヒートシンク2の光軸方向に櫛構造を設け、櫛構造部分の幅Aまたは複数本存在する櫛構造部分の本数を調整することにより、導波路内の温度分布を調整したが、図8にように、ヒートシンク2の光軸(z軸)の方向の櫛構造部分を断続的に複数本設けてもよい。
Example 4
In the third embodiment (FIG. 7), in order to adjust the thermal lens focal length generated in the laser medium 5, a plurality of lens effects are generated in the x-axis direction, and in the waveguide mode in the y-axis direction. In a device that oscillates and oscillates in a spatial mode due to the lens effect in the x-axis direction, a comb structure is provided in the optical axis direction of the heat sink 2, and the width A of the comb structure part or the number of comb structure parts existing is adjusted. Thus, the temperature distribution in the waveguide is adjusted. However, as shown in FIG. 8, a plurality of comb structures in the direction of the optical axis (z-axis) of the heat sink 2 may be provided intermittently.
 以下、図1および図8を参照しながら、この発明の実施の形態4について説明する。
 図8はこの発明の実施の形態4に係るモード制御導波路型レーザ装置のヒートシンク2の形状を示す断面図であり、前述(図1)の断面b-b’を示している。
 この場合、全体構成は、ヒートシンク2の櫛形状が前述と異なる点を除けば、図1に示した通りであり、特に明記しない限り、前述(図1)の励起光入射手段1~レーザ媒質5と同等の機能を有するものとする。
The fourth embodiment of the present invention will be described below with reference to FIGS.
FIG. 8 is a cross-sectional view showing the shape of the heat sink 2 of the mode control waveguide type laser apparatus according to Embodiment 4 of the present invention, and shows the cross section bb ′ of FIG.
In this case, the entire configuration is as shown in FIG. 1 except that the comb shape of the heat sink 2 is different from that described above. Unless otherwise specified, the excitation light incident means 1 to the laser medium 5 described above (FIG. 1). It shall have the same function.
 前述の実施の形態3(図7)の場合、ヒートシンク2の光軸方向の櫛構造部分が狭くなるにつれて、排熱により発生する熱分布によって、y軸方向にも屈折率分布が発生し、結果として、y軸方向にも熱レンズが生じてしまう。
 これに対し、この発明の実施の形態4(図8)によれば、ヒートシンク2の光軸方向の櫛構造部分を断続的に複数本設けることにより、レーザ媒質5に所望の温度分布を発生させてレーザ媒質5内に屈折率分布を生成し、この屈折率分布により、x軸方向に複数のレンズを並べた効果であるレンズ効果を生成し、y軸方向においては導波路モードで発振し、x軸方向においてはレンズ効果による空間モードで複数発振する装置においても、上記不具合を解消することができる。
In the case of the above-described third embodiment (FIG. 7), as the comb structure portion of the heat sink 2 in the optical axis direction becomes narrower, a refractive index distribution is also generated in the y-axis direction due to heat distribution generated by exhaust heat. As a result, a thermal lens is also generated in the y-axis direction.
On the other hand, according to Embodiment 4 (FIG. 8) of the present invention, a desired temperature distribution is generated in the laser medium 5 by intermittently providing a plurality of comb structure portions in the optical axis direction of the heat sink 2. Then, a refractive index distribution is generated in the laser medium 5, and a lens effect that is an effect of arranging a plurality of lenses in the x-axis direction is generated by the refractive index distribution, and oscillation is performed in a waveguide mode in the y-axis direction. In the x-axis direction, the above problem can be solved even in an apparatus that oscillates in a spatial mode due to the lens effect.
 図8において、ヒートシンク2の光軸(z軸)の方向の櫛構造部分は、断続的に複数本配置され、櫛構造部分の幅A(図3参照)を調整することにより、レーザ媒質5内で発生する熱レンズの焦点距離を調整可能であり、また、或る幅の櫛構造の本数を調整することによっても、レーザ媒質5内で発生する熱レンズ焦点距離を調整することができる。
 なお、各櫛構造部分の幅Aは必ずしも一定である必要はない。
In FIG. 8, a plurality of comb structure portions in the direction of the optical axis (z axis) of the heat sink 2 are intermittently arranged, and the width A (see FIG. 3) of the comb structure portion is adjusted to adjust the inside of the laser medium 5. It is possible to adjust the focal length of the thermal lens generated in the above, and it is also possible to adjust the focal length of the thermal lens generated in the laser medium 5 by adjusting the number of comb structures having a certain width.
In addition, the width A of each comb structure part does not necessarily need to be constant.
 以上のように、この発明の実施の形態4(図1、図8)に係るモード制御導波路型レーザ装置によれば、光軸方向に、ヒートシンク2とクラッド4が接合剤3を介して接合する部分と接合されない部分が交互に分布することにより、光軸6に平行な方向の熱の伝導が増し、その結果、x軸方向に周期的な複数の発振モードを持つレーザ装置においても、y軸方向に発生する熱分布を光軸6に平行な方向に平均化することができ、y軸方向の熱レンズを低減することができる。 As described above, according to the mode-controlled waveguide laser device according to the fourth embodiment (FIGS. 1 and 8) of the present invention, the heat sink 2 and the clad 4 are bonded via the bonding agent 3 in the optical axis direction. By alternately distributing the portions to be joined and the portions not to be joined, heat conduction in the direction parallel to the optical axis 6 is increased. As a result, even in a laser apparatus having a plurality of oscillation modes that are periodic in the x-axis direction, y The heat distribution generated in the axial direction can be averaged in the direction parallel to the optical axis 6, and the thermal lens in the y-axis direction can be reduced.
 また、高出力化が容易な、幅が広い発光領域を持つブロードエリアLDや、エミッタを一列に配置したLDアレーを用いて、励起光の高出力化を図り、高出力のレーザ光を出力可能なモード制御導波路型レーザ装置においても、レーザ媒質5内で発生する熱レンズを制御することができる。 In addition, it is possible to increase the output of pumping light and output high-power laser light by using a broad area LD with a wide light-emitting area that can easily achieve high output and an LD array in which emitters are arranged in a row. Even in such a mode-controlled waveguide laser device, the thermal lens generated in the laser medium 5 can be controlled.
 なお、前述と同様に、ヒートシンク2の櫛歯間の空隙は、通常空気であるが、ヒートシンク2よりも小さな熱伝導度を有する熱絶縁材料で埋めてもよい。この場合、レーザ媒質5内の屈折率分布は、櫛歯の先端と熱絶縁材料との熱伝導度の差で発生する温度分布により生成される。
 このように熱絶縁材料を埋めることにより、クラッド4の排熱側の前面が接合剤3に接合されて、レーザ媒質5で発生した熱を排熱するので、レーザ媒質5の温度上昇を抑制することができる。また、クラッド4を櫛形の先端のみで固定した場合に比べて、ヒートシンク2の剛性を高めることができる。
As described above, the gap between the comb teeth of the heat sink 2 is usually air, but may be filled with a heat insulating material having a lower thermal conductivity than the heat sink 2. In this case, the refractive index distribution in the laser medium 5 is generated by a temperature distribution generated by a difference in thermal conductivity between the tip of the comb teeth and the thermal insulating material.
By burying the heat insulating material in this way, the front surface on the exhaust heat side of the clad 4 is bonded to the bonding agent 3 and the heat generated in the laser medium 5 is exhausted, so that the temperature rise of the laser medium 5 is suppressed. be able to. Further, the rigidity of the heat sink 2 can be increased as compared with the case where the clad 4 is fixed only by the comb-shaped tip.
 また、上記実施の形態1~4においては、発熱の大きな入射側では全面で排熱し、発熱の小さな出射側では熱レンズを調整して生成するために、図3、図7のように、櫛構造を有する接合部を、レーザ媒質5の光軸6のレーザ光が出射する出射面(端面5b)の接合面に設置したが、要求に応じて、発熱の抑制効果よりも熱レンズの調整効果を優先する場合には、温度分布の強い入射側の端面5aの接合面に櫛構造を有する接合部を設置してもよい。 In the first to fourth embodiments, the entire surface is exhausted on the incident side where heat generation is large, and the thermal lens is adjusted and generated on the emission side where heat generation is small. Therefore, as shown in FIGS. The joint portion having the structure is disposed on the joint surface of the emission surface (end surface 5b) from which the laser beam of the optical axis 6 of the laser medium 5 is emitted. If priority is given to the above, a joint portion having a comb structure may be provided on the joint surface of the incident-side end surface 5a having a strong temperature distribution.
 1 励起光入射手段、2 ヒートシンク、3 接合剤、4 クラッド、5 レーザ媒質、5a、5b 端面、6 光軸。 1 Excitation light incident means 2 Heat sink 3 Adhesive 4 Cladding 5 Laser medium 5a 5b End face 6 Optical axis.

Claims (8)

  1.  平板状をなし、光軸に対して垂直な断面の厚さ方向に導波路構造を有し、レーザ光に対する利得を発生するレーザ媒質と、
     前記レーザ媒質の一面に接合されたクラッドと、
     前記レーザ媒質の一面側に前記クラッドを介して接合されたヒートシンクと、を備え、
     前記レーザ媒質は、屈折率分布によりレンズ効果を生成し、
     前記レーザ光は、前記厚さ方向において導波路モードで発振するとともに、前記光軸および前記厚さ方向に垂直な方向において、前記レンズ効果による空間モードで発振するモード制御導波路型レーザ装置であって、
     前記クラッドと前記ヒートシンクとの接合面積により、前記レーザ媒質に所望の温度分布を発生させて前記レーザ媒質内の前記屈折率分布を生成することを特徴とするモード制御導波路型レーザ装置。
    A laser medium having a flat plate shape, having a waveguide structure in a thickness direction of a cross section perpendicular to the optical axis, and generating a gain for laser light;
    A clad bonded to one surface of the laser medium;
    A heat sink joined to the one surface side of the laser medium via the clad,
    The laser medium generates a lens effect by a refractive index distribution,
    The laser light is a mode-controlled waveguide laser device that oscillates in a waveguide mode in the thickness direction and oscillates in a spatial mode due to the lens effect in a direction perpendicular to the optical axis and the thickness direction. And
    A mode-controlled waveguide laser device that generates a desired temperature distribution in the laser medium based on a junction area between the clad and the heat sink to generate the refractive index distribution in the laser medium.
  2.  前記レーザ媒質は、前記屈折率分布により、前記光軸および前記厚さ方向に垂直な方向に複数のレンズを並べた効果であるレンズ効果を生成し、
     前記レーザ光は、前記厚さ方向において導波路モードで発振するとともに、前記光軸および前記厚さ方向に垂直な方向において、前記レンズ効果による空間モードで複数発振することを特徴とする請求項1に記載のモード制御導波路型レーザ装置。
    The laser medium generates a lens effect that is an effect of arranging a plurality of lenses in a direction perpendicular to the optical axis and the thickness direction, based on the refractive index distribution,
    2. The laser light oscillates in a waveguide mode in the thickness direction and a plurality of oscillations in a spatial mode due to the lens effect in a direction perpendicular to the optical axis and the thickness direction. A mode-controlled waveguide laser device described in 1.
  3.  前記ヒートシンクは、前記レーザ光の光軸の一部に、前記光軸に平行な櫛構造を有する接合部を備え、
     前記櫛構造の範囲を調整することにより、前記レーザ媒質に所望の温度分布を発生させて前記レーザ媒質内の屈折率分布を生成することを特徴とする請求項1または請求項2に記載のモード制御導波路型レーザ装置。
    The heat sink includes a joint having a comb structure parallel to the optical axis in a part of the optical axis of the laser light,
    The mode according to claim 1 or 2, wherein a desired temperature distribution is generated in the laser medium by adjusting a range of the comb structure to generate a refractive index distribution in the laser medium. Control waveguide type laser device.
  4.  前記櫛構造を有する接合部は、前記レーザ媒質の光軸のレーザ光が入射する入射面の接合面に設置されたことを特徴とする請求項3に記載のモード制御導波路型レーザ装置。 The mode-controlled waveguide laser device according to claim 3, wherein the joint portion having the comb structure is disposed on a joint surface of an incident surface on which laser light having an optical axis of the laser medium is incident.
  5.  前記櫛構造を有する接合部は、前記レーザ媒質の光軸のレーザ光が出射する出射面の接合面に設置されたことを特徴とする請求項3または請求項4に記載のモード制御導波路型レーザ装置。 5. The mode control waveguide type according to claim 3, wherein the joint portion having the comb structure is disposed on a joint surface of an emission surface from which a laser beam having an optical axis of the laser medium is emitted. Laser device.
  6.  前記櫛構造を有する接合部は、前記レーザ媒質の光軸のレーザ光が入射する入射面を除く接合面に設置されたことを特徴とする請求項3に記載のモード制御導波路型レーザ装置。 4. The mode-controlled waveguide laser device according to claim 3, wherein the joint portion having the comb structure is disposed on a joint surface excluding an incident surface on which laser light having an optical axis of the laser medium is incident.
  7.  前記櫛構造を有する接合部は、前記レーザ媒質の光軸のレーザ光が出射する出射面を除く接合面に設置されたことを特徴とする請求項3または請求項6に記載のモード制御導波路型レーザ装置。 The mode control waveguide according to claim 3, wherein the joint portion having the comb structure is disposed on a joint surface excluding an emission surface from which a laser beam having an optical axis of the laser medium is emitted. Type laser equipment.
  8.  前記櫛構造を有する接合部は、前記レーザ媒質の光軸のレーザ光が入射する入射面から断続的に複数個設置されたことを特徴とする請求項3から請求項7までのいずれか1項に記載のモード制御導波路型レーザ装置。 The junction part having the comb structure is provided with a plurality of intermittently from an incident surface on which a laser beam having an optical axis of the laser medium is incident. 8. A mode-controlled waveguide laser device described in 1.
PCT/JP2010/072999 2010-12-21 2010-12-21 Mode control waveguide-type laser device WO2012086009A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012549510A JP5389277B2 (en) 2010-12-21 2010-12-21 Mode-controlled waveguide laser device
CN201080068982.8A CN103098318B (en) 2010-12-21 2010-12-21 Mode control waveguide-type laser device
US13/810,750 US9197029B2 (en) 2010-12-21 2010-12-21 Mode control waveguide-type laser device
EP10861126.0A EP2590276B1 (en) 2010-12-21 2010-12-21 Mode control waveguide-type laser device
PCT/JP2010/072999 WO2012086009A1 (en) 2010-12-21 2010-12-21 Mode control waveguide-type laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2010/072999 WO2012086009A1 (en) 2010-12-21 2010-12-21 Mode control waveguide-type laser device

Publications (1)

Publication Number Publication Date
WO2012086009A1 true WO2012086009A1 (en) 2012-06-28

Family

ID=46313313

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/072999 WO2012086009A1 (en) 2010-12-21 2010-12-21 Mode control waveguide-type laser device

Country Status (5)

Country Link
US (1) US9197029B2 (en)
EP (1) EP2590276B1 (en)
JP (1) JP5389277B2 (en)
CN (1) CN103098318B (en)
WO (1) WO2012086009A1 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5941112B2 (en) 2014-09-30 2016-06-29 ファナック株式会社 Laser oscillator to improve beam quality
FR3043687B1 (en) * 2015-11-13 2020-07-03 Universite Blaise Pascal Clermont Ii SOL-GEL PROCESS FOR THE SYNTHESIS OF A LUMINESCENT MATERIAL OF GENERAL FORMULATION AXBYFZ: MN
WO2018020641A1 (en) * 2016-07-28 2018-02-01 三菱電機株式会社 Planar waveguide laser device
US11133639B2 (en) 2018-07-24 2021-09-28 Raytheon Company Fast axis thermal lens compensation for a planar amplifier structure
US10547159B1 (en) * 2018-12-12 2020-01-28 Trumpf Photonics Inc. Laterally tailoring current injection for laser diodes
CN113427119B (en) * 2021-06-15 2022-08-16 太原理工大学 Laser rust cleaning device with air duct purging mechanism

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685357A (en) * 1992-09-04 1994-03-25 Nippon Steel Corp Solid laser oscillator
WO2006103767A1 (en) * 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Mode control waveguide laser

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6738396B2 (en) * 2001-07-24 2004-05-18 Gsi Lumonics Ltd. Laser based material processing methods and scalable architecture for material processing
JP5495943B2 (en) 2010-01-29 2014-05-21 三菱電機株式会社 Planar waveguide laser device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685357A (en) * 1992-09-04 1994-03-25 Nippon Steel Corp Solid laser oscillator
WO2006103767A1 (en) * 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha Mode control waveguide laser
JP4392024B2 (en) 2005-03-30 2009-12-24 三菱電機株式会社 Mode-controlled waveguide laser device

Also Published As

Publication number Publication date
US20130121355A1 (en) 2013-05-16
CN103098318A (en) 2013-05-08
EP2590276B1 (en) 2018-12-19
JPWO2012086009A1 (en) 2014-05-22
EP2590276A4 (en) 2014-01-15
CN103098318B (en) 2014-10-22
JP5389277B2 (en) 2014-01-15
US9197029B2 (en) 2015-11-24
EP2590276A1 (en) 2013-05-08

Similar Documents

Publication Publication Date Title
JP4392024B2 (en) Mode-controlled waveguide laser device
JP5389277B2 (en) Mode-controlled waveguide laser device
JP5389055B2 (en) Planar waveguide laser and display device
JPWO2009028079A1 (en) Solid state laser element
WO2011027731A1 (en) Planar waveguide laser device
JP5208118B2 (en) Solid state laser element
WO2014087468A1 (en) Planar waveguide laser excitation module and planar waveguide wavelength conversion laser device
JP5389169B2 (en) Planar waveguide laser device and display device using the same
JP5247795B2 (en) Optical module
JP5762557B2 (en) Semiconductor laser pumped solid state laser
WO2011027579A1 (en) Planar waveguide laser apparatus
JP5645753B2 (en) Planar waveguide laser device
CN107851953B (en) planar waveguide laser device
EP1670104B1 (en) Solid-state laser pumped module and laser oscillator
JPH11284257A (en) Semiconductor laser excited solid laser device
JP2016201435A (en) Laser light source device
JP6257807B2 (en) Array type wavelength conversion laser device

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201080068982.8

Country of ref document: CN

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10861126

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2012549510

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 13810750

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2010861126

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE