WO2012084542A1 - Procédé de création et de report sur un support argentique d'imagettes stéréoscopiques, procédé de traitement d'un tel support et dispositifs correspondants - Google Patents

Procédé de création et de report sur un support argentique d'imagettes stéréoscopiques, procédé de traitement d'un tel support et dispositifs correspondants Download PDF

Info

Publication number
WO2012084542A1
WO2012084542A1 PCT/EP2011/072261 EP2011072261W WO2012084542A1 WO 2012084542 A1 WO2012084542 A1 WO 2012084542A1 EP 2011072261 W EP2011072261 W EP 2011072261W WO 2012084542 A1 WO2012084542 A1 WO 2012084542A1
Authority
WO
WIPO (PCT)
Prior art keywords
pair
optical
image
thumbnails
images
Prior art date
Application number
PCT/EP2011/072261
Other languages
English (en)
Inventor
Jean-Louis De Bougrenet De La Tocnaye
Laurent Dupont
Daniel Stoenescu
Kedar SATHAYE
Original Assignee
Institut Telecom - Telecom Bretagne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut Telecom - Telecom Bretagne filed Critical Institut Telecom - Telecom Bretagne
Publication of WO2012084542A1 publication Critical patent/WO2012084542A1/fr

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/14Printing apparatus specially adapted for conversion between different types of record
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/16Stereoscopic photography by sequential viewing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/22Stereoscopic photography by simultaneous viewing using single projector with stereoscopic-base-defining system
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B35/00Stereoscopic photography
    • G03B35/18Stereoscopic photography by simultaneous viewing
    • G03B35/26Stereoscopic photography by simultaneous viewing using polarised or coloured light separating different viewpoint images

Definitions

  • a method of creating and transferring a stereoscopic image to a film medium a method of processing such a medium and corresponding devices.
  • the field of the invention is that of stereoscopic projection, in particular for the three-dimensional (or "3D") rendering of images or video contents.
  • the invention relates to a technique for projecting stereoscopic images by means of a projection device operating with film recording media, such as 35mm film films for example.
  • the invention applies in particular, but not exclusively, in the context of projection of video content in cinemas, shows or any other specialized room, or in the context of family projection. But it can be applied more generally to any type of projection device capable of operating with recording media type film.
  • the three-dimensional projection techniques of video content are traditionally based on a mechanism for scrolling stereoscopic images operating at a frequency of 24 or 48 images per second according to the projection technique used.
  • the relief impression of an image is obtained by superimposing on a screen a pair of stereoscopic images, these are two images of the same scene captured from two substantially different angles of view, an image being intended for left eye (subsequently called “image G") and another for the right eye of the viewer (“image D").
  • image G an image being intended for left eye
  • image D another for the right eye of the viewer
  • the perception of the relief requires the wearing of passive or active visualization glasses, constituted so that the image G is perceived only by the left eye, and the image D only by the right eye of the spectator.
  • the image superposition operation can be performed simultaneously: the two stereoscopic images are then projected on the screen at the same time at a speed of 24 frames per second.
  • Such an implementation is compatible with stereoscopic images obtained by polarization coding (the polarization planes of the images are rendered orthogonal with respect to each other) or by spectral color coding of the "anaglyph" type. It requires for observation the use of passive viewing glasses consisting of two filters allowing independent vision by each eye of the viewer, each of the two stereoscopic images.
  • the image superposition operation can be performed sequentially: the two stereoscopic images are then projected on the screen successively one after the other.
  • This implementation is performed by means of a shutter mechanism included in the projection device, ensuring the independence of the two stereoscopic images, and which is synchronized to active (or alternating) viewing glasses.
  • the active glasses are synchronized with the images projected successively on the screen and must be presented to each eye of the viewer in rapid alternation, which requires increasing the frame rate of images to 48 frames per second.
  • the invention in at least one embodiment, is intended in particular to provide a stereoscopic image projection technique that does not require the use of a digital projection device.
  • a goal of at least one embodiment is to provide a technique for performing projection of stereoscopic images from a conventional projection device operating with film recording media.
  • At least one embodiment of the invention also aims to provide such a technique that is inexpensive and simple to implement.
  • Another objective of at least one embodiment of the invention is to provide such a technique that does not require any substantial modification to the conventional projection device.
  • Yet another object of at least one embodiment of the invention is to provide such a technique that can be used with passive or active glasses.
  • a method for creating and carrying on a support of a pair of stereoscopic imagers from a pair of stereoscopic images said pair of stereoscopic imagers being intended to be projected on a screen by means of a projection device capable of operating with silver recording media of a predetermined type, storing images in image areas having a predetermined format, said method comprising the steps following:
  • the general principle of this particular embodiment of the invention therefore consists in transferring a pair of stereoscopic imagers in a predetermined format image area of a film recording medium, this pair of stereoscopic images having been previously developed using a stereoscopic image surface compression mechanism.
  • This particular embodiment therefore relies on a combination of an image conversion mechanism and a printing mechanism on a photosensitive recording medium, allowing a pair of scopic stereo images to be developed from a pair of stereoscopic images and stored in the same image area of predetermined format of the medium.
  • the film recording medium comprises, in each of its image areas, a pair of stereoscopic imagers arranged side by side and occupying substantially the entire surface of the image area.
  • the image surface compression factor is applied in a given direction of said image.
  • two stereoscopic imagers are produced side by side and arranged vertically or horizontally in the direction in which the compression factor has been applied.
  • a method of processing a film recording medium on which at least one pair of stereoscopic imagers has been previously reported by implementing the creation process and aforementioned report said treatment method being such that it comprises the following steps:
  • the processing method further comprises a step of obtaining, for each superimposed thumbnail of said pair, a scopic stereo image capable of being projected, by optical anamorphosis of said superimposed thumbnail according to a surface decompression factor of image such as the surface of the image obtained is equal to the area of the image area having said predetermined format.
  • each uncompressed thumbnail has the predetermined format of the image area of the silver medium and can thus be projected on the screen.
  • the image surface decompression factor is applied to said superimposed image in the direction in which the compression factor is applied.
  • a device for creating and carrying on a support of a pair of scopic stereo imagers from a pair of scopic stereo images said pair stereoscopic imagers being intended to be projected on a screen by means of a projection device capable of operating with film recording media of a predetermined type, storing images in image areas having a predetermined format, said creation and reporting device comprising:
  • this particular embodiment of the invention is based on a completely new and inventive approach of creating and transferring in a predetermined format image area of a film recording medium, a pair of stereoscopic imagers. substantially occupying the entire surface of the image area, said pair of thumbnails being obtained by converting a pair of stereoscopic images according to an image surface compression factor.
  • the image surface compression factor is applied by said obtaining means in a given direction of said image.
  • Each image area of the film medium therefore comprises two stereoscopic imagers contiguous side by side and arranged vertically or horizontally in the direction in which the compression factor has been applied.
  • optical superposition means capable of superposing the stereoscopic pixels of said pair on one another.
  • this particular embodiment of the invention makes it possible to perform optical processing of a pair of stereoscopic imagers which has been previously transferred to a silver medium.
  • This processing consists in superimposing (or combining) the two stereoscopic images contained in the same image area of the silver medium one on the other, in order to generate a relief impression on the screen.
  • said optical superposition means comprise a pair of micro-prisms, each micro-prism being arranged symmetrically with respect to one another so as to optically deflect one of the thumbnails of said pair, for superimpose the thumbnails of said pair.
  • Each micro-prism has a deflection angle for deflecting each thumbnail of said pair and superimpose one on the other.
  • said processing device further comprises shutter means adapted to alternately block the transmission on the screen of one of the two thumbnails of said pair, at a shutter frequency substantially equal to 48 images / second.
  • shutter means adapted to alternately block the transmission on the screen of one of the two thumbnails of said pair, at a shutter frequency substantially equal to 48 images / second.
  • closure means belong to the group comprising:
  • a mechanical shutter disc or moving wheel comprising at least one through opening.
  • said optical superposition means comprise at least one block of birefringent material suitable for:
  • the optical processing device By performing a simultaneous superposition of stereoscopic images, the optical processing device according to the invention provides the possibility, for observation, to use passive viewing glasses.
  • said at least one block of birefringent material consists of a birefringent beam splitter element.
  • said at least one block of birefringent material consists of:
  • a device for optically processing a film recording medium comprising at least one pair of stereoscopic imagers, said device comprising optical superimposition means capable of superimposing the thumbnails of said pair in a superposition plane.
  • Said optical superposition means being such that they comprise: two birefringent blocks, of the polarization separator type, adapted to perform jointly the two following functions: polarizing the thumbnails of said pair, so that each thumbnail has a distinct polarization state, the polarization states of the two thumbnails being orthogonal; and
  • a neutral glass block adapted to equalize optical paths of said pair of thumbnails.
  • this particular embodiment of the invention makes it possible to perform optical processing of a pair of stereoscopic imagers which has been previously transferred to a silver medium.
  • This processing consists in superimposing (or combining) the two stereoscopic images contained in the same image area of the silver medium one on the other, in order to generate a relief impression on the screen.
  • said optical superposition means having linear eigenstates
  • said processing device further comprises a quarter-wave type delay plate oriented at an angle of 45 ° to the birefringence proper axes of the two blocks. birefringent.
  • said processing device further comprises shutter means adapted to alternately block the transmission of one of the two thumbnails, at a shutter frequency substantially equal to 48 images / second, said means of shutter shutter comprising:
  • a programmable delay blade of the half-wave type, oriented at an angle of
  • This optical configuration makes it possible, simply and inexpensively, to make the projection device compatible either with passive viewing glasses, but with active display glasses.
  • said processing device further comprises control means adapted to control the activation of said closure means, said activation of said shutter means being performed synchronously with a shutter system of a pair of stereoscopic glasses associated with said control means.
  • said processing device further comprises optical anamorphose means, activated for each superimposed thumbnail of said pair, so as to obtain a stereoscopic image capable of being projected, according to an image surface decompression factor. such that the area of the image obtained is equal to the area of the image area having said predetermined format.
  • the optical anamorphose means are used to decompress the thumbnails so that they each have the predetermined format of the image areas of the film medium and thus to obtain stereoscopic images capable of being projected, simultaneously or sequentially on the screen.
  • optical anamorphose means belong to the group comprising:
  • FIG. 1 presents a flowchart of a particular embodiment of the method for creating and reporting a pair of stereoscopic imagers, according to the invention
  • FIG. 2 represents the schematic structure of an optical processing device according to a first embodiment of the invention
  • FIG. 3a illustrates the principle of a birefringent beam splitter element
  • FIG. 3b represents the schematic structure of an optical processing device, according to a second embodiment of the invention, integrating the birefringent beam splitting element illustrated in FIG. 3a;
  • FIG. 4 represents the schematic structure of an optical processing device according to a third embodiment of the invention
  • FIG. 5 shows the schematic structure of an optical processing device according to a fourth embodiment of the invention
  • FIG. 6 schematically illustrates a projection device equipped with an optical processing device as previously described in FIGS. 2, 3b, 4, 5 and a film of silver film obtained according to the method described in connection with FIG. Figure 1, according to a particular embodiment of the invention.
  • FIG. 1 presents a flowchart 100 of a particular embodiment of the method for creating and reporting a pair of stereoscopic imagers, according to the invention.
  • the method consists in creating and transferring a pair of stereoscopic images from a pair of stereoscopic images to a film of silver film (or more generally to a film recording medium).
  • This pair of thumbnails is intended to be projected on a screen using a projection device capable of operating with films of film film.
  • An exemplary projection device is illustrated below in connection with FIG. 6.
  • the projection format is defined as the ratio between the width and the height of the projected image.
  • the silver film used here is a 35mm film (referenced 150 in the figure) for storing images in image areas (referenced 155) having a standard format 24x18mm, an area of 432mm 2 .
  • image zone is meant the photosensitive emulsion zone in which an image of a scene or a subject is recorded.
  • the silver film 150 comprises, in a conventional manner, perforations 151 on each of its edges, to allow the driving thereof when the images are projected, and an optical sound track 152 located between the perforations of one of the edges. of the film and the image areas. Note that this film format is a purely illustrative example and other film formats could of course be considered, without departing from the scope of the invention.
  • a pair of digital stereoscopic images 115a, 115b previously developed by a stereoscopic method well known to those skilled in the art.
  • the pair of stereoscopic images has been pre-recorded using a digital type stereoscopic imaging system.
  • the stereoscopic image 15a is intended for the right eye and the stereoscopic image 115b for the spectator's left eye.
  • digital image denotes any image that has been acquired, processed and saved in a form encoded in binary numbers.
  • Each digital stereoscopic image has a predetermined resolution and image definition, making it possible to define an analog image format (i.e., the actual dimensions of its representation on a physical medium) of 24 ⁇ 18 mm, high resolution.
  • an analog image format i.e., the actual dimensions of its representation on a physical medium
  • the resolution determines the number of points (silver resolution) or pixels (numerical resolution) distinct per unit length (generally expressed in dots per inch or PPP) that can be reproduced on a physical medium or a display surface.
  • the resolution of a digital image makes it possible to establish the ratio between the number of pixels of an image and the actual size of its representation on a physical medium.
  • the definition of an image corresponds to the number of points or pixels that is used to represent it in its two dimensions. It indicates the fineness of detail of an image.
  • each stereoscopic image 115a, 115b undergoes at first a digital compression in the direction of the height (that is to say corresponding to the direction of travel of the film), so as to obtain respectively stereoscopic images 125a, 125b having an analog image format 24x9mm.
  • This change in image size is achieved by applying an image area compression factor of 2 in the height direction.
  • the image pair 125a, 125b is transferred by photo-inscription (for example using an imager) into an image area 155 of the filmstrip 150 of 35mm format.
  • photo-inscription for example using an imager
  • this transfer is carried out so that the two thumbnails 135a, 135b are arranged side by side in the direction of the height and occupy the entire surface of the 24x18mm format image area.
  • photo-inscription is meant here the mechanism of recording or storing one or more digital (or analog) images on a silver medium. It therefore implicitly includes the action of light on the photosensitive image area 155, the development and the draw. It may be implemented, as non-limiting examples, using a “kinescoping” type method, "DV-shoot” type, or any other method that the skilled person considers relevant. .
  • the digital images 135a, 135b may be subjected to laser radiation analysis during which the pixels of the stereoscopic images are interpolated by a microprocessor. A calculation is then performed so as to convert, according to the compression factor, said stereoscopic images in the appropriate format, before being transferred to the image area of the film 150.
  • a film film film is obtained with, for each image area, a pair of stereoscopic images intended to be projected on a screen.
  • the silver film thus obtained enables the projection system to project stereoscopic video content. while maintaining the same scrolling frequency of the image areas as that usually applied in the context of a standard projection.
  • the stereoscopic stereo images thus transferred to the silver film require, before being projected onto a screen for a three-dimensional display, to undergo a particular treatment (superimposition and reshaping of the thumbnails in the standard 24x18mm image format). ensured by the presence of an optical processing device placed between said film and the projection objection of a projection device.
  • the structure of such a device is illustrated below, according to various particular embodiments (see Figures 2, 3b, 4 and 5).
  • a horizontal opaque zone whose width is at most equal to half the interval separating two image areas of the film.
  • the steps of the method as described above can be implemented by a device dedicated to the creation and transfer on a silver recording medium of a pair of stereoscopic imagers.
  • FIG. 2 represents the schematic structure of an optical processing device 200 according to a first embodiment of the invention.
  • This device 200 is placed between the silver film and the projection lens (according to the configuration described below in connection with FIG. 6). Its object is to superimpose the two stereoscopic images 135a, 135b which occupy the image area 155 of the film 150.
  • the pair of stereoscopic images 135a, 135b, to be projected onto a screen, is therefore subject to to a light radiation provided for example by a DC-powered arc lamp (not shown in the figure), placed behind the silver film.
  • Reference 250 represents the optical axis of the projection device (not shown).
  • the optical processing device 200 comprises a pair 230 of micro-prisms 230a, 230b, each micro-prism being arranged symmetrically relative to one another and so as to face one of the scopic stereo imagers s: the micro-prisms 230a is arranged facing the image 135a and the micro-prisms 230b is arranged opposite the picture 135b.
  • Each micro-prism 230a, 230b has a deflection angle a (the apex angle of the prism being oriented towards the outside of the device) so as to deflect the image that faces it and to superimpose it with the other image of the pair in a superposition plane 240 (obtaining superimposed thumbnails 235a, 235b).
  • the term "superposition plane” is understood to mean the plane of the image acquired at the end of the superimposition operation of the pair of thumbnails which is placed upstream of the optical superposition means (pair of pixels). prisms in this case here).
  • the optical superimposition means are intended to ensure a superposition (or combination) of projected thumbnails in the plane of the cinema screen (real images). It should be noted that in order to be superimposed on the screen, the images placed in the superposition plane (virtual images) undergo, before being projected, an optical anamorphosis process (according to the principle described below).
  • the angle of deviation a is determined according to the format of the images (24x9mm in the present case) on the one hand and according to the characteristics of the projection lens (in particular its magnification), a function itself of the depth of the projection room and the size of the screen (several optics are available for this purpose on a conventional cinema projector).
  • the device 200 further comprises a shutter 220 placed upstream of the pair of micro-prisms. Its role is to alternately block the passage of the image 135a or 135b on the micro-prism 130a or 130b, at a frequency equal to 48 images per second.
  • the shutter can be ensured, for example, by a liquid crystal electro-optical shutter or a movable disk (or wheel) mechanical shutter comprising through apertures.
  • This embodiment therefore makes it possible, by implementing a sequential superposition of the two scopic stereo imagers, to ensure the independence of each scopic stereo image 135a, 135b, a process that is compatible with active (or alternating) display glasses.
  • the thumbnails 135a, 135b must be projected on the screen successively one after the other in order to be presented to each eye (the image 135a being associated with the right eye and the image 135b in the left eye) at a frequency equal to 48 images per second.
  • the shutter systems equipping this type of spectacles must therefore be synchronized with the shutter 220 of the optical processing device 200. This synchronization can be performed by means of an infra-red control signal sent by the optical processing device 200. to remote control the shutter system equipping the glasses.
  • the optical processing device 200 may further comprise optical anamorphose means (not shown in the figure), placed downstream of the pair of micro-prisms.
  • optical anamorphosis sphero-cylindrical type
  • These means of optical anamorphosis, sphero-cylindrical type, are responsible for performing an optical decompression of the format of the thumbnails 235a, 235b previously superimposed in the plane 240 (24x9mm), in the direction of the height of the thumbnail, so that the format obtained after decompression corresponds to the standard format (ie 24x18mm) of the image areas of the film read by the projection device.
  • the original stereoscopic images have undergone digital compression before being transferred, in the form of thumbnails, into the image areas of the film, which implies a re-format of these thumbnails before their return on a screen.
  • the optical objective of the projection device comprises a device of the Hypergonar type (as in the case of a cinemascope for example)
  • the latter already filling the role of optical anamorphic, the aj out of optical anamorphose means within the optical processing device is therefore not necessary.
  • an incident beam 301 of any polarization is separated into two parallel beams 302, 303 of crossed rectilinear polarizations.
  • the birefringent element 310 illustrated here is a calcite block of parallelepipedal shape and having linear eigenstates. Its properties birefringence and its length L allow to generate two output beams parallel 302, 303 separated by a distance equal to 9 mm (in the case of the standard format 24x18mm 35mm film film), the respective polarization states 304, 305 of these two beams being rectilinear and orthogonal to each other.
  • FIG. 3b represents the schematic structure of an optical processing device 300, according to a second embodiment of the invention, integrating the beam splitting birefringent element illustrated in FIG. 3a.
  • Each incident beam from the stereoscopic images 135a, 135b passes through the birefringent element 310 and leaves it according to the principle described above.
  • the element 310 separates the incident imager 135a into two imagers 325a, 335a by imparting to them orthogonal rectilinear polarization states.
  • the birefringent element 310 separates the incident imager 135b into two images 325b, 335b by giving them orthogonal rectilinear polarization states.
  • the images 135a and 135b are found superimposed in a superposition plane 340 (thumbnails referenced 335a and 335b in the figure), with polarization states orthogonal to each other.
  • the birefringent element 310 therefore has the following two functions:
  • each thumbnail 135a, 135b deflects each thumbnail 135a, 135b, so as to superimpose them one on the other in the plane of superposition 340.
  • the optical processing device 300 makes compatible the projection of the thumbnails with the use of passive viewing glasses.
  • the manufacturing constraints of these glasses require that stereoscopic images projected on a screen have right and left circular polarization states.
  • the polarization states of the images 335a, 335b located in the superposition plane being linear, a quarter-wave type delay plate 330 is introduced. in the processing device 300, so as to convert, for each image, a rectilinear polarization state into a right or left circular polarization state.
  • the quarter wave plate 330 is conventionally oriented, that is to say at an angle of 45 degrees with respect to the proper axes (ordinary and extraordinary axes) of the birefringent element 310, so as to produce a circular polarization at from the linear polarization it receives.
  • the thumbnails at the output of the quarter wave plate 330 have right and left circular polarization states.
  • the element 3 illustrated herein is a calcite glass having linear eigenstates.
  • Other materials having such properties may also be used in this embodiment, such as Spath, Quartz for example, or any other material that the skilled person may consider relevant.
  • FIG. 4 represents the schematic structure of an optical processing device 400 according to a third embodiment of the invention.
  • the optical processing device comprises a set consisting of:
  • the birefringent cubes 425 and 420 are disposed on either side of the optical axis 450 of the projection device and the neutral glass cube 410 is adjacent to the birefringent cube 425 and placed upstream of the latter.
  • Each of these cubes 410, 425 has edges of 6mm for example.
  • the birefringent cubes 420, 425 are polarization separator cubes, having linear eigenstates. They are responsible for: polarizing the images 135a, 135b so that they have two polarization states linear and orthogonal to each other in the superposition plane 440; and
  • the cube 420 includes a splitter plate 421 which separates the incident beam from the image 135b into a first beam oriented parallel to the direction of the incident beam and a second beam oriented perpendicular to the direction of the incident beam.
  • the first and second beams have rectilinear and orthogonal polarization states therebetween.
  • the birefringent cube 425 comprises a separating blade 426 making it possible to separate the second beam coming from the birefringent cube 420 into two other beams according to the same principle as that described above for the birefringent cube 420.
  • the beam reflected by the separating blade 426 leaves the cube with a state of rectilinear polarization, perpendicular to the one he possessed before entering the cube 425.
  • the incident beam coming from the image 135a first passes through a cube of neutral glass, in order to make the optical paths of the images 135a and 135b equivalent to the level of the plate 426.
  • This beam is then separated by the separating plate 426 of the birefringent cube 425 in a first beam oriented parallel to the direction of the incident beam and in a second beam oriented perpendicular to the direction of the incident beam.
  • the first and second beams have rectilinear and orthogonal polarization states therebetween.
  • the first beam from the image 135a combines with the second beam from the image 135b and a superposition of the two images then takes place.
  • two superimposed imagers 435a, 435b superimposed on each other are obtained in the superposition plane 440, each having a rectilinear polarization state oriented perpendicularly to the other.
  • the linearly polarized pixels thus pass in a quarter wave plate 430, placed downstream of the two polarization separator cubes, before being projected on the screen.
  • the cubes having linear eigenstates these give to the two thumbnails of straight polarization states which must be converted into circular polarization states, so that they become compatible with a rendering system requiring the use of passive viewing glasses.
  • This quarter wave plate is oriented at an angle of 45 degrees of the proper axes (ordinary and extraordinary axes) polarization separator cubes 420, 425.
  • optical processing device 400 is designed to integrate polarization separator cubes with circular clean states, no quarter-wave plate is necessary.
  • the optical processing device 400 also comprises anamorphose optics 460, of sphero-cylindrical type, able to perform an optical decompression of the format of the images 435a, 435b superimposed in the superimposition plane 440.
  • anamorphose means more particularly make it possible to convert the format 24x9mm 435a, 435b thumbnails in the standard format 24x18mm image areas of the filmstrip.
  • this anamorphosis lens can already be an integral part of the projection lens itself. In this case, the addition of anamorphose optics such as that illustrated in this figure is not necessary.
  • FIG. 5 shows the schematic structure of an optical processing device 500 according to a fourth embodiment of the invention.
  • the device 500 has the same configuration of optical cubes as that of the device 400 (described above in connection with FIG. 4), namely: two birefringent cubes 520, 525 disposed on either side of the optical axis 550 and a cube of neutral glass 510 placed upstream of the cube 525.
  • This configuration makes it possible to polarize each image 135a, 135b resulting from the image area of the film and to superimpose them on one another, so as to generating, in a superimposition plane 540, two superimposed imagers 535a, 535b and whose polarization states are rectilinear and orthogonal to one another.
  • the optical processing device 500 illustrated here is adapted to operate with stereoscopic active glasses. It comprises for this purpose shutter means formed by a blade of programmable phase 530, of the half-wave type, and a polarization analyzer 570 (or polarizer).
  • the half-wave plate is oriented at an angle equal to 45 degrees of the proper axes of the separator cubes 520, 525 and is adjusted so as to alternately block the passage of the image 535a or the image 535b on the screen at a frequency equal to 48 images per second.
  • the shutter can be ensured, for example, by a liquid crystal electro-optical shutter or a mechanical shutter openwork mobile disc.
  • control means responsible for controlling the activation of the half-wave plate 530 in synchronization with the shutter system of the active glasses used by the spectators.
  • the images emerging from the optical processing device are offset vertically by a distance of 4.5 mm (in the case of FIG. a 35mm film of standard image format 24x18mm) with respect to the optical axis 450 of the projection device, sometimes accompanied by a horizontal shift.
  • 4.5 mm in the case of FIG. a 35mm film of standard image format 24x18mm
  • the vertical misalignment of 4.5 mm is also accompanied by a horizontal misalignment. approximately 0.16 mm. It is therefore necessary to perform vertical and horizontal optical refocusing.
  • Such a refocusing can be simply obtained by adding an optical conventional means, or by mechanical adjustment (for example by changing the fixing means of the lens positioning system), or by redrawing the support frame, or by any other method that the skilled person may consider relevant and that will offset these offsets vertical and horizontal.
  • FIG. 6 shows the structure of a projection device 600 equipped with an optical processing device as previously described in FIGS. 2, 3b, 4, 5 and a film of film film obtained. according to the method described in relation with FIG. 1, according to a particular embodiment of the invention.
  • the projection device 600 more particularly comprises:
  • a light source 610 such as a DC-powered arc lamp for example, arranged in front of the filmstrip 630 so as to illuminate the pair of stereoscopic images 135a, 135b included in each image area of the filmstrip;
  • the 630 film 35mm film comprising, in each image zone 635 of format 24x18, a pair of stereoscopic imagers which has been previously transferred to the film by implementation of the method of the invention (described above in relation to the figure 1).
  • the image area should be placed in the focal plane of the optical objective 660;
  • a guide 620 associated with a toothed wheel mechanism 640, for driving the filmstrip 630 from top to bottom and presenting each pair of images in front of a projection window 625 in the center of the guide; an optical processing device 650, placed between the film and the projection lens 660, this device being responsible for performing an optical treatment of each pair of stereoscopic pixels illuminated by the light source 610, according to the principle described above in relation to with Figures 2, 3b, 4 and 5 (device referenced 200, 300, 400 or 500 according to the particular embodiment implemented), so that it can be projected on a screen 670 (metallized in the case of use of passive or non-metallic glasses in the case of use of active glasses), whatever the method of superposition (simultaneous or sequential) applied; an optical objective 660, used as a projection optics, on the one hand to anamorphose each pair of scopic stereo imagers from the processing device 650 (optical distortion of the images in the direction of the height to obtain them in a standard image format 24x
  • the scrolling of the image pairs (or image areas) of the film in front of the projection window 625 is jerky.
  • the driving of the film is achieved by immobilizing, for a fraction of a second, each image area in front of the projection window 625.
  • This discontinuous movement is produced from a continuous rotational movement, transformed by a slow-motion loop.
  • a slow-motion loop particular (for example Maltese cross type, claw, or double cam Trézel) so that, between two fixed, a shutter comes to interpose between the light source and the film to avoid the phenomenon "spinning" (flicker).
  • the projection of the pair of thumbnails is done sequentially (imaged for the left eye, then imaged for the right eye or vice versa), so that at each second, forty-eight different images per second alternate instead of twenty-four images per second in the case of a classical projection (non-stereo scopic).
  • the projection technique described above in relation with FIGS. 1 to 6 is intended for the realization of a projection in three dimensions starting from a traditional projection device supporting a 35mm film film film, with zones 24x18mm format image. It is clear however that such a technique can easily be adapted to many other filmstrip formats and image areas, without departing from the scope of the invention. By way of illustrative examples, such a technique can also be applied in the context of a projection of images or 3D video contents implemented from a silver film of the type belonging to the following list (non-exhaustive list). exhaustive): 35mm format film including image areas of 20, 96x17, 53mm (used for optical cinemascope with 2.39: 1 aspect ratio);

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Stereoscopic And Panoramic Photography (AREA)
  • Testing, Inspecting, Measuring Of Stereoscopic Televisions And Televisions (AREA)

Abstract

Il est proposé un dispositif de traitement optique (400) d'un support d'enregistrement argentique comprenant au moins une paire d'imagettes stéréoscopiques (135a, 135b), le dispositif comprenant des moyens de superposition optique aptes à superposer les imagettes dans un plan de superposition. Les moyens de superposition optique comprennent: deux blocs biréfringents, du type séparateurs de polarisation (420, 425), adaptés à réaliser conjointement les deux fonctions suivantes: polariser les imagettes, de manière à ce que chaque imagette présente un état de polarisation distinct, les états de polarisation des deux imagettes étant orthogonaux; et dévier optiquement chaque imagette, de manière à superposer les imagettes dans le plan de superposition; un bloc de verre neutre (410) adapté à égaliser des trajets optiques de la paire d'imagettes.

Description

Procédé de création et de report sur un support argentique d'imagettes stéréoscopiques, procédé de traitement d' un tel support et dispositifs correspondants.
1. DOMAINE DE L'INVENTION
Le domaine de l'invention est celui de la projection stéréoscopique, notamment pour la restitution en trois dimensions (ou en « 3D ») d'images ou de contenus vidéo.
Plus précisément, l'invention concerne une technique de projection d'images stéréoscopiques au moyen d'un dispositif de projection fonctionnant avec des supports d' enregistrement argentiques, tels que les pellicules de film de format 35mm par exemple.
L'invention s'applique notamment, mais non exclusivement, dans le cadre de projection de contenus vidéo dans des salles de cinéma, de spectacle ou dans tout autre salle spécialisée, ou encore dans le cadre de projection familiale. Mais elle peut s'appliquer plus généralement à tout type de dispositif de projection capable de fonctionner avec des supports d'enregistrement de type argentique.
2. ARRIÈRE-PLAN TECHNOLOGIQUE
Dans la suite de la description, on se place dans le contexte de la projection stéréoscopique pour l'usage cinématographique.
Les techniques de projection en trois dimensions de contenus vidéo reposent traditionnellement sur un mécanisme de défilement d'images stéréoscopiques fonctionnant à une fréquence de 24 ou de 48 images par seconde selon la technique de projection utilisée.
L'impression de relief d'une image est obtenue en superposant sur un écran une paire d'images stéréoscopiques, il s'agit de deux images d'une même scène capturées sous deux angles de vue sensiblement différents, une image étant destinée pour l'œil gauche (appelée par la suite « image G ») et une autre pour l'œil droit du spectateur (« image D »). La perception du relief nécessite le port de lunettes de visualisation passive ou active, constituées de telle sorte que l'image G ne soit perçue uniquement par l'œil gauche, et l'image D uniquement par l'œil droit du spectateur.
Dans une première mise en œuvre, l'opération de superposition d'images peut s'effectuer de manière simultanée : les deux images stéréoscopiques sont alors projetées sur l'écran au même instant à une vitesse de 24 images par seconde. Une telle mise en œuvre est compatible avec des images stéréoscopiques obtenues par codage de polarisation (les plans de polarisation des images sont rendus orthogonaux l'un par rapport à l'autre) ou par codage spectral de couleurs de type « anaglyphe ». Elle requiert pour l'observation l'utilisation de lunettes de visualisation passive constituées de deux filtres permettant une vision indépendante, par chaque œil du spectateur, de chacune des deux images stéréoscopiques.
Dans une deuxième mise en œuvre, l'opération de superposition d'images peut s'effectuer de manière séquentielle : les deux d'images stéréoscopiques sont alors projetées sur l'écran successivement l'une après l'autre. Cette mise en œuvre est réalisée au moyen d'un mécanisme d'obturation compris dans le dispositif de projection, assurant l'indépendance des deux images stéréoscopiques, et qui est synchronisé à des lunettes de visualisation active (ou alternée). Les lunettes actives sont synchronisées avec les images projetées successivement sur l'écran et doivent être présentées à chaque œil du spectateur en alternance rapide, ce qui nécessite d'accroître la fréquence de défilement des images à 48 images par seconde.
Actuellement, la projection en trois dimensions d'œuvres cinématographiques nécessite d'équiper les salles de cinéma de dispositifs de projection numériques dédiés. Or, de tels dispositifs ont un coût d'achat relativement élevé. En outre, certaines technologies de projection numérique engendrent pour les exploitants qui sont contraints d'adapter les salles de projection à ces technologies un surcoût non négligeable.
Par ailleurs, l'utilisation, en particulier dans les salles de cinéma, de dispositifs de projection traditionnels fonctionnant avec des supports d'enregistrement argentiques, est loin d'être marginale.
II apparaît donc particulièrement intéressant de pouvoir réaliser une projection d'images ou de contenus vidéo en trois dimensions à partir d'un unique dispositif de projection argentique traditionnel.
3. OBJECTIFS DE L'INVENTION
L'invention, dans au moins un mode de réalisation, a notamment pour objectif de fournir une technique de projection d'images stéréoscopiques qui ne nécessite pas l'utilisation d'un dispositif de projection numérique. En d'autres termes, un objectif d'au moins un mode de réalisation est de fournir une technique permettant de réaliser une projection d'images stéréoscopiques à partir d'un dispositif de projection traditionnel, fonctionnant avec des supports d'enregistrement argentiques.
Au moins un mode de réalisation de l'invention a également pour objectif de fournir une telle technique qui soit peu coûteuse et simple à mettre en œuvre.
Un autre objectif d'au moins un mode de réalisation de l'invention est de fournir une telle technique qui ne nécessite d'apporter aucune modification substantielle au dispositif de projection traditionnel.
Encore un autre objectif d'au moins un mode de réalisation de l'invention est de fournir une telle technique qui soit utilisable avec des lunettes passives ou actives.
4. EXPOSÉ DE L'INVENTION
Dans un mode de réalisation particulier de l'invention, il est proposé un procédé de création et de report sur un support d'une paire d'imagettes stéréoscopiques à partir d'une paire d'images stéréoscopiques, ladite paire d'imagettes stéréoscopiques étant destinée à être projetée sur un écran au moyen d'un dispositif de projection capable de fonctionner avec des supports d'enregistrement argentiques d'un type prédéterminé, stockant des images dans des zones d'images possédant un format prédéterminé, ledit procédé comprenant les étapes suivantes :
obtention, pour chaque image stéréoscopique de ladite paire, d'une imagette stéréoscopique par conversion de ladite image selon un facteur de compression de surface d'image tel que la somme des surfaces des deux imagettes obtenues est égale à la surface d'une zone d'image possédant ledit format prédéterminé ; report, par photo-inscription, de ladite paire d'imagettes obtenues dans une zone d'image d'un support d'enregistrement argentique dudit type prédéterminé, de manière à ce que les deux imagettes occupent sensiblement toute la surface de la zone d'image.
Le principe général de ce mode de réalisation particulier de l'invention consiste donc à reporter une paire d'imagettes stéréoscopiques dans une zone d'image de format prédéterminé d'un support d'enregistrement argentique, cette paire d'imagettes stéréoscopiques étant été préalablement élaborée au moyen d'un mécanisme de compression de surface d'images stéréoscopiques. Ce mode de réalisation particulier repose donc sur une association d'un mécanisme de conversion d'images et d'un mécanisme d'impression sur un support d'enregistrement photosensible, permettant à ce qu'une paire d'imagettes stéréo scopique s puisse être élaborée à partir d'une paire d'images stéréoscopiques et stockée dans une même zone d'image de format prédéterminé du support.
Ainsi, par itérations successives du procédé, le support d'enregistrement argentique comporte, dans chacune de ses zones d'image, une paire d'imagettes stéréoscopiques agencées côte à côte et occupant sensiblement toute la surface de la zone d'image.
De façon avantageuse, lors de ladite étape d'obtention d'une imagette stéréo scopique, le facteur de compression de surface d'image est appliqué dans une direction donnée de ladite image.
Ainsi, on obtient dans chaque zone d'image du support argentique deux imagettes stéréoscopiques côte à côte et agencées verticalement ou horizontalement suivant la direction dans laquelle a été appliqué le facteur de compression.
Dans un autre mode de réalisation particulier de l'invention, il est proposé un procédé de traitement d'un support d'enregistrement argentique sur lequel au moins une paire d'imagettes stéréoscopiques a été préalablement reportée par mise en œuvre du procédé de création et de report précité, ledit procédé de traitement étant tel qu'il comprend les étapes suivantes :
acquisition d'une paire d'imagettes contenue dans une zone d'image, possédant ledit format prédéterminé, dudit support d'enregistrement argentique ;
superposition, par imagerie optique, des imagettes stéréoscopiques de ladite paire.
Ainsi, en superposant optiquement, dans un même plan, les deux imagettes stéréoscopiques contenues dans une zone d'image, l'opération indispensable pour générer une impression de relief sur l'écran est assurée.
Avantageusement, le procédé de traitement comprend en outre une étape d'obtention, pour chaque imagette superposée de ladite paire, d'une image stéréo scopique apte à être projetée, par anamorphose optique de ladite imagette superposée selon un facteur de décompression de surface d'image tel que la surface de l'image obtenue est égale à la surface de la zone d'image possédant ledit format prédéterminé.
De cette façon, chaque imagette décompressée possède le format prédéterminé de la zone d'image du support argentique et peut donc être projetée sur l'écran.
Selon une caractéristique avantageuse, dans ladite étape d'obtention d'une image stéréo scopique, le facteur de décompression de surface d'image est appliqué à ladite imagette superposée dans la direction selon laquelle le facteur de compression est appliqué.
Dans un autre mode de réalisation particulier de l'invention, il est proposé un dispositif de création et de report sur un support d'une paire d'imagettes stéréo scopique s à partir d'une paire d'images stéréo scopique s, ladite paire d'imagettes stéréoscopiques étant destinée à être projetée sur un écran au moyen d'un dispositif de projection capable de fonctionner avec des supports d'enregistrement argentiques d'un type prédéterminé, stockant des images dans des zones d'images possédant un format prédéterminé, ledit dispositif de création et de report comprenant :
des moyens d'obtention, pour chaque image stéréoscopique de ladite paire, d'une imagette stéréoscopique par conversion de ladite image selon un facteur de compression de surface d'image tel que la somme des surfaces des deux imagettes obtenues est égale à la surface d'une zone d'image possédant ledit format prédéterminé ;
des moyens de report, par photo-inscription, de ladite paire d'imagettes obtenues dans une zone d'image d'un support d'enregistrement argentique dudit type prédéterminé, de manière à ce que les deux imagettes occupent sensiblement toute la surface de la zone d'image.
Ainsi, ce mode de réalisation particulier de l'invention repose sur une approche tout à fait nouvelle et inventive consistant à créer et reporter dans une zone d'image de format prédéterminé d'un support d'enregistrement argentique, une paire d'imagettes stéréoscopiques occupant sensiblement toute la surface de la zone d'image, ladite paire d'imagettes étant obtenue par conversion d'une paire d'images stéréoscopiques selon un facteur de compression de surface d'image. Avantageusement, le facteur de compression de surface d'image est appliqué par lesdits moyens d'obtention dans une direction donnée de ladite image.
Chaque zone d'image du support argentique comprend donc deux imagettes stéréoscopiques jointives côte à côte et agencées verticalement ou horizontalement suivant la direction dans laquelle a été appliqué le facteur de compression.
Dans un autre mode de réalisation particulier de l'invention, il est proposé un dispositif de traitement optique d'un support d'enregistrement argentique sur lequel au moins une paire d'imagettes stéréoscopiques a été préalablement reportée par mise en œuvre du procédé de création et de report précité, ledit dispositif de traitement comprenant :
des moyens d'acquisition d'une paire d'imagettes contenue dans une zone d'image, possédant ledit format prédéterminé, dudit support d'enregistrement argentique ;
des moyens de superposition optique aptes à superposer les imagettes stéréoscopiques de ladite paire l'une sur l'autre.
Ainsi, ce mode de réalisation particulier de l'invention permet de réaliser un traitement optique d'une paire d'imagettes stéréoscopiques qui a été préalablement reportée sur un support argentique. Ce traitement consiste à superposer (ou combiner) les deux imagettes stéréoscopiques contenues dans une même zone d'image du support argentique l'une sur l'autre, afin de générer une impression de relief sur l'écran.
Selon une première mise en œuvre avantageuse, lesdits moyens de superposition optique comprennent une paire de micro-prismes, chaque micro-prisme étant agencé symétriquement l'un par rapport à l'autre de manière à dévier optiquement une des imagettes de ladite paire, pour superposer les imagettes de ladite paire.
Chaque micro-prisme possède un angle de déviation permettant de dévier chaque imagette de ladite paire et de les superposer l'une sur l'autre.
Avantageusement, ledit dispositif de traitement comprend en outre des moyens d'obturation adaptés pour bloquer alternativement la transmission sur l'écran d'une des deux imagettes de ladite paire, à une fréquence d'obturation sensiblement égale à 48 images/seconde. En réalisant une superposition séquentielle des imagettes stéréo scopique s, le dispositif de traitement optique selon l'invention prévoit la possibilité, pour l'observation, d'utiliser des lunettes de visualisation active.
De façon avantageuse, les moyens d'obturation appartiennent au groupe comprenant :
un obturateur électro-optique à cristal liquide ;
un obturateur mécanique à disque ou à roue mobile comprenant au moins une ouverture traversante.
Selon une deuxième mise en œuvre avantageuse, lesdits moyens de superposition optique comprennent au moins un bloc de matériau biréfringent adapté pour :
polariser les imagettes de ladite paire de manière à ce qu'elles présentent deux états de polarisation orthogonaux ; et
dévier optiquement chaque imagette de ladite paire, de manière à superposer les imagettes de ladite paire.
En réalisant une superposition simultanée des imagettes stéréoscopiques, le dispositif de traitement optique selon l'invention prévoit la possibilité, pour l'observation, d'utiliser des lunettes de visualisation passive.
Selon un mode de réalisation particulier, ledit au moins un bloc de matériau biréfringent est constitué d'un élément séparateur de faisceau biréfringent.
Selon une variante de réalisation, ledit au moins un bloc de matériau biréfringent est constitué de :
deux cubes séparateurs de polarisation ;
un cube de verre neutre.
Dans un autre mode de réalisation particulier de l'invention, il est proposé un dispositif de traitement optique d'un support d'enregistrement argentique comprenant au moins une paire d'imagettes stéréoscopiques, ledit dispositif comprenant des moyens de superposition optique aptes à superposer les imagettes de ladite paire dans un plan de superposition. Lesdits moyens de superposition optique étant tels qu'ils comprennent : deux blocs biréfringents, du type séparateurs de polarisation, adaptés à réaliser conjointement les deux fonctions suivantes : * polariser les imagettes de ladite paire, de manière à ce que chaque imagette présente un état de polarisation distinct, les états de polarisation des deux imagettes étant orthogonaux ; et
* dévier optiquement chaque imagette de ladite paire, de manière à superposer les imagettes dans ledit plan de superposition ;
un bloc de verre neutre adapté à égaliser des trajets optiques de ladite paire d'imagettes.
Ainsi, ce mode de réalisation particulier de l'invention permet de réaliser un traitement optique d'une paire d'imagettes stéréoscopiques qui a été préalablement reportée sur un support argentique. Ce traitement consiste à superposer (ou combiner) les deux imagettes stéréoscopiques contenues dans une même zone d'image du support argentique l'une sur l'autre, afin de générer une impression de relief sur l'écran.
Selon une caractéristique avantageuse, lesdits moyens de superposition optique possédant des états propres linéaires, ledit dispositif de traitement comprend en outre une lame à retard, de type quart d'onde, orientée selon un angle de 45° des axes propres de biréfringence des deux blocs biréfringents.
De cette façon, les états propres linéaires obtenus en sortie dudit au moins un bloc de matériau biréfringent sont converties en états circulaires, pouvant être utilisés avec des lunettes de visualisation passive.
Selon une troisième mise en œuvre avantageuse, ledit dispositif de traitement comprend en outre des moyens d'obturation adaptés pour bloquer alternativement la transmission d'une des deux imagettes, à une fréquence d'obturation sensiblement égale à 48 images/seconde, lesdits moyens d'obturation comprenant :
une lame à retard programmable, de type demi-onde, orientée selon un angle de
45° des axes propres de biréfringence dudit au moins un bloc biréfringent ;
un analyseur de polarisation.
Cette configuration optique permet, de façon simple et peu coûteuse, de rendre compatible le dispositif de projection non plus avec des lunettes de visualisation passive, mais avec des lunettes de visualisation active.
Avantageusement, ledit dispositif de traitement comprend en outre des moyens de commande adaptés pour piloter l'activation desdits moyens d'obturation, ladite activation desdits moyens d'obturation étant effectuée de manière synchronisée avec un système d'obturation d'une paire de lunettes stéréoscopiques associé auxdits moyens de commande.
Selon une caractéristique avantageuse, ledit dispositif de traitement comprend en outre des moyens d'anamorphose optique, activés pour chaque imagette superposée de ladite paire, de manière à obtenir une image stéréoscopique apte à être projetée, selon un facteur de décompression de surface d'image tel que la surface de l'image obtenue est égale à la surface de la zone d'image possédant ledit format prédéterminé.
Les moyens d'anamorphose optique permettent de décompresser les imagettes afin qu'elles possèdent chacune le format prédéterminé des zones d'image du support argentique et ainsi d'obtenir des images stéréoscopiques aptes à être projetées, simultanément ou séquentiellement sur l'écran.
De façon avantageuse, les moyens d'anamorphose optique appartiennent au groupe comprenant :
- un dispositif optique de type Hypergonar ;
un dispositif optique de type sphéro-cylindrique.
5. LISTE DES FIGURES
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description suivante, donnée à titre d'exemple indicatif et non limitatif, et des dessins annexés, dans lesquels :
la figure 1 présente un organigramme d'un mode de réalisation particulier du procédé de création et de report d'une paire d'imagettes stéréoscopiques, selon l'invention ;
la figure 2 représente la structure schématique d'un dispositif de traitement optique selon un premier mode de réalisation de l'invention ;
la figure 3a illustre le principe d'un élément biréfringent séparateur de faisceau ; la figure 3b représente la structure schématique d'un dispositif de traitement optique, selon un deuxième mode de réalisation de l'invention, intégrant l'élément biréfringent séparateur de faisceau illustré sur la figure 3a ;
- la figure 4 représente la structure schématique d'un dispositif de traitement optique selon un troisième mode de réalisation de l'invention ; la figure 5 présente la structure schématique d'un dispositif de traitement optique selon un quatrième mode de réalisation de l'invention ;
la figure 6 illustre, de manière schématique, un dispositif de projection équipé d'un dispositif de traitement optique tel que précédemment décrit aux figures 2, 3b, 4, 5 et d'une pellicule de film argentique obtenue selon le procédé décrit en relation avec la figure 1, selon un mode de réalisation particulier de l'invention.
6. DESCRIPTION DÉTAILLÉE
Sur toutes les figures du présent document, les éléments identiques sont désignés par une même référence numérique.
La figure 1 présente un organigramme 100 d'un mode de réalisation particulier du procédé de création et de report d'une paire d'imagettes stéréoscopiques, selon l'invention.
De manière générale, le procédé consiste à créer et reporter sur une pellicule de film argentique (ou plus généralement sur un support d'enregistrement argentique) une paire d'imagettes stéréoscopiques à partir d'une paire d'images stéréoscopiques. Cette paire d'imagettes est destinée à être projetée sur un écran à l'aide d'un dispositif de projection capable de fonctionner avec des pellicules de film argentique. Un exemple de dispositif de projection est illustré plus loin en relation avec la figure 6.
Dans la suite de la description, on se place dans le cadre d'une projection stéréo scopique reposant sur un format de projection cinématographique 1,33 : 1 (ou 4/3). On rappelle que le format de projection est défini comme étant le rapport entre la largeur et la hauteur de l'image projetée. La pellicule argentique utilisée ici est une pellicule 35mm (référencée 150 sur la figure) destinée à stocker des images dans des zones d'image (référencées 155) possédant un format standard 24x18mm, soit une surface de 432mm2. On entend par zone d'image, la zone d'émulsion photosensible dans laquelle est enregistrée une image d'une scène ou d'un suj et. La pellicule argentique 150 comporte, de manière classique, des perforations 151 sur chacun de ses bords, pour permettre l'entraînement de celle-ci lors de la projection des images, et une piste sonore optique 152 située entre les perforations d'un des bords de la pellicule et les zones d'image. A noter que ce format de pellicule est un exemple purement illustratif et d'autres formats de pellicule pourraient bien entendu être envisagés, sans sortir du cadre de l'invention.
Dans une étape 110, on obtient une paire d'images stéréoscopiques numériques 115a, 115b préalablement élaborées par une méthode de stéréoscopie bien connue de l'Homme du Métier. Par exemple, la paire d'images stéréoscopiques a été enregistrée au préalable au moyen d'un système de prise de vue stéréoscopique de type numérique. L'image stéréoscopique 1 15a est destinée pour l'œil droit et l'image stéréoscopique 115b pour l'œil gauche du spectateur.
On désigne par « image numérique », toute image qui a été acquise, traitée et sauvegardée sous une forme codée en nombres binaires.
Chaque image stéréoscopique numérique possède une résolution et une définition d'image prédéterminées, permettant de définir un format d'image analogique (c'est-à-dire les dimensions réelles de sa représentation sur un support physique) 24x18 mm, de haute résolution.
On rappelle que la résolution détermine le nombre de points (résolution argentique) ou de pixels (résolution numérique) distincts par unité de longueur (exprimé généralement en points par pouce ou PPP) pouvant être reproduits sur un support physique ou une surface d'affichage. La résolution d'une image numérique permet d'établir le rapport entre le nombre de pixels d'une image et la taille réelle de sa représentation sur un support physique.
La définition d'une image correspond, quant à elle, au nombre de points ou de pixels qui est utilisé pour la représenter dans ses deux dimensions. Elle indique la finesse de détail d'une image.
Dans une étape de compression 120, afin de conserver la fréquence de défilement des « images » (des zones d'image plus précisément) de la pellicule 35mm, chaque image stéréoscopique 115a, 115b subit dans un premier temps une compression numérique dans le sens de la hauteur (c'est-à-dire correspondant à la direction de défilement de la pellicule argentique), de manière à obtenir respectivement des imagettes stéréoscopiques 125a, 125b possédant un format d'image analogique 24x9mm. Ce changement de format d'image est réalisé en appliquant un facteur de compression de surface d'image égal à 2 dans le sens de la hauteur.
Puis, dans une étape de report 130, la paire d'imagettes 125a, 125b est reportée, par photo-inscription (par exemple à l'aide d'un imageur), dans une zone d'image 155 de la pellicule de film argentique 150 de format 35mm. Le report de la paire d'imagettes
125a, 125b, de nature numérique, sur la pellicule argentique permet d'obtenir une paire d'imagettes analogiques 135a, 135b de format 24x9mm chacune.
Selon un mode de réalisation particulier, ce report est effectué de manière à ce que les deux imagettes 135a, 135b se retrouvent agencées côte à côte dans le sens de la hauteur et occupent toute la surface de la zone d'image de format 24x18mm.
On entend ici par « photo-inscription », le mécanisme consistant à enregistrer ou à stocker une ou plusieurs images numériques (ou analogique) sur un support argentique. Il inclut donc implicitement l'action de la lumière sur la zone d'image photosensible 155, le développement et le tirage. Il peut être mis en œuvre, à titre d'exemples non-limitatifs, à l'aide d'une méthode de type « kinescopage », type « DV- shoot », ou de toute autre méthode que l'Homme du Métier estimera pertinente.
Selon un mode de réalisation particulier, les images numériques 135a, 135b peuvent être soumises à une analyse par rayonnement laser au cours de laquelle les pixels des images stéréoscopiques sont interpolés par un micro-processeur. Un calcul est alors effectué de manière à convertir, selon le facteur de compression, lesdites images stéréoscopiques dans le format approprié, avant d'être reportées dans la zone d'image de la pellicule argentique 150.
Ainsi, par itérations successives des étapes du procédé décrit ci-dessus, on obtient au final une pellicule de film argentique avec, pour chaque zone d'image, une paire d'imagettes stéréoscopiques destinée à être projetée sur un écran. De ce fait, bien que la projection stéréoscopique implique une restitution de deux images superposées (au lieu d'une seule dans le cadre d'une proj ection monoscopique), la pellicule argentique ainsi obtenue permet au système de projection de projeter un contenu vidéo stéréoscopique tout en conservant la même fréquence de défilement des zones d'image que celle habituellement appliquée dans le cadre d'une projection standard. Les imagettes stéréo scopique s ainsi reportées sur la pellicule argentique nécessitent, avant d'être projetées sur un écran pour une visualisation en trois dimensions, de subir un traitement particulier (superposition et remise en forme des imagettes dans le format d'image standard 24x18mm), assuré par la présence d'un dispositif de traitement optique placé entre ladite pellicule et l'objection de projection d'un dispositif de projection. La structure d'un tel dispositif est illustrée ci-après, selon différents modes de réalisation particuliers (cf. figures 2, 3b, 4 et 5).
A des fins éventuellement de réparation de pellicule ou de correction, on pourrait prévoir, dans un mode de réalisation particulier, de séparer les deux imagettes reportées dans la zone d'image par une zone opaque horizontale dont la largeur serait au maximum égale à la moitié de l'intervalle séparant deux zones d'image de la pellicule.
Selon un mode de réalisation particulier, les étapes du procédé telles que décrites précédemment peuvent être mises en œuvre par un dispositif dédié à la création et au report sur un support d' enregi strement argentique d' une paire d' imagettes stéréoscopiques.
La figure 2 représente la structure schématique d'un dispositif de traitement optique 200 selon un premier mode de réalisation de l'invention.
Il s'agit d'un dispositif d'imagerie optique pouvant équiper un dispositif de projection qui fonctionne avec une pellicule argentique obtenue par mise en œuvre du procédé de création et de report précité. Ce dispositif 200 est placé entre la pellicule argentique et l'objectif de projection (selon la configuration décrite plus loin en relation avec la figure 6). Il a pour obj et de réaliser une superposition des deux imagettes stéréoscopiques 135a, 135b qui occupent la zone d'image 155 de la pellicule argentique 150. La paire d'imagettes stéréoscopiques 135a, 135b, pour être projetée sur un écran, est donc soumise à un rayonnement lumineux fourni par exemple par une lampe à arc alimentée en courant continu (non illustrée sur la figure), placée derrière la pellicule argentique.
La référence 250 représente l' axe optique du dispositif de proj ection (non représenté).
Plus particulièrement, le dispositif de traitement optique 200 comprend un couple 230 de micro-prismes 230a, 230b, chaque micro-prisme étant agencé symétriquement l'un par rapport à l'autre et de façon à faire face à une des imagettes stéréo scopique s : le micro-prismes 230a est disposé en regard de l'imagette 135a et le micro-prismes 230b est disposé en regard de l'imagette 135b. Chaque micro-prisme 230a, 230b possède un angle de déviation a (l'angle au sommet du prisme étant orienté vers l'extérieur du dispositif) de façon à dévier l'imagette qui lui fait face et de la superposer avec l'autre imagette de la paire dans un plan de superposition 240 (obtention des imagettes superposées 235a, 235b).
Dans la suite de la description, on entend par plan de superposition, le plan de l'image acquise à l'issue de l'opération de superposition de la paire d'imagettes qui est placée en amont des moyens de superposition optique (couple de prismes en l'occurrence ici). Les moyens de superposition optique ont pour objet d'assurer une superposition (ou combinaison) des imagettes projetées dans le plan de l'écran de cinéma (images réelles). Il convient de noter que pour être superposées sur l'écran, les imagettes placées dans le plan de superposition (images virtuelles) subissent, avant d'être projetées, un processus d'anamorphose optique (selon le principe décrit ci-après).
L'angle de déviation a est déterminé en fonction du format des imagettes (24x9mm dans le cas présent) d'une part et en fonction des caractéristiques de l'objectif de projection (notamment son grandissement), fonction lui-même de la profondeur de la salle de projection et de la taille de l'écran (plusieurs optiques étant disponibles à cet effet sur un projecteur de cinéma conventionnel).
Le dispositif 200 comprend en outre un obturateur 220 placé en amont du couple de micro-prismes. Son rôle est de bloquer alternativement le passage de l'imagette 135a ou 135b sur le micro-prisme 130a ou 130b, à une fréquence égale à 48 imagettes par seconde. L'obturation peut être assurée, à titre d'exemple, par un obturateur électrooptique à cristal liquide ou un obturateur mécanique à disque (ou à roue) mobile comprenant des ouvertures traversantes.
Ce mode de réalisation permet donc, en mettant en œuvre une superposition séquentielle des deux imagettes stéréo scopique s, d'assurer l'indépendance de chaque imagette stéréo scopique 135a, 135b, processus compatible avec des lunettes de visualisation active (ou alternée). En effet, pour fonctionner avec des lunettes actives, les imagettes 135a, 135b doivent être projetées sur l'écran successivement l'une après l'autre afin d'être présentées à chaque œil (l'imagette 135a étant associée à l'œil droit et l'imagette 135b à l'œil gauche), à une fréquence égale à 48 imagettes par seconde. Les systèmes d'obturateurs équipant ce type de lunettes doivent donc être synchronisées avec l'obturateur 220 du dispositif de traitement optique 200. Cette synchronisation peut être effectuée au moyen d'un signal de commande infra-rouge envoyé par le dispositif de traitement optique 200 pour piloter à distance le système d'obturateurs équipant les lunettes.
Dans un mode de réalisation particulier, le dispositif de traitement optique 200 peut comprendre en outre des moyens d'anamorphose optique (non illustrés sur la figure), placés en aval du couple de micro-prismes. Ces moyens d'anamorphose optique, de type sphéro-cylindrique, sont chargés de réaliser une décompression optique du format des imagettes 235a, 235b préalablement superposées dans le plan 240 (soit 24x9mm), dans le sens de la hauteur de l'imagette, de sorte que le format obtenu après décompression correspond au format standard (soit 24x18mm) des zones d'image de la pellicule lue par le dispositif de projection. En effet, on rappelle à ce titre que les images stéréoscopiques d'origine ont subi une compression numérique avant d'être reportées, sous forme d'imagettes, dans les zones d'image de la pellicule, ce qui implique une remise au format standard de ces imagettes avant leur restitution sur un écran.
Toutefois, dans le cas où l'objectif optique du dispositif de projection comporte un dispositif de type Hypergonar (comme dans le cas d'un cinémascope par exemple), ce dernier remplissant déj à le rôle d' anamorphoseur optique, l' aj out de moyens d'anamorphose optique au sein du dispositif de traitement optique n'est donc pas nécessaire.
On présente maintenant, en relation avec la figure 3a, le principe d'un élément 310 biréfringent séparateur de faisceau (ou « beam displacer » en anglais).
En présence d'un tel élément, un faisceau incident 301 de polarisation quelconque (ou non polarisé) est séparé en deux faisceaux 302, 303 parallèles de polarisations rectilignes croisées.
L'élément biréfringent 310 illustré ici est un bloc de calcite, de forme parallélépipédique et possédant des états propres linéaires. Ses propriétés de biréfringence et sa longueur L permettent de générer en sortie deux faisceaux 302, 303 parallèles séparés d'une distance égale à 9 mm (dans le cas du format standard 24x18mm de la pellicule argentique 35mm), les états de polarisation respectifs 304, 305 de ces deux faisceaux étant rectilignes et orthogonaux l'un par rapport à l'autre.
La figure 3b représente la structure schématique d'un dispositif de traitement optique 300, selon un deuxième mode de réalisation de l'invention, intégrant l'élément biréfringent séparateur de faisceau illustré sur la figure 3a.
Chaque faisceau incident issu des imagettes stéréoscopiques 135a, 135b traverse l'élément biréfringent 310 et en ressort selon le principe décrit ci-dessus. L'élément 310 sépare l'imagette 135a incidente en deux imagettes 325a,335a en leurs conférant des états de polarisation rectilignes orthogonaux. De la même façon, l'élément biréfringent 310 sépare l'imagette 135b incidente en deux imagettes 325b, 335b en leur conférant des états polarisation rectilignes orthogonaux.
En conséquence, les imagettes 135a et 135b se retrouvent superposées dans un plan de superposition 340 (imagettes référencées 335a et 335b sur la figure), avec des états de polarisation orthogonaux entre eux.
L'élément biréfringent 310 présente donc les deux fonctions suivantes :
polariser les imagettes 135a, 135b de manière à ce qu'elles présentent deux états de polarisation rectilignes et orthogonaux entre eux dans le plan de superposition
340 ;
dévier chaque imagette 135a, 135b, de manière à les superposer l'une sur l'autre dans le plan de superposition 340.
En réalisant une superposition simultanée des imagettes stéréoscopiques, le dispositif de traitement optique 300 permet de rendre compatible la projection des imagettes avec l'utilisation de lunettes de visualisation passive. Or, il convient de noter que les contraintes de fabrication de ces lunettes imposent que les images stéréoscopiques projetées sur un écran possèdent des états de polarisation circulaire droite et gauche.
Les états de polarisation des imagettes 335a, 335b situées dans le plan de superposition étant linéaires, une lame à retard 330, de type quart d'onde, est introduite dans le dispositif de traitement 300, de manière à convertir, pour chaque imagette, un état de polarisation rectiligne en un état de polarisation circulaire droite ou gauche.
La lame quart d'onde 330 est classiquement orientée, c'est-à-dire selon un angle de 45 degrés par rapport aux axes propres (axes ordinaire et extraordinaire) de l'élément biréfringent 310, de manière à produire une polarisation circulaire à partir de la polarisation linéaire qu'elle reçoit. Par conséquent, les imagettes en sortie de la lame quart d'onde 330 possèdent des états de polarisation circulaires droite et gauche.
Il convient de noter que l ' élément 3 10 illustré ici est un verre de calcite possédant des états propres linéaires. D'autres matériaux présentant de telles propriétés peuvent également être utilisés dans ce mode de réalisation, tels que le Spath, le Quartz par exemple, ou encore tout autre matériau que l'Homme du Métier pourra estimer pertinent. Dans le cas d'utilisation d'un matériau possédant des états propres circulaires, il n'est pas nécessaire d'introduire de lame à retard derrière l'élément séparateur de faisceau, puisque les états de polarisation des faisceaux obtenus en sortie de celui-ci sont d'ores et déjà circulaires.
La figure 4 représente la structure schématique d'un dispositif de traitement optique 400 selon un troisième mode de réalisation de l'invention.
Dans ce mode de réalisation, le dispositif de traitement optique comprend un ensemble constitué de :
- deux cubes biréfringents (appelés « polarization beam splitter » en anglais) 420,
425 ; et
un cube de verre neutre 410 (pour égaliser les trajets optiques pour les deux imagettes).
Les cubes biréfringents 425 et 420 sont disposés de part et d' autre de l' axe optique 450 du dispositif de projection et le cube de verre neutre 410 est adjacent au cube biréfringent 425 et placé en amont de ce dernier. Chacun de ces cubes 410, 425 possède des arêtes de 6mm par exemple.
Les cubes biréfringents 420, 425 sont des cubes séparateurs de polarisation, possédant des états propres linéaires. Ils sont chargés de : polariser les imagettes 135a, 135b, de manière à ce qu'elles présentent deux états de polarisation linéaires et orthogonaux entre eux dans le plan de superposition 440 ; et
superposer les imagettes 135a, 135b l'une sur l'autre dans le plan de superposition 440.
Le cube 420 comprend une lame séparatrice 421 qui sépare le faisceau incident issu de l'imagette 135b en un premier faisceau orienté parallèlement à la direction du faisceau incident et en un second faisceau orienté perpendiculairement à la direction du faisceau incident. Les premier et second faisceaux présentent des états de polarisation rectilignes et orthogonaux entre eux. Le second faisceau, réfléchi par la lame séparatrice
421, est donc orienté pour faire face au cube biréfringent 425.
Le cube biréfringent 425 comprend une lame séparatrice 426 permettant de séparer le second faisceau issu du cube biréfringent 420 en deux autres faisceaux selon le même principe que celui décrit précédemment pour le cube biréfringent 420. Le faisceau réfléchi par la lame séparatrice 426 sort du cube avec un état de polarisation rectiligne, perpendiculaire à celui qu'il possédait avant d'entrer dans le cube 425.
Le faisceau incident issu de l'imagette 135a traverse tout d'abord un cube de verre neutre, afin de rendre équivalents les chemins optiques des imagettes 135a et 135b au niveau de la lame 426. Ce faisceau est ensuite séparé par la lame séparatrice 426 du cube biréfringent 425 en un premier faisceau orienté parallèlement à la direction du faisceau incident et en un second faisceau orienté perpendiculaire à la direction du faisceau incident. Les premier et second faisceaux présentent des états de polarisation rectilignes et orthogonaux entre eux.
Le premier faisceau issu de l'imagette 135a se combine avec le second faisceau issu de l'imagette 135b et une superposition des deux imagettes s'opère alors. On obtient ainsi dans le plan de superposition 440 deux imagettes 435a, 435b surperposées l'une sur l'autre et présentant chacune un état de polarisation rectiligne et orienté perpendiculairement à l'autre.
Les imagettes ainsi polarisées linéairement passent dans une lame quart d'onde 430, placée en aval des deux cubes séparateurs de polarisation, avant d'être projetées sur l'écran. En effet, les cubes ayant des états propres linéaires, ces derniers confèrent aux deux imagettes des états de polarisation rectilignes qui doivent être converties dans des états de polarisation circulaires, afin qu'elles deviennent compatibles avec un système de restitution requérant l'utilisation de lunettes de visualisation passive. Cette lame quart d'onde est orientée selon un angle de 45 degrés des axes propres (axes ordinaire et extraordinaire) des cubes séparateurs de polarisation 420, 425.
On rappelle que dans le cas où le dispositif de traitement optique 400 est conçu de manière à intégrer des cubes séparateurs de polarisation possédant des états propres circulaires, aucune lame quart d'onde n'est nécessaire.
Dans ce mode de réalisation particulier, le dispositif de traitement optique 400 comprend également une optique d'anamorphose 460, de type sphéro-cylindrique, aptes à réaliser une décompression optique du format des imagettes 435a, 435b superposées dans le plan de superposition 440. Ces moyens d'anamorphose permettent plus particulièrement de convertir le format 24x9mm des imagettes 435a, 435b dans le format standard 24x18mm des zones d'image de la pellicule argentique. Comme expliqué plus haut en relation avec la figure 2, cette optique d'anamorphose peut faire d'ores et déjà partie intégrante de l'objectif de projection lui-même. Dans ce cas, l'ajout d'une optique d'anamorphose comme celle illustrée sur cette figure n'est pas nécessaire.
La figure 5 présente la structure schématique d'un dispositif de traitement optique 500 selon un quatrième mode de réalisation de l'invention.
Le dispositif 500 dispose de la même configuration de cubes optiques que celle du dispositif 400 (décrit ci-dessus en relation avec la figure 4), à savoir : deux cubes biréfringents 520, 525 disposés de part et d'autre de l'axe optique 550 et un cube de verre neutre 510 placés en amont du cube 525. Cette configuration permet de polariser chaque imagette 135a, 135b issue de la zone d'image de la pellicule et de les superposer l'une sur l' autre, de manière à générer, dans un plan de superposition 540, deux imagettes 535a, 535b superposées et dont les états de polarisation sont rectilignes et orthogonaux entre eux.
A la différence du dispositif 400 qui comprend une lame à retard de type quart d' onde adaptée à la visualisation stéréoscopique passive, le dispositif de traitement optique 500 illustré ici est adapté pour fonctionner avec des lunettes stéréoscopique s actives. Il comprend pour ce faire des moyens d'obturation formés par une lame de phase programmable 530, de type demi-onde, et un analyseur de polarisation 570 (ou polariseur). La lame demi-onde est orientée selon un angle égal à 45 degrés des axes propres des cubes séparateurs 520, 525 et est réglée de façon à bloquer alternativement le passage de l'imagette 535a ou l'imagette 535b sur l'écran à une fréquence égale à 48 imagettes par seconde.
Il convient de noter que, en se basant sur le même principe, on peut prévoir, dans un autre mode de réalisation particulier, de modifier la structure du dispositif de traitement optique 300 (figure 3) en remplaçant la lame quart d'onde 330 par des moyens d'obturation (c'est-à-dire une lame demi-onde à phase programmable suivie d'un polariseur), de façon à mettre en œuvre une projection stéréo scopique qui fonctionne avec des lunettes actives (et non plus avec des lunettes passives, comme c'est le cas du mode de réalisation particulier illustré à la figure 3).
L'obturation peut être assurée, à titre d'exemple, par un obturateur électrooptique à cristal liquide ou un obturateur mécanique à disque mobile ajouré.
Les moyens d'obturation décrits ci-dessus sont contrôlés par moyens de commande (non illustrés sur la figure) chargés de piloter l'activation de la lame demi onde 530 en synchronisation avec le système d'obturation des lunettes actives utilisées par les spectateurs.
Dans le cadre des modes de réalisation présentés ci-dessus en relation avec les figures 4 et 5, il convient de noter que les imagettes sortant du dispositif de traitement optique sont désaxées verticalement d'une distance de 4,5 mm (dans le cas d'une pellicule argentique 35mm de format d'image standard 24x18mm) par rapport à l'axe optique 450 du dispositif de projection, parfois accompagné d'un décalage horizontal. Dans le cas d'un projecteur de type Victoria 5 (Société Cinemeccanica) par exemple, équipé d'une monture de support pour trois objectifs de projection, le désaxage vertical de 4,5 mm s'accompagne en outre d'un désaxage horizontal d'environ 0, 16 mm. Il s'avère donc nécessaire de procéder à un recentrage optique vertical et horizontal. Un tel recentrage peut être simplement obtenu par l'ajout d'un moyen conventionnel optique, ou par réglage mécanique (par exemple en changeant des moyens de fixation du système positionnement des objectifs), ou en redessinant la monture de support, ou encore par tout autre méthode que l'Homme du Métier pourra estimer pertinent et qui permettra de compenser ces désaxages vertical et horizontal.
On présente maintenant, en relation avec la figure 6, la structure d'un dispositif de projection 600 équipé d'un dispositif de traitement optique tel que précédemment décrit aux figures 2, 3b, 4, 5 et d'une pellicule de film argentique obtenue selon le procédé décrit en relation avec la figure 1, selon un mode de réalisation particulier de l'invention.
Le dispositif de projection 600 comprend plus particulièrement :
une source lumineuse 610, telle qu'une lampe à arc alimentée en courant continu par exemple, agencée devant la pellicule argentique 630 de manière à éclairer la paire d'imagettes stéréoscopiques 135a, 135b comprise dans chaque zone d'image de la pellicule argentique ;
la pellicule argentique 630 35mm comprenant, dans chaque zone d'image 635 de format 24x18, une paire d'imagettes stéréoscopiques qui a été préalablement reportée sur la pellicule par mise en œuvre du procédé de l'invention (décrit plus haut en relation avec la figure 1). La zone d'image doit être placée dans le plan focal de l'objectif optique 660 ;
un guide 620, associé à un mécanisme de roue crantée 640, permettant d'entraîner la pellicule argentique 630 de haut en bas et présenter chaque paire d'imagettes devant une fenêtre de projection 625 présente au centre du guide ; un dispositif traitement optique 650, placé entre la pellicule argentique et l'objectif de projection 660, ce dispositif étant chargé de réaliser un traitement optique de chaque paire d'imagettes stéréoscopiques éclairée par la source lumineuse 610, selon le principe décrit plus haut en relation avec les figures 2, 3b, 4 et 5 (dispositif référencé 200, 300, 400 ou 500 selon le mode de réalisation particulier mis en œuvre), afin qu'elle puisse être proj etée sur un écran 670 (métallisé dans le cas d'utilisation de lunettes passives ou non métallisé dans le cas d'utilisation de lunettes actives), quelle que soit la méthode de superposition (simultanée ou séquentielle) appliquée ; un objectif optique 660, utilisé en tant qu'optique de projection, permettant d'une part d'anamorphoser chaque paire d'imagettes stéréo scopique s issue du dispositif de traitement 650 (déformation optique des imagettes dans le sens de la hauteur pour les obtenir dans un format d'image standard 24x18mm) et de les projeter d'autre part sur l'écran de cinéma 670. On obtient ainsi une paire 675 d'images stéréoscopiques, de format standard 24x18mm chacune, superposées l'une sur l'autre sur l'écran de cinéma.
Dans la pratique, le défilement des paires d'imagettes (ou des zones d'image) de la pellicule devant la fenêtre de projection 625 est saccadé. L'entraînement de la pellicule est réalisé en immobilisant, durant une fraction de seconde, chaque zone d'image devant la fenêtre de projection 625. Ce mouvement discontinu est produit à partir d'un mouvement de rotation continu, transformé par une boucle de ralentissement particulière (par exemple de type croix de Malte, à griffe, ou encore à double came de Trézel) de manière à ce que, entre deux immobilisations, un obturateur vienne s'interposer entre la source lumineuse et la pellicule afin d'éviter le phénomène de « filage » (scintillement). Lorsque la zone d'image de la pellicule est fixe devant la fenêtre de projection, la projection de la paire d'imagettes s'effectue séquentiellement (imagette pour l'œil gauche, puis imagette pour l'œil droit ou inversement), de sorte qu'à chaque seconde, quarante huit imagettes différentes par seconde alternent au lieu de vingt quatre images par seconde dans le cas d'une proj ection classique (non stéréo scopique).
La technique de projection décrite ci-dessus en relation avec les figures 1 à 6 est destinée à la réalisation d'une projection en trois dimensions à partir d'un dispositif de projection traditionnel supportant une pellicule de film argentique de format 35mm, disposant des zones d'image de format 24x18mm. Il est clair toutefois qu'une telle technique peut aisément être adaptée à de nombreux autres formats de pellicule argentique et de zones d'image, sans sortir du cadre de l'invention. A titre d'exemples illustratifs, une telle technique peut également s' appliquer dans le cadre d'une projection d'images ou de contenus vidéo 3D mise en œuvre à partir d'une pellicule argentique du type appartenant à la liste suivante (liste non exhaustive) : pellicule de format 35mm comprenant des zones d'images de format 20, 96x17, 53mm (utilisé pour le cinémascope optique avec un format de projection 2,39 :1) ;
pellicule de format 35mm comprenant des zones d'images de format 20,96x11,33 mm (format de projection 1,85:1) ;
pellicule de format 35mm comprenant des zones d'images de format 20,96x12,62 mm (format de projection 1,66:1) ;
pellicule de format 70mm (format de projection IMAX 1,43:1 ou le format Todd-AO 2,20 :1);
pellicule de format 65mm (format de projection 2,76:1 ou 2,20 :1).

Claims

REVENDICATIONS
1. Dispositif de traitement optique (400 ; 500) d'un support d'enregistrement argentique comprenant au moins une paire d'imagettes stéréoscopiques (135a, 135b), ledit dispositif comprenant des moyens de superposition optique aptes à superposer les imagettes de ladite paire dans un plan de superposition,
caractérisé en ce que lesdits moyens de superposition optique comprennent :
deux blocs biréfringents, du type séparateurs de polarisation (420, 425 ; 520, 525), adaptés à réaliser conjointement les deux fonctions suivantes :
* polariser les imagettes de ladite paire, de manière à ce que chaque imagette présente un état de polarisation distinct, les états de polarisation des deux imagettes étant orthogonaux ; et
* dévier optiquement chaque imagette de ladite paire, de manière à superposer les imagettes dans ledit plan de superposition ;
un bloc de verre neutre (410 ; 510) adapté à égaliser des trajets optiques de ladite paire d'imagettes.
2. Dispositif de traitement selon la revendication 1, lesdits moyens de superposition optique possédant des états propres linéaires, caractérisé en ce qu'il comprend en outre une lame à retard, de type quart d'onde, orientée selon un angle de 45° des axes propres de biréfringence des deux blocs biréfringents.
3. Dispositif de traitement selon l'une quelconque des revendications 1 à 2, caractérisé en ce qu'il comprend en outre des moyens d'obturation adaptés pour bloquer alternativement la transmission d'une des deux imagettes, à une fréquence d'obturation sensiblement égale à 48 images/seconde, lesdits moyens d'obturation comprenant :
une lame (530) à retard programmable, de type demi-onde, orientée selon un angle de 45° des axes propres de biréfringence dudit au moins un bloc biréfringent ;
un analyseur de polarisation (570).
4. Dispositif de traitement selon la revendication 3, caractérisé en ce qu'il comprend en outre des moyens de commande adaptés pour piloter l'activation desdits moyens d'obturation, ladite activation desdits moyens d'obturation étant effectuée de manière synchronisée avec un système d'obturation d'une paire de lunettes stéréo scopique s associé auxdits moyens de commande.
5. Dispositif de traitement selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il comprend en outre des moyens d'anamorphose optique, activés pour chaque imagette superposée de ladite paire, de manière à obtenir une image stéréo scopique apte à être projetée, selon un facteur de décompression de surface d'image tel que la surface de l'image obtenue est égale à la surface de la zone d'image possédant ledit format prédéterminé.
6. Dispositif de traitement selon la revendication 5, caractérisé en ce que les moyens d'anamorphose optique appartiennent au groupe comprenant :
un dispositif optique de type Hypergonar ;
un dispositif optique de type sphéro-cylindrique.
PCT/EP2011/072261 2010-12-20 2011-12-09 Procédé de création et de report sur un support argentique d'imagettes stéréoscopiques, procédé de traitement d'un tel support et dispositifs correspondants WO2012084542A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1060860A FR2969349B1 (fr) 2010-12-20 2010-12-20 Procede de creation et de report sur un support argentique d'imagettes stereoscopiques, procede de traitement d'un tel support et dispositifs correspondants.
FR1060860 2010-12-20

Publications (1)

Publication Number Publication Date
WO2012084542A1 true WO2012084542A1 (fr) 2012-06-28

Family

ID=43821789

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/072261 WO2012084542A1 (fr) 2010-12-20 2011-12-09 Procédé de création et de report sur un support argentique d'imagettes stéréoscopiques, procédé de traitement d'un tel support et dispositifs correspondants

Country Status (2)

Country Link
FR (1) FR2969349B1 (fr)
WO (1) WO2012084542A1 (fr)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017166A (en) * 1973-02-05 1977-04-12 Marks Polarized Corporation Motion picture film for three dimensional projection
WO1991007696A1 (fr) * 1989-11-22 1991-05-30 Imax Systems Corporation Procede et appareil de projection d'images cinematographiques tridimensionnelles
US5121983A (en) * 1989-12-14 1992-06-16 Goldstar Co., Ltd. Stereoscopic projector
WO1997027798A1 (fr) * 1996-02-01 1997-08-07 Heartport, Inc. Endoscope stereoscopique
WO2008056929A1 (fr) * 2006-11-06 2008-05-15 Master Image Co., Ltd. Système de projection d'image stéréoscopique faisant appel à un module de filtre à polarisation circulaire
US20100171890A1 (en) * 2009-01-07 2010-07-08 Sony Corporation Projection stereoscopic display

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1514543A (en) * 1922-07-24 1924-11-04 Lane George Stereoscopic projection
US6208348B1 (en) * 1998-05-27 2001-03-27 In-Three, Inc. System and method for dimensionalization processing of images in consideration of a pedetermined image projection format

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4017166A (en) * 1973-02-05 1977-04-12 Marks Polarized Corporation Motion picture film for three dimensional projection
WO1991007696A1 (fr) * 1989-11-22 1991-05-30 Imax Systems Corporation Procede et appareil de projection d'images cinematographiques tridimensionnelles
US5121983A (en) * 1989-12-14 1992-06-16 Goldstar Co., Ltd. Stereoscopic projector
WO1997027798A1 (fr) * 1996-02-01 1997-08-07 Heartport, Inc. Endoscope stereoscopique
WO2008056929A1 (fr) * 2006-11-06 2008-05-15 Master Image Co., Ltd. Système de projection d'image stéréoscopique faisant appel à un module de filtre à polarisation circulaire
US20100171890A1 (en) * 2009-01-07 2010-07-08 Sony Corporation Projection stereoscopic display

Also Published As

Publication number Publication date
FR2969349B1 (fr) 2014-05-16
FR2969349A1 (fr) 2012-06-22

Similar Documents

Publication Publication Date Title
CA2161262C (fr) Dispositif video autostereoscopique
US9025091B2 (en) Stereoscopic eyewear
EP2082279A1 (fr) Agencement d'affichage opto-electronique
EP0305274B1 (fr) Procédé et installation pour la réalisation d'images en relief
FR2883988A1 (fr) Appareil photographique/camera video stereoscopique numerique, dispositif d'affichage et projecteur en trois dimensions, tireuse et visionneuse stereoscopique
KR20120050982A (ko) 중간 영상 평면에 공간 다중화를 채용한 입체 투영 시스템
CN101025475A (zh) 立体三维影像显示系统与方法
FR2887999A1 (fr) Procede et dispositif de visualisation autostereoscopique avec adaptation de la distance de vision optimale
FR2982448A1 (fr) Procede de traitement d'image stereoscopique comprenant un objet incruste et dispositif correspondant
WO2012084542A1 (fr) Procédé de création et de report sur un support argentique d'imagettes stéréoscopiques, procédé de traitement d'un tel support et dispositifs correspondants
BE1011175A3 (fr) Procede d'obtention d'images en relief et dispositif pour la mise en oeuvre de ce procede.
FR2502881A1 (fr) Procede et installation de reproduction stereoscopique de signaux de television
EP1779182B1 (fr) Procede et dispositif de vision en relief sur ecran
JP7153501B2 (ja) 立体映像表示装置
CN102566249A (zh) 双液晶光阀单投影机式立体投影系统、投影机及驱动方法
TWI476447B (zh) 立體投影顯示裝置
Lipton et al. Digital Projection and 3-D Converge
WO2010147633A2 (fr) Système pour la projection d'images mobiles stéréoscopiques
FR2675003A1 (fr) Equipement pour la prise de vue stereoscopique d'images video.
BE531652A (fr)
FR2590040A1 (fr) Systeme optique et procede pour prise de vues stereoscopiques
FR2858069A1 (fr) Dispositif permettant de voir des couples d'images ou de photos en stereo couleur
FR2666422A1 (fr) Procede et moyens pour la realisation et la projection d'images en relief.
GB1566187A (en) Stereoscopic cine-camera and projector system
FR2630835A1 (fr) Procede de realisation d'images en relief et moyens pour mettre en oeuvre ledit procede

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11793453

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11793453

Country of ref document: EP

Kind code of ref document: A1