WO2012084460A1 - Electroacoustic resonator - Google Patents

Electroacoustic resonator Download PDF

Info

Publication number
WO2012084460A1
WO2012084460A1 PCT/EP2011/071651 EP2011071651W WO2012084460A1 WO 2012084460 A1 WO2012084460 A1 WO 2012084460A1 EP 2011071651 W EP2011071651 W EP 2011071651W WO 2012084460 A1 WO2012084460 A1 WO 2012084460A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
resonator
electrode fingers
along
fingers
Prior art date
Application number
PCT/EP2011/071651
Other languages
German (de)
French (fr)
Inventor
Wolfgang Sauer
Original Assignee
Epcos Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Epcos Ag filed Critical Epcos Ag
Priority to JP2013545156A priority Critical patent/JP5852132B2/en
Publication of WO2012084460A1 publication Critical patent/WO2012084460A1/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/02535Details of surface acoustic wave devices
    • H03H9/02992Details of bus bars, contact pads or other electrical connections for finger electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/145Driving means, e.g. electrodes, coils for networks using surface acoustic waves
    • H03H9/14517Means for weighting
    • H03H9/1452Means for weighting by finger overlap length, apodisation

Definitions

  • Electroacoustic Resonator The invention relates to an electroacoustic resonator.
  • Electroacoustic resonators have a piezoelectric layer and two electrodes, which are arranged, for example, on the surface of the piezoelectric layer. Clearing the two Elect ⁇ each having a plurality of electrode fingers which are connected in common to a collector electrode portion of the electric ⁇ de through which the time-dependent electrical potential is brought to the electrode fingers.
  • the electrode fingers of both electrodes also mesh with each other in a comb shape. At both sides outside the comb-like electrodes each into each other derumbleden reflectors adjoin, which are similarly formed from many (but both sides ⁇ closed) electrode fingers with a common connector. However, the electrode fingers of the electrodes are electrically connected only at one end; its second end is surrounded by electrode fingers of the other electrode.
  • Electroacoustic resonators of this construction are also referred to as interdigital transducers (IDTs).
  • IDTs interdigital transducers
  • high-frequency AC voltage approximately in the range between 100 MHz and a few GHz
  • high-frequency standing waves are formed in the piezoelectric layer, usually in the form of surface waves as in the case of SAW devices (surface acoustic wave) or in the form of bulk waves as in Case of BAW or GBAW components (bulk acoustic wave or guided bulk acoustic wave).
  • the present application relates to weighted, in particular overlap-weighted resonators, ie those in which Do not lead the electrode fingers over their entire length (and not over a uniform portion of their length) in the space between adjacent electrode fingers of the respective other electrode, but intermesh with different depths. If one looks at a partial section of the entire resonator surface between the collecting electrode sections of both electrodes, then each electrode locally has shorter and longer electrode fingers in an alternating sequence. The shorter electrode fingers extend only to the edge or to the beginning of the overlap region. Between the short electrode fingers, the long electrode fingers protrude in the overlap area and traverse it.
  • the overlapping area of a weighted resonator measured along the path of the electrode fingers, is smallest at the edges of the resonator, ie, near the two reflectors, and includes only a small portion near the middle between the collecting electrode portions of both electrodes. In the middle between the two reflectors, however, the overlap area is the largest and covers virtually the entire distance between the two collector electrode sections. Thus, the overlap area widens towards the center of the resonator.
  • a disadvantage of such an overlap-weighted resonator is that, towards its edges, an increasingly larger one
  • Electrode fingers designed for an excitation frequency of, for example, 2 GHz have a width of, for example, 500 nm and a height of, for example, 100 to 200 nm.
  • losses occur in the resonator which lead to other losses (such as elastic losses in the solid state ) and reduce the quality of the resonator.
  • losses are broadband or cover a wide frequency range.
  • the losses through such supply currents are also greater, the smaller the cross-sectional dimensions of the electrode fingers are dimensioned. It would therefore be desirable to increase the quality of an overlap weighted resonator.
  • this application proposes an electroacoustic resonator with two electrodes, each of which has a collecting electrode section and a multiplicity of electrode fingers,
  • the electrode fingers are aligned along a first direction, are connected to the collecting electrode portions of the respective electrode, and run along a second direction that is transverse to the first direction,
  • the resonator is an overlap-weighted resonator in which the extent of the overlap area measured along the second direction, in which the electrode fingers of both electrodes intermesh, varies along the first direction,
  • the resonator between the electrode fingers of the respective electrode has line bridges, each of which meh ⁇ rere electrode fingers of the same electrode spaced from the collecting electrode portion conductively connect with each other.
  • additional conductive connecting pieces are thus present between the electrode fingers of each electrode provided, which short-circuit the electrode fingers with each other.
  • These wire bridges are spaced from the collecting electrode portions of the respective electrode, preferably at the edge of the overlapping area.
  • the positions of the jumpers then follow the contours of the overlap region of the resonator and are accordingly spre ⁇ accordingly at the edges of the resonator (near the reflectors et ⁇ wa arranged in the middle between two electrodes, whereas portions in the Resonatormitte relatively close to the Sammelelektroden- both electrodes
  • the conductor bridges proposed here which represent additional conductor track sections in the direction across or at least obliquely to the electrode fingers, allow the direct flow of equalizing currents along the respective edge of the overlap area, but only between electrode fingers thereof
  • Electrode These equalizing currents reduce the losses of supply currents which otherwise increase greatly in the vicinity of the reflectors and thus improve the quality of the resonator.
  • the wire bridges proposed herein may preferably be in the same plane as the electrodes including theirs
  • Electrode fingers themselves be arranged and thus already be considered as part of the pattern in the structuring of the metal layer of both electrodes. Nevertheless, despite the wire bridges proposed here, the finger-shaped structure is retained inside the resonator surface, since the cable bridges short-circuit the electrode fingers only locally, ie in a very small longitudinal section of the electrode fingers.
  • Figure 1 is a schematic plan view of a herkömmli ⁇ chen piezoelectric resonator
  • Figures 2A to 2F enlarged detail views of various ner From guide forms of resonators having line bridges
  • Figures 3A to 3D are overall views of resonators, according to some embodiments of the Figures 2A to 2F
  • 4A a schematic cross-sectional view of a piezo ⁇ electric resonator
  • FIG. 4B shows a schematic cross-sectional view of a piezoelectric resonator with additional layers
  • FIG. 5 the dependence of the admittance Y of the resonator on the frequency f of the waves generated in the resonator
  • FIG. 7 shows a tabular list of measured parameters for characterizing the resonator quality for resonators without or with line bridges.
  • 1 shows a schematic plan view of the conductor ⁇ web plane 25 of a conventional piezoelectric resonator 10, wherein because of the symmetrical construction, only the one (left) half is illustrated.
  • an array of two electrodes 11, 12 each having a collecting electrode portion 21 and 22 and a plurality of electrode fingers 1, 2 connected thereto extends.
  • the resonator is overlap weighted, ie, the overlap area 20 in which the Electrode fingers 1, 2 of both electrodes intermesh comb-shaped, ie overlap, extends only between two edges R, which continue to move towards the reflectors 23, 24 back further.
  • the middle of the resonator (right in the illustrated detail of Figure 1) is the
  • Width of the overlap area 20 largest. Only within the overlap region, the electrode fingers 1, 2 of the first electrode 11 and the second electrode 12 of ent ⁇ against opposite sides intermesh forth. On the other hand, on each side outside the overlapping area, electrode fingers are only one of the two electrodes 11; 12 arranged.
  • FIGS. 2A and 2C show enlarged detail views of some embodiments of resonators, in which transverse to the electrode fingers extending cable bridges are provided. Shown are enlarged sections approximately in the region of the lower edge R, above which the Kochlap ⁇ pungs Scheme 20 begins. Furthermore, a partial section of the collecting electrode section 21 of the lower, first electrode 11 is shown by way of example in FIGS. 2A and 2C. De ⁇ ren lead electrode fingers la to ld (shown interrupted) to the edge R of the overlap region 20, wherein each ⁇ the second electrode finger la, lc of the first electrode 11 leads into the overlap region 20. The other, shorter electrode finger lb, ld of the first electrode 11 extending outside of the overlap region 20 will come in the overlapping ⁇ pungs Scheme 20, the electrode fingers 2b, 2d of the second
  • Electrode 12 counter.
  • the electrode fingers of the second electrode 12 are shown hatched.
  • line 20 bridges 3 (or short bridging ⁇ cables) are provided along the edge of the overlap area R ⁇ pungs Schemes connecting adjacent electrode fingers of the first electrode conducting with each other and preferential wise transversely, ie perpendicular to them.
  • Such Lei ⁇ tung bridges are provided along both edges of the overlap region R 20th
  • corresponding lead bridges connecting the electrode fingers of the second electrode 12 are provided along the other, upper edge R of the overlapping area.
  • Ge ⁇ Switzerlandss the disclosed embodiment of Figure 2A connects each cable bridge 3 two mutually next adjacent electrode fingers (the same electrode).
  • FIG. 2B shows an embodiment, which is also shown in FIG. 3A as an overall view.
  • each Lei ⁇ tung bridge 3 two über givebenachbarte (longer) ⁇ line linking the respective electrodes;
  • the electrode fingers 1a and 1c or 1c and le are concrete.
  • the plinsbrü ⁇ bridges 3 thus separate the intervening, shorter
  • the transverse conductor bridges 3 are provided only at the level of the two electrodes 11, 12, but not in the region of the reflectors 23 and 24 (compare FIGS. 3A and 4).
  • each line bridge 3 additionally connects the middle, shorter electrode finger 1b or ld with the adjacent longer electrode fingers. Otherwise, the structure and the course of the conductive structures is similar within the interconnect layer 25 demje ⁇ Nigen the figure 2B.
  • FIG. 2D shows an embodiment which is shown as an overall view in FIG. 3B. Here are ⁇ addition to those three jumpers still trace sections 5 which are included neither in the first nor in the second Elect ⁇ rode. As a result, electric charge reduced peaks or stress maxima at the ends of the electrode fingers.
  • the lead bridges 3 connect (as in FIG. 2B) two longer adjacent electrode fingers of the respective electrode to one another. As shown in Figure 3B, the conductor track sections 5 are disposed the edges R of the overlapping region 20 along with ⁇ .
  • FIG. 2E shows an embodiment which is shown as an overall view in FIG. 3C.
  • the structures corresponding to the conductor track sections 5 are conductively connected to the line bridges 3; They thus form electrode finger extensions 7 (ie additional small intermediate fingers), which are arranged at the same height as the shorter electrode fingers 1b, 1d, over which the respective conductor bridge 3 passes.
  • Figure 2F shows an execution ⁇ for example, which is shown as an overall view in Figure 3D.
  • the lead bridges 3 connect not only the longer-adjacent, longer electrode fingers 1a and 1c and the respective electrode finger extensions 7 with each other, but additionally (in contrast to FIG. 2E) the shorter electrode finger 1b.
  • the line bridges enable a loss-poorer potential equalization along the edges R of the overlapping area 20, since the losses caused as a result of feed resistors are reduced and the quality of the Re ⁇ sonators is improved.
  • the conduit bridges 3 enable effective acceleration potential supply to the overlap region 20 zoom.
  • FIG. 3D for example, the shape of the two collecting electrode sections 21, 22 of the electrodes at the transition to the electrode fingers 1, 2 of both electrodes 11, 12 is shown in more detail.
  • the jeweili ⁇ gen electrode fingers clear sections directly from the relevant Sammelelekt- 21, 22 and emanate collecting electrode strips and are directly connected to it. Collecting electrode and the connected electrode fingers thus form a uninter- rupted, continuous comb-shaped structure (beispielswei ⁇ se in the form of a structured metal layer, Metalllegie ⁇ approximate layer or metal layer sequence in the interconnect layer 25, whose plan view is shown in Figure 3D). Also in FIGS.
  • FIG. 3D furthermore shows that the overlapping region 20 extending between the two edges R is narrower along the second direction y than the resonator surface F, ie, the distance between the collecting electrode sections 21, 22 of both electrodes.
  • the extent or width of the overlapping area 20 measured along the direction y decreases, in particular in the vicinity of the reflectors 23, 24.
  • the conductor bridge bridges or intermediate connections between the electrode fingers proposed here improve the resonator properties.
  • a plurality of line bridges, in particular a pair of two closely spaced line bridges may also be provided instead of a single illustrated line bridge.
  • FIG. 4A shows, purely schematically, a cross-sectional view of a piezoelectric resonator 10 whose conductor track plane 25 has been shown in plan view in FIGS. 1, 2A to 2F and 3A to 3D.
  • a piezoelectric layer is arranged, on the Oberflä ⁇ che, the two electrodes 11, 12 and the two reflectors 23, 24 are structured.
  • FIG. 4B schematically shows a cross-sectional view of a piezoelectric resonator whose conductor track plane 25 is shown in plan view in FIGS. 1, 2A to 2F and 3A to 3D.
  • the resonator is constructed as outlined in Figure 4A, but one or more dielectric layers 26 and / or 27 are here on the conductor track plane zusharm ⁇ Lich still applied.
  • the layers 26 and / or 27 can be used for the purpose of temperature compensation and / or to compensate for manufacturing-related fluctuations in the frequency position by subsequent removal / trimming. Again, the dimensions are not necessarily to scale.
  • a suitable material for the conductor track plane Bede ⁇ ADORABLE dielectric layer 26 for temperature compensation for example, Si02 due to its thermal properties.
  • a material for an overlying trim layer 27 is due to its high bending stiffness, for example, Si3N4 in question.
  • Figure 5 shows, depending on the frequency of the waves generated in the resonator (preferably surface waves, alternatively bulk waves) the admittance Y, i. the complex
  • the real part of the admittance decreases in the range from approximately 2030 to 2110 MHz. over a conventional resonator (ie, versus curve I), which improves the quality of the resonator.
  • the minimum at 2110 MHz is seen in Figure 5 on the basis of the magnitude of the admittance Y, more pronounced;
  • the drop is steeper on both sides of the antiresonant and also reaches a smaller minimum value than in the curve I.
  • curve II the improved quality of the equipped with the line bridges resonator
  • the S-parameters I and II plotted in FIG. 6 pass through the Smith chart in the clockwise direction.
  • the left intersection with the real axis corresponds to the resonance frequency and the right intersection to the real axis of the anti-resonance frequency.
  • the approximately semicircular path in FIG. 6 has a larger radius (or a larger average distance from the center of the drawn radius with radius 1) as the curve I.
  • the scattering parameter S (f) is located in the resonator according to the invention over a wide range further outward, ie closer to the unit circle, and is thus lossy.
  • the jumpers between the electrode fingers the existing losses in the frequency range starting at the resonance frequency beyond the antiresonance addition.
  • the additional conductor track sections 5 without contact connection or the electrode finger extensions 7 can also counteract the reduction in the frequency at which antiresonance occurs.
  • the present application thus provides an electroacoustic, weighted interdigital transducer (IDT) of improved quality.
  • IDT electroacoustic, weighted interdigital transducer
  • the width and / or length of the conductor bridges 3, the conductor track sections 5 and / or the electrode finger extensions 7 can be varied and, in particular, smaller or larger than the width and / or length of the electrode fingers.
  • the line bridges 3 thus reduce the existing losses in a frequency range starting from the series resonance to beyond the anti-resonance. In this way, ver ⁇ improved resonators can be det verwen- for example, in Interconnections to piezoelectric filter or duplexer components.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

The invention relates to an electroacoustic resonator (10) having two electrodes (11, 12) which each have a collector electrode section (21, 22) and a multiplicity of electrode fingers (1, 2), wherein the electrode fingers (1, 2) are lined up along a first direction, are connected in a conductive manner to the collector electrode sections (21, 22) of the respective electrode (11, 12) and run along a second direction aligned transversely to the first direction, wherein the resonator (10) is an overlap-weighted resonator in which the extent of the overlap region (20) measured along the second direction, in which overlap region the electrode fingers (1, 2) of the two electrodes (11, 12) interlock, varies along the first direction, and wherein the resonator (10) has jumpers (3) between the electrode fingers (1, 2) of each electrode (11, 12), which jumpers each connect a plurality of electrode fingers of the same electrode to each other in a conductive manner at a distance from the collector electrode section (21, 22).

Description

Beschreibung description
Elektroakustischer Resonator Die Erfindung betrifft einen elektroakustischen Resonator. Elektroakustische Resonatoren besitzen eine piezoelektrische Schicht und zwei Elektroden, die z.B. auf der Oberfläche der piezoelektrischen Schicht angeordnet sind. Die beiden Elekt¬ roden besitzen jeweils eine Vielzahl von Elektrodenfingern, die gemeinsam an einen Sammelelektrodenabschnitt der Elektro¬ de angeschlossen sind, durch den das zeitabhängige elektrische Potential an die Elektrodenfinger herangeführt wird. Die Elektrodenfinger beider Elektroden greifen zudem kammförmig ineinander. Zu beiden Seiten außerhalb der kammartig ineinan- dergreifenden Elektroden grenzen jeweils Reflektoren an, die in ähnlicher Weise aus vielen (allerdings beidseitig ange¬ schlossenen) Elektrodenfingern mit gemeinsamem Anschluss ausgebildet sind. Die Elektrodenfinger der Elektroden jedoch sind nur an einem Ende elektrisch angeschlossen; ihr zweites Ende ist von Elektrodenfingern der anderen Elektrode umgeben. Electroacoustic Resonator The invention relates to an electroacoustic resonator. Electroacoustic resonators have a piezoelectric layer and two electrodes, which are arranged, for example, on the surface of the piezoelectric layer. Clearing the two Elect ¬ each having a plurality of electrode fingers which are connected in common to a collector electrode portion of the electric ¬ de through which the time-dependent electrical potential is brought to the electrode fingers. The electrode fingers of both electrodes also mesh with each other in a comb shape. At both sides outside the comb-like electrodes each into each other dergreifenden reflectors adjoin, which are similarly formed from many (but both sides ¬ closed) electrode fingers with a common connector. However, the electrode fingers of the electrodes are electrically connected only at one end; its second end is surrounded by electrode fingers of the other electrode.
Elektroakustische Resonatoren mit diesem Aufbau werden auch als Interdigitalwandler (IDT; interdigital transducer) bezeichnet. Infolge der hochfrequenten Wechselspannung (etwa im Bereich zwischen 100 MHz und einigen GHz) werden hochfrequente stehende Wellen in der piezoelektrischen Schicht ausgebildet, meist in Form von Oberflächenwellen wie im Falle der SAW-Bauelemente (surface acoustic wave) oder auch in Form von Volumenwellen wie im Fall der BAW- oder GBAW-Bauelemente (bulk acoustic wave bzw. guided bulk acoustic wave) . Electroacoustic resonators of this construction are also referred to as interdigital transducers (IDTs). As a result of the high-frequency AC voltage (approximately in the range between 100 MHz and a few GHz) high-frequency standing waves are formed in the piezoelectric layer, usually in the form of surface waves as in the case of SAW devices (surface acoustic wave) or in the form of bulk waves as in Case of BAW or GBAW components (bulk acoustic wave or guided bulk acoustic wave).
Die vorliegende Anmeldung betrifft gewichtete, insbesondere Überlappungsgewichtete Resonatoren, d.h. solche, bei denen die Elektrodenfinger nicht über ihre gesamte Länge (und auch nicht über einen einheitlichen Anteil ihrer Länge) in den Zwischenraum zwischen benachbarten Elektrodenfingern der jeweils anderen Elektrode hineinführen, sondern unterschiedlich tief ineinandergreifen. Betrachtet man einen Teilausschnitt der gesamten Resonatorfläche zwischen den Sammelelektrodenab- schnitten beider Elektroden, so besitzt jede Elektrode lokal in abwechselnder Folge kürzere und längere Elektrodenfinger. Die kürzeren Elektrodenfinger reichen nur bis zum Rand bzw. bis zum Beginn des Überlappungsbereichs. Zwischen den kurzen Elektrodenfingern ragen die langen Elektrodenfinger in dem Überlappungsbereich hin und durchqueren ihn. Der Überlappungsbereich eines gewichteten Resonators, gemessen entlang des Verlaufs der Elektrodenfinger, ist an den Rändern des Re- sonators, d.h. nahe der beiden Reflektoren am kleinsten und umfasst nur einen kleinen Abschnitt nahe der Mitte zwischen den Sammelelektrodenabschnitten beider Elektroden. In der Mitte zwischen beiden Reflektoren hingegen ist der Überlappungsbereich am größten und umfasst praktisch den gesamten Abstand zwischen beiden Sammelelektrodenabschnitten. Somit verbreitert sich der Überlappungsbereich zur Mitte des Resonators hin. The present application relates to weighted, in particular overlap-weighted resonators, ie those in which Do not lead the electrode fingers over their entire length (and not over a uniform portion of their length) in the space between adjacent electrode fingers of the respective other electrode, but intermesh with different depths. If one looks at a partial section of the entire resonator surface between the collecting electrode sections of both electrodes, then each electrode locally has shorter and longer electrode fingers in an alternating sequence. The shorter electrode fingers extend only to the edge or to the beginning of the overlap region. Between the short electrode fingers, the long electrode fingers protrude in the overlap area and traverse it. The overlapping area of a weighted resonator, measured along the path of the electrode fingers, is smallest at the edges of the resonator, ie, near the two reflectors, and includes only a small portion near the middle between the collecting electrode portions of both electrodes. In the middle between the two reflectors, however, the overlap area is the largest and covers virtually the entire distance between the two collector electrode sections. Thus, the overlap area widens towards the center of the resonator.
Nachteilig bei einem solchen Überlappungsgewichteten Resona- tor ist, dass zu seinen Rändern hin eine zunehmend größereA disadvantage of such an overlap-weighted resonator is that, towards its edges, an increasingly larger one
Leiterbahnstrecke entlang der Elektrodenfinger bis zum Erreichen des Überlappungsbereichs zurückzulegen ist. Über diese Leiterbahnstrecke muss die Ladung zu den angeschlossenen Elektroden transportiert werden, bevor sie überhaupt den Überlappungsbereich, der zur Erzeugung stehender Wellen im Festkörper beiträgt, erreicht. Dies gilt nicht nur für die lokal betrachtet kürzeren Elektrodenfinger, sondern ebenso für die längeren Elektrodenfinger, die den Überlappungsbe- reich durchlaufen. Für eine Anregungsfrequenz von beispielsweise 2 GHz ausgelegte Elektrodenfinger besitzen eine Breite von z.B. 500 nm und eine Höhe von z.B. 100 bis 200 nm. Infolge des elektrischen Widerstandes der Elektrodenfinger entste- hen Verluste im Resonator, die sich zu anderen Verlusten (etwa elastischen Verlusten im Festkörper) addieren und die Güte des Resonators vermindern. Diese Verluste sind breitbandig bzw. umfassen einen großen Frequenzbereich. Die Verluste durch solche Zuleitungsströme sind zudem umso größer, je kleiner die Querschnittsabmessungen der Elektrodenfinger dimensioniert sind. Es wäre daher wünschenswert, die Güte eines Überlappungsgewichteten Resonators zu erhöhen. Trajectory distance along the electrode fingers is to be covered until reaching the overlap region. Via this trace the charge must be transported to the connected electrodes before it even reaches the overlap area, which contributes to the generation of standing waves in the solid state. This applies not only to the locally shorter electrode fingers, but also to the longer electrode fingers, which allow the overlap go through rich. Electrode fingers designed for an excitation frequency of, for example, 2 GHz have a width of, for example, 500 nm and a height of, for example, 100 to 200 nm. As a result of the electrical resistance of the electrode fingers, losses occur in the resonator which lead to other losses (such as elastic losses in the solid state ) and reduce the quality of the resonator. These losses are broadband or cover a wide frequency range. The losses through such supply currents are also greater, the smaller the cross-sectional dimensions of the electrode fingers are dimensioned. It would therefore be desirable to increase the quality of an overlap weighted resonator.
Diese Anmeldung schlägt hierzu einen elektroakustischen Reso- nator mit zwei Elektroden vor, die jeweils einen Sammelelek- trodenabschnitt und eine Vielzahl von Elektrodenfingern aufweisen, For this purpose, this application proposes an electroacoustic resonator with two electrodes, each of which has a collecting electrode section and a multiplicity of electrode fingers,
- wobei die Elektrodenfinger entlang einer ersten Richtung aufgereiht sind, an den Sammelelektrodenabschnitten der je- weiligen Elektrode angeschlossen sind und entlang einer zweiten Richtung, die quer zur ersten Richtung weist, verlaufen, wherein the electrode fingers are aligned along a first direction, are connected to the collecting electrode portions of the respective electrode, and run along a second direction that is transverse to the first direction,
- wobei der Resonator ein überlappungsgewichteter Resonator ist, bei dem die entlang der zweiten Richtung gemessene Ausdehnung des Überlappungsbereichs, in dem die Elektrodenfinger beider Elektroden ineinandergreifen, entlang der ersten Richtung variiert, wherein the resonator is an overlap-weighted resonator in which the extent of the overlap area measured along the second direction, in which the electrode fingers of both electrodes intermesh, varies along the first direction,
- wobei der Resonator zwischen den Elektrodenfingern der jeweiligen Elektrode Leitungsbrücken aufweist, die jeweils meh¬ rere Elektrodenfinger derselben Elektrode beabstandet von dem Sammelelektrodenabschnitt miteinander leitend verbinden. - Wherein the resonator between the electrode fingers of the respective electrode has line bridges, each of which meh ¬ rere electrode fingers of the same electrode spaced from the collecting electrode portion conductively connect with each other.
Gemäß diesem Resonator sind somit zusätzliche leitende Ver¬ bindungsstücke zwischen den Elektrodenfingern jeder Elektrode vorgesehen, die die Elektrodenfinger untereinander kurzschließen. Diese Leitungsbrücken sind beabstandet von den Sammelelektrodenabschnitten der jeweiligen Elektrode angeordnet, und zwar vorzugsweise am Rand des Überlappungsbereichs. Die Positionen der Leitungsbrücken folgen dann den Umrissen des Überlappungsbereichs des Resonators und sind dementspre¬ chend an den Rändern des Resonators (nahe der Reflektoren et¬ wa in der Mitte zwischen beiden Elektroden angeordnet, in der Resonatormitte hingegen relativ nahe an den Sammelelektroden- abschnitten beider Elektroden. Die hier vorgeschlagenen Leitungsbrücken, die zusätzliche Leiterbahnabschnitte in Rich¬ tung quer oder jedenfalls schräg zu den Elektrodenfingern darstellen, ermöglichen den direkten Fluss von Ausgleichsströmen entlang des jeweiligen Randes des Überlappungsbe- reichs, jedoch nur zwischen Elektrodenfingern derselben According to this resonator, additional conductive connecting pieces are thus present between the electrode fingers of each electrode provided, which short-circuit the electrode fingers with each other. These wire bridges are spaced from the collecting electrode portions of the respective electrode, preferably at the edge of the overlapping area. The positions of the jumpers then follow the contours of the overlap region of the resonator and are accordingly spre ¬ accordingly at the edges of the resonator (near the reflectors et ¬ wa arranged in the middle between two electrodes, whereas portions in the Resonatormitte relatively close to the Sammelelektroden- both electrodes The conductor bridges proposed here, which represent additional conductor track sections in the direction across or at least obliquely to the electrode fingers, allow the direct flow of equalizing currents along the respective edge of the overlap area, but only between electrode fingers thereof
Elektrode. Diese Ausgleichsströme verringern die sonst in der Nähe der Reflektoren stark zunehmenden Verluste durch Zuleitungsströme und verbessern somit die Güte des Resonators. Die hier vorgeschlagenen Leitungsbrücken können vorzugsweise in derselben Ebene wie die Elektroden einschließlich ihrer  Electrode. These equalizing currents reduce the losses of supply currents which otherwise increase greatly in the vicinity of the reflectors and thus improve the quality of the resonator. The wire bridges proposed herein may preferably be in the same plane as the electrodes including theirs
Elektrodenfinger selbst angeordnet sein und somit bereits als Teil des Musters bei der Strukturierung der Metallschicht beider Elektroden berücksichtigt sein. Gleichwohl wird - trotz der hier vorgeschlagenen Leitungsbrücken - innerhalb der Resonatorfläche die fingerförmige Struktur beibehalten, da die Leitungsbrücken die Elektrodenfinger nur lokal, d.h. in einem sehr geringen Längenabschnitt der Elektrodenfinger diese miteinander kurzschließen. Einige exemplarische Aus führungs formen werden nachstehend mit Bezug auf die Figuren beschrieben. Es zeigen: Figur 1 eine schematische Draufsicht auf einen herkömmli¬ chen piezoelektrischen Resonator, die Figuren 2A bis 2F vergrößerte Detailansichten verschiede- ner Aus führungs formen von Resonatoren mit Leitungsbrücken, die Figuren 3A bis 3D Gesamtansichten von Resonatoren gemäß einigen Ausführungsbeispielen der Figuren 2A bis 2F, Figur 4A eine schematische Querschnittsansicht eines piezo¬ elektrischen Resonators, Electrode fingers themselves be arranged and thus already be considered as part of the pattern in the structuring of the metal layer of both electrodes. Nevertheless, despite the wire bridges proposed here, the finger-shaped structure is retained inside the resonator surface, since the cable bridges short-circuit the electrode fingers only locally, ie in a very small longitudinal section of the electrode fingers. Some exemplary embodiments will be described below with reference to the figures. Show it: Figure 1 is a schematic plan view of a herkömmli ¬ chen piezoelectric resonator, Figures 2A to 2F enlarged detail views of various ner From guide forms of resonators having line bridges, Figures 3A to 3D are overall views of resonators, according to some embodiments of the Figures 2A to 2F, 4A a schematic cross-sectional view of a piezo ¬ electric resonator,
Figur 4B eine schematische Querschnittsansicht eines piezo¬ elektrischen Resonators mit zusätzlichen Schichten, FIG. 4B shows a schematic cross-sectional view of a piezoelectric resonator with additional layers,
Figur 5 die Abhängigkeit der Admittanz Y des Resonators von der Frequenz f der im Resonator erzeugten Wellen, FIG. 5 the dependence of the admittance Y of the resonator on the frequency f of the waves generated in the resonator,
Figur 6 den Verlauf des Reflexionsfaktor S und 6 shows the course of the reflection factor S and
Figur 7 eine tabellarische Auflistung gemessener Parameter zur Kennzeichnung der Resonatorgüte für Resonatoren ohne bzw. mit Leitungsbrücken. Figur 1 zeigt eine schematische Draufsicht auf die Leiter¬ bahnebene 25 eines herkömmlichen piezoelektrischen Resonators 10, wobei wegen des symmetrischen Aufbaus nur die eine (linke) Hälfte dargestellt ist. Zwischen zwei Reflektoren 23 und 24 (vgl. Figuren 4A und 4B) erstreckt sich eine Anordnung zweier Elektroden 11, 12, die jeweils einen Sammelelektroden- abschnitt 21 bzw. 22 sowie eine Vielzahl damit verbundener Elektrodenfinger 1, 2 aufweisen. Der Resonator ist überlap- pungsgewichtet , d.h. der Überlappungsbereich 20, in dem die Elektrodenfinger 1, 2 beider Elektroden kammförmig ineinandergreifen, d.h. sich überlappen, erstreckt sich lediglich zwischen zwei Rändern R, die zu den Reflektoren 23, 24 hin immer weiter zusammenrücken. In der Mitte des Resonators (rechts im dargestellten Ausschnitt der Figur 1) ist dieFIG. 7 shows a tabular list of measured parameters for characterizing the resonator quality for resonators without or with line bridges. 1 shows a schematic plan view of the conductor ¬ web plane 25 of a conventional piezoelectric resonator 10, wherein because of the symmetrical construction, only the one (left) half is illustrated. Between two reflectors 23 and 24 (see Figures 4A and 4B), an array of two electrodes 11, 12 each having a collecting electrode portion 21 and 22 and a plurality of electrode fingers 1, 2 connected thereto extends. The resonator is overlap weighted, ie, the overlap area 20 in which the Electrode fingers 1, 2 of both electrodes intermesh comb-shaped, ie overlap, extends only between two edges R, which continue to move towards the reflectors 23, 24 back further. In the middle of the resonator (right in the illustrated detail of Figure 1) is the
Breite des Überlappungsbereichs 20 am größten. Nur innerhalb des Überlappungsbereichs greifen die Elektrodenfinger 1, 2 der ersten Elektrode 11 und der zweiten Elektrode 12 von ent¬ gegengesetzten Seiten her ineinander. Auf jeder Seite außer- halb des Überlappungsbereichs hingegen sind Elektrodenfinger nur einer der beiden Elektroden 11; 12 angeordnet. Width of the overlap area 20 largest. Only within the overlap region, the electrode fingers 1, 2 of the first electrode 11 and the second electrode 12 of ent ¬ against opposite sides intermesh forth. On the other hand, on each side outside the overlapping area, electrode fingers are only one of the two electrodes 11; 12 arranged.
Die Figuren 2A bis 2F zeigen vergrößerte Detailansichten einiger Ausführungsbeispiele von Resonatoren, bei denen quer zu den Elektrodenfingern verlaufende Leitungsbrücken vorgesehen sind. Dargestellt sind vergrößerte Ausschnitte ungefähr im Bereich des unteren Randes R, oberhalb dessen der Überlap¬ pungsbereich 20 beginnt. Ferner ist in Figur 2A und 2C exemplarisch noch ein Teilabschnitt des Sammelelektrodenab- Schnitts 21 der unteren, ersten Elektrode 11 dargestellt. De¬ ren Elektrodenfinger la bis ld führen (unterbrochen dargestellt) bis zum Rand R des Überlappungsbereichs 20, wobei je¬ der zweite Elektrodenfinger la, lc der ersten Elektrode 11 in den Überlappungsbereich 20 hineinführt. Die übrigen, kürzeren Elektrodenfinger lb, ld der ersten Elektrode 11 enden außerhalb des Überlappungsbereichs 20. Ihnen kommen im Überlap¬ pungsbereich 20 die Elektrodenfinger 2b, 2d der zweiten Figures 2A to 2F show enlarged detail views of some embodiments of resonators, in which transverse to the electrode fingers extending cable bridges are provided. Shown are enlarged sections approximately in the region of the lower edge R, above which the Überlap ¬ pungsbereich 20 begins. Furthermore, a partial section of the collecting electrode section 21 of the lower, first electrode 11 is shown by way of example in FIGS. 2A and 2C. De ¬ ren lead electrode fingers la to ld (shown interrupted) to the edge R of the overlap region 20, wherein each ¬ the second electrode finger la, lc of the first electrode 11 leads into the overlap region 20. The other, shorter electrode finger lb, ld of the first electrode 11 extending outside of the overlap region 20 will come in the overlapping ¬ pungsbereich 20, the electrode fingers 2b, 2d of the second
Elektrode 12 entgegen. In den Figuren 2A bis 2F sind die Elektrodenfinger der zweiten Elektrode 12 schraffiert darge- stellt. Gemäß Figur 2A sind entlang des Randes R des Überlap¬ pungsbereichs 20 Leitungsbrücken 3 (bzw. kurze Überbrückungs¬ leitungen) vorgesehen, die benachbarte Elektrodenfinger der ersten Elektrode leitend miteinander verbinden und Vorzugs- weise quer, d.h. senkrecht zu ihnen verlaufen. Solche Lei¬ tungsbrücken sind entlang beider Ränder R des Überlappungsbereichs 20 vorgesehen. Insbesondere sind (nicht dargestellt) entsprechende Leitungsbrücken, die die Elektrodenfinger der zweiten Elektrode 12 miteinander verbinden, entlang des anderen, oberen Randes R des Überlappungsbereichs vorgesehen. Ge¬ mäß der Aus führungs form der Figur 2A verbindet jede Leitungsbrücke 3 zwei zueinander nächstbenachbarte Elektrodenfinger (derselben Elektrode) . Electrode 12 counter. In FIGS. 2A to 2F, the electrode fingers of the second electrode 12 are shown hatched. According to Figure 2A, line 20 bridges 3 (or short bridging ¬ cables) are provided along the edge of the overlap area R ¬ pungsbereichs connecting adjacent electrode fingers of the first electrode conducting with each other and preferential wise transversely, ie perpendicular to them. Such Lei ¬ tung bridges are provided along both edges of the overlap region R 20th In particular, (not shown) corresponding lead bridges connecting the electrode fingers of the second electrode 12 are provided along the other, upper edge R of the overlapping area. Ge ¬ Mäss the disclosed embodiment of Figure 2A connects each cable bridge 3 two mutually next adjacent electrode fingers (the same electrode).
Figur 2B zeigt eine Ausführungsform, die in Figur 3A ferner als Gesamtansicht dargestellt ist. Hier verbindet jede Lei¬ tungsbrücke 3 zwei übernächstbenachbarte (längere) Leitungs¬ brücken der jeweiligen Elektroden; in Figur 2B konkret die Elektrodenfinger la und lc bzw. lc und le. Die Leitungsbrü¬ cken 3 trennen somit die dazwischen gelegenen, kürzeren FIG. 2B shows an embodiment, which is also shown in FIG. 3A as an overall view. Here connects each Lei ¬ tung bridge 3 two übernächstbenachbarte (longer) ¬ line linking the respective electrodes; In FIG. 2B, the electrode fingers 1a and 1c or 1c and le are concrete. The Leitungsbrü ¬ bridges 3 thus separate the intervening, shorter
Elektrodenfinger lb bzw. ld von den entgegenkommenden längeren Elektrodenfingern 2b, 2d der zweiten Elektrode 12, die den Überlappungsbereich 20 durchqueren. Die quer verlaufenden Leitungsbrücken 3 sind nur auf Höhe der beiden Elektroden 11, 12 vorgesehen, jedoch nicht im Bereich der Reflektoren 23 und 24 (vgl. Figur 3A und 4) . Electrode fingers lb and ld from the oncoming longer electrode fingers 2b, 2d of the second electrode 12, which traverse the overlap region 20. The transverse conductor bridges 3 are provided only at the level of the two electrodes 11, 12, but not in the region of the reflectors 23 and 24 (compare FIGS. 3A and 4).
Bei der Aus führungs form gemäß Figur 2C verbindet jede Lei- tungsbrücke 3 zusätzlich noch den mittleren, kürzeren Elektrodenfinger lb bzw. ld mit den benachbarten längeren Elektrodenfingern. Ansonsten ähnelt der Aufbau und der Verlauf der leitenden Strukturen innerhalb der Leiterbahnebene 25 demje¬ nigen der Figur 2B. Figur 2D zeigt eine Ausführungsform, die als Gesamtansicht in Figur 3B dargestellt ist. Hier sind zu¬ sätzlich zu den Leitungsbrücken 3 noch Leiterbahnabschnitte 5 vorgesehen, die weder an die erste noch an die zweite Elekt¬ rode eingeschlossen sind. Dadurch werden elektrische Ladungs- spitzen bzw. Spannungsmaxima an den Enden der Elektrodenfinger reduziert. Die Leitungsbrücken 3 hingegen verbinden (wie in Figur 2B) zwei übernächstbenachbarte längere Elektroden¬ finger der jeweiligen Elektrode miteinander. Wie in Figur 3B dargestellt, sind die Leiterbahnabschnitte 5 entlang der bei¬ den Ränder R des Überlappungsbereichs 20 angeordnet. In the embodiment according to FIG. 2C, each line bridge 3 additionally connects the middle, shorter electrode finger 1b or ld with the adjacent longer electrode fingers. Otherwise, the structure and the course of the conductive structures is similar within the interconnect layer 25 demje ¬ Nigen the figure 2B. FIG. 2D shows an embodiment which is shown as an overall view in FIG. 3B. Here are ¬ addition to those three jumpers still trace sections 5 which are included neither in the first nor in the second Elect ¬ rode. As a result, electric charge reduced peaks or stress maxima at the ends of the electrode fingers. In contrast, the lead bridges 3 connect (as in FIG. 2B) two longer adjacent electrode fingers of the respective electrode to one another. As shown in Figure 3B, the conductor track sections 5 are disposed the edges R of the overlapping region 20 along with ¬.
Figur 2E zeigt eine Ausführungsform, die als Gesamtansicht in Figur 3C dargstellt ist. Hier sind im Gegensatz zu Figur 2D die den Leiterbahnabschnitten 5 entsprechenden Strukturen leitend mit den Leitungsbrücken 3 verbunden; sie bilden somit Elektrodenfingerfortsätze 7 (d.h. zusätzliche kleine Zwischenfinger) , die auf gleicher Höhe wie die kürzeren Elektrodenfinger lb, ld angeordnet sind, über welche die jeweilige Leitungsbrücke 3 hinwegführt. Figur 2F zeigt ein Ausführungs¬ beispiel, das als Gesamtansicht in Figur 3D dargestellt ist. Hier verbinden die Leitungsbrücken 3 nicht nur die übernächstbenachbarten längeren Elektrodenfinger la und lc und den jeweiligen Elektrodenfingerfortsatz 7 miteinander, son- dern zusätzlich auch (im Gegensatz zu Figur 2E) den kürzeren Elektrodenfinger lb. FIG. 2E shows an embodiment which is shown as an overall view in FIG. 3C. Here, in contrast to FIG. 2D, the structures corresponding to the conductor track sections 5 are conductively connected to the line bridges 3; They thus form electrode finger extensions 7 (ie additional small intermediate fingers), which are arranged at the same height as the shorter electrode fingers 1b, 1d, over which the respective conductor bridge 3 passes. Figure 2F shows an execution ¬ for example, which is shown as an overall view in Figure 3D. Here, the lead bridges 3 connect not only the longer-adjacent, longer electrode fingers 1a and 1c and the respective electrode finger extensions 7 with each other, but additionally (in contrast to FIG. 2E) the shorter electrode finger 1b.
Gemäß all diesen Ausführungsbeispielen, die lediglich exemplarisch sind, ermöglichen die Leitungsbrücken einen verlust- ärmeren Potentialausgleich entlang der Ränder R des Überlappungsbereichs 20, da die infolge von Zuleitungswiderständen verursachten Verluste vermindert werden und die Güte des Re¬ sonators verbessert wird. Insbesondere in der Nähe beider Re¬ flektoren, wo der Abstand der Ränder R des Überlappungsbe- reichs 20 von de Sammelelektrodenabschnitten 21, 22 beider Elektroden 11, 12 am größten ist, ermöglichen die Leitungsbrücken 3 eine wirksam beschleunigte Potentialzufuhr an den Überlappungsbereich 20 heran. Die Gesamtansichten in den Figuren 3A bis 3D wurden bereits anhand der Figuren 2A bis 2F erläutert. In Figur 3D hingegen sind noch einige zusätzliche Merkmale und Elemente illust- riert, auf die nachfolgend eingegangen wird. According to all of these embodiments, which are merely exemplary, the line bridges enable a loss-poorer potential equalization along the edges R of the overlapping area 20, since the losses caused as a result of feed resistors are reduced and the quality of the Re ¬ sonators is improved. In particular, in the vicinity of both Re ¬ reflectors where the distance of the edges R of the Überlappungsbe- Reich 20 of de collecting electrode portions 21, 22 of both electrodes 11, 12 is greatest, the conduit bridges 3 enable effective acceleration potential supply to the overlap region 20 zoom. The overall views in FIGS. 3A to 3D have already been explained with reference to FIGS. 2A to 2F. In contrast, Figure 3D shows some additional features and elements, which will be discussed below.
So ist in Figur 3D etwa die Ausformung der beiden Sammel- elektrodenabschnitte 21, 22 der Elektroden am Übergang zu den Elektrodenfingern 1, 2 beider Elektroden 11, 12 genauer dar- gestellt. Insbesondere ist hier erkennbar, dass die jeweili¬ gen Elektrodenfinger direkt von dem betreffenden Sammelelekt- rodenabschnitt 21, 22 bzw. Sammelelektrodenstreifen ausgehen und unmittelbar mit ihm verbunden sind. Sammelelektrode und daran angeschlossene Elektrodenfinger bilden somit eine unun- terbrochene, durchgehende kammförmige Struktur (beispielswei¬ se in Form einer strukturierten Metallschicht, Metalllegie¬ rungsschicht oder Metallschichtenfolge in der Leiterbahnebene 25, deren Draufsicht in Figur 3D dargestellt ist) . Auch in den Figuren 1, 2A bis 2F sowie 3A bis 3E ist der (schematisch dargestellte) Übergang zwischen den Sammelelektroden und den Elektrodenfinger in gleicher Weise wie in Figur 3D ausgebildet. Der Vollständigkeit halber sind in Figur 3D noch Kontaktanschlüsse 8, 9 beider Elektroden angedeutet; sie können an beliebiger anderer Stelle herangeführt und auch anders ge- formt sein; Figur 3D verdeutlicht lediglich die Anwesenheit der beiden Kontaktanschlüsse 8, 9. Ferner gibt das Koordina¬ tenkreuz in Figur 3D an, dass die Elektrodenfinger 1, 2 Thus, in FIG. 3D, for example, the shape of the two collecting electrode sections 21, 22 of the electrodes at the transition to the electrode fingers 1, 2 of both electrodes 11, 12 is shown in more detail. In particular, it can be seen here that the jeweili ¬ gen electrode fingers clear sections directly from the relevant Sammelelekt- 21, 22 and emanate collecting electrode strips and are directly connected to it. Collecting electrode and the connected electrode fingers thus form a uninter- rupted, continuous comb-shaped structure (beispielswei ¬ se in the form of a structured metal layer, Metalllegie ¬ approximate layer or metal layer sequence in the interconnect layer 25, whose plan view is shown in Figure 3D). Also in FIGS. 1, 2A to 2F and 3A to 3E, the transition (schematically illustrated) between the collecting electrodes and the electrode fingers is formed in the same way as in FIG. 3D. For the sake of completeness, contact connections 8, 9 of both electrodes are indicated in FIG. 3D; they can be introduced at any other place and shaped differently; Figure 3D shows only the presence of the two contact terminals 8, 9. Furthermore, the coordina ¬ tenkreuz are in Figure 3D in that the electrode fingers 1, 2
(ebenso wie in den übrigen, bisher erläuterten Figuren) entlang einer ersten Richtung x aufgereiht sind und entlang ei- ner zweiten Richtung y, die quer zur ersten Richtung x weist, verlaufen . (As in the other, previously explained figures) are lined up along a first direction x and along a second direction y, which has transverse to the first direction x, extend.
Die Leitungsbrücken müssen nicht notwendigerweise innerhalb der Leiterbahnebene 25 verlaufen, sondern können auch darüber oder darunter angeordnet sein. So können von den Elektrodenfingern Vias oder sonstige Kontakte in eine höher oder tiefer gelegene Ebene führen, in der die Leitungsbrücken angeordnet sind. Figur 3D zeigt weiterhin, dass der zwischen beiden Rän- dern R verlaufende Überlappungsbereich 20 entlang der zweiten Richtung y schmaler ist als die Resonatorfläche F, d.h. als der Abstand zwischen den Sammelelektrodenabschnitten 21, 22 beider Elektroden. Die entlang der Richtung y gemessene Ausdehnung oder bzw. Breite des Überlappungsbereichs 20 nimmt insbesondere in der Nähe der Reflektoren 23, 24 ab. Durch die hier vorgeschlagenen Leiterbahnbrücken bzw. Zwischenverbindungen zwischen den Elektrodenfingern werden die Resonatoreigenschaften verbessert. Im Übrigen kann in den Ausführungsformen dieser Anmeldung anstelle einer einzigen abgebildeten Leitungsbrücke auch eine Mehrzahl von Leitungsbrücken, insbesondere ein Paar zweier eng zusammen liegender Leitungsbrücken vorgesehen sein. The cable bridges do not necessarily have to run within the track plane 25, but can also about it or below it. Thus, vias or other contacts can lead from the electrode fingers to a higher or lower level in which the cable bridges are arranged. FIG. 3D furthermore shows that the overlapping region 20 extending between the two edges R is narrower along the second direction y than the resonator surface F, ie, the distance between the collecting electrode sections 21, 22 of both electrodes. The extent or width of the overlapping area 20 measured along the direction y decreases, in particular in the vicinity of the reflectors 23, 24. The conductor bridge bridges or intermediate connections between the electrode fingers proposed here improve the resonator properties. Incidentally, in the embodiments of this application, a plurality of line bridges, in particular a pair of two closely spaced line bridges may also be provided instead of a single illustrated line bridge.
Figur 4A zeigt rein schematisch eine Querschnittsansicht ei- nes piezoelektrischen Resonators 10, dessen Leiterbahnebene 25 in den Figuren 1, 2A bis 2F sowie 3A bis 3D in der Draufsicht dargestellt wurde. Unterhalb der Leiterbahnebene 25 ist eine piezoelektrische Schicht angeordnet, auf deren Oberflä¬ che die beiden Elektroden 11, 12 sowie die beiden Reflektoren 23, 24 strukturiert sind. FIG. 4A shows, purely schematically, a cross-sectional view of a piezoelectric resonator 10 whose conductor track plane 25 has been shown in plan view in FIGS. 1, 2A to 2F and 3A to 3D. Below the conductor track plane 25, a piezoelectric layer is arranged, on the Oberflä ¬ che, the two electrodes 11, 12 and the two reflectors 23, 24 are structured.
Figur 4B zeigt schematisch eine Querschnittsansicht eines piezoelektrischen Resonators, dessen Leiterbahnebene 25 in den Figuren 1, 2A bis 2F und 3A bis 3D in der Draufsicht dar- gestellt ist. Der Resonator ist wie in Figur 4A skizziert aufgebaut, jedoch sind hier auf der Leiterbahnebene zusätz¬ lich noch eine oder mehrere dielektrische Schichten 26 und/oder 27 aufgebracht. Die Schichten 26 und/oder 27 können zum Zweck der Temperaturkompensation und/oder zum Ausgleich herstellungsbedingter Schwankungen der Frequenzlage durch nachträgliches Abtragen/Trimmen genutzt werden. Auch hier sind die Abmessungen nicht notwendigerweise maßstabgerecht. FIG. 4B schematically shows a cross-sectional view of a piezoelectric resonator whose conductor track plane 25 is shown in plan view in FIGS. 1, 2A to 2F and 3A to 3D. The resonator is constructed as outlined in Figure 4A, but one or more dielectric layers 26 and / or 27 are here on the conductor track plane zusätz ¬ Lich still applied. The layers 26 and / or 27 can be used for the purpose of temperature compensation and / or to compensate for manufacturing-related fluctuations in the frequency position by subsequent removal / trimming. Again, the dimensions are not necessarily to scale.
Ein geeignetes Material für eine die Leiterbahnebene bede¬ ckende dielektrische Schicht 26 zur Temperaturkompensation ist aufgrund seiner thermischen Eigenschaften beispielsweise Si02. Als Material für eine darüberliegende Trimmschicht 27 kommt aufgrund seiner hohen Biegesteifigkeit beispielsweise Si3N4 in Frage. A suitable material for the conductor track plane Bede ¬ ADORABLE dielectric layer 26 for temperature compensation, for example, Si02 due to its thermal properties. As a material for an overlying trim layer 27 is due to its high bending stiffness, for example, Si3N4 in question.
Figur 5 zeigt in Abhängigkeit von der Frequenz der im Resonator erzeugten Wellen (vorzugsweise Oberflächenwellen; alter- nativ Volumenwellen) die Admittanz Y, d.h. den komplexenFigure 5 shows, depending on the frequency of the waves generated in the resonator (preferably surface waves, alternatively bulk waves) the admittance Y, i. the complex
Leitwert des Resonators. Der Realteil und Imaginärteil sowie der Betrag der Admittanz sind in Figur 5 untereinander aufgetragen. Bei einer Frequenz von etwa 1970 MHz tritt die Resonanz auf, wohingegen bei etwa 2110 MHz die Antiresonanz auf- tritt. Weitere oben in Figur 5 erkennbare Nebenmaxima rühren von anderweitigen, unerwünschten Effekten her, die jedoch außerhalb des nutzbaren Wellenlängenbereichs zwischen Resonanz und Antiresonanz liegen. In Figur 5 ist die Admittanz jeweils für einen herkömmlichen Resonator ohne Leitungsbrücken (Kurve I) sowie für den hier vorgeschlagenen Resonator mit zusätzlichen Leiterbahnbrücken 3 (Kurve II) aufgetragen. Die senkrechten Achsen sind logarithmisch skaliert; es sind Real- und Imaginärteil sowie der Betrag der Admittanz Y(f) jeweils in logarithmischer Skala [dB] über der Frequenz [MHz] aufgetra- gen. Conductance of the resonator. The real part and imaginary part as well as the amount of admittance are plotted against each other in FIG. At a frequency of about 1970 MHz, the resonance occurs, whereas at about 2110 MHz the antiresonance occurs. Further secondary maxima identifiable above in FIG. 5 are caused by other unwanted effects which, however, lie outside the usable wavelength range between resonance and antiresonance. In FIG. 5, the admittance is plotted in each case for a conventional resonator without line bridges (curve I) and for the resonator proposed here with additional interconnect bridges 3 (curve II). The vertical axes are scaled logarithmically; the real and imaginary parts as well as the admittance Y (f) are each plotted on a logarithmic scale [dB] above the frequency [MHz].
Wie oben in Figur 5 erkennbar ist, verringert sich im Bereich etwa ab 2030 bis 2110 MHz der Realteil der Admittanz gegen- über einem herkömmlichen Resonator (d.h. gegenüber Kurve I), was die Güte des Resonators verbessert. Außerdem ist, wie un¬ ten in Figur 5 anhand des Betrags der Admittanz Y erkennbar, das Minimum bei 2110 MHz stärker ausgeprägt; hier verläuft der Abfall beiderseits der Antiresonanz steiler und erreicht auch einen kleineren Minimalwert als bei der Kurve I. Auch daran ist die verbesserte Güte des mit den Leitungsbrücken ausgestatteten Resonators (Kurve II) erkennbar. Zwar wird entsprechend dem Imaginärteil der Admittanz Y die Antireso- nanzfrequenz etwas verringert, allerdings nur geringfügig. As can be seen above in FIG. 5, the real part of the admittance decreases in the range from approximately 2030 to 2110 MHz. over a conventional resonator (ie, versus curve I), which improves the quality of the resonator. In addition, as un ¬ th the minimum at 2110 MHz is seen in Figure 5 on the basis of the magnitude of the admittance Y, more pronounced; Here, the drop is steeper on both sides of the antiresonant and also reaches a smaller minimum value than in the curve I. Also the improved quality of the equipped with the line bridges resonator (curve II) can be seen. Admittedly, according to the imaginary part of the admittance Y, the antiresonance frequency is somewhat reduced, albeit only slightly.
Figur 6 zeigt in einem Smith-Diagramm den aus der Resonator- admittanz Y(f) und der Bezugsadmittanz des Messtores Z0 = 50 Ohm berechneten Streuparameter (S-Parameter) FIG. 6 shows in a Smith chart the scattering parameter (S parameter) calculated from the resonator admittance Y (f) and the reference admittance of the measuring station Z0 = 50 ohms.
S(f) = (1 - Z0 * Y(f)) / (1 + Z0 * Y(f)) S (f) = (1-Z0 * Y (f)) / (1 + Z0 * Y (f))
Als Funktion der Frequenz. Entsprechend der in Figur 5 von 1900 MHz bis 2300 MHz dargestellten Admittanzfunktion Y(f) durchlaufen die in Figur 6 aufgetragenen S-Parameter I bzw. II das Smith-Diagramm im Uhrzeigersinn. Der linke Schnittpunkt mit der realen Achse entspricht der Resonanzfrequenz und der rechte Schnittpunkt mit der realen Achse der Antire- sonanzfrequenz . In dem hier interessierenden Bereich zwischen Resonanz und Antiresonanz (obere imaginäre Halbebene in Figur 6) besitzt beim verbesserten Resonator (Kurve II) die ungefähr halbkreisförmige Bahn in Figur 6 einen größeren Radius (bzw. einen größerem mittleren Abstand von dem Mittelpunkt des eingezeichneten Umkreises mit Radius 1) als die Kurve I. Der Streuparameter S(f) liegt bei dem erfindungsgemäßen Resonator über einen weiten Bereich weiter außen, d.h. näher am Einheitskreis, und ist damit verlustärmer. Insbesondere ver¬ ringern die Leitungsbrücken zwischen den Elektrodenfingern die bestehenden Verluste im Frequenzbereich beginnend bei der Resonanzfrequenz bis über die Antiresonanz hinaus. Durch die zusätzlichen Leiterbahnabschnitte 5 ohne Kontaktanschluss bzw. die Elektrodenfingerfortsätze 7 (Figuren 2D bis 2F) lässt sich zudem der Verringerung der Frequenz, bei der Antiresonanz auftritt, entgegenwirken. In der unteren imaginären Halbebene (d.h. außerhalb des technisch genutzten Frequenzbe¬ reichs) erkennbare Anomalitäten rühren im Übrigen von parasitären Effekten wie beispielsweise der oberen Bandkante des akustischen Stoppbandes des Fingergitters sowie vom zunehmen¬ den Einsetzen der Volumenabstrahlung (d.h. Ausbildung von Volumenwellen) her. As a function of the frequency. According to the admittance function Y (f) shown in FIG. 5 from 1900 MHz to 2300 MHz, the S-parameters I and II plotted in FIG. 6 pass through the Smith chart in the clockwise direction. The left intersection with the real axis corresponds to the resonance frequency and the right intersection to the real axis of the anti-resonance frequency. In the region of interest between resonance and antiresonance (upper imaginary half-plane in FIG. 6), in the improved resonator (curve II), the approximately semicircular path in FIG. 6 has a larger radius (or a larger average distance from the center of the drawn radius with radius 1) as the curve I. The scattering parameter S (f) is located in the resonator according to the invention over a wide range further outward, ie closer to the unit circle, and is thus lossy. In particular ver ¬ wrestlers the jumpers between the electrode fingers the existing losses in the frequency range starting at the resonance frequency beyond the antiresonance addition. The additional conductor track sections 5 without contact connection or the electrode finger extensions 7 (FIGS. 2D to 2F) can also counteract the reduction in the frequency at which antiresonance occurs. In the lower imaginary half plane (ie outside the technically used Frequency Ranges ¬ Kingdom) detectable abnormalities stem from the insertion of the volume radiation (ie formation of bulk waves) the remainder of parasitic effects such as the upper band edge of the acoustic stop band of the finger grid and the increase ¬.
Die vorliegende Anmeldung stellt somit einen elektroakusti- sehen, gewichteten Interdigitalwandler (IDT) verbesserter Güte bereit. In Figur 7 sind Parameter zur Kennzeichnung der Resonatorgüten für Messungen von jeweils vier Resonatoren (1 bis 4) ohne Leitungsbrücken und vier Resonatoren (5 bis 8) mit Leitungsbrücken tabellarisch zusammengefasst . Aufgetragen sind Zahlenwerte für die Resonanzgüte Qs im ResonanzfallThe present application thus provides an electroacoustic, weighted interdigital transducer (IDT) of improved quality. In FIG. 7, parameters for characterizing the resonator qualities for measurements of in each case four resonators (1 to 4) without line bridges and four resonators (5 to 8) with line bridges are summarized in a table. Plotted are numerical values for the resonance quality Qs in the case of resonance
(quality Short) und im Antiresonanzfall (quality open) sowie die mittlere Güte Qt = 0,5 (Qo + Qs) . Ferner sind die Fre¬ quenzen für die Resonanz (fs) und die Antiresonanz (fo) in MHz angegeben. Der Vergleich der Zahlenwerte der Resonatoren 5 bis 8 (die der Kurve II in Figur 5 und 6 entsprechen) mit denjenigen der Resonatoren 1 bis 4 (entsprechend der Kurve I in Figur 5 und 6) ist erkennbar, dass durch die Leitungsbrü¬ cken zwischen den Elektrodenfingern die Güte der Antiresonanz Qo um ca. 20 Prozent erhöht wird. In der vorletzten Spalte der Figur 7 ist ferner der Pol-Nullstellen-Abstand PZD (pole- zero-distance ) gemäß (quality short) and in the anti-resonant case (quality open) and the average Qt = 0.5 (Qo + Qs). Further, the Fre ¬ frequencies for resonance (fs) and the anti-resonant frequency (fo) are given in MHz. The comparison of the numerical values of the resonators 5 to 8 (corresponding to curve II correspond in Figures 5 and 6) with those of the resonators 1 to 4 (corresponding to the curve I in Figure 5 and 6) it is evident that by the Leitungsbrü ¬ can be made between Electrode fingers the quality of the anti-resonance Qo is increased by about 20 percent. In the penultimate column of FIG. 7, the pole-zero distance PZD (pole zero distance) is also shown in FIG
PZD = (fo - fs) / (0,5 x (fo + fs)) aufgetragen, der sich durch die Leitungsbrücken nur geringfügig von ca. 7 Prozent auf ca. 6,8 Prozent reduziert. Als wei¬ tere Kennzahl für die Resonatorgüte ist in der letzten Spalte der Figur 7 als weiterer Qualitätsparameter die "Figure of Merit" gemäß (FoM = PZD x Qt) angegeben; hier zeigt sich eine Zunahme und somit Verbesserung um etwa 10 Prozent im Falle der Resonatoren 5 bis 8. PZD = (fo - fs) / (0.5 x (fo + fs)) applied, which reduces only slightly by the lead bridges from about 7 percent to about 6.8 percent. As a white ¬ direct measure of the resonator in the last column of Figure 7, the "Figure of Merit" according to (FoM = PZD Qt x) is given as a further quality parameters; This shows an increase and thus an improvement of about 10 percent in the case of the resonators 5 to 8.
Im Übrigen können Breite und/oder Länge der Leitungsbrücken 3, der Leiterbahnabschnitte 5 und/oder der Elektrodenfinger- fortsätze 7 variiert werden und insbesondere kleiner oder größer ausfallen als die Breite und/oder Länge der Elektrodenfinger . Die Leitungsbrücken 3 reduzieren somit die bestehenden Verluste in einem Frequenzbereich beginnend von der Serienresonanz bis über die Antiresonanz hinaus. Auf diese Weise ver¬ besserte Resonatoren können beispielsweise in Verschaltungen zu piezoelektrischen Filter- oder Duplexer-Bauteilen verwen- det werden. Incidentally, the width and / or length of the conductor bridges 3, the conductor track sections 5 and / or the electrode finger extensions 7 can be varied and, in particular, smaller or larger than the width and / or length of the electrode fingers. The line bridges 3 thus reduce the existing losses in a frequency range starting from the series resonance to beyond the anti-resonance. In this way, ver ¬ improved resonators can be det verwen- for example, in Interconnections to piezoelectric filter or duplexer components.
Bezugs zeichenliste Reference sign list
1; la, lb, ... Elektrodenfinger der ersten Elektrode1; la, lb, ... electrode fingers of the first electrode
2; 2a, 2b, ... Elektrodenfinger der zweiten Elektrode 3 Leitungsbrücke 2; 2a, 2b,... Electrode finger of the second electrode 3 conduction bridge
5 Leiterbahnabschnitt  5 trace section
7 Elektrodenfingerfortsatz  7 electrode finger extension
8, 9 Kontaktanschluss  8, 9 contact connection
10 Resonator  10 resonator
11 erste Elektrode 11 first electrode
12 zweite Elektrode  12 second electrode
20 Überlappungsbereich  20 overlap area
21, 22 Sammelelektrodenabschnitt  21, 22 collecting electrode section
23, 24 Reflektor  23, 24 reflector
25 Leiterbahnebene 25 trace level
F Resonatorfläche  F resonator surface
fo Antiresonanzfrequenz fo anti-resonant frequency
fs Resonanzfrequenz fs resonance frequency
PZD Resonanz-Antiresonanz-Abstand  PZD Resonance Antiresonance Distance
R Rand R edge
Qo Antiresonanzgüte  Qo anti-resonance quality
Qs Resonanzgüte  Qs resonance quality
Qt mittlere Güte  Qt medium grade
x erste Richtung x first direction
y zweite Richtung y second direction

Claims

Patentansprüche claims
1. Elektroakustischer Resonator (10) mit zwei Elektroden (11, 12), die jeweils einen Sammelelektrodenabschnitt (21, 22) und eine Vielzahl von Elektrodenfingern (1, 2) aufweisen,An electroacoustic resonator (10) having two electrodes (11, 12) each having a collecting electrode portion (21, 22) and a plurality of electrode fingers (1, 2),
- wobei die Elektrodenfinger (1, 2) entlang einer ersten Richtung (x) aufgereiht sind, mit dem Sammelelektrodenab- schnitten (21, 22) der jeweiligen Elektrode (11, 12) leitend verbunden sind und entlang einer zweiten Richtung (y) , die quer zur ersten Richtung (x) weist, verlaufen, - Wherein the electrode fingers (1, 2) along a first direction (x) are lined, with the Sammelelektrodenab- sections (21, 22) of the respective electrode (11, 12) are conductively connected and along a second direction (y), the transverse to the first direction (x) points, run,
- wobei der Resonator (10) ein überlappungsgewichteter Resonator ist, bei dem die entlang der zweiten Richtung (y) gemessene Ausdehnung des Überlappungsbereichs (20), in dem die Elektrodenfinger (1, 2) beider Elektroden (11, 12) inein- andergreifen, entlang der ersten Richtung (x) variiert,  wherein the resonator (10) is an overlap-weighted resonator in which the extent of the overlap region (20) measured along the second direction (y), in which the electrode fingers (1, 2) of both electrodes (11, 12) intermesh, varies along the first direction (x),
- wobei der Resonator (10) zwischen den Elektrodenfingern (1, 2) der jeweiligen Elektrode (11, 12) Leitungsbrücken (3) aufweist, die jeweils mehrere Elektrodenfinger derselben Elektrode beabstandet von dem Sammelelektrodenabschnitt (21, 22) miteinander leitend verbinden.  - Wherein the resonator (10) between the electrode fingers (1, 2) of the respective electrode (11, 12) has line bridges (3), each of a plurality of electrode fingers of the same electrode spaced from the collecting electrode portion (21, 22) conductively connect together.
2. Resonator nach Anspruch 1, 2. Resonator according to claim 1,
dadurch gekennzeichnet, dass  characterized in that
die Leitungsbrücken (3) jeder Elektrode (1; 2) entlang des dem Sammelelektrodenabschnitt (21; 22) der jeweiligen the lead bridges (3) of each electrode (1; 2) along the collecting electrode section (21; 22) of the respective ones
Elektrode (1, 2) zugewandten Randes (R) des Überlappungsbe¬ reichs (20) angeordnet sind. Electrode (1, 2) facing edge (R) of the Überlappungsbe ¬ rich (20) are arranged.
3. Resonator nach Anspruch 1 oder 2, 3. Resonator according to claim 1 or 2,
dadurch gekennzeichnet, dass  characterized in that
die Leitungsbrücken (3) jeder Elektrode (1, 2) in einem Abstand von dem Sammelelektrodenabschnitt (21, 22) angeordnet sind, wobei dieser Abstand zwischen der jeweiligen Leitungs- brücke (3) und dem Sammelelektrodenabschnitt (21, 22) entlang der ersten Richtung (x) variiert. the conductor bridges (3) of each electrode (1, 2) are arranged at a distance from the collecting electrode section (21, 22), this distance between the respective line bridge (3) and the collecting electrode portion (21, 22) along the first direction (x) varies.
4. Resonator nach einem der Ansprüche 1 bis 3, 4. Resonator according to one of claims 1 to 3,
dadurch gekennzeichnet, dass  characterized in that
jede Leitungsbrücke (3) zwei nächstbenachbarte Elektro¬ denfinger (la, lb, lc, ld, le; 2a, 2b, 2c.) derselben Elekt¬ rode (1, 2) miteinander kurzschließt. (3) any two next adjacent jumper electric ¬ denfinger (la, lb, lc, ld, le;. 2a, 2b, 2c) of the same Elect ¬ rode (1, 2) to each short-circuits.
5. Resonator nach einem der Ansprüche 1 bis 4, 5. Resonator according to one of claims 1 to 4,
dadurch gekennzeichnet, dass  characterized in that
jede Leitungsbrücke (3) zwei übernächstbenachbarte  each line bridge (3) has two adjacent neighbors
Elektrodenfinger (la, lc, le; 2b, 2d) derselben Elektrode ( 1 ; 2) miteinander kurzschließt. Electrode fingers (la, lc, le, 2b, 2d) of the same electrode (1, 2) short-circuit each other.
6. Resonator nach einem der Ansprüche 1 bis 5, 6. Resonator according to one of claims 1 to 5,
dadurch gekennzeichnet, dass  characterized in that
die Leitungsbrücken (3) jeweils zwei übernächstbenachbarte Elektrodenfinger (la, lc) derselben Elektrode (1) mit¬ einander verbinden und einen dazwischen angeordneten mittleren Elektrodenfinger (lb) derselben Elektrode (1) übergehen. the line bridges (3) with ¬ connect two übernächstbenachbarte electrode fingers (la, lc) of the same electrode (1) to one another and an interposed middle electrode fingers (lb) of the same electrode (1) pass.
7. Resonator nach einem der Ansprüche 1 bis 6, 7. Resonator according to one of claims 1 to 6,
dadurch gekennzeichnet, dass  characterized in that
jeweils zwischen der Leitungsbrücke (3) und dem auf Höhe des mittleren Elektrodenfingers (lb) heranreichenden Elektro¬ denfinger (2b) der anderen Elektrode (12) ein Leiterbahnab¬ schnitt (5) angeordnet ist, der weder an die erste (11) noch an die zweite Elektrode (12) angeschlossen ist. respectively between the pipe bridge (3) and zoom reaching the level with the middle electrode finger (lb) Electric ¬ denfinger (2b) of the other electrode (12) is arranged a Leiterbahnab ¬ cut (5), which neither the first (11) nor to the second electrode (12) is connected.
8. Resonator nach einem der Ansprüche 1 bis 7, 8. Resonator according to one of claims 1 to 7,
dadurch gekennzeichnet, dass an die jeweilige Leitungsbrücke (3) jeweils ein Elektro- denfingerfortsatz (7) angeschlossen ist, der in Höhe des mittleren Elektrodenfingers (lb) von der Leitungsbrücke (3) ausgehend in Richtung der anderen Elektrode (2) verläuft. characterized in that in each case an electrode finger extension (7) is connected to the respective line bridge (3) and extends in the direction of the other electrode (2) from the line bridge (3) at the level of the middle electrode finger (1b).
9. Resonator nach Anspruch 7 oder 8, 9. Resonator according to claim 7 or 8,
dadurch gekennzeichnet, dass  characterized in that
die Leiterbahnabschnitte (5) und/oder die Elektrodenfin¬ gerfortsätze (7) eine Länge besitzen, die entweder einheit- lieh gewählt ist oder innerhalb der Resonatorfläche (F) mit der Position der Leiterbahnabschnitte (5) und/oder der Elektrodenfingerfortsätze (7) entlang der ersten Richtung (x) variiert . along the conductor track sections (5) and / or the Elektrodenfin ¬ gerfortsätze (7) have a length which is chosen either uniform lent or within the resonator surface (F) with the position of the conductor track sections (5) and / or the electrode finger extensions (7) the first direction (x) varies.
10. Resonator nach einem der Ansprüche 1 bis 9, 10. Resonator according to one of claims 1 to 9,
dadurch gekennzeichnet, dass  characterized in that
dass zwischen den Elektrodenfingern (1, 2) jeweils eine oder mehrere Leitungsbrücken (3) vorgesehen sind, wobei die Leitungsbrücken (3) entlang der zweiten Richtung (y) eine Ab- messung und/oder eine Entfernung voneinander besitzen, die gleich groß oder größer ist als die Breite der Elektrodenfinger (1, 2) entlang der ersten Richtung (x) .  in that one or more line bridges (3) are respectively provided between the electrode fingers (1, 2), the line bridges (3) along the second direction (y) having a dimension and / or a distance from one another which are equal to or greater than is the width of the electrode fingers (1, 2) along the first direction (x).
PCT/EP2011/071651 2010-12-22 2011-12-02 Electroacoustic resonator WO2012084460A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013545156A JP5852132B2 (en) 2010-12-22 2011-12-02 Electroacoustic resonator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102010055628.9 2010-12-22
DE102010055628.9A DE102010055628B4 (en) 2010-12-22 2010-12-22 Electro-acoustic resonator

Publications (1)

Publication Number Publication Date
WO2012084460A1 true WO2012084460A1 (en) 2012-06-28

Family

ID=45217540

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2011/071651 WO2012084460A1 (en) 2010-12-22 2011-12-02 Electroacoustic resonator

Country Status (3)

Country Link
JP (1) JP5852132B2 (en)
DE (1) DE102010055628B4 (en)
WO (1) WO2012084460A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271242A1 (en) * 2010-10-20 2013-10-17 Epcos Ag Band rejection filter comprising a serial connection of at least two pi-elements
WO2023156107A1 (en) * 2022-02-15 2023-08-24 Rf360 Singapore Pte. Ltd. Surface-acoustic-wave (saw) filter with an electrical conductor having a floating potential

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160963A (en) * 1977-07-21 1979-07-10 Texas Instruments Incorporated Plural supply path acoustic surface wave device
JPS5654114A (en) * 1979-10-11 1981-05-14 Nec Corp Reed screen shape converter of elastic surface wave
JPS5976131U (en) * 1982-11-12 1984-05-23 沖電気工業株式会社 Surface acoustic wave “ro” wave device
DE10309250A1 (en) * 2003-03-03 2004-09-16 Epcos Ag Electroacoustic transducer for component working with surface waves
JP2007507130A (en) * 2003-07-10 2007-03-22 エプコス アクチエンゲゼルシャフト Transducer operated by sound waves in which lateral mode is suppressed

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1360235A (en) 1971-04-17 1974-07-17 Marconi Co Ltd Acoustic surface wave devices
DE2618210C3 (en) 1976-04-26 1980-03-13 Siemens Ag, 1000 Berlin Und 8000 Muenchen Converter electrodes for filters or delay lines based on the surface wave principle
JPS5635523A (en) * 1979-08-31 1981-04-08 Toshiba Corp Surface elastic wave element
US4918349A (en) * 1987-11-13 1990-04-17 Hitachi, Ltd. Surface acoustic wave device having apodized transducer provided with irregular pitch electrode group
JPH04122114A (en) * 1990-09-13 1992-04-22 Hitachi Ltd Surface acoustic wave device, its manufacture and communication equipment using the same
JPH0946163A (en) * 1995-07-31 1997-02-14 Kinseki Ltd Surface acoustic wave filter
JPH11225038A (en) * 1998-02-06 1999-08-17 Murata Mfg Co Ltd Surface acoustic wave device
DE102005029249A1 (en) 2005-06-23 2006-12-28 Epcos Ag SAW structure comprises a serial signal path arranged between an input gate and an output gate, a serial resonator arranged in a serial branch and having a converter with partial electrodes having regularly arranged electrode fingers
EP2239846B1 (en) 2006-03-17 2016-02-10 Murata Manufacturing Co., Ltd. Acoustic wave resonator
JP2009212580A (en) * 2008-02-29 2009-09-17 Murata Mfg Co Ltd Surface acoustic wave device and surface acoustic wave filter device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4160963A (en) * 1977-07-21 1979-07-10 Texas Instruments Incorporated Plural supply path acoustic surface wave device
JPS5654114A (en) * 1979-10-11 1981-05-14 Nec Corp Reed screen shape converter of elastic surface wave
JPS5976131U (en) * 1982-11-12 1984-05-23 沖電気工業株式会社 Surface acoustic wave “ro” wave device
DE10309250A1 (en) * 2003-03-03 2004-09-16 Epcos Ag Electroacoustic transducer for component working with surface waves
JP2007507130A (en) * 2003-07-10 2007-03-22 エプコス アクチエンゲゼルシャフト Transducer operated by sound waves in which lateral mode is suppressed

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130271242A1 (en) * 2010-10-20 2013-10-17 Epcos Ag Band rejection filter comprising a serial connection of at least two pi-elements
US9203375B2 (en) * 2010-10-20 2015-12-01 Epcos Ag Band rejection filter comprising a serial connection of at least two pi-elements
WO2023156107A1 (en) * 2022-02-15 2023-08-24 Rf360 Singapore Pte. Ltd. Surface-acoustic-wave (saw) filter with an electrical conductor having a floating potential

Also Published As

Publication number Publication date
JP5852132B2 (en) 2016-02-03
DE102010055628A1 (en) 2012-06-28
DE102010055628B4 (en) 2018-09-06
JP2014502809A (en) 2014-02-03

Similar Documents

Publication Publication Date Title
DE102006057340B4 (en) DMS filter with improved adaptation
DE112011100580B4 (en) Device for elastic waves
DE102016120337B4 (en) Band pass filter and duplexer
DE112010001174B4 (en) Branch filter for elastic waves
DE112008002922B4 (en) Chip type filter component
DE112012004096B4 (en) Signal separating device
DE102016105515B4 (en) surface acoustic wave filter
DE112009002361B4 (en) Filter device for elastic waves
DE10111959A1 (en) Transducer structure working with acoustic waves
DE102018131952A1 (en) Electroacoustic resonator with suppressed excitation of transverse slit modes and reduced transverse modes
DE112012000719B4 (en) Branch filter device for elastic waves
DE2133634C3 (en) Electrical filter based on the surface wave principle, method for its adjustment and filter filter
DE60127351T2 (en) Acoustic Surface Wave Filter with Longitudinal Coupling
WO2011144664A1 (en) Saw filter operating in a balanced/unbalanced manner
DE102010008774B4 (en) Microacoustic filter with compensated crosstalk and compensation method
DE102004020183A1 (en) Surface acoustic wave resonator filter with longitudinally coupled transducers
DE102019120942A1 (en) Electroacoustic resonator
DE112015004570B4 (en) Chain filter and duplexer
EP1537610B1 (en) Piezoelectric actuator
WO2012084460A1 (en) Electroacoustic resonator
DE102015107231B4 (en) Cascaded resonator
DE10057848B4 (en) Reactance filter with improved power compatibility
WO2012059401A2 (en) Ceramic multilayered component and method for producing a ceramic multilayered component
DE112019003092T5 (en) Resonator and filter
DE102018118003A1 (en) SAW device with an inclined resonator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11793407

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2013545156

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11793407

Country of ref document: EP

Kind code of ref document: A1