WO2012083835A1 - 二自由度操纵杆驱动试验装置及其安装方法和控制方法 - Google Patents

二自由度操纵杆驱动试验装置及其安装方法和控制方法 Download PDF

Info

Publication number
WO2012083835A1
WO2012083835A1 PCT/CN2011/084271 CN2011084271W WO2012083835A1 WO 2012083835 A1 WO2012083835 A1 WO 2012083835A1 CN 2011084271 W CN2011084271 W CN 2011084271W WO 2012083835 A1 WO2012083835 A1 WO 2012083835A1
Authority
WO
WIPO (PCT)
Prior art keywords
outer frame
joystick
inner frame
degree
freedom
Prior art date
Application number
PCT/CN2011/084271
Other languages
English (en)
French (fr)
Inventor
赵京洲
徐德胜
马显超
廖军辉
金荣深
田金强
Original Assignee
中国商用飞机有限责任公司
中国商用飞机有限责任公司上海飞机设计研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN 201010600749 external-priority patent/CN102141469B/zh
Priority claimed from CN2010106007434A external-priority patent/CN102141468B/zh
Application filed by 中国商用飞机有限责任公司, 中国商用飞机有限责任公司上海飞机设计研究院 filed Critical 中国商用飞机有限责任公司
Publication of WO2012083835A1 publication Critical patent/WO2012083835A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C13/00Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
    • B64C13/02Initiating means
    • B64C13/04Initiating means actuated personally
    • B64C13/042Initiating means actuated personally operated by hand
    • B64C13/0421Initiating means actuated personally operated by hand control sticks for primary flight controls
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B9/00Simulators for teaching or training purposes
    • G09B9/02Simulators for teaching or training purposes for teaching control of vehicles or other craft
    • G09B9/08Simulators for teaching or training purposes for teaching control of vehicles or other craft for teaching control of aircraft, e.g. Link trainer

Definitions

  • the present invention relates to a two-degree-of-freedom joystick driving test face device, and a mounting method and control method thereof. Background technique
  • the application of the sidebar operating mechanism on civil aircraft is a clear trend. Compared to the traditional central rod/disc maneuvering mode, the sidebar joystick has the following advantages: Light weight, saving installation space, easy disassembly to reduce maintenance costs, and reduce pilot workload.
  • Airbus Series The aircraft driving control system uses a passive sidebar mechanism as the steering input for the roll and pitch systems. The driver controls the aircraft's related axes by controlling the lateral and longitudinal movement of the sidebars.
  • the conventional side lever drive mechanism is a single degree of freedom joystick drive mechanism.
  • the linear actuator 61 drives the single degree of freedom joystick 62 to move back and forth by the connection clamp to realize the single freedom of the joystick 62.
  • Degree drive As exemplarily shown in FIG. 6, the linear actuator 61 drives the single degree of freedom joystick 62 to move back and forth by the connection clamp to realize the single freedom of the joystick 62. Degree drive.
  • the sidebar mechanism Since the sidebar mechanism has two axial freedoms of movement at the same time, it is a typical two-degree-of-freedom joystick.
  • the traditional single-degree-of-freedom joystick cannot realize the coupling motion between the two axial directions.
  • a new two-degree-of-freedom joystick drive test apparatus consisting of a mechanical part and a measurement and control system.
  • the mechanical part includes a mechanical table body, an outer frame, an inner frame, a joystick clamp, and a stress relieving mechanism.
  • the outer frame is a pitching motion platform
  • the inner frame For the roll motion platform, the roll and pitch direction motion trajectories are controlled by the roll motion platform (inner frame) and the pitch motion platform (outer frame), respectively.
  • the term "pitch” as used herein refers to the lowering (lowering) and heading (upward) movement of the aircraft, that is, the pivoting motion corresponding to the outer frame, and the "rolling" corresponds to the pivoting swing of the inner frame.
  • a method of mounting a joystick driving test apparatus comprising the steps of:
  • the rotation axis of the roll motion platform (inner frame) and the rotation axis of the pitch motion platform (outer frame) are perpendicularly intersected and halved each other; and the optical measurement is positioned to make the joystick horizontally
  • the roll and pitch axes coincide with the axis of rotation of the roll motion platform (inner frame) and the axis of rotation of the pitch motion platform (outer frame). This is to ensure that the radius of the movement point of the joystick fixture clamping point is equal to the movement radius of the joystick (the distance between the joystick rotation axis and the inner and outer frame rotation axes from the clamping point of the joystick clamp), that is, when the inner and outer frames are moved.
  • the method for mounting a two-degree-of-freedom joystick driving test apparatus further includes: providing a mechanical stopper at a joint of the inner and outer frames and a joint of the outer frame and the mechanical body to prevent the The joystick is broken during the movement of the joystick.
  • the method of mounting a two-degree-of-freedom joystick drive test apparatus further comprises: providing an outer frame motor on the outer frame to effect pivoting of the outer frame.
  • the method of mounting a two-degree-of-freedom joystick drive test apparatus further comprises: providing an inner frame motor on the inner frame for effecting pivoting of the inner frame.
  • the present invention can achieve two-axis coupling motion control of a single joystick mechanism, such as: driving the joystick to perform a pitch motion while rolling.
  • a single joystick mechanism such as: driving the joystick to perform a pitch motion while rolling.
  • the test command is issued to directly control the pitching motion platform (outer frame) to rotate, and when it rotates, the rotation axis of the roll motion platform (inner frame) on the pitching motion platform (outer frame) also moves.
  • the roll motion platform (inner frame) By controlling the roll motion platform (inner frame) to rotate, the control of the two degrees of freedom of the joystick can be realized.
  • the invention reduces the installation error by optical measurement; the stress caused by the mechanical error is eliminated by the stress relieving mechanism, thereby avoiding the interference of the two degrees of freedom of the joystick to the damaged joystick.
  • the joystick drive test device mounting method of the present invention further includes the step of providing a mechanical stop block at the inner and outer frames to prevent a sharp deflection during the movement of the joystick and to destroy the joystick.
  • the two-degree joystick driving test device further includes a measurement and control system, and the two-degree-of-freedom control of the joystick is realized by the measurement and control system, and the force-displacement characteristic and the output signal characteristic of the joystick are detected.
  • the joystick is mounted on the two-axis motion platform, and the joystick mechanism is driven to simultaneously perform the independent or coupled motion of the pitch axis and the roll axis; the shaft and the outer shaft of the joystick are ensured during installation.
  • the axis of rotation of the frame and the axis of rotation of the inner frame coincide with each other to avoid excessive stress on the joystick during the movement, resulting in damage to the joystick; a stress relief mechanism is used at the junction of the joystick and the inner frame to eliminate mechanical errors.
  • the joystick stress protects the joystick mechanism; mechanical stop blocks are placed at the inner and outer frames to prevent the steering lever from being damaged during the movement of the joystick.
  • the two-degree-of-freedom joystick motion platform provided by the joystick driving test device installation method according to the present invention has a simple structure and a small volume, and does not need to damage the structure of the joystick body, and does not affect the operating force characteristics of the joystick, and can realize the second control lever.
  • Degree of freedom coupling control Under the premise of not destroying the two-degree-of-freedom joystick body, the two-degree-of-freedom coupling motion control of the joystick is realized, and the mechanical locking or damage of the two-degree-of-freedom joystick during the movement is avoided, and the joystick force-displacement and output can be measured. Parameters such as signal characteristics.
  • a control method for a two-degree-of-freedom joystick driving test apparatus comprising the following steps:
  • the outer frame motor controller obtains the speed signal of the outer frame motor according to the position sensor of the outer frame motor itself, and obtains the rotation speed signal of the outer frame motor as the feedback value of the outer frame motor rotation frequency to the outer frame motor controller to realize the outer frame Speed closed loop control;
  • the outer frame motor controller determines the position of the outer frame according to the angle encoder on the outer frame motor, and inputs the position feedback signal as the outer frame to the outer frame motor controller to realize the closed-loop position control of the outer frame;
  • the outer frame motor controller tests the steering torque of the two-degree-of-freedom joystick according to the torque sensor between the outer frame motor and the outer frame, and as a feedback value of the force limit protection, real-time monitoring of the two-degree-of-freedom joystick during the movement Manipulating force
  • the inner frame motor controller inputs the control command to the inner frame motor driver to drive the inner frame motor to rotate;
  • the inner frame motor controller obtains the speed signal of the inner frame motor according to the position sensor of the inner frame motor itself, and inputs the speed signal of the inner frame motor as the feedback value of the inner frame motor rotation frequency to the inner frame motor controller to realize the inner frame Speed closed loop control;
  • the inner frame motor controller determines the position of the inner frame according to the angle encoder, and inputs the feedback signal as the inner frame position to the inner frame motor controller to realize the closed-loop position control of the inner frame;
  • the inner frame motor controller tests the steering torque of the two-degree-of-freedom joystick according to the torque sensor between the inner frame motor and the inner frame, and as a feedback value of the force limit protection, real-time monitoring of the two-degree-of-freedom joystick during the movement Manipulating power
  • DRAWINGS 1 is a perspective view of a two-degree-of-freedom joystick driving test apparatus according to the present invention
  • FIG. 2 is a schematic view showing the working principle of a mechanical part of a two-degree-of-freedom joystick driving test apparatus according to the present invention
  • Figure 3 is a flow chart showing the installation of the two-degree-of-freedom joystick driving test apparatus according to the present invention
  • Figure 4 is a control flow chart of the two-degree-of-freedom joystick driving test apparatus according to the present invention
  • Figure 5 is an optical measurement method for determining two degrees of freedom Schematic diagram of the joystick and the motion axes of the two motion platforms
  • FIG. 6 is a schematic diagram of a prior art single degree of freedom joystick drive mechanism.
  • Figure 1 shows a perspective view of the two-degree-of-freedom joystick drive.
  • the joystick driving test device includes a mechanical portion including a mechanical table body 1, an outer frame 21 and an outer frame motor 22, an inner frame 31, and an inner frame motor 32, and is operated.
  • the outer frame 21 is used to control the pitch axis
  • the inner frame 31 is used to control the roll axis.
  • the mechanical table 1 is used to mount the two-degree-of-freedom joystick 6 and the inner frame 31 and the outer frame 21. Outer frame
  • the pivot point of the rod can be in the form of a semi-circular frame or a box (including a full frame and a partial frame).
  • the full-round frame is used to drive the pitch (or roll) direction movement by the frame motor 22.
  • the mechanical table body 1 is one according to two The rectangular parallelepiped gantry designed by the mounting surface of the joystick can stably and reliably fix the two-degree-of-freedom joystick body on the mechanical table body 1.
  • Bearings are attached to both sides of the upper portion of the mechanical table body 1 for supporting the outer frame 21 and the outer frame motor 22.
  • the outer frame 21 and the bearing are rotatably mounted, and the diameter of the outer frame 21 matches the width of the mechanical base 1, one end is reliably connected to the mechanical base 1, one end is connected to the torque sensor, and the torque sensor and the shaft of the outer frame motor 22 are Connected, an angle encoder is also mounted on the outer frame motor 22.
  • the inner frame 31 and the inner frame motor 32 are mounted on the outer frame 21 by the inner frame support 33 (the mounting position thereof is ensured by the machining accuracy of the outer frame itself), the rotation axis of the inner frame 31 and the two-degree-of-freedom joystick 6
  • the roll or pitch axis intersects the pivot point of the two-degree-of-freedom joystick, and may be in the form of a semi-circular frame or a box (including a full frame and a partial frame), in this embodiment a semi-circular frame, driven by the inner frame motor 32. Roll or pitch motion.
  • a bearing is mounted on the outer frame 21 for supporting the inner frame 31 and the inner frame motor 32.
  • the inner frame 31 and the bearing are rotatably mounted, the diameter of the inner frame 31 is matched with the diameter of the outer frame 21, one end is reliably connected to the outer frame 21, one end is connected to the torque sensor, and the torque sensor is connected to the shaft of the inner frame motor 32.
  • An angle encoder is mounted on the inner frame motor 32. The axes of the inner and outer frame shafts are equally divided into each other.
  • the joystick clamp 4 is used to realize a transitional connection between the two-degree-of-freedom joystick and the inner frame, and the joystick clamp 4 is fixedly coupled to the joystick handle 7.
  • the joystick clamp 4 is designed such that the joystick 6 is reliably connected to the inner frame 21, and the rotation axis of the two-degree-of-freedom joystick 6 coincides with the axis of the inner and outer frame rotation axes to prevent the joystick from moving. The process is stuck.
  • the stress relieving mechanism 5 uses a sliding bearing and a bushing assembly to form a variable length connecting assembly for connecting the inner frame 31 and the inner frame motor 32 and
  • the lever clamp 4 is used to eliminate the stress between the inner frame 31 and the joystick clamp caused by mechanical installation and manufacturing errors during the movement.
  • the inner and outer frame motors select the appropriate size and torque depending on the size of the model.
  • the measurement and control system includes a host computer, a control system, and a test system.
  • the host computer uses a personal computer (PC), and its functions include keyboard input, LCD display, data communication and power supply voltage detection, data interaction and remote monitoring.
  • PC personal computer
  • the control system includes a signal source, a motor motion control card, and a digital/analog conversion card (D/A card).
  • D/A card digital/analog conversion card
  • A/D Card Analog/Digital Converter Card
  • Decoder Decoder
  • Ethernet Control Application.
  • A/D Card Analog/Digital Converter Card
  • Control Application responsible for the control command of the inner and outer frame motors by their own or external excitation signals according to the test requirements, real-time acquisition of the force, displacement and speed feedback of the inner and outer frame motors, and the force, displacement and speed closed loop for the inner and outer frame motors Control and realize the coupling motion of the two motors.
  • the test system includes an analog/digital conversion card (A/D card), a digital input/output card (DIO), a rotary variable differential sensor (RVDT) excitation/demodulation, and a test application. It is mainly responsible for real-time acquisition of parameters such as joystick manipulation force, manipulation displacement, output electric signal, etc. during the movement of the two-degree-of-freedom joystick, and plots the test curve and analyzes the test results.
  • A/D card analog/digital conversion card
  • DIO digital input/output card
  • RVDT rotary variable differential sensor
  • the combination of the mechanical part and the measurement and control system is realized by connecting the motor motion control card to the inner and outer frame motors.
  • the driving test device is provided with a mechanical stop block (not shown) at a joint of the inner and outer frames and a joint between the outer frame and the mechanical table body to prevent an acute occurrence during the movement of the joystick. It is worse than ⁇ .
  • Figure 4 shows the control flow chart for the two-degree-of-freedom joystick drive.
  • the control system sends a standard signal (sine, square wave, triangle wave) through the signal source or receives an external excitation signal from the analog/digital conversion card (D/A) channel to the outer frame motor motion control card, and the outer frame motor motion control card will control the signal.
  • Output to the outer frame motor driver drive the outer frame motor to rotate, and drive the outer frame movement.
  • the angle of the outer frame is collected by the angle decoder in real time
  • the output torque of the outer frame motor is collected by the torque sensor
  • the motor speed of the outer frame is detected by the speed measuring plate
  • the analog/digital conversion A/D conversion
  • Position of the two-degree-of-freedom joystick in the pitch or roll direction, speed closed loop control, and torque limit function Position of the two-degree-of-freedom joystick in the pitch or roll direction, speed closed loop control, and torque limit function.
  • the inner frame is controlled to realize the position of the two-degree-of-freedom joystick in the roll (or pitch) direction, the speed closed-loop control and the torque limit function.
  • the control system application performs coordinated control of the inner and outer frame motors according to the test requirements, and realizes the coupling movement of the two degrees of freedom of the joystick.
  • the test system detects the output signal characteristics of the joystick through RVDT excitation/demodulation, the A/D acquisition torque sensor output and the angular encoder's decoded output to obtain the joystick angle, and the DIO acquisition joystick.
  • the discrete signal of the output The test application analyzes and plots the acquired data.
  • the host computer communicates with other test equipment via Ethernet (RS232/485) for data interaction, coordinated control and remote monitoring.
  • Ethernet RS232/485
  • the following describes an embodiment of a two-degree-of-freedom joystick driving test device by way of a specific embodiment. Mounting method and drive control method.
  • the inner frame 3 1 , the inner frame motor 32 , the angle encoder and the torque sensor are installed, wherein the torque sensor is directly mounted between the inner frame 31 and the inner frame motor 32 for measuring the inner frame motor 32
  • the torque, angle encoder is used to measure the corner of the inner frame 31;
  • the optical measurement method is shown in Figure 5.
  • the operation process is as follows: Install a photosensitive spot on the neutral position of the two-degree-of-freedom joystick as the first point (set to point A), and determine the coordinates of point A by optical measuring instrument ( Xl,yl,zl), the joystick is moved to the second, third, respectively Four points (B, C, D), and determine the coordinates (x2, y2, z2) of the second point B of the coordinate, the coordinates of the third point C (x3, y3, z3), and the coordinates of the fourth point D ( x 4 , y4, z4), these four points A, B, C, D are not on the same plane.
  • 0 point is the joystick shaft position (pivot point).
  • the average value is taken by multiple measurements to reduce the measurement error.
  • the axes of the two motion platforms can be determined.
  • the drive control of the two-degree-of-freedom joystick 6 can be realized by controlling the movement of the inner and outer frames 21, 31.
  • the two-degree-of-freedom joystick is first subjected to a pitch sinusoidal motion for 5 cycles (amplitude 5 deg, frequency 0.1 Hz), and then controlled to perform a roll motion for 3 cycles (amplitude 3 deg, frequency 0.2). Hz).
  • the force protection limit is 100N.
  • the RVDT has an excitation voltage of 5V and a 16-bit A/D card for detecting the output signal of the joystick.
  • the rated output torque of the inner and outer frame motor and its reducer is not less than INm, the rated output speed is not less than 1000r/s, and the reduction ratio is not less than 10:1 (the inner and outer frame motor comes with position sensor),
  • the torque sensor range lONm on the frame motor has a linearity of not less than 0.5%, the angle encoder has a single-turn resolution of 14 bits, and the multi-turn resolution is 13 bits.
  • the joystick is mounted to the mechanical table body to control the slow and smooth full stroke motion, and the joystick pitch and roll steering force-angle curves are obtained.
  • the curve is analyzed to obtain the result: pitch and roll maneuvering force (100N), Pitch, roll control stroke (-35 ⁇ 35deg), pitch, roll start force (10N), pitch, roll gap (O.ldeg), pitch, roll gap friction (5N), pitch, roll Signal output joystick movement, through RVDT excitation / demodulation card and A / D card acquisition, -10-10V).
  • the outer frame motor controller inputs the control command to the outer frame motor driver to drive the outer frame motor to actuate;
  • the outer frame motor controller is based on the position sensor of the outer frame motor itself after passing through the speed measuring plate.
  • the speed signal to the outer frame motor is input to the outer frame motor controller as the feedback value of the outer frame motor rotation frequency to realize the closed-loop speed control of the outer frame to achieve the cycle requirement of 0.1 Hz;
  • the outer frame motor controller According to the angle encoder, the position of the outer frame is determined, and the feedback signal of the outer frame position is input to the outer frame motor controller to realize the closed-loop position control of the outer frame to achieve the amplitude requirement of 5 deg;
  • the outer frame motor controller tests the operating torque of the joystick according to the torque sensor between the outer frame motor and the outer frame, and serves as the feedback value of the force limit protection, and monitors the operating force of the joystick during the movement in real time to reach 100N. Force limits the requirements of protection.
  • the outer frame motor controller counts the outer frame motion cycle to achieve the motion requirement of 5 cycles;
  • the inner frame motor controller inputs the control command to the inner frame motor driver to drive the inner frame motor to move;
  • the inner frame motor controller obtains the rotation speed signal of the inner frame motor according to the position sensor of the inner frame motor itself, and inputs the rotation speed signal of the inner frame motor as the feedback value of the inner frame motor rotation frequency to the inner frame motor controller to realize the inner frame Speed closed-loop control to achieve a 0.2Hz cycle requirement; j) The inner frame motor controller determines the position of the inner frame according to the angle encoder, and inputs it as a feedback signal of the inner frame position to the inner frame motor controller to realize the inner frame Position closed loop control to achieve a 3 deg amplitude requirement;
  • the inner frame motor controller tests the operating torque of the joystick according to the torque sensor between the inner frame motor and the inner frame, and serves as the feedback value of the force limit protection, real-time monitoring the operating force of the joystick during the movement to achieve 100N force limit protection requirements.
  • the operating force and displacement characteristics of the roll and pitch motion of the joystick can be obtained by the test values of the angle encoder and the torque sensor on the inner and outer frames.
  • the mechanical part of the design of the joystick driving test device (including the mechanical table body, the outer frame, the inner frame, the joystick clamp) is firstly operated according to the specific two-degree-of-freedom manipulation of the shape of the hammer. , stress relief mechanism), after corresponding theoretical calculations And the actual measurement shows that the joystick test device can meet the condition of the two-degree-of-freedom movement of the joystick, and compared with the conventional driving device, the two-degree-of-freedom motion coupling control of the joystick can be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Control Devices (AREA)

Description

二自由度操纵杆驱动试验装置及其安装方法和控制方法 技术领域
本发明涉及一种二自由度操纵杆驱动试脸装置及其安装方法和控 制方法。 背景技术
侧杆操纵机构在民用飞机上的应用是一个明显的趋势。相对于传统 的中央杆 /盘操纵方式, 侧杆操纵杆具有如下优势: 重量轻、 节省安装 空间、 易于拆卸从而降低维护成本、 降低飞行员工作负荷等。 空客系列 飞机驾驶抢操纵系统采用了被动式侧杆机构作为横滚、俯仰系统的操纵 输入,驾驶员通过控制侧杆的横向、纵向运动实现对飞机相关轴的控制。
侧杆操纵杆的引入对侧杆的试验方法和设备也提出了新的要求。在 适航验证试验、 地面模拟试验中, 需要驱动侧杆来完成侧杆操纵力-位 移特性试验、 频响试验、 阶跃响应试验等项目, 并且还需要进行飞行试 验中的故障复现等工作。 因此需通过可控性强、 精度高、 稳定性好的驱 动机构驱动侧杆进行指定形式的运动, 以满足地面模拟试验的要求。
现有的侧杆驱动机构为单一自由度操纵杆驱动机构如图 6示例性所 示, 直线作动器 61通过连接夹具驱动单一自由度操纵杆 62进行前后运 动, 实现对操纵杆 62的单自由度驱动。
由于侧杆机构同时具有两个轴向的运动自由度,是一种典型的二自 由度操纵杆,采用传统的单一自由度的操纵杆无法实现两个轴向之间的 耦合运动, 无法验证侧杆轴向控制指令交叉耦合对飞机控制的影响。 发明内容
本发明的目的在于克服现有设计中所存在的上述缺点, 满足同时驱 动操纵杆机构进行两个轴向的精确耦合运动。
根据本发明的一个方面,提供了一种新的二自由度操纵杆驱动试验 装置, 由机械部分与测控系统组成。所述机械部分包括机械台体、外框、 内框、 操纵杆夹具、 应力消除机构。 其中, 外框为俯仰运动平台, 内框 为横滚运动平台,横滚和俯仰方向运动轨迹分别由横滚运动平台(内框) 和俯仰运动平台 (外框)控制。 这里所说的 "俯仰" 是指飞机的低头下 降(俯) 、 抬头上升 (仰)运动, 即对应于外框的枢转运动, "横滚" 对应于内框的枢转摆动。
根据本发明的另一方面,提供了一种操纵杆驱动试验装置的安装方 法, 包括如下步骤:
( 1 ) 将操纵杆安装于机械台体, 通过光学测量方法, 确定操纵杆的枢 转点;
( 2 ) 安装俯仰运动平台 (外框) , 借助于光学测量方法, 使俯仰运动 平台 (夕卜框) 的转轴经过操纵杆的枢转点;
( 3 ) 横滚运动平台 (内框) 安装于俯仰运动平台 (外框)上;
( 4 ) 通过光学测量方法, 使得横滚运动平台 (内框) 的旋转轴线和俯 仰运动平台 (外框) 的旋转轴线垂直相交、 互为等分; 并且通过光学测 量定位, 使得操纵杆的横滚和俯仰转轴与横滚运动平台 (内框)的旋转 轴线和俯仰运动平台 (外框)的旋转轴线三者交点重合。 这是保证操纵 杆夹具装夹点运动轨迹的半径与操纵杆运动半径(操纵杆转轴与内、 外 框转轴的交点距操纵杆夹具装夹点的距离)相等, 即保证内、 外框运动 时与操纵杆不产生机械卡死的措施之一。
( 5 ) 在操纵杆定位后, 通过操纵杆夹具, 将操纵杆手柄与横滚运动 平台 (内框)连接, 并连接应力消除机构, 以消除因机械误差引起的应 力。 这是保证内、 外框运动时与操纵杆不产生机械卡死的另一个措施。
优选地,根据本发明的二自由度操纵杆驱动试验装置的安装方法还 包括, 在所述内、 外框的连接处和外框与机械台体的连接处设置机械止 动块, 防止在所述操纵杆运动过程中产生急偏而破坏。
优选地,根据本发明的二自由度操纵杆驱动试验装置的安装方法还 包括, 在所述外框上设置外框电机, 以实现所述外框的枢转。
优选地,根据本发明的二自由度操纵杆驱动试验装置的安装方法还 包括, 在所述内框上设置内框电机, 用于实现所述内框的枢转。
由此, 本发明可以实现对单个操纵杆机构的两个轴向进行耦合运动 控制, 比如: 驱动操纵杆在横滚运动的同时进行俯仰运动。 可以根据试 验需求发出指令信号, 直接控制俯仰运动平台 (外框)进行转动, 在其 转动时, 俯仰运动平台 (外框)上的横滚运动平台 (内框) 的旋转轴线 也随之运动, 此时通过控制横滚运动平台 (内框)转动, 即可实现对操 纵杆两个自由度运动的控制。
本发明通过光学测量减少安装误差; 通过应力消除机构消除因机械 误差引起的应力,从而避免了操纵杆两个自由度运动的干涉及损坏操纵 杆。
优选地, 本发明的操纵杆驱动试验装置安装方法还包括在内、 外框 处设置机械止动块的步骤, 以防止在操纵杆运动过程中产生急偏而破坏 操纵杆。
进一步地, 在二自由度操纵杆驱动试验装置安装完成后, 通过控制 内、 外框的运动, 还可以实现对二自由度操纵杆的驱动控制。 所述二自 由度操纵杆驱动试验装置还包括测控系统,通过所述测控系统实现对操 纵杆的二自由度控制, 对操纵杆力 -位移特性、 输出信号特性的检测。
根据本发明的操纵杆驱动试验装置安装方法,将操纵杆安装在两轴 运动平台上, 驱动操纵杆机构同时进行俯仰轴和横滚轴独立或耦合运 动; 在安装时保证操纵杆的转轴与外框的旋转轴线、 内框的旋转轴线交 点重合, 避免操纵杆在运动过程中产生过大应力, 导致操纵杆损坏; 在 操纵杆与内框的连接处采用应力消除机构消除因机械误差而产生的操 纵杆应力, 保护操纵杆机构; 在内、 外框处设置机械止动块, 防止在操 纵杆运动过程中产生急偏而破坏操纵杆。
根据本发明的操纵杆驱动试验装置安装方法提供的二自由度操纵 杆运动平台, 结构简单, 体积小, 无需破坏操纵杆本体结构, 不会影响 操纵杆操纵力特性, 可实现对操纵杆的二自由度耦合控制。 在无需破坏 二自由度操纵杆本体的前提下, 实现操纵杆的二自由度耦合运动控制, 避免二自由度操纵杆在运动过程出现机械卡死乃至损坏,可以测得操纵 杆力-位移、 输出信号特性等参数。
根据本发明的又一个方面,提供了二自由度操纵杆驱动试验装置的 控制方法, 包括如下步骤:
a) 通过信号源向外框电机控制器发送控制指令; b) 外框电机控制器将控制指令输入至外框电机驱动器, 驱动外框电 机转动;
c) 外框电机控制器根据外框电机本身的位置传感器经测速板后, 得 到外框电机的转速信号, 将其作为外框电机转动频率的反馈值输 入至外框电机控制器, 实现外框的速度闭环控制;
d)外框电机控制器根据外框电机上的角度编码器确定外框的位置, 将其作为外框的位置反馈信号输入至外框电机控制器, 实现外框 的位置闭环控制;
e) 外框电机控制器根据外框电机与外框之间的扭矩传感器, 测试二 自由度操纵杆的操纵力矩, 并作为力限制保护的反馈值, 实时监 测二自由度操纵杆在运动过程中操纵力;
f) 由外框电机控制器对外框运动周期进行计数;
g)通过信号源向内框电机控制器发送控制指令;
h) 内框电机控制器将控制指令输入至内框电机驱动器, 驱动内框电 机转动;
i) 内框电机控制器根据内框电机本身的位置传感器经测速板后, 得 到内框电机的转速信号, 将其作为内框电机转动频率的反馈值输 入至内框电机控制器, 实现内框的速度闭环控制;
j) 内框电机控制器根据角度编码器确定内框的位置, 将其作为内框 位置的反馈信号输入至内框电机控制器, 实现内框的位置闭环控 制;
k) 内框电机控制器根据内框电机与内框之间的扭矩传感器, 测试二 自由度操纵杆的操纵力矩, 并作为力限制保护的反馈值, 实时监 测二自由度操纵杆在运动过程中的操纵力;
1) 由内框电机控制器对内框运动周期进行计数;
m)在所述二自由度操纵杆整个运动过程中, 通过内、 外框上角度编 码器及扭矩传感器的测试值, 便可得到二自由度操纵杆运动的操 纵力、 位移特性。 附图说明 图 1为根据本发明的二自由度操纵杆驱动试验装置的立体示意图; 图 2为根据本发明的二自由度操纵杆驱动试验装置的机械部分工作 原理示意图;
图 3为根据本发明的二自由度操纵杆驱动试验装置的安装流程图; 图 4为根据本发明的二自由度操纵杆驱动试验装置的控制流程图; 图 5为光学测量法确定二自由度操纵杆、 两个运动平台运动轴线的 原理图;
图 6为现有技术的单一自由度操纵杆驱动机构示意图。
附图标记说明
1一机械台体 21—外框 22—外框电机 23—外框支座
31—内框 32—内框电机 33—内框支座
4—操纵杆夹具 5—应力消除机构 6—操纵杆 7—操纵 杆手柄
一外框 21的转轴 L2—内框 31的转轴
61—直线作动器 62—单一自由度操纵杆。 具体实施方式
以下结合实施例对本发明作进一步详细说明。
图 1给出了二自由度操纵杆驱动装置的立体示意图。在本发明的一 个实施方式中, 操纵杆驱动试验装置包括机械部分和测控系统, 所述机 械部分包括机械台体 1、外框 21及外框电机 22、内框 31及内框电机 32、 操纵杆夹具 4、 应力消除机构 5 , 其中外框电机 22和内框电机 32分别 包含减速器、 扭矩传感器、 角度编码器 (图中未示出) 。 其中外框 21 用于控制俯仰轴, 内框 31用于控制横滚轴。
机械台体 1用于安装二自由度操纵杆 6及内框 31、 外框 21。 外框
21及外框电机 22通过外框支座 23 (位置可调整)转轴固定于机械台体 1 , 所述外框 21的转轴与操纵杆 6的俯仰(或者横滚)转轴相交于二自 由度操纵杆的枢转点, 可采用半圆框或者方框(包括全框和部分框)的 形式, 在本实施方式中采用全圆框的形式, 通过外框电机 22驱动俯仰 (或者横滚)方向运动。 在本实施方式中, 机械台体 1为一个根据二自 由度操纵杆安装面设计的长方体台架, 可将二自由度操纵杆本体稳定、 可靠地固定在机械台体 1上。 在机械台体 1的上部两侧安装有轴承, 用 来支承外框 21及外框电机 22。外框 21与轴承安装后能够转动自如,外 框 21的直径与机械台体 1的宽度相配合, 一端与机械台体 1可靠连接, 一端与扭矩传感器连接, 扭矩传感器与外框电机 22的轴相连接, 外框 电机 22上还安装有角度编码器。
内框 31及内框电机 32通过内框支座 33(其安装位置通过外框本身 的加工精度来保证) 转轴安装于外框 21 , 所述内框 31的转轴与二自由 度操纵杆 6的横滚或者俯仰转轴相交于二自由度操纵杆的枢转点,可采 用半圓框或者方框(包括全框和部分框)的形式, 在本实施方式中为半 圆框, 通过内框电机 32驱动横滚或者俯仰方向运动。 在本发明的一个 实施方式中,在外框 21上安装有轴承,用来支承内框 31及内框电机 32。 内框 31与轴承安装后能够转动自如, 内框 31的直径与外框 21的直径 相配合, 一端与外框 21可靠连接, 一端与扭矩传感器连接, 扭矩传感 器与内框电机 32的轴相连接, 内框电机 32上安装有角度编码器。 内、 外框转轴轴线相互垂直等分。
操纵杆夹具 4用以实现二自由度操纵杆与内框之间的过渡连接,操 纵杆夹具 4与操纵杆手柄 7固定连接。 根据操纵杆手柄 7的机械特点, 设计操纵杆夹具 4,使得操纵杆 6与内框 21可靠连接,二自由度操纵杆 6的转轴与内、 外框转轴轴线交点重合, 以避免操纵杆在运动过程中卡 死。
在本实施方式中, 在操纵杆与内框的连接处, 应力消除机构 5釆用 带有滑动轴承、 轴套组件形成可变长度的连接组件, 用于连接内框 31 及内框电机 32和操纵杆夹具 4,用以消除在运动过程中由机械安装及制 造误差引起的内框 31与操纵杆夹具之间的应力。 内、 外框电机根据模 型的大小选择合适的大小和扭矩。
测控系统包括上位机、 控制系统和测试系统。
上位机采用个人计算机(PC机) , 其功能包括键盘输入、 LCD显 示、 数据通讯和电源电压检测、 进行数据交互及远程监控。
控制系统包括信号源、 电机运动控制卡、 数 /模转换卡 (D/A卡) 、 模 /数转换卡(A/D卡) 、 解码器、 以太网、 控制应用程序。 负责根据试 验要求, 由自身或者外部激励信号发出对内、 外框电机的控制指令, 实 时采集内、 外框电机的力、 位移、 速度反馈, 对内、 外框电机进行力、 位移、 速度闭环控制, 并实现两个电机的耦合运动。
测试系统包括模 /数转换卡( A/D卡)、 数字量输入输出卡( DIO ) 、 旋转可变差动传感器(RVDT )激励 /解调、 测试应用程序。 主要负责在 二自由度操纵杆运动过程中, 实时采集操纵杆操纵力、 操纵位移、 输出 电信号.等参数, 并绘制试验曲线, 分析试验结果。
机械部分与测控系统的结合通过电机运动控制卡与内、外框电机连 接实现。 所述驱动试验装置在所述内、 外框的连接处和外框与机械台体 的连接处设置有机械止动块(图中未示出) , 防止在所述操纵杆运动过 程中产生急偏而^^坏。
图 4给出了二自由度操纵杆驱动装置的控制流程图。控制系统通过 信号源发出标准信号(正弦、 方波、 三角波)或者由模 /数转换卡(D/A ) 通道接收外部激励信号至外框电机运动控制卡,外框电机运动控制卡将 控制信号输出至外框电机驱动器, 驱动外框电机转动, 带动外框运动。 同时, 实时通过角度解码器采集外框的角度, 通过扭矩传感器采集外框 电机的输出力矩, 通过测速板检测外框电机转速, 经模 /数转换(A/D 转换)作为控制反馈, 实现对二自由度操纵杆俯仰或横滚方向的位置、 速度闭环控制和力矩限制功能。 同理, 控制内框以实现对二自由度操纵 杆横滚(或俯仰)方向的位置、 速度闭环控制和力矩限制功能。 控制系 统应用程序按照试验要求对内、 外框电机进行协调控制, 实现操纵杆两 个自由度的耦合运动。
在二自由度操纵扞运动过程中 , 测试系统通过 RVDT激励 /解调检 测操纵杆的输出信号特性, A/D采集扭矩传感器输出和角度编码器的解 码输出以得到操纵杆角度, DIO采集操纵杆的输出的离散量信号。 测试 应用程序对采集的数据进行分析、 绘图。
上位机通过以太网 (RS232/485 ) 等与其它试验设备进行通讯的接 口, 以进行数据交互、 协调控制及远程监控。
以下通过具体实施例进行说明二自由度操纵杆驱动试验装置的安 装方法以及驱动控制方法。
其中, 将二自由度操纵杵安装至机械台体的具体步骤如下(参见图
2、 3、 5 ) :
a)在机械台体 1上安装二自由度操纵杆 6;
b) 通过光学测量方法,确定该操纵杆 6的枢转位置,记作: O ( x0, yo ' z0 ) ;
c)安装外框 21、 外框电机 22、 角度编码器、 扭矩传感器, 其中扭 矩传感器直接安装于外框 21 与外框电机 22之间用于测量外框电机 22 的扭矩, 角度编码器用于测量外框 21的转角;
d) 通过光学测量方法, 确定外框 21的转轴 ;
e)判断 是否经过 0点;
f)若否, 则重新调整安装外框等部件;
g) 若是经过 0点, 则安装内框 3 1、 内框电机 32、 角度编码器、 扭矩传感器,其中扭矩传感器直接安装于内框 31与内框电机 32之间用 于测量内框电机 32的扭矩, 角度编码器用于测量内框 3 1的转角;
h) 通过光学测量方法, 确定内框 3 1的转轴 L2;
i)判断 L2是否经过 0点;
j)若否, 则重新调整安装内框等部件;
k) 若是经过 0点,则判断 L p L2是否垂直等分相交且交点与 0 点重合;
1)若否, 则重新调整内、 外框及内外框电机等部件;
m) 若是, 则通过操纵杆夹具及应力消除机构 5 , 连接操纵杆 6与 内框 31 ;
n) 手动全行程运动内、 外框 21、 3 1 ;
0) 判断操纵杆 6在应力消除机构 5中上下运动是否超过 1mm; p) 若是, 则重新调整外框等安装;
q) 若否, 则结束操纵杆的安装。
其中, 光学测量方法如图 5所示, 操作过程如下: 在二自由度操纵 杆的中立位置上安装一个感光点, 作为第一点(设为 A点), 通过光学 测量仪确定 A点坐标 (xl,yl ,zl ) , 操纵操纵杆分别运动到第二、 三、 四点 (B、 C、 D ) , 并确定坐标第二点 B的坐标 (x2,y2,z2 ) 、 第三点 C的坐标 ( x3,y3,z3 ) 、 第四点 D的坐标 ( x4,y4,z4 ) , 这四个点 A、 B、 C、 D不在同一平面上。 求出第一个三角形 ΔΑΒϋ和第二个三角形 ABCD 的第一、第二外心 01 , 02,过所述第一、第二外心 01、 02分别做 ΔΑΒϋ 和 ABCD的法线, 相交于 0点, 0点即为操纵杆转轴位置 (枢转点) 。 通过多次测量取均值,减少测量误差。在同一坐标系下,使用相似方法, 可以确定两个运动平台的轴线。 在进行安装时, 实时根据光学测量仪及 后续的计算结果进行调整。
然后, 在二自由度操纵杆驱动试验装置安装完成后, 通过控制内、 外框 21、 31的运动, 就可以实现对二自由度操纵杆 6的驱动控制。
在本发明的一个实施方式中,控制二自由度操纵杆先进行俯仰正弦 运动 5个周期 (幅值 5deg, 频率 0.1Hz ) , 再控制其进行横滚运动 3个 周期(幅值 3deg, 频率 0.2Hz )。 力值保护限均为 100N。 RVDT激励电 压为 5V, 并且采用 16位 A/D卡, 用于检测操纵杆输出电信号。 其中, 内、外框电机及其减速器的额定输出扭矩不小于 INm,额定输出转速不 低于 1000r/s, 减速比不低于 10: 1 (内、 外框电机自带位置传感器) , 内、 外框电机上的扭矩传感器量程 lONm, 线性度不低于 0.5%, 角度编 码器单圈分辨率 14位, 多圏分辨率为 13位。
将操纵杆安装至机械台体, 控制其进行緩慢、 平稳的全行程运动, 得到操纵杆俯仰、 横滚操纵力 -角度曲线, 分析该曲线得出结果: 俯仰、 横滚操纵力 ( 100N ) , 俯仰、 横滚操纵行程(-35〜35deg ) , 俯仰、 横 滚启动力 (10N ) , 俯仰、 横滚间隙 (O.ldeg ) , 俯仰、 横滚间隙摩擦 力 (5N ) , 俯仰、 横滚电信号输出操纵杆运动过程中, 通过 RVDT激 励 /解调卡和 A/D卡采集, -10-10V ) 。
具体的驱动控制方法步骤如下 (见图 4 ) :
a)通过信号源向外框电机控制器 (含外框电机运动控制卡的计算 机)发送正弦波控制指令;
b) 外框电机控制器将控制指令输入至外框电机驱动器,驱动外框 电机令动;
C)外框电机控制器根据外框电机本身的位置传感器经测速板后, 得 到外框电机的转速信号,将其作为外框电机转动频率的反馈值输入至外 框电机控制器, 实现外框的速度闭环控制, 以达到 0.1Hz的周期要求; d) 外框电机控制器根据角度编码器确定外框的位置,将其作为外 框位置的反馈信号输入至外框电机控制器, 实现外框的位置闭环控制, 以达到 5deg的幅值要求;
e)外框电机控制器根据外框电机与外框之间的扭矩传感器, 测试操 纵杆的操纵力矩, 并作为力限制保护的反馈值, 实时监测操纵杆在运动 过程中操纵力, 以达到 100N力限制保护的要求。
f)由外框电机控制器对外框运动周期进行计数, 以达到 5个周期的 运动要求;
g) 外框运动 5个周期后,通过信号源向内框电机控制器发送正弦 波控制指令;
h) 内框电机控制器将控制指令输入至内框电机驱动器,驱动内框 电机令动;
i)内框电机控制器根据内框电机本身的位置传感器经测速板后, 得 到内框电机的转速信号,将其作为内框电机转动频率的反馈值输入至内 框电机控制器, 实现内框的速度闭环控制, 以达到 0.2Hz的周期要求; j)内框电机控制器根据角度编码器确定内框的位置, 将其作为内框 位置的反馈信号输入至内框电机控制器, 实现内框的位置闭环控制, 以 达到 3deg的幅值要求;
k) 内框电机控制器根据内框电机与内框之间的扭矩传感器,测试 操纵杆的操纵力矩, 并作为力限制保护的反馈值, 实时监测操纵杆在运 动过程中的操纵力, 以达到 100N力限制保护的要求。
1)由内框电机控制器对内框运动周期进行计数, 以达到 3个周期的 运动要求;
m) 在操纵杆整个运动过程中,通过内、外框上角度编码器及扭矩 传感器的测试值,便可得到操纵杆横滚、俯仰运动的操纵力、位移特性。
根据本发明的操纵杆试猃装置在实际实施时,先根据具体的二自由 度操纵杵外形, 进行设计操纵杆驱动试验装置的机械部分(包含机械台 体、 外框、 内框、 操纵杆夹具、 应力消除机构) , 经过相应的理论计算 及实际测量,表明该操纵杆试验装置能够满足操纵杆二自由度运动的条 件, 与传统的驱动装置对比, 能够实现对操纵杆的二自由度运动耦合控 制。

Claims

权 利 要 求 书
1. 一种二自由度操纵杆驱动试验装置, 包括有机械部分, 所述机械部分 包括机械台体 (1 ) 、 外框(21 ) 、 内框(31 ) 、 操纵杆夹具 (4) 、 应力消除机构 (5 ) , 其中,
所述机械台体( 1 )用于安装所述操纵杆(6)及所述内框(31 )和 所述外框(21 ) ;
所述外框 (21 ) 可枢转地固定于所述机械台体(1 ) 上, 所述外框 (21 )的转轴与所述操纵杆(6) 的转轴相交于所述操纵杆(6) 的枢转 点;
所述内框 (31 ) 可枢转地安装于所述外框(21 ) , 所述内框(31 ) 的转轴与所述操纵杆 (6) 的转轴相交于所述操纵杆(6) 的枢转点; 所述操纵杆夹具 (4) 用以实现所述操纵杆与所述内框(31 )之间 的过渡连接, 所述操纵杆夹具 (4) 与操纵杆手柄 (7) 固定连接;
所述应力消除机构 ( 5 ) , 用于连接所述内框( 31 ) 和所述操纵杆 夹具 (4) , 用以消除在运动过程中由机械误差引起的所述内框(31 ) 与所述操纵杆夹具 (4)之间的应力。
2.如权利要求 1所述的二自由度操纵杆驱动试验装置, 其特征在于, 所 述驱动试验装置在所述内框( 21 )与所述外框(31 )的连接处和所述外 框 (31 ) 与所述机械台体 ( 1 ) 的连接处设置有机械止动块, 防止在所 述操纵杆运动过程中产生急偏而破坏。
3. 如权利要求 1或 2所述的二自由度操纵杆驱动试验装置,其特征在于, 所述应力消除机构 ( 5 )是仅有一个轴向运动自由度的结构。
4.如权利要求 3所述的二自由度操纵杆驱动试验装置,其特征在于, 所 述应力消除机构 (5 )是带有滑动轴承和轴套或者滚动轴承和轴套的结 „
5.如权利要求 1 -4之一所述的二自由度操纵杆驱动试验装置,其特征在 于,在所述外框(21 )上设置有外框电机(22 ) ,用于实现所述外框(21 ) 的枢转。
6. 如权利要求 1 -5之一所述的二自由度操纵杆驱动试验装置,其特征在 于,在所述内框(31 )上设置有内框电机(32 ) ,用于实现所述内框(31 ) 的枢转。
7. 如权利要求 1 -6之一所述的二自由度操纵杆驱动试验装置,其特征在 于, 所述外框 (21 ) 、 所述内框(31 ) 釆用圆框或者方框的形式。
8. 如权利要求 1 -7之一所述的二自由度操纵杆驱动试验装置,其特征在 于, 所述二自由度操纵杆驱动试验装置还包括测控系统, 所述测控系统 包括上位机、 控制系统和测试系统, 其中,
所述上位机的功能包括键盘输入、 LCD显示、数据通讯和电源电压 检测、 进行数据交互及远程监控; 所述控制系统由自身或者外部激励信 号发出对所述内框电机和所述外框电机的控制指令, 实时采集所述内框 电机和所述外框电机的力、 位移、 速度反馈, 对所述内、 外框电机进行 力、 位移、 速度闭环控制, 并实现所述内、 外框电机的耦合运动; 所述 测试系统在所述操纵杆运动过程中,实时釆集操纵杆操纵力、操纵位移、 输出电信号, 并绘制试验曲线, 分析试验结果。
9. 如前述权利要求 8 所述的二自由度操纵杆驱动试验装置, 其特征在 于, 所述上位机釆用个人计算机。
10.如前述权利要求 8或 9所述的二自由度操纵杆驱动试验装置, 其特 征在于,所述控制系统包括信号源、 内框电机控制器、外框电机控制器、 模 /数转换卡、 数 /模转换卡、 角度解码器、 以太网、 控制应用程序, 所 述机械部分与所述测控系统的结合通过内、 外框电机控制器与所述内、 外框电机连接实现。
11.如前述权利要求 8-10之一所述的二自由度操纵杆驱动试验装置, 其 特征在于, 所述测试系统包括模 /数转换卡、 数字量输入输出卡、 旋转 可变差动传感器激励 /解调、 测试应用程序。
12.—种安装如权利要求 1-11之一所述二自由度操纵杆驱动试验装置的 方法, 包括如下步骤:
( 1 ) 将二自由度操纵杆安装于所述机械台体( 1 ) , 通过光学测量方 法, 确定所述二自由度操纵杆的枢转点;
(2) 安装所述外框(21 ) , 借助于步骤( 1 )中类似的光学测量方法, 使所述外框(21 ) 的转轴经过所述二自由度操纵杆的枢转点;
(3) 将所述内框 (31 ) 安装于所述外框(21 ) 上;
(4) 通过借助于步骤( 1 )中类似的光学测量方法,使得所述内框(31 ) 的旋转轴线和所述外框(21 )的旋转轴线垂直相交、 互为等分, 使得所 述二自由度操纵杆的转轴与所述内框( 31 )的旋转轴线和所述外框( 21 ) 的旋转轴线三者交点重合;
(5) 在所述二自由度操纵杆定位后, 通过所述操纵杆夹具(4) , 将 操纵杆手柄与所述内框 (31) 连接, 并连接所述应力消除机构 (5) , 以消除因机械误差引起的应力。
13.如权利要求 12所述的安装方法, 其特征在于, 步骤(1) 中的所述 光学测量方法如下: 在二自由度操纵杆的中立位置上安装一个感光点作 为第一点 (A) , 通过光学测量仪确定该第一点 (A) 的坐标, 将所述 二自由度操纵杆运动到第二、 第三、 第四点 (B、 C、 D) , 并确定所述 第二、 第三、 第四点(B、 C、 D)的坐标, 所述四个点不在同一平面上, 其中所述第二点 (B)与所述第一点 (A) 、 所述第四点 (D)形成第一 个三角形 (ΔΑΒΙ〕) , 和所述第二点 (B) 与所述第三点 (C) 、 所述第 四点 (D) 形成第二个三角形 (ABCD) , 分别求出所述第一个三角形 (△ABD)和所述第二个三角形 BCD)的第一、 第二外心(01、 02) , 过所述第一、 第二外心 (01、 02)分别作所述第一个三角形 (AABD) 和所述第二个三角形 (ABCD ) 的法线, 所述法线的交点即为所述二自 由度操纵杆的枢转点。
14.如权利要求 12或 13所述的安装方法, 其特征在于, 还包括在所述 内框( 21 )与所述外框(31 ) 的连接处和所述外框(31 )与所述机械台 体 (1 ) 的连接处设置机械止动块, 防止在所述二自由度操纵杆运动过 程中产生急偏而破坏。
15.如权利要求 12-14之一所述的安装方法,其特征在于,还包括在所述 外框(21 )上设置外框电机(22 ) 的步驟, 以实现所述外框(21 ) 的枢 转, 所述外框电机(22 ) 包含减速器、 扭矩传感器、 角度编码器。
16.如权利要求 15所述的二自由度操纵杆驱动试验装置的安装方法, 其 特征在于, 还包括在所述内框(31 )上设置内框电机(32 ) , 用于实现 所述内框(31 )的枢转, 所述内框电机(32 )包含减速器、 扭矩传感器、 角度编码器。
17.—种控制如权利要求 1-1 1之一所述二自由度操纵杆驱动试验装置的 方法, 包括如下步驟:
a) 通过信号源向外框电机控制器发送控制指令;
b) 外框电机控制器将控制指令输入至外框电机驱动器, 驱动所述外框 电机 ( 22 )转动;
c) 外框电机控制器根据所述外框电机 (22 ) 本身的位置传感器经测速 板后, 得到所述外框电机(22 ) 的转速信号, 将其作为外框电机转 动频率的反馈值输入至外框电机控制器, 实现所述外框(21 ) 的速 度闭环控制;
d) 外框电机控制器根据所述外框电机(22 ) 上的角度编码器确定所述 外框 (21 ) 的位置, 将其作为所述外框 (21 ) 的位置反馈信号输入 至外框电机控制器, 实现所述外框(21 ) 的位置闭环控制;
e) 外框电机控制器根据所述外框电机(22 ) 与所述外框 (21 )之间的 扭矩传感器, 测试所述二自由度操纵杆的操纵力矩, 并作为力限制 保护的反馈值, 实时监测所述二自由度操纵杆在运动过程中操纵力; f) 由外框电机控制器对所述外框(21 )运动周期进行计数;
g)通过信号源向内框电机控制器发送控制指令;
h) 内框电机控制器将控制指令输入至内框电机驱动器, 驱动所述内框 电机(32 ) 转动;
i) 内框电机控制器根据所述内框电机(32 ) 本身的位置传感器经测速 板后, 得到所述内框电机(32 ) 的转速信号, 将其作为内框电机转 动频率的反馈值输入至内框电机控制器, 实现所述内框 (31 ) 的速 度闭环控制;
j) 内框电机控制器根据角度编码器确定所述内框 (31 ) 的位置, 将其 作为内框位置的反馈信号输入至内框电机控制器, 实现所述内框 ( 31 ) 的位置闭环控制;
k) 内框电机控制器根据所述内框电机(32 ) 与所述内框 (31 )之间的 扭矩传感器, 测试所述二自由度操纵杆的操纵力矩, 并作为力限制 保护的反馈值, 实时监测所述二自由度操纵杆在运动过程中的操纵 力;
1) 由内框电机控制器对所述内框(31 )运动周期进行计数;
m)在所述二自由度操纵杆整个运动过程中, 通过所述内、 外框上角度 编码器及扭矩传感器的测试值, 便可得到所述二自由度操纵杆运动 的操纵力、 位移特性。
PCT/CN2011/084271 2010-12-20 2011-12-20 二自由度操纵杆驱动试验装置及其安装方法和控制方法 WO2012083835A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201010600743.4 2010-12-20
CN201010600749.1 2010-12-20
CN 201010600749 CN102141469B (zh) 2010-12-20 2010-12-20 一种二自由度操纵杆驱动试验装置的安装方法
CN2010106007434A CN102141468B (zh) 2010-12-20 2010-12-20 一种二自由度操纵杆驱动试验装置及其控制方法

Publications (1)

Publication Number Publication Date
WO2012083835A1 true WO2012083835A1 (zh) 2012-06-28

Family

ID=46313163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2011/084271 WO2012083835A1 (zh) 2010-12-20 2011-12-20 二自由度操纵杆驱动试验装置及其安装方法和控制方法

Country Status (1)

Country Link
WO (1) WO2012083835A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092190A (zh) * 2013-01-04 2013-05-08 中国商用飞机有限责任公司 一种用于侧杆控制器的操纵力自动检测系统
CN107967873A (zh) * 2017-12-26 2018-04-27 北京市星光凯明动感仿真模拟器中心 车辆事故人员逃生和救援的两轴运动平台及复合运动方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861269A (en) * 1988-03-30 1989-08-29 Grumman Aerospace Corporation Sidestick flight control simulator
EP0348816A2 (de) * 1988-06-30 1990-01-03 Bodenseewerk Gerätetechnik GmbH Digitaler Lagesignalgeber
US20080011905A1 (en) * 2006-07-12 2008-01-17 Airbus France Flight command and direction on ground command system for an aircraft
CN101528539A (zh) * 2007-08-08 2009-09-09 莫戈公司 适用于电传飞行控制系统的控制杆和用于其中的连杆
CN102141469A (zh) * 2010-12-20 2011-08-03 中国商用飞机有限责任公司 一种二自由度操纵杆驱动试验装置的安装方法
CN102141468A (zh) * 2010-12-20 2011-08-03 中国商用飞机有限责任公司 一种二自由度操纵杆驱动试验装置及其控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4861269A (en) * 1988-03-30 1989-08-29 Grumman Aerospace Corporation Sidestick flight control simulator
EP0348816A2 (de) * 1988-06-30 1990-01-03 Bodenseewerk Gerätetechnik GmbH Digitaler Lagesignalgeber
US20080011905A1 (en) * 2006-07-12 2008-01-17 Airbus France Flight command and direction on ground command system for an aircraft
CN101528539A (zh) * 2007-08-08 2009-09-09 莫戈公司 适用于电传飞行控制系统的控制杆和用于其中的连杆
CN102141469A (zh) * 2010-12-20 2011-08-03 中国商用飞机有限责任公司 一种二自由度操纵杆驱动试验装置的安装方法
CN102141468A (zh) * 2010-12-20 2011-08-03 中国商用飞机有限责任公司 一种二自由度操纵杆驱动试验装置及其控制方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103092190A (zh) * 2013-01-04 2013-05-08 中国商用飞机有限责任公司 一种用于侧杆控制器的操纵力自动检测系统
CN107967873A (zh) * 2017-12-26 2018-04-27 北京市星光凯明动感仿真模拟器中心 车辆事故人员逃生和救援的两轴运动平台及复合运动方法

Similar Documents

Publication Publication Date Title
WO2012083792A1 (zh) 一种二自由度操纵杆驱动试验装置及其控制方法
EP2662689B1 (en) Automated inspection of spar web in hollow monolithic structure
US11325816B2 (en) Independent drive motors for machinery positioning apparatus having independent lifting motors
CN202895235U (zh) 双向力反馈从手手臂控制装置
CN106314832B (zh) 基于单轴气浮台的多柔性悬臂梁耦合振动测控装置与方法
EP2589470B1 (en) Method and device for controlling mechanical articulated arm
CN103406908A (zh) 三自由度转动力反馈手控器
CN102141469B (zh) 一种二自由度操纵杆驱动试验装置的安装方法
US20210017002A1 (en) Overhead system for operator-robot task collaboration
CN102778895B (zh) 超重环境下精确定位控制系统采用的控制方法
CN103831832A (zh) 双向力反馈从手手臂控制装置
CN101829999A (zh) 一种宇航员空间活动可达域检测装置
CN208443578U (zh) 机器人用减速器角位移测量装置
EP3823884A1 (en) Motorized apparatus including articulated body
CN104298250A (zh) 一种具有两级伸缩丝杆的水听器自动升降回转机构
KR101220111B1 (ko) 백래쉬 측정장치
WO2012083835A1 (zh) 二自由度操纵杆驱动试验装置及其安装方法和控制方法
JPH0894305A (ja) 軸継手芯出し装置
WO2013000323A1 (zh) 卷扬行程的测控装置、方法及工程机械
CN109632292A (zh) 一种齿轮箱扭矩测试设备
CN205607348U (zh) 船舶推进及动力设备大型隔振系统对中监测装置
US10828779B2 (en) Diagnostic device for link actuation device
JP2001194269A (ja) トラクション試験方法とその装置
CN112212742A (zh) 一种新型目标模拟拟合运动台
CN103626060B (zh) 部件之间夹角的限位装置及起重机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11851690

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11851690

Country of ref document: EP

Kind code of ref document: A1