WO2012083720A1 - Dispositifs de surveillance en ligne en temps réel pour environnement électromagnétique - Google Patents
Dispositifs de surveillance en ligne en temps réel pour environnement électromagnétique Download PDFInfo
- Publication number
- WO2012083720A1 WO2012083720A1 PCT/CN2011/079104 CN2011079104W WO2012083720A1 WO 2012083720 A1 WO2012083720 A1 WO 2012083720A1 CN 2011079104 W CN2011079104 W CN 2011079104W WO 2012083720 A1 WO2012083720 A1 WO 2012083720A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- main controller
- power
- frequency electromagnetic
- power frequency
- time
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0864—Measuring electromagnetic field characteristics characterised by constructional or functional features
- G01R29/0871—Complete apparatus or systems; circuits, e.g. receivers or amplifiers
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R29/00—Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
- G01R29/08—Measuring electromagnetic field characteristics
- G01R29/0807—Measuring electromagnetic field characteristics characterised by the application
- G01R29/0814—Field measurements related to measuring influence on or from apparatus, components or humans, e.g. in ESD, EMI, EMC, EMP testing, measuring radiation leakage; detecting presence of micro- or radiowave emitters; dosimetry; testing shielding; measurements related to lightning
- G01R29/0857—Dosimetry, i.e. measuring the time integral of radiation intensity; Level warning devices for personal safety use
Definitions
- the invention belongs to the field of power frequency electromagnetic field environment monitoring, and particularly relates to a device for collecting electromagnetic environment data around a power transmission station project. Background technique
- the power frequency electromagnetic environment parameters mainly include power frequency electromagnetic field strength and power frequency magnetic induction intensity.
- the commonly used method is to measure the power frequency electromagnetic field strength and the magnetic induction intensity by using a hand-held measuring instrument. This method can quickly and easily measure the electromagnetic environment of the measured point.
- such special instruments are expensive, and some of the measured parameters are generally used for environmental monitoring and power sector analysis and research.
- the existing instruments do not have the power frequency electromagnetic environment monitoring function for the public to the public of the power station facilities.
- the external power supply interference shielding and field measurement are realized by the built-in battery in the measuring sensor. .
- the sensor or the host needs to be connected to the power source for charging, and in general, only a single amount of measurement can be made on the power frequency electromagnetic field strength or the magnetic induction intensity.
- manual operation is required, which is troublesome.
- the sensor automatic power supply technology is a technical problem to be solved in real time for real-time monitoring of the power frequency electromagnetic environment.
- the existing sensors mostly use the built-in battery as the power source, and the charging can generally achieve uninterrupted work for about 8-10 hours. If the cable is used for automatic charging, the charging cable is connected. When the sensor is not working, the induction error is large, and the maximum is up to several hundred times. In the case where the field value is small, the phenomenon that the error is introduced to cover the field value may occur. Therefore, how to solve the problem of shielding the charging power line after charging is completed is also a technical problem to be solved by the all-weather real-time online monitoring system. At the same time, as a real-time online monitoring system, it is necessary to have an accurate time system and automatic control capability to realize automatic work under unattended for a long time.
- the technical problem to be solved by the present invention is to provide a real-time online monitoring device for an electromagnetic environment, which can realize long-term power supply and automatic charging of a high-precision power frequency electromagnetic sensor and can effectively shield against defects and deficiencies in the foregoing background art.
- a real-time online monitoring device for electromagnetic environment comprising a main controller, a power frequency electromagnetic data acquisition unit, a time synchronization unit, a data processing unit and a power supply system;
- the power frequency electromagnetic data acquisition unit comprises a high precision power frequency electromagnetic sensor, a large capacity battery, a power management module and at least two physical isolators, the power management module comprising a DC/DC converter and a unidirectional diode; at least two physical isolations
- the input end is connected to the power supply system, the output end is connected to the positive pole of the unidirectional diode, and the negative pole of the unidirectional diode is connected to the input end of the DC/DC converter and the large-capacity battery, and the output end of the DC/DC converter is connected.
- High-precision power frequency electromagnetic sensor power input terminal, high-precision power frequency electromagnetic sensor is also connected to the main controller and large-capacity battery, and the measured electromagnetic field strength, magnetic induction intensity and remaining power are sent to the main controller under the control of the main controller. ;
- the time synchronization unit is connected to the main controller to send time data to the main controller;
- the data processing unit is connected to the main controller and stores data received by the main controller.
- the physical isolator includes a normally open relay and a three-terminal regulator, wherein the input end of the three-terminal regulator is connected to the normally open contact input end of the normally open relay, and is commonly connected to the output end of the power system, and three The output end of the terminal regulator is connected to the electromagnetic coil of the normally open relay, and the normally open contact output end of the normally open relay is connected to the positive pole of the unidirectional diode in the power management module.
- the power supply system includes a micro time switch and a charging device connected in sequence, wherein the micro time switch communicates with the main controller and is turned off under the control of the main controller; and the output connector of the charging device The input of the isolator.
- the time synchronization unit described above includes a GPS timing module that can receive time information via GPS.
- the above data processing unit is further connected to the display unit to display measurement data under the control of the main controller.
- Multi-point monitoring can be realized by adding a power frequency electromagnetic data acquisition unit.
- Figure 1 is an overall architectural view of the present invention
- FIG. 2 is a structural diagram of a power frequency electromagnetic data acquisition unit in the present invention
- FIG 3 is a block diagram of the system of the present invention. Detailed ways
- FIG. 1 is a schematic diagram of a main structure of a real-time online monitoring device for an electromagnetic environment according to the present invention, including a power frequency electromagnetic data acquisition unit 1, a time synchronization unit 2, a data processing unit 3, a power supply system 4, a main controller 5, and a display.
- a power frequency electromagnetic data acquisition unit 1 a time synchronization unit 2
- a data processing unit 3 a data processing unit 3
- a power supply system 4 a main controller 5
- main controller 5 main controller 5
- the power frequency electromagnetic data acquisition unit 1 includes a high-precision power frequency electromagnetic sensor 101, a large-capacity battery 102, a power management module 103, and at least two physical isolators 104, wherein the power management module 103 includes The DC/DC converter 103-1 and the unidirectional diode 103-2; at least two physical isolators 104 are connected in series, the input end of which is connected to the output end of the power supply system 4, and the output end is connected to the positive pole of the unidirectional diode 103-2.
- the cable is divided into several small segments, thereby reducing the introduction error and solving the problem of large interference error of the incoming cable; the negative pole of the unidirectional diode 103-2 is connected to the DC/DC converter 103-1.
- the input terminal and the large-capacity battery 102 ensure the unidirectional flow of current to the subsequent stage; and the output of the DC/DC converter 103-1 is connected to the power supply of the high-precision power frequency electromagnetic sensor 101. Into the end.
- the physical isolator 104 includes a normally open relay 104-1 and a three-terminal regulator 104-2; wherein the input of the three-terminal regulator 104-2 and the normally open relay 104-1
- the normally open contact input terminal is connected and connected to the output end of the power supply system 4, and the output end of the three-terminal regulator 103-4 is connected to the electromagnetic coil of the normally open relay 103-3, and the normally open relay 103-3
- the normally open contact output is connected to the positive terminal of the unidirectional diode 103-2.
- the time synchronization unit 2 is connected to the main controller 5, and includes a GPS timing module, which can receive time information through the GPS satellite and transmit it to the main controller 5 to complete the correction of the system time.
- the main controller 5 is also connected to the display unit 6 via the data processing unit 3, and the data processing unit 3 can store the data received by the main controller 5 and feed the data to the display unit 6 for display.
- the power system 4 includes a micro time switch 403 and a charging device 402 connected in sequence, wherein the micro time switch 403 is a time switch of a normally open contact, and can communicate with the main controller 5.
- the shutdown is performed under the control of the main controller 5; the other end of the micro-time switch 403 is connected to the charging device 402, and the output of the charging device 402 is connected to the input of the physical isolator 104 to provide power.
- the large-capacity battery 102 when the large-capacity battery 102 is fully charged, its output is converted by the over DC/DC converter 103-1, and the power supply is supplied to the high-precision power frequency electromagnetic sensor 101.
- the high-precision power frequency electromagnetic sensor 101 is a smart sensor, and the measured power frequency electromagnetic data is transmitted to the main controller 5 via the optical fiber 700.
- the transmission using the optical fiber 700 can effectively reduce interference, and the micro time switch 403 is The disconnected state, the charging device 402 connected thereto, and the physical isolator 104 are all in the disconnected state, and the power line is divided into several segments, which effectively reduces the interference of the cable introduction to the measuring unit, and the main controller 5 collects the respective units.
- the returned data is processed and sent to the display unit 6 for display.
- the high-precision power frequency electromagnetic sensor 101 is also connected to the large-capacity battery 102, and the remaining power of the large-capacity battery 102 can be measured according to the instruction of the main controller 5, and the measurement result is returned to the main controller 5 in real time; when the main controller 5 judges When the power of the large-capacity battery 102 is insufficient, the micro-time switch 403 is controlled to be turned off. At this time, the current is converted by the charging device 402 and enters the input end of the physical isolator 104, and the three-terminal regulator 103 in the physical isolator 104.
- the -4 operation causes the normally open relay 103-3 to be closed, and the current flows through the output of the physical isolator 104 to the input of the next physical isolator 104.
- the final charging current is mostly charged for the large capacity battery 102, and a small portion is supplied to the high.
- the power frequency electromagnetic sensor 101 is used for power supply; when the main controller 5 determines that the large-capacity battery 102 is fully charged, the signal is sent to turn off the micro-control switch 403, and then the charging device 402 and the physical isolator 104 are disconnected, and the charging cable is divided into several segments. .
- the current backflow of the pool 102 causes the normally-on relay 103-3 to be effectively disconnected, thereby affecting the effective disconnection of the physical isolator 104.
- the unidirectional diode 103-2 is introduced to ensure that the current of the large-capacity battery 102 is not Reflux, to achieve effective cutting.
- the electromagnetic environment real-time online monitoring device adds the control of the power system 4 and the main controller 5 on the basis of the traditional measuring and monitoring instrument, and introduces the GPS time to real-time publicize the monitoring data.
- the main controller 5 sends relevant instructions to the power frequency electromagnetic data collecting unit 1, and the power frequency electromagnetic data collecting unit 1 transmits the measured power frequency electromagnetic field strength or magnetic induction intensity to the main controller 5, and the main controller 5
- the time signal in the time synchronization unit 2 is read out in the same manner and processed.
- the data processing unit 3 continuously monitors the state of charge of the large-capacity battery 102 and simultaneously sends the power state to the main controller 5 for backup.
- the main controller 5 passes the micro-time control switch.
- the 403 controls its power-on system 4 to automatically charge the large-capacity battery 102. After the battery is fully charged, disconnect it.
- the present invention provides a detailed description of the electromagnetic environment real-time online monitoring device provided by the present invention.
- the principles and embodiments of the present invention are described herein using specific embodiments. The above description is applicable to the method for understanding the present invention and The present invention is not limited by the scope of the present invention, and the description of the present invention should not be construed as limiting the scope of the present invention.
Landscapes
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- General Physics & Mathematics (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
- Arrangements For Transmission Of Measured Signals (AREA)
Abstract
L'invention concerne un dispositif de surveillance en ligne en temps réel pour un environnement électromagnétique qui comporte un organe de commande principal (5), une unité d'acquisition (1) de données électromagnétiques de fréquence de courant, une unité de synchronisation temporelle (2), une unité de traitement de données (3) et un système d'alimentation (4) ; l'unité d'acquisition (1) de données électromagnétiques de fréquence de courant comprend un capteur électromagnétique haute précision de fréquences de courant (101), une batterie haute capacité (102), un module de gestion de puissance (103), qui comprend un convertisseur CC/CC (103-1) et une diode unilatérale (103-2), et au moins deux isolateurs physiques (104) ; les isolateurs physiques (104) sont reliés en succession, une extrémité d'entrée de ceux-ci étant reliée au système d'alimentation (4) tandis qu'une extrémité de sortie est reliée au pole positif de la diode unilatérale (103-2). Le pole négatif de la diode unilatérale (103-2) est relié au convertisseur CC/CC (103-1) et à la batterie haute capacité (102), tandis que l'extrémité de sortie du convertisseur CC/CC (103-1) est reliée à une extrémité d'entrée de puissance du capteur électromagnétique haute précision de fréquences de courant (101), le capteur électromagnétique haute précision de fréquences de courant (101) étant également relié à l'organe de commande principal (5) et à la batterie haute capacité (102). Le dispositif peut ainsi assurer une alimentation électrique longue durée et une recharge automatique pour le capteur électromagnétique haute précision de fréquences de courant, ainsi qu'une protection efficace de l'effet sur le résultat de mesure de la mise en connexion de lignes électriques.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN 201010600109 CN102109557B (zh) | 2010-12-22 | 2010-12-22 | 工频电磁数据实时在线监测装置 |
CN201010600109.0 | 2010-12-22 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2012083720A1 true WO2012083720A1 (fr) | 2012-06-28 |
Family
ID=44173768
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2011/079104 WO2012083720A1 (fr) | 2010-12-22 | 2011-08-30 | Dispositifs de surveillance en ligne en temps réel pour environnement électromagnétique |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN102109557B (fr) |
WO (1) | WO2012083720A1 (fr) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102109557B (zh) * | 2010-12-22 | 2013-04-17 | 东南大学 | 工频电磁数据实时在线监测装置 |
CN103258353A (zh) * | 2013-05-02 | 2013-08-21 | 无锡昶达信息技术有限公司 | 不停车收费系统射频收发模块 |
CN103335673A (zh) * | 2013-06-14 | 2013-10-02 | 武汉瑞莱保能源技术有限公司 | 基于Zigbee的多通道电磁环境监测装置 |
CN104730446B (zh) * | 2013-12-19 | 2018-01-23 | 致伸科技股份有限公司 | 电路板的测试系统 |
CN103823123B (zh) * | 2014-03-05 | 2016-04-27 | 江苏省电力公司盐城供电公司 | 供电线路全天候电磁实时监测系统 |
CN110955746B (zh) * | 2019-10-22 | 2022-03-22 | 中国科学院信息工程研究所 | 一种电磁数据收集处理装置及方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11311649A (ja) * | 1998-04-27 | 1999-11-09 | Ricoh Co Ltd | 近磁界プローブによる電磁ノイズ測定装置の電源または近磁界プローブを利用した入力装置の電源 |
KR100301184B1 (ko) * | 1998-11-11 | 2001-10-29 | 오우석 | 휴대용전자파측정장치 |
CN101452024A (zh) * | 2008-12-24 | 2009-06-10 | 北京航空航天大学 | 基于3s技术的移动式电磁环境监测系统 |
CN102109557A (zh) * | 2010-12-22 | 2011-06-29 | 东南大学 | 工频电磁数据实时在线监测装置 |
CN201974485U (zh) * | 2010-12-22 | 2011-09-14 | 东南大学 | 工频电磁数据实时在线监测装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN201218826Y (zh) * | 2007-08-01 | 2009-04-08 | 徐州福安科技有限公司 | 一种移动式多通道电磁辐射监测系统 |
CN101118256A (zh) * | 2007-08-24 | 2008-02-06 | 东南大学 | 便携式电磁辐射检测器 |
-
2010
- 2010-12-22 CN CN 201010600109 patent/CN102109557B/zh not_active Expired - Fee Related
-
2011
- 2011-08-30 WO PCT/CN2011/079104 patent/WO2012083720A1/fr active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11311649A (ja) * | 1998-04-27 | 1999-11-09 | Ricoh Co Ltd | 近磁界プローブによる電磁ノイズ測定装置の電源または近磁界プローブを利用した入力装置の電源 |
KR100301184B1 (ko) * | 1998-11-11 | 2001-10-29 | 오우석 | 휴대용전자파측정장치 |
CN101452024A (zh) * | 2008-12-24 | 2009-06-10 | 北京航空航天大学 | 基于3s技术的移动式电磁环境监测系统 |
CN102109557A (zh) * | 2010-12-22 | 2011-06-29 | 东南大学 | 工频电磁数据实时在线监测装置 |
CN201974485U (zh) * | 2010-12-22 | 2011-09-14 | 东南大学 | 工频电磁数据实时在线监测装置 |
Non-Patent Citations (2)
Title |
---|
ZHOU, RUIDONG ET AL.: "Design and application of vehicle-mounted environment electromagnetic radiation monitoring system based on GIS", MOBILE COMMUNICATIONS, vol. 2, December 2009 (2009-12-01), pages 19 - 22 * |
ZHU, CHUANHUAN: "Design of Electromagnetic Environment Monitoring System", METROLOGY & MEASUREMENT TECHNOLOGY, vol. 25, no. 1, February 2005 (2005-02-01), pages 12 - 15 * |
Also Published As
Publication number | Publication date |
---|---|
CN102109557B (zh) | 2013-04-17 |
CN102109557A (zh) | 2011-06-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN204575720U (zh) | 基于感应取电装置供电的输电线路电流监测装置 | |
WO2012083720A1 (fr) | Dispositifs de surveillance en ligne en temps réel pour environnement électromagnétique | |
CN204179752U (zh) | 一种通用智能配电自动化测控终端 | |
CN103472432A (zh) | 智能变电站电能计量二次回路实负荷误差检测装置及方法 | |
CN104165660A (zh) | 一种可计算绕组温度的配变智能监控终端 | |
CN205301569U (zh) | 一种基于移动终端的智能电表检测系统 | |
Zhao et al. | Research and thinking of friendly smart home energy system based on smart power | |
CN103335673A (zh) | 基于Zigbee的多通道电磁环境监测装置 | |
CN207764339U (zh) | 一种基于nb-iot通信的架空型故障定位装置 | |
CN111611755A (zh) | 一种智能互感器及其低功耗工作方式的设计方法 | |
CN203243056U (zh) | 中高压无功补偿复合结构 | |
CN204906004U (zh) | 一种网络分层分布式的智能区域电网 | |
CN204758133U (zh) | 一种配变温度监测与状态预警装置 | |
CN107171640A (zh) | 一种光伏组件监测装置及光伏发电系统 | |
CN107024615B (zh) | 一种直接接入式三维计量电能表 | |
CN102707174B (zh) | 电阻型超导限流器运行状态检测系统及检测方法 | |
CN104101806A (zh) | 基于arm和dsp的多回路电能质量在线监测装置 | |
CN201974485U (zh) | 工频电磁数据实时在线监测装置 | |
CN204374358U (zh) | 配电线路智能故障精确定位系统 | |
CN202565025U (zh) | 一种交流配电多回路监控系统 | |
CN102624091A (zh) | 一种交流配电多回路监控系统 | |
CN107402331A (zh) | 低压无线核相装置及其方法 | |
CN202614839U (zh) | 多路能耗采集装置 | |
CN204009048U (zh) | 基于传统互感器的智能站3/2接线母线无功功率校验仪 | |
Chen et al. | A low cost single phase PLC watt-hour meter based on SoC |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 11851093 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 11851093 Country of ref document: EP Kind code of ref document: A1 |