WO2012081718A1 - Performance prediction device, performance prediction method and performance prediction program - Google Patents

Performance prediction device, performance prediction method and performance prediction program Download PDF

Info

Publication number
WO2012081718A1
WO2012081718A1 PCT/JP2011/079276 JP2011079276W WO2012081718A1 WO 2012081718 A1 WO2012081718 A1 WO 2012081718A1 JP 2011079276 W JP2011079276 W JP 2011079276W WO 2012081718 A1 WO2012081718 A1 WO 2012081718A1
Authority
WO
WIPO (PCT)
Prior art keywords
performance
prediction
condition
value
values
Prior art date
Application number
PCT/JP2011/079276
Other languages
French (fr)
Japanese (ja)
Inventor
圭介 梅津
Original Assignee
日本電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電気株式会社 filed Critical 日本電気株式会社
Priority to JP2012548859A priority Critical patent/JPWO2012081718A1/en
Publication of WO2012081718A1 publication Critical patent/WO2012081718A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic

Definitions

  • the present invention relates to a performance prediction apparatus, a performance prediction method, and a performance prediction program.
  • a small terminal such as a mobile phone, a PHS (Personal Handy-phone System), a PDA (Personal Digital Assistant), or an in-vehicle device attached to a car is an example of a mobile terminal.
  • These mobile terminals generally have a connection function with a wireless communication line such as a 3G (3rd Generation) line, a PHS line, and a wireless LAN (Local Area Network). With this function, the mobile terminal can communicate with other information devices and access to the WWW (World Wide Web).
  • a situation such as a decrease in throughput or an offline state often occurs.
  • the information providing server of Patent Document 1 can be used for communication speed prediction.
  • the information providing server acquires information from the mobile terminal and stores measurement information including a position, a communication speed, and a communication condition.
  • the information providing server receives information specifying a predetermined position and communication condition from the mobile terminal, the information providing server includes one or more communication speeds measured around the predetermined position and under the communication condition from the stored measurement information.
  • the measurement information is extracted and returned to the mobile terminal.
  • the wireless communication terminal device of Patent Document 2 measures and displays the electric field strength of signals from other wireless communication terminals. This wireless communication terminal apparatus calculates a weighted average of electric field strengths at time T (n) and time T (n ⁇ 1) that is ⁇ T backward from the time.
  • An object of this invention is to enable the performance prediction which solves the said subject.
  • a performance prediction apparatus includes a log storage unit that stores, for each of a plurality of types of parameters, any one of a plurality of values that can be taken by the parameters of the type, and a plurality of records including the performance values.
  • the relaxation condition that is the combination having the highest reliability determined based on the number of the records of the log storage unit that matches the combination is determined,
  • a relaxation condition performance value is calculated from a performance value included in the record that matches the relaxation condition, and for each of the plurality of types of parameters, a prediction condition that is one of a plurality of values that the parameter of the type can take Input a correction relaxation condition property that is a multiplication value of a coefficient determined according to the difference between the prediction condition and the relaxation condition and the relaxation condition performance value It comprises performance prediction means for outputting the value as the predicted performance values.
  • the performance prediction program includes a log storage unit that stores, for each of a plurality of types of parameters, any one of a plurality of values that can be taken by the type of parameters, and a plurality of records including the performance values. Access and determine the relaxation condition that is the combination with the highest reliability determined based on the number of the records of the log storage unit that matches the combination among the values of the parameters of the plurality of types, A prediction condition that calculates a relaxation condition performance value from a performance value included in the record that matches the relaxation condition, and is one of a plurality of values that can be taken by the parameter of the type for each of the plurality of types of parameters.
  • the performance prediction method includes a log storage unit that stores, for each of a plurality of types of parameters, one of a plurality of values that can be taken by the parameter of the type and a plurality of records including the performance value.
  • a prediction condition that calculates a relaxation condition performance value from a performance value included in the record that matches the relaxation condition, and is one of a plurality of values that can be taken by the parameter of the type for each of the plurality of types of parameters.
  • the corrected relaxation condition which is a product of the coefficient determined according to the difference between the prediction condition and the relaxation condition, and the relaxation condition performance value. And it outputs the performance value as predicted performance values.
  • the structure of the performance prediction apparatus 10 of this Embodiment is shown.
  • the structure different from FIG. 1 of the performance prediction apparatus 10 of this Embodiment is shown.
  • storage part 11 is shown.
  • An example of the type of parameter 17 (parameter type) and possible values of parameter 17 are shown below.
  • An example of a weight is shown.
  • 3 is an operation flowchart of the performance prediction apparatus 10. It is a detailed operation
  • the performance prediction part 14 shows a mode that the position on a map is divided
  • a calculation method of the predicted performance value of the device at a future time, which is executed by the performance prediction unit 14, is expressed by a mathematical expression.
  • the structure of the performance prediction system 40 including the performance prediction apparatus 10 of 2nd Embodiment is shown.
  • the structure different from FIG. 10 of the performance prediction apparatus 10 of 2nd Embodiment is shown.
  • the structure of the performance prediction system 40 including the performance prediction apparatus 10 of 3rd Embodiment is shown.
  • the structure of the performance prediction apparatus 10 of 4th Embodiment is shown.
  • FIG. 1 shows a configuration of a performance prediction apparatus 10 according to the present embodiment.
  • the performance prediction apparatus 10 predicts the communication performance of a certain device at a future time.
  • the device is a moving communication device, and is typically a communication device mounted on a mobile phone, a smartphone, a PDA, a ship, a vehicle, or the like.
  • the performance prediction apparatus 10 may be built in a device to be predicted, or may exist in a location different from the device to be predicted.
  • the performance prediction apparatus 10 includes a log storage unit 11, a performance ratio calculation unit 12, a condition setting unit 13, and a performance prediction unit 14.
  • the log storage unit 11 stores, as a measurement log 15, data obtained by recording the performance of a device measured at a certain time point together with the situation where the device is placed at that time point.
  • FIG. 3 shows the measurement log 15 stored in the log storage unit 11.
  • FIG. 3 shows three measurement logs 15.
  • Each measurement log 15 stores, for example, five basic data 16 of measurement start date and time, measurement period, performance measurement result, latitude and longitude, and a plurality of types of parameters 17 such as model, weather, and temperature.
  • FIG. 4 shows examples of parameter 17 types (parameter types) and possible values of the parameter 17.
  • the information in FIG. 4 is stored in a memory or the like of the performance prediction apparatus 10.
  • Each measurement log 15 stores, for example, specific values (parameter values) of model A and model B corresponding to the parameter 17 of the parameter type “model”.
  • the parameter value of the parameter type that was unknown at the time of performance measurement is not stored in the measurement log 15.
  • the performance ratio calculation unit 12 calculates a performance ratio for each of two parameter values having different parameter types from the measurement log 15 stored in the log storage unit 11. At this time, the performance ratio calculation unit 12 ignores the parameter 17 and the basic data 16 other than the one parameter type.
  • the performance ratio calculation unit 12 calculates the ratio of the performance of the model A and the model B that are different parameter values of the parameter type “device”. At this time, the performance ratio calculation unit 12 extracts the measurement log 15 in which the parameter value of the parameter 17 of the type “device” is the model A, and calculates the average performance of the model A from the extracted measurement log 15. When the measurement log 15 is extracted, the performance ratio calculation unit 12 ignores the values of the parameter 17 and the basic data 16 other than the parameter value of the parameter type “device”.
  • the performance ratio calculation unit 12 extracts the measurement log 15 in which the parameter value of the parameter 17 of the type “equipment” is model B, calculates the average performance of the model B from the extracted measurement log 15, Calculate two ratios with the numerator and the other as the denominator. That is, the performance ratio calculated here is the performance ratio in the situation where the values of the parameter 17 of the parameter 17 of the type other than “model” are mixed.
  • the performance calculated by the performance ratio calculation unit 12 is a weighted average performance.
  • the weighted average performance is obtained by adding the performance measurement results of the measurement log 15 to be calculated to the weights that change depending on the measurement start date and taking the average.
  • FIG. 5 shows an example of the weight. The information in FIG.
  • the weight is a value that increases as the time difference between the measurement start time and the current time in the measurement log 15 decreases. That is, the value becomes larger as the measurement log 15 is newer.
  • the new measurement log 15 has a greater influence on the average performance value calculated than the old measurement log 15.
  • measured values of communication performance for example, communication throughput
  • the performance ratio calculation unit 12 increases the weight of the new measurement log 15 and calculates the average value of the communication throughput.
  • the performance prediction apparatus 10 can estimate the communication throughput reflecting the medium- to long-term change of the communication throughput.
  • the performance ratio calculation unit 12 calculates the weighted average performance of the measurement log 15 having the parameter values of the model A and the model B, respectively.
  • the performance ratio calculation unit 12 ignores the parameter 17 of a type other than the model and calculates the weighted average performance. As a result, the influence of the parameter 17 of a type other than the model on the weighted average performance is statistically reduced.
  • the performance ratio calculation unit 12 can obtain the weighted average performance that does not depend on the parameter 17 of a type other than the model.
  • the performance ratio calculation unit 12 calculates and stores a ratio of two performances for every two combinations of values that can be taken by the parameter 17 of the type for all parameter types.
  • the performance ratio calculation unit 12 calculates the ratio of the performance between a sunny day and a rainy day that is a parameter value of the parameter type “weather”, and when walking (indoors) that is the parameter value of the parameter type “reception environment”. The ratio of performance while moving a car is also calculated. When the performance ratio is known in advance, the performance ratio calculation unit 12 may not be provided.
  • the condition setting unit 13 determines a set of parameter values at a future time for which a predicted performance value is to be calculated as a prediction condition.
  • the condition setting unit 13 determines a parameter value of a situation where it is predicted that a terminal or the like to be predicted will be placed after 10 minutes.
  • the condition setting unit 13 acquires a prediction condition from the user via, for example, a connected input / output unit.
  • the condition setting unit 13 may store parameter values such as the parameter type “model” and “NW type” in advance.
  • the condition setting unit 13 may receive time or position from the user, and may acquire part or all of the prediction conditions from a weather forecast server, a terminal specification information presentation server, or the like based on the information.
  • the condition setting unit 13 may calculate some or all of the prediction conditions from certain data.
  • the condition setting unit 13 may estimate a parameter value such as the parameter type “reception environment” from the position information.
  • the condition setting unit 13 determines parameter values that cannot be acquired or estimated as invalid values.
  • the condition setting unit 13 may not be provided.
  • the performance prediction unit 14 calculates a predicted performance value based on the position input by the user or the like and the prediction condition determined by the condition setting unit 13.
  • the performance prediction unit 14 calculates a predicted performance value using the measurement log 15 stored in the log storage unit 11 and the performance ratio calculated by the performance ratio calculation unit 12.
  • the performance prediction part 14 does not need to input a position from the outside.
  • FIG. 2 shows a configuration different from that of FIG. 1 of the performance prediction apparatus 10 of the present embodiment.
  • the performance prediction apparatus 10 may be a computer that includes a CPU 21 (Central Processing Unit) and a storage device 22 and executes a performance prediction program 23 stored in the storage device 22.
  • the CPU 21 that executes the performance prediction program 23 functions as the performance ratio calculation unit 12, the condition setting unit 13, and the performance prediction unit 14.
  • the storage device 22 functions as the log storage unit 11.
  • the performance ratio calculation unit 12 calculates and stores a ratio of two performances for every two combinations of values that the parameter 17 of the type can take for all parameter types.
  • the performance ratio calculated here is a weighted average performance ratio.
  • the condition setting unit 13 sets a prediction condition at a future time (step S102).
  • the performance prediction unit 14 calculates a predicted performance value of the device under the prediction condition (step S103). An example of a method for calculating the predicted performance value will be described in detail with reference to FIG.
  • FIG. 7 is a detailed operation flowchart of the performance prediction unit 14 in step S103 of FIG.
  • the performance predicting unit 14 manages the position on the map by dividing it into sections that are divided vertically and horizontally as shown in FIG.
  • the performance prediction unit 14 first reads the latitude and longitude of the prediction conditions determined by the condition setting unit 13. Next, it is determined to which section on the map the point represented by the read latitude and longitude belongs (step S201). After the partition determination, the performance prediction unit 14 lists all the conditions combining the parameter values of the parameter types that are not invalid values as the relaxation conditions from the prediction conditions determined by the condition setting unit 13 (step S202). This operation will be described based on the following specific example. 1) The defined parameter types are “device”, “weather”, and “NW congestion degree”. 2) Possible values of the parameter 17 of the type “device” are ⁇ A, B, C ⁇ . 3) Possible values of the parameter 17 of the type “weather” are ⁇ clear, cloudy, rain ⁇ .
  • the prediction condition is (A, cloudiness, invalid value).
  • the performance prediction unit 14 lists the following combinations as relaxation conditions. (A, clear), (A, cloudy), (A, rain) (B, clear), (B, cloudy), (B, rain) (C, clear), (C, cloudy), (C, rain)
  • the performance prediction unit 14 calculates the prediction reliability for each listed relaxation condition (step S203).
  • the prediction reliability is the total weight of the measurement log 15 included in the section that satisfies the relaxation condition and is determined in step S201. As shown in FIG. 5, the weight is a value determined by the measurement start time.
  • the performance prediction unit 14 calculates the prediction reliability of the relaxation condition (B, clear) as follows. First, the performance prediction unit 14 is included in the section determined in step S201, and the parameter value of the parameter 17 of the type “model” is B and the parameter value of the parameter 17 of the type “weather” is clear. The log 15 is extracted from the log storage unit 11. At this time, the performance prediction unit 14 ignores other types of parameter values and values of the basic data 16 other than “latitude” and “longitude”. Next, the performance prediction unit 14 determines the weight of each measurement log 15 with reference to the definition information as shown in FIG.
  • the performance prediction unit 14 selects one relaxation condition having the highest predicted reliability from the listed relaxation conditions, and sets the predicted reliability of the relaxed condition as the predicted reliability in the relaxed condition (step S204).
  • the magnitude of the prediction reliability represents a tendency that the number of measurement logs 15 matching the condition is large and the freshness is high. Therefore, the performance prediction unit 14 can increase the reliability of the prediction by predicting the performance with respect to the relaxation condition having a high prediction reliability.
  • the performance prediction unit 14 calculates the prediction reliability of the prediction condition by the same method as in step S203 (step S205). The performance prediction unit 14 calculates the prediction reliability of the prediction condition using the measurement log 15 that satisfies the prediction condition and is included in the section determined in step S201.
  • the performance prediction unit 14 calculates a relaxation reliability ratio ⁇ and a prediction reliability ratio ⁇ that are ratios between the prediction reliability under the relaxation condition and the prediction reliability under the prediction condition (step S206).
  • the performance prediction unit 14 compares the relaxation condition selected in step S204 with the prediction condition, and extracts a combination of parameter values having different values. The invalid value parameter 17 is ignored.
  • the performance prediction unit 14 selects the ratio of the performance of “parameter value specified by the prediction condition” to “parameter value specified by the relaxation condition” for each combination, and calculates the ratio (step S207). ). For example, when the relaxation condition selected in step S204 is (C, clear) and the prediction condition is (A, cloudy, invalid value), the performance prediction unit 14 determines (C, A) and (clear, cloudy). A combination is extracted, the following two ratios are selected, and both are multiplied to calculate the ratio. 1) Performance ratio of model A to C (A / C) 2) Ratio of performance to cloudy weather (cloudy / sunny) Next, the performance prediction unit 14 obtains the weighted average performance A under the relaxation condition selected in Step 204 (Step S208).
  • the performance prediction unit 14 calculates using the measurement log 15 included in the section determined in step S201 while satisfying the relaxation condition.
  • the weighted average performance A under the relaxation condition is an average value obtained by multiplying the performance measurement result of the measurement log 15 satisfying the relaxation condition by the weight of each measurement log 15.
  • the average value is a value obtained by dividing the total value of values obtained by multiplying the performance measurement result of the measurement log 15 by the weight of each measurement log 15 by the total value of the weights.
  • the performance prediction unit 14 calculates the weighted average performance A of the relaxation condition (C, clear) selected in step S204 as follows.
  • the performance prediction unit 14 is included in the section determined in step S201, and the parameter value of the parameter 17 of the type “model” is C and the parameter value of the parameter 17 of the type “weather” is clear.
  • the log 15 is extracted from the log storage unit 11.
  • the performance prediction unit 14 ignores other types of parameter values and values of the basic data 16 other than “latitude” and “longitude”.
  • the performance prediction unit 14 refers to the definition information as shown in FIG. 5 and the “measurement start date and time” as the basic data 16, determines the weight for each of the extracted measurement logs 15, and determines the basic data 16. Multiplication with “performance measurement result” is obtained to obtain a multiplication value.
  • the performance prediction unit 14 obtains the sum of the multiplication values and the sum of the weights for the extracted measurement log 15 and divides the former by the latter to obtain the average performance A. In addition, the performance prediction unit 14 calculates the weighted average performance B under the prediction condition by the same method as in step S208 (step S209). Finally, the performance prediction unit 14 multiplies the weighted average performance A under the relaxation condition by the relaxation reliability ratio ⁇ and the performance ratio ratio, and the weighted average performance B under the prediction condition by the prediction reliability ratio ⁇ . Are added together and output as a predicted performance value of the device (step S210).
  • FIG. 9 shows, by mathematical formulas, a method for calculating a predicted performance value of a device at a future time, which is executed by the performance prediction unit 14.
  • the performance prediction apparatus 10 of the present embodiment can output the predicted performance value of the device even when there are no measurement logs 15 that satisfy the prediction condition or there are only a few.
  • the reason is that the performance prediction unit 14 calculates a predicted performance value based on the measurement log 15 that satisfies the relaxation condition.
  • the performance prediction apparatus 10 of the present embodiment can calculate a highly reliable predicted performance value.
  • the reason is that the performance prediction device 10 calculates a predicted performance value based on a performance ratio obtained by neutralizing various factors and a relaxation condition with high prediction reliability. This is because the performance prediction device 10 calculates the predicted performance value so as to strongly reflect the value of the new measurement log 15.
  • FIG. 10 shows a configuration of a performance prediction system 40 that includes the performance prediction apparatus 10 of the present embodiment.
  • the performance prediction system 40 is configured by connecting the performance prediction device 10 and an external device 90 via a network 41.
  • the performance prediction apparatus 10 is added with a result storage unit 19 as compared with the first embodiment.
  • the performance prediction apparatus 10 according to the present embodiment also includes a log storage unit 11, a performance ratio calculation unit 12, a condition setting unit 13, and a performance prediction unit 14.
  • the log storage unit 11 does not store the initial measurement log 15.
  • the performance prediction unit 14 can communicate with the outside.
  • the external device 90 includes an original log storage unit 95 and a prediction condition storage unit 96.
  • the original log storage unit 95 stores the measurement log 15 shown in FIG.
  • the prediction condition storage unit 96 stores prediction conditions.
  • the result storage unit 19 acquires the measurement log 15 from the original log storage unit 95 of the external device 90 and stores it in the log storage unit 11 prior to predicting the communication performance of the device.
  • the condition setting unit 13 acquires a prediction condition from the prediction condition storage unit 96 of the external device 90.
  • the performance prediction unit 14 outputs the calculated predicted performance value to the external device 90.
  • Other points are the same as in the first embodiment. FIG.
  • the performance prediction apparatus 10 may be a computer that includes a CPU 21, a storage device 22, and a communication device 24 and executes a performance prediction program 23 stored in the storage device 22.
  • the performance prediction apparatus 10 according to the present embodiment is connected to an external device 90 via the communication device 24.
  • the external device 90 is a computer or the like that includes a storage device 91.
  • the CPU 21 that executes the performance prediction program 23 functions as the performance ratio calculation unit 12, the condition setting unit 13, the performance prediction unit 14, and the result storage unit 19.
  • the storage device 22 functions as the log storage unit 11.
  • the storage device 91 of the external device 90 functions as the original log storage unit 95 and the prediction condition storage unit 96.
  • the performance prediction apparatus 10 of this embodiment calculates the performance value of the device at the future time of the external device 90, and the external device 90 can utilize the predicted performance value of the device at the future time. The reason is that the performance prediction device 10 acquires the measurement log 15 and the prediction condition from the external device 90 and outputs the predicted performance value to the external device 90.
  • FIG. 12 shows a configuration of a performance prediction system 40 that includes the performance prediction apparatus 10 of the present embodiment.
  • the performance prediction system 40 is configured by connecting a mobile device 30, an external device 90 and an information providing device 80 via a network 41.
  • the network 41 includes a mobile phone communication network, a wired and wireless Internet, and the like.
  • the mobile device 30 is a mobile communication device including the performance prediction device 10 and the communication / processing device 31 according to the present invention, such as a mobile phone, a smartphone, a communication device mounted on a ship, a vehicle, or the like.
  • the communication / processing device 31 performs the communication and information processing functions of the mobile device 30.
  • the mobile device 30 is, for example, a smartphone
  • the communication / processing device 31 performs all communication and information processing functions as a smartphone, such as calling, Web server access, and e-mail.
  • the communication / processing device 31 acquires an instruction from the user or presents information to the user via the connected input / output device 33.
  • the performance prediction apparatus 10 in this embodiment predicts the communication performance of the communication / processing device 31 and outputs the predicted performance value to the communication / processing device 31. Based on the acquired predicted performance value, the communication / processing device 31 prefetches data required in the future from the information providing device 80 or the like into the cache 32 or the like. The communication / processing device 31 performs prefetch using a known technique.
  • the performance prediction device 10 can communicate with the external device 90, the information providing device 80, and the like via the communication / processing device 31.
  • the performance prediction apparatus 10 according to the present embodiment includes a performance ratio calculation unit 12, a condition setting unit 13, and a performance prediction unit 14, but does not include the log storage unit 11.
  • the log storage unit 11 is provided in the external device 90.
  • the external device 90 is, for example, a collection device for the measurement log 15 operated by a mobile phone company or a communication company.
  • the performance ratio calculation unit 12, the condition setting unit 13, and the performance prediction unit 14 of the performance prediction device 10 of the present exemplary embodiment access the log storage unit 11 of the external device 90 via the communication / processing device 31.
  • the information providing device 80 is a Web server or the like, and the condition setting unit 13 accesses the information providing device 80 via the communication / processing device 31.
  • the condition setting unit 13 acquires necessary data from the information providing device 80 and the communication / processing device 31 when determining the prediction condition. For example, the condition setting unit 13 acquires parameter values of the parameter type “model” and “NW type” from the communication / processing device 31.
  • condition setting unit 13 acquires parameter values such as parameter type “weather” and “temperature” corresponding to the latitude and longitude input from the user from the weather information providing server.
  • the condition setting unit 13 acquires parameter values such as the parameter type “congestion degree” corresponding to the latitude and longitude input from the user from the area information providing server.
  • the performance prediction apparatus 10 of this embodiment is the same as that of the first embodiment. Next, the effect of this embodiment will be described.
  • the performance prediction apparatus 10 of the present embodiment makes it easy to use the measurement log 15 and determine measurement conditions. The reason is that data necessary for prediction is acquired from the external device 90 operated by a communication company or the like and the information providing device 80 operated by a third party.
  • FIG. 13 shows the configuration of the performance prediction apparatus 10 of the present embodiment.
  • the performance prediction apparatus 10 includes, for each of a plurality of types of parameters 17, a log storage unit 11 that stores any one of a plurality of values that can be taken by the type of parameter 17 and a plurality of measurement logs 15 that include performance measurement results.
  • a connected performance prediction unit 14 is provided.
  • the performance prediction unit 14 selects a combination (relaxation condition) having the highest reliability determined based on the number of measurement logs 15 in the log storage unit 11 that matches the combination among the values of the parameters 17 of a plurality of types.
  • the relaxation condition performance value is calculated from the performance measurement result included in the measurement log 15 that is determined and matches the relaxation condition. Further, the performance prediction unit 14 inputs any one of a plurality of values (prediction conditions) that can be taken by the parameter 17 of each type for each of the plurality of types of parameters 17, and sets the prediction condition and the relaxation condition. A multiplication value of a coefficient determined according to the difference and the relaxation condition performance value is output as a predicted performance value.
  • the performance prediction apparatus 10 of the present embodiment can output a predicted performance value under the conditions even when there are no measurement logs 15 under the prediction conditions or there are only a few. The reason is that the performance prediction unit 14 calculates a predicted performance value based on the measurement log 15 that satisfies the relaxation condition.
  • Performance prediction apparatus 11 Log memory

Abstract

An information provision server cannot output information about communication speed if no measurement information under specified communication conditions is stored therein. The performance prediction device is connected to a log storage means in which a plurality of records of parameters of a plurality of types, each containing one of a plurality of values which a parameter of an applicable type can take and a performance value, are stored. The performance prediction device determines a relaxed condition, which represents the most reliable combination determined on the basis of the number of applicable records in the log storage means, that match a given combination out of combinations of the values of the parameters of the plurality of types; computes a relaxed-condition performance value from the performance values contained in the records that match the applicable relaxed condition; and upon receiving a prediction condition, which is one of the plurality of values which a parameter of an applicable type can take, for each of the parameters of the plurality of types, outputs a value obtained by multiplying a coefficient, which is determined according to the difference between the applicable prediction condition and the relaxed condition, by the relaxed-condition performance value as a predicted performance value

Description

性能予測装置、性能予測方法および性能予測プログラムPerformance prediction apparatus, performance prediction method, and performance prediction program
 本発明は、性能予測装置、性能予測方法および性能予測プログラムに関する。 The present invention relates to a performance prediction apparatus, a performance prediction method, and a performance prediction program.
 近年、使用者が移動先で利用するモバイル端末は増加している。例えば、携帯電話やPHS(Personal Handy−phone System)、PDA(Personal Digital Assistant)などの小型端末や、自動車に取り付けられる車載機などはモバイル端末の一例である。
 これらのモバイル端末は、一般的に3G(3rd Generation)回線やPHS回線、無線LAN(Local Area Network)などの無線通信回線との接続機能を有する。この機能により、モバイル端末は他の情報機器との通信や、WWW(World Wide Web)へのアクセスが可能となる。しかし、モバイル端末を利用していると、スループットの低下やオフライン状態になるといった事態がしばしば起こる。その理由は、モバイル端末が使用者とともに移動することにより、電波強度などの通信環境が変化するためである。
 モバイル端末がオフライン状態になると、例えばインターネット上のデータを参照できなくなる、といった使用者の利便性低下が発生する。そこで、このような使用者の利便性低下を解消する為に、あらかじめ将来必要となるデータをモバイル端末にプリフェッチしておくプリフェッチ技術が採用されるケースが増えてきている。
 ところで、プリフェッチ技術を効果的に利用するためには、あらかじめ、端末がある時点で利用可能な通信路のスループットの正確な予測値を知っておく必要がある。なぜなら、キャッシュの記憶容量は有限であるため、将来のスループットの低下や通信切断にあわせて必要なデータのみをプリフェッチし、記憶しておくことが望ましいためである。
 特許文献1の情報提供サーバは、通信速度予測に使用出来る。この情報提供サーバは、移動端末から情報を取得して、位置、通信速度、通信条件を含む測定情報を格納する。この情報提供サーバは、移動端末から所定の位置および通信条件を指定する情報を受信すると、格納している測定情報から、所定の位置の周辺かつ通信条件下で測定された通信速度を含む1以上の測定情報を抽出し、移動端末に返信する。
 特許文献2の無線通信端末装置は、他の無線通信端末からの信号の電界強度を測定し、表示する。この無線通信端末装置は、時刻T(n)と当該時刻からΔT遡る時刻T(n−1)の電界強度の加重平均を算出する。
In recent years, the number of mobile terminals used by users at destinations has increased. For example, a small terminal such as a mobile phone, a PHS (Personal Handy-phone System), a PDA (Personal Digital Assistant), or an in-vehicle device attached to a car is an example of a mobile terminal.
These mobile terminals generally have a connection function with a wireless communication line such as a 3G (3rd Generation) line, a PHS line, and a wireless LAN (Local Area Network). With this function, the mobile terminal can communicate with other information devices and access to the WWW (World Wide Web). However, when a mobile terminal is used, a situation such as a decrease in throughput or an offline state often occurs. The reason is that the communication environment such as the radio wave intensity changes as the mobile terminal moves with the user.
When the mobile terminal is in an offline state, the user's convenience is reduced, for example, data on the Internet cannot be referred to. Therefore, in order to eliminate such a decrease in user convenience, there is an increasing number of cases where a prefetch technique for prefetching data that will be required in the future in advance to a mobile terminal is employed.
By the way, in order to effectively use the prefetch technique, it is necessary to know in advance an accurate predicted value of the throughput of the communication channel that can be used at a certain point in time. This is because the storage capacity of the cache is finite, and it is desirable to prefetch and store only necessary data in accordance with a future drop in throughput or communication disconnection.
The information providing server of Patent Document 1 can be used for communication speed prediction. The information providing server acquires information from the mobile terminal and stores measurement information including a position, a communication speed, and a communication condition. When the information providing server receives information specifying a predetermined position and communication condition from the mobile terminal, the information providing server includes one or more communication speeds measured around the predetermined position and under the communication condition from the stored measurement information. The measurement information is extracted and returned to the mobile terminal.
The wireless communication terminal device of Patent Document 2 measures and displays the electric field strength of signals from other wireless communication terminals. This wireless communication terminal apparatus calculates a weighted average of electric field strengths at time T (n) and time T (n−1) that is ΔT backward from the time.
特開2010−177945号公報JP 2010-177945 A 特開2001−339355号公報JP 2001-339355 A
 特許文献1の情報提供サーバは、指定された通信条件下の測定情報を格納していない場合、通信速度の情報を出力できない。また、当該情報提供サーバは、指定された通信条件下の測定情報の数が少ない場合、信頼できる通信速度の情報を出力できない。
 本発明は、上記課題を解決する性能予測を可能とすることを目的とする。
If the information providing server of Patent Document 1 does not store measurement information under specified communication conditions, it cannot output communication speed information. Further, the information providing server cannot output reliable communication speed information when the number of measurement information under the designated communication condition is small.
An object of this invention is to enable the performance prediction which solves the said subject.
 本発明の一実施形態の性能予測装置は、複数種別のパラメータの各々について当該種別のパラメータがとりうる複数の値のいずれか一つ、および、性能値を含むレコードを複数格納するログ記憶手段と接続され、前記複数種別のパラメータの値の組み合わせ中、当該組み合わせに合致する、前記ログ記憶手段の前記レコードの数に基づいて決定される信頼度が最も高い組み合わせである緩和条件を決定し、当該緩和条件に合致する前記レコードに含まれる性能値から緩和条件性能値を算出し、前記複数種別のパラメータの各々について、当該種別のパラメータがとりうる複数の値のいずれか一つである予測条件を入力して、当該予測条件と前記緩和条件との差異に応じて決定される係数と前記緩和条件性能値との乗算値である補正緩和条件性能値を予測性能値として出力する性能予測手段を備える。
 本発明の一実施形態の性能予測プログラムは、複数種別のパラメータの各々について当該種別のパラメータがとりうる複数の値のいずれか一つ、および、性能値を含むレコードを複数格納するログ記憶手段をアクセスして、前記複数種別のパラメータの値の組み合わせ中、当該組み合わせに合致する、前記ログ記憶手段の前記レコードの数に基づいて決定される信頼度が最も高い組み合わせである緩和条件を決定し、当該緩和条件に合致する前記レコードに含まれる性能値から緩和条件性能値を算出し、前記複数種別のパラメータの各々について、当該種別のパラメータがとりうる複数の値のいずれか一つである予測条件を入力して、当該予測条件と前記緩和条件との差異に応じて決定される係数と前記緩和条件性能値との乗算値である補正緩和条件性能値を予測性能値として出力する性能予測処理をコンピュータに実行させる。
 本発明の一実施形態の性能予測方法は、複数種別のパラメータの各々について当該種別のパラメータがとりうる複数の値のいずれか一つ、および、性能値を含むレコードを複数格納するログ記憶手段をアクセスして、前記複数種別のパラメータの値の組み合わせ中、当該組み合わせに合致する、前記ログ記憶手段の前記レコードの数に基づいて決定される信頼度が最も高い組み合わせである緩和条件を決定し、当該緩和条件に合致する前記レコードに含まれる性能値から緩和条件性能値を算出し、前記複数種別のパラメータの各々について、当該種別のパラメータがとりうる複数の値のいずれか一つである予測条件を入力して、当該予測条件と前記緩和条件との差異に応じて決定される係数と前記緩和条件性能値との乗算値である補正緩和条件性能値を予測性能値として出力する。
A performance prediction apparatus according to an embodiment of the present invention includes a log storage unit that stores, for each of a plurality of types of parameters, any one of a plurality of values that can be taken by the parameters of the type, and a plurality of records including the performance values. Among the combinations of the parameter values of the plurality of types, the relaxation condition that is the combination having the highest reliability determined based on the number of the records of the log storage unit that matches the combination is determined, A relaxation condition performance value is calculated from a performance value included in the record that matches the relaxation condition, and for each of the plurality of types of parameters, a prediction condition that is one of a plurality of values that the parameter of the type can take Input a correction relaxation condition property that is a multiplication value of a coefficient determined according to the difference between the prediction condition and the relaxation condition and the relaxation condition performance value It comprises performance prediction means for outputting the value as the predicted performance values.
The performance prediction program according to an embodiment of the present invention includes a log storage unit that stores, for each of a plurality of types of parameters, any one of a plurality of values that can be taken by the type of parameters, and a plurality of records including the performance values. Access and determine the relaxation condition that is the combination with the highest reliability determined based on the number of the records of the log storage unit that matches the combination among the values of the parameters of the plurality of types, A prediction condition that calculates a relaxation condition performance value from a performance value included in the record that matches the relaxation condition, and is one of a plurality of values that can be taken by the parameter of the type for each of the plurality of types of parameters. And a correction that is a product of the coefficient determined according to the difference between the prediction condition and the relaxation condition and the relaxation condition performance value To execute a performance prediction processing to output a sum condition performance values as predicted performance value to the computer.
The performance prediction method according to an embodiment of the present invention includes a log storage unit that stores, for each of a plurality of types of parameters, one of a plurality of values that can be taken by the parameter of the type and a plurality of records including the performance value. Access and determine the relaxation condition that is the combination with the highest reliability determined based on the number of the records of the log storage unit that matches the combination among the values of the parameters of the plurality of types, A prediction condition that calculates a relaxation condition performance value from a performance value included in the record that matches the relaxation condition, and is one of a plurality of values that can be taken by the parameter of the type for each of the plurality of types of parameters. And the corrected relaxation condition, which is a product of the coefficient determined according to the difference between the prediction condition and the relaxation condition, and the relaxation condition performance value. And it outputs the performance value as predicted performance values.
 本発明によれば、指定された状況での通信記録が無い、又は、少数しか無い場合であっても、当該状況下での予測性能値の出力が出来る。 According to the present invention, even if there is no communication record in a specified situation or there are only a few, it is possible to output a predicted performance value under the situation.
本実施の形態の性能予測装置10の構成を示す。The structure of the performance prediction apparatus 10 of this Embodiment is shown. 本実施の形態の性能予測装置10の図1とは別の構成を示す。The structure different from FIG. 1 of the performance prediction apparatus 10 of this Embodiment is shown. ログ記憶部11に記憶されている測定ログ15を示す。The measurement log 15 memorize | stored in the log memory | storage part 11 is shown. パラメータ17の種別(パラメータ種別)とパラメータ17の取り得る値の一例を示す。An example of the type of parameter 17 (parameter type) and possible values of parameter 17 are shown below. 重みの一例を示す。An example of a weight is shown. 性能予測装置10の動作フローチャートである。3 is an operation flowchart of the performance prediction apparatus 10. 図6のステップS103における性能予測部14の詳細な動作フローチャートである。It is a detailed operation | movement flowchart of the performance estimation part 14 in FIG.6 S103. 性能予測部14が、地図上の位置を縦と横に区切られた区画に分けて管理している様子を示す。The performance prediction part 14 shows a mode that the position on a map is divided | segmented into the division divided into the vertical and horizontal, and is managed. 性能予測部14が実行した、将来の時刻における機器の予測性能値の計算方法を数式で示す。A calculation method of the predicted performance value of the device at a future time, which is executed by the performance prediction unit 14, is expressed by a mathematical expression. 第2の実施の形態の性能予測装置10を包含する性能予測システム40の構成を示す。The structure of the performance prediction system 40 including the performance prediction apparatus 10 of 2nd Embodiment is shown. 第2の実施の形態の性能予測装置10の図10とは別の構成を示す。The structure different from FIG. 10 of the performance prediction apparatus 10 of 2nd Embodiment is shown. 第3の実施の形態の性能予測装置10を包含する性能予測システム40の構成を示す。The structure of the performance prediction system 40 including the performance prediction apparatus 10 of 3rd Embodiment is shown. 第4の実施の形態の性能予測装置10の構成を示す。The structure of the performance prediction apparatus 10 of 4th Embodiment is shown.
(第1の実施の形態)
 本発明の第1の実施の形態について図面を参照して説明する。以下は、性能の一例である機器のスループットの予測についての説明である。しかし、本発明における性能は、機器のスループットに限定されない。性能は、例えば、単位時間当たりの切断発生率でも良い。
 図1は、本実施の形態の性能予測装置10の構成を示す。この性能予測装置10は、将来の時刻に於けるある機器の通信性能の予測を行う。ここで、機器とは、移動する通信機器であり、典型的には、携帯電話、スマートフォン、PDA、船舶や車輌などに搭載される通信機器である。この性能予測装置10は、予測の対象となる機器に内蔵されていても良いし、予測の対象となる機器とは別な場所に存在していても良い。
 性能予測装置10はログ記憶部11、性能比計算部12、条件設定部13、および、性能予測部14を備える。ログ記憶部11は、ある時点で測定した機器の性能を、その時点に機器がおかれた状況と合わせて記録したデータを測定ログ15として格納する。
 図3は、ログ記憶部11に記憶されている測定ログ15を示す。図3は、3つの測定ログ15を示す。各測定ログ15は、例えば、測定開始日時、測定期間、性能測定結果、緯度、経度の5つの基本データ16と、機種、天気、気温などの複数の種別のパラメータ17を記憶する。
 図4は、パラメータ17の種別(パラメータ種別)とパラメータ17の取り得る値の一例を示す。図4の情報は、性能予測装置10のメモリ等に格納されている。
 各測定ログ15は、例えば、パラメータ種別「機種」のパラメータ17に対応して、機種A、機種Bという具体的な値(パラメータ値)を記憶する。性能測定時に不明であったパラメータ種別のパラメータ値は測定ログ15に記憶されない。
 性能比計算部12は、ログ記憶部11に記憶される測定ログ15より、1つのパラメータ種別の異なる2つのパラメータ値ごとの性能の比率を計算する。このとき、性能比計算部12は、その1つパラメータ種別以外のパラメータ17および基本データ16は無視する。
 例えば、性能比計算部12は、パラメータ種別「機器」の異なるパラメータ値である機種Aと機種Bの性能の比率を計算する。
 このとき、性能比計算部12は、種別「機器」のパラメータ17のパラメータ値が機種Aである測定ログ15を抽出し、抽出された測定ログ15から機種Aの平均性能を計算する。測定ログ15の抽出時、性能比計算部12は、パラメータ種別「機器」のパラメータ値以外のパラメータ17や基本データ16の値は無視する。
 同様に、性能比計算部12は、種別「機器」のパラメータ17のパラメータ値が機種Bである測定ログ15を抽出し、抽出された測定ログ15から機種Bの平均性能を計算し、一方を分子、他方を分母とした2つの比率を計算する。
 即ち、ここで計算される性能の比率は、「機種」以外の種別のパラメータ17のパラメータ17の値が混在した状況に於ける性能の比率となる。
 また、性能比計算部12が計算する性能は、重みつき平均性能である。重みつき平均性能は、計算対象となる測定ログ15の性能測定結果に、測定開始日時により変化する重みを掛け合わせたものを合計し、平均をとったものである。
 図5は重みの一例を示す。図5の情報は、性能予測装置10のメモリ等に格納されている。
 重みは、測定ログ15の測定開始時刻と現時刻との時間差が小さい程大きくなる値である。即ち、測定ログ15が新しいほど大きくなる値である。測定開始日時による重みを掛け合わせることで、新しい測定ログ15が、古い測定ログ15よりも算出される平均性能値に大きな影響を与えるようになる。
 ちなみに、通信性能、例えば通信のスループットの測定値は、同じ場所、同じ時刻であっても基地局の増設や契約端末数の増加により、中長期的に変化する。そこで、性能比計算部12は、新しい測定ログ15の重みを大きくして通信のスループットの平均値を計算する。これにより、性能予測装置10は、通信のスループットの中長期的な変化を反映した通信スループットを推定できる。
 ここで、「機種」という種別のパラメータ17のパラメータ値である機種Aと機種Bの性能の比率の計算例を説明する。まず、性能比計算部12は、機種A、機種Bそれぞれのパラメータ値を持つ測定ログ15の重みつき平均性能を計算する。このとき、性能比計算部12は、機種以外の種別のパラメータ17を無視して重みつき平均性能を計算する。
 これにより、機種以外の種別のパラメータ17が重みつき平均性能に与える影響は統計的に小さくなる。そのため、性能比計算部12は、機種以外の種別のパラメータ17に依存しない重みつき平均性能を求めることができる。
 性能比計算部12は、機種Aの機種Bに対する性能の比率を(機種Aの重みつき平均性能/機種Bの重みつき平均性能)で、機種Bの機種Aに対する性能の比率を、(機種Bの重みつき平均性能/機種Aの重みつき平均性能)で計算する。
 例えば、機種Aの重みつき平均スループットが1600bps、機種Bの重みつき平均スループットが1000bpsである場合、機種Aの機種Bに対する性能の比率は1600÷1000=1.6となる。すなわち、機種Aは、機種Bに比べて1.6倍の大きさのスループットを持つ。
 性能比計算部12は、同様に、全てのパラメータ種別について、当該種別のパラメータ17が取り得る値の2つの組み合わせ毎に、2つの性能の比率を計算して記憶する。性能比計算部12は、パラメータ種別「天気」のパラメータ値である晴れの日と雨の日の間の性能の比率や、パラメータ種別「受信環境」のパラメータ値である徒歩移動時(屋内)と自動車移動時の間の性能の比率なども計算する。
 なお、性能の比率が予め既知である場合、性能比計算部12はなくても良い。
 条件設定部13は、予測性能値を計算したい将来の時刻の、パラメータ値の組を予測条件として決定する。例えば、今から10分後のスループットを予測する場合、条件設定部13は10分後に予測対象である端末等が置かれると予測される状況のパラメータ値を決定する。
 条件設定部13は、例えば、接続された入出力手段を経由して、使用者から予測条件を取得する。条件設定部13は、パラメータ種別「機種」、「NW種類」などのパラメータ値は予め記憶していても良い。
 また、条件設定部13は、使用者から時間や位置を入力され、その情報に基づいて、天気予報サーバ、端末仕様情報提示サーバ等から予測条件の一部又は全部を取得しても良い。さらに、条件設定部13は、あるデータから予測条件の一部又は全部を算出しても良い。例えば、条件設定部13は、位置情報からパラメータ種別「受信環境」などのパラメータ値を推定しても良い。なお、条件設定部13は、取得又は推定不可能なパラメータ値を無効値に決定する。
 予測条件が固定的である場合、条件設定部13はなくても良い。
 性能予測部14は、使用者などが入力した位置、条件設定部13の決定した予測条件に基づいて予測性能値を計算する。性能予測部14は、ログ記憶部11が記憶する測定ログ15、性能比計算部12が計算する性能の比率を使用して予測性能値を計算する。
 なお、予測対象となる場所が固定的である場合、性能予測部14は、位置を外部から入力する必要はない。
 図2は、本実施の形態の性能予測装置10の図1とは別の構成を示す。性能予測装置10は、CPU21(Central Processing Unit)と記憶装置22を備え、記憶装置22に格納された性能予測プログラム23を実行するコンピュータであってもよい。この場合、性能予測プログラム23を実行するCPU21が性能比計算部12、条件設定部13、および、性能予測部14として機能する。また、例えば、記憶装置22がログ記憶部11として機能する。
 次に、図6を用いて本実施の形態の動作概要を説明する。図6は、性能予測装置10の動作フローチャートである。
 性能比計算部12は、ログ記憶部11に記憶される測定ログ15より、性能の比率を計算する(ステップS101)。前述したように、性能比計算部12は、全てのパラメータ種別について、当該種別のパラメータ17が取り得る値の2つの組み合わせ毎に、2つの性能の比率を計算して記憶する。ここで計算される性能の比率は、重みつき平均性能の比率である。
 条件設定部13は、将来の時刻における予測条件を設定する(ステップS102)。
 性能予測部14は、予測条件下における機器の予測性能値を計算する(ステップS103)。
 性能の予測値の計算方法の一例について、図7を用いて詳細に説明する。図7は、図6のステップS103における性能予測部14の詳細な動作フローチャートである。なお、性能予測部14は、地図上の位置を、図8のように縦と横に区切られた区画に分けて管理している。
 性能予測部14は、まず条件設定部13の決定した予測条件のうち緯度と経度を読み込む。次に、読み込んだ緯度と経度で表される地点が地図上のどの区画に属しているかを判定する(ステップS201)。
 区画の判定後、性能予測部14は、条件設定部13の決定した予測条件から、無効値でないパラメータ種別のパラメータ値を組み合わせたすべての条件を緩和条件としてリストアップする(ステップS202)。
 この動作を、下記の具体的な例に則して説明する。
1)定義されているパラメータ種別は、「機器」、「天気」、「NW混雑度」である。
2)種別「機器」のパラメータ17の取りうる値は{A、B、C}である。
3)種別「天気」のパラメータ17の取りうる値は{晴、曇、雨}である。
4)種別「NW混雑度」のパラメータ17の取りうる値は{低、中、高}である。
5)予測条件は、(A、曇、無効値)とする。
 本例に於いて、性能予測部14は、下記の組み合わせを緩和条件としてリストアップする。
(A、晴)、(A、曇)、(A、雨)
(B、晴)、(B、曇)、(B、雨)
(C、晴)、(C、曇)、(C、雨)
 次に、性能予測部14は、リストアップした緩和条件ごとに、予測信頼度を計算する(ステップS203)。
 予測信頼度は、緩和条件を満たし、かつステップS201にて判定した区画に含まれる測定ログ15の重みの合計である。重みは、図5が示すように、測定開始時刻により決定される値である。即ち、予測信頼度は、現時刻に近い測定ログ15の数が多いほど高い値となる。
 例えば、性能予測部14は、緩和条件(B、晴)の予測信頼度を以下のように計算する。先ず、性能予測部14は、ステップS201にて判定した区画に含まれ、種別「機種」のパラメータ17のパラメータ値がB、かつ、種別「天気」のパラメータ17のパラメータ値が晴である、測定ログ15をログ記憶部11から抽出する。このとき、性能予測部14は、他の種別のパラメータ値や「緯度」、「経度」以外の基本データ16の値は無視する。
 次に、性能予測部14は、図5のような定義情報と基本データ16である「測定開始日時」を参照して、各測定ログ15の重みを判定して、その合計値を予測信頼度として計算する。
 性能予測部14は、リストアップした緩和条件のうち、予測信頼度が最も大きい緩和条件を1つ選択し、その緩和条件の予測信頼度を緩和条件における予測信頼度とする(ステップS204)。
 予測信頼度の大きさは、条件に一致する測定ログ15の数が多く、鮮度が高いという傾向を表している。そのため、性能予測部14は、予測信頼度の大きい緩和条件に対して性能を予測することで、予測の信頼度を高めることが出来る。
 次に、性能予測部14は、ステップS203と同様の方法で予測条件の予測信頼度を計算する(ステップS205)。
 性能予測部14は、予測条件の予測信頼度は、予測条件を満たし、かつ、ステップS201で判定した区画に含まれる測定ログ15を用いて計算する。
 ステップS205のあと、性能予測部14は、緩和条件における予測信頼度と予測条件における予測信頼度の比率である緩和信頼度比α、予測信頼度比βを計算する(ステップS206)。
 性能予測部14は、緩和信頼度比α、予測信頼度比βを以下のように計算する。
1)緩和信頼度比α=緩和条件における予測信頼度÷(緩和条件における予測信頼度+予測条件における予測信頼度)
2)予測信頼度比β=予測条件における予測信頼度÷(緩和条件における予測信頼度+予測条件における予測信頼度)
 ステップS206のあと、性能予測部14は、ステップS204で選択した緩和条件と、予測条件を比較し、値が異なるパラメータ値の組み合わせを抽出する。無効値のパラメータ17は無視される。そして、性能予測部14は、それぞれの組み合わせごとに「予測条件の指定するパラメータ値」の「緩和条件の指定するパラメータ値」に対する性能の比率を選択し、掛け合わせてratioを算出する(ステップS207)。
 例えば、ステップS204で選択した緩和条件が(C、晴)、予測条件が(A、曇、無効値)であった場合、性能予測部14は、(C、A)および(晴、曇)の組み合わせを抽出し、以下の2つの比率を選択し、両者を掛け合わせてratioを算出する。
1)機種AのCに対する性能の比率(A/C)
2)曇の晴に対する性能の比率(曇/晴)
 次に、性能予測部14は、ステップ204で選択した緩和条件における重みつき平均性能Aを求める(ステップS208)。
 性能予測部14は、緩和条件を満たしつつステップS201で判定した区画に含まれる測定ログ15を用いて計算する。緩和条件における重みつき平均性能Aは、緩和条件を満たす測定ログ15の性能測定結果に、各測定ログ15の重みを掛け合わせた値の平均値である。平均値は、測定ログ15の性能測定結果に各測定ログ15の重みを掛け合わせた値の合計値を重みの合計値で除算した値である。
 例えば、性能予測部14は、ステップS204で選択した緩和条件(C、晴)の重み付き平均性能Aを以下のように計算する。先ず、性能予測部14は、ステップS201にて判定した区画に含まれ、種別「機種」のパラメータ17のパラメータ値がC、かつ、種別「天気」のパラメータ17のパラメータ値が晴である、測定ログ15をログ記憶部11から抽出する。このとき、性能予測部14は、他の種別のパラメータ値や「緯度」、「経度」以外の基本データ16の値は無視する。
 次に、性能予測部14は、図5のような定義情報と基本データ16である「測定開始日時」を参照して、抽出した測定ログ15のおのおのについて、重みを判定して、基本データ16である「性能測定結果」と掛け合わせて乗算値をえる。性能予測部14は、抽出した測定ログ15について、当該乗算値の合計と重みの合計を求め、前者を後者で割って、平均性能Aを得る。
 また、性能予測部14は、ステップS208と同様の方法で、予測条件における重みつき平均性能Bを計算する(ステップS209)。
 最後に、性能予測部14は、緩和条件における重みつき平均性能Aに緩和信頼度比α、性能の比率ratioを乗じたものと、予測条件における重みつき平均性能Bに予測信頼度比βを乗じたものを足し合わせ、機器の予測性能値として出力する(ステップS210)。
 図9は、性能予測部14が実行した、将来の時刻における機器の予測性能値の計算方法を数式で示す。
 次に、本実施の形態の効果について説明する。
 本実施形態の性能予測装置10は、予測条件を満たす測定ログ15が無い、又は、少数しか無い場合であっても、機器の予測性能値の出力が出来る。その理由は、性能予測部14が、緩和条件を満たす測定ログ15に基づいて、予測性能値を算出するからである。
 本実施形態の性能予測装置10は、信頼性の高い予測性能値を算出できる。その理由は、性能予測装置10が、種々の要因を中和して求めた性能の比率と、予測信頼度の高い緩和条件に基づいて、予測性能値を算出するからである。また、性能予測装置10が、新しい測定ログ15の値を強く反映するように予測性能値を算出するからである。
 即ち、本実施形態の性能予測装置10は、機器の将来の性能を、中長期的な性能実測値の遷移やその時々の使用者の状況を考慮して正確に予測できる。
 (第2の実施の形態)次に、本発明の第2の実施の形態について図面を参照して説明する。
 図10は、本実施の形態の性能予測装置10を包含する性能予測システム40の構成を示す。性能予測システム40は、性能予測装置10と外部装置90をネットワーク41で接続して構成されている。
 性能予測装置10は、第1の実施の形態に較べて、結果格納部19が追加されている。本実施の形態の性能予測装置10も、ログ記憶部11、性能比計算部12、条件設定部13、および、性能予測部14を備える。但し、ログ記憶部11は、当初測定ログ15を格納していない。また、性能予測部14が外部と通信可能になっている。
 外部装置90は、原ログ記憶部95、予測条件記憶部96を備えている。原ログ記憶部95は、図3が示す測定ログ15を格納している。予測条件記憶部96は、予測条件を記憶している。
 本実施形態に於いては、機器の通信性能の予測に先立ち、結果格納部19が外部装置90の原ログ記憶部95から測定ログ15を取得して、ログ記憶部11に格納する。また、条件設定部13は、外部装置90の予測条件記憶部96から予測条件を取得する。さらに、性能予測部14は、算出した予測性能値を外部装置90に出力する。他の点は、第1の実施形態と同様である。
 図11は、本実施の形態の性能予測装置10の図10とは別の構成を示す。性能予測装置10は、CPU21、記憶装置22と通信装置24を備え、記憶装置22に格納されている性能予測プログラム23を実行するコンピュータであってもよい。
 本実施の形態の性能予測装置10は、通信装置24を経由して、外部装置90と接続されている。外部装置90は、記憶装置91を備えるコンピュータなどである。
 この場合、性能予測プログラム23を実行するCPU21が性能比計算部12、条件設定部13、性能予測部14および結果格納部19として機能する。また、記憶装置22がログ記憶部11として機能する。
 さらに、外部装置90の記憶装置91が原ログ記憶部95および予測条件記憶部96として機能する。
 次に、本実施の形態の効果について説明する。
 本実施形態の性能予測装置10は、外部装置90の将来の時刻における機器の性能値を計算し、外部装置90が将来の時刻における機器の予測性能値を活用できる。その理由は、性能予測装置10が外部装置90から測定ログ15および予測条件を取得して、予測性能値を外部装置90に出力するからである。
 (第3の実施の形態)次に、本発明の第3の実施の形態について図面を参照して説明する。
 図12は、本実施の形態の性能予測装置10を包含する性能予測システム40の構成を示す。性能予測システム40は、モバイル装置30、外部装置90と情報提供装置80をネットワーク41で接続して構成されている。ネットワーク41は、携帯電話通信網、有線、無線のインターネットなどを包含する。
 モバイル装置30は、本発明にかかる性能予測装置10および通信・処理装置31を備える移動通信機器であり、携帯電話、スマートフォン、船舶や車輌などに搭載される通信機器、等である。通信・処理装置31は、モバイル装置30の通信および情報処理機能を果たす。モバイル装置30が、例えば、スマートフォンである場合、通話、Webサーバアクセス、電子メール等、スマートフォンとしての通信および情報処理機能はすべて通信・処理装置31が果たす。また、通信・処理装置31は、接続された入出力装置33を介して、使用者からの指示を取得したり、使用者に情報を提示したりする。
 本実施形態に於ける性能予測装置10は、通信・処理装置31の通信性能の予測を行い、予測性能値を通信・処理装置31に出力する。通信・処理装置31は、取得した予測性能値に基づいて、情報提供装置80等から将来必要となるデータをキャッシュ32等にプリフェッチしておく。通信・処理装置31は、公知の技術を用いてプリフェッチを行う。
 性能予測装置10は、通信・処理装置31を介して、外部装置90や情報提供装置80等と通信可能である。本実施の形態の性能予測装置10は、性能比計算部12、条件設定部13、および、性能予測部14を備えるが、ログ記憶部11は備えない。
 ログ記憶部11は外部装置90に備えられる。外部装置90は、例えば、携帯電話会社や通信業者などが運用する測定ログ15の収集装置である。
 本実施の形態の性能予測装置10の性能比計算部12、条件設定部13、および、性能予測部14は、通信・処理装置31を介して、外部装置90のログ記憶部11をアクセスする。
 情報提供装置80はWebサーバ等であり、条件設定部13は、通信・処理装置31を介して情報提供装置80にアクセスする。
 条件設定部13は、予測条件の決定に際して、必要なデータを情報提供装置80や通信・処理装置31から取得する。例えば、条件設定部13は、通信・処理装置31からパラメータ種別「機種」や「NW種類」のパラメータ値を取得する。また、条件設定部13は、気象情報提供サーバから、使用者から入力された緯度、経度に対応する、パラメータ種別「天気」や「気温」等のパラメータ値を取得する。条件設定部13は、地域情報提供サーバから、使用者から入力された緯度、経度に対応する、パラメータ種別「混雑度」等のパラメータ値を取得する。
 他と点に於いて、本実施形態の性能予測装置10は第1の実施形態と同様である。
 次に、本実施の形態の効果について説明する。
 本実施形態の性能予測装置10は、測定ログ15の利用や測定条件の決定が容易になる。その理由は、通信業者などが運用する外部装置90や、第3者が運用する情報提供装置80から予測に必要なデータを取得するからである。
 (第4の実施の形態)次に、本発明の第4の実施の形態について図面を参照して説明する。図13は本実施の形態の性能予測装置10の構成を示す。
 性能予測装置10は、複数種別のパラメータ17の各々について当該種別のパラメータ17がとりうる複数の値のいずれか一つ、および、性能測定結果を含む測定ログ15を複数格納するログ記憶部11と接続される性能予測部14を備える。
 性能予測部14は、複数種別のパラメータ17の値の組み合わせ中、当該組み合わせに合致する、ログ記憶部11の測定ログ15の数に基づいて決定される信頼度が最も高い組み合わせ(緩和条件)を決定し、当該緩和条件に合致する測定ログ15に含まれる性能測定結果から緩和条件性能値を算出する。
 さらに、性能予測部14は、複数種別のパラメータ17の各々について、当該種別のパラメータ17がとりうる複数の値のいずれか一つ(予測条件)を入力して、当該予測条件と緩和条件との差異に応じて決定される係数と緩和条件性能値との乗算値を予測性能値として出力する。
 本実施形態の性能予測装置10は、予測条件での測定ログ15無い、又は、少数しか無い場合であっても、当該条件下での予測性能値の出力が出来る。その理由は、性能予測部14が、緩和条件を満たす測定ログ15に基づいて、予測性能値を算出するからである。
 以上、実施形態(及び実施例)を参照して本願発明を説明したが、本願発明は上記実施形態(及び実施例)に限定されものではない。本願発明の構成や詳細には、本願発明のスコープ内で当業者が理解し得る様々な変更をすることができる。
 この出願は、2010年12月15日に出願された日本出願特願2010−279018を基礎とする優先権を主張し、その開示の全てをここに取り込む。
(First embodiment)
A first embodiment of the present invention will be described with reference to the drawings. The following is a description of prediction of the throughput of a device that is an example of performance. However, the performance in the present invention is not limited to the throughput of the device. The performance may be, for example, the cutting occurrence rate per unit time.
FIG. 1 shows a configuration of a performance prediction apparatus 10 according to the present embodiment. The performance prediction apparatus 10 predicts the communication performance of a certain device at a future time. Here, the device is a moving communication device, and is typically a communication device mounted on a mobile phone, a smartphone, a PDA, a ship, a vehicle, or the like. The performance prediction apparatus 10 may be built in a device to be predicted, or may exist in a location different from the device to be predicted.
The performance prediction apparatus 10 includes a log storage unit 11, a performance ratio calculation unit 12, a condition setting unit 13, and a performance prediction unit 14. The log storage unit 11 stores, as a measurement log 15, data obtained by recording the performance of a device measured at a certain time point together with the situation where the device is placed at that time point.
FIG. 3 shows the measurement log 15 stored in the log storage unit 11. FIG. 3 shows three measurement logs 15. Each measurement log 15 stores, for example, five basic data 16 of measurement start date and time, measurement period, performance measurement result, latitude and longitude, and a plurality of types of parameters 17 such as model, weather, and temperature.
FIG. 4 shows examples of parameter 17 types (parameter types) and possible values of the parameter 17. The information in FIG. 4 is stored in a memory or the like of the performance prediction apparatus 10.
Each measurement log 15 stores, for example, specific values (parameter values) of model A and model B corresponding to the parameter 17 of the parameter type “model”. The parameter value of the parameter type that was unknown at the time of performance measurement is not stored in the measurement log 15.
The performance ratio calculation unit 12 calculates a performance ratio for each of two parameter values having different parameter types from the measurement log 15 stored in the log storage unit 11. At this time, the performance ratio calculation unit 12 ignores the parameter 17 and the basic data 16 other than the one parameter type.
For example, the performance ratio calculation unit 12 calculates the ratio of the performance of the model A and the model B that are different parameter values of the parameter type “device”.
At this time, the performance ratio calculation unit 12 extracts the measurement log 15 in which the parameter value of the parameter 17 of the type “device” is the model A, and calculates the average performance of the model A from the extracted measurement log 15. When the measurement log 15 is extracted, the performance ratio calculation unit 12 ignores the values of the parameter 17 and the basic data 16 other than the parameter value of the parameter type “device”.
Similarly, the performance ratio calculation unit 12 extracts the measurement log 15 in which the parameter value of the parameter 17 of the type “equipment” is model B, calculates the average performance of the model B from the extracted measurement log 15, Calculate two ratios with the numerator and the other as the denominator.
That is, the performance ratio calculated here is the performance ratio in the situation where the values of the parameter 17 of the parameter 17 of the type other than “model” are mixed.
The performance calculated by the performance ratio calculation unit 12 is a weighted average performance. The weighted average performance is obtained by adding the performance measurement results of the measurement log 15 to be calculated to the weights that change depending on the measurement start date and taking the average.
FIG. 5 shows an example of the weight. The information in FIG. 5 is stored in a memory or the like of the performance prediction apparatus 10.
The weight is a value that increases as the time difference between the measurement start time and the current time in the measurement log 15 decreases. That is, the value becomes larger as the measurement log 15 is newer. By multiplying the weights by the measurement start date and time, the new measurement log 15 has a greater influence on the average performance value calculated than the old measurement log 15.
Incidentally, measured values of communication performance, for example, communication throughput, change in the medium to long term due to an increase in the number of base stations and an increase in the number of contracted terminals even at the same place and at the same time. Therefore, the performance ratio calculation unit 12 increases the weight of the new measurement log 15 and calculates the average value of the communication throughput. Thereby, the performance prediction apparatus 10 can estimate the communication throughput reflecting the medium- to long-term change of the communication throughput.
Here, an example of calculating the performance ratio of the model A and the model B, which is the parameter value of the parameter 17 of the type “model”, will be described. First, the performance ratio calculation unit 12 calculates the weighted average performance of the measurement log 15 having the parameter values of the model A and the model B, respectively. At this time, the performance ratio calculation unit 12 ignores the parameter 17 of a type other than the model and calculates the weighted average performance.
As a result, the influence of the parameter 17 of a type other than the model on the weighted average performance is statistically reduced. Therefore, the performance ratio calculation unit 12 can obtain the weighted average performance that does not depend on the parameter 17 of a type other than the model.
The performance ratio calculation unit 12 uses the ratio of the performance of the model A to the model B (weighted average performance of the model A / weighted average performance of the model B), and the ratio of the performance of the model B to the model A (model B). Weighted average performance / model A weighted average performance).
For example, when the weighted average throughput of model A is 1600 bps and the weighted average throughput of model B is 1000 bps, the performance ratio of model A to model B is 1600 ÷ 1000 = 1.6. That is, the model A has a throughput 1.6 times larger than the model B.
Similarly, the performance ratio calculation unit 12 calculates and stores a ratio of two performances for every two combinations of values that can be taken by the parameter 17 of the type for all parameter types. The performance ratio calculation unit 12 calculates the ratio of the performance between a sunny day and a rainy day that is a parameter value of the parameter type “weather”, and when walking (indoors) that is the parameter value of the parameter type “reception environment”. The ratio of performance while moving a car is also calculated.
When the performance ratio is known in advance, the performance ratio calculation unit 12 may not be provided.
The condition setting unit 13 determines a set of parameter values at a future time for which a predicted performance value is to be calculated as a prediction condition. For example, when predicting the throughput after 10 minutes from now, the condition setting unit 13 determines a parameter value of a situation where it is predicted that a terminal or the like to be predicted will be placed after 10 minutes.
The condition setting unit 13 acquires a prediction condition from the user via, for example, a connected input / output unit. The condition setting unit 13 may store parameter values such as the parameter type “model” and “NW type” in advance.
In addition, the condition setting unit 13 may receive time or position from the user, and may acquire part or all of the prediction conditions from a weather forecast server, a terminal specification information presentation server, or the like based on the information. Furthermore, the condition setting unit 13 may calculate some or all of the prediction conditions from certain data. For example, the condition setting unit 13 may estimate a parameter value such as the parameter type “reception environment” from the position information. The condition setting unit 13 determines parameter values that cannot be acquired or estimated as invalid values.
When the prediction condition is fixed, the condition setting unit 13 may not be provided.
The performance prediction unit 14 calculates a predicted performance value based on the position input by the user or the like and the prediction condition determined by the condition setting unit 13. The performance prediction unit 14 calculates a predicted performance value using the measurement log 15 stored in the log storage unit 11 and the performance ratio calculated by the performance ratio calculation unit 12.
In addition, when the place used as prediction object is fixed, the performance prediction part 14 does not need to input a position from the outside.
FIG. 2 shows a configuration different from that of FIG. 1 of the performance prediction apparatus 10 of the present embodiment. The performance prediction apparatus 10 may be a computer that includes a CPU 21 (Central Processing Unit) and a storage device 22 and executes a performance prediction program 23 stored in the storage device 22. In this case, the CPU 21 that executes the performance prediction program 23 functions as the performance ratio calculation unit 12, the condition setting unit 13, and the performance prediction unit 14. For example, the storage device 22 functions as the log storage unit 11.
Next, an outline of the operation of the present embodiment will be described with reference to FIG. FIG. 6 is an operation flowchart of the performance prediction apparatus 10.
The performance ratio calculation unit 12 calculates a performance ratio from the measurement log 15 stored in the log storage unit 11 (step S101). As described above, the performance ratio calculation unit 12 calculates and stores a ratio of two performances for every two combinations of values that the parameter 17 of the type can take for all parameter types. The performance ratio calculated here is a weighted average performance ratio.
The condition setting unit 13 sets a prediction condition at a future time (step S102).
The performance prediction unit 14 calculates a predicted performance value of the device under the prediction condition (step S103).
An example of a method for calculating the predicted performance value will be described in detail with reference to FIG. FIG. 7 is a detailed operation flowchart of the performance prediction unit 14 in step S103 of FIG. The performance predicting unit 14 manages the position on the map by dividing it into sections that are divided vertically and horizontally as shown in FIG.
The performance prediction unit 14 first reads the latitude and longitude of the prediction conditions determined by the condition setting unit 13. Next, it is determined to which section on the map the point represented by the read latitude and longitude belongs (step S201).
After the partition determination, the performance prediction unit 14 lists all the conditions combining the parameter values of the parameter types that are not invalid values as the relaxation conditions from the prediction conditions determined by the condition setting unit 13 (step S202).
This operation will be described based on the following specific example.
1) The defined parameter types are “device”, “weather”, and “NW congestion degree”.
2) Possible values of the parameter 17 of the type “device” are {A, B, C}.
3) Possible values of the parameter 17 of the type “weather” are {clear, cloudy, rain}.
4) Possible values of the parameter 17 of the type “NW congestion degree” are {low, medium, high}.
5) The prediction condition is (A, cloudiness, invalid value).
In this example, the performance prediction unit 14 lists the following combinations as relaxation conditions.
(A, clear), (A, cloudy), (A, rain)
(B, clear), (B, cloudy), (B, rain)
(C, clear), (C, cloudy), (C, rain)
Next, the performance prediction unit 14 calculates the prediction reliability for each listed relaxation condition (step S203).
The prediction reliability is the total weight of the measurement log 15 included in the section that satisfies the relaxation condition and is determined in step S201. As shown in FIG. 5, the weight is a value determined by the measurement start time. That is, the predicted reliability increases as the number of measurement logs 15 near the current time increases.
For example, the performance prediction unit 14 calculates the prediction reliability of the relaxation condition (B, clear) as follows. First, the performance prediction unit 14 is included in the section determined in step S201, and the parameter value of the parameter 17 of the type “model” is B and the parameter value of the parameter 17 of the type “weather” is clear. The log 15 is extracted from the log storage unit 11. At this time, the performance prediction unit 14 ignores other types of parameter values and values of the basic data 16 other than “latitude” and “longitude”.
Next, the performance prediction unit 14 determines the weight of each measurement log 15 with reference to the definition information as shown in FIG. Calculate as
The performance prediction unit 14 selects one relaxation condition having the highest predicted reliability from the listed relaxation conditions, and sets the predicted reliability of the relaxed condition as the predicted reliability in the relaxed condition (step S204).
The magnitude of the prediction reliability represents a tendency that the number of measurement logs 15 matching the condition is large and the freshness is high. Therefore, the performance prediction unit 14 can increase the reliability of the prediction by predicting the performance with respect to the relaxation condition having a high prediction reliability.
Next, the performance prediction unit 14 calculates the prediction reliability of the prediction condition by the same method as in step S203 (step S205).
The performance prediction unit 14 calculates the prediction reliability of the prediction condition using the measurement log 15 that satisfies the prediction condition and is included in the section determined in step S201.
After step S205, the performance prediction unit 14 calculates a relaxation reliability ratio α and a prediction reliability ratio β that are ratios between the prediction reliability under the relaxation condition and the prediction reliability under the prediction condition (step S206).
The performance prediction unit 14 calculates the relaxation reliability ratio α and the prediction reliability ratio β as follows.
1) Relaxation reliability ratio α = prediction reliability under relaxation conditions ÷ (prediction reliability under relaxation conditions + prediction reliability under prediction conditions)
2) Prediction reliability ratio β = prediction reliability under prediction conditions / (prediction reliability under relaxation conditions + prediction reliability under prediction conditions)
After step S206, the performance prediction unit 14 compares the relaxation condition selected in step S204 with the prediction condition, and extracts a combination of parameter values having different values. The invalid value parameter 17 is ignored. Then, the performance prediction unit 14 selects the ratio of the performance of “parameter value specified by the prediction condition” to “parameter value specified by the relaxation condition” for each combination, and calculates the ratio (step S207). ).
For example, when the relaxation condition selected in step S204 is (C, clear) and the prediction condition is (A, cloudy, invalid value), the performance prediction unit 14 determines (C, A) and (clear, cloudy). A combination is extracted, the following two ratios are selected, and both are multiplied to calculate the ratio.
1) Performance ratio of model A to C (A / C)
2) Ratio of performance to cloudy weather (cloudy / sunny)
Next, the performance prediction unit 14 obtains the weighted average performance A under the relaxation condition selected in Step 204 (Step S208).
The performance prediction unit 14 calculates using the measurement log 15 included in the section determined in step S201 while satisfying the relaxation condition. The weighted average performance A under the relaxation condition is an average value obtained by multiplying the performance measurement result of the measurement log 15 satisfying the relaxation condition by the weight of each measurement log 15. The average value is a value obtained by dividing the total value of values obtained by multiplying the performance measurement result of the measurement log 15 by the weight of each measurement log 15 by the total value of the weights.
For example, the performance prediction unit 14 calculates the weighted average performance A of the relaxation condition (C, clear) selected in step S204 as follows. First, the performance prediction unit 14 is included in the section determined in step S201, and the parameter value of the parameter 17 of the type “model” is C and the parameter value of the parameter 17 of the type “weather” is clear. The log 15 is extracted from the log storage unit 11. At this time, the performance prediction unit 14 ignores other types of parameter values and values of the basic data 16 other than “latitude” and “longitude”.
Next, the performance prediction unit 14 refers to the definition information as shown in FIG. 5 and the “measurement start date and time” as the basic data 16, determines the weight for each of the extracted measurement logs 15, and determines the basic data 16. Multiplication with “performance measurement result” is obtained to obtain a multiplication value. The performance prediction unit 14 obtains the sum of the multiplication values and the sum of the weights for the extracted measurement log 15 and divides the former by the latter to obtain the average performance A.
In addition, the performance prediction unit 14 calculates the weighted average performance B under the prediction condition by the same method as in step S208 (step S209).
Finally, the performance prediction unit 14 multiplies the weighted average performance A under the relaxation condition by the relaxation reliability ratio α and the performance ratio ratio, and the weighted average performance B under the prediction condition by the prediction reliability ratio β. Are added together and output as a predicted performance value of the device (step S210).
FIG. 9 shows, by mathematical formulas, a method for calculating a predicted performance value of a device at a future time, which is executed by the performance prediction unit 14.
Next, the effect of this embodiment will be described.
The performance prediction apparatus 10 of the present embodiment can output the predicted performance value of the device even when there are no measurement logs 15 that satisfy the prediction condition or there are only a few. The reason is that the performance prediction unit 14 calculates a predicted performance value based on the measurement log 15 that satisfies the relaxation condition.
The performance prediction apparatus 10 of the present embodiment can calculate a highly reliable predicted performance value. The reason is that the performance prediction device 10 calculates a predicted performance value based on a performance ratio obtained by neutralizing various factors and a relaxation condition with high prediction reliability. This is because the performance prediction device 10 calculates the predicted performance value so as to strongly reflect the value of the new measurement log 15.
That is, the performance prediction apparatus 10 of the present embodiment can accurately predict the future performance of the device in consideration of the transition of measured performance values over the medium to long term and the situation of the user at that time.
(Second Embodiment) Next, a second embodiment of the present invention will be described with reference to the drawings.
FIG. 10 shows a configuration of a performance prediction system 40 that includes the performance prediction apparatus 10 of the present embodiment. The performance prediction system 40 is configured by connecting the performance prediction device 10 and an external device 90 via a network 41.
The performance prediction apparatus 10 is added with a result storage unit 19 as compared with the first embodiment. The performance prediction apparatus 10 according to the present embodiment also includes a log storage unit 11, a performance ratio calculation unit 12, a condition setting unit 13, and a performance prediction unit 14. However, the log storage unit 11 does not store the initial measurement log 15. In addition, the performance prediction unit 14 can communicate with the outside.
The external device 90 includes an original log storage unit 95 and a prediction condition storage unit 96. The original log storage unit 95 stores the measurement log 15 shown in FIG. The prediction condition storage unit 96 stores prediction conditions.
In the present embodiment, the result storage unit 19 acquires the measurement log 15 from the original log storage unit 95 of the external device 90 and stores it in the log storage unit 11 prior to predicting the communication performance of the device. Further, the condition setting unit 13 acquires a prediction condition from the prediction condition storage unit 96 of the external device 90. Further, the performance prediction unit 14 outputs the calculated predicted performance value to the external device 90. Other points are the same as in the first embodiment.
FIG. 11 shows a configuration different from that of FIG. 10 of the performance prediction apparatus 10 of the present embodiment. The performance prediction apparatus 10 may be a computer that includes a CPU 21, a storage device 22, and a communication device 24 and executes a performance prediction program 23 stored in the storage device 22.
The performance prediction apparatus 10 according to the present embodiment is connected to an external device 90 via the communication device 24. The external device 90 is a computer or the like that includes a storage device 91.
In this case, the CPU 21 that executes the performance prediction program 23 functions as the performance ratio calculation unit 12, the condition setting unit 13, the performance prediction unit 14, and the result storage unit 19. In addition, the storage device 22 functions as the log storage unit 11.
Further, the storage device 91 of the external device 90 functions as the original log storage unit 95 and the prediction condition storage unit 96.
Next, the effect of this embodiment will be described.
The performance prediction apparatus 10 of this embodiment calculates the performance value of the device at the future time of the external device 90, and the external device 90 can utilize the predicted performance value of the device at the future time. The reason is that the performance prediction device 10 acquires the measurement log 15 and the prediction condition from the external device 90 and outputs the predicted performance value to the external device 90.
(Third Embodiment) Next, a third embodiment of the present invention will be described with reference to the drawings.
FIG. 12 shows a configuration of a performance prediction system 40 that includes the performance prediction apparatus 10 of the present embodiment. The performance prediction system 40 is configured by connecting a mobile device 30, an external device 90 and an information providing device 80 via a network 41. The network 41 includes a mobile phone communication network, a wired and wireless Internet, and the like.
The mobile device 30 is a mobile communication device including the performance prediction device 10 and the communication / processing device 31 according to the present invention, such as a mobile phone, a smartphone, a communication device mounted on a ship, a vehicle, or the like. The communication / processing device 31 performs the communication and information processing functions of the mobile device 30. When the mobile device 30 is, for example, a smartphone, the communication / processing device 31 performs all communication and information processing functions as a smartphone, such as calling, Web server access, and e-mail. In addition, the communication / processing device 31 acquires an instruction from the user or presents information to the user via the connected input / output device 33.
The performance prediction apparatus 10 in this embodiment predicts the communication performance of the communication / processing device 31 and outputs the predicted performance value to the communication / processing device 31. Based on the acquired predicted performance value, the communication / processing device 31 prefetches data required in the future from the information providing device 80 or the like into the cache 32 or the like. The communication / processing device 31 performs prefetch using a known technique.
The performance prediction device 10 can communicate with the external device 90, the information providing device 80, and the like via the communication / processing device 31. The performance prediction apparatus 10 according to the present embodiment includes a performance ratio calculation unit 12, a condition setting unit 13, and a performance prediction unit 14, but does not include the log storage unit 11.
The log storage unit 11 is provided in the external device 90. The external device 90 is, for example, a collection device for the measurement log 15 operated by a mobile phone company or a communication company.
The performance ratio calculation unit 12, the condition setting unit 13, and the performance prediction unit 14 of the performance prediction device 10 of the present exemplary embodiment access the log storage unit 11 of the external device 90 via the communication / processing device 31.
The information providing device 80 is a Web server or the like, and the condition setting unit 13 accesses the information providing device 80 via the communication / processing device 31.
The condition setting unit 13 acquires necessary data from the information providing device 80 and the communication / processing device 31 when determining the prediction condition. For example, the condition setting unit 13 acquires parameter values of the parameter type “model” and “NW type” from the communication / processing device 31. In addition, the condition setting unit 13 acquires parameter values such as parameter type “weather” and “temperature” corresponding to the latitude and longitude input from the user from the weather information providing server. The condition setting unit 13 acquires parameter values such as the parameter type “congestion degree” corresponding to the latitude and longitude input from the user from the area information providing server.
In other respects, the performance prediction apparatus 10 of this embodiment is the same as that of the first embodiment.
Next, the effect of this embodiment will be described.
The performance prediction apparatus 10 of the present embodiment makes it easy to use the measurement log 15 and determine measurement conditions. The reason is that data necessary for prediction is acquired from the external device 90 operated by a communication company or the like and the information providing device 80 operated by a third party.
(Fourth Embodiment) Next, a fourth embodiment of the present invention will be described with reference to the drawings. FIG. 13 shows the configuration of the performance prediction apparatus 10 of the present embodiment.
The performance prediction apparatus 10 includes, for each of a plurality of types of parameters 17, a log storage unit 11 that stores any one of a plurality of values that can be taken by the type of parameter 17 and a plurality of measurement logs 15 that include performance measurement results. A connected performance prediction unit 14 is provided.
The performance prediction unit 14 selects a combination (relaxation condition) having the highest reliability determined based on the number of measurement logs 15 in the log storage unit 11 that matches the combination among the values of the parameters 17 of a plurality of types. The relaxation condition performance value is calculated from the performance measurement result included in the measurement log 15 that is determined and matches the relaxation condition.
Further, the performance prediction unit 14 inputs any one of a plurality of values (prediction conditions) that can be taken by the parameter 17 of each type for each of the plurality of types of parameters 17, and sets the prediction condition and the relaxation condition. A multiplication value of a coefficient determined according to the difference and the relaxation condition performance value is output as a predicted performance value.
The performance prediction apparatus 10 of the present embodiment can output a predicted performance value under the conditions even when there are no measurement logs 15 under the prediction conditions or there are only a few. The reason is that the performance prediction unit 14 calculates a predicted performance value based on the measurement log 15 that satisfies the relaxation condition.
While the present invention has been described with reference to the embodiments (and examples), the present invention is not limited to the above embodiments (and examples). Various changes that can be understood by those skilled in the art can be made to the configuration and details of the present invention within the scope of the present invention.
This application claims the priority on the basis of Japanese application Japanese Patent Application No. 2010-279018 for which it applied on December 15, 2010, and takes in those the indications of all here.
 10 性能予測装置
 11 ログ記憶部
 12 性能比計算部
 13 条件設定部
 14 性能予測部
 15 測定ログ
 16 基本データ
 17 パラメータ
 19 結果格納部
 21 CPU
 22 記憶装置
 23 性能予測プログラム
 24 通信装置
 30 モバイル装置
 31 通信・処理装置
 32 キャッシュ
 33 入出力装置
 40 性能予測システム
 41 ネットワーク
 80 情報提供装置
 90 外部装置
 91 記憶装置
 95 原ログ記憶部
 96 予測条件記憶部
DESCRIPTION OF SYMBOLS 10 Performance prediction apparatus 11 Log memory | storage part 12 Performance ratio calculation part 13 Condition setting part 14 Performance prediction part 15 Measurement log 16 Basic data 17 Parameter 19 Result storage part 21 CPU
22 storage device 23 performance prediction program 24 communication device 30 mobile device 31 communication / processing device 32 cache 33 input / output device 40 performance prediction system 41 network 80 information providing device 90 external device 91 storage device 95 original log storage unit 96 prediction condition storage unit

Claims (10)

  1.  複数種別のパラメータの各々について当該種別のパラメータがとりうる複数の値のいずれか一つ、および、性能値を含むレコードを複数格納するログ記憶手段と接続され、前記複数種別のパラメータの値の組み合わせ中、当該組み合わせに合致する、前記ログ記憶手段の前記レコードの数に基づいて決定される信頼度が最も高い組み合わせである緩和条件を決定し、当該緩和条件に合致する前記レコードに含まれる性能値から緩和条件性能値を算出し、
    前記複数種別のパラメータの各々について、当該種別のパラメータがとりうる複数の値のいずれか一つである予測条件を入力して、当該予測条件と前記緩和条件との差異に応じて決定される係数と前記緩和条件性能値との乗算値である補正緩和条件性能値を予測性能値として出力する性能予測手段、
     を備える性能予測装置。
    For each of a plurality of types of parameters, any one of a plurality of values that can be taken by the parameters of that type, and a log storage unit that stores a plurality of records including performance values, and a combination of the values of the plurality of types of parameters Among them, a relaxation condition that is a combination having the highest reliability determined based on the number of the records of the log storage unit that matches the combination is determined, and the performance value included in the record that matches the relaxation condition Calculate the relaxation condition performance value from
    For each of the plurality of types of parameters, a prediction condition that is one of a plurality of values that can be taken by the type of parameter is input, and a coefficient determined according to a difference between the prediction condition and the relaxation condition And a performance prediction means for outputting a corrected relaxation condition performance value that is a product of the relaxation condition performance value as a predicted performance value,
    A performance prediction apparatus comprising:
  2.  前記性能予測手段は、前記予測条件と前記緩和条件から同一種別の異なるパラメータ値を抽出し、前記予測条件から抽出された当該パラメータ値を包含する全ての前記レコードから算出される性能値を、前記緩和条件から抽出されたパラメータ値を包含する全ての前記レコードから算出される性能値で除した比を前記係数として使用する、請求項1の性能予測装置。 The performance prediction means extracts different parameter values of the same type from the prediction conditions and the relaxation conditions, and calculates performance values calculated from all the records including the parameter values extracted from the prediction conditions, The performance prediction apparatus according to claim 1, wherein a ratio divided by a performance value calculated from all the records including a parameter value extracted from a relaxation condition is used as the coefficient.
  3.  前記レコードは日時を包含し、
     前記性能予測手段は、現時刻に近いレコードが多いほど、前記信頼度を高く決定する請求項1または2の性能予測装置。
    The record contains a date and time;
    The performance prediction apparatus according to claim 1, wherein the performance prediction unit determines the reliability higher as the number of records near the current time increases.
  4.  前記性能予測手段は、前記緩和条件に合致する前記レコードから前記信頼度である信頼度Aを算出し、前記予測条件に合致する前記レコードから前記信頼度である信頼度B、前記予測条件に合致する前記レコードの性能値から予測条件性能値を算出し、式『α×補正緩和条件性能値+β×予測条件性能値』(ここで、α+β=1,α:β=A:B)による計算値を前記予測性能値として出力する、請求項1乃至3のいずれかの性能予測装置。 The performance prediction means calculates the reliability A that is the reliability from the record that matches the relaxation condition, and the reliability B that is the reliability from the record that matches the prediction condition, and matches the prediction condition The predicted condition performance value is calculated from the performance value of the record to be calculated, and the calculated value by the formula “α × correction relaxation condition performance value + β × predicted condition performance value” (where α + β = 1, α: β = A: B) Is output as the predicted performance value. The performance prediction apparatus according to claim 1.
  5.  前記予測条件として機種を決定し、さらに、入力された位置に基づいて、通信方法、天気、気温、湿度、通信環境、ネットワーク混雑度いずれか1以上の種別のパラメータのパラメータ値を決定する条件設定手段を備える、請求項1乃至4のいずれかの性能予測装置。 Condition setting for determining a model as the prediction condition and further determining a parameter value of one or more types of parameters of communication method, weather, temperature, humidity, communication environment, and network congestion based on the input position The performance prediction apparatus according to claim 1, comprising means.
  6.  前記ログ記憶手段を備える外部装置、並びに、
     請求項1乃至5のいずれかの性能予測装置、および、ネットワークを介して接続された前記外部装置の前記ログ記憶装置に前記性能予測装置の指示に応じて入出力を行うと共に、前記性能予測装置から取得した前記予測性能値に基づいてキャッシュに格納するデータを決定する通信・処理装置を備えたモバイル端末、を包含する性能予測システム。
    An external device comprising the log storage means, and
    6. The performance prediction device according to claim 1, and inputs / outputs the log storage device of the external device connected via a network according to an instruction from the performance prediction device, and the performance prediction device A performance prediction system including a mobile terminal including a communication / processing device that determines data to be stored in a cache based on the predicted performance value acquired from
  7.  複数種別のパラメータの各々について当該種別のパラメータがとりうる複数の値のいずれか一つ、および、性能値を含むレコードを複数格納するログ記憶手段をアクセスして、前記複数種別のパラメータの値の組み合わせ中、当該組み合わせに合致する、前記ログ記憶手段の前記レコードの数に基づいて決定される信頼度が最も高い組み合わせである緩和条件を決定し、当該緩和条件に合致する前記レコードに含まれる性能値から緩和条件性能値を算出し、
     前記複数種別のパラメータの各々について、当該種別のパラメータがとりうる複数の値のいずれか一つである予測条件を入力して、当該予測条件と前記緩和条件との差異に応じて決定される係数と前記緩和条件性能値との乗算値である補正緩和条件性能値を予測性能値として出力する性能予測処理をコンピュータに実行させる性能予測プログラム。
    For each of a plurality of types of parameters, access one of a plurality of values that can be taken by the parameter of the type and a log storage unit that stores a plurality of records including performance values, and Among the combinations, the relaxation condition that is the combination having the highest reliability determined based on the number of the records of the log storage unit that matches the combination is determined, and the performance included in the record that matches the relaxation condition Calculate the relaxation condition performance value from the value,
    For each of the plurality of types of parameters, a prediction condition that is one of a plurality of values that can be taken by the type of parameter is input, and a coefficient determined according to a difference between the prediction condition and the relaxation condition A performance prediction program that causes a computer to execute a performance prediction process that outputs a corrected relaxation condition performance value that is a product of the relaxation condition performance value and the relaxation condition performance value as a predicted performance value.
  8.  前記予測条件と前記緩和条件から同一種別の異なるパラメータ値を抽出し、前記予測条件から抽出された当該パラメータ値を包含する全ての前記レコードから算出される性能値を、前記緩和条件から抽出されたパラメータ値を包含する全ての前記レコードから算出される性能値で除した比を前記係数として使用する前記性能予測処理をコンピュータに実行させる、請求項7の性能予測プログラム。 Different parameter values of the same type are extracted from the prediction condition and the relaxation condition, and performance values calculated from all the records including the parameter value extracted from the prediction condition are extracted from the relaxation condition 8. The performance prediction program according to claim 7, which causes a computer to execute the performance prediction process using a ratio obtained by dividing the performance value calculated from all the records including a parameter value as the coefficient.
  9.  複数種別のパラメータの各々について当該種別のパラメータがとりうる複数の値のいずれか一つ、および、性能値を含むレコードを複数格納するログ記憶手段をアクセスして、前記複数種別のパラメータの値の組み合わせ中、当該組み合わせに合致する、前記ログ記憶手段の前記レコードの数に基づいて決定される信頼度が最も高い組み合わせである緩和条件を決定し、
     当該緩和条件に合致する前記レコードに含まれる性能値から緩和条件性能値を算出し、
     前記複数種別のパラメータの各々について、当該種別のパラメータがとりうる複数の値のいずれか一つである予測条件を入力して、当該予測条件と前記緩和条件との差異に応じて決定される係数と前記緩和条件性能値との乗算値である補正緩和条件性能値を予測性能値として出力する性能予測方法。
    For each of a plurality of types of parameters, access one of a plurality of values that can be taken by the parameter of the type and a log storage unit that stores a plurality of records including performance values, and During the combination, a relaxation condition that is a combination having the highest reliability determined based on the number of the records of the log storage unit that matches the combination is determined,
    Calculate the relaxation condition performance value from the performance value included in the record that matches the relaxation condition,
    For each of the plurality of types of parameters, a prediction condition that is one of a plurality of values that can be taken by the type of parameter is input, and a coefficient determined according to a difference between the prediction condition and the relaxation condition A performance prediction method for outputting a corrected relaxation condition performance value that is a product of the relaxation condition performance value and the relaxation condition performance value as a predicted performance value.
  10.  前記予測条件と前記緩和条件から同一種別の異なるパラメータ値を抽出し、前記予測条件から抽出された当該パラメータ値を包含する全ての前記レコードから算出される性能値を、前記緩和条件から抽出されたパラメータ値を包含する全ての前記レコードから算出される性能値で除した比を前記係数として使用する、請求項9の性能予測方法。 Different parameter values of the same type are extracted from the prediction condition and the relaxation condition, and performance values calculated from all the records including the parameter value extracted from the prediction condition are extracted from the relaxation condition The performance prediction method according to claim 9, wherein a ratio divided by a performance value calculated from all the records including a parameter value is used as the coefficient.
PCT/JP2011/079276 2010-12-15 2011-12-13 Performance prediction device, performance prediction method and performance prediction program WO2012081718A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012548859A JPWO2012081718A1 (en) 2010-12-15 2011-12-13 Performance prediction apparatus, performance prediction method, and performance prediction program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-279018 2010-12-15
JP2010279018 2010-12-15

Publications (1)

Publication Number Publication Date
WO2012081718A1 true WO2012081718A1 (en) 2012-06-21

Family

ID=46244808

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/079276 WO2012081718A1 (en) 2010-12-15 2011-12-13 Performance prediction device, performance prediction method and performance prediction program

Country Status (2)

Country Link
JP (1) JPWO2012081718A1 (en)
WO (1) WO2012081718A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693741B2 (en) 2015-09-02 2020-06-23 Kddi Corporation Network monitoring system, network monitoring method, and computer-readable storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253446A (en) * 1994-03-16 1995-10-03 Mitsubishi Electric Corp Method and device for finding electric field strength distribution
WO2006095866A1 (en) * 2005-03-10 2006-09-14 Pioneer Corporation Communication environment learning device and communication environment learning method
JP2010166185A (en) * 2009-01-13 2010-07-29 Ntt Docomo Inc Apparatus and method of estimating electric field strength

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07253446A (en) * 1994-03-16 1995-10-03 Mitsubishi Electric Corp Method and device for finding electric field strength distribution
WO2006095866A1 (en) * 2005-03-10 2006-09-14 Pioneer Corporation Communication environment learning device and communication environment learning method
JP2010166185A (en) * 2009-01-13 2010-07-29 Ntt Docomo Inc Apparatus and method of estimating electric field strength

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10693741B2 (en) 2015-09-02 2020-06-23 Kddi Corporation Network monitoring system, network monitoring method, and computer-readable storage medium

Also Published As

Publication number Publication date
JPWO2012081718A1 (en) 2014-05-22

Similar Documents

Publication Publication Date Title
US10281338B2 (en) Oil-immersed transformer thermal monitoring and prediction system
KR101951198B1 (en) A calculating method and acalculating device for accuracy of measuring location, and a method and an apparatus for measuring location of terminal using the accuracy of measuring location
CN110674019A (en) Method and device for predicting system fault and electronic equipment
JP5953990B2 (en) COMMUNICATION CONTROL DEVICE, COMMUNICATION CONTROL SYSTEM, AND COMMUNICATION CONTROL METHOD
CN107333235B (en) WiFi connection probability prediction method and device, terminal and storage medium
WO2012081718A1 (en) Performance prediction device, performance prediction method and performance prediction program
JP2013197704A (en) Traffic amount prediction processing device and computer program
JP2016052034A (en) Communication band calculation device, communication band calculation method and program
KR20150057399A (en) Method and device to transmit and receive data based on location
JP2018061335A (en) Power generation facilities information estimation system and power generation facilities information estimation method
CN116047296A (en) Method for predicting battery cut-off capacity, terminal device and storage medium
WO2019207622A1 (en) Power demand prediction device, power demand prediction method, and program therefor
US11493666B2 (en) System and method for forecasting snowfall probability distributions
JP2004170201A (en) Weather prediction server, portable electronic equipment, and program
JP2018088598A (en) Distribution control device, distribution control method and program
CN114500170B (en) VPN line screening method, device, equipment and storage medium
JP2016144225A (en) Wind noise evaluation method of overhead transmission line
CN111741335A (en) Data processing method and device, mobile terminal and computer readable storage medium
CN110113115B (en) Channel determination method and device
KR102307821B1 (en) Road velocity prediction method, server and system
CN110493796B (en) LTE network capacity estimation method, device, equipment and medium
US9408153B2 (en) Controlling a mobile device
CN116996139B (en) Intelligent adjustment control method and system applied to directional antenna system
JP6368230B2 (en) Apparatus, program and method for estimating stay or movement from determination results using different distances
CN117687125A (en) Method, processor, device and storage medium for constructing icing grid point data set

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11847990

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2012548859

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11847990

Country of ref document: EP

Kind code of ref document: A1